
PostgreSQL 18.0
Documentation

The PostgreSQL Global Development Group

PostgreSQL 18.0 Documentation
The PostgreSQL Global Development Group
Copyright © 1996–2025 The PostgreSQL Global Development Group
Legal Notice
PostgreSQL Database Management System (also known as Postgres, formerly known as Postgres95)

Portions Copyright © 1996-2025, PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a
written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs
appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Preface ... xxii
1. What Is PostgreSQL? .. xxii
2. A Brief History of PostgreSQL .. xxii

2.1. The Berkeley POSTGRES Project .. xxiii
2.2. Postgres95 .. xxiii
2.3. PostgreSQL ... xxiv

3. Conventions ... xxiv
4. Further Information .. xxiv
5. Bug Reporting Guidelines .. xxiv

5.1. Identifying Bugs .. xxv
5.2. What to Report ... xxv
5.3. Where to Report Bugs .. xxvii

I. Tutorial .. 1
1. Getting Started ... 2

1.1. Installation .. 2
1.2. Architectural Fundamentals ... 2
1.3. Creating a Database ... 2
1.4. Accessing a Database ... 4

2. The SQL Language ... 6
2.1. Introduction .. 6
2.2. Concepts ... 6
2.3. Creating a New Table .. 6
2.4. Populating a Table With Rows ... 7
2.5. Querying a Table .. 8
2.6. Joins Between Tables ... 9
2.7. Aggregate Functions .. 11
2.8. Updates ... 12
2.9. Deletions ... 13

3. Advanced Features .. 14
3.1. Introduction .. 14
3.2. Views ... 14
3.3. Foreign Keys ... 14
3.4. Transactions ... 15
3.5. Window Functions .. 16
3.6. Inheritance .. 19
3.7. Conclusion .. 20

II. The SQL Language ... 21
4. SQL Syntax .. 22

4.1. Lexical Structure .. 22
4.2. Value Expressions .. 30
4.3. Calling Functions .. 42

5. Data Definition .. 45
5.1. Table Basics .. 45
5.2. Default Values .. 46
5.3. Identity Columns .. 47
5.4. Generated Columns .. 48
5.5. Constraints .. 49
5.6. System Columns ... 58
5.7. Modifying Tables .. 59
5.8. Privileges .. 61
5.9. Row Security Policies ... 66
5.10. Schemas .. 71
5.11. Inheritance .. 75
5.12. Table Partitioning ... 79
5.13. Foreign Data ... 91
5.14. Other Database Objects ... 91
5.15. Dependency Tracking ... 91

6. Data Manipulation ... 93

iii

PostgreSQL 18.0 Documentation

6.1. Inserting Data ... 93
6.2. Updating Data .. 94
6.3. Deleting Data .. 94
6.4. Returning Data from Modified Rows ... 95

7. Queries .. 97
7.1. Overview ... 97
7.2. Table Expressions ... 97
7.3. Select Lists ... 111
7.4. Combining Queries (UNION, INTERSECT, EXCEPT) ... 112
7.5. Sorting Rows (ORDER BY) ... 113
7.6. LIMIT and OFFSET ... 114
7.7. VALUES Lists .. 114
7.8. WITH Queries (Common Table Expressions) .. 115

8. Data Types .. 123
8.1. Numeric Types ... 124
8.2. Monetary Types .. 129
8.3. Character Types ... 130
8.4. Binary Data Types .. 132
8.5. Date/Time Types ... 134
8.6. Boolean Type .. 143
8.7. Enumerated Types .. 144
8.8. Geometric Types ... 145
8.9. Network Address Types ... 148
8.10. Bit String Types ... 150
8.11. Text Search Types .. 151
8.12. UUID Type .. 153
8.13. XML Type ... 154
8.14. JSON Types ... 155
8.15. Arrays ... 164
8.16. Composite Types .. 172
8.17. Range Types ... 178
8.18. Domain Types ... 183
8.19. Object Identifier Types ... 183
8.20. pg_lsn Type .. 186
8.21. Pseudo-Types .. 186

9. Functions and Operators .. 188
9.1. Logical Operators ... 188
9.2. Comparison Functions and Operators ... 188
9.3. Mathematical Functions and Operators .. 192
9.4. String Functions and Operators .. 200
9.5. Binary String Functions and Operators ... 210
9.6. Bit String Functions and Operators ... 214
9.7. Pattern Matching .. 215
9.8. Data Type Formatting Functions ... 234
9.9. Date/Time Functions and Operators .. 241
9.10. Enum Support Functions ... 256
9.11. Geometric Functions and Operators .. 257
9.12. Network Address Functions and Operators ... 263
9.13. Text Search Functions and Operators ... 266
9.14. UUID Functions .. 271
9.15. XML Functions ... 272
9.16. JSON Functions and Operators .. 285
9.17. Sequence Manipulation Functions ... 314
9.18. Conditional Expressions ... 315
9.19. Array Functions and Operators ... 318
9.20. Range/Multirange Functions and Operators .. 321
9.21. Aggregate Functions .. 326

iv

PostgreSQL 18.0 Documentation

9.22. Window Functions .. 333
9.23. Merge Support Functions .. 335
9.24. Subquery Expressions .. 335
9.25. Row and Array Comparisons .. 338
9.26. Set Returning Functions .. 340
9.27. System Information Functions and Operators ... 344
9.28. System Administration Functions .. 363
9.29. Trigger Functions ... 381
9.30. Event Trigger Functions .. 382
9.31. Statistics Information Functions .. 385

10. Type Conversion .. 386
10.1. Overview ... 386
10.2. Operators .. 387
10.3. Functions .. 390
10.4. Value Storage ... 394
10.5. UNION, CASE, and Related Constructs ... 394
10.6. SELECT Output Columns ... 396

11. Indexes .. 397
11.1. Introduction .. 397
11.2. Index Types .. 398
11.3. Multicolumn Indexes .. 400
11.4. Indexes and ORDER BY ... 401
11.5. Combining Multiple Indexes .. 402
11.6. Unique Indexes ... 402
11.7. Indexes on Expressions .. 403
11.8. Partial Indexes .. 403
11.9. Index-Only Scans and Covering Indexes .. 406
11.10. Operator Classes and Operator Families ... 408
11.11. Indexes and Collations ... 409
11.12. Examining Index Usage ... 410

12. Full Text Search .. 412
12.1. Introduction .. 412
12.2. Tables and Indexes ... 415
12.3. Controlling Text Search ... 417
12.4. Additional Features .. 424
12.5. Parsers .. 428
12.6. Dictionaries ... 430
12.7. Configuration Example ... 438
12.8. Testing and Debugging Text Search .. 439
12.9. Preferred Index Types for Text Search .. 443
12.10. psql Support ... 444
12.11. Limitations .. 446

13. Concurrency Control ... 448
13.1. Introduction .. 448
13.2. Transaction Isolation .. 448
13.3. Explicit Locking .. 454
13.4. Data Consistency Checks at the Application Level .. 459
13.5. Serialization Failure Handling ... 460
13.6. Caveats ... 461
13.7. Locking and Indexes .. 461

14. Performance Tips .. 462
14.1. Using EXPLAIN .. 462
14.2. Statistics Used by the Planner ... 476
14.3. Controlling the Planner with Explicit JOIN Clauses .. 480
14.4. Populating a Database ... 482
14.5. Non-Durable Settings ... 484

15. Parallel Query ... 485

v

PostgreSQL 18.0 Documentation

15.1. How Parallel Query Works ... 485
15.2. When Can Parallel Query Be Used? .. 486
15.3. Parallel Plans .. 486
15.4. Parallel Safety .. 488

III. Server Administration ... 490
16. Installation from Binaries ... 491
17. Installation from Source Code .. 492

17.1. Requirements .. 492
17.2. Getting the Source ... 494
17.3. Building and Installation with Autoconf and Make .. 494
17.4. Building and Installation with Meson .. 505
17.5. Post-Installation Setup ... 516
17.6. Supported Platforms ... 517
17.7. Platform-Specific Notes .. 517

18. Server Setup and Operation ... 523
18.1. The PostgreSQL User Account .. 523
18.2. Creating a Database Cluster .. 523
18.3. Starting the Database Server .. 525
18.4. Managing Kernel Resources .. 528
18.5. Shutting Down the Server ... 535
18.6. Upgrading a PostgreSQL Cluster .. 536
18.7. Preventing Server Spoofing ... 538
18.8. Encryption Options ... 538
18.9. Secure TCP/IP Connections with SSL .. 540
18.10. Secure TCP/IP Connections with GSSAPI Encryption ... 543
18.11. Secure TCP/IP Connections with SSH Tunnels ... 544
18.12. Registering Event Log on Windows ... 544

19. Server Configuration ... 546
19.1. Setting Parameters ... 546
19.2. File Locations ... 549
19.3. Connections and Authentication .. 550
19.4. Resource Consumption ... 557
19.5. Write Ahead Log ... 565
19.6. Replication .. 575
19.7. Query Planning ... 582
19.8. Error Reporting and Logging ... 589
19.9. Run-time Statistics ... 602
19.10. Vacuuming .. 604
19.11. Client Connection Defaults .. 609
19.12. Lock Management .. 619
19.13. Version and Platform Compatibility ... 620
19.14. Error Handling ... 622
19.15. Preset Options .. 623
19.16. Customized Options .. 625
19.17. Developer Options .. 625
19.18. Short Options ... 630

20. Client Authentication .. 632
20.1. The pg_hba.conf File ... 632
20.2. User Name Maps ... 640
20.3. Authentication Methods ... 641
20.4. Trust Authentication ... 642
20.5. Password Authentication .. 642
20.6. GSSAPI Authentication ... 643
20.7. SSPI Authentication .. 645
20.8. Ident Authentication ... 645
20.9. Peer Authentication .. 646
20.10. LDAP Authentication .. 646
20.11. RADIUS Authentication .. 649

vi

PostgreSQL 18.0 Documentation

20.12. Certificate Authentication .. 650
20.13. PAM Authentication .. 650
20.14. BSD Authentication .. 651
20.15. OAuth Authorization/Authentication .. 651
20.16. Authentication Problems .. 653

21. Database Roles .. 654
21.1. Database Roles ... 654
21.2. Role Attributes ... 655
21.3. Role Membership ... 656
21.4. Dropping Roles ... 658
21.5. Predefined Roles ... 658
21.6. Function Security ... 660

22. Managing Databases ... 661
22.1. Overview ... 661
22.2. Creating a Database ... 661
22.3. Template Databases ... 662
22.4. Database Configuration .. 663
22.5. Destroying a Database ... 664
22.6. Tablespaces .. 664

23. Localization ... 666
23.1. Locale Support ... 666
23.2. Collation Support ... 670
23.3. Character Set Support ... 679

24. Routine Database Maintenance Tasks .. 689
24.1. Routine Vacuuming .. 689
24.2. Routine Reindexing .. 698
24.3. Log File Maintenance ... 698

25. Backup and Restore .. 700
25.1. SQL Dump .. 700
25.2. File System Level Backup .. 702
25.3. Continuous Archiving and Point-in-Time Recovery (PITR) ... 703

26. High Availability, Load Balancing, and Replication ... 714
26.1. Comparison of Different Solutions ... 714
26.2. Log-Shipping Standby Servers ... 717
26.3. Failover ... 725
26.4. Hot Standby .. 726

27. Monitoring Database Activity ... 733
27.1. Standard Unix Tools ... 733
27.2. The Cumulative Statistics System .. 734
27.3. Viewing Locks ... 775
27.4. Progress Reporting ... 775
27.5. Dynamic Tracing .. 783
27.6. Monitoring Disk Usage .. 791

28. Reliability and the Write-Ahead Log ... 794
28.1. Reliability .. 794
28.2. Data Checksums ... 795
28.3. Write-Ahead Logging (WAL) ... 796
28.4. Asynchronous Commit .. 796
28.5. WAL Configuration ... 798
28.6. WAL Internals ... 801

29. Logical Replication .. 803
29.1. Publication .. 803
29.2. Subscription .. 804
29.3. Logical Replication Failover ... 809
29.4. Row Filters ... 811
29.5. Column Lists ... 817
29.6. Generated Column Replication .. 819
29.7. Conflicts .. 821

vii

PostgreSQL 18.0 Documentation

29.8. Restrictions ... 823
29.9. Architecture .. 824
29.10. Monitoring .. 825
29.11. Security ... 825
29.12. Configuration Settings ... 826
29.13. Upgrade .. 827
29.14. Quick Setup .. 832

30. Just-in-Time Compilation (JIT) .. 833
30.1. What Is JIT compilation? .. 833
30.2. When to JIT? ... 833
30.3. Configuration .. 834
30.4. Extensibility .. 835

31. Regression Tests ... 836
31.1. Running the Tests .. 836
31.2. Test Evaluation ... 839
31.3. Variant Comparison Files ... 841
31.4. TAP Tests .. 842
31.5. Test Coverage Examination .. 843

IV. Client Interfaces .. 845
32. libpq — C Library ... 846

32.1. Database Connection Control Functions .. 846
32.2. Connection Status Functions ... 865
32.3. Command Execution Functions .. 871
32.4. Asynchronous Command Processing .. 885
32.5. Pipeline Mode ... 889
32.6. Retrieving Query Results in Chunks .. 893
32.7. Canceling Queries in Progress ... 894
32.8. The Fast-Path Interface .. 898
32.9. Asynchronous Notification ... 899
32.10. Functions Associated with the COPY Command ... 900
32.11. Control Functions ... 903
32.12. Miscellaneous Functions .. 905
32.13. Notice Processing ... 908
32.14. Event System .. 909
32.15. Environment Variables ... 915
32.16. The Password File .. 917
32.17. The Connection Service File .. 917
32.18. LDAP Lookup of Connection Parameters ... 918
32.19. SSL Support ... 918
32.20. OAuth Support .. 922
32.21. Behavior in Threaded Programs .. 925
32.22. Building libpq Programs .. 926
32.23. Example Programs ... 927

33. Large Objects .. 937
33.1. Introduction .. 937
33.2. Implementation Features ... 937
33.3. Client Interfaces ... 937
33.4. Server-Side Functions .. 941
33.5. Example Program ... 942

34. ECPG — Embedded SQL in C .. 948
34.1. The Concept ... 948
34.2. Managing Database Connections ... 948
34.3. Running SQL Commands ... 951
34.4. Using Host Variables .. 954
34.5. Dynamic SQL .. 967
34.6. pgtypes Library .. 968
34.7. Using Descriptor Areas .. 980
34.8. Error Handling ... 992

viii

PostgreSQL 18.0 Documentation

34.9. Preprocessor Directives ... 998
34.10. Processing Embedded SQL Programs .. 1000
34.11. Library Functions ... 1001
34.12. Large Objects ... 1001
34.13. C++ Applications ... 1003
34.14. Embedded SQL Commands .. 1006
34.15. Informix Compatibility Mode ... 1028
34.16. Oracle Compatibility Mode .. 1041
34.17. Internals .. 1041

35. The Information Schema ... 1044
35.1. The Schema .. 1044
35.2. Data Types .. 1044
35.3. information_schema_catalog_name .. 1045
35.4. administrable_role_authorizations .. 1045
35.5. applicable_roles .. 1045
35.6. attributes ... 1046
35.7. character_sets .. 1048
35.8. check_constraint_routine_usage ... 1049
35.9. check_constraints .. 1049
35.10. collations ... 1049
35.11. collation_character_set_applicability .. 1050
35.12. column_column_usage .. 1050
35.13. column_domain_usage .. 1051
35.14. column_options .. 1051
35.15. column_privileges .. 1051
35.16. column_udt_usage .. 1052
35.17. columns ... 1053
35.18. constraint_column_usage ... 1056
35.19. constraint_table_usage ... 1056
35.20. data_type_privileges .. 1057
35.21. domain_constraints .. 1057
35.22. domain_udt_usage .. 1058
35.23. domains ... 1058
35.24. element_types ... 1060
35.25. enabled_roles ... 1062
35.26. foreign_data_wrapper_options ... 1062
35.27. foreign_data_wrappers .. 1063
35.28. foreign_server_options ... 1063
35.29. foreign_servers .. 1063
35.30. foreign_table_options .. 1064
35.31. foreign_tables .. 1064
35.32. key_column_usage .. 1065
35.33. parameters ... 1065
35.34. referential_constraints ... 1067
35.35. role_column_grants .. 1068
35.36. role_routine_grants .. 1068
35.37. role_table_grants .. 1069
35.38. role_udt_grants .. 1069
35.39. role_usage_grants .. 1070
35.40. routine_column_usage .. 1071
35.41. routine_privileges .. 1071
35.42. routine_routine_usage .. 1072
35.43. routine_sequence_usage ... 1072
35.44. routine_table_usage .. 1073
35.45. routines ... 1074
35.46. schemata ... 1078

ix

PostgreSQL 18.0 Documentation

35.47. sequences ... 1078
35.48. sql_features ... 1079
35.49. sql_implementation_info ... 1080
35.50. sql_parts ... 1080
35.51. sql_sizing ... 1080
35.52. table_constraints .. 1081
35.53. table_privileges .. 1081
35.54. tables ... 1082
35.55. transforms ... 1083
35.56. triggered_update_columns ... 1083
35.57. triggers ... 1084
35.58. udt_privileges .. 1085
35.59. usage_privileges .. 1086
35.60. user_defined_types .. 1086
35.61. user_mapping_options .. 1088
35.62. user_mappings ... 1088
35.63. view_column_usage .. 1089
35.64. view_routine_usage .. 1089
35.65. view_table_usage .. 1090
35.66. views ... 1090

V. Server Programming ... 1092
36. Extending SQL .. 1093

36.1. How Extensibility Works .. 1093
36.2. The PostgreSQL Type System .. 1093
36.3. User-Defined Functions .. 1096
36.4. User-Defined Procedures ... 1097
36.5. Query Language (SQL) Functions .. 1097
36.6. Function Overloading ... 1111
36.7. Function Volatility Categories .. 1112
36.8. Procedural Language Functions .. 1114
36.9. Internal Functions .. 1114
36.10. C-Language Functions .. 1114
36.11. Function Optimization Information .. 1137
36.12. User-Defined Aggregates ... 1138
36.13. User-Defined Types .. 1145
36.14. User-Defined Operators ... 1149
36.15. Operator Optimization Information .. 1149
36.16. Interfacing Extensions to Indexes .. 1153
36.17. Packaging Related Objects into an Extension ... 1165
36.18. Extension Building Infrastructure .. 1173

37. Triggers ... 1178
37.1. Overview of Trigger Behavior .. 1178
37.2. Visibility of Data Changes .. 1181
37.3. Writing Trigger Functions in C .. 1181
37.4. A Complete Trigger Example ... 1184

38. Event Triggers .. 1188
38.1. Overview of Event Trigger Behavior ... 1188
38.2. Writing Event Trigger Functions in C ... 1189
38.3. A Complete Event Trigger Example .. 1190
38.4. A Table Rewrite Event Trigger Example ... 1191
38.5. A Database Login Event Trigger Example ... 1192

39. The Rule System ... 1194
39.1. The Query Tree .. 1194
39.2. Views and the Rule System ... 1195
39.3. Materialized Views ... 1202
39.4. Rules on INSERT, UPDATE, and DELETE ... 1204
39.5. Rules and Privileges ... 1214

x

PostgreSQL 18.0 Documentation

39.6. Rules and Command Status ... 1216
39.7. Rules Versus Triggers .. 1216

40. Procedural Languages .. 1219
40.1. Installing Procedural Languages ... 1219

41. PL/pgSQL — SQL Procedural Language .. 1221
41.1. Overview ... 1221
41.2. Structure of PL/pgSQL ... 1222
41.3. Declarations .. 1223
41.4. Expressions ... 1229
41.5. Basic Statements .. 1230
41.6. Control Structures .. 1237
41.7. Cursors ... 1251
41.8. Transaction Management ... 1256
41.9. Errors and Messages ... 1257
41.10. Trigger Functions ... 1259
41.11. PL/pgSQL under the Hood ... 1267
41.12. Tips for Developing in PL/pgSQL ... 1270
41.13. Porting from Oracle PL/SQL .. 1273

42. PL/Tcl — Tcl Procedural Language ... 1282
42.1. Overview ... 1282
42.2. PL/Tcl Functions and Arguments ... 1282
42.3. Data Values in PL/Tcl ... 1284
42.4. Global Data in PL/Tcl ... 1284
42.5. Database Access from PL/Tcl ... 1284
42.6. Trigger Functions in PL/Tcl ... 1286
42.7. Event Trigger Functions in PL/Tcl ... 1288
42.8. Error Handling in PL/Tcl .. 1289
42.9. Explicit Subtransactions in PL/Tcl ... 1289
42.10. Transaction Management ... 1290
42.11. PL/Tcl Configuration ... 1291
42.12. Tcl Procedure Names ... 1291

43. PL/Perl — Perl Procedural Language ... 1292
43.1. PL/Perl Functions and Arguments ... 1292
43.2. Data Values in PL/Perl ... 1296
43.3. Built-in Functions ... 1296
43.4. Global Values in PL/Perl .. 1301
43.5. Trusted and Untrusted PL/Perl .. 1302
43.6. PL/Perl Triggers ... 1303
43.7. PL/Perl Event Triggers ... 1304
43.8. PL/Perl Under the Hood ... 1305

44. PL/Python — Python Procedural Language .. 1307
44.1. PL/Python Functions ... 1307
44.2. Data Values .. 1308
44.3. Sharing Data ... 1313
44.4. Anonymous Code Blocks .. 1313
44.5. Trigger Functions ... 1313
44.6. Database Access ... 1314
44.7. Explicit Subtransactions ... 1317
44.8. Transaction Management ... 1318
44.9. Utility Functions ... 1318
44.10. Python 2 vs. Python 3 .. 1319
44.11. Environment Variables ... 1319

45. Server Programming Interface ... 1321
45.1. Interface Functions .. 1321
45.2. Interface Support Functions .. 1360
45.3. Memory Management .. 1369
45.4. Transaction Management ... 1379
45.5. Visibility of Data Changes .. 1382

xi

PostgreSQL 18.0 Documentation

45.6. Examples ... 1382
46. Background Worker Processes ... 1386
47. Logical Decoding ... 1389

47.1. Logical Decoding Examples ... 1389
47.2. Logical Decoding Concepts .. 1392
47.3. Streaming Replication Protocol Interface .. 1395
47.4. Logical Decoding SQL Interface .. 1395
47.5. System Catalogs Related to Logical Decoding .. 1395
47.6. Logical Decoding Output Plugins ... 1395
47.7. Logical Decoding Output Writers .. 1402
47.8. Synchronous Replication Support for Logical Decoding ... 1402
47.9. Streaming of Large Transactions for Logical Decoding .. 1402
47.10. Two-phase Commit Support for Logical Decoding .. 1403

48. Replication Progress Tracking .. 1405
49. Archive Modules ... 1406

49.1. Initialization Functions ... 1406
49.2. Archive Module Callbacks .. 1406

50. OAuth Validator Modules .. 1408
50.1. Safely Designing a Validator Module ... 1408
50.2. Initialization Functions ... 1410
50.3. OAuth Validator Callbacks ... 1411

VI. Reference ... 1413
I. SQL Commands ... 1414

ABORT .. 1415
ALTER AGGREGATE .. 1416
ALTER COLLATION ... 1418
ALTER CONVERSION .. 1420
ALTER DATABASE ... 1421
ALTER DEFAULT PRIVILEGES ... 1423
ALTER DOMAIN .. 1426
ALTER EVENT TRIGGER .. 1429
ALTER EXTENSION ... 1430
ALTER FOREIGN DATA WRAPPER ... 1433
ALTER FOREIGN TABLE ... 1435
ALTER FUNCTION .. 1440
ALTER GROUP ... 1443
ALTER INDEX .. 1445
ALTER LANGUAGE .. 1448
ALTER LARGE OBJECT ... 1449
ALTER MATERIALIZED VIEW ... 1450
ALTER OPERATOR .. 1452
ALTER OPERATOR CLASS .. 1454
ALTER OPERATOR FAMILY .. 1455
ALTER POLICY .. 1458
ALTER PROCEDURE ... 1459
ALTER PUBLICATION ... 1462
ALTER ROLE .. 1465
ALTER ROUTINE ... 1469
ALTER RULE .. 1470
ALTER SCHEMA .. 1471
ALTER SEQUENCE ... 1472
ALTER SERVER ... 1475
ALTER STATISTICS ... 1476
ALTER SUBSCRIPTION ... 1477
ALTER SYSTEM ... 1480
ALTER TABLE .. 1482
ALTER TABLESPACE ... 1499
ALTER TEXT SEARCH CONFIGURATION .. 1500

xii

PostgreSQL 18.0 Documentation

ALTER TEXT SEARCH DICTIONARY .. 1502
ALTER TEXT SEARCH PARSER .. 1504
ALTER TEXT SEARCH TEMPLATE ... 1505
ALTER TRIGGER .. 1506
ALTER TYPE .. 1508
ALTER USER ... 1512
ALTER USER MAPPING .. 1513
ALTER VIEW .. 1514
ANALYZE .. 1516
BEGIN .. 1519
CALL ... 1521
CHECKPOINT .. 1522
CLOSE .. 1523
CLUSTER .. 1524
COMMENT ... 1527
COMMIT ... 1531
COMMIT PREPARED ... 1532
COPY .. 1533
CREATE ACCESS METHOD .. 1543
CREATE AGGREGATE ... 1544
CREATE CAST ... 1551
CREATE COLLATION .. 1555
CREATE CONVERSION ... 1558
CREATE DATABASE .. 1560
CREATE DOMAIN .. 1565
CREATE EVENT TRIGGER .. 1568
CREATE EXTENSION .. 1570
CREATE FOREIGN DATA WRAPPER .. 1572
CREATE FOREIGN TABLE .. 1574
CREATE FUNCTION .. 1579
CREATE GROUP .. 1587
CREATE INDEX ... 1588
CREATE LANGUAGE ... 1596
CREATE MATERIALIZED VIEW .. 1598
CREATE OPERATOR .. 1600
CREATE OPERATOR CLASS ... 1603
CREATE OPERATOR FAMILY ... 1606
CREATE POLICY .. 1607
CREATE PROCEDURE ... 1612
CREATE PUBLICATION ... 1616
CREATE ROLE ... 1620
CREATE RULE ... 1625
CREATE SCHEMA ... 1628
CREATE SEQUENCE ... 1630
CREATE SERVER ... 1634
CREATE STATISTICS ... 1636
CREATE SUBSCRIPTION .. 1640
CREATE TABLE ... 1645
CREATE TABLE AS ... 1667
CREATE TABLESPACE .. 1670
CREATE TEXT SEARCH CONFIGURATION ... 1672
CREATE TEXT SEARCH DICTIONARY ... 1673
CREATE TEXT SEARCH PARSER ... 1675
CREATE TEXT SEARCH TEMPLATE .. 1677
CREATE TRANSFORM .. 1678
CREATE TRIGGER ... 1680
CREATE TYPE .. 1687
CREATE USER ... 1696

xiii

PostgreSQL 18.0 Documentation

CREATE USER MAPPING ... 1697
CREATE VIEW ... 1698
DEALLOCATE ... 1703
DECLARE ... 1704
DELETE .. 1707
DISCARD .. 1710
DO .. 1711
DROP ACCESS METHOD .. 1712
DROP AGGREGATE ... 1713
DROP CAST .. 1715
DROP COLLATION .. 1716
DROP CONVERSION ... 1717
DROP DATABASE .. 1718
DROP DOMAIN .. 1719
DROP EVENT TRIGGER .. 1720
DROP EXTENSION .. 1721
DROP FOREIGN DATA WRAPPER .. 1722
DROP FOREIGN TABLE .. 1723
DROP FUNCTION .. 1724
DROP GROUP .. 1726
DROP INDEX ... 1727
DROP LANGUAGE ... 1728
DROP MATERIALIZED VIEW .. 1729
DROP OPERATOR .. 1730
DROP OPERATOR CLASS ... 1731
DROP OPERATOR FAMILY ... 1732
DROP OWNED ... 1733
DROP POLICY .. 1734
DROP PROCEDURE ... 1735
DROP PUBLICATION ... 1737
DROP ROLE ... 1738
DROP ROUTINE .. 1739
DROP RULE ... 1740
DROP SCHEMA ... 1741
DROP SEQUENCE ... 1742
DROP SERVER ... 1743
DROP STATISTICS ... 1744
DROP SUBSCRIPTION .. 1745
DROP TABLE ... 1746
DROP TABLESPACE .. 1747
DROP TEXT SEARCH CONFIGURATION ... 1748
DROP TEXT SEARCH DICTIONARY ... 1749
DROP TEXT SEARCH PARSER .. 1750
DROP TEXT SEARCH TEMPLATE .. 1751
DROP TRANSFORM .. 1752
DROP TRIGGER ... 1753
DROP TYPE .. 1754
DROP USER ... 1755
DROP USER MAPPING ... 1756
DROP VIEW ... 1757
END .. 1758
EXECUTE ... 1759
EXPLAIN .. 1760
FETCH .. 1766
GRANT ... 1770
IMPORT FOREIGN SCHEMA .. 1776
INSERT ... 1778
LISTEN ... 1785

xiv

PostgreSQL 18.0 Documentation

LOAD .. 1787
LOCK .. 1788
MERGE ... 1791
MOVE ... 1798
NOTIFY ... 1800
PREPARE .. 1802
PREPARE TRANSACTION ... 1805
REASSIGN OWNED ... 1807
REFRESH MATERIALIZED VIEW ... 1808
REINDEX .. 1810
RELEASE SAVEPOINT .. 1815
RESET .. 1817
REVOKE ... 1818
ROLLBACK ... 1822
ROLLBACK PREPARED ... 1823
ROLLBACK TO SAVEPOINT .. 1824
SAVEPOINT .. 1826
SECURITY LABEL .. 1828
SELECT .. 1831
SELECT INTO .. 1851
SET ... 1853
SET CONSTRAINTS ... 1856
SET ROLE .. 1857
SET SESSION AUTHORIZATION .. 1859
SET TRANSACTION .. 1861
SHOW ... 1864
START TRANSACTION .. 1866
TRUNCATE ... 1867
UNLISTEN ... 1869
UPDATE .. 1870
VACUUM .. 1875
VALUES .. 1880

II. PostgreSQL Client Applications ... 1882
clusterdb .. 1883
createdb ... 1886
createuser .. 1889
dropdb .. 1893
dropuser ... 1896
ecpg .. 1898
pg_amcheck .. 1900
pg_basebackup ... 1905
pgbench .. 1914
pg_combinebackup ... 1937
pg_config .. 1940
pg_dump ... 1943
pg_dumpall ... 1958
pg_isready .. 1966
pg_receivewal ... 1968
pg_recvlogical .. 1972
pg_restore .. 1976
pg_verifybackup ... 1986
psql ... 1989
reindexdb ... 2033
vacuumdb ... 2036

III. PostgreSQL Server Applications ... 2041
initdb .. 2042
pg_archivecleanup ... 2048
pg_checksums .. 2050

xv

PostgreSQL 18.0 Documentation

pg_controldata ... 2052
pg_createsubscriber ... 2053
pg_ctl .. 2058
pg_resetwal .. 2063
pg_rewind ... 2067
pg_test_fsync .. 2071
pg_test_timing .. 2072
pg_upgrade ... 2075
pg_waldump ... 2085
pg_walsummary ... 2088
postgres .. 2089

VII. Internals ... 2095
51. Overview of PostgreSQL Internals ... 2096

51.1. The Path of a Query ... 2096
51.2. How Connections Are Established ... 2096
51.3. The Parser Stage .. 2097
51.4. The PostgreSQL Rule System .. 2098
51.5. Planner/Optimizer ... 2098
51.6. Executor .. 2099

52. System Catalogs .. 2101
52.1. Overview ... 2101
52.2. pg_aggregate ... 2103
52.3. pg_am ... 2104
52.4. pg_amop ... 2105
52.5. pg_amproc ... 2106
52.6. pg_attrdef ... 2106
52.7. pg_attribute ... 2106
52.8. pg_authid ... 2108
52.9. pg_auth_members .. 2109
52.10. pg_cast ... 2110
52.11. pg_class ... 2111
52.12. pg_collation ... 2113
52.13. pg_constraint ... 2114
52.14. pg_conversion ... 2116
52.15. pg_database ... 2117
52.16. pg_db_role_setting .. 2118
52.17. pg_default_acl .. 2118
52.18. pg_depend ... 2119
52.19. pg_description .. 2121
52.20. pg_enum ... 2121
52.21. pg_event_trigger .. 2122
52.22. pg_extension ... 2122
52.23. pg_foreign_data_wrapper ... 2123
52.24. pg_foreign_server .. 2123
52.25. pg_foreign_table .. 2124
52.26. pg_index ... 2124
52.27. pg_inherits ... 2126
52.28. pg_init_privs ... 2126
52.29. pg_language ... 2127
52.30. pg_largeobject .. 2127
52.31. pg_largeobject_metadata ... 2128
52.32. pg_namespace ... 2128
52.33. pg_opclass ... 2129
52.34. pg_operator ... 2129
52.35. pg_opfamily ... 2130
52.36. pg_parameter_acl .. 2131

xvi

PostgreSQL 18.0 Documentation

52.37. pg_partitioned_table .. 2131
52.38. pg_policy ... 2132
52.39. pg_proc ... 2132
52.40. pg_publication .. 2135
52.41. pg_publication_namespace ... 2135
52.42. pg_publication_rel .. 2136
52.43. pg_range ... 2136
52.44. pg_replication_origin .. 2136
52.45. pg_rewrite ... 2137
52.46. pg_seclabel ... 2137
52.47. pg_sequence ... 2138
52.48. pg_shdepend ... 2138
52.49. pg_shdescription .. 2139
52.50. pg_shseclabel ... 2140
52.51. pg_statistic ... 2140
52.52. pg_statistic_ext .. 2141
52.53. pg_statistic_ext_data .. 2142
52.54. pg_subscription .. 2143
52.55. pg_subscription_rel .. 2144
52.56. pg_tablespace ... 2144
52.57. pg_transform ... 2145
52.58. pg_trigger ... 2145
52.59. pg_ts_config ... 2147
52.60. pg_ts_config_map .. 2147
52.61. pg_ts_dict ... 2148
52.62. pg_ts_parser ... 2148
52.63. pg_ts_template .. 2149
52.64. pg_type ... 2149
52.65. pg_user_mapping .. 2152

53. System Views .. 2154
53.1. Overview ... 2154
53.2. pg_aios ... 2155
53.3. pg_available_extensions ... 2156
53.4. pg_available_extension_versions .. 2157
53.5. pg_backend_memory_contexts ... 2157
53.6. pg_config ... 2158
53.7. pg_cursors ... 2159
53.8. pg_file_settings .. 2159
53.9. pg_group ... 2160
53.10. pg_hba_file_rules .. 2161
53.11. pg_ident_file_mappings ... 2161
53.12. pg_indexes ... 2162
53.13. pg_locks ... 2162
53.14. pg_matviews ... 2165
53.15. pg_policies ... 2165
53.16. pg_prepared_statements ... 2166
53.17. pg_prepared_xacts .. 2167
53.18. pg_publication_tables .. 2167
53.19. pg_replication_origin_status ... 2168
53.20. pg_replication_slots .. 2168
53.21. pg_roles ... 2170
53.22. pg_rules ... 2171
53.23. pg_seclabels ... 2171
53.24. pg_sequences ... 2172
53.25. pg_settings ... 2172
53.26. pg_shadow ... 2175

xvii

PostgreSQL 18.0 Documentation

53.27. pg_shmem_allocations .. 2175
53.28. pg_shmem_allocations_numa ... 2176
53.29. pg_stats ... 2176
53.30. pg_stats_ext ... 2178
53.31. pg_stats_ext_exprs .. 2179
53.32. pg_tables ... 2180
53.33. pg_timezone_abbrevs .. 2181
53.34. pg_timezone_names .. 2181
53.35. pg_user ... 2182
53.36. pg_user_mappings .. 2182
53.37. pg_views ... 2183
53.38. pg_wait_events .. 2183

54. Frontend/Backend Protocol .. 2184
54.1. Overview ... 2184
54.2. Message Flow ... 2186
54.3. SASL Authentication .. 2199
54.4. Streaming Replication Protocol ... 2201
54.5. Logical Streaming Replication Protocol ... 2210
54.6. Message Data Types .. 2212
54.7. Message Formats ... 2212
54.8. Error and Notice Message Fields .. 2228
54.9. Logical Replication Message Formats ... 2229
54.10. Summary of Changes since Protocol 2.0 ... 2238

55. PostgreSQL Coding Conventions .. 2239
55.1. Formatting .. 2239
55.2. Reporting Errors Within the Server .. 2239
55.3. Error Message Style Guide .. 2242
55.4. Miscellaneous Coding Conventions .. 2246

56. Native Language Support ... 2248
56.1. For the Translator .. 2248
56.2. For the Programmer ... 2250

57. Writing a Procedural Language Handler ... 2253
58. Writing a Foreign Data Wrapper .. 2255

58.1. Foreign Data Wrapper Functions .. 2255
58.2. Foreign Data Wrapper Callback Routines ... 2255
58.3. Foreign Data Wrapper Helper Functions .. 2270
58.4. Foreign Data Wrapper Query Planning ... 2271
58.5. Row Locking in Foreign Data Wrappers .. 2273

59. Writing a Table Sampling Method ... 2275
59.1. Sampling Method Support Functions .. 2275

60. Writing a Custom Scan Provider .. 2278
60.1. Creating Custom Scan Paths ... 2278
60.2. Creating Custom Scan Plans .. 2279
60.3. Executing Custom Scans .. 2280

61. Genetic Query Optimizer .. 2283
61.1. Query Handling as a Complex Optimization Problem ... 2283
61.2. Genetic Algorithms ... 2283
61.3. Genetic Query Optimization (GEQO) in PostgreSQL ... 2284
61.4. Further Reading ... 2286

62. Table Access Method Interface Definition ... 2287
63. Index Access Method Interface Definition ... 2289

63.1. Basic API Structure for Indexes .. 2289
63.2. Index Access Method Functions .. 2292
63.3. Index Scanning ... 2298
63.4. Index Locking Considerations .. 2299
63.5. Index Uniqueness Checks .. 2300
63.6. Index Cost Estimation Functions ... 2301

xviii

PostgreSQL 18.0 Documentation

64. Write Ahead Logging for Extensions .. 2304
64.1. Generic WAL Records .. 2304
64.2. Custom WAL Resource Managers .. 2305

65. Built-in Index Access Methods ... 2307
65.1. B-Tree Indexes .. 2307
65.2. GiST Indexes .. 2313
65.3. SP-GiST Indexes ... 2329
65.4. GIN Indexes .. 2340
65.5. BRIN Indexes .. 2346
65.6. Hash Indexes .. 2358

66. Database Physical Storage ... 2361
66.1. Database File Layout .. 2361
66.2. TOAST ... 2363
66.3. Free Space Map ... 2366
66.4. Visibility Map .. 2366
66.5. The Initialization Fork .. 2366
66.6. Database Page Layout .. 2366
66.7. Heap-Only Tuples (HOT) .. 2369

67. Transaction Processing ... 2371
67.1. Transactions and Identifiers .. 2371
67.2. Transactions and Locking .. 2371
67.3. Subtransactions .. 2371
67.4. Two-Phase Transactions ... 2372

68. System Catalog Declarations and Initial Contents ... 2373
68.1. System Catalog Declaration Rules ... 2373
68.2. System Catalog Initial Data ... 2374
68.3. BKI File Format .. 2378
68.4. BKI Commands ... 2379
68.5. Structure of the Bootstrap BKI File ... 2379
68.6. BKI Example ... 2380

69. How the Planner Uses Statistics .. 2381
69.1. Row Estimation Examples .. 2381
69.2. Multivariate Statistics Examples .. 2385
69.3. Planner Statistics and Security .. 2388

70. Backup Manifest Format .. 2390
70.1. Backup Manifest Top-level Object .. 2390
70.2. Backup Manifest File Object .. 2390
70.3. Backup Manifest WAL Range Object ... 2391

VIII. Appendixes .. 2392
A. PostgreSQL Error Codes .. 2393
B. Date/Time Support .. 2402

B.1. Date/Time Input Interpretation ... 2402
B.2. Handling of Invalid or Ambiguous Timestamps ... 2403
B.3. Date/Time Key Words ... 2403
B.4. Date/Time Configuration Files ... 2404
B.5. POSIX Time Zone Specifications ... 2406
B.6. History of Units .. 2407
B.7. Julian Dates .. 2408

C. SQL Key Words ... 2410
D. SQL Conformance ... 2436

D.1. Supported Features ... 2437
D.2. Unsupported Features ... 2449
D.3. XML Limits and Conformance to SQL/XML .. 2457

E. Release Notes ... 2460
E.1. Release 18 .. 2460
E.2. Prior Releases .. 2481

F. Additional Supplied Modules and Extensions ... 2482
F.1. amcheck — tools to verify table and index consistency ... 2484

xix

PostgreSQL 18.0 Documentation

F.2. auth_delay — pause on authentication failure ... 2489
F.3. auto_explain — log execution plans of slow queries .. 2490
F.4. basebackup_to_shell — example "shell" pg_basebackup module 2493
F.5. basic_archive — an example WAL archive module .. 2494
F.6. bloom — bloom filter index access method ... 2495
F.7. btree_gin — GIN operator classes with B-tree behavior .. 2499
F.8. btree_gist — GiST operator classes with B-tree behavior ... 2500
F.9. citext — a case-insensitive character string type .. 2502
F.10. cube — a multi-dimensional cube data type .. 2505
F.11. dblink — connect to other PostgreSQL databases ... 2510
F.12. dict_int — example full-text search dictionary for integers ... 2538
F.13. dict_xsyn — example synonym full-text search dictionary ... 2539
F.14. earthdistance — calculate great-circle distances ... 2541
F.15. file_fdw — access data files in the server's file system .. 2543
F.16. fuzzystrmatch — determine string similarities and distance 2546
F.17. hstore — hstore key/value datatype ... 2550
F.18. intagg — integer aggregator and enumerator ... 2557
F.19. intarray — manipulate arrays of integers .. 2559
F.20. isn — data types for international standard numbers (ISBN, EAN, UPC, etc.) 2562
F.21. lo — manage large objects ... 2566
F.22. ltree — hierarchical tree-like data type ... 2568
F.23. pageinspect — low-level inspection of database pages .. 2575
F.24. passwordcheck — verify password strength .. 2584
F.25. pg_buffercache — inspect PostgreSQL buffer cache state .. 2585
F.26. pgcrypto — cryptographic functions .. 2590
F.27. pg_freespacemap — examine the free space map ... 2599
F.28. pg_logicalinspect — logical decoding components inspection 2601
F.29. pg_overexplain — allow EXPLAIN to dump even more details 2603
F.30. pg_prewarm — preload relation data into buffer caches ... 2605
F.31. pgrowlocks — show a table's row locking information .. 2607
F.32. pg_stat_statements — track statistics of SQL planning and execution 2609
F.33. pgstattuple — obtain tuple-level statistics ... 2618
F.34. pg_surgery — perform low-level surgery on relation data ... 2622
F.35. pg_trgm — support for similarity of text using trigram matching 2624
F.36. pg_visibility — visibility map information and utilities .. 2629
F.37. pg_walinspect — low-level WAL inspection .. 2631
F.38. postgres_fdw — access data stored in external PostgreSQL servers 2634
F.39. seg — a datatype for line segments or floating point intervals 2645
F.40. sepgsql — SELinux-, label-based mandatory access control (MAC) security module ... 2648
F.41. spi — Server Programming Interface features/examples ... 2656
F.42. sslinfo — obtain client SSL information ... 2658
F.43. tablefunc — functions that return tables (crosstab and others) 2660
F.44. tcn — a trigger function to notify listeners of changes to table content 2669
F.45. test_decoding — SQL-based test/example module for WAL logical decoding 2670
F.46. tsm_system_rows — the SYSTEM_ROWS sampling method for TABLESAMPLE 2671
F.47. tsm_system_time — the SYSTEM_TIME sampling method for TABLESAMPLE 2672
F.48. unaccent — a text search dictionary which removes diacritics 2673
F.49. uuid-ossp — a UUID generator .. 2675
F.50. xml2 — XPath querying and XSLT functionality .. 2677

G. Additional Supplied Programs .. 2681
G.1. Client Applications ... 2681
G.2. Server Applications .. 2688

H. External Projects .. 2689
H.1. Client Interfaces .. 2689
H.2. Administration Tools .. 2689
H.3. Procedural Languages ... 2689
H.4. Extensions .. 2689

I. The Source Code Repository ... 2690

xx

PostgreSQL 18.0 Documentation

I.1. Getting the Source via Git .. 2690
J. Documentation ... 2691

J.1. DocBook ... 2691
J.2. Tool Sets .. 2691
J.3. Building the Documentation with Make ... 2693
J.4. Building the Documentation with Meson .. 2694
J.5. Documentation Authoring ... 2694
J.6. Style Guide .. 2694

K. PostgreSQL Limits .. 2697
L. Acronyms ... 2698
M. Glossary .. 2703
N. Color Support ... 2717

N.1. When Color is Used ... 2717
N.2. Configuring the Colors .. 2717

O. Obsolete or Renamed Features .. 2718
O.1. recovery.conf file merged into postgresql.conf ... 2718
O.2. Default Roles Renamed to Predefined Roles ... 2718
O.3. pg_xlogdump renamed to pg_waldump ... 2718
O.4. pg_resetxlog renamed to pg_resetwal ... 2718
O.5. pg_receivexlog renamed to pg_receivewal .. 2718

Bibliography .. 2719
Index .. 2721

xxi

Preface
This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:
• Part I is an informal introduction for new users.
• Part II documents the SQL query language environment, including data types and functions, as well

as user-level performance tuning. Every PostgreSQL user should read this.
• Part III describes the installation and administration of the server. Everyone who runs a Post-

greSQL server, be it for private use or for others, should read this part.
• Part IV describes the programming interfaces for PostgreSQL client programs.
• Part V contains information for advanced users about the extensibility capabilities of the server.

Topics include user-defined data types and functions.
• Part VI contains reference information about SQL commands, client and server programs. This part

supports the other parts with structured information sorted by command or program.
• Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES, Ver-
sion 4.2, developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:
• complex queries
• foreign keys
• triggers
• updatable views
• transactional integrity
• multiversion concurrency control
Also, PostgreSQL can be extended by the user in many ways, for example by adding new
• data types
• functions
• operators
• aggregate functions
• index methods
• procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL
The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With decades of development behind
it, PostgreSQL is now the most advanced open-source database available anywhere.

Another take on the history presented here can be found in Dr. Joe Hellerstein's paper “Looking Back
at Postgres” hell18.

xxii

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

2.1. The Berkeley POSTGRES Project
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid track-
ing database, a medical information database, and several geographic information systems. POSTGRES
has also been used as an educational tool at several universities. Finally, Illustra Information Technolo-
gies (later merged into Informix, which is now owned by IBM) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project described in ston92.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

2.2. Postgres95
In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30–50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). (Interface li-
brary libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see be-
low), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

• A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

• A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

• The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

xxiii

https://www.ibm.com/analytics/informix
https://www.ibm.com/

Preface

2.3. PostgreSQL
By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Postgres is still considered an official project name, both because of tradition and because people find
it easier to pronounce Postgres than PostgreSQL.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in each PostgreSQL release since then can be found at https://
www.postgresql.org/docs/release/.

3. Conventions
The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (...)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information
Besides the documentation, that is, this book, there are other resources about PostgreSQL:
Wiki

The PostgreSQL wiki contains the project's FAQ (Frequently Asked Questions) list, TODO list, and
detailed information about many more topics.

Web Site
The PostgreSQL web site carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!
PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

xxiv

https://www.postgresql.org/docs/release/
https://www.postgresql.org/docs/release/
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more
important things on the agenda. If you need help immediately, consider obtaining a commercial support
contract.

5.1. Identifying Bugs
Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:
• A program terminates with a fatal signal or an operating system error message that would point to

a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

• A program produces the wrong output for any given input.
• A program refuses to accept valid input (as defined in the documentation).
• A program accepts invalid input without a notice or error message. But keep in mind that your idea

of invalid input might be our idea of an extension or compatibility with traditional practice.
• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report
The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has
a fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:
• The exact sequence of steps from program start-up necessary to reproduce the problem. This

should be self-contained; it is not enough to send in a bare SELECT statement without the preced-
ing CREATE TABLE and INSERT statements, if the output should depend on the data in the tables. We
do not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqlrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed

xxv

Preface

to set the scene, then add the problem query. You are encouraged to minimize the size of your ex-
ample, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the of-
fending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error mes-
sage, show it, even if you do not understand it. If the program terminates with an operating sys-
tem error, say which. If nothing at all happens, say so. Even if the result of your test case is a pro-
gram crash or otherwise obvious it might not happen on our platform. The easiest thing is to copy
the output from the terminal, if possible.

Note
If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are
logged.

Note
In case of fatal errors, the error message reported by the client might not contain all the in-
formation available. Please also look at the log output of the database server. If you do not
keep your server's log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the ex-
act semantics behind your commands. Especially refrain from merely saying that “This is not what
SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do
we all know how all the other relational databases out there behave. (If your problem is a program
crash, you can obviously omit this item.)

• Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

• Anything you did at all differently from the installation instructions.
• The PostgreSQL version. You can run the command SELECT version(); to find out the version of

the server you are connected to. Most executable programs also support a --version option; at
least postgres --version and psql --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 18.0 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support for
sites using older releases of PostgreSQL; if you require more than we can provide, consider acquir-
ing a commercial support contract.

• Platform information. This includes the kernel name and version, C library, processor, memory in-
formation, and so on. In most cases it is sufficient to report the vendor and version, but do not as-

xxvi

Preface

sume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have
time to find and share your work-around. Also, once again, do not waste your time guessing why the bug
exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don't say “the server crashed” when you mean a
single backend process went down, nor vice versa. Also, client programs such as the interactive frontend
“psql” are completely separate from the backend. Please try to be specific about whether the problem
is on the client or server side.

5.3. Where to Report Bugs
In general, send bug reports to the bug report mailing list at <pgsql-bugs@lists.postgresql.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site. Entering a bug
report this way causes it to be mailed to the <pgsql-bugs@lists.postgresql.org> mailing list.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql-bugs. Security issues can be reported privately to <securi-
ty@postgresql.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@lists.postgresql.org>
or <pgsql-general@lists.postgresql.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers' mailing list <pgsql-hackers@lists.post-
gresql.org>. This list is for discussing the development of PostgreSQL, and it would be nice if we could
keep the bug reports separate. We might choose to take up a discussion about your bug report on pgsql-
hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@lists.postgresql.org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to <pgsql-hackers@list-
s.postgresql.org>, so we (and you) can work on porting PostgreSQL to your platform.

Note
Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xxvii

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/account/submitbug/
https://lists.postgresql.org/

Part I. Tutorial
Welcome to the PostgreSQL Tutorial. The tutorial is intended to give an introduction to PostgreSQL,
relational database concepts, and the SQL language. We assume some general knowledge about how to
use computers and no particular Unix or programming experience is required. This tutorial is intended
to provide hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a comprehensive treatment of the topics it covers.

After you have successfully completed this tutorial you will want to read the Part II section to gain a
better understanding of the SQL language, or Part IV for information about developing applications with
PostgreSQL. Those who provision and manage their own PostgreSQL installation should also read Part III.

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experi-
mentation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL
can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals
Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):
• A server process, which manages the database files, accepts connections to the database from

client applications, and performs database actions on behalf of the clients. The database server pro-
gram is called postgres.

• The user's client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed by
users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the supervisor server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database
The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

2

Getting Started

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database from the command line, in this example named mydb, you use the following
command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation in-
structions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such
 file or directory
 Is the server running locally and accepting connections on that socket?

This means that the server was not started, or it is not listening where createdb expects to contact it.
Again, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: FATAL:
 role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the -U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: error: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as. 1

You can also create databases with other names. PostgreSQL allows you to create any number of data-
bases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a database, you can choose
what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a PostgreSQL user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a PostgreSQL user name to connect as.

3

Getting Started

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database
Once you have created a database, you can access it by:
• Running the PostgreSQL interactive terminal program, called psql, which allows you to interactive-

ly enter, edit, and execute SQL commands.
• Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC sup-

port to create and manipulate a database. These possibilities are not covered in this tutorial.
• Writing a custom application, using one of the several available language bindings. These possibili-

ties are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psql (18.0)
Type "help" for help.

mydb=>

The last line could also be:

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Post-
greSQL instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of cre-
atedb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT version();
 version

 PostgreSQL 18.0 on x86_64-pc-linux-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2, 64-
bit
(1 row)

mydb=> SELECT current_date;
 date

 2016-01-07
(1 row)

4

Getting Started

mydb=> SELECT 2 + 2;
 ?column?

 4
(1 row)

The psql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:

mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

5

Chapter 2. The SQL Language
2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including melt93 and date97. You should be aware that some PostgreSQL language
features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory src/
tutorial/. (Binary distributions of PostgreSQL might not provide those files.) To use those files, first
change to that directory and run make:
$ cd .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:
$ psql -s mydb

...

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql's -s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts
PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for table. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number
of other ways of organizing databases. Files and directories on Unix-like operating systems form an ex-
ample of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:
CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

You can enter this into psql with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

6

The SQL Language

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case-insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char(N), var-
char(N), date, time, timestamp, and interval, as well as other types of general utility and a rich set of
geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:
CREATE TABLE cities (
 name varchar(80),
 location point
);

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:
DROP TABLE tablename;

2.4. Populating a Table With Rows
The INSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27');

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:
INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:
INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
 VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29');

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precip-
itation is unknown:
INSERT INTO weather (date, city, temp_hi, temp_lo)
 VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usually faster
because the COPY command is optimized for this application while allowing less flexibility than INSERT.
An example would be:
COPY weather FROM '/home/user/weather.txt';

7

The SQL Language

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. The data inserted above into the weather
table could also be inserted from a file containing (values are separated by a tab character):
San Francisco 46 50 0.25 1994-11-27
San Francisco 43 57 0.0 1994-11-29
Hayward 37 54 \N 1994-11-29

You can read more about the COPY command in COPY.

2.5. Querying a Table
To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:
SELECT * FROM weather;

Here * is a shorthand for “all columns”. 1 So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:
 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 43 | 57 | 0 | 1994-11-29
 Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
 city | temp_avg | date
---------------+----------+------------
 San Francisco | 48 | 1994-11-27
 San Francisco | 50 | 1994-11-29
 Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:
SELECT * FROM weather
 WHERE city = 'San Francisco' AND prcp > 0.0;

Result:
 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:
SELECT * FROM weather

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

8

The SQL Language

 ORDER BY city;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 Hayward | 37 | 54 | | 1994-11-29
 San Francisco | 43 | 57 | 0 | 1994-11-29
 San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
 ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
 FROM weather;

 city

 Hayward
 San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
 FROM weather
 ORDER BY city;

2.6. Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. Queries that access multiple tables (or multiple instances of the same table) at one time are
called join queries. They combine rows from one table with rows from a second table, with an expression
specifying which rows are to be paired. For example, to return all the weather records together with
the location of the associated city, the database needs to compare the city column of each row of the
weather table with the name column of all rows in the cities table, and select the pairs of rows where
these values match.3 This would be accomplished by the following query:

SELECT * FROM weather JOIN cities ON city = name;

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Observe two things about the result set:
• There is no result row for the city of Hayward. This is because there is no matching entry in the

cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

• There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

2 In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DISTINCT causes the rows to be ordered.
3 This is only a conceptual model. The join is usually performed in a more efficient manner than actually comparing each possible pair of rows, but this is invisible
to the user.

9

The SQL Language

SELECT city, temp_lo, temp_hi, prcp, date, location
 FROM weather JOIN cities ON city = name;

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
 weather.prcp, weather.date, cities.location
 FROM weather JOIN cities ON weather.city = cities.name;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this form:

SELECT *
 FROM weather, cities
 WHERE city = name;

This syntax pre-dates the JOIN/ON syntax, which was introduced in SQL-92. The tables are simply listed in
the FROM clause, and the comparison expression is added to the WHERE clause. The results from this older
implicit syntax and the newer explicit JOIN/ON syntax are identical. But for a reader of the query, the
explicit syntax makes its meaning easier to understand: The join condition is introduced by its own key
word whereas previously the condition was mixed into the WHERE clause together with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
 FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 Hayward | 37 | 54 | | 1994-11-29 | |
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT w1.city, w1.temp_lo AS low, w1.temp_hi AS high,
 w2.city, w2.temp_lo AS low, w2.temp_hi AS high
 FROM weather w1 JOIN weather w2
 ON w1.temp_lo < w2.temp_lo AND w1.temp_hi > w2.temp_hi;

 city | low | high | city | low | high
---------------+-----+------+---------------+-----+------
 San Francisco | 43 | 57 | San Francisco | 46 | 50
 Hayward | 37 | 54 | San Francisco | 46 | 50

10

The SQL Language

(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
 FROM weather w JOIN cities c ON w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions
Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to com-
pute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(temp_lo) FROM weather;

 max

 46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_lo); -- WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
 WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

 city

 San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate sep-
arately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
number of readings and the maximum low temperature observed in each city with:

SELECT city, count(*), max(temp_lo)
 FROM weather
 GROUP BY city;

 city | count | max
---------------+-------+-----
 Hayward | 1 | 37
 San Francisco | 2 | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, count(*), max(temp_lo)
 FROM weather
 GROUP BY city
 HAVING max(temp_lo) < 40;

11

The SQL Language

 city | count | max
---------+-------+-----
 Hayward | 1 | 37
(1 row)

which gives us the same results for only the cities that have all temp_lo values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, count(*), max(temp_lo)
 FROM weather
 WHERE city LIKE 'S%' -- 1
 GROUP BY city;

 city | count | max
---------------+-------+-----
 San Francisco | 2 | 46
(1 row)

1 The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

Another way to select the rows that go into an aggregate computation is to use FILTER, which is a per-
aggregate option:

SELECT city, count(*) FILTER (WHERE temp_lo < 45), max(temp_lo)
 FROM weather
 GROUP BY city;

 city | count | max
---------------+-------+-----
 Hayward | 1 | 37
 San Francisco | 1 | 46
(2 rows)

FILTER is much like WHERE, except that it removes rows only from the input of the particular aggregate
function that it is attached to. Here, the count aggregate counts only rows with temp_lo below 45; but
the max aggregate is still applied to all rows, so it still finds the reading of 46.

2.8. Updates
You can update existing rows using the UPDATE command. Suppose you discover the temperature read-
ings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
 SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
 WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weather;

12

The SQL Language

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
 Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions
Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

13

Chapter 3. Advanced Features
3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and pre-
vent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views
Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
 SELECT name, temp_lo, temp_hi, prcp, date, location
 FROM weather, cities
 WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys
Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
 name varchar(80) primary key,
 location point
);

CREATE TABLE weather (
 city varchar(80) references cities(name),
 temp_lo int,
 temp_hi int,
 prcp real,
 date date
);

Now try inserting an invalid record:

14

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key constraint
 "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly en-
couraged to learn about them.

3.4. Transactions
Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database sys-
tem, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter.
For example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit
to his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk)
before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:
BEGIN;
UPDATE accounts SET balance = balance - 100.00

15

Advanced Features

 WHERE name = 'Alice';
-- etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COM-
MIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a
transaction block.

Note
Some client libraries issue BEGIN and COMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLL-
BACK TO. All the transaction's database changes between defining the savepoint and rolling back to it
are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's ac-
count, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:
BEGIN;
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
-- oops ... forget that and use Wally's account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Wally';
COMMIT;

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions
A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

16

Advanced Features

However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

 depname | empno | salary | avg
-----------+-------+--------+-----------------------
 develop | 11 | 5200 | 5020.0000000000000000
 develop | 7 | 4200 | 5020.0000000000000000
 develop | 9 | 4500 | 5020.0000000000000000
 develop | 8 | 6000 | 5020.0000000000000000
 develop | 10 | 5200 | 5020.0000000000000000
 personnel | 5 | 3500 | 3700.0000000000000000
 personnel | 2 | 3900 | 3700.0000000000000000
 sales | 3 | 4800 | 4866.6666666666666667
 sales | 1 | 5000 | 4866.6666666666666667
 sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a normal function or non-window aggregate.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY clause within OVER divides the rows into groups, or partitions, that share the
same values of the PARTITION BY expression(s). For each row, the window function is computed across
the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
 row_number() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

 depname | empno | salary | row_number
-----------+-------+--------+------------
 develop | 8 | 6000 | 1
 develop | 10 | 5200 | 2
 develop | 11 | 5200 | 3
 develop | 9 | 4500 | 4
 develop | 7 | 4200 | 5
 personnel | 2 | 3900 | 1
 personnel | 5 | 3500 | 2
 sales | 1 | 5000 | 1
 sales | 4 | 4800 | 2
 sales | 3 | 4800 | 3
(10 rows)

As shown here, the row_number window function assigns sequential numbers to the rows within each
partition, in the order defined by the ORDER BY clause (with tied rows numbered in an unspecified order).
row_number needs no explicit parameter, because its behavior is entirely determined by the OVER clause.

17

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways using different OVER clauses, but they all act
on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists
of all rows from the start of the partition up through the current row, plus any following rows that are
equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. 1 Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

 salary | sum
--------+-------
 5200 | 47100
 5000 | 47100
 3500 | 47100
 4800 | 47100
 3900 | 47100
 4200 | 47100
 4500 | 47100
 4800 | 47100
 6000 | 47100
 5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

 salary | sum
--------+-------
 3500 | 3500
 3900 | 7400
 4200 | 11600
 4500 | 16100
 4800 | 25700
 4800 | 25700
 5000 | 30700
 5200 | 41100
 5200 | 41100
 6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically ex-
ecute after the processing of those clauses. Also, window functions execute after non-window aggregate

1 There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

18

Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
 (SELECT depname, empno, salary, enroll_date,
 row_number() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
 FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having row_number less than 3 (that is, the
first two rows for each department).

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
 FROM empsalary
 WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance
Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (
 name text,
 population real,
 elevation int, -- (in ft)
 state char(2)
);

CREATE TABLE non_capitals (
 name text,
 population real,
 elevation int -- (in ft)
);

CREATE VIEW cities AS
 SELECT name, population, elevation FROM capitals
 UNION
 SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

19

Advanced Features

 name text,
 population real,
 elevation int -- (in ft)
);

CREATE TABLE capitals (
 state char(2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native PostgreSQL type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
 FROM cities
 WHERE elevation > 500;

which returns:

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
 FROM ONLY cities
 WHERE elevation > 500;

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note
Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.11 for more detail.

3.7. Conclusion
PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

20

https://www.postgresql.org

Part II. The SQL Language
This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then how to create tables, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. Lastly, we address several
aspects of importance for tuning a database.

The information is arranged so that a novice user can follow it from start to end and gain a full under-
standing of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
is presented in narrative form with topical units. Readers looking for a complete description of a particular
command are encouraged to review the Part VI.

Readers should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part I first. SQL commands are typically entered
using the PostgreSQL interactive terminal psql, but other programs that have similar functionality can
be used as well.

Chapter 4. SQL Syntax
This chapter describes the syntax of SQL. It forms the foundation for understanding the following chap-
ters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure
SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one com-
mand can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words
Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in src/
include/pg_config_manual.h.

Key words and unquoted identifiers are case-insensitive. Therefore:

22

SQL Syntax

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but "Foo"
and "FOO" are different from these three and each other. (The folding of unquoted names to lower case
in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be folded
to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If you want
to write portable applications you are advised to always quote a particular name or never quote it.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&"foo". (Note that this creates
an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as

U&"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

4.1.2. Constants

23

SQL Syntax

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants
A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:
SELECT 'foo'
'bar';

is equivalent to:
SELECT 'foobar';

but:
SELECT 'foo' 'bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the stan-
dard.)

4.1.2.2. String Constants with C-Style Escapes
PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E'foo'. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation
\b backspace
\f form feed
\n newline
\r carriage return
\t tab
\o, \oo, \ooo (o = 0–7) octal byte value
\xh, \xhh (h = 0–9, A–F) hexadecimal byte value
\uxxxx, \Uxxxxxxxx (x = 0–9, A–F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadec-
imal escapes, compose valid characters in the server character set encoding. A useful alternative is to
use Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then the
server will check that the character conversion is possible.

Caution
If the configuration parameter standard_conforming_strings is off, then PostgreSQL recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the

24

SQL Syntax

default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to off, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters escape_string_warn-
ing and backslash_quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes
PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&'foo'. (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data' could be written as

U&'d\0061t\+000061'

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&'\0441\043B\043E\043D'

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&'d!0061t!+000061' UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants
While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes, since each of those must be doubled. To
allow more readable queries in such situations, PostgreSQL provides another way, called “dollar quot-
ing”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($), an optional
“tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that makes
up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

$$Dianne's horse$$

25

SQL Syntax

$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$function$
BEGIN
 RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

Here, the sequence q[\t\r\n\v\\]q represents a dollar-quoted literal string [\t\r\n\v\\], which
will be recognized when the function body is executed by PostgreSQL. But since the sequence does not
match the outer dollar quoting delimiter $function$, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagString contenttag is correct, but
TAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when represent-
ing string constants inside other constants, as is often needed in procedural function definitions. With
single-quote syntax, each backslash in the above example would have to be written as four backslashes,
which would be reduced to two backslashes in parsing the original string constant, and then to one when
the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants
Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X'1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string con-
stants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant, except for underscores,
which can be used for visual grouping as described below. Note that any leading plus or minus sign is
not actually considered part of the constant; it is an operator applied to the constant.

26

SQL Syntax

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

Additionally, non-decimal integer constants are accepted in these forms:

0xhexdigits
0ooctdigits
0bbindigits

where hexdigits is one or more hexadecimal digits (0-9, A-F), octdigits is one or more octal digits
(0-7), and bindigits is one or more binary digits (0 or 1). Hexadecimal digits and the radix prefixes
can be in upper or lower case. Note that only integers can have non-decimal forms, not numbers with
fractional parts.

These are some examples of valid non-decimal integer constants:

0b100101
0B10011001
0o273
0O755
0x42f
0XFFFF

For visual grouping, underscores can be inserted between digits. These have no further effect on the
value of the constant. For example:

1_500_000_000
0b10001000_00000000
0o_1_755
0xFFFF_FFFF
1.618_034

Underscores are not allowed at the start or end of a numeric constant or a group of digits (that is,
immediately before or after the decimal point or the exponent marker), and more than one underscore
in a row is not allowed.

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL '1.23' -- string style
1.23::REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type

27

SQL Syntax

CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
'string' syntax is that it does not work for array types; use :: or CAST() to specify the type of an array
constant.

The CAST() syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax with ::
is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators
An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:

+ - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on operator names, however:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent oper-
ators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named @, you
cannot write X*@Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator names
not one.

4.1.4. Special Characters
Some characters that are not alphanumeric have a special meaning that is different from being an oper-
ator. Details on the usage can be found at the location where the respective syntax element is described.
This section only exists to advise the existence and summarize the purposes of these characters.

• A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a func-
tion definition or a prepared statement. In other contexts the dollar sign can be part of an identifier
or a dollar-quoted string constant.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

28

SQL Syntax

• Commas (,) are used in some syntactical constructs to separate the elements of a list.
• The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, ex-

cept within a string constant or quoted identifier.
• The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such

as Embedded SQL), the colon is used to prefix variable names.
• The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.

It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

• The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments
A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
 * with nesting: /* nested block comment */
 */

where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence
Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rules imply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
. left table/column name separator
:: left PostgreSQL-style typecast
[] left array element selection
+ - right unary plus, unary minus
COLLATE left collation selection
AT left AT TIME ZONE, AT LOCAL
^ left exponentiation
* / % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined opera-

tors
BETWEEN IN LIKE ILIKE SIMILAR range containment, set membership,

string matching
< > = <= >= <> comparison operators

29

SQL Syntax

Operator/Element Associativity Description
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS

DISTINCT FROM, etc.
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other oper-
ator”. This is true no matter which specific operator appears inside OPERATOR().

Note
PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; IS tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported.

4.2. Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value

• A column reference

• A positional parameter reference, in the body of a function definition or prepared statement

• A subscripted expression

• A field selection expression

• An operator invocation

• A function call

• An aggregate expression

• A window function call

• A type cast

30

SQL Syntax

• A collation expression

• A scalar subquery

• An array constructor

• A row constructor

• Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References
A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table defined
by means of a FROM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters
A positional parameter reference is used to indicate a value that is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. Some client libraries
also support specifying data values separately from the SQL command string, in which case parameters
are used to refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept(text) RETURNS dept
 AS $$ SELECT * FROM dept WHERE name = $1 $$
 LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts
If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
will be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]

31

SQL Syntax

(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection
If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An im-
portant special case is extracting a field from a table column that is of a composite type:

(compositecol).somefield
(mytable.compositecol).somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing .*:

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are two possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR(schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls
The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

32

SQL Syntax

Note
A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col(table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in PostgreSQL because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions
An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (ALL expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (DISTINCT expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by_clause) [FILTER
 (WHERE filter_clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since ALL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count(*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count(*) yields the total number of input rows; count(f1) yields the number of input
rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of
distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order_by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

WITH vals (v) AS (VALUES (1),(3),(4),(3),(2))
SELECT array_agg(v ORDER BY v DESC) FROM vals;
 array_agg

 {4,3,3,2,1}

Since jsonb only keeps the last matching key, ordering of its keys can be significant:

WITH vals (k, v) AS (VALUES ('key0','1'), ('key1','3'), ('key1','2'))

33

SQL Syntax

SELECT jsonb_object_agg(k, v ORDER BY v) FROM vals;
 jsonb_object_agg

 {"key0": "1", "key1": "3"}

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:
SELECT string_agg(a, ',' ORDER BY a) FROM table;

not this:
SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DISTINCT is specified with an order_by_clause, ORDER BY expressions can only reference columns
in the DISTINCT list. For example:
WITH vals (v) AS (VALUES (1),(3),(4),(3),(2))
SELECT array_agg(DISTINCT v ORDER BY v DESC) FROM vals;
 array_agg

 {4,3,2,1}

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when order-
ing the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is
required, usually because the aggregate's computation is only sensible in terms of a specific ordering
of its input rows. Typical examples of ordered-set aggregates include rank and percentile calculations.
For an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order_by_clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order_by_clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN GROUP
order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument expres-
sions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from the aggre-
gated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct arguments
are evaluated only once per aggregate call, not once per input row. This means that they can contain
variables only if those variables are grouped by GROUP BY; this restriction is the same as if the direct
arguments were not inside an aggregate expression at all. Direct arguments are typically used for things
like percentile fractions, which only make sense as a single value per aggregation calculation. The direct
argument list can be empty; in this case, write just () not (*). (PostgreSQL will actually accept either
spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:
SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_cont

 50489

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:
SELECT
 count(*) AS unfiltered,
 count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);

34

SQL Syntax

 unfiltered | filtered
------------+----------
 10 | 4
(1 row)

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.24), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls
A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
 OVER window_name
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
 OVER (window_definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
[frame_clause]

The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

35

SQL Syntax

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's WINDOW clause. Al-
ternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the WINDOW clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname ...); the latter implies copy-
ing and modifying the window definition, and will be rejected if the referenced window specification
includes a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end
is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row's
first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row), while
a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends
on the frame mode:
• In ROWS mode, the offset must yield a non-null, non-negative integer, and the option means that

the frame starts or ends the specified number of rows before or after the current row.
• In GROUPS mode, the offset again must yield a non-null, non-negative integer, and the option

means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

• In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columns it is an interval. For
example, if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1
day' PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROWS and GROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT
ROW. This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW

36

SQL Syntax

excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UN-
BOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, this means all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUND-
ED PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_start and
frame_end options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND
offset PRECEDING is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is
allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.67. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count(*) OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily not used for
window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used
within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

4.2.9. Type Casts
A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:
CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, dou-
ble precision cannot be used this way, but the equivalent float8 can. Also, the names interval,

37

SQL Syntax

time, and timestamp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note
The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions
The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:

expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-
ators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

But this is an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries
A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.24 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

38

SQL Syntax

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
 FROM states;

4.2.12. Array Constructors
An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:

SELECT ARRAY[1,2,3+4];
 array

 {1,2,7}
(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
 array

 {1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automat-
ically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
 array
--
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

39

SQL Syntax

SELECT ARRAY[]::integer[];
 array

 {}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
 array
--
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
 array

 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors
A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,'this is a test');

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see Sec-
tion 8.16.5). For example, if table t has columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note
Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW(t.*, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without .*, for instance ROW(t, 42).

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

40

SQL Syntax

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1

 1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1

 1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1

 11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to test rows using
the standard comparison operators as described in Section 9.2, to compare one row against another as
described in Section 9.25, and to use them in connection with subqueries, as discussed in Section 9.24.

4.2.14. Expression Evaluation Rules
The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

41

SQL Syntax

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 36.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0
 THEN avg(expenses / employees)
 END
 FROM departments;

The min() and avg() aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min(). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions
PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function de-
finition:

CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase boolean DEFAULT false)
RETURNS text
AS

42

SQL Syntax

$$
 SELECT CASE
 WHEN $3 THEN UPPER($1 || ' ' || $2)
 ELSE LOWER($1 || ' ' || $2)
 END;
$$
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation
Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper('Hello', 'World', true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper('Hello', 'World');
 concat_lower_or_upper

 hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation
In named notation, each argument's name is specified using => to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
 concat_lower_or_upper

 hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

43

SQL Syntax

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation
The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper('Hello', 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note
Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

44

Chapter 5. Data Definition
This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics
A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers, nu-
meric for possibly fractional numbers, text for character strings, date for dates, time for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
 first_column text,
 second_column integer
);

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

(The numeric type can store fractional components, as would be typical of monetary amounts.)

45

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.7 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values
A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric DEFAULT 9.99
);

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of CUR-
RENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is generating
a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
 product_no integer DEFAULT nextval('products_product_no_seq'),
 ...
);

where the nextval() function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (

46

Data Definition

 product_no SERIAL,
 ...
);

The SERIAL shorthand is discussed further in Section 8.1.4.

5.3. Identity Columns
An identity column is a special column that is generated automatically from an implicit sequence. It can
be used to generate key values.

To create an identity column, use the GENERATED ... AS IDENTITY clause in CREATE TABLE, for example:

CREATE TABLE people (
 id bigint GENERATED ALWAYS AS IDENTITY,
 ...,
);

or alternatively

CREATE TABLE people (
 id bigint GENERATED BY DEFAULT AS IDENTITY,
 ...,
);

See CREATE TABLE for more details.

If an INSERT command is executed on the table with the identity column and no value is explicitly spec-
ified for the identity column, then a value generated by the implicit sequence is inserted. For example,
with the above definitions and assuming additional appropriate columns, writing

INSERT INTO people (name, address) VALUES ('A', 'foo');
INSERT INTO people (name, address) VALUES ('B', 'bar');

would generate values for the id column starting at 1 and result in the following table data:

 id | name | address
----+------+---------
 1 | A | foo
 2 | B | bar

Alternatively, the keyword DEFAULT can be specified in place of a value to explicitly request the se-
quence-generated value, like

INSERT INTO people (id, name, address) VALUES (DEFAULT, 'C', 'baz');

Similarly, the keyword DEFAULT can be used in UPDATE commands.

Thus, in many ways, an identity column behaves like a column with a default value.

The clauses ALWAYS and BY DEFAULT in the column definition determine how explicitly user-specified
values are handled in INSERT and UPDATE commands. In an INSERT command, if ALWAYS is selected, a
user-specified value is only accepted if the INSERT statement specifies OVERRIDING SYSTEM VALUE. If BY
DEFAULT is selected, then the user-specified value takes precedence. Thus, using BY DEFAULT results in a
behavior more similar to default values, where the default value can be overridden by an explicit value,
whereas ALWAYS provides some more protection against accidentally inserting an explicit value.

The data type of an identity column must be one of the data types supported by sequences. (See CREATE
SEQUENCE.) The properties of the associated sequence may be specified when creating an identity
column (see CREATE TABLE) or changed afterwards (see ALTER TABLE).

An identity column is automatically marked as NOT NULL. An identity column, however, does not guar-
antee uniqueness. (A sequence normally returns unique values, but a sequence could be reset, or values

47

Data Definition

could be inserted manually into the identity column, as discussed above.) Uniqueness would need to be
enforced using a PRIMARY KEY or UNIQUE constraint.

In table inheritance hierarchies, identity columns and their properties in a child table are independent of
those in its parent tables. A child table does not inherit identity columns or their properties automatically
from the parent. During INSERT or UPDATE, a column is treated as an identity column if that column is
an identity column in the table named in the statement, and the corresponding identity properties are
applied.

Partitions inherit identity columns from the partitioned table. They cannot have their own identity
columns. The properties of a given identity column are consistent across all the partitions in the parti-
tion hierarchy.

5.4. Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage as if it were
a normal column. A virtual generated column occupies no storage and is computed when it is read. Thus,
a virtual generated column is similar to a view and a stored generated column is similar to a materialized
view (except that it is always updated automatically).

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for example:

CREATE TABLE people (
 ...,
 height_cm numeric,
 height_in numeric GENERATED ALWAYS AS (height_cm / 2.54)
);

A generated column is by default of the virtual kind. Use the keywords VIRTUAL or STORED to make the
choice explicit. See CREATE TABLE for more details.

A generated column cannot be written to directly. In INSERT or UPDATE commands, a value cannot be
specified for a generated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default
is evaluated once when the row is first inserted if no other value was provided; a generated column
is updated whenever the row changes and cannot be overridden. A column default may not refer to
other columns of the table; a generation expression would normally do so. A column default can use
volatile functions, for example random() or functions referring to the current time; this is not allowed
for generated columns.

Several restrictions apply to the definition of generated columns and tables involving generated columns:

• The generation expression can only use immutable functions and cannot use subqueries or refer-
ence anything other than the current row in any way.

• A generation expression cannot reference another generated column.

• A generation expression cannot reference a system column, except tableoid.

• A virtual generated column cannot have a user-defined type, and the generation expression of a vir-
tual generated column must not reference user-defined functions or types, that is, it can only use
built-in functions or types. This applies also indirectly, such as for functions or types that underlie
operators or casts. (This restriction does not exist for stored generated columns.)

• A generated column cannot have a column default or an identity definition.

• A generated column cannot be part of a partition key.

• Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

48

Data Definition

• For inheritance and partitioning:

• If a parent column is a generated column, its child column must also be a generated column of
the same kind (stored or virtual); however, the child column can have a different generation ex-
pression.

For stored generated columns, the generation expression that is actually applied during in-
sert or update of a row is the one associated with the table that the row is physically in. (This
is unlike the behavior for column defaults: for those, the default value associated with the table
named in the query applies.) For virtual generated columns, the generation expression of the ta-
ble named in the query applies when a table is read.

• If a parent column is not a generated column, its child column must not be generated either.

• For inherited tables, if you write a child column definition without any GENERATED clause in CRE-
ATE TABLE ... INHERITS, then its GENERATED clause will automatically be copied from the par-
ent. ALTER TABLE ... INHERIT will insist that parent and child columns already match as to
generation status, but it will not require their generation expressions to match.

• Similarly for partitioned tables, if you write a child column definition without any GENERATED
clause in CREATE TABLE ... PARTITION OF, then its GENERATED clause will automatically be
copied from the parent. ALTER TABLE ... ATTACH PARTITION will insist that parent and child
columns already match as to generation status, but it will not require their generation expres-
sions to match.

• In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns. If they do not all have the same generation expression,
then the desired expression for the child must be specified explicitly.

Additional considerations apply to the use of generated columns.

• Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

For virtual generated columns, this is only fully secure if the generation expression uses only
leakproof functions (see CREATE FUNCTION), but this is not enforced by the system.

• Privileges of functions used in generation expressions are checked when the expression is actual-
ly executed, on write or read respectively, as if the generation expression had been called directly
from the query using the generated column. The user of a generated column must have permissions
to call all functions used by the generation expression. Functions in the generation expression are
executed with the privileges of the user executing the query or the function owner, depending on
whether the functions are defined as SECURITY INVOKER or SECURITY DEFINER.

• Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

• Generated columns are allowed to be replicated during logical replication according to the CREATE
PUBLICATION parameter publish_generated_columns or by including them in the column list of
the CREATE PUBLICATION command. This is currently only supported for stored generated columns.
See Section 29.6 for details.

5.5. Constraints
Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

49

Data Definition

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would vi-
olate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.5.1. Check Constraints
A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0)
);

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CONSTRAINT positive_price CHECK (price > 0)
);

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could
also be written as:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,

50

Data Definition

 CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

or even:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0 AND price > discounted_price)
);

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CONSTRAINT valid_discount CHECK (price > discounted_price)
);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note
PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and restore to fail. The restore could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a continu-
ously-maintained consistency guarantee, a custom trigger can be used to implement that. (This
approach avoids the dump/restore problem because pg_dump does not reinstall triggers until after
restoring data, so that the check will not be enforced during a dump/restore.)

Note
PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow

51

Data Definition

that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and restore to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.5.2. Not-Null Constraints
A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric
);

An explicit constraint name can also be specified, for example:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text CONSTRAINT products_name_not_null NOT NULL,
 price numeric
);

A not-null constraint is usually written as a column constraint. The syntax for writing it as a table con-
straint is

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 NOT NULL product_no,
 NOT NULL name
);

But this syntax is not standard and mainly intended for use by pg_dump.

A not-null constraint is functionally equivalent to creating a check constraint CHECK (column_name IS
NOT NULL), but in PostgreSQL creating an explicit not-null constraint is more efficient.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric NOT NULL CHECK (price > 0)
);

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

However, a column can have at most one explicit not-null constraint.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (
 product_no integer NULL,
 name text NULL,

52

Data Definition

 price numeric NULL
);

and then insert the NOT key word where desired.

Tip
In most database designs the majority of columns should be marked not null.

5.5.3. Unique Constraints
Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
 product_no integer UNIQUE,
 name text,
 price numeric
);

when written as a column constraint, and:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 UNIQUE (product_no)
);

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 UNIQUE (a, c)
);

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
 product_no integer CONSTRAINT must_be_different UNIQUE,
 name text,
 price numeric
);

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values
of all of the columns included in the constraint are equal. By default, two null values are not considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to store
duplicate rows that contain a null value in at least one of the constrained columns. This behavior can be
changed by adding the clause NULLS NOT DISTINCT, like

53

Data Definition

CREATE TABLE products (
 product_no integer UNIQUE NULLS NOT DISTINCT,
 name text,
 price numeric
);

or

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 UNIQUE NULLS NOT DISTINCT (product_no)
);

The default behavior can be specified explicitly using NULLS DISTINCT. The default null treatment in
unique constraints is implementation-defined according to the SQL standard, and other implementations
have a different behavior. So be careful when developing applications that are intended to be portable.

5.5.4. Primary Keys
A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
 product_no integer UNIQUE NOT NULL,
 name text,
 price numeric
);

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 PRIMARY KEY (a, c)
);

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique constraints, which
combined with not-null constraints are functionally almost the same thing, but only one can be identified
as the primary key.) Relational database theory dictates that every table must have a primary key. This
rule is not enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.5.5. Foreign Keys

54

Data Definition

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products (product_no),
 quantity integer
);

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products,
 quantity integer
);

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
 a integer PRIMARY KEY,
 b integer,
 c integer,
 FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)
);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write

CREATE TABLE tree (
 node_id integer PRIMARY KEY,
 parent_id integer REFERENCES tree,
 name text,

55

Data Definition

 ...
);

A top-level node would have NULL parent_id, while non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products,
 order_id integer REFERENCES orders,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

• Disallow deleting a referenced product
• Delete the orders as well
• Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products ON DELETE RESTRICT,
 order_id integer REFERENCES orders ON DELETE CASCADE,
 quantity integer,

56

Data Definition

 PRIMARY KEY (product_no, order_id)
);

The default ON DELETE action is ON DELETE NO ACTION; this does not need to be specified. This means
that the deletion in the referenced table is allowed to proceed. But the foreign-key constraint is still
required to be satisfied, so this operation will usually result in an error. But checking of foreign-key
constraints can also be deferred to later in the transaction (not covered in this chapter). In that case, the
NO ACTION setting would allow other commands to “fix” the situation before the constraint is checked,
for example by inserting another suitable row into the referenced table or by deleting the now-dangling
rows from the referencing table.

RESTRICT is a stricter setting than NO ACTION. It prevents deletion of a referenced row. RESTRICT does
not allow the check to be deferred until later in the transaction.

CASCADE specifies that when a referenced row is deleted, row(s) referencing it should be automatically
deleted as well.

There are two other options: SET NULL and SET DEFAULT. These cause the referencing column(s) in the
referencing row(s) to be set to nulls or their default values, respectively, when the referenced row is
deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key constraint, the operation
will fail.

The appropriate choice of ON DELETE action depends on what kinds of objects the related tables rep-
resent. When the referencing table represents something that is a component of what is represented
by the referenced table and cannot exist independently, then CASCADE could be appropriate. If the two
tables represent independent objects, then RESTRICT or NO ACTION is more appropriate; an application
that actually wants to delete both objects would then have to be explicit about this and run two delete
commands. In the above example, order items are part of an order, and it is convenient if they are delet-
ed automatically if an order is deleted. But products and orders are different things, and so making a
deletion of a product automatically cause the deletion of some order items could be considered problem-
atic. The actions SET NULL or SET DEFAULT can be appropriate if a foreign-key relationship represents
optional information. For example, if the products table contained a reference to a product manager,
and the product manager entry gets deleted, then setting the product's product manager to null or a
default might be useful.

The actions SET NULL and SET DEFAULT can take a column list to specify which columns to set. Normally,
all columns of the foreign-key constraint are set; setting only a subset is useful in some special cases.
Consider the following example:
CREATE TABLE tenants (
 tenant_id integer PRIMARY KEY
);

CREATE TABLE users (
 tenant_id integer REFERENCES tenants ON DELETE CASCADE,
 user_id integer NOT NULL,
 PRIMARY KEY (tenant_id, user_id)
);

CREATE TABLE posts (
 tenant_id integer REFERENCES tenants ON DELETE CASCADE,
 post_id integer NOT NULL,
 author_id integer,
 PRIMARY KEY (tenant_id, post_id),
 FOREIGN KEY (tenant_id, author_id) REFERENCES users ON DELETE SET NULL (author_id)
);

Without the specification of the column, the foreign key would also set the column tenant_id to null,
but that column is still required as part of the primary key.

57

Data Definition

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same, except that column lists cannot be specified for SET NULL
and SET DEFAULT. In this case, CASCADE means that the updated values of the referenced column(s)
should be copied into the referencing row(s). There is also a noticeable difference between ON UPDATE
NO ACTION (the default) and ON UPDATE RESTRICT. The former will allow the update to proceed and
the foreign-key constraint will be checked against the state after the update. The latter will prevent the
update to run even if the state after the update would still satisfy the constraint. This prevents updating
a referenced row to a value that is distinct but compares as equal (for example, a character string with
a different case variant, if a character string type with a case-insensitive collation is used).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint, or are
columns from a non-partial unique index. This means that the referenced columns always have an index
to allow efficient lookups on whether a referencing row has a match. Since a DELETE of a row from the
referenced table or an UPDATE of a referenced column will require a scan of the referencing table for
rows matching the old value, it is often a good idea to index the referencing columns too. Because this
is not always needed, and there are many choices available on how to index, the declaration of a foreign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.5.6. Exclusion Constraints
Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:
CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.6. System Columns
Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from partitioned tables (see Section 5.12) or inheritance hierarchies (see Section 5.11), since without
it, it's difficult to tell which individual table a row came from. The tableoid can be joined against
the oid column of pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

58

Data Definition

cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by VACUUM
FULL. Therefore ctid is useless as a long-term row identifier. A primary key should be used to identify
logical rows.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 24
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.7. Modifying Tables
When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

• Add columns
• Remove columns
• Add constraints
• Remove constraints
• Change default values
• Change column data types
• Rename columns
• Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.7.1. Adding a Column
To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

59

Data Definition

Tip
Adding a column with a constant default value does not require each row of the table to be updated
when the ALTER TABLE statement is executed. Instead, the default value will be returned the next
time the row is accessed, and applied when the table is rewritten, making the ALTER TABLE very
fast even on large tables.

If the default value is volatile (e.g., clock_timestamp()) each row will need to be updated with
the value calculated at the time ALTER TABLE is executed. To avoid a potentially lengthy update
operation, particularly if you intend to fill the column with mostly nondefault values anyway, it
may be preferable to add the column with no default, insert the correct values using UPDATE, and
then add any desired default as described below.

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.7.2. Removing a Column
To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by
adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.15 for a description of the general mechanism behind this.

5.7.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which is normally not written as a table constraint, this special syntax is
available:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

This command silently does nothing if the column already has a not-null constraint.

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.7.4. Removing a Constraint
To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

60

Data Definition

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

Simplified syntax is available to drop a not-null constraint:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

This mirrors the SET NOT NULL syntax for adding a not-null constraint. This command will silently do
nothing if the column does not have a not-null constraint. (Recall that a column can have at most one
not-null constraint, so it is never ambiguous which constraint this command acts on.)

5.7.5. Changing a Column's Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.

5.7.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising re-
sults. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.7.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.7.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.8. Privileges
When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIG-
GER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET, ALTER SYSTEM, and MAINTAIN. The privileges
applicable to a particular object vary depending on the object's type (table, function, etc.). More detail

61

Data Definition

about the meanings of these privileges appears below. The following sections and chapters will also
show you how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 21.3.)

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
for example

ALTER TABLE table_name OWNER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the
object (or inherit the privileges of the owning role) and able to SET ROLE to the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 21.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

The available privileges are:

SELECT

Allows SELECT from any column, or specific column(s), of a table, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is also needed to reference existing column
values in UPDATE, DELETE, or MERGE. For sequences, this privilege also allows use of the currval
function. For large objects, this privilege allows the object to be read.

INSERT

Allows INSERT of a new row into a table, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the INSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM.

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR UPDATE
and SELECT ... FOR SHARE also require this privilege on at least one column, in addition to the
SELECT privilege. For sequences, this privilege allows use of the nextval and setval functions. For
large objects, this privilege allows writing or truncating the object.

62

Data Definition

DELETE

Allows DELETE of a row from a table, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows to
delete.)

TRUNCATE

Allows TRUNCATE on a table.

REFERENCES

Allows creation of a foreign key constraint referencing a table, or specific column(s) of a table.

TRIGGER

Allows creation of a trigger on a table, view, etc.

CREATE

For databases, allows new schemas and publications to be created within the database, and allows
trusted extensions to be installed within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.

CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY

Allows temporary tables to be created while using the database.

EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on top
of the function. This is the only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, allows use of the language for the creation of functions in that language.
This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects' own priv-
ilege requirements are also met). Essentially this allows the grantee to “look up” objects within the
schema. Without this permission, it is still possible to see the object names, e.g., by querying system
catalogs. Also, after revoking this permission, existing sessions might have statements that have
previously performed this lookup, so this is not a completely secure way to prevent object access.

For sequences, allows use of the currval and nextval functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control all “usage” of the type, such as values of
the type appearing in queries. It only prevents objects from being created that depend on the type.
The main purpose of this privilege is controlling which users can create dependencies on a type,
which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

63

Data Definition

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

SET

Allows a server configuration parameter to be set to a new value within the current session. (While
this privilege can be granted on any parameter, it is meaningless except for parameters that would
normally require superuser privilege to set.)

ALTER SYSTEM

Allows a server configuration parameter to be configured to a new value using the ALTER SYSTEM
command.

MAINTAIN

Allows VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX, LOCK TABLE, and database
object statistics manipulation functions (see Table 9.105) on a relation.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on some types of objects to PUBLIC by default when the objects are cre-
ated. No privileges are granted to PUBLIC by default on tables, table columns, sequences, foreign data
wrappers, foreign servers, large objects, schemas, tablespaces, or configuration parameters. For other
types of objects, the default privileges granted to PUBLIC are as follows: CONNECT and TEMPORARY (create
temporary tables) privileges for databases; EXECUTE privilege for functions and procedures; and USAGE
privilege for languages and data types (including domains). The object owner can, of course, REVOKE both
default and expressly granted privileges. (For maximum security, issue the REVOKE in the same transac-
tion that creates the object; then there is no window in which another user can use the object.) Also,
these default privilege settings can be overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL values. You
will see these letters in the output of the psql commands listed below, or when looking at ACL columns
of system catalogs.

Table 5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types
SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and table-like

objects), table column
INSERT a (“append”) TABLE, table column
UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table column
DELETE d TABLE

TRUNCATE D TABLE

REFERENCES x TABLE, table column
TRIGGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE
CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTION, PROCEDURE
USAGE U DOMAIN, FOREIGN DATA WRAPPER, FOREIGN SERVER,

 LANGUAGE, SCHEMA, SEQUENCE, TYPE
SET s PARAMETER

ALTER SYSTEM A PARAMETER

MAINTAIN m TABLE

64

Data Definition

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psql command that can be used to examine privilege settings for each object
type.

Table 5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLIC
Privileges

psql Command

DATABASE CTc Tc \l

DOMAIN U U \dD+

FUNCTION or PROCEDURE X X \df+

FOREIGN DATA WRAPPER U none \dew+

FOREIGN SERVER U none \des+

LANGUAGE U U \dL+

LARGE OBJECT rw none \dl+

PARAMETER sA none \dconfig+

SCHEMA UC none \dn+

SEQUENCE rwU none \dp

TABLE (and table-like objects) arwdDxtm none \dp

Table column arwx none \dp

TABLESPACE C none \db+

TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as a list of aclitem entries,
each having the format:

grantee=privilege-abbreviation[*].../grantor

Each aclitem lists all the permissions of one grantee that have been granted by a particular grantor.
Specific privileges are represented by one-letter abbreviations from Table 5.1, with * appended if the
privilege was granted with grant option. For example, calvin=r*w/hobbes specifies that the role calvin
has the privilege SELECT (r) with grant option (*) as well as the non-grantable privilege UPDATE (w), both
granted by the role hobbes. If calvin also has some privileges on the same object granted by a different
grantor, those would appear as a separate aclitem entry. An empty grantee field in an aclitem stands
for PUBLIC.

As an example, suppose that user miriam creates table mytable and does:

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;

Then psql's \dp command would show:

=> \dp mytable
 Access privileges
 Schema | Name | Type | Access privileges | Column privileges | Policies
--------+---------+-------+------------------------+-----------------------+----------
 public | mytable | table | miriam=arwdDxtm/miriam+| col1: +|
 | | | =r/miriam +| miriam_rw=rw/miriam |
 | | | admin=arw/miriam | |
(1 row)

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all

65

Data Definition

privileges for the owner, and can include some privileges for PUBLIC depending on the object type, as
explained above. The first GRANT or REVOKE on an object will instantiate the default privileges (producing,
for example, miriam=arwdDxt/miriam) and then modify them per the specified request. Similarly, entries
are shown in “Column privileges” only for columns with nondefault privileges. (Note: for this purpose,
“default privileges” always means the built-in default privileges for the object's type. An object whose
privileges have been affected by an ALTER DEFAULT PRIVILEGES command will always be shown with
an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

The “Access privileges” column shows (none) when the object's privileges entry is non-null but empty.
This means that no privileges are granted at all, even to the object's owner — a rare situation. (The
owner still has implicit grant options in this case, and so could re-grant her own privileges; but she has
none at the moment.)

5.9. Row Security Policies
In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or func-
tions coming from the user's query. (The only exceptions to this rule are leakproof functions, which are
guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the row-
security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when access-
ing a table. Table owners normally bypass row security as well, though a table owner can choose to be
subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). The OR behavior is similar to the rule that

66

Data Definition

a given role has the privileges of all roles that they are a member of. Permissive vs. restrictive policies
are discussed further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
 USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the con-
straint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
 USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
 FOR SELECT
 USING (true);
CREATE POLICY user_mod_policy ON users
 USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

-- Simple passwd-file based example
CREATE TABLE passwd (
 user_name text UNIQUE NOT NULL,
 pwhash text,
 uid int PRIMARY KEY,
 gid int NOT NULL,
 real_name text NOT NULL,
 home_phone text,
 extra_info text,
 home_dir text NOT NULL,
 shell text NOT NULL
);

CREATE ROLE admin; -- Administrator

67

Data Definition

CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Populate the table
INSERT INTO passwd VALUES
 ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT INTO passwd VALUES
 ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT INTO passwd VALUES
 ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');

-- Be sure to enable row-level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
-- Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
-- Normal users can update their own records, but
-- limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
 USING (current_user = user_name)
 WITH CHECK (
 current_user = user_name AND
 shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
);

-- Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
-- Users only get select access on public columns
GRANT SELECT
 (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
 ON passwd TO public;
-- Allow users to update certain columns
GRANT UPDATE
 (pwhash, real_name, home_phone, extra_info, shell)
 ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
postgres=> set role admin;
SET
postgres=> table passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
 shell
-----------+--------+-----+-----+-----------+--------------+------------+-------------
+-----------
 admin | xxx | 0 | 0 | Admin | 111-222-3333 | | /root
 | /bin/dash
 bob | xxx | 1 | 1 | Bob | 123-456-7890 | | /home/bob
 | /bin/zsh
 alice | xxx | 2 | 1 | Alice | 098-765-4321 | | /home/alice
 | /bin/zsh
(3 rows)

-- Test what Alice is able to do

68

Data Definition

postgres=> set role alice;
SET
postgres=> table passwd;
ERROR: permission denied for table passwd
postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;
 user_name | real_name | home_phone | extra_info | home_dir | shell
-----------+-----------+--------------+------------+-------------+-----------
 admin | Admin | 111-222-3333 | | /root | /bin/dash
 bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
 alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)

postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for table passwd
-- Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE 0
postgres=> update passwd set shell = '/bin/xx';
ERROR: new row violates WITH CHECK OPTION for "passwd"
postgres=> delete from passwd;
ERROR: permission denied for table passwd
postgres=> insert into passwd (user_name) values ('xxx');
ERROR: permission denied for table passwd
-- Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple poli-
cies are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add a restrictive policy to require the administra-
tor to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
 USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
 current_user

 admin
(1 row)

=> select inet_client_addr();
 inet_client_addr

 127.0.0.1
(1 row)

=> TABLE passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
 shell
-----------+--------+-----+-----+-----------+------------+------------+----------
+-------

69

Data Definition

(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references, al-
ways bypass row security to ensure that data integrity is maintained. Care must be taken when devel-
oping schemas and row level policies to avoid “covert channel” leaks of information through such ref-
erential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row_security configuration parameter to off. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTs, or functions that contain SELECTs, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow informa-
tion leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
 group_name text NOT NULL);

INSERT INTO groups VALUES
 (1, 'low'),
 (2, 'medium'),
 (5, 'high');

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

-- definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
 ('alice', 5),
 ('bob', 2),
 ('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
 ('barely secret', 1),
 ('slightly secret', 2),
 ('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-- a row should be visible to/updatable by users whose security group_id is

70

Data Definition

-- greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
 USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
 USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';
UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the ref-
erenced table could pose a performance problem, especially if updates of it are frequent. Another solu-
tion, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock on
the referenced table when updating it, so that no concurrent transactions could be examining old row
values. Or one could just wait for all concurrent transactions to end after committing an update of the
referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.10. Schemas
A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note
Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. Within one schema, two

71

Data Definition

objects of the same type cannot have the same name. Furthermore, tables, sequences, indexes, views,
materialized views, and foreign tables share the same namespace, so that, for example, an index and a
table must have different names if they are in the same schema. The same object name can be used in
different schemas without conflict; for example, both schema1 and myschema can contain tables named
mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in any of the
schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each other.

• To organize database objects into logical groups to make them more manageable.

• Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.10.1. Creating a Schema
To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
 ...
);

To drop a schema if it's empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.15 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.10.6 for how this can be useful.

72

Data Definition

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.10.2. The Public Schema
In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);

and:

CREATE TABLE public.products (...);

5.10.3. The Schema Search Path
Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to search_path effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects
in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

 search_path

 "$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

73

Data Definition

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.27 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schema.operator)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.10.4. Schemas and Privileges
By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. By default, everyone has that privilege on the
schema public. To allow users to make use of the objects in a schema, additional privileges might need
to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. In databases upgraded from PostgreSQL 14 or earlier, everyone has
that privilege on the schema public. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.10.5. The System Catalog Schema
In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.10.6. Usage Patterns
Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a
secure schema usage pattern, users wishing to securely query that database would take protective action

74

Data Definition

at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing schemas that are writable by non-superusers from search_path.
There are a few usage patterns easily supported by the default configuration:
• Constrain ordinary users to user-private schemas. To implement this pattern, first ensure that no

schemas have public CREATE privileges. Then, for every user needing to create non-temporary ob-
jects, create a schema with the same name as that user, for example CREATE SCHEMA alice AU-
THORIZATION alice. (Recall that the default search path starts with $user, which resolves to the
user name. Therefore, if each user has a separate schema, they access their own schemas by de-
fault.) This pattern is a secure schema usage pattern unless an untrusted user is the database own-
er or has been granted ADMIN OPTION on a relevant role, in which case no secure schema usage
pattern exists.

In PostgreSQL 15 and later, the default configuration supports this usage pattern. In prior ver-
sions, or when using a database that has been upgraded from a prior version, you will need to re-
move the public CREATE privilege from the public schema (issue REVOKE CREATE ON SCHEMA pub-
lic FROM PUBLIC). Then consider auditing the public schema for objects named like objects in
schema pg_catalog.

• Remove the public schema from the default search path, by modifying postgresql.conf or by is-
suing ALTER ROLE ALL SET search_path = "$user". Then, grant privileges to create in the public
schema. Only qualified names will choose public schema objects. While qualified table references
are fine, calls to functions in the public schema will be unsafe or unreliable. If you create functions
or extensions in the public schema, use the first pattern instead. Otherwise, like the first pattern,
this is secure unless an untrusted user is the database owner or has been granted ADMIN OPTION on
a relevant role.

• Keep the default search path, and grant privileges to create in the public schema. All users access
the public schema implicitly. This simulates the situation where schemas are not available at all,
giving a smooth transition from the non-schema-aware world. However, this is never a secure pat-
tern. It is acceptable only when the database has a single user or a few mutually-trusting users. In
databases upgraded from PostgreSQL 14 or earlier, this is the default.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.10.7. Portability
In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consid-
er qualified names to really consist of user_name.table_name. This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.11. Inheritance
PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

75

Data Definition

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (
 name text,
 population float,
 elevation int -- in feet
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
 FROM cities
 WHERE elevation > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
 FROM ONLY cities
 WHERE elevation > 500;

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953

Here the ONLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are in-
cluded:

SELECT name, elevation
 FROM cities*
 WHERE elevation > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still sup-
ported for compatibility with older releases where the default could be changed.

76

Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:
SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:
 tableoid | name | elevation
----------+-----------+-----------
 139793 | Las Vegas | 2174
 139793 | Mariposa | 1953
 139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:
SELECT p.relname, c.name, c.elevation
FROM cities c, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:
 relname | name | elevation
----------+-----------+-----------
 cities | Las Vegas | 2174
 cities | Mariposa | 1953
 capitals | Madison | 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:
SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:
INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the

77

Data Definition

new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.12).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE
option (see Section 5.15).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as well,
when they are accessed through cities. This preserves the appearance that the data is (also) in the
parent table. But the capitals table could not be updated directly without an additional grant. In a
similar way, the parent table's row security policies (see Section 5.9) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.13) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.11.1. Caveats
Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most vari-
ants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child
tables and support the ONLY notation to exclude them. The majority of commands that do database main-
tenance and tuning (e.g., REINDEX) only work on individual, physical tables and do not support recursing
over inheritance hierarchies. However, both VACUUM and ANALYZE commands default to including child
tables and the ONLY notation is supported to allow them to be excluded. The respective behavior of each
individual command is documented in its reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:
• If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals table

from having rows with names duplicating rows in cities. And those duplicate rows would by de-
fault show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

• Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

• Specifying that another table's column REFERENCES cities(name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

78

Data Definition

Some functionality not implemented for inheritance hierarchies is implemented for declarative parti-
tioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful
for your application.

5.12. Table Partitioning
PostgreSQL supports basic table partitioning. This section describes why and how to implement parti-
tioning as part of your database design.

5.12.1. Overview
Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:
• Query performance can be improved dramatically in certain situations, particularly when most of

the heavily accessed rows of the table are in a single partition or a small number of partitions. Par-
titioning effectively substitutes for the upper tree levels of indexes, making it more likely that the
heavily-used parts of the indexes fit in memory.

• When queries or updates access a large percentage of a single partition, performance can be im-
proved by using a sequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

• Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern
is accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTITION, is far faster than a bulk operation. These commands also
entirely avoid the VACUUM overhead caused by a bulk DELETE.

• Seldom-used data can be migrated to cheaper and slower storage media.
These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if one
partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10 belongs
to the second partition not the first.

List Partitioning
The table is partitioned by explicitly listing which key value(s) appear in each partition.

Hash Partitioning
The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
as inheritance and UNION ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.12.2. Declarative Partitioning
PostgreSQL allows you to declare that a table is divided into partitions. The table that is divided is
referred to as a partitioned table. The declaration includes the partitioning method as described above,
plus a list of columns or expressions to be used as the partition key.

79

Data Definition

The partitioned table itself is a “virtual” table having no storage of its own. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table
will be routed to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of a row will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own index-
es, constraints and default values, distinct from those of other partitions. See CREATE TABLE for more
details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from
a partitioned table turning it into a standalone table; this can simplify and speed up many maintenance
processes. See ALTER TABLE to learn more about the ATTACH PARTITION and DETACH PARTITION sub-
commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.12.2.1. Example
Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data. In this situation we can use partitioning to help us
meet all of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Create the measurement table as a partitioned table by specifying the PARTITION BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition
key.

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at a time. So the commands might look like:

80

Data Definition

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
 FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

...
CREATE TABLE measurement_y2007m11 PARTITION OF measurement
 FOR VALUES FROM ('2007-11-01') TO ('2007-12-01');

CREATE TABLE measurement_y2007m12 PARTITION OF measurement
 FOR VALUES FROM ('2007-12-01') TO ('2008-01-01')
 TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
 FOR VALUES FROM ('2008-01-01') TO ('2008-02-01')
 WITH (parallel_workers = 4)
 TABLESPACE fasttablespace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTITION BY clause in the commands
used to create individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01')
 PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement that is
mapped to measurement_y2006m02 (or data that is directly inserted into measurement_y2006m02,
which is allowed provided its partition constraint is satisfied) will be further redirected to one of its
partitions based on the peaktemp column. The partition key specified may overlap with the parent's
partition key, although care should be taken when specifying the bounds of a sub-partition such that
the set of data it accepts constitutes a subset of what the partition's own bounds allow; the system
does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It is not necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual data is in child indexes on the individual partition tables.

CREATE INDEX ON measurement (logdate);

4. Ensure that the enable_partition_pruning configuration parameter is not disabled in post-
gresql.conf. If it is, queries will not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.12.2.2. Partition Maintenance
Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise

81

Data Definition

painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSIVE lock on the parent
table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right. This has two forms:
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02 CONCURRENTLY;

These allow further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports. The first
form of the command requires an ACCESS EXCLUSIVE lock on the parent table. Adding the CONCURRENTLY
qualifier as in the second form allows the detach operation to require only SHARE UPDATE EXCLUSIVE
lock on the parent table, but see ALTER TABLE ... DETACH PARTITION for details on the restrictions.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:
CREATE TABLE measurement_y2008m02 PARTITION OF measurement
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01')
 TABLESPACE fasttablespace;

As an alternative to creating a new partition, it is sometimes more convenient to create a new table
separate from the partition structure and attach it as a partition later. This allows new data to be loaded,
checked, and transformed prior to it appearing in the partitioned table. Moreover, the ATTACH PARTITION
operation requires only a SHARE UPDATE EXCLUSIVE lock on the partitioned table rather than the ACCESS
EXCLUSIVE lock required by CREATE TABLE ... PARTITION OF, so it is more friendly to concurrent
operations on the partitioned table; see ALTER TABLE ... ATTACH PARTITION for additional details. The
CREATE TABLE ... LIKE option can be helpful to avoid tediously repeating the parent table's definition;
for example:
CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
 TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');

\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01');

Note that when running the ATTACH PARTITION command, the table will be scanned to validate the par-
tition constraint while holding an ACCESS EXCLUSIVE lock on that partition. As shown above, it is rec-
ommended to avoid this scan by creating a CHECK constraint matching the expected partition constraint
on the table prior to attaching it. Once the ATTACH PARTITION is complete, it is recommended to drop
the now-redundant CHECK constraint. If the table being attached is itself a partitioned table, then each
of its sub-partitions will be recursively locked and scanned until either a suitable CHECK constraint is
encountered or the leaf partitions are reached.

Similarly, if the partitioned table has a DEFAULT partition, it is recommended to create a CHECK constraint
which excludes the to-be-attached partition's constraint. If this is not done, the DEFAULT partition will

82

Data Definition

be scanned to verify that it contains no records which should be located in the partition being attached.
This operation will be performed whilst holding an ACCESS EXCLUSIVE lock on the DEFAULT partition. If
the DEFAULT partition is itself a partitioned table, then each of its partitions will be recursively checked
in the same way as the table being attached, as mentioned above.

As mentioned earlier, it is possible to create indexes on partitioned tables so that they are applied auto-
matically to the entire hierarchy. This can be very convenient as not only will all existing partitions be
indexed, but any future partitions will be as well. However, one limitation when creating new indexes
on partitioned tables is that it is not possible to use the CONCURRENTLY qualifier, which could lead to long
lock times. To avoid this, you can use CREATE INDEX ON ONLY the partitioned table, which creates the
new index marked as invalid, preventing automatic application to existing partitions. Instead, indexes
can then be created individually on each partition using CONCURRENTLY and attached to the partitioned
index on the parent using ALTER INDEX ... ATTACH PARTITION. Once indexes for all the partitions are
attached to the parent index, the parent index will be marked valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX CONCURRENTLY measurement_usls_200602_idx
 ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
 ATTACH PARTITION measurement_usls_200602_idx;
...

This technique can be used with UNIQUE and PRIMARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
 ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;
...

5.12.2.3. Limitations
The following limitations apply to partitioned tables:

• To create a unique or primary key constraint on a partitioned table, the partition keys must not in-
clude any expressions or function calls and the constraint's columns must include all of the parti-
tion key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicates in different partitions.

• Similarly an exclusion constraint must include all the partition key columns. Furthermore the con-
straint must compare those columns for equality (not e.g. &&). Again, this limitation stems from not
being able to enforce cross-partition restrictions. The constraint may include additional columns
that aren't part of the partition key, and it may compare those with any operators you like.

• BEFORE ROW triggers on INSERT cannot change which partition is the final destination for a new row.

• Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is tem-
porary. When using temporary relations, all members of the partition tree have to be from the same
session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables or
their partitions, as discussed below. Notably, a partition cannot have any parents other than the parti-
tioned table it is a partition of, nor can a table inherit from both a partitioned table and a regular table.
That means partitioned tables and their partitions never share an inheritance hierarchy with regular
tables.

83

Data Definition

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, tableoid and all the normal rules of inheritance apply as described in Section 5.11, with a
few exceptions:

• Partitions cannot have columns that are not present in the parent. It is not possible to specify
columns when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... AT-
TACH PARTITION only if their columns exactly match the parent.

• Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its parti-
tions; it is not allowed to create NO INHERIT constraints of those types. You cannot drop a con-
straint of those types if the same constraint is present in the parent table.

• Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error for any constraints other
than UNIQUE and PRIMARY KEY. Instead, constraints on the partitions themselves can be added and
(if they are not present in the parent table) dropped.

• As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.12.3. Partitioning Using Inheritance
While the built-in declarative partitioning is suitable for most common use cases, there are some cir-
cumstances where a more flexible approach may be useful. Partitioning can be implemented using table
inheritance, which allows for several features not supported by declarative partitioning, such as:

• For declarative partitioning, partitions must have exactly the same set of columns as the parti-
tioned table, whereas with table inheritance, child tables may have extra columns not present in
the parent.

• Table inheritance allows for multiple inheritance.

• Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint ex-
clusion is unable to prune child tables effectively, query performance might be poor.)

5.12.3.1. Example
This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “root” table, from which all of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For
our example, the root table is the measurement table as originally defined:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

2. Create several “child” tables that each inherit from the root table. Normally, these tables will not add
any columns to the set inherited from the root. Just as with declarative partitioning, these tables are
in every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);

84

Data Definition

CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

3. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE measurement_y2006m02 (
 CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
 CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01')
) INHERITS (measurement);

...
CREATE TABLE measurement_y2007m11 (
 CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2007m12 (
 CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
 CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
) INHERITS (measurement);

4. For each child table, create an index on the key column(s), as well as any other indexes you might
want.

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01 (logdate);

5. We want our application to be able to say INSERT INTO measurement ... and have the data be redi-
rected into the appropriate child table. We can arrange that by attaching a suitable trigger function to
the root table. If data will be added only to the latest child, we can use a very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

85

Data Definition

 BEFORE INSERT ON measurement
 FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always inserts into the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.logdate >= DATE '2006-02-01' AND
 NEW.logdate < DATE '2006-03-01') THEN
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
 ELSIF (NEW.logdate >= DATE '2006-03-01' AND
 NEW.logdate < DATE '2006-04-01') THEN
 INSERT INTO measurement_y2006m03 VALUES (NEW.*);
 ...
 ELSIF (NEW.logdate >= DATE '2008-01-01' AND
 NEW.logdate < DATE '2008-02-01') THEN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger()
 function!';
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note
In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of a trigger, on the root table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
DO INSTEAD
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...
CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
DO INSTEAD
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);

86

Data Definition

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the root. COPY does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the root table instead.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresql.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.12.3.2. Maintenance for Inheritance Partitioning
To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its
own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measurement_y2008m02 (
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01')
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');
\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.12.3.3. Caveats
The following caveats apply to partitioning implemented using inheritance:

• There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

• Indexes and foreign key constraints apply to single tables and not to their inheritance children,
hence they have some caveats to be aware of.

• The schemes shown here assume that the values of a row's key column(s) never change, or at least
do not change enough to require it to move to another partition. An UPDATE that attempts to do that
will fail because of the CHECK constraints. If you need to handle such cases, you can put suitable up-
date triggers on the child tables, but it makes management of the structure much more complicat-
ed.

87

Data Definition

• Manual VACUUM and ANALYZE commands will automatically process all inheritance child tables. If
this is undesirable, you can use the ONLY keyword. A command like:
ANALYZE ONLY measurement;

will only process the root table.
• INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT

action is only taken in case of unique violations on the specified target relation, not its child rela-
tions.

• Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.12.4. Partition Pruning
Partition pruning is a query optimization technique that improves performance for declaratively parti-
tioned tables. As an example:
SET enable_partition_pruning = on; -- the default
SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that
the partition need not be scanned because it could not contain any rows meeting the query's WHERE
clause. When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they
have not. A typical unoptimized plan for this type of table setup is:
SET enable_partition_pruning = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
 QUERY PLAN

 Aggregate (cost=188.76..188.77 rows=1 width=8)
 -> Append (cost=0.00..181.05 rows=3085 width=0)
 -> Seq Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
...
 -> Seq Scan on measurement_y2007m11 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2007m12 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:
SET enable_partition_pruning = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
 QUERY PLAN

 Aggregate (cost=37.75..37.76 rows=1 width=8)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether

88

Data Definition

an index needs to be created for a given partition depends on whether you expect that queries that scan
the partition will generally scan a large part of the partition or just a small part. An index will be helpful
in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of
a nested loop join. Partition pruning during execution can be performed at any of the following times:
• During initialization of the query plan. Partition pruning can be performed here for parameter val-

ues which are known during the initialization phase of execution. Partitions which are pruned dur-
ing this stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to deter-
mine the number of partitions which were removed during this phase by observing the “Subplans
Removed” property in the EXPLAIN output. The query planner obtains locks for all partitions which
are part of the plan. However, when the executor uses a cached plan, locks are only obtained on
the partitions which remain after partition pruning done during the initialization phase of execu-
tion, i.e., the ones shown in the EXPLAIN output and not the ones referred to by the “Subplans Re-
moved” property.

• During actual execution of the query plan. Partition pruning may also be performed here to re-
move partitions using values which are only known during actual query execution. This includes
values from subqueries and values from execution-time parameters such as those from parame-
terized nested loop joins. Since the value of these parameters may change many times during the
execution of the query, partition pruning is performed whenever one of the execution parameters
being used by partition pruning changes. Determining if partitions were pruned during this phase
requires careful inspection of the loops property in the EXPLAIN ANALYZE output. Subplans cor-
responding to different partitions may have different values for it depending on how many times
each of them was pruned during execution. Some may be shown as (never executed) if they were
pruned every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

5.12.5. Partitioning and Constraint Exclusion
Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purpos-
es, including with declarative partitioning.

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusion is only applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declara-
tively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be able
to elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor off, but an intermedi-
ate setting called partition, which causes the technique to be applied only to queries that are likely
to be working on inheritance partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:
• Constraint exclusion is only applied during query planning, unlike partition pruning, which can also

be applied during query execution.
• Constraint exclusion only works when the query's WHERE clause contains constants (or externally

supplied parameters). For example, a comparison against a non-immutable function such as CUR-

89

Data Definition

RENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the func-
tion's value might fall into at run time.

• Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the parti-
tion key.

• All constraints on all children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheri-
tance based partitioning will work well with up to perhaps a hundred child tables; don't try to use
many thousands of children.

5.12.6. Best Practices for Declarative Partitioning
The choice of how to partition a table should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRIMARY KEY or a UNIQUE constraint. Removal of
unwanted data is also a factor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such a way that
all data to be removed at once is located in a single partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implications if in several years you instead find yourself with a
large number of small customers. In this case, it may be better to choose to partition by HASH and choose
a reasonable number of partitions rather than trying to partition by LIST and hoping that the number of
customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option is to use range partitioning with multiple columns in the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The query
planner is generally able to handle partition hierarchies with up to a few thousand partitions fairly well,
provided that typical queries allow the query planner to prune all but a small number of partitions. Plan-
ning times become longer and memory consumption becomes higher when more partitions remain after
the planner performs partition pruning. Another reason to be concerned about having a large number of
partitions is that the server's memory consumption may grow significantly over time, especially if many
sessions touch large numbers of partitions. That's because each partition requires its metadata to be
loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload, it
is important to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

90

Data Definition

5.13. Foreign Data
PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 58.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.14. Other Database Objects
Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

• Views
• Functions, procedures, and operators
• Data types and domains
• Triggers and rewrite rules
Detailed information on these topics appears in Part V.

5.15. Dependency Tracking
When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we consid-
ered in Section 5.5.5, with the orders table depending on it, would result in an error message like this:
DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:
DROP TABLE products CASCADE;

91

Data Definition

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run DROP without CASCADE and read the DETAIL output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the pos-
sible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note
According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tab1, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that CASCADE is needed to succeed.

For a user-defined function or procedure whose body is defined as a string literal, PostgreSQL tracks
dependencies associated with the function's externally-visible properties, such as its argument and result
types, but not dependencies that could only be known by examining the function body. As an example,
consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
 'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
 'SELECT note FROM my_colors WHERE color = $1'
 LANGUAGE SQL;

(See Section 36.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the func-
tion, because its argument type would no longer be defined. But PostgreSQL will not consider get_col-
or_note to depend on the my_colors table, and so will not drop the function if the table is dropped.
While there are disadvantages to this approach, there are also benefits. The function is still valid in some
sense if the table is missing, though executing it would cause an error; creating a new table of the same
name would allow the function to work again.

On the other hand, for an SQL-language function or procedure whose body is written in SQL-standard
style, the body is parsed at function definition time and all dependencies recognized by the parser are
stored. Thus, if we write the function above as

CREATE FUNCTION get_color_note (rainbow) RETURNS text
BEGIN ATOMIC
 SELECT note FROM my_colors WHERE color = $1;
END;

then the function's dependency on the my_colors table will be known and enforced by DROP.

92

Chapter 6. Data Manipulation
The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data
When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is inserted one row at a time. You can also insert more than one row in a single
command, but it is not possible to insert something that is not a complete row. Even if you know only
some column values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
 (1, 'Cheese', 9.99),
 (2, 'Bread', 1.99),
 (3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
 SELECT product_no, name, price FROM new_products
 WHERE release_date = 'today';

93

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data
The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:
1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;

6.3. Deleting Data
So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

94

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:
DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows
Sometimes it is useful to obtain data from modified rows while they are being manipulated. The INSERT,
UPDATE, DELETE, and MERGE commands all have an optional RETURNING clause that supports this. Use
of RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see Sec-
tion 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNING *, which selects all columns of the target table in order.

In an INSERT, the default data available to RETURNING is the row as it was inserted. This is not so useful
in trivial inserts, since it would just repeat the data provided by the client. But it can be very handy
when relying on computed default values. For example, when using a serial column to provide unique
identifiers, RETURNING can return the ID assigned to a new row:
CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the default data available to RETURNING is the new content of the modified row. For example:
UPDATE products SET price = price * 1.10
 WHERE price <= 99.99
 RETURNING name, price AS new_price;

In a DELETE, the default data available to RETURNING is the content of the deleted row. For example:
DELETE FROM products
 WHERE obsoletion_date = 'today'
 RETURNING *;

In a MERGE, the default data available to RETURNING is the content of the source row plus the content of
the inserted, updated, or deleted target row. Since it is quite common for the source and target to have
many of the same columns, specifying RETURNING * can lead to a lot of duplicated columns, so it is often
more useful to qualify it so as to return just the source or target row. For example:
MERGE INTO products p USING new_products n ON p.product_no = n.product_no
 WHEN NOT MATCHED THEN INSERT VALUES (n.product_no, n.name, n.price)
 WHEN MATCHED THEN UPDATE SET name = n.name, price = n.price
 RETURNING p.*;

In each of these commands, it is also possible to explicitly return the old and new content of the modified
row. For example:
UPDATE products SET price = price * 1.10
 WHERE price <= 99.99

95

Data Manipulation

 RETURNING name, old.price AS old_price, new.price AS new_price,
 new.price - old.price AS price_change;

In this example, writing new.price is the same as just writing price, but it makes the meaning clearer.

This syntax for returning old and new values is available in INSERT, UPDATE, DELETE, and MERGE com-
mands, but typically old values will be NULL for an INSERT, and new values will be NULL for a DELETE.
However, there are situations where it can still be useful for those commands. For example, in an INSERT
with an ON CONFLICT DO UPDATE clause, the old values will be non-NULL for conflicting rows. Similarly,
if a DELETE is turned into an UPDATE by a rewrite rule, the new values may be non-NULL.

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

96

Chapter 7. Queries
The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview
The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is
[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM table1;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from table1. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if table1 has columns named a, b, and c (and perhaps
others) you can make the following query:
SELECT a, b + c FROM table1;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM table1 is a simple kind of table expression: it reads just one table. In general, table expressions can
be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:
SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:
SELECT random();

7.2. Table Expressions
A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The FROM Clause
The FROM clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.
FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).

97

Queries

The result of the FROM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word ONLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly spec-
ify that descendant tables are included. There is no real reason to use this syntax any more, because
searching descendant tables is now always the default behavior. However, it is supported for compati-
bility with older releases.

7.2.1.1. Joined Tables
A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is
T1 join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join

T1 CROSS JOIN T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FROM T1, T2.

Note
This latter equivalence does not hold exactly when more than two tables appear, because JOIN
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference T1 in the first case but not the second.

Qualified joins
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:
INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

98

Queries

LEFT OUTER JOIN
First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN
First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USING (a, b) produces the join condition ON T1.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JOIN ON produces all columns
from T1 followed by all columns from T2, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from T1, followed by
any remaining columns from T2.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like CROSS JOIN.

Note
USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:

 num | name
-----+------
 1 | a
 2 | b
 3 | c

and t2:

 num | value
-----+-------
 1 | xxx
 3 | yyy

99

Queries

 5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 1 | a | 3 | yyy
 1 | a | 5 | zzz
 2 | b | 1 | xxx
 2 | b | 3 | yyy
 2 | b | 5 | zzz
 3 | c | 1 | xxx
 3 | c | 3 | yyy
 3 | c | 5 | zzz
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 2 | b |
 3 | c | yyy
(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx

100

Queries

 3 | c | 3 | yyy
 | | 5 | zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
 | | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num WHERE t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters
a lot with outer joins.

7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or

FROM table_reference alias

The AS key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id =
 a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

101

Queries

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (column1 [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries
Subqueries specifying a derived table must be enclosed in parentheses. They may be assigned a table
alias name, and optionally column alias names (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM table1) AS alias_name

This example is equivalent to FROM table1 AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
 AS names(first, last)

Again, a table alias is optional. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

According to the SQL standard, a table alias name must be supplied for a subquery. PostgreSQL allows
AS and the alias to be omitted, but writing one is good practice in SQL code that might be ported to
another system.

7.2.1.4. Table Functions
Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
 [, ...])]]

102

Queries

If the WITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST(array_expression [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
 [, ...])]]

If no table_alias is specified, the function name is used as the table name; in the case of a ROWS FROM()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
 WHERE foosubid IN (
 SELECT foosubid
 FROM getfoo(foo.fooid) z
 WHERE z.fooid = foo.fooid
);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record with no OUT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ...]) [, ...])

When not using the ROWS FROM() syntax, the column_definition list replaces the column alias list that
could otherwise be attached to the FROM item; the names in the column definitions serve as column
aliases. When using the ROWS FROM() syntax, a column_definition list can be attached to each member
function separately; or if there is only one member function and no WITH ORDINALITY clause, a colum-
n_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *
 FROM dblink('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
 AS t1(proname name, prosrc text)

103

Queries

 WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
 (
 json_to_recordset('[{"a":40,"b":"foo"},{"a":"100","b":"bar"}]')
 AS (a INTEGER, b TEXT),
 generate_series(1, 3)
) AS x (p, q, s)
ORDER BY p;

 p | q | s
-----+-----+---
 40 | foo | 1
 100 | bar | 2
 | | 3

It joins two functions into a single FROM target. json_to_recordset() is instructed to return two
columns, the first integer and the second text. The result of generate_series() is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries
Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at the top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;

This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices(polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT p1.id, p2.id, v1, v2
FROM polygons p1, polygons p2,
 LATERAL vertices(p1.poly) v1,
 LATERAL vertices(p2.poly) v2

104

Queries

WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

This query could also be written

SELECT p1.id, p2.id, v1, v2
FROM polygons p1 CROSS JOIN LATERAL vertices(p1.poly) v1,
 polygons p2 CROSS JOIN LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The WHERE Clause
The syntax of the WHERE clause is

WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note
The join condition of an inner join can be written either in the WHERE clause or in the JOIN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FROM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

105

Queries

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as fdt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP BY and HAVING Clauses
After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list
 FROM ...
 [WHERE ...]
 GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:
=> SELECT * FROM test1;
 x | y
---+---
 a | 3
 c | 2
 b | 5
 a | 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
 x

 a
 b
 c
(3 rows)

In the second query, we could not have written SELECT * FROM test1 GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:
=> SELECT x, sum(y) FROM test1 GROUP BY x;
 x | sum
---+-----
 a | 4
 b | 5
 c | 2
(3 rows)

106

Queries

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
 FROM products p LEFT JOIN sales s USING (product_id)
 GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GROUP BY list since it is only used in an aggregate expression (sum(...)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
 FROM products p LEFT JOIN sales s USING (product_id)
 WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
 GROUP BY product_id, p.name, p.price, p.cost

107

Queries

 HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP
More complex grouping operations than those described above are possible using the concept of group-
ing sets. The data selected by the FROM and WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;
 brand | size | sales
-------+------+-------
 Foo | L | 10
 Foo | M | 20
 Bar | M | 15
 Bar | L | 5
(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
 (size), ());
 brand | size | sum
-------+------+-----
 Foo | | 30
 Bar | | 20
 | L | 15
 | M | 35
 | | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for group-
ing sets in which those columns do not appear. To distinguish which grouping a particular output row
resulted from, see Table 9.66.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form

ROLLUP (e1, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
 (e1, e2, e3, ...),
 ...
 (e1, e2),
 (e1),
 ()
)

108

Queries

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (e1, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

is equivalent to

GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, c),
 (a),
 (b, c),
 (b),
 (c),
 ()
)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))

is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b),
 (c, d),
 ()
)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b, c),
 (a),
 ()
)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the Cartesian product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c, d), (a, b, c, e),
 (a, b, d), (a, b, e),

109

Queries

 (a, c, d), (a, c, e),
 (a, d), (a, e)
)

When specifying multiple grouping items together, the final set of grouping sets might contain dupli-
cates. For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, b),
 (a, c),
 (a),
 (a),
 (a, c),
 (a),
 ()
)

If these duplicates are undesirable, they can be removed using the DISTINCT clause directly on the GROUP
BY. Therefore:

GROUP BY DISTINCT ROLLUP (a, b), ROLLUP (a, c)

is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, c),
 (a),
 ()
)

This is not the same as using SELECT DISTINCT because the output rows may still contain duplicates.
If any of the ungrouped columns contains NULL, it will be indistinguishable from the NULL used when
that same column is grouped.

Note
The construct (a, b) is normally recognized in expressions as a row constructor. Within the GROUP
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW(a, b).

7.2.5. Window Function Processing
If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having equivalent PARTITION BY
and ORDER BY clauses in their window definitions are guaranteed to see the same ordering of the input
rows, even if the ORDER BY does not uniquely determine the ordering. However, no guarantees are made
about the evaluation of functions having different PARTITION BY or ORDER BY specifications. (In such

110

Queries

cases a sort step is typically required between the passes of window function evaluations, and the sort
is not guaranteed to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not recom-
mended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the
results are sorted in a particular way.

7.3. Select Lists
As shown in the previous section, the table expression in the SELECT command constructs an intermedi-
ate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items
The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:
SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table_name.* notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels
The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:
SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS key word is usually optional, but in some cases where the desired column name matches a Post-
greSQL key word, you must write AS or double-quote the column name in order to avoid ambiguity.
(Appendix C shows which key words require AS to be used as a column label.) For example, FROM is one
such key word, so this does not work:
SELECT a from, b + c AS sum FROM ...

but either of these do:
SELECT a AS from, b + c AS sum FROM ...

111

Queries

SELECT a "from", b + c AS sum FROM ...

For greatest safety against possible future key word additions, it is recommended that you always either
write AS or double-quote the output column name.

Note
The naming of output columns here is different from that done in the FROM clause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select
list is the one that will be passed on.

7.3.3. DISTINCT
After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:
SELECT DISTINCT select_list ...

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list ...

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNION, INTERSECT, EXCEPT)
The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is
query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

where query1 and query2 are queries that can use any of the features discussed up to this point.

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

112

Queries

Set operations can be combined, for example

query1 UNION query2 EXCEPT query3

which is equivalent to

(query1 UNION query2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNION
and EXCEPT associate left-to-right, but INTERSECT binds more tightly than those two operators. Thus

query1 UNION query2 INTERSECT query3

means

query1 UNION (query2 INTERSECT query3)

You can also surround an individual query with parentheses. This is important if the query needs to
use any of the clauses discussed in following sections, such as LIMIT. Without parentheses, you'll get a
syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of its inputs. For example,

SELECT a FROM b UNION SELECT x FROM y LIMIT 10

is accepted, but it means

(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10

not

SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

7.5. Sorting Rows (ORDER BY)
After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
 FROM table_expression
 ORDER BY sort_expression1 [ASC | DESC] [NULLS { FIRST | LAST }]
 [, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal ac-
cording to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to
set the sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller
values first, where “smaller” is defined in terms of the < operator. Similarly, descending order is deter-
mined with the > operator. 1

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:
1 Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

113

Queries

SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM table1 ORDER BY sum + c; -- wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET
LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
 FROM table_expression
 [ORDER BY ...]
 [LIMIT { count | ALL }]
 [OFFSET start]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists
VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must

114

Queries

have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNION (see Section 10.5).

As an example:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

By default, PostgreSQL assigns the names column1, column2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently,
so it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num,letter);
 num | letter
-----+--------
 1 | one
 2 | two
 3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WITH Queries (Common Table Expressions)
WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, DELETE, or MERGE; and the WITH clause itself is attached to a primary statement that can also be
a SELECT, INSERT, UPDATE, DELETE, or MERGE.

7.8.1. SELECT in WITH
The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
 product,
 SUM(quantity) AS product_units,
 SUM(amount) AS product_sales

115

Queries

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used in
top_regions and the output of top_regions is used in the primary SELECT query. This example could
have been written without WITH, but we'd have needed two levels of nested sub-SELECTs. It's a bit easier
to follow this way.

7.8.2. Recursive Queries
The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
 VALUES (1)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the re-
cursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows that du-
plicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note
While RECURSIVE allows queries to be specified recursively, internally such queries are evaluated
iteratively.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
 SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part, p.quantity * pr.quantity
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part

116

Queries

)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

7.8.2.1. Search Order
When computing a tree traversal using a recursive query, you might want to order the results in either
depth-first or breadth-first order. This can be done by computing an ordering column alongside the other
data columns and using that to sort the results at the end. Note that this does not actually control in
which order the query evaluation visits the rows; that is as always in SQL implementation-dependent.
This approach merely provides a convenient way to order the results afterwards.

To create a depth-first order, we compute for each result row an array of rows that we have visited so
far. For example, consider the following query that searches a table tree using a link field:

WITH RECURSIVE search_tree(id, link, data) AS (
 SELECT t.id, t.link, t.data
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

WITH RECURSIVE search_tree(id, link, data, path) AS (
 SELECT t.id, t.link, t.data, ARRAY[t.id]
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data, path || t.id
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;

In the general case where more than one field needs to be used to identify a row, use an array of rows.
For example, if we needed to track fields f1 and f2:

WITH RECURSIVE search_tree(id, link, data, path) AS (
 SELECT t.id, t.link, t.data, ARRAY[ROW(t.f1, t.f2)]
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data, path || ROW(t.f1, t.f2)
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;

Tip
Omit the ROW() syntax in the common case where only one field needs to be tracked. This allows
a simple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

WITH RECURSIVE search_tree(id, link, data, depth) AS (
 SELECT t.id, t.link, t.data, 0

117

Queries

 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data, depth + 1
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY depth;

To get a stable sort, add data columns as secondary sorting columns.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order. How-
ever, this is an implementation detail and it is perhaps unsound to rely on it. The order of the rows
within each level is certainly undefined, so some explicit ordering might be desired in any case.

There is built-in syntax to compute a depth- or breadth-first sort column. For example:

WITH RECURSIVE search_tree(id, link, data) AS (
 SELECT t.id, t.link, t.data
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data
 FROM tree t, search_tree st
 WHERE t.id = st.link
) SEARCH DEPTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

WITH RECURSIVE search_tree(id, link, data) AS (
 SELECT t.id, t.link, t.data
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data
 FROM tree t, search_tree st
 WHERE t.id = st.link
) SEARCH BREADTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

This syntax is internally expanded to something similar to the above hand-written forms. The SEARCH
clause specifies whether depth- or breadth first search is wanted, the list of columns to track for sorting,
and a column name that will contain the result data that can be used for sorting. That column will
implicitly be added to the output rows of the CTE.

7.8.2.2. Cycle Detection
When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider again the following
query that searches a table graph using a link field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 0
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg

118

Queries

 WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the link relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
is_cycle and path to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
 SELECT g.id, g.link, g.data, 0,
 false,
 ARRAY[g.id]
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 g.id = ANY(path),
 path || g.id
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields f1 and f2:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
 SELECT g.id, g.link, g.data, 0,
 false,
 ARRAY[ROW(g.f1, g.f2)]
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 ROW(g.f1, g.f2) = ANY(path),
 path || ROW(g.f1, g.f2)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Tip
Omit the ROW() syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

There is built-in syntax to simplify cycle detection. The above query can also be written like this:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 1
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg
 WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM search_graph;

119

Queries

and it will be internally rewritten to the above form. The CYCLE clause specifies first the list of columns
to track for cycle detection, then a column name that will show whether a cycle has been detected, and
finally the name of another column that will track the path. The cycle and path columns will implicitly
be added to the output rows of the CTE.

Tip
The cycle path column is computed in the same way as the depth-first ordering column show in
the previous section. A query can have both a SEARCH and a CYCLE clause, but a depth-first search
specification and a cycle detection specification would create redundant computations, so it's more
efficient to just use the CYCLE clause and order by the path column. If breadth-first ordering is
wanted, then specifying both SEARCH and CYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:
WITH RECURSIVE t(n) AS (
 SELECT 1
 UNION ALL
 SELECT n+1 FROM t
)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the WITH query's output anyway.

7.8.3. Common Table Expression Materialization
A useful property of WITH queries is that they are normally evaluated only once per execution of the par-
ent query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of functions
with side-effects. However, the other side of this coin is that the optimizer is not able to push restric-
tions from the parent query down into a multiply-referenced WITH query, since that might affect all uses
of the WITH query's output when it should affect only one. The multiply-referenced WITH query will be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

However, if a WITH query is non-recursive and side-effect-free (that is, it is a SELECT containing no volatile
functions) then it can be folded into the parent query, allowing joint optimization of the two query levels.
By default, this happens if the parent query references the WITH query just once, but not if it references
the WITH query more than once. You can override that decision by specifying MATERIALIZED to force
separate calculation of the WITH query, or by specifying NOT MATERIALIZED to force it to be merged into
the parent query. The latter choice risks duplicate computation of the WITH query, but it can still give a
net savings if each usage of the WITH query needs only a small part of the WITH query's full output.

A simple example of these rules is
WITH w AS (
 SELECT * FROM big_table
)
SELECT * FROM w WHERE key = 123;

This WITH query will be folded, producing the same execution plan as
SELECT * FROM big_table WHERE key = 123;

120

Queries

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in
WITH w AS (
 SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;

the WITH query will be materialized, producing a temporary copy of big_table that is then joined with
itself — without benefit of any index. This query will be executed much more efficiently if written as
WITH w AS NOT MATERIALIZED (
 SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;

so that the parent query's restrictions can be applied directly to scans of big_table.

An example where NOT MATERIALIZED could be undesirable is
WITH w AS (
 SELECT key, very_expensive_function(val) as f FROM some_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.f = w2.f;

Here, materialization of the WITH query ensures that very_expensive_function is evaluated only once
per table row, not twice.

The examples above only show WITH being used with SELECT, but it can be attached in the same way
to INSERT, UPDATE, DELETE, or MERGE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

7.8.4. Data-Modifying Statements in WITH
You can use data-modifying statements (INSERT, UPDATE, DELETE, or MERGE) in WITH. This allows you to
perform several different operations in the same query. An example is:
WITH moved_rows AS (
 DELETE FROM products
 WHERE
 "date" >= '2010-10-01' AND
 "date" < '2010-11-01'
 RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-SELECT
within the INSERT. This is necessary because data-modifying statements are only allowed in WITH clauses
that are attached to the top-level statement. However, normal WITH visibility rules apply, so it is possible
to refer to the WITH statement's output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying state-
ment, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in WITH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to in
the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example is:

121

Queries

WITH t AS (
 DELETE FROM foo
)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts(sub_part, part) AS (
 SELECT sub_part, part FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
DELETE FROM parts
 WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. There-
fore, when using data-modifying statements in WITH, the order in which the specified updates actually
happen is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so
they cannot “see” one another's effects on the target tables. This alleviates the effects of the unpre-
dictability of the actual order of row updates, and means that RETURNING data is the only way to commu-
nicate changes between different WITH sub-statements and the main query. An example of this is that in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. There-
fore you should generally avoid trying to modify a single row twice in a single statement. In particular
avoid writing WITH sub-statements that could affect the same rows changed by the main statement or a
sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

122

Chapter 8. Data Types
PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description
bigint int8 signed eight-byte integer
bigserial serial8 autoincrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] varbit [(n)] variable-length bit string
boolean bool logical Boolean (true/false)
box rectangular box on a plane
bytea binary data (“byte array”)
character [(n)] char [(n)] fixed-length character string
character varying [(n)] varchar [(n)] variable-length character string
cidr IPv4 or IPv6 network address
circle circle on a plane
date calendar date (year, month, day)
double precision float, float8 double precision floating-point number

(8 bytes)
inet IPv4 or IPv6 host address
integer int, int4 signed four-byte integer
interval [fields] [(p)] time span
json textual JSON data
jsonb binary JSON data, decomposed
line infinite line on a plane
lseg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr8 MAC (Media Access Control) address (

EUI-64 format)
money currency amount
numeric [(p, s)] decimal [(p,

s)]

exact numeric of selectable precision

path geometric path on a plane
pg_lsn PostgreSQL Log Sequence Number
pg_snapshot user-level transaction ID snapshot
point geometric point on a plane
polygon closed geometric path on a plane
real float4 single precision floating-point number (

4 bytes)

123

Data Types

Name Aliases Description
smallint int2 signed two-byte integer
smallserial serial2 autoincrementing two-byte integer
serial serial4 autoincrementing four-byte integer
text variable-length character string
time [(p)] [without time
zone]

 time of day (no time zone)

time [(p)] with time zone timetz time of day, including time zone
timestamp [(p)] [without time
zone]

 date and time (no time zone)

timestamp [(p)] with time zone timestamptz date and time, including time zone
tsquery text search query
tsvector text search document
txid_snapshot user-level transaction ID snapshot (dep-

recated; see pg_snapshot)
uuid universally unique identifier
xml XML data

Compatibility
The following types (or spellings thereof) are specified by SQL: bigint, bit, bit varying, boolean,
char, character varying, character, varchar, date, double precision, integer, interval,
numeric, decimal, real, smallint, time (with or without time zone), timestamp (with or without
time zone), xml.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for integer -2147483648 to

+2147483647
bigint 8 bytes large-range integer -9223372036854775808 to

+9223372036854775807
decimal variable user-specified precision, ex-

act
up to 131072 digits before
the decimal point; up to
16383 digits after the deci-
mal point

numeric variable user-specified precision, ex-
act

up to 131072 digits before
the decimal point; up to

124

Data Types

Name Storage Size Description Range
16383 digits after the deci-
mal point

real 4 bytes variable-precision, inexact 6 decimal digits precision
double precision 8 bytes variable-precision, inexact 15 decimal digits precision
smallserial 2 bytes small autoincrementing in-

teger
1 to 32767

serial 4 bytes autoincrementing integer 1 to 2147483647
bigserial 8 bytes large autoincrementing in-

teger
1 to 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types
The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers
The type numeric can store numbers with a very large number of digits. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. Calculations with numer-
ic values yield exact results where possible, e.g., addition, subtraction, multiplication. However, calcu-
lations on numeric values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC(precision, scale)

The precision must be positive, while the scale may be positive or negative (see below). Alternatively:

NUMERIC(precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates an “unconstrained numeric” column in which numeric values of
any length can be stored, up to the implementation limits. A column of this kind will not coerce input
values to any particular scale, whereas numeric columns with a declared scale will coerce input values
to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find
this a bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

125

Data Types

Note
The maximum precision that can be explicitly specified in a numeric type declaration is 1000. An
unconstrained numeric column is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the
decimal point exceeds the declared precision minus the declared scale, an error is raised. For example,
a column declared as

NUMERIC(3, 1)

will round values to 1 decimal place and can store values between -99.9 and 99.9, inclusive.

Beginning in PostgreSQL 15, it is allowed to declare a numeric column with a negative scale. Then values
will be rounded to the left of the decimal point. The precision still represents the maximum number of
non-rounded digits. Thus, a column declared as

NUMERIC(2, -3)

will round values to the nearest thousand and can store values between -99000 and 99000, inclusive.
It is also allowed to declare a scale larger than the declared precision. Such a column can only hold
fractional values, and it requires the number of zero digits just to the right of the decimal point to be at
least the declared scale minus the declared precision. For example, a column declared as

NUMERIC(3, 5)

will round values to 5 decimal places and can store values between -0.00999 and 0.00999, inclusive.

Note
PostgreSQL permits the scale in a numeric type declaration to be any value in the range -1000
to 1000. However, the SQL standard requires the scale to be in the range 0 to precision. Using
scales outside that range may not be portable to other database systems.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar(n) than to char(n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type has several special values:

Infinity
-Infinity
NaN

These are adapted from the IEEE 754 standard, and represent “infinity”, “negative infinity”, and “not-a-
number”, respectively. When writing these values as constants in an SQL command, you must put quotes
around them, for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized
in a case-insensitive manner. The infinity values can alternatively be spelled inf and -inf.

The infinity values behave as per mathematical expectations. For example, Infinity plus any finite
value equals Infinity, as does Infinity plus Infinity; but Infinity minus Infinity yields NaN (not
a number), because it has no well-defined interpretation. Note that an infinity can only be stored in an
unconstrained numeric column, because it notionally exceeds any finite precision limit.

The NaN (not a number) value is used to represent undefined calculational results. In general, any oper-
ation with a NaN input yields another NaN. The only exception is when the operation's other inputs are
such that the same output would be obtained if the NaN were to be replaced by any finite or infinite

126

Data Types

numeric value; then, that output value is used for NaN too. (An example of this principle is that NaN raised
to the zero power yields one.)

Note
In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:
SELECT x,
 round(x::numeric) AS num_round,
 round(x::double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
 x | num_round | dbl_round
------+-----------+-----------
 -3.5 | -4 | -4
 -2.5 | -3 | -2
 -1.5 | -2 | -2
 -0.5 | -1 | -0
 0.5 | 1 | 0
 1.5 | 2 | 2
 2.5 | 3 | 2
 3.5 | 4 | 4
(8 rows)

8.1.3. Floating-Point Types
The data types real and double precision are inexact, variable-precision numeric types. On all current-
ly supported platforms, these types are implementations of IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor, op-
erating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:
• If you require exact storage and calculations (such as for monetary amounts), use the numeric type

instead.
• If you want to do complicated calculations with these types for anything important, especially if you

rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implemen-
tation carefully.

• Comparing two floating-point values for equality might not always work as expected.

On all currently supported platforms, the real type has a range of around 1E-37 to 1E+37 with a preci-
sion of at least 6 decimal digits. The double precision type has a range of around 1E-307 to 1E+308
with a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two

127

Data Types

representable values, in order to avoid a widespread bug where input routines do not properly respect
the round-to-nearest-even rule.) This value will use at most 17 significant decimal digits for float8
values, and at most 9 digits for float4 values.

Note
This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of PostgreSQL, and to allow the output pre-
cision to be reduced, the extra_float_digits parameter can be used to select rounded decimal output
instead. Setting a value of 0 restores the previous default of rounding the value to 6 (for float4) or 15
(for float8) significant decimal digits. Setting a negative value reduces the number of digits further;
for example -2 would round output to 4 or 13 digits respectively.

Any value of extra_float_digits greater than 0 selects the shortest-precise format.

Note
Applications that wanted precise values have historically had to set extra_float_digits to 3 to obtain
them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several special values:
Infinity
-Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. When writing these values as constants in an SQL command, you must put quotes around them,
for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized in a case-
insensitive manner. The infinity values can alternatively be spelled inf and -inf.

Note
IEEE 754 specifies that NaN should not compare equal to any other floating-point value (includ-
ing NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Post-
greSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations float and float(p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float(1) to float(24) as selecting the real type, while float(25) to float(53) select double pre-
cision. Values of p outside the allowed range draw an error. float with no precision specified is taken
to mean double precision.

8.1.4. Serial Types

Note
This section describes a PostgreSQL-specific way to create an autoincrementing column. Another
way is to use the SQL-standard identity column feature, described at Section 5.3.

The data types smallserial, serial and bigserial are not true types, but merely a notational conve-
nience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported by
some other databases). In the current implementation, specifying:

128

Data Types

CREATE TABLE tablename (
 colname SERIAL
);

is equivalent to specifying:
CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (
 colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')
);
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note
Because smallserial, serial and bigserial are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval() in Section 9.17 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial should
be used if you anticipate the use of more than 231 identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types
The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc_monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and float-
ing-point literals, as well as typical currency formatting, such as '$1,000.00'. Output is generally in
the latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range
money 8 bytes currency amount -92233720368547758.08 to

+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of lc_monetary. To avoid problems, before restoring a dump into a new
database make sure lc_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real and
double precision data types can be done by casting to numeric first, for example:

129

Data Types

SELECT '12.34'::float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could poten-
tially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a
money value is divided by another money value, the result is double precision (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types
Table 8.4. Character Types

Name Description
character varying(n), varchar(n) variable-length with limit
character(n), char(n), bpchar(n) fixed-length, blank-padded
bpchar variable unlimited length, blank-trimmed
text variable unlimited length

Table 8.4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character(n), where n is a pos-
itive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt to
store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) However, if one explicitly casts a value to character vary-
ing(n) or character(n), then an over-length value will be truncated to n characters without raising an
error. (This too is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of type character will be space-padded; values of type character varying will simply
store the shorter string.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the text
type is not in the SQL standard, several other SQL database management systems have it as well. text
is PostgreSQL's native string data type, in that most built-in functions operating on strings are declared
to take or return text not character varying. For many purposes, character varying acts as though
it were a domain over text.

The type name varchar is an alias for character varying, while bpchar (with length specifier) and
char are aliases for character. The varchar and char aliases are defined in the SQL standard; bpchar
is a PostgreSQL extension.

If specified, the length n must be greater than zero and cannot exceed 10,485,760. If character varying
(or varchar) is used without length specifier, the type accepts strings of any length. If bpchar lacks a
length specifier, it also accepts strings of any length, but trailing spaces are semantically insignificant.
If character (or char) lacks a specifier, it is equivalent to character(1).

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregard-
ed when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a

130

Data Types

\n'::CHAR(2) returns true, even though C locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when using
pattern matching, that is LIKE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the charac-
ter with code zero (sometimes called NUL) cannot be stored. For more information refer to Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use text
or character varying without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character(n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character(n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for informa-
tion about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES ('ok');
SELECT a, char_length(a) FROM test1; -- 1

 a | char_length
------+-------------
 ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES ('ok');
INSERT INTO test2 VALUES ('good ');
INSERT INTO test2 VALUES ('too long');
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

 b | char_length
-------+-------------
 ok | 2
 good | 5
 too l | 5

1 The char_length function is discussed in Section 9.4.

131

Data Types

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. These are not
intended for general-purpose use, only for use in the internal system catalogs. The name type is used
to store identifiers. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a future
release. The type "char" (note the quotes) is different from char(1) in that it only uses one byte of
storage, and therefore can store only a single ASCII character. It is used in the system catalogs as a
simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
bytea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the config-
uration parameter bytea_output; the default is hex. (Note that the hex format was introduced in Post-
greSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The input
format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format
The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:

SET bytea_output = 'hex';

SELECT '\xDEADBEEF'::bytea;
 bytea

132

Data Types

 \xdeadbeef

8.4.2. bytea Escape Format
The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet
Value

Description Escaped Input
Representation

Example Hex Representa-
tion

0 zero octet '\000' '\000'::bytea \x00

39 single quote '''' or '\047' ''''::bytea \x27

92 backslash '\\' or '\134' '\\'::bytea \x5c

0 to 31 and 127 to
255

“non-printable”
octets

'\xxx' (octal val-
ue)

'\001'::bytea \x01

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in an SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just
one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124'::bytea;
 bytea

 abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

92 backslash \\ '\134'::bytea \\

133

Data Types

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

0 to 31 and 127 to
255

“non-printable”
octets

\xxx (octal value) '\001'::bytea \001

32 to 126 “printable” octets client character
set representation

'\176'::bytea ~

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size Description Low Value High Value Resolution
timestamp
[(p)]
[without
time zone]

8 bytes both date and
time (no time
zone)

4713 BC 294276 AD 1 microsecond

timestamp
[(p)] with
time zone

8 bytes both date and
time, with time
zone

4713 BC 294276 AD 1 microsecond

date 4 bytes date (no time of
day)

4713 BC 5874897 AD 1 day

time [(p)]
[without
time zone]

8 bytes time of day (no
date)

00:00:00 24:00:00 1 microsecond

time [(p)]
with time
zone

12 bytes time of day (no
date), with time
zone

00:00:00+1559 24:00:00-1559 1 microsecond

interval [
fields] [(
p)]

16 bytes time interval -178000000
years

178000000
years

1 microsecond

Note
The SQL standard requires that writing just timestamp be equivalent to timestamp without time
zone, and PostgreSQL honors that behavior. timestamptz is accepted as an abbreviation for time-
stamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

134

Data Types

MONTH
DAY
HOUR
MINUTE
SECOND
YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision applies
only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp without
time zone, and timestamp with time zone should provide a complete range of date/time functionality
required by any application.

8.5.1. Date/Time Input
Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6. If no
precision is specified in a constant specification, it defaults to the precision of the literal value (but not
more than 6 digits).

8.5.1.1. Dates
Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

Example Description
1999-01-08 ISO 8601; January 8 in any mode (recommended format)
January 8, 1999 unambiguous in any datestyle input mode
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode; Feb-

ruary 3, 2001 in YMD mode
1999-Jan-08 January 8 in any mode
Jan-08-1999 January 8 in any mode

135

Data Types

Example Description
08-Jan-1999 January 8 in any mode
99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year
J2451187 Julian date
January 8, 99 BC year 99 BC

8.5.1.2. Times
The time-of-day types are time [(p)] without time zone and time [(p)] with time zone. time
alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11
and Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone
offset is recorded in the time with time zone value and is output as stored; it is not adjusted to the
active time zone.

Table 8.11. Time Input

Example Description
04:05:06.789 ISO 8601
04:05:06 ISO 8601
04:05 ISO 8601
040506 ISO 8601
04:05 AM same as 04:05; AM does not affect val-

ue
04:05 PM same as 16:05; input hour must be <=

12
04:05:06.789-8 ISO 8601, with time zone as UTC offset
04:05:06-08:00 ISO 8601, with time zone as UTC offset
04:05-08:00 ISO 8601, with time zone as UTC offset
040506-08 ISO 8601, with time zone as UTC offset
040506+0730 ISO 8601, with fractional-hour time

zone as UTC offset
040506+07:30:00 UTC offset specified to seconds (not al-

lowed in ISO 8601)
04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York time zone specified by full name

Table 8.12. Time Zone Input

Example Description
PST Abbreviation (for Pacific Standard Time)

136

Data Types

Example Description
America/New_York Full time zone name
PST8PDT POSIX-style time zone specification
-8:00:00 UTC offset for PST
-8:00 UTC offset for PST (ISO 8601 extended format)
-800 UTC offset for PST (ISO 8601 basic format)
-8 UTC offset for PST (ISO 8601 basic format)
zulu Military abbreviation for UTC
z Short form of zulu (also in ISO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps
Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time zone literals
by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according to the
standard,

TIMESTAMP '2004-10-19 10:23:54'

is a timestamp without time zone, while

TIMESTAMP '2004-10-19 10:23:54+02'

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone. To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

In a value that has been determined to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input string, and is not adjusted for time zone.

For timestamp with time zone values, an input string that includes an explicit time zone will be
converted to UTC (Universal Coordinated Time) using the appropriate offset for that time zone. If no
time zone is stated in the input string, then it is assumed to be in the time zone indicated by the system's
TimeZone parameter, and is converted to UTC using the offset for the timezone zone. In either case,
the value is stored internally as UTC, and the originally stated or assumed time zone is not retained.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.4).

137

Data Types

Conversions between timestamp without time zone and timestamp with time zone normally assume
that the timestamp without time zone value should be taken or given as timezone local time. A different
time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values
PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13.
The values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in
SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description
epoch date, timestamp 1970-01-01 00:00:00+00 (Unix

system time zero)
infinity date, timestamp, interval later than all other time stamps
-infinity date, timestamp, interval earlier than all other time

stamps
now date, time, timestamp current transaction's start time
today date, timestamp midnight (00:00) today
tomorrow date, timestamp midnight (00:00) tomorrow
yesterday date, timestamp midnight (00:00) yesterday
allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the cor-
responding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, LOCALTIMESTAMP.
(See Section 9.9.5.) Note that these are SQL functions and are not recognized in data input strings.

Caution
While the input strings now, today, tomorrow, and yesterday are fine to use in interactive SQL
commands, they can have surprising behavior when the command is saved to be executed later, for
example in prepared statements, views, and function definitions. The string can be converted to a
specific time value that continues to be used long after it becomes stale. Use one of the SQL func-
tions instead in such contexts. For example, CURRENT_DATE + 1 is safer than 'tomorrow'::date.

8.5.2. Date/Time Output
The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the date and time types is generally only
the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example
ISO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

Postgres original style Wed Dec 17 07:37:16 1997 PST

138

Data Types

Style Specification Description Example
German regional style 17.12.1997 07:37:16.00 PST

Note
ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation
of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

datestyle Setting Input Ordering Example Output
SQL, DMY day/month/year 17/12/1997 15:37:16.00 CET

SQL, MDY month/day/year 12/17/1997 07:37:16.00 PST

Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number of
hours, else as hh:mm if it is an integral number of minutes, else as hh:mm:ss. (The third case is not possible
with any modern time zone standard, but it can appear when working with timestamps that predate the
adoption of standardized time zones.) In the other date styles, the time zone is shown as an alphabetic
abbreviation if one is in common use in the current zone. Otherwise it appears as a signed numeric offset
in ISO 8601 basic format (hh or hhmm). The alphabetic abbreviations shown in these styles are taken from
the IANA time zone database entry currently selected by the TimeZone run-time parameter; they are
not affected by the timezone_abbreviations setting.

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format date/
time output.

8.5.3. Time Zones
Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:
• Although the date type cannot have an associated time zone, the time type can. Time zones in the

real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported

139

https://datatracker.ietf.org/doc/html/rfc3339

Data Types

by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:
• A full time zone name, for example America/New_York. The recognized time zone names are listed

in the pg_timezone_names view (see Section 53.34). PostgreSQL uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

• A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see Sec-
tion 53.33). You cannot set the configuration parameters TimeZone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

• In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications, as described in Section B.5. This option is not normally preferable to using a named
time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Standard
Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

Note
The sign in POSIX-style time zone specifications has the opposite meaning of the sign in ISO-8601
datetime values. For example, the POSIX time zone for 2014-06-04 12:00+04 would be UTC-4.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the
same as local civil time on that date.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from con-
figuration files stored under .../share/timezone/ and .../share/timezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresql.conf, or in any of the other
standard ways described in Chapter 19. There are also some special ways to set it:
• The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling

of SET TIMEZONE TO with a more SQL-spec-compatible syntax.
• The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the

server upon connection.

8.5.4. Interval Input
interval values can be written using the following verbose syntax:
[@] quantity unit [quantity unit...] [direction]

140

Data Types

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute,
hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units;
direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are
implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for
interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of
years and months can be specified with a dash; for example '200-10' is read the same as '200 years
10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:
P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning
Y Years
M Months (in the date part)
W Weeks
D Days
H Hours
M Minutes (in the time part)
S Seconds

In the alternative format:
P [years-months-days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04'
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that the
hour/minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard
then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise
the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an
explicit sign to each field if any field is negative.

Internally, interval values are stored as three integral fields: months, days, and microseconds. These
fields are kept separate because the number of days in a month varies, while a day can have 23 or 25

141

Data Types

hours if a daylight savings time transition is involved. An interval input string that uses other units is
normalized into this format, and then reconstructed in a standardized way for output, for example:

SELECT '2 years 15 months 100 weeks 99 hours 123456789 milliseconds'::interval;
 interval

 3 years 3 mons 700 days 133:17:36.789

Here weeks, which are understood as “7 days”, have been kept separate, while the smaller and larger
time units were combined and normalized.

Input field values can have fractional parts, for example '1.5 weeks' or '01:02:03.45'. However,
because interval internally stores only integral fields, fractional values must be converted into smaller
units. Fractional parts of units greater than months are rounded to be an integer number of months,
e.g. '1.5 years' becomes '1 year 6 mons'. Fractional parts of weeks and days are computed to be an
integer number of days and microseconds, assuming 30 days per month and 24 hours per day, e.g., '1.75
months' becomes 1 mon 22 days 12:00:00. Only seconds will ever be shown as fractional on output.

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

Example Description
1-2 SQL standard format: 1 year 2 months
3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6

seconds
1 year 2 months 3 days 4 hours 5 minutes 6
seconds

Traditional Postgres format: 1 year 2 months 3
days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same mean-
ing as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

8.5.5. Interval Output
As previously explained, PostgreSQL stores interval values as months, days, and microseconds. For
output, the months field is converted to years and months by dividing by 12. The days field is shown as-
is. The microseconds field is converted to hours, minutes, seconds, and fractional seconds. Thus months,
minutes, and seconds will never be shown as exceeding the ranges 0–11, 0–59, and 0–59 respectively,
while the displayed years, days, and hours fields can be quite large. (The justify_days and justi-
fy_hours functions can be used if it is desirable to transpose large days or hours values into the next
higher field.)

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the postgres
format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

142

Data Types

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval Day-Time Interval Mixed Interval
sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06
postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days

-04:05:06
postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins

6 secs
@ 1 year 2 mons -3 days
4 hours 5 mins 6 secs
ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type
PostgreSQL provides the standard SQL type boolean; see Table 8.19. The boolean type can have several
states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
boolean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type boolean accepts these string representations for the “true” state:

true
yes
on
1

and these representations for the “false” state:

false
no
off
0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type boolean always emits either t or f, as shown in Example 8.2.

Example 8.2. Using the boolean Type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, 'sic est');
INSERT INTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;
 a | b
---+---------
 t | sic est
 f | non est

SELECT * FROM test1 WHERE a;
 a | b
---+---------

143

Data Types

 t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example 'yes'::boolean.

Note that the parser automatically understands that TRUE and FALSE are of type boolean, but this is not
so for NULL because that can have any type. So in some contexts you might have to cast NULL to boolean
explicitly, for example NULL::boolean. Conversely, the cast can be omitted from a string-literal Boolean
value in contexts where the parser can deduce that the literal must be of type boolean.

8.7. Enumerated Types
Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiva-
lent to the enum types supported in a number of programming languages. An example of an enum type
might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
 name text,
 current_mood mood
);
INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
 name | current_mood
------+--------------
 Moe | happy
(1 row)

8.7.2. Ordering
The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
 name | current_mood
-------+--------------
 Moe | happy
 Curly | ok
(2 rows)

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;
 name | current_mood
-------+--------------
 Curly | ok
 Moe | happy
(2 rows)

SELECT name
FROM person

144

Data Types

WHERE current_mood = (SELECT MIN(current_mood) FROM person);
 name

 Larry
(1 row)

8.7.3. Type Safety
Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:
CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (
 num_weeks integer,
 happiness happiness
);
INSERT INTO holidays(num_weeks,happiness) VALUES (4, 'happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (6, 'very happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays(num_weeks,happiness) VALUES (2, 'sad');
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:
SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood::text = holidays.happiness::text;
 name | num_weeks
------+-----------
 Moe | 4
(1 row)

8.7.4. Implementation Details
Enum labels are case sensitive, so 'happy' is not the same as 'HAPPY'. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be
removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types
Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL.

Table 8.20. Geometric Types

Name Storage Size Description Representation
point 16 bytes Point on a plane (x,y)

145

Data Types

Name Storage Size Description Representation
line 24 bytes Infinite line {A,B,C}
lseg 32 bytes Finite line segment [(x1,y1),(x2,y2)]
box 32 bytes Rectangular box (x1,y1),(x2,y2)
path 16+16n bytes Closed path (similar to polygon) ((x1,y1),...)
path 16+16n bytes Open path [(x1,y1),...]
polygon 40+16n bytes Polygon (similar to closed path) ((x1,y1),...)
circle 24 bytes Circle <(x,y),r> (center

point and radius)

In all these types, the individual coordinates are stored as double precision (float8) numbers.

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points
Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x , y)
 x , y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines
Lines are represented by the linear equation Ax + By + C = 0, where A and B are not both zero. Values
of type line are input and output in the following form:

{ A, B, C }

Alternatively, any of the following forms can be used for input:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are two different points on the line.

8.8.3. Line Segments
Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
lseg are specified using any of the following syntaxes:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

146

Data Types

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths
Paths are represented by lists of connected points. Paths can be open, where the first and last points in
the list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , ... , (xn , yn)]
((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons
Polygons are represented by lists of points (the vertices of the polygon). Polygons are very similar to
closed paths; the essential semantic difference is that a polygon is considered to include the area within
it, while a path is not.

An important implementation difference between polygons and paths is that the stored representation
of a polygon includes its smallest bounding box. This speeds up certain search operations, although
computing the bounding box adds overhead while constructing new polygons.

Values of type polygon are specified using any of the following syntaxes:

((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles
Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x , y) , r >
((x , y) , r)
 (x , y) , r

147

Data Types

 x , y , r

where (x,y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types
PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description
cidr 7 or 19 bytes IPv4 and IPv6 networks
inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses
macaddr8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet
The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the number
of bits in the netmask. If the /y portion is omitted, the netmask is taken to be 32 for IPv4 or 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr
The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network's lowest address represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table 8.22. cidr Type Input Examples

cidr Input cidr Output abbrev(cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

148

Data Types

cidr Input cidr Output abbrev(cidr)

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16
10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001:4f8:3:ba:2e0:81f-
f:fe22:d1f1/128

2001:4f8:3:ba:2e0:81f-
f:fe22:d1f1/128

2001:4f8:3:ba:2e0:81f-
f:fe22:d1f1/128

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120
::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. inet vs. cidr
The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for inet
but not for cidr.

Tip
If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr
The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03'
'08-00-2b-01-02-03'
'08002b:010203'
'08002b-010203'
'0800.2b01.0203'
'0800-2b01-0203'
'08002b010203'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f. Output is always in the first of the forms shown.

IEEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as used with bit-reversed, MSB-first notation,
so that 08-00-2b-01-02-03 = 10:00:D4:80:40:C0. This convention is widely ignored nowadays, and it is
relevant only for obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for
bit reversal; all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddr8
The macaddr8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given

149

Data Types

in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE,
respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after
the conversion from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally
speaking, any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated
consistently by one of ':', '-' or '.', is accepted. The number of hex digits must be either 16 (8 bytes)
or 12 (6 bytes). Leading and trailing whitespace is ignored. The following are examples of input formats
that are accepted:

'08:00:2b:01:02:03:04:05'
'08-00-2b-01-02-03-04-05'
'08002b:0102030405'
'08002b-0102030405'
'0800.2b01.0203.0405'
'0800-2b01-0203-0405'
'08002b01:02030405'
'08002b0102030405'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f. Output is always in the first of the forms shown.

The last six input formats shown above are not part of any standard.

To convert a traditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr8_set7bit as shown:

SELECT macaddr8_set7bit('08:00:2b:01:02:03');

 macaddr8_set7bit

 0a:00:2b:ff:fe:01:02:03
(1 row)

8.10. Bit String Types
Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit(n) and bit varying(n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit(1), while bit varying without a length
specification means unlimited length.

Note
If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B'00');
INSERT INTO test VALUES (B'10', B'101');

150

Data Types

ERROR: bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B'10'::bit(3), B'101');
SELECT * FROM test;

 a | b
-----+-----
 101 | 00
 100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types
PostgreSQL provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match a query.
The tsvector type represents a document in a form optimized for text search; the tsquery type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector
A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to merge
different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination are
done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 tsvector
--
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ' contains spaces$$::tsvector;
 tsvector

 ' ' 'contains' 'lexeme' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
 tsvector
--
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
 tsvector

 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set
to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

151

Data Types

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
 tsvector

 'a':1A 'cat':5 'fat':2B,4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the tsvector type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT 'The Fat Rats'::tsvector;
 tsvector

 'Fat' 'Rats' 'The'

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn't care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
 to_tsvector

 'fat':2 'rat':3

Again, see Chapter 12 for more detail.

8.11.2. tsquery
A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).
There is also a variant <N> of the FOLLOWED BY operator, where N is an integer constant that specifies
the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <-> (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the least
tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
 tsquery

 'fat' & 'rat'

SELECT 'fat & (rat | cat)'::tsquery;
 tsquery

 'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
 tsquery

 'fat' & 'rat' & !'cat'

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them
to match only tsvector lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
 tsquery

152

Data Types

 'fat':AB & 'cat'

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
 tsquery

 'super':*

This query will match any word in a tsvector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type. The
to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
 to_tsquery

 'fat':AB & 'cat'

Note that to_tsquery will process prefixes in the same way as other words, which means this comparison
returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
 ?column?

 t

because postgres gets stemmed to postgr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
 to_tsvector | to_tsquery
---------------+------------
 'postgradu':1 | 'postgr':*

which will match the stemmed form of postgraduate.

8.12. UUID Type
The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 9562, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using
the same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single database.

RFC 9562 defines 8 different UUID versions. Each version has specific requirements for generating new
UUID values, and each version provides distinct benefits and drawbacks. PostgreSQL provides native
support for generating UUIDs using the UUIDv4 and UUIDv7 algorithms. Alternatively, UUID values
can be generated outside of the database using any algorithm. The data type uuid can be used to store
any UUID, regardless of the origin and the UUID version.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hy-
phens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12
digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four
digits. Examples are:

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}

153

https://datatracker.ietf.org/doc/html/rfc9562

Data Types

a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380a11}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

8.13. XML Type
The xml data type can be used to store XML data. Its advantage over storing XML data in a text field
is that it checks the input values for well-formedness, and there are support functions to perform type-
safe operations on it; see Section 9.15. Use of this data type requires the installation to have been built
with configure --with-libxml.

The xml type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by reference to the more permissive “document node” of the XQuery and
XPath data model. Roughly, this means that content fragments can have more than one top-level element
or character node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular
xml value is a full document or only a content fragment.

Limits and compatibility notes for the xml data type can be found in Section D.3.

8.13.1. Creating XML Values
To produce a value of type xml from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...</
chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml

can also be used.

The xml type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xml, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type [[NO] INDENT])

type can be character, character varying, or text (or an alias for one of those). Again, according to
the SQL standard, this is the only way to convert between type xml and character types, but PostgreSQL
also allows you to simply cast the value.

The INDENT option causes the result to be pretty-printed, while NO INDENT (which is the default) just
emits the original input string. Casting to a character type likewise produces the original string.

When a character string value is cast to or from type xml without going through XMLPARSE or XM-
LSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML option”
session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax

154

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling
Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results
to the client (which is the normal mode), PostgreSQL converts all character data passed between the
client and the server and vice versa to the character encoding of the respective end; see Section 23.3.
This includes string representations of XML values, such as in the above examples. This would ordinarily
mean that encoding declarations contained in XML data can become invalid as the character data is
converted to other encodings while traveling between client and server, because the embedded encoding
declaration is not changed. To cope with this behavior, encoding declarations contained in character
strings presented for input to the xml type are ignored, and content is assumed to be in the current
server encoding. Consequently, for correct processing, character strings of XML data must be sent
from the client in the current client encoding. It is the responsibility of the client to either convert
documents to the current client encoding before sending them to the server, or to adjust the client
encoding appropriately. On output, values of type xml will not have an encoding declaration, and clients
should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case
it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution
Some XML-related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. This is known to be an issue for xmltable() and xpath() in particular.

8.13.3. Accessing XML Values
The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xml column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xml data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. JSON Types
JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159. Such
data can also be stored as text, but the JSON data types have the advantage of enforcing that each

155

https://datatracker.ietf.org/doc/html/rfc7159

Data Types

stored value is valid according to the JSON rules. There are also assorted JSON-specific functions and
operators available for data stored in these data types; see Section 9.16.

PostgreSQL offers two types for storing JSON data: json and jsonb. To implement efficient query mecha-
nisms for these data types, PostgreSQL also provides the jsonpath data type described in Section 8.14.7.

The json and jsonb data types accept almost identical sets of values as input. The major practical
difference is one of efficiency. The json data type stores an exact copy of the input text, which processing
functions must reparse on each execution; while jsonb data is stored in a decomposed binary format that
makes it slightly slower to input due to added conversion overhead, but significantly faster to process,
since no reparsing is needed. jsonb also supports indexing, which can be a significant advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, jsonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys
are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite special-
ized needs, such as legacy assumptions about ordering of object keys.

RFC 7159 specifies that JSON strings should be encoded in UTF8. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uXXXX. In the in-
put function for the json type, Unicode escapes are allowed regardless of the database encoding, and
are checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input
function for jsonb is stricter: it disallows Unicode escapes for characters that cannot be represented
in the database encoding. The jsonb type also rejects \u0000 (because that cannot be represented in
PostgreSQL's text type), and it insists that any use of Unicode surrogate pairs to designate characters
outside the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are converted to the
equivalent single character for storage; this includes folding surrogate pairs into a single character.

Note
Many of the JSON processing functions described in Section 9.16 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errors just described even if
their input is of type json not jsonb. The fact that the json input function does not make these
checks may be considered a historical artifact, although it does allow for simple storage (without
processing) of JSON Unicode escapes in a database encoding that does not support the represent-
ed characters.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are effec-
tively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some minor
additional constraints on what constitutes valid jsonb data that do not apply to the json type, nor to
JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, jsonb will reject numbers that are outside the range of the PostgreSQL numeric data type,
while json will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, as it is common to repre-
sent JSON's number primitive type as IEEE 754 double precision floating point (which RFC 7159 explicit-
ly anticipates and allows for). When using JSON as an interchange format with such systems, the danger
of losing numeric precision compared to data originally stored by PostgreSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding PostgreSQL types.

156

Data Types

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL Types

JSON primitive type PostgreSQL type Notes
string text \u0000 is disallowed, as are Unicode escapes rep-

resenting characters not available in the database
encoding

number numeric NaN and infinity values are disallowed
boolean boolean Only lowercase true and false spellings are ac-

cepted
null (none) SQL NULL is a different concept

8.14.1. JSON Input and Output Syntax
The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

-- Simple scalar/primitive value
-- Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::json;

-- Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

-- Object containing pairs of keys and values
-- Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
 json

 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
 jsonb
--
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according
to the behavior of the underlying numeric type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
 json | jsonb
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

157

Data Types

For the list of built-in functions and operators available for constructing and processing JSON values,
see Section 9.16.

8.14.2. Designing JSON Documents
Representing data as JSON can be considerably more flexible than the traditional relational data model,
which is compelling in environments where requirements are fluid. It is quite possible for both approach-
es to co-exist and complement each other within the same application. However, even for applications
where maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed
structure. The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully summarize
a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a
row-level lock on the whole row. Consider limiting JSON documents to a manageable size in order to
decrease lock contention among updating transactions. Ideally, JSON documents should each represent
an atomic datum that business rules dictate cannot reasonably be further subdivided into smaller datums
that could be modified independently.

8.14.3. jsonb Containment and Existence
Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

-- The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

-- Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @>
 '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;

-- Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -- yields false

-- A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when doing
a containment match, and duplicate array elements are effectively considered only once.

158

Data Types

As a special exception to the general principle that the structures must match, an array may contain
a primitive value:

-- This array contains the primitive string value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a text value) appears as an object key or array element at the top level of the jsonb
value. These examples return true except as noted:

-- String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-- A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do not
need to be searched linearly.

Tip
Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. As an example, suppose that we have a doc column containing objects at the top level,
with most objects containing tags fields that contain arrays of sub-objects. This query finds entries
in which sub-objects containing both "term":"paris" and "term":"food" appear, while ignoring
any such keys outside the tags array:
SELECT doc->'site_name' FROM websites
 WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

One could accomplish the same thing with, say,
SELECT doc->'site_name' FROM websites
 WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.16.

8.14.4. jsonb Indexing
GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

159

Data Types

The default GIN operator class for jsonb supports queries with the key-exists operators ?, ?| and ?&, the
containment operator @>, and the jsonpath match operators @? and @@. (For details of the semantics that
these operators implement, see Table 9.48.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops does not support the key-exists operators, but it
does support @>, @? and @@. An example of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

{
 "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
 "name": "Angela Barton",
 "is_active": true,
 "company": "Magnafone",
 "address": "178 Howard Place, Gulf, Washington, 702",
 "registered": "2009-11-07T08:53:22 +08:00",
 "latitude": 19.793713,
 "longitude": 86.513373,
 "tags": [
 "enim",
 "aliquip",
 "qui"
]
}

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is created
on this column, queries like the following can make use of the index:

-- Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column jdoc:

-- Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' will be recognized as an application of the indexable
operator ? to the indexed expression jdoc -> 'tags'. (More information on expression indexes can
be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

-- Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';

A simple GIN index on the jdoc column can support this query. But note that such an index will store
copies of every key and value in the jdoc column, whereas the expression index of the previous example
stores only data found under the tags key. While the simple-index approach is far more flexible (since
it supports queries about any key), targeted expression indexes are likely to be smaller and faster to
search than a simple index.

GIN indexes also support the @? and @@ operators, which perform jsonpath matching. Examples are

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @? '$.tags[*] ? (@ == "qui")';

160

Data Types

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ '$.tags[*] == "qui"';

For these operators, a GIN index extracts clauses of the form accessors_chain == constant out of the
jsonpath pattern, and does the index search based on the keys and values mentioned in these clauses.
The accessors chain may include .key, [*], and [index] accessors. The jsonb_ops operator class also
supports .* and .** accessors, but the jsonb_path_ops operator class does not.

Although the jsonb_path_ops operator class supports only queries with the @>, @? and @@ operators,
it has notable performance advantages over the default operator class jsonb_ops. A jsonb_path_ops
index is usually much smaller than a jsonb_ops index over the same data, and the specificity of searches
is better, particularly when queries contain keys that appear frequently in the data. Therefore search
operations typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former cre-
ates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 1 Basically, each jsonb_path_ops index item is a hash of the value and
the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would
be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment query
looking for this structure would result in an extremely specific index search; but there is no way at all
to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create three
index items representing foo, bar, and baz separately; then to do the containment query, it would look
for rows containing all three of these items. While GIN indexes can perform such an AND search fairly
efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops search, especially
if there are a very large number of rows containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}. If a search for documents containing such a structure is
requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is therefore ill-suited
for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. The btree ordering for jsonb datums is seldom of great interest,
but for completeness it is:

Object > Array > Boolean > Number > String > null

Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements

with the exception that (for historical reasons) an empty top level array sorts less than null. Objects
with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL
data type. Strings are compared using the default database collation.

8.14.5. jsonb Subscripting
The jsonb data type supports array-style subscripting expressions to extract and modify elements. Nest-
ed values can be indicated by chaining subscripting expressions, following the same rules as the path

1 For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values within objects.

161

Data Types

argument in the jsonb_set function. If a jsonb value is an array, numeric subscripts start at zero, and
negative integers count backwards from the last element of the array. Slice expressions are not support-
ed. The result of a subscripting expression is always of the jsonb data type.

UPDATE statements may use subscripting in the SET clause to modify jsonb values. Subscript paths must
be traversable for all affected values insofar as they exist. For instance, the path val['a']['b']['c']
can be traversed all the way to c if every val, val['a'], and val['a']['b'] is an object. If any val['a']
or val['a']['b'] is not defined, it will be created as an empty object and filled as necessary. However,
if any val itself or one of the intermediary values is defined as a non-object such as a string, number, or
jsonb null, traversal cannot proceed so an error is raised and the transaction aborted.

An example of subscripting syntax:

-- Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a'];

-- Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)['a']['b']['c'];

-- Extract array element by index
SELECT ('[1, "2", null]'::jsonb)[1];

-- Update object value by key. Note the quotes around '1': the assigned
-- value must be of the jsonb type as well
UPDATE table_name SET jsonb_field['key'] = '1';

-- This will raise an error if any record's jsonb_field['a']['b'] is something
-- other than an object. For example, the value {"a": 1} has a numeric value
-- of the key 'a'.
UPDATE table_name SET jsonb_field['a']['b']['c'] = '1';

-- Filter records using a WHERE clause with subscripting. Since the result of
-- subscripting is jsonb, the value we compare it against must also be jsonb.
-- The double quotes make "value" also a valid jsonb string.
SELECT * FROM table_name WHERE jsonb_field['key'] = '"value"';

jsonb assignment via subscripting handles a few edge cases differently from jsonb_set. When a source
jsonb value is NULL, assignment via subscripting will proceed as if it was an empty JSON value of the
type (object or array) implied by the subscript key:
-- Where jsonb_field was NULL, it is now {"a": 1}
UPDATE table_name SET jsonb_field['a'] = '1';

-- Where jsonb_field was NULL, it is now [1]
UPDATE table_name SET jsonb_field[0] = '1';

If an index is specified for an array containing too few elements, NULL elements will be appended until
the index is reachable and the value can be set.
-- Where jsonb_field was [], it is now [null, null, 2];
-- where jsonb_field was [0], it is now [0, null, 2]
UPDATE table_name SET jsonb_field[2] = '2';

A jsonb value will accept assignments to nonexistent subscript paths as long as the last existing element
to be traversed is an object or array, as implied by the corresponding subscript (the element indicated by
the last subscript in the path is not traversed and may be anything). Nested array and object structures
will be created, and in the former case null-padded, as specified by the subscript path until the assigned
value can be placed.
-- Where jsonb_field was {}, it is now {"a": [{"b": 1}]}
UPDATE table_name SET jsonb_field['a'][0]['b'] = '1';

162

Data Types

-- Where jsonb_field was [], it is now [null, {"a": 1}]
UPDATE table_name SET jsonb_field[1]['a'] = '1';

8.14.6. Transforms
Additional extensions are available that implement transforms for the jsonb type for different procedural
languages.

The extensions for PL/Perl are called jsonb_plperl and jsonb_plperlu. If you use them, jsonb values
are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extension for PL/Python is called jsonb_plpython3u. If you use it, jsonb values are mapped to
Python dictionaries, lists, and scalars, as appropriate.

Of these extensions, jsonb_plperl is considered “trusted”, that is, it can be installed by non-superusers
who have CREATE privilege on the current database. The rest require superuser privilege to install.

8.14.7. jsonpath Type
The jsonpath type implements support for the SQL/JSON path language in PostgreSQL to efficiently
query JSON data. It provides a binary representation of the parsed SQL/JSON path expression that
specifies the items to be retrieved by the path engine from the JSON data for further processing with
the SQL/JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the same time, to
provide a natural way of working with JSON data, SQL/JSON path syntax uses some JavaScript conven-
tions:

• Dot (.) is used for member access.

• Square brackets ([]) are used for array access.

• SQL/JSON arrays are 0-relative, unlike regular SQL arrays that start from 1.

Numeric literals in SQL/JSON path expressions follow JavaScript rules, which are different from both
SQL and JSON in some minor details. For example, SQL/JSON path allows .1 and 1., which are invalid in
JSON. Non-decimal integer literals and underscore separators are supported, for example, 1_000_000,
0x1EEE_FFFF, 0o273, 0b100101. In SQL/JSON path (and in JavaScript, but not in SQL proper), there must
not be an underscore separator directly after the radix prefix.

An SQL/JSON path expression is typically written in an SQL query as an SQL character string literal, so
it must be enclosed in single quotes, and any single quotes desired within the value must be doubled (see
Section 4.1.2.1). Some forms of path expressions require string literals within them. These embedded
string literals follow JavaScript/ECMAScript conventions: they must be surrounded by double quotes,
and backslash escapes may be used within them to represent otherwise-hard-to-type characters. In par-
ticular, the way to write a double quote within an embedded string literal is \", and to write a back-
slash itself, you must write \\. Other special backslash sequences include those recognized in JavaScript
strings: \b, \f, \n, \r, \t, \v for various ASCII control characters, \xNN for a character code written
with only two hex digits, \uNNNN for a Unicode character identified by its 4-hex-digit code point, and
\u{N...} for a Unicode character code point written with 1 to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:

• Path literals of JSON primitive types: Unicode text, numeric, true, false, or null.

• Path variables listed in Table 8.24.

• Accessor operators listed in Table 8.25.

• jsonpath operators and methods listed in Section 9.16.2.3.

• Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

163

Data Types

For details on using jsonpath expressions with SQL/JSON query functions, see Section 9.16.2.

Table 8.24. jsonpath Variables

Variable Description
$ A variable representing the JSON value being queried (the context

item).
$varname A named variable. Its value can be set by the parameter vars of

several JSON processing functions; see Table 9.51 for details.
@ A variable representing the result of path evaluation in filter ex-

pressions.

Table 8.25. jsonpath Accessors

Accessor Operator Description
.key

."$varname"

Member accessor that returns an object member with the specified
key. If the key name matches some named variable starting with $
or does not meet the JavaScript rules for an identifier, it must be
enclosed in double quotes to make it a string literal.

.* Wildcard member accessor that returns the values of all members
located at the top level of the current object.

.** Recursive wildcard member accessor that processes all levels of
the JSON hierarchy of the current object and returns all the mem-
ber values, regardless of their nesting level. This is a PostgreSQL
extension of the SQL/JSON standard.

.**{level}

.**{start_level to end_
level}

Like .**, but selects only the specified levels of the JSON hier-
archy. Nesting levels are specified as integers. Level zero corre-
sponds to the current object. To access the lowest nesting level,
you can use the last keyword. This is a PostgreSQL extension of
the SQL/JSON standard.

[subscript, ...] Array element accessor. subscript can be given in two forms: in-
dex or start_index to end_index . The first form returns a sin-
gle array element by its index. The second form returns an array
slice by the range of indexes, including the elements that corre-
spond to the provided start_index and end_index .

The specified index can be an integer, as well as an expression re-
turning a single numeric value, which is automatically cast to inte-
ger. Index zero corresponds to the first array element. You can al-
so use the last keyword to denote the last array element, which is
useful for handling arrays of unknown length.

[*] Wildcard array element accessor that returns all array elements.

8.15. Arrays
PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
 name text,
 pay_by_quarter integer[],
 schedule text[][]

164

Data Types

);

As shown, an array data type is named by appending square brackets ([]) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee's
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee's
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
 squares integer[3][3]
);

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a
particular element type are all considered to be of the same type, regardless of size or number of dimen-
sions. So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation;
it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

 pay_by_quarter integer ARRAY[4],

Or, if no array size is to be specified:

 pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input
To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ val1 delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the PostgreSQL distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

'{{1,2,3},{4,5,6},{7,8,9}}'

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or low-
er-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"training", "presentation"}}');

165

Data Types

INSERT INTO sal_emp
 VALUES ('Carol',
 '{20000, 25000, 25000, 25000}',
 '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');

The result of the previous two inserts looks like this:
SELECT * FROM sal_emp;
 name | pay_by_quarter | schedule
-------+---------------------------+---
 Bill | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:
INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"meeting"}}');
ERROR: malformed array literal: "{{"meeting", "lunch"}, {"meeting"}}"
DETAIL: Multidimensional arrays must have sub-arrays with matching dimensions.

The ARRAY constructor syntax can also be used:
INSERT INTO sal_emp
 VALUES ('Bill',
 ARRAY[10000, 10000, 10000, 10000],
 ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
 VALUES ('Carol',
 ARRAY[20000, 25000, 25000, 25000],
 ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays
Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:
SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

 name

 Carol
(1 row)

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter

166

Data Types

 10000
 25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing lower-bound:upper-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill's schedule for the first two days of the week:
SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified.
For example, [2] is treated as [1:2], as in this example:
SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting,lunch},{training,presentation}}
(1 row)

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1:2]
[1:1], not [2][1:1].

It is possible to omit the lower-bound and/or upper-bound of a slice specifier; the missing bound is
replaced by the lower or upper limit of the array's subscripts. For example:
SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{lunch},{presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3][1:2] then referencing schedule[3][3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather
than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:
SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';

167

Data Types

 array_dims

 [1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:
SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_upper

 2
(1 row)

array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_length

 2
(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively the
number of rows a call to unnest would yield:
SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

 cardinality

 4
(1 row)

8.15.4. Modifying Arrays
An array value can be replaced completely:
UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
 WHERE name = 'Carol';

or using the ARRAY expression syntax:
UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
 WHERE name = 'Carol';

An array can also be updated at a single element:
UPDATE sal_emp SET pay_by_quarter[4] = 15000
 WHERE name = 'Bill';

or updated in a slice:
UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'
 WHERE name = 'Carol';

The slice syntaxes with omitted lower-bound and/or upper-bound can be used too, but only when up-
dating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];
myarray[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

168

Data Types

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, ||:
SELECT ARRAY[1,2] || ARRAY[3,4];
 ?column?

 {1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
 ?column?

 {{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result
is an array with the same lower bound subscript as the array operand. For example:
SELECT array_dims(1 || '[0:1]={2,3}'::int[]);
 array_dims

 [0:2]
(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
 array_dims

 [1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:
SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
 array_dims

 [1:5]
(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
 array_dims

 [1:5][1:2]
(1 row)

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the N+1-dimensional array's outer dimension. For example:
SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
 array_dims

 [1:3][1:2]
(1 row)

169

Data Types

An array can also be constructed by using the functions array_prepend, array_append, or array_cat.
The first two only support one-dimensional arrays, but array_cat supports multidimensional arrays.
Some examples:
SELECT array_prepend(1, ARRAY[2,3]);
 array_prepend

 {1,2,3}
(1 row)

SELECT array_append(ARRAY[1,2], 3);
 array_append

 {1,2,3}
(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
 array_cat

 {1,2,3,4}
(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
 array_cat

 {{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
 array_cat

 {{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these func-
tions. However, because the concatenation operator is overloaded to serve all three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:
SELECT ARRAY[1, 2] || '{3, 4}'; -- the untyped literal is taken as an array
 ?column?

 {1,2,3,4}

SELECT ARRAY[1, 2] || '7'; -- so is this one
ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated NULL
 ?column?

 {1,2}
(1 row)

SELECT array_append(ARRAY[1, 2], NULL); -- this might have been meant
 array_append

 {1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and
a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type is to
assume it's of the same type as the operator's other input — in this case, integer array. So the concate-
nation operator is presumed to represent array_cat, not array_append. When that's the wrong choice,

170

Data Types

it could be fixed by casting the constant to the array's element type; but explicit use of array_append
might be a preferable solution.

8.15.5. Searching in Arrays
To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:
SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
 pay_by_quarter[2] = 10000 OR
 pay_by_quarter[3] = 10000 OR
 pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.25. The above query could be replaced by:
SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:
SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:
SELECT * FROM
 (SELECT pay_by_quarter,
 generate_subscripts(pay_by_quarter, 1) AS s
 FROM sal_emp) AS foo
 WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9.70.

You can also search an array using the && operator, which checks whether the left operand overlaps
with the right operand. For instance:
SELECT * FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

This and other array operators are further described in Section 9.19. It can be accelerated by an appro-
priate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and array_positions
functions. The former returns the subscript of the first occurrence of a value in an array; the latter
returns an array with the subscripts of all occurrences of the value in the array. For example:
SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], 'mon');
 array_position

 2
(1 row)

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
 array_positions

 {1,4,8}
(1 row)

Tip
Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will
be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

171

Data Types

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is deter-
mined by the typdelim setting for the array's element type. Among the standard data types provided
in the PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a
multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and
delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric
data types it is safe to assume that double quotes will never appear, but for textual data types one should
be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array con-
tents. This decoration consists of square brackets ([]) around each array dimension's lower and upper
bounds, with a colon (:) delimiter character in between. The array dimension decoration is followed by
an equal sign (=). For example:

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;

 e1 | e2
----+----
 1 | 6
(1 row)

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be
entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configu-
ration parameter can be turned off to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual array
element. You must do so if the element value would otherwise confuse the array-value parser. For exam-
ple, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings match-
ing the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element
value, precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to
protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip
The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-lit-
eral syntax when writing array values in SQL commands. In ARRAY, individual element values are
written the same way they would be written when not members of an array.

8.16. Composite Types

172

Data Types

A composite type represents the structure of a row or record; it is essentially just a list of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that simple
types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types
Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
 r double precision,
 i double precision
);

CREATE TYPE inventory_item AS (
 name text,
 supplier_id integer,
 price numeric
);

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
 item inventory_item,
 count integer
);

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS 'SELECT $1.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (
 name text,
 supplier_id integer REFERENCES suppliers,
 price numeric CHECK (price > 0)
);

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (To work around this, create a domain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values
To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(val1 , val2 , ...)'

173

Data Types

An example is:
'("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL, write
no characters at all in its position in the list. For example, this constant specifies a NULL third field:
'("fuzzy dice",42,)'

If you want an empty string rather than NULL, write double quotes:
'("",42,)'

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Sec-
tion 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary to tell which type to convert the constant to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don't have to worry about multiple layers
of quoting. We already used this method above:
ROW('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:
('fuzzy dice', 42, 1.99)
('', 42, NULL)

The ROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types
To access a field of a composite column, one writes a dot and the field name, much like selecting a field
from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:
SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:
SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you'd need to write something
like:
SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name * means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types
Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

174

Data Types

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appear-
ing just after SET, but we do need parentheses when referencing the same column in the expression to
the right of the equal sign.

And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries
There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table's current row. For example, if we had a table inventory_item as shown above, we
could write:

SELECT c FROM inventory_item c;

This query produces a single composite-valued column, so we might get output like:

 c

 ("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as applying
field selection to the composite value of the table's current row. (For efficiency reasons, it's not actually
implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

 name | supplier_id | price
------------+-------------+-------
 fuzzy dice | 42 | 1.99
(1 row)

as if the query were

SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that .* is applied to whenever it's not a simple
table name. For example, if myfunc() is a function returning a composite type with columns a, b, and
c, then these two queries have the same result:

175

Data Types

SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip
PostgreSQL handles column expansion by actually transforming the first form into the second.
So, in this example, myfunc() would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;

Placing the function in a LATERAL FROM item keeps it from being invoked more than once per row.
m.* is still expanded into m.a, m.b, m.c, but now those variables are just references to the output
of the FROM item. (The LATERAL keyword is optional here, but we show it to clarify that the function
is getting x from some_table.)

The composite_value.* syntax results in column expansion of this kind when it appears at the top
level of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE/MERGE, a VALUES clause, or a row
constructor. In all other contexts (including when nested inside one of those constructs), attaching .*
to a composite value does not change the value, since it means “all columns” and so the same composite
value is produced again. For example, if somefunc() accepts a composite-valued argument, these queries
are the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_item is passed to the function as a single composite-valued
argument. Even though .* does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider c in c.* to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without .*, it is not clear whether
c means a table name or a column name, and in fact the column-name interpretation will be preferred
if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.25.6. However, if inventory_item contained a column named c, the
first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT * FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word ROW omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table.field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name(c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

176

Data Types

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn't
need to be directly aware that somefunc isn't a real column of the table.

Tip
Because of this behavior, it's unwise to give a function that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-name
interpretation, unless the syntax of the call required it to be a function call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema.func(compositevalue).

8.16.6. Composite Type Input and Output Syntax
The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:
'(42)'

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In par-
ticular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note
Remember that what you write in an SQL command will first be interpreted as a string literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in
a composite value, you'd need to write:
INSERT ... VALUES ('("\"\\")');

The string-literal processor removes one level of backslashes, so that what arrives at the compos-
ite-value parser looks like ("\"\\"). In turn, the string fed to the text data type's input routine
becomes "\. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get
one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used
to avoid the need to double backslashes.

177

Data Types

Tip
The ROW constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In ROW, individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types
Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp is
the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

Every range type has a corresponding multirange type. A multirange is an ordered list of non-contigu-
ous, non-empty, non-null ranges. Most range operators also work on multiranges, and they have a few
functions of their own.

8.17.1. Built-in Range and Multirange Types
PostgreSQL comes with the following built-in range types:
• int4range — Range of integer, int4multirange — corresponding Multirange
• int8range — Range of bigint, int8multirange — corresponding Multirange
• numrange — Range of numeric, nummultirange — corresponding Multirange
• tsrange — Range of timestamp without time zone, tsmultirange — corresponding Multirange
• tstzrange — Range of timestamp with time zone, tstzmultirange — corresponding Multirange
• daterange — Range of date, datemultirange — corresponding Multirange
In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples
CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
 (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

178

Data Types

See Table 9.58 and Table 9.60 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds
Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “]”, while an exclusive
upper bound is represented by “)”. (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

8.17.4. Infinite (Unbounded) Ranges
The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included in the range, e.g., (,3]. Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound as inclusive
is automatically converted to exclusive, e.g., [,] is converted to (,). You can think of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type's +/-infinity values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example,
with timestamp ranges, [today,infinity) excludes the special timestamp value infinity, while [to-
day,infinity] include it, as does [today,) and [today,].

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respectively.

8.17.5. Range Input/Output
The input for a range value must follow one of the following patterns:
(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range
that contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound
value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value
is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal
strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters
that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string,
write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might
or might not be significant.)

179

Data Types

Note
These rules are very similar to those for writing field values in composite-type literals. See Sec-
tion 8.16.6 for additional commentary.

Examples:
-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

The input for a multirange is curly brackets ({ and }) containing zero or more valid ranges, separated by
commas. Whitespace is permitted around the brackets and commas. This is intended to be reminiscent
of array syntax, although multiranges are much simpler: they have just one dimension and there is no
need to quote their contents. (The bounds of their ranges may be quoted as above however.)

Examples:
SELECT '{}'::int4multirange;
SELECT '{[3,7)}'::int4multirange;
SELECT '{[3,7), [8,9)}'::int4multirange;

8.17.6. Constructing Ranges and Multiranges
Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),
while the three-argument form constructs a range with bounds of the form specified by the third argu-
ment. The third argument must be one of the strings “()”, “(]”, “[)”, or “[]”. For example:
-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted to
-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

Each range type also has a multirange constructor with the same name as the multirange type. The
constructor function takes zero or more arguments which are all ranges of the appropriate type. For
example:
SELECT nummultirange();
SELECT nummultirange(numrange(1.0, 14.0));
SELECT nummultirange(numrange(1.0, 14.0), numrange(20.0, 25.0));

180

Data Types

8.17.7. Discrete Range Types
A discrete range is one whose element type has a well-defined “step”, such as integer or date. In these
types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated as
discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If
a canonicalization function is not specified, then ranges with different formatting will always be treated
as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other
conventions, however.

8.17.8. Defining New Range Types
Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of subtype
float8:
CREATE TYPE floatrange AS RANGE (
 subtype = float8,
 subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

When you define your own range you automatically get a corresponding multirange type.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8),
must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over timestamp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of
an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a sub-
type difference, or subtype_diff, function. (The index will still work without subtype_diff, but it is
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represent-

181

Data Types

ed as a float8 value. In our example above, the function float8mi that underlies the regular float8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, the subtype_diff function should agree with the sort ordering implied by the selected
operator class and collation; that is, its result should be positive whenever its first argument is greater
than its second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
 subtype = time,
 subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing
GiST and SP-GiST indexes can be created for table columns of range types. GiST indexes can be also
created for table columns of multirange types. For instance, to create a GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index on ranges can accelerate queries involving these range operators: =, &&, <@, @>,
<<, >>, -|-, &<, and &>. A GiST index on multiranges can accelerate queries involving the same set of
multirange operators. A GiST index on ranges and GiST index on multiranges can also accelerate queries
involving these cross-type range to multirange and multirange to range operators correspondingly: &&,
<@, @>, <<, >>, -|-, &<, and &>. See Table 9.58 for more information.

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges
While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead,
an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
 during tsrange,
 EXCLUDE USING GIST (during WITH &&)
);

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
 ('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO reservation VALUES
 ('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts

182

Data Types

with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gist
is installed, the following constraint will reject overlapping ranges only if the meeting room numbers
are equal:
CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
 room text,
 during tsrange,
 EXCLUDE USING GIST (room WITH =, during WITH &&)
);

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key value violates exclusion constraint
 "room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00"))
 conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
 ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1

8.18. Domain Types
A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:
CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);
INSERT INTO mytable VALUES(1); -- works
INSERT INTO mytable VALUES(-1); -- fails

When an operator or function of the underlying type is applied to a domain value, the domain is auto-
matically down-cast to the underlying type. Thus, for example, the result of mytable.id - 1 is consid-
ered to be of type integer not posint. We could write (mytable.id - 1)::posint to cast the result
back to posint, causing the domain's constraints to be rechecked. In this case, that would result in an
error if the expression had been applied to an id value of 1. Assigning a value of the underlying type
to a field or variable of the domain type is allowed without writing an explicit cast, but the domain's
constraints will be checked.

For additional information see CREATE DOMAIN.

8.19. Object Identifier Types
Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Type oid represents an object identifier. There are also several alias types for oid, each named reg-
something. Table 8.26 shows an overview.

183

Data Types

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confu-
sion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;

rather than:

SELECT * FROM pg_attribute
 WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table's OID to regclass is handy for symbolic
display of a numeric OID.

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier 564182

regclass pg_class relation name pg_type

regcollation pg_collation collation name "POSIX"

regconfig pg_ts_config text search configura-
tion

english

regdictionary pg_ts_dict text search dictionary simple

regnamespace pg_namespace namespace name pg_catalog

regoper pg_operator operator name +

regoperator pg_operator operator with argument
types

*(integer,integer)
or -(NONE,integer)

regproc pg_proc function name sum

regprocedure pg_proc function with argument
types

sum(int4)

regrole pg_authid role name smithee

regtype pg_type data type name integer

All of the OID alias types for objects that are grouped by namespace accept schema-qualified names,
and will display schema-qualified names on output if the object would not be found in the current search
path without being qualified. For example, myschema.mytable is acceptable input for regclass (if there
is such a table). That value might be output as myschema.mytable, or just mytable, depending on the
current search path. The regproc and regoper alias types will only accept input names that are unique
(not overloaded), so they are of limited use; for most uses regprocedure or regoperator are more
appropriate. For regoperator, unary operators are identified by writing NONE for the unused operand.

The input functions for these types allow whitespace between tokens, and will fold upper-case letters to
lower case, except within double quotes; this is done to make the syntax rules similar to the way object
names are written in SQL. Conversely, the output functions will use double quotes if needed to make
the output be a valid SQL identifier. For example, the OID of a function named Foo (with upper case

184

Data Types

F) taking two integer arguments could be entered as ' "Foo" (int, integer) '::regprocedure.
The output would look like "Foo"(integer,integer). Both the function name and the argument type
names could be schema-qualified, too.

Many built-in PostgreSQL functions accept the OID of a table, or another kind of database object, and
for convenience are declared as taking regclass (or the appropriate OID alias type). This means you do
not have to look up the object's OID by hand, but can just enter its name as a string literal. For example,
the nextval(regclass) function takes a sequence relation's OID, so you could call it like this:
nextval('foo') operates on sequence foo
nextval('FOO') same as above
nextval('"Foo"') operates on sequence Foo
nextval('myschema.foo') operates on myschema.foo
nextval('"myschema".foo') same as above
nextval('foo') searches search path for foo

Note
When you write the argument of such a function as an unadorned literal string, it becomes a
constant of type regclass (or the appropriate type). Since this is really just an OID, it will track the
originally identified object despite later renaming, schema reassignment, etc. This “early binding”
behavior is usually desirable for object references in column defaults and views. But sometimes
you might want “late binding” where the object reference is resolved at run time. To get late-
binding behavior, force the constant to be stored as a text constant instead of regclass:
nextval('foo'::text) foo is looked up at runtime

The to_regclass() function and its siblings can also be used to perform run-time lookups. See
Table 9.76.

Another practical example of use of regclass is to look up the OID of a table listed in the informa-
tion_schema views, which don't supply such OIDs directly. One might for example wish to call the pg_re-
lation_size() function, which requires the table OID. Taking the above rules into account, the correct
way to do that is
SELECT table_schema, table_name,
 pg_relation_size((quote_ident(table_schema) || '.' ||
 quote_ident(table_name))::regclass)
FROM information_schema.tables
WHERE ...

The quote_ident() function will take care of double-quoting the identifiers where needed. The seem-
ingly easier
SELECT pg_relation_size(table_name)
FROM information_schema.tables
WHERE ...

is not recommended, because it will fail for tables that are outside your search path or have names that
require quoting.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval('my_seq'::regclass), PostgreSQL understands that the default expression depends on the
sequence my_seq, so the system will not let the sequence be dropped without first removing the default
expression. The alternative of nextval('my_seq'::text) does not create a dependency. (regrole is an
exception to this property. Constants of this type are not allowed in stored expressions.)

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities. In some

185

Data Types

contexts, a 64-bit variant xid8 is used. Unlike xid values, xid8 values increase strictly monotonically
and cannot be reused in the lifetime of a database cluster. See Section 67.1 for more details.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.6.)

8.20. pg_lsn Type
The pg_lsn data type can be used to store LSN (Log Sequence Number) data which is a pointer to a loca-
tion in the WAL. This type is a representation of XLogRecPtr and an internal system type of PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/
B374D848. The pg_lsn type supports the standard comparison operators, like = and >. Two LSNs can
be subtracted using the - operator; the result is the number of bytes separating those write-ahead log
locations. Also the number of bytes can be added into and subtracted from LSN using the +(pg_lsn,nu-
meric) and -(pg_lsn,numeric) operators, respectively. Note that the calculated LSN should be in the
range of pg_lsn type, i.e., between 0/0 and FFFFFFFF/FFFFFFFF.

8.21. Pseudo-Types
The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-types is useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.27 lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name Description
any Indicates that a function accepts any input data type.
anyelement Indicates that a function accepts any data type (see Sec-

tion 36.2.5).
anyarray Indicates that a function accepts any array data type (see

Section 36.2.5).
anynonarray Indicates that a function accepts any non-array data type (

see Section 36.2.5).
anyenum Indicates that a function accepts any enum data type (see

Section 36.2.5 and Section 8.7).
anyrange Indicates that a function accepts any range data type (see

Section 36.2.5 and Section 8.17).
anymultirange Indicates that a function accepts any multirange data type (

see Section 36.2.5 and Section 8.17).
anycompatible Indicates that a function accepts any data type, with auto-

matic promotion of multiple arguments to a common data
type (see Section 36.2.5).

anycompatiblearray Indicates that a function accepts any array data type, with
automatic promotion of multiple arguments to a common da-
ta type (see Section 36.2.5).

186

Data Types

Name Description
anycompatiblenonarray Indicates that a function accepts any non-array data type,

with automatic promotion of multiple arguments to a com-
mon data type (see Section 36.2.5).

anycompatiblerange Indicates that a function accepts any range data type, with
automatic promotion of multiple arguments to a common da-
ta type (see Section 36.2.5 and Section 8.17).

anycompatiblemultirange Indicates that a function accepts any multirange data type,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 36.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-terminat-
ed C string.

internal Indicates that a function accepts or returns a server-internal
data type.

language_handler A procedural language call handler is declared to return
language_handler .

fdw_handler A foreign-data wrapper handler is declared to return fdw_
handler.

table_am_handler A table access method handler is declared to return table_
am_handler .

index_am_handler An index access method handler is declared to return in-
dex_am_handler .

tsm_handler A tablesample method handler is declared to return tsm_
handler.

record Identifies a function taking or returning an unspecified row
type.

trigger A trigger function is declared to return trigger.
event_trigger An event trigger function is declared to return event_

trigger.

pg_ddl_command Identifies a representation of DDL commands that is avail-
able to event triggers.

void Indicates that a function returns no value.
unknown Identifies a not-yet-resolved type, e.g., of an undecorated

string literal.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo-types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type,
and allow only void and record as a result type (plus trigger or event_trigger when the function
is used as a trigger or event trigger). Some also support polymorphic functions using the polymorphic
pseudo-types, which are shown above and discussed in detail in Section 36.2.5.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

187

Chapter 9. Functions and Operators
PostgreSQL provides a large number of functions and operators for the built-in data types. This chapter
describes most of them, although additional special-purpose functions appear in relevant sections of
the manual. Users can also define their own functions and operators, as described in Part V. The psql
commands \df and \do can be used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function
or operator is like this:

repeat (text, integer) → text

which says that the function repeat takes one text and one integer argument and returns a result of
type text. The right arrow is also used to indicate the result of an example, thus:

repeat('Pg', 4) → PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality is
present in other SQL database management systems, and in many cases this functionality is compatible
and consistent between the various implementations.

9.1. Logical Operators
The usual logical operators are available:

boolean AND boolean → boolean
boolean OR boolean → boolean
NOT boolean → boolean

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe
the following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL

a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without
affecting the result. (However, it is not guaranteed that the left operand is evaluated before the right
operand. See Section 4.2.14 for more information about the order of evaluation of subexpressions.)

9.2. Comparison Functions and Operators
The usual comparison operators are available, as shown in Table 9.1.

188

Functions and Operators

Table 9.1. Comparison Operators

Operator Description

datatype < datatype → boolean Less than

datatype > datatype → boolean Greater than

datatype <= datatype → boolean Less than or equal to

datatype >= datatype → boolean Greater than or equal to

datatype = datatype → boolean Equal

datatype <> datatype → boolean Not equal

datatype != datatype → boolean Not equal

Note
<> is the standard SQL notation for “not equal”. != is an alias, which is converted to <> at a very
early stage of parsing. Hence, it is not possible to implement != and <> operators that do different
things.

These comparison operators are available for all built-in data types that have a natural ordering, includ-
ing numeric, string, and date/time types. In addition, arrays, composite types, and ranges can be com-
pared if their component data types are comparable.

It is usually possible to compare values of related data types as well; for example integer > bigint will
work. Some cases of this sort are implemented directly by “cross-type” comparison operators, but if no
such operator is available, the parser will coerce the less-general type to the more-general type and
apply the latter's comparison operator.

As shown above, all comparison operators are binary operators that return values of type boolean. Thus,
expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a Boolean value
with 3). Use the BETWEEN predicates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

datatype BETWEEN datatype AND datatype → boolean
Between (inclusive of the range endpoints).
2 BETWEEN 1 AND 3 → t
2 BETWEEN 3 AND 1 → f

datatype NOT BETWEEN datatype AND datatype → boolean
Not between (the negation of BETWEEN).
2 NOT BETWEEN 1 AND 3 → f

datatype BETWEEN SYMMETRIC datatype AND datatype → boolean
Between, after sorting the two endpoint values.
2 BETWEEN SYMMETRIC 3 AND 1 → t

datatype NOT BETWEEN SYMMETRIC datatype AND datatype → boolean
Not between, after sorting the two endpoint values.
2 NOT BETWEEN SYMMETRIC 3 AND 1 → f

189

Functions and Operators

Predicate
Description
Example(s)

datatype IS DISTINCT FROM datatype → boolean
Not equal, treating null as a comparable value.
1 IS DISTINCT FROM NULL → t (rather than NULL)
NULL IS DISTINCT FROM NULL → f (rather than NULL)

datatype IS NOT DISTINCT FROM datatype → boolean
Equal, treating null as a comparable value.
1 IS NOT DISTINCT FROM NULL → f (rather than NULL)
NULL IS NOT DISTINCT FROM NULL → t (rather than NULL)

datatype IS NULL → boolean
Test whether value is null.
1.5 IS NULL → f

datatype IS NOT NULL → boolean
Test whether value is not null.
'null' IS NOT NULL → t

datatype ISNULL → boolean
Test whether value is null (nonstandard syntax).

datatype NOTNULL → boolean
Test whether value is not null (nonstandard syntax).

boolean IS TRUE → boolean
Test whether boolean expression yields true.
true IS TRUE → t
NULL::boolean IS TRUE → f (rather than NULL)

boolean IS NOT TRUE → boolean
Test whether boolean expression yields false or unknown.
true IS NOT TRUE → f
NULL::boolean IS NOT TRUE → t (rather than NULL)

boolean IS FALSE → boolean
Test whether boolean expression yields false.
true IS FALSE → f
NULL::boolean IS FALSE → f (rather than NULL)

boolean IS NOT FALSE → boolean
Test whether boolean expression yields true or unknown.
true IS NOT FALSE → t
NULL::boolean IS NOT FALSE → t (rather than NULL)

boolean IS UNKNOWN → boolean
Test whether boolean expression yields unknown.
true IS UNKNOWN → f
NULL::boolean IS UNKNOWN → t (rather than NULL)

boolean IS NOT UNKNOWN → boolean
Test whether boolean expression yields true or false.
true IS NOT UNKNOWN → t
NULL::boolean IS NOT UNKNOWN → f (rather than NULL)

190

Functions and Operators

The BETWEEN predicate simplifies range tests:
a BETWEEN x AND y

is equivalent to
a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. BETWEEN SYMMETRIC is like
BETWEEN except there is no requirement that the argument to the left of AND be less than or equal to the
argument on the right. If it is not, those two arguments are automatically swapped, so that a nonempty
range is always implied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and
therefore will work for any data type(s) that can be compared.

Note
The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as a logical operator.
To resolve this, only a limited set of expression types are allowed as the second argument of a
BETWEEN clause. If you need to write a more complex sub-expression in BETWEEN, write parentheses
around the sub-expression.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the IS [NOT] DISTINCT FROM predicates:
a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are null it
returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is identical to
= for non-null inputs, but it returns true when both inputs are null, and false when only one input is null.
Thus, these predicates effectively act as though null were a normal data value, rather than “unknown”.

To check whether a value is or is not null, use the predicates:
expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, predicates:
expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip
Some applications might expect that expression = NULL returns true if expression evaluates to
the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable
is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

If the expression is row-valued, then IS NULL is true when the row expression itself is null or when all
the row's fields are null, while IS NOT NULL is true when the row expression itself is non-null and all
the row's fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always return
inverse results for row-valued expressions; in particular, a row-valued expression that contains both null
and non-null fields will return false for both tests. For example:
SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

191

Functions and Operators

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

SELECT ROW(table.*) IS NOT NULL FROM table; -- detect all-non-null rows

SELECT NOT(ROW(table.*) IS NOT NULL) FROM TABLE; -- detect at least one null in rows

In some cases, it may be preferable to write row IS DISTINCT FROM NULL or row IS NOT DISTINCT
FROM NULL, which will simply check whether the overall row value is null without any additional tests
on the row fields.

Boolean values can also be tested using the predicates
boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input is
treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effectively the
same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num_nonnulls (VARIADIC "any") → integer
Returns the number of non-null arguments.
num_nonnulls(1, NULL, 2) → 2

num_nulls (VARIADIC "any") → integer
Returns the number of null arguments.
num_nulls(1, NULL, 2) → 1

9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless
otherwise noted, operators shown as accepting numeric_type are available for all the types smallint,
integer, bigint, numeric, real, and double precision. Operators shown as accepting integral_type
are available for the types smallint, integer, and bigint. Except where noted, each form of an operator
returns the same data type as its argument(s). Calls involving multiple argument data types, such as
integer + numeric, are resolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators

Operator
Description
Example(s)

numeric_type + numeric_type → numeric_type
Addition
2 + 3 → 5

+ numeric_type → numeric_type

192

Functions and Operators

Operator
Description
Example(s)
Unary plus (no operation)
+ 3.5 → 3.5

numeric_type - numeric_type → numeric_type
Subtraction
2 - 3 → -1

- numeric_type → numeric_type
Negation
- (-4) → 4

numeric_type * numeric_type → numeric_type
Multiplication
2 * 3 → 6

numeric_type / numeric_type → numeric_type
Division (for integral types, division truncates the result towards zero)
5.0 / 2 → 2.5000000000000000
5 / 2 → 2
(-5) / 2 → -2

numeric_type % numeric_type → numeric_type
Modulo (remainder); available for smallint, integer, bigint, and numeric
5 % 4 → 1

numeric ^ numeric → numeric
double precision ^ double precision → double precision

Exponentiation
2 ^ 3 → 8
Unlike typical mathematical practice, multiple uses of ^ will associate left to right by default:
2 ^ 3 ^ 3 → 512
2 ^ (3 ^ 3) → 134217728

|/ double precision → double precision
Square root
|/ 25.0 → 5

||/ double precision → double precision
Cube root
||/ 64.0 → 4

@ numeric_type → numeric_type
Absolute value
@ -5.0 → 5.0

integral_type & integral_type → integral_type
Bitwise AND
91 & 15 → 11

integral_type | integral_type → integral_type
Bitwise OR
32 | 3 → 35

integral_type # integral_type → integral_type

193

Functions and Operators

Operator
Description
Example(s)
Bitwise exclusive OR
17 # 5 → 20

~ integral_type → integral_type
Bitwise NOT
~1 → -2

integral_type << integer → integral_type
Bitwise shift left
1 << 4 → 16

integral_type >> integer → integral_type
Bitwise shift right
8 >> 2 → 2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple
forms with different argument types. Except where noted, any given form of a function returns the
same data type as its argument(s); cross-type cases are resolved in the same way as explained above
for operators. The functions working with double precision data are mostly implemented on top of
the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on
the host system.

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (numeric_type) → numeric_type
Absolute value
abs(-17.4) → 17.4

cbrt (double precision) → double precision
Cube root
cbrt(64.0) → 4

ceil (numeric) → numeric
ceil (double precision) → double precision

Nearest integer greater than or equal to argument
ceil(42.2) → 43
ceil(-42.8) → -42

ceiling (numeric) → numeric
ceiling (double precision) → double precision

Nearest integer greater than or equal to argument (same as ceil)
ceiling(95.3) → 96

degrees (double precision) → double precision
Converts radians to degrees
degrees(0.5) → 28.64788975654116

div (y numeric, x numeric) → numeric
Integer quotient of y/x (truncates towards zero)
div(9, 4) → 2

erf (double precision) → double precision

194

Functions and Operators

Function
Description
Example(s)
Error function
erf(1.0) → 0.8427007929497149

erfc (double precision) → double precision
Complementary error function (1 - erf(x) , without loss of precision for large inputs)
erfc(1.0) → 0.15729920705028513

exp (numeric) → numeric
exp (double precision) → double precision

Exponential (e raised to the given power)
exp(1.0) → 2.7182818284590452

factorial (bigint) → numeric
Factorial
factorial(5) → 120

floor (numeric) → numeric
floor (double precision) → double precision

Nearest integer less than or equal to argument
floor(42.8) → 42
floor(-42.8) → -43

gamma (double precision) → double precision
Gamma function
gamma(0.5) → 1.772453850905516
gamma(6) → 120

gcd (numeric_type , numeric_type) → numeric_type
Greatest common divisor (the largest positive number that divides both inputs with no re-
mainder); returns 0 if both inputs are zero; available for integer, bigint, and numeric
gcd(1071, 462) → 21

lcm (numeric_type , numeric_type) → numeric_type
Least common multiple (the smallest strictly positive number that is an integral multiple of
both inputs); returns 0 if either input is zero; available for integer, bigint, and numeric
lcm(1071, 462) → 23562

lgamma (double precision) → double precision
Natural logarithm of the absolute value of the gamma function
lgamma(1000) → 5905.220423209181

ln (numeric) → numeric
ln (double precision) → double precision

Natural logarithm
ln(2.0) → 0.6931471805599453

log (numeric) → numeric
log (double precision) → double precision

Base 10 logarithm
log(100) → 2

log10 (numeric) → numeric
log10 (double precision) → double precision

Base 10 logarithm (same as log)

195

Functions and Operators

Function
Description
Example(s)
log10(1000) → 3

log (b numeric, x numeric) → numeric
Logarithm of x to base b
log(2.0, 64.0) → 6.0000000000000000

min_scale (numeric) → integer
Minimum scale (number of fractional decimal digits) needed to represent the supplied value
precisely
min_scale(8.4100) → 2

mod (y numeric_type , x numeric_type) → numeric_type
Remainder of y/x; available for smallint, integer, bigint, and numeric
mod(9, 4) → 1

pi () → double precision
Approximate value of π
pi() → 3.141592653589793

power (a numeric, b numeric) → numeric
power (a double precision, b double precision) → double precision

a raised to the power of b
power(9, 3) → 729

radians (double precision) → double precision
Converts degrees to radians
radians(45.0) → 0.7853981633974483

round (numeric) → numeric
round (double precision) → double precision

Rounds to nearest integer. For numeric, ties are broken by rounding away from zero. For
double precision, the tie-breaking behavior is platform dependent, but “round to nearest
even” is the most common rule.
round(42.4) → 42

round (v numeric, s integer) → numeric
Rounds v to s decimal places. Ties are broken by rounding away from zero.
round(42.4382, 2) → 42.44
round(1234.56, -1) → 1230

scale (numeric) → integer
Scale of the argument (the number of decimal digits in the fractional part)
scale(8.4100) → 4

sign (numeric) → numeric
sign (double precision) → double precision

Sign of the argument (-1, 0, or +1)
sign(-8.4) → -1

sqrt (numeric) → numeric
sqrt (double precision) → double precision

Square root
sqrt(2) → 1.4142135623730951

196

Functions and Operators

Function
Description
Example(s)

trim_scale (numeric) → numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes
trim_scale(8.4100) → 8.41

trunc (numeric) → numeric
trunc (double precision) → double precision

Truncates to integer (towards zero)
trunc(42.8) → 42
trunc(-42.8) → -42

trunc (v numeric, s integer) → numeric
Truncates v to s decimal places
trunc(42.4382, 2) → 42.43

width_bucket (operand numeric, low numeric, high numeric, count integer) → integer
width_bucket (operand double precision, low double precision, high double precision,

 count integer) → integer
Returns the number of the bucket in which operand falls in a histogram having count equal-
width buckets spanning the range low to high. The buckets have inclusive lower bounds and
exclusive upper bounds. Returns 0 for an input less than low, or count+1 for an input greater
than or equal to high. If low > high, the behavior is mirror-reversed, with bucket 1 now being
the one just below low, and the inclusive bounds now being on the upper side.
width_bucket(5.35, 0.024, 10.06, 5) → 3
width_bucket(9, 10, 0, 10) → 2

width_bucket (operand anycompatible, thresholds anycompatiblearray) → integer
Returns the number of the bucket in which operand falls given an array listing the inclu-
sive lower bounds of the buckets. Returns 0 for an input less than the first lower bound.
operand and the array elements can be of any type having standard comparison operators.
The thresholds array must be sorted, smallest first, or unexpected results will be obtained.
width_bucket(now(), array['yesterday', 'today', 'tomorrow']::time-

stamptz[]) → 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

random () → double precision
Returns a random value in the range 0.0 <= x < 1.0
random() → 0.897124072839091

random (min integer, max integer) → integer
random (min bigint, max bigint) → bigint
random (min numeric, max numeric) → numeric

Returns a random value in the range min <= x <= max. For type numeric, the result will have
the same number of fractional decimal digits as min or max, whichever has more.
random(1, 10) → 7
random(-0.499, 0.499) → 0.347

random_normal ([mean double precision [, stddev double precision]]) → double precision

197

Functions and Operators

Function
Description
Example(s)
Returns a random value from the normal distribution with the given parameters; mean de-
faults to 0.0 and stddev defaults to 1.0
random_normal(0.0, 1.0) → 0.051285419

setseed (double precision) → void
Sets the seed for subsequent random() and random_normal() calls; argument must be be-
tween -1.0 and 1.0, inclusive
setseed(0.12345)

The random() and random_normal() functions listed in Table 9.6 use a deterministic pseudo-random
number generator. It is fast but not suitable for cryptographic applications; see the pgcrypto module for a
more secure alternative. If setseed() is called, the series of results of subsequent calls to these functions
in the current session can be repeated by re-issuing setseed() with the same argument. Without any
prior setseed() call in the same session, the first call to any of these functions obtains a seed from a
platform-dependent source of random bits.

Table 9.7 shows the available trigonometric functions. Each of these functions comes in two variants,
one that measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function
Description
Example(s)

acos (double precision) → double precision
Inverse cosine, result in radians
acos(1) → 0

acosd (double precision) → double precision
Inverse cosine, result in degrees
acosd(0.5) → 60

asin (double precision) → double precision
Inverse sine, result in radians
asin(1) → 1.5707963267948966

asind (double precision) → double precision
Inverse sine, result in degrees
asind(0.5) → 30

atan (double precision) → double precision
Inverse tangent, result in radians
atan(1) → 0.7853981633974483

atand (double precision) → double precision
Inverse tangent, result in degrees
atand(1) → 45

atan2 (y double precision, x double precision) → double precision
Inverse tangent of y/x, result in radians
atan2(1, 0) → 1.5707963267948966

atan2d (y double precision, x double precision) → double precision
Inverse tangent of y/x, result in degrees
atan2d(1, 0) → 90

198

Functions and Operators

Function
Description
Example(s)

cos (double precision) → double precision
Cosine, argument in radians
cos(0) → 1

cosd (double precision) → double precision
Cosine, argument in degrees
cosd(60) → 0.5

cot (double precision) → double precision
Cotangent, argument in radians
cot(0.5) → 1.830487721712452

cotd (double precision) → double precision
Cotangent, argument in degrees
cotd(45) → 1

sin (double precision) → double precision
Sine, argument in radians
sin(1) → 0.8414709848078965

sind (double precision) → double precision
Sine, argument in degrees
sind(30) → 0.5

tan (double precision) → double precision
Tangent, argument in radians
tan(1) → 1.5574077246549023

tand (double precision) → double precision
Tangent, argument in degrees
tand(45) → 1

Note
Another way to work with angles measured in degrees is to use the unit transformation functions
radians() and degrees() shown earlier. However, using the degree-based trigonometric func-
tions is preferred, as that way avoids round-off error for special cases such as sind(30).

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

sinh (double precision) → double precision
Hyperbolic sine
sinh(1) → 1.1752011936438014

cosh (double precision) → double precision
Hyperbolic cosine
cosh(0) → 1

tanh (double precision) → double precision

199

Functions and Operators

Function
Description
Example(s)
Hyperbolic tangent
tanh(1) → 0.7615941559557649

asinh (double precision) → double precision
Inverse hyperbolic sine
asinh(1) → 0.881373587019543

acosh (double precision) → double precision
Inverse hyperbolic cosine
acosh(1) → 0

atanh (double precision) → double precision
Inverse hyperbolic tangent
atanh(0.5) → 0.5493061443340548

9.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings in
this context include values of the types character, character varying, and text. Except where noted,
these functions and operators are declared to accept and return type text. They will interchangeably
accept character varying arguments. Values of type character will be converted to text before the
function or operator is applied, resulting in stripping any trailing spaces in the character value.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9.9. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9.10).

Note
The string concatenation operator (||) will accept non-string input, so long as at least one input
is of string type, as shown in Table 9.9. For other cases, inserting an explicit coercion to text can
be used to have non-string input accepted.

Table 9.9. SQL String Functions and Operators

Function/Operator
Description
Example(s)

text || text → text
Concatenates the two strings.
'Post' || 'greSQL' → PostgreSQL

text || anynonarray → text
anynonarray || text → text

Converts the non-string input to text, then concatenates the two strings. (The non-string input
cannot be of an array type, because that would create ambiguity with the array || operators.
If you want to concatenate an array's text equivalent, cast it to text explicitly.)
'Value: ' || 42 → Value: 42

btrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default)
from the start and end of string.
btrim('xyxtrimyyx', 'xyz') → trim

200

Functions and Operators

Function/Operator
Description
Example(s)

text IS [NOT] [form] NORMALIZED → boolean
Checks whether the string is in the specified Unicode normalization form. The optional form
key word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This expression can only be
used when the server encoding is UTF8. Note that checking for normalization using this ex-
pression is often faster than normalizing possibly already normalized strings.
U&'\0061\0308bc' IS NFD NORMALIZED → t

bit_length (text) → integer
Returns number of bits in the string (8 times the octet_length).
bit_length('jose') → 32

char_length (text) → integer
character_length (text) → integer

Returns number of characters in the string.
char_length('josé') → 4

lower (text) → text
Converts the string to all lower case, according to the rules of the database's locale.
lower('TOM') → tom

lpad (string text, length integer [, fill text]) → text
Extends the string to length length by prepending the characters fill (a space by default).
If the string is already longer than length then it is truncated (on the right).
lpad('hi', 5, 'xy') → xyxhi

ltrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default)
from the start of string.
ltrim('zzzytest', 'xyz') → test

normalize (text [, form]) → text
Converts the string to the specified Unicode normalization form. The optional form key word
specifies the form: NFC (the default), NFD, NFKC, or NFKD. This function can only be used when
the server encoding is UTF8.
normalize(U&'\0061\0308bc', NFC) → U&'\00E4bc'

octet_length (text) → integer
Returns number of bytes in the string.
octet_length('josé') → 5 (if server encoding is UTF8)

octet_length (character) → integer
Returns number of bytes in the string. Since this version of the function accepts type charac-
ter directly, it will not strip trailing spaces.
octet_length('abc '::character(4)) → 4

overlay (string text PLACING newsubstring text FROM start integer [FOR count integer]) →
text
Replaces the substring of string that starts at the start'th character and extends for count
characters with newsubstring. If count is omitted, it defaults to the length of newsubstring.
overlay('Txxxxas' placing 'hom' from 2 for 4) → Thomas

position (substring text IN string text) → integer
Returns first starting index of the specified substring within string, or zero if it's not
present.

201

Functions and Operators

Function/Operator
Description
Example(s)
position('om' in 'Thomas') → 3

rpad (string text, length integer [, fill text]) → text
Extends the string to length length by appending the characters fill (a space by default).
If the string is already longer than length then it is truncated.
rpad('hi', 5, 'xy') → hixyx

rtrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default)
from the end of string.
rtrim('testxxzx', 'xyz') → test

substring (string text [FROM start integer] [FOR count integer]) → text
Extracts the substring of string starting at the start'th character if that is specified, and
stopping after count characters if that is specified. Provide at least one of start and count.
substring('Thomas' from 2 for 3) → hom
substring('Thomas' from 3) → omas
substring('Thomas' for 2) → Th

substring (string text FROM pattern text) → text
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.
substring('Thomas' from '...$') → mas

substring (string text SIMILAR pattern text ESCAPE escape text) → text
substring (string text FROM pattern text FOR escape text) → text

Extracts the first substring matching SQL regular expression; see Section 9.7.2. The first
form has been specified since SQL:2003; the second form was only in SQL:1999 and should
be considered obsolete.
substring('Thomas' similar '%#"o_a#"_' escape '#') → oma

trim ([LEADING | TRAILING | BOTH] [characters text] FROM string text) → text
Removes the longest string containing only characters in characters (a space by default)
from the start, end, or both ends (BOTH is the default) of string.
trim(both 'xyz' from 'yxTomxx') → Tom

trim ([LEADING | TRAILING | BOTH] [FROM] string text [, characters text]) → text
This is a non-standard syntax for trim() .
trim(both from 'yxTomxx', 'xyz') → Tom

unicode_assigned (text) → boolean
Returns true if all characters in the string are assigned Unicode codepoints; false other-
wise. This function can only be used when the server encoding is UTF8.

upper (text) → text
Converts the string to all upper case, according to the rules of the database's locale.
upper('tom') → TOM

Additional string manipulation functions and operators are available and are listed in Table 9.10. (Some
of these are used internally to implement the SQL-standard string functions listed in Table 9.9.) There are
also pattern-matching operators, which are described in Section 9.7, and operators for full-text search,
which are described in Chapter 12.

202

Functions and Operators

Table 9.10. Other String Functions and Operators

Function/Operator
Description
Example(s)

text ^@ text → boolean
Returns true if the first string starts with the second string (equivalent to the starts_with(
) function).
'alphabet' ^@ 'alph' → t

ascii (text) → integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, returns
the Unicode code point of the character. In other multibyte encodings, the argument must be
an ASCII character.
ascii('x') → 120

chr (integer) → text
Returns the character with the given code. In UTF8 encoding the argument is treated as a
Unicode code point. In other multibyte encodings the argument must designate an ASCII
character. chr(0) is disallowed because text data types cannot store that character.
chr(65) → A

concat (val1 "any" [, val2 "any" [, ...]]) → text
Concatenates the text representations of all the arguments. NULL arguments are ignored.
concat('abcde', 2, NULL, 22) → abcde222

concat_ws (sep text, val1 "any" [, val2 "any" [, ...]]) → text
Concatenates all but the first argument, with separators. The first argument is used as the
separator string, and should not be NULL. Other NULL arguments are ignored.
concat_ws(',', 'abcde', 2, NULL, 22) → abcde,2,22

format (formatstr text [, formatarg "any" [, ...]]) → text
Formats arguments according to a format string; see Section 9.4.1. This function is similar to
the C function sprintf.
format('Hello %s, %1$s', 'World') → Hello World, World

initcap (text) → text
Converts the first letter of each word to upper case and the rest to lower case. Words are se-
quences of alphanumeric characters separated by non-alphanumeric characters.
initcap('hi THOMAS') → Hi Thomas

casefold (text) → text
Performs case folding of the input string according to the collation. Case folding is similar to
case conversion, but the purpose of case folding is to facilitate case-insensitive matching of
strings, whereas the purpose of case conversion is to convert to a particular cased form. This
function can only be used when the server encoding is UTF8.
Ordinarily, case folding simply converts to lowercase, but there may be exceptions depend-
ing on the collation. For instance, some characters have more than two lowercase variants, or
fold to uppercase.
Case folding may change the length of the string. For instance, in the PG_UNICODE_FAST col-
lation, ß (U+00DF) folds to ss.
casefold can be used for Unicode Default Caseless Matching. It does not always preserve the
normalized form of the input string (see normalize).
The libc provider doesn't support case folding, so casefold is identical to lower.

left (string text, n integer) → text
Returns first n characters in the string, or when n is negative, returns all but last |n| charac-
ters.

203

Functions and Operators

Function/Operator
Description
Example(s)
left('abcde', 2) → ab

length (text) → integer
Returns the number of characters in the string.
length('jose') → 4

md5 (text) → text
Computes the MD5 hash of the argument, with the result written in hexadecimal.
md5('abc') → 900150983cd24fb0d6963f7d28e17f72

parse_ident (qualified_identifier text [, strict_mode boolean DEFAULT true]) → text[]
Splits qualified_identifier into an array of identifiers, removing any quoting of individ-
ual identifiers. By default, extra characters after the last identifier are considered an error;
but if the second parameter is false, then such extra characters are ignored. (This behavior
is useful for parsing names for objects like functions.) Note that this function does not trun-
cate over-length identifiers. If you want truncation you can cast the result to name[].
parse_ident('"SomeSchema".someTable') → {SomeSchema,sometable}

pg_client_encoding () → name
Returns current client encoding name.
pg_client_encoding() → UTF8

quote_ident (text) → text
Returns the given string suitably quoted to be used as an identifier in an SQL statement
string. Quotes are added only if necessary (i.e., if the string contains non-identifier characters
or would be case-folded). Embedded quotes are properly doubled. See also Example 41.1.
quote_ident('Foo bar') → "Foo bar"

quote_literal (text) → text
Returns the given string suitably quoted to be used as a string literal in an SQL statement
string. Embedded single-quotes and backslashes are properly doubled. Note that quote_
literal returns null on null input; if the argument might be null, quote_nullable is often
more suitable. See also Example 41.1.
quote_literal(E'O\'Reilly') → 'O''Reilly'

quote_literal (anyelement) → text
Converts the given value to text and then quotes it as a literal. Embedded single-quotes and
backslashes are properly doubled.
quote_literal(42.5) → '42.5'

quote_nullable (text) → text
Returns the given string suitably quoted to be used as a string literal in an SQL statement
string; or, if the argument is null, returns NULL. Embedded single-quotes and backslashes are
properly doubled. See also Example 41.1.
quote_nullable(NULL) → NULL

quote_nullable (anyelement) → text
Converts the given value to text and then quotes it as a literal; or, if the argument is null, re-
turns NULL. Embedded single-quotes and backslashes are properly doubled.
quote_nullable(42.5) → '42.5'

regexp_count (string text, pattern text [, start integer [, flags text]]) → integer
Returns the number of times the POSIX regular expression pattern matches in the string;
see Section 9.7.3.
regexp_count('123456789012', '\d\d\d', 2) → 3

204

Functions and Operators

Function/Operator
Description
Example(s)

regexp_instr (string text, pattern text [, start integer [, N integer [, endoption integer [,
 flags text [, subexpr integer]]]]]) → integer
Returns the position within string where the N'th match of the POSIX regular expression
pattern occurs, or zero if there is no such match; see Section 9.7.3.
regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i') → 3
regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i', 2) → 5

regexp_like (string text, pattern text [, flags text]) → boolean
Checks whether a match of the POSIX regular expression pattern occurs within string; see
Section 9.7.3.
regexp_like('Hello World', 'world$', 'i') → t

regexp_match (string text, pattern text [, flags text]) → text[]
Returns substrings within the first match of the POSIX regular expression pattern to the
string; see Section 9.7.3.
regexp_match('foobarbequebaz', '(bar)(beque)') → {bar,beque}

regexp_matches (string text, pattern text [, flags text]) → setof text[]
Returns substrings within the first match of the POSIX regular expression pattern to the
string, or substrings within all such matches if the g flag is used; see Section 9.7.3.
regexp_matches('foobarbequebaz', 'ba.', 'g') →

 {bar}
 {baz}

regexp_replace (string text, pattern text, replacement text [, flags text]) → text
Replaces the substring that is the first match to the POSIX regular expression pattern, or all
such matches if the g flag is used; see Section 9.7.3.
regexp_replace('Thomas', '.[mN]a.', 'M') → ThM

regexp_replace (string text, pattern text, replacement text, start integer [, N integer [,
 flags text]]) → text
Replaces the substring that is the N'th match to the POSIX regular expression pattern, or all
such matches if N is zero, with the search beginning at the start'th character of string. If N
is omitted, it defaults to 1. See Section 9.7.3.
regexp_replace('Thomas', '.', 'X', 3, 2) → ThoXas
regexp_replace(string=>'hello world', pattern=>'l', replacement=>'XX',

start=>1, "N"=>2) → helXXo world

regexp_split_to_array (string text, pattern text [, flags text]) → text[]
Splits string using a POSIX regular expression as the delimiter, producing an array of re-
sults; see Section 9.7.3.
regexp_split_to_array('hello world', '\s+') → {hello,world}

regexp_split_to_table (string text, pattern text [, flags text]) → setof text
Splits string using a POSIX regular expression as the delimiter, producing a set of results;
see Section 9.7.3.
regexp_split_to_table('hello world', '\s+') →

 hello
 world

regexp_substr (string text, pattern text [, start integer [, N integer [, flags text [, subexpr
integer]]]]) → text

205

Functions and Operators

Function/Operator
Description
Example(s)
Returns the substring within string that matches the N'th occurrence of the POSIX regular
expression pattern, or NULL if there is no such match; see Section 9.7.3.
regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i') → CDEF
regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i', 2) → EF

repeat (string text, number integer) → text
Repeats string the specified number of times.
repeat('Pg', 4) → PgPgPgPg

replace (string text, from text, to text) → text
Replaces all occurrences in string of substring from with substring to.
replace('abcdefabcdef', 'cd', 'XX') → abXXefabXXef

reverse (text) → text
Reverses the order of the characters in the string.
reverse('abcde') → edcba

right (string text, n integer) → text
Returns last n characters in the string, or when n is negative, returns all but first |n| charac-
ters.
right('abcde', 2) → de

split_part (string text, delimiter text, n integer) → text
Splits string at occurrences of delimiter and returns the n'th field (counting from one), or
when n is negative, returns the |n|'th-from-last field.
split_part('abc~@~def~@~ghi', '~@~', 2) → def
split_part('abc,def,ghi,jkl', ',', -2) → ghi

starts_with (string text, prefix text) → boolean
Returns true if string starts with prefix.
starts_with('alphabet', 'alph') → t

string_to_array (string text, delimiter text [, null_string text]) → text[]
Splits the string at occurrences of delimiter and forms the resulting fields into a text ar-
ray. If delimiter is NULL, each character in the string will become a separate element in the
array. If delimiter is an empty string, then the string is treated as a single field. If null_
string is supplied and is not NULL, fields matching that string are replaced by NULL. See also
array_to_string .
string_to_array('xx~~yy~~zz', '~~', 'yy') → {xx,NULL,zz}

string_to_table (string text, delimiter text [, null_string text]) → setof text
Splits the string at occurrences of delimiter and returns the resulting fields as a set of text
rows. If delimiter is NULL, each character in the string will become a separate row of the
result. If delimiter is an empty string, then the string is treated as a single field. If null_
string is supplied and is not NULL, fields matching that string are replaced by NULL.
string_to_table('xx~^~yy~^~zz', '~^~', 'yy') →

 xx
 NULL
 zz

strpos (string text, substring text) → integer
Returns first starting index of the specified substring within string, or zero if it's not
present. (Same as position(substring in string), but note the reversed argument or-
der.)

206

Functions and Operators

Function/Operator
Description
Example(s)
strpos('high', 'ig') → 2

substr (string text, start integer [, count integer]) → text
Extracts the substring of string starting at the start'th character, and extending for count
characters if that is specified. (Same as substring(string from start for count).)
substr('alphabet', 3) → phabet
substr('alphabet', 3, 2) → ph

to_ascii (string text) → text
to_ascii (string text, encoding name) → text
to_ascii (string text, encoding integer) → text

Converts string to ASCII from another encoding, which may be identified by name or num-
ber. If encoding is omitted the database encoding is assumed (which in practice is the only
useful case). The conversion consists primarily of dropping accents. Conversion is only sup-
ported from LATIN1, LATIN2, LATIN9, and WIN1250 encodings. (See the unaccent module for
another, more flexible solution.)
to_ascii('Karél') → Karel

to_bin (integer) → text
to_bin (bigint) → text

Converts the number to its equivalent two's complement binary representation.
to_bin(2147483647) → 1111111111111111111111111111111
to_bin(-1234) → 11111111111111111111101100101110

to_hex (integer) → text
to_hex (bigint) → text

Converts the number to its equivalent two's complement hexadecimal representation.
to_hex(2147483647) → 7fffffff
to_hex(-1234) → fffffb2e

to_oct (integer) → text
to_oct (bigint) → text

Converts the number to its equivalent two's complement octal representation.
to_oct(2147483647) → 17777777777
to_oct(-1234) → 37777775456

translate (string text, from text, to text) → text
Replaces each character in string that matches a character in the from set with the corre-
sponding character in the to set. If from is longer than to, occurrences of the extra charac-
ters in from are deleted.
translate('12345', '143', 'ax') → a2x5

unistr (text) → text
Evaluate escaped Unicode characters in the argument. Unicode characters can be specified
as \XXXX (4 hexadecimal digits), \+XXXXXX (6 hexadecimal digits), \uXXXX (4 hexadecimal dig-
its), or \UXXXXXXXX (8 hexadecimal digits). To specify a backslash, write two backslashes. All
other characters are taken literally.
If the server encoding is not UTF-8, the Unicode code point identified by one of these escape
sequences is converted to the actual server encoding; an error is reported if that's not possi-
ble.
This function provides a (non-standard) alternative to string constants with Unicode escapes (
see Section 4.1.2.3).

207

Functions and Operators

Function/Operator
Description
Example(s)
unistr('d\0061t\+000061') → data
unistr('d\u0061t\U00000061') → data

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to be con-
catenated or formatted as an array marked with the VARIADIC keyword (see Section 36.5.6). The array's
elements are treated as if they were separate ordinary arguments to the function. If the variadic array
argument is NULL, concat and concat_ws return NULL, but format treats a NULL as a zero-element
array.

See also the aggregate function string_agg in Section 9.21, and the functions for converting between
strings and the bytea type in Table 9.13.

9.4.1. format
The function format produces output formatted according to a format string, in a style similar to the
C function sprintf.

format(formatstr text [, formatarg "any" [, ...]])

formatstr is a format string that specifies how the result should be formatted. Text in the format string
is copied directly to the result, except where format specifiers are used. Format specifiers act as place-
holders in the string, defining how subsequent function arguments should be formatted and inserted
into the result. Each formatarg argument is converted to text according to the usual output rules for its
data type, and then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a % character and have the form
%[position][flags][width]type

where the component fields are:
position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument
after formatstr. If the position is omitted, the default is to use the next argument in sequence.

flags (optional)
Additional options controlling how the format specifier's output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier's output to be left-justified.
This has no effect unless the width field is also specified.

width (optional)
Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the width.
A too-small width does not cause truncation of the output, but is simply ignored. The width may
be specified using any of the following: a positive integer; an asterisk (*) to use the next function
argument as the width; or a string of the form *n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that
is used for the format specifier's value. If the width argument is negative, the result is left aligned
(as if the - flag had been specified) within a field of length abs(width).

type (required)
The type of format conversion to use to produce the format specifier's output. The following types
are supported:
• s formats the argument value as a simple string. A null value is treated as an empty string.

208

Functions and Operators

• I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quote_ident).

• L quotes the argument value as an SQL literal. A null value is displayed as the string NULL, with-
out quotes (equivalent to quote_nullable).

In addition to the format specifiers described above, the special sequence %% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format('Hello %s', 'World');
Result: Hello World

SELECT format('Testing %s, %s, %s, %%', 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format('INSERT INTO %I VALUES(%L)', 'Foo bar', E'O\'Reilly');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format('INSERT INTO %I VALUES(%L)', 'locations', 'C:\Program Files');
Result: INSERT INTO locations VALUES('C:\Program Files')

Here are examples using width fields and the - flag:

SELECT format('|%10s|', 'foo');
Result: | foo|

SELECT format('|%-10s|', 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo');
Result: | foo|

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

SELECT format('|%-*s|', 10, 'foo');
Result: |foo |

SELECT format('|%-*s|', -10, 'foo');
Result: |foo |

These examples show use of position fields:

SELECT format('Testing %3$s, %2$s, %1$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%*2$s|', 'foo', 10, 'bar');
Result: | bar|

SELECT format('|%1$*2$s|', 'foo', 10, 'bar');
Result: | foo|

Unlike the standard C function sprintf, PostgreSQL's format function allows format specifiers with and
without position fields to be mixed in the same format string. A format specifier without a position
field always uses the next argument after the last argument consumed. In addition, the format function
does not require all function arguments to be used in the format string. For example:

SELECT format('Testing %3$s, %2$s, %s', 'one', 'two', 'three');
Result: Testing three, two, three

209

Functions and Operators

The %I and %L format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 41.1.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating binary strings, that is
values of type bytea. Many of these are equivalent, in purpose and syntax, to the text-string functions
described in the previous section.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

Table 9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

bytea || bytea → bytea
Concatenates the two binary strings.
'\x123456'::bytea || '\x789a00bcde'::bytea → \x123456789a00bcde

bit_length (bytea) → integer
Returns number of bits in the binary string (8 times the octet_length).
bit_length('\x123456'::bytea) → 24

btrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start
and end of bytes.
btrim('\x1234567890'::bytea, '\x9012'::bytea) → \x345678

ltrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start of
bytes.
ltrim('\x1234567890'::bytea, '\x9012'::bytea) → \x34567890

octet_length (bytea) → integer
Returns number of bytes in the binary string.
octet_length('\x123456'::bytea) → 3

overlay (bytes bytea PLACING newsubstring bytea FROM start integer [FOR count integer]) →
bytea
Replaces the substring of bytes that starts at the start'th byte and extends for count bytes
with newsubstring. If count is omitted, it defaults to the length of newsubstring.
overlay('\x1234567890'::bytea placing '\002\003'::bytea from 2 for 3) →
\x12020390

position (substring bytea IN bytes bytea) → integer
Returns first starting index of the specified substring within bytes, or zero if it's not present.
position('\x5678'::bytea in '\x1234567890'::bytea) → 3

rtrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the end of
bytes.
rtrim('\x1234567890'::bytea, '\x9012'::bytea) → \x12345678

substring (bytes bytea [FROM start integer] [FOR count integer]) → bytea
Extracts the substring of bytes starting at the start'th byte if that is specified, and stopping
after count bytes if that is specified. Provide at least one of start and count.

210

Functions and Operators

Function/Operator
Description
Example(s)
substring('\x1234567890'::bytea from 3 for 2) → \x5678

trim ([LEADING | TRAILING | BOTH] bytesremoved bytea FROM bytes bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start,
 end, or both ends (BOTH is the default) of bytes.
trim('\x9012'::bytea from '\x1234567890'::bytea) → \x345678

trim ([LEADING | TRAILING | BOTH] [FROM] bytes bytea, bytesremoved bytea) → bytea
This is a non-standard syntax for trim() .
trim(both from '\x1234567890'::bytea, '\x9012'::bytea) → \x345678

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function
Description
Example(s)

bit_count (bytes bytea) → bigint
Returns the number of bits set in the binary string (also known as “popcount”).
bit_count('\x1234567890'::bytea) → 15

crc32 (bytea) → bigint
Computes the CRC-32 value of the binary string.
crc32('abc'::bytea) → 891568578

crc32c (bytea) → bigint
Computes the CRC-32C value of the binary string.
crc32c('abc'::bytea) → 910901175

get_bit (bytes bytea, n bigint) → integer
Extracts n'th bit from binary string.
get_bit('\x1234567890'::bytea, 30) → 1

get_byte (bytes bytea, n integer) → integer
Extracts n'th byte from binary string.
get_byte('\x1234567890'::bytea, 4) → 144

length (bytea) → integer
Returns the number of bytes in the binary string.
length('\x1234567890'::bytea) → 5

length (bytes bytea, encoding name) → integer
Returns the number of characters in the binary string, assuming that it is text in the given
encoding.
length('jose'::bytea, 'UTF8') → 4

md5 (bytea) → text
Computes the MD5 hash of the binary string, with the result written in hexadecimal.
md5('Th\000omas'::bytea) → 8ab2d3c9689aaf18b4958c334c82d8b1

reverse (bytea) → bytea
Reverses the order of the bytes in the binary string.
reverse('\xabcd'::bytea) → \xcdab

211

Functions and Operators

Function
Description
Example(s)

set_bit (bytes bytea, n bigint, newvalue integer) → bytea
Sets n'th bit in binary string to newvalue.
set_bit('\x1234567890'::bytea, 30, 0) → \x1234563890

set_byte (bytes bytea, n integer, newvalue integer) → bytea
Sets n'th byte in binary string to newvalue.
set_byte('\x1234567890'::bytea, 4, 64) → \x1234567840

sha224 (bytea) → bytea
Computes the SHA-224 hash of the binary string.
sha224('abc'::bytea) → \x23097d223405d8228642a477bda255b32aadbce4b-
da0b3f7e36c9da7

sha256 (bytea) → bytea
Computes the SHA-256 hash of the binary string.
sha256('abc'::bytea) → \xba7816bf8f01cfea414140de5dae2223
b00361a396177a9cb410ff61f20015ad

sha384 (bytea) → bytea
Computes the SHA-384 hash of the binary string.
sha384('abc'::bytea) → \xcb00753f45a35e8bb5a03d699ac65007272c32ab0ed-
ed1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7

sha512 (bytea) → bytea
Computes the SHA-512 hash of the binary string.
sha512('abc'::bytea) → \xddaf35a193617abacc417349ae204131
12e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd
454d4423643ce80e2a9ac94fa54ca49f

substr (bytes bytea, start integer [, count integer]) → bytea
Extracts the substring of bytes starting at the start'th byte, and extending for count bytes if
that is specified. (Same as substring(bytes from start for count).)
substr('\x1234567890'::bytea, 3, 2) → \x5678

Functions get_byte and set_byte number the first byte of a binary string as byte 0. Functions get_bit
and set_bit number bits from the right within each byte; for example bit 0 is the least significant bit of
the first byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function md5 returns a hex-encoded value of type text whereas the SHA-2
functions return type bytea. Use the functions encode and decode to convert between the two. For
example write encode(sha256('abc'), 'hex') to get a hex-encoded text representation, or de-
code(md5('abc'), 'hex') to get a bytea value.

Functions for converting strings between different character sets (encodings), and for representing
arbitrary binary data in textual form, are shown in Table 9.13. For these functions, an argument or result
of type text is expressed in the database's default encoding, while arguments or results of type bytea
are in an encoding named by another argument.

Table 9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

convert (bytes bytea, src_encoding name, dest_encoding name) → bytea

212

Functions and Operators

Function
Description
Example(s)
Converts a binary string representing text in encoding src_encoding to a binary string in
encoding dest_encoding (see Section 23.3.4 for available conversions).
convert('text_in_utf8', 'UTF8', 'LATIN1') → \x746578745f696e5f75746638

convert_from (bytes bytea, src_encoding name) → text
Converts a binary string representing text in encoding src_encoding to text in the data-
base encoding (see Section 23.3.4 for available conversions).
convert_from('text_in_utf8', 'UTF8') → text_in_utf8

convert_to (string text, dest_encoding name) → bytea
Converts a text string (in the database encoding) to a binary string encoded in encoding
dest_encoding (see Section 23.3.4 for available conversions).
convert_to('some_text', 'UTF8') → \x736f6d655f74657874

encode (bytes bytea, format text) → text
Encodes binary data into a textual representation; supported format values are: base64, es-
cape, hex.
encode('123\000\001', 'base64') → MTIzAAE=

decode (string text, format text) → bytea
Decodes binary data from a textual representation; supported format values are the same as
for encode.
decode('MTIzAAE=', 'base64') → \x3132330001

The encode and decode functions support the following textual formats:

base64

The base64 format is that of RFC 2045 Section 6.8. As per the RFC, encoded lines are broken at 76
characters. However instead of the MIME CRLF end-of-line marker, only a newline is used for end-
of-line. The decode function ignores carriage-return, newline, space, and tab characters. Otherwise,
an error is raised when decode is supplied invalid base64 data — including when trailing padding
is incorrect.

escape

The escape format converts zero bytes and bytes with the high bit set into octal escape sequences
(\nnn), and it doubles backslashes. Other byte values are represented literally. The decode function
will raise an error if a backslash is not followed by either a second backslash or three octal digits;
it accepts other byte values unchanged.

hex

The hex format represents each 4 bits of data as one hexadecimal digit, 0 through f, writing the
higher-order digit of each byte first. The encode function outputs the a-f hex digits in lower case.
Because the smallest unit of data is 8 bits, there are always an even number of characters returned
by encode. The decode function accepts the a-f characters in either upper or lower case. An error is
raised when decode is given invalid hex data — including when given an odd number of characters.

In addition, it is possible to cast integral values to and from type bytea. Casting an integer to bytea
produces 2, 4, or 8 bytes, depending on the width of the integer type. The result is the two's complement
representation of the integer, with the most significant byte first. Some examples:

1234::smallint::bytea \x04d2
cast(1234 as bytea) \x000004d2
cast(-1234 as bytea) \xfffffb2e

213

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Functions and Operators

'\x8000'::bytea::smallint -32768
'\x8000'::bytea::integer 32768

Casting a bytea to an integer will raise an error if the length of the bytea exceeds the width of the
integer type.

See also the aggregate function string_agg in Section 9.21 and the large object functions in Sec-
tion 33.4.

9.6. Bit String Functions and Operators
This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. (While only type bit is mentioned in these tables, values of type
bit varying can be used interchangeably.) Bit strings support the usual comparison operators shown
in Table 9.1, as well as the operators shown in Table 9.14.

Table 9.14. Bit String Operators

Operator
Description
Example(s)

bit || bit → bit
Concatenation
B'10001' || B'011' → 10001011

bit & bit → bit
Bitwise AND (inputs must be of equal length)
B'10001' & B'01101' → 00001

bit | bit → bit
Bitwise OR (inputs must be of equal length)
B'10001' | B'01101' → 11101

bit # bit → bit
Bitwise exclusive OR (inputs must be of equal length)
B'10001' # B'01101' → 11100

~ bit → bit
Bitwise NOT
~ B'10001' → 01110

bit << integer → bit
Bitwise shift left (string length is preserved)
B'10001' << 3 → 01000

bit >> integer → bit
Bitwise shift right (string length is preserved)
B'10001' >> 2 → 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

Table 9.15. Bit String Functions

Function
Description
Example(s)

bit_count (bit) → bigint
Returns the number of bits set in the bit string (also known as “popcount”).

214

Functions and Operators

Function
Description
Example(s)
bit_count(B'10111') → 4

bit_length (bit) → integer
Returns number of bits in the bit string.
bit_length(B'10111') → 5

length (bit) → integer
Returns number of bits in the bit string.
length(B'10111') → 5

octet_length (bit) → integer
Returns number of bytes in the bit string.
octet_length(B'1011111011') → 2

overlay (bits bit PLACING newsubstring bit FROM start integer [FOR count integer]) → bit
Replaces the substring of bits that starts at the start'th bit and extends for count bits with
newsubstring. If count is omitted, it defaults to the length of newsubstring.
overlay(B'01010101010101010' placing B'11111' from 2 for 3) →
0111110101010101010

position (substring bit IN bits bit) → integer
Returns first starting index of the specified substring within bits, or zero if it's not present.
position(B'010' in B'000001101011') → 8

substring (bits bit [FROM start integer] [FOR count integer]) → bit
Extracts the substring of bits starting at the start'th bit if that is specified, and stopping af-
ter count bits if that is specified. Provide at least one of start and count.
substring(B'110010111111' from 3 for 2) → 00

get_bit (bits bit, n integer) → integer
Extracts n'th bit from bit string; the first (leftmost) bit is bit 0.
get_bit(B'101010101010101010', 6) → 1

set_bit (bits bit, n integer, newvalue integer) → bit
Sets n'th bit in bit string to newvalue; the first (leftmost) bit is bit 0.
set_bit(B'101010101010101010', 6, 0) → 101010001010101010

In addition, it is possible to cast integral values to and from type bit. Casting an integer to bit(n) copies
the rightmost n bits. Casting an integer to a bit string width wider than the integer itself will sign-extend
on the left. Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bit(1), and so will deliver only the least significant bit
of the integer.

9.7. Pattern Matching
There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

215

Functions and Operators

Tip
If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution
While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to impose
a statement timeout.

Searches using SIMILAR TO patterns have the same security hazards, since SIMILAR TO provides
many of the same capabilities as POSIX-style regular expressions.

LIKE searches, being much simpler than the other two options, are safer to use with possibly-hos-
tile pattern sources.

SIMILAR TO and POSIX-style regular expressions do not support nondeterministic collations. If required,
use LIKE or apply a different collation to the expression to work around this limitation.

9.7.1. LIKE
string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT LIKE
expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT (string
LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches)
any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:
'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matching supports nondeterministic collations (see Section 23.2.2.4), such as case-insen-
sitive collations or collations that, say, ignore punctuation. So with a case-insensitive collation, one could
have:
'AbC' LIKE 'abc' COLLATE case_insensitive true
'AbC' LIKE 'a%' COLLATE case_insensitive true

With collations that ignore certain characters or in general that consider strings of different lengths
equal, the semantics can become a bit more complicated. Consider these examples:
'.foo.' LIKE 'foo' COLLATE ign_punct true
'.foo.' LIKE 'f_o' COLLATE ign_punct true
'.foo.' LIKE '_oo' COLLATE ign_punct false

The way the matching works is that the pattern is partitioned into sequences of wildcards and non-
wildcard strings (wildcards being _ and %). For example, the pattern f_o is partitioned into f, _, o,
the pattern _oo is partitioned into _, oo. The input string matches the pattern if it can be partitioned
in such a way that the wildcards match one character or any number of characters respectively and the
non-wildcard partitions are equal under the applicable collation. So for example, '.foo.' LIKE 'f_o'

216

Functions and Operators

COLLATE ign_punct is true because one can partition .foo. into .f, o, o., and then '.f' = 'f'
COLLATE ign_punct, 'o' matches the _ wildcard, and 'o.' = 'o' COLLATE ign_punct. But '.foo.'
LIKE '_oo' COLLATE ign_punct is false because .foo. cannot be partitioned in a way that the first
character is any character and the rest of the string compares equal to oo. (Note that the single-character
wildcard always matches exactly one character, independent of the collation. So in this example, the _
would match ., but then the rest of the input string won't match the rest of the pattern.)

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective charac-
ter in pattern must be preceded by the escape character. The default escape character is the backslash
but a different one can be selected by using the ESCAPE clause. To match the escape character itself,
write two escape characters.

Note
If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ''. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than de-
faulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this
regard is therefore slightly nonstandard.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. (But this does not support nondeterministic collations.) This is not in the SQL standard
but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~* oper-
ators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-spe-
cific. You may see these operator names in EXPLAIN output and similar places, since the parser actually
translates LIKE et al. to these operators.

The phrases LIKE, ILIKE, NOT LIKE, and NOT ILIKE are generally treated as operators in PostgreSQL
syntax; for example they can be used in expression operator ANY (subquery) constructs, although an
ESCAPE clause cannot be included there. In some obscure cases it may be necessary to use the underlying
operator names instead.

Also see the starts-with operator ^@ and the corresponding starts_with() function, which are useful in
cases where simply matching the beginning of a string is needed.

9.7.2. SIMILAR TO Regular Expressions
string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard's definition of
a regular expression. SQL regular expressions are a curious cross between LIKE notation and common
(POSIX) regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and .* in POSIX regular expressions).

217

Functions and Operators

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

• | denotes alternation (either of two alternatives).

• * denotes repetition of the previous item zero or more times.

• + denotes repetition of the previous item one or more times.

• ? denotes repetition of the previous item zero or one time.

• {m} denotes repetition of the previous item exactly m times.

• {m,} denotes repetition of the previous item m or more times.

• {m,n} denotes repetition of the previous item at least m and not more than n times.

• Parentheses () can be used to group items into a single logical item.

• A bracket expression [...] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters. A different escape
character can be specified with ESCAPE, or the escape capability can be disabled by writing ESCAPE ''.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than de-
faulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this
regard is therefore slightly nonstandard.

Another nonstandard extension is that following the escape character with a letter or digit provides
access to the escape sequences defined for POSIX regular expressions; see Table 9.20, Table 9.21, and
Table 9.22 below.

Some examples:

'abc' SIMILAR TO 'abc' true
'abc' SIMILAR TO 'a' false
'abc' SIMILAR TO '%(b|d)%' true
'abc' SIMILAR TO '(b|c)%' false
'-abc-' SIMILAR TO '%\mabc\M%' true
'xabcy' SIMILAR TO '%\mabc\M%' false

The substring function with three parameters provides extraction of a substring that matches an SQL
regular expression pattern. The function can be written according to standard SQL syntax:

substring(string similar pattern escape escape-character)

or using the now obsolete SQL:1999 syntax:

substring(string from pattern for escape-character)

or as a plain three-argument function:

substring(string, pattern, escape-character)

As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails and
returns null. To indicate the part of the pattern for which the matching data sub-string is of interest, the
pattern should contain two occurrences of the escape character followed by a double quote ("). The text
matching the portion of the pattern between these separators is returned when the match is successful.

The escape-double-quote separators actually divide substring's pattern into three independent regular
expressions; for example, a vertical bar (|) in any of the three sections affects only that section. Also, the
first and third of these regular expressions are defined to match the smallest possible amount of text,
not the largest, when there is any ambiguity about how much of the data string matches which pattern.
(In POSIX parlance, the first and third regular expressions are forced to be non-greedy.)

218

Functions and Operators

As an extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote sep-
arator, in which case the third regular expression is taken as empty; or no separators, in which case the
first and third regular expressions are taken as empty.

Some examples, with #" delimiting the return string:

substring('foobar' similar '%#"o_b#"%' escape '#') oob
substring('foobar' similar '#"o_b#"%' escape '#') NULL

9.7.3. POSIX Regular Expressions
Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~ text → boolean
String matches regular expression, case sensitively
'thomas' ~ 't.*ma' → t

text ~* text → boolean
String matches regular expression, case-insensitively
'thomas' ~* 'T.*ma' → t

text !~ text → boolean
String does not match regular expression, case sensitively
'thomas' !~ 't.*max' → t

text !~* text → boolean
String does not match regular expression, case-insensitively
'thomas' !~* 'T.*ma' → f

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are
special characters in the regular expression language — but regular expressions use different special
characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere
within a string, unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

'abcd' ~ 'bc' true
'abcd' ~ 'a.c' true — dot matches any character
'abcd' ~ 'a.*d' true — * repeats the preceding pattern item
'abcd' ~ '(b|x)' true — | means OR, parentheses group
'abcd' ~ '^a' true — ^ anchors to start of string
'abcd' ~ '^(b|c)' false — would match except for anchoring

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extraction
of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the first portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left

219

Functions and Operators

parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring('foobar' from 'o.b') oob
substring('foobar' from 'o(.)b') o

The regexp_count function counts the number of places where a POSIX regular expression pattern
matches a string. It has the syntax regexp_count(string, pattern [, start [, flags]]). pattern is
searched for in string, normally from the beginning of the string, but if the start parameter is provided
then beginning from that character index. The flags parameter is an optional text string containing
zero or more single-letter flags that change the function's behavior. For example, including i in flags
specifies case-insensitive matching. Supported flags are described in Table 9.24.

Some examples:

regexp_count('ABCABCAXYaxy', 'A.') 3
regexp_count('ABCABCAXYaxy', 'A.', 1, 'i') 4

The regexp_instr function returns the starting or ending position of the N'th match of a POSIX regular
expression pattern to a string, or zero if there is no such match. It has the syntax regexp_instr(string,
pattern [, start [, N [, endoption [, flags [, subexpr]]]]]). pattern is searched for in string, normally
from the beginning of the string, but if the start parameter is provided then beginning from that char-
acter index. If N is specified then the N'th match of the pattern is located, otherwise the first match is
located. If the endoption parameter is omitted or specified as zero, the function returns the position of
the first character of the match. Otherwise, endoption must be one, and the function returns the position
of the character following the match. The flags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. Supported flags are described in Table 9.24.
For a pattern containing parenthesized subexpressions, subexpr is an integer indicating which subex-
pression is of interest: the result identifies the position of the substring matching that subexpression.
Subexpressions are numbered in the order of their leading parentheses. When subexpr is omitted or
zero, the result identifies the position of the whole match regardless of parenthesized subexpressions.

Some examples:

regexp_instr('number of your street, town zip, FR', '[^,]+', 1, 2)
 23
regexp_instr(string=>'ABCDEFGHI', pattern=>'(c..)(...)', start=>1, "N"=>1,
 endoption=>0, flags=>'i', subexpr=>2)
 6

The regexp_like function checks whether a match of a POSIX regular expression pattern occurs within
a string, returning boolean true or false. It has the syntax regexp_like(string, pattern [, flags]).
The flags parameter is an optional text string containing zero or more single-letter flags that change
the function's behavior. Supported flags are described in Table 9.24. This function has the same results
as the ~ operator if no flags are specified. If only the i flag is specified, it has the same results as the
~* operator.

Some examples:

regexp_like('Hello World', 'world') false
regexp_like('Hello World', 'world', 'i') true

The regexp_match function returns a text array of matching substring(s) within the first match of a
POSIX regular expression pattern to a string. It has the syntax regexp_match(string, pattern [, flags
]). If there is no match, the result is NULL. If a match is found, and the pattern contains no parenthesized
subexpressions, then the result is a single-element text array containing the substring matching the
whole pattern. If a match is found, and the pattern contains parenthesized subexpressions, then the

220

Functions and Operators

result is a text array whose n'th element is the substring matching the n'th parenthesized subexpression
of the pattern (not counting “non-capturing” parentheses; see below for details). The flags parameter
is an optional text string containing zero or more single-letter flags that change the function's behavior.
Supported flags are described in Table 9.24.

Some examples:

SELECT regexp_match('foobarbequebaz', 'bar.*que');
 regexp_match

 {barbeque}
(1 row)

SELECT regexp_match('foobarbequebaz', '(bar)(beque)');
 regexp_match

 {bar,beque}
(1 row)

Tip
In the common case where you just want the whole matching substring or NULL for no match, the
best solution is to use regexp_substr(). However, regexp_substr() only exists in PostgreSQL
version 15 and up. When working in older versions, you can extract the first element of regex-
p_match()'s result, for example:

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
 regexp_match

 barbeque
(1 row)

The regexp_matches function returns a set of text arrays of matching substring(s) within matches of
a POSIX regular expression pattern to a string. It has the same syntax as regexp_match. This function
returns no rows if there is no match, one row if there is a match and the g flag is not given, or N rows
if there are N matches and the g flag is given. Each returned row is a text array containing the whole
matched substring or the substrings matching parenthesized subexpressions of the pattern, just as
described above for regexp_match. regexp_matches accepts all the flags shown in Table 9.24, plus the
g flag which commands it to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
 regexp_matches

(0 rows)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g');
 regexp_matches

 {bar,beque}
 {bazil,barf}
(2 rows)

Tip
In most cases regexp_matches() should be used with the g flag, since if you only want the first
match, it's easier and more efficient to use regexp_match(). However, regexp_match() only exists

221

Functions and Operators

in PostgreSQL version 10 and up. When working in older versions, a common trick is to place a
regexp_matches() call in a sub-select, for example:

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM tab;

This produces a text array if there's a match, or NULL if not, the same as regexp_match() would do.
Without the sub-select, this query would produce no output at all for table rows without a match,
which is typically not the desired behavior.

The regexp_replace function provides substitution of new text for substrings that match POSIX regu-
lar expression patterns. It has the syntax regexp_replace(string, pattern, replacement [, flags]) or
regexp_replace(string, pattern, replacement, start [, N [, flags]]). The source string is returned
unchanged if there is no match to the pattern. If there is a match, the string is returned with the re-
placement string substituted for the matching substring. The replacement string can contain \n, where
n is 1 through 9, to indicate that the source substring matching the n'th parenthesized subexpression of
the pattern should be inserted, and it can contain \& to indicate that the substring matching the entire
pattern should be inserted. Write \\ if you need to put a literal backslash in the replacement text. pat-
tern is searched for in string, normally from the beginning of the string, but if the start parameter
is provided then beginning from that character index. By default, only the first match of the pattern is
replaced. If N is specified and is greater than zero, then the N'th match of the pattern is replaced. If the g
flag is given, or if N is specified and is zero, then all matches at or after the start position are replaced.
(The g flag is ignored when N is specified.) The flags parameter is an optional text string containing
zero or more single-letter flags that change the function's behavior. Supported flags (though not g) are
described in Table 9.24.

Some examples:

regexp_replace('foobarbaz', 'b..', 'X')
 fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
 fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g')
 fooXarYXazY
regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 0, 'i')
 X PXstgrXSQL fXnctXXn
regexp_replace(string=>'A PostgreSQL function', pattern=>'a|e|i|o|u', replacement=>'X',
 start=>1, "N"=>3, flags=>'i')
 A PostgrXSQL function

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no match to
the pattern, the function returns the string. If there is at least one match, for each match it returns
the text from the end of the last match (or the beginning of the string) to the beginning of the match.
When there are no more matches, it returns the text from the end of the last match to the end of the
string. The flags parameter is an optional text string containing zero or more single-letter flags that
change the function's behavior. regexp_split_to_table supports the flags described in Table 9.24.

The regexp_split_to_array function behaves the same as regexp_split_to_table, except that reg-
exp_split_to_array returns its result as an array of text. It has the syntax regexp_split_to_ar-
ray(string, pattern [, flags]). The parameters are the same as for regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog',
 '\s+') AS foo;
 foo

 the

222

Functions and Operators

 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog', '\s+');
 regexp_split_to_array

 {the,quick,brown,fox,jumps,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo;
 foo

 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w
 n
 f
 o
 x
(16 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by the other regexp functions, but is usually the most convenient
behavior in practice. Other software systems such as Perl use similar definitions.

The regexp_substr function returns the substring that matches a POSIX regular expression pattern,
or NULL if there is no match. It has the syntax regexp_substr(string, pattern [, start [, N [, flags
[, subexpr]]]]). pattern is searched for in string, normally from the beginning of the string, but if
the start parameter is provided then beginning from that character index. If N is specified then the
N'th match of the pattern is returned, otherwise the first match is returned. The flags parameter is
an optional text string containing zero or more single-letter flags that change the function's behavior.
Supported flags are described in Table 9.24. For a pattern containing parenthesized subexpressions,
subexpr is an integer indicating which subexpression is of interest: the result is the substring match-
ing that subexpression. Subexpressions are numbered in the order of their leading parentheses. When
subexpr is omitted or zero, the result is the whole match regardless of parenthesized subexpressions.

Some examples:
regexp_substr('number of your street, town zip, FR', '[^,]+', 1, 2)
 town zip
regexp_substr('ABCDEFGHI', '(c..)(...)', 1, 1, 'i', 2)
 FGH

223

Functions and Operators

9.7.3.1. Regular Expression Details
PostgreSQL's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both forms,
and also implements some extensions that are not in the POSIX standard, but have become widely used
due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset
of EREs, but BREs have several notational incompatibilities (as well as being much more limited). We
first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how
BREs differ.

Note
PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc.; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.17. The possible quantifiers and their meanings are shown
in Table 9.18.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.19; some more constraints are described later.

Table 9.17. Regular Expression Atoms

Atom Description
(re) (where re is any regular expression) matches a

match for re, with the match noted for possible
reporting

(?: re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs on-
ly)

. matches any single character
[chars] a bracket expression, matching any one of the

chars (see Section 9.7.3.2 for more detail)
\k (where k is a non-alphanumeric character) match-

es that character taken as an ordinary character,
e.g., \\ matches a backslash character

\c where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed

224

Functions and Operators

Atom Description
by a digit, it is the beginning of a bound (see be-
low)

x where x is a single character with no other signifi-
cance, matches that character

An RE cannot end with a backslash (\).

Note
If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.18. Regular Expression Quantifiers

Quantifier Matches
* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m, n} a sequence of m through n (inclusive) matches of

the atom; m cannot exceed n
*? non-greedy version of *
+? non-greedy version of +
?? non-greedy version of ?
{m}? non-greedy version of {m}
{m,}? non-greedy version of {m,}
{m, n}? non-greedy version of {m, n}

The forms using {...} are known as bounds. The numbers m and n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches.
See Section 9.7.3.5 for more detail.

Note
A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier cannot
begin an expression or subexpression or follow ^ or |.

Table 9.19. Regular Expression Constraints

Constraint Description
^ matches at the beginning of the string
$ matches at the end of the string

225

Functions and Operators

Constraint Description
(?= re) positive lookahead matches at any point where a

substring matching re begins (AREs only)
(?! re) negative lookahead matches at any point where

no substring matching re begins (AREs only)
(?<= re) positive lookbehind matches at any point where a

substring matching re ends (AREs only)
(?<! re) negative lookbehind matches at any point where

no substring matching re ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions
A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ^, it matches any single character not from the rest of
the list. If two characters in the list are separated by -, this is shorthand for the full range of characters
between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It
is illegal for two ranges to share an endpoint, e.g., a-c-e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ^, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose it in [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]*c matches the first five characters of chchcc.

Note
PostgreSQL currently does not support multi-character collating elements. This information de-
scribes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and
.].) For example, if o and ^ are the members of an equivalence class, then [[=o=]], [[=^=]], and [o^]
are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all
characters belonging to that class. A character class cannot be used as an endpoint of a range. The POSIX
standard defines these character class names: alnum (letters and numeric digits), alpha (letters), blank
(space and tab), cntrl (control characters), digit (numeric digits), graph (printable characters except
space), lower (lower-case letters), print (printable characters including space), punct (punctuation),
space (any white space), upper (upper-case letters), and xdigit (hexadecimal digits). The behavior of
these standard character classes is generally consistent across platforms for characters in the 7-bit
ASCII set. Whether a given non-ASCII character is considered to belong to one of these classes depends
on the collation that is used for the regular-expression function or operator (see Section 23.2), or by

226

Functions and Operators

default on the database's LC_CTYPE locale setting (see Section 23.1). The classification of non-ASCII
characters can vary across platforms even in similarly-named locales. (But the C locale never considers
any non-ASCII characters to belong to any of these classes.) In addition to these standard character
classes, PostgreSQL defines the word character class, which is the same as alnum plus the underscore
(_) character, and the ascii character class, which contains exactly the 7-bit ASCII set.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined
as a sequence of word characters that is neither preceded nor followed by word characters. A word
character is any character belonging to the word character class, that is, any letter, digit, or underscore.
This is an extension, compatible with but not specified by POSIX 1003.2, and should be used with caution
in software intended to be portable to other systems. The constraint escapes described below are usually
preferable; they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes
Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs,
there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.20.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.22.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.23). For example, ([bc])\1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered
in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions. The
back reference considers only the string characters matched by the referenced subexpression, not any
constraints contained in it. For example, (^\d)\1 will match 22.

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description
\a alert (bell) character, as in C
\b backspace, as in C
\B synonym for backslash (\) to help reduce the need

for backslash doubling
\cX (where X is any character) the character whose

low-order 5 bits are the same as those of X, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C
\n newline, as in C
\r carriage return, as in C
\t horizontal tab, as in C

227

Functions and Operators

Escape Description
\uwxyz (where wxyz is exactly four hexadecimal digits)

the character whose hexadecimal value is 0xwxyz
\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal

digits) the character whose hexadecimal value is
0xstuvwxyz

\v vertical tab, as in C
\xhhh (where hhh is any sequence of hexadecimal digits)

the character whose hexadecimal value is 0xhhh (
a single character no matter how many hexadeci-
mal digits are used)

\0 the character whose value is 0 (the null byte)
\xy (where xy is exactly two octal digits, and is not a

back reference) the character whose octal value is
0xy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value
is 0xyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0–127) have meanings de-
pendent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode
code points, for example \u1234 means the character U+1234. For other multibyte encodings, charac-
ter-entry escapes usually just specify the concatenation of the byte values for the character. If the escape
value does not correspond to any legal character in the database encoding, no error will be raised, but
it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description
\d matches any digit, like [[:digit:]]
\s matches any whitespace character, like

[[:space:]]

\w matches any word character, like [[:word:]]
\D matches any non-digit, like [^[:digit:]]
\S matches any non-whitespace character, like

[^[:space:]]

\W matches any non-word character, like
[^[:word:]]

The class-shorthand escapes also work within bracket expressions, although the definitions shown above
are not quite syntactically valid in that context. For example, [a-c\d] is equivalent to [a-c[:digit:]].

Table 9.22. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see

Section 9.7.3.5 for how this differs from ^)
\m matches only at the beginning of a word

228

Functions and Operators

Escape Description
\M matches only at the end of a word
\y matches only at the beginning or end of a word
\Y matches only at a point that is not the beginning

or end of a word
\Z matches only at the end of the string (see Sec-

tion 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description
\m (where m is a nonzero digit) a back reference to

the m'th subexpression
\mnn (where m is a nonzero digit, and nn is some more

digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn'th subex-
pression

Note
There is an inherent ambiguity between octal character-entry escapes and back references, which
is resolved by the following heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number is in the legal range for a back reference), and otherwise
is taken as octal.

9.7.3.4. Regular Expression Metasyntax
In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***:, the rest of the
RE is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the flags parameter to a regex
function.) If an RE begins with ***=, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously deter-
mined options — in particular, they can override the case-sensitivity behavior implied by a regex oper-
ator, or the flags parameter to a regex function. The available option letters are shown in Table 9.24.
Note that these same option letters are used in the flags parameters of regex functions.

Table 9.24. ARE Embedded-Option Letters

Option Description
b rest of RE is a BRE
c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

229

Functions and Operators

Option Description
i case-insensitive matching (see Section 9.7.3.5) (

overrides operator type)
m historical synonym for n
n newline-sensitive matching (see Section 9.7.3.5)
p partial newline-sensitive matching (see Sec-

tion 9.7.3.5)
q rest of RE is a literal (“quoted”) string, all ordi-

nary characters
s non-newline-sensitive matching (default)
t tight syntax (default; see below)
w inverse partial newline-sensitive (“weird”) match-

ing (see Section 9.7.3.5)
x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the ***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:
• a white-space character or # preceded by \ is retained
• white space or # within a bracket expression is retained
• white space and comments cannot appear within multi-character symbols, such as (?:
For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of mul-
ti-character symbols, like (?:. Such comments are more a historical artifact than a useful facility, and
their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial ***= director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules
In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:
• Most atoms, and all constraints, have no greediness attribute (because they cannot match variable

amounts of text anyway).
• Adding parentheses around an RE does not change its greediness.
• A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly

none) as the atom itself.
• A quantified atom with other normal quantifiers (including {m,n} with m equal to n) is greedy

(prefers longest match).

230

Functions and Operators

• A quantified atom with a non-greedy quantifier (including {m,n}? with m equal to n) is non-greedy
(prefers shortest match).

• A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

• An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpres-
sion is determined on the basis of the greediness attribute of that subexpression, with subexpressions
starting earlier in the RE taking priority over ones starting later.

An example of what this means:
SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
Result: 123
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
Result: 1

In the first case, the RE as a whole is greedy because Y* is greedy. It can match beginning at the Y, and
it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of
that, or 123. In the second case, the RE as a whole is non-greedy because Y*? is non-greedy. It can match
beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]{1,3} is greedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1,1}? can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:
SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
Result: {abc0123,4,xyz}

That didn't work: the first .* is greedy so it “eats” as much as it can, leaving the \d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:
SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)');
Result: {abc,0,""}

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:
SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}');
Result: {abc,01234,xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexi-
bility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not col-
lating elements. An empty string is considered longer than no match at all. For example: bb* matches
the three middle characters of abbbc; (week|wee)(night|knights) matches all ten characters of week-
nights; when (.*).* is matched against abc the parenthesized subexpression matches all three char-
acters; and when (a*)* is matched against bc both the whole RE and the parenthesized subexpression
match an empty string.

231

Functions and Operators

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g.,
x becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to
the bracket expression, e.g., [x] becomes [xX] and [^x] becomes [^xX].

If newline-sensitive matching is specified, . and bracket expressions using ̂ will never match the newline
character (so that matches will not cross lines unless the RE explicitly includes a newline) and ̂ and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \A and \Z continue to match beginning or end of string
only. Also, the character class shorthands \D and \W will match a newline regardless of this mode. (Before
PostgreSQL 14, they did not match newlines when in newline-sensitive mode. Write [^[:digit:]] or
[^[:word:]] to get the old behavior.)

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with new-
line-sensitive matching, but not ^ and $.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility
No particular limit is imposed on the length of REs in this implementation. However, programs intended
to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its special
significance inside bracket expressions. All other ARE features use syntax which is illegal or has unde-
fined or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX
syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special
treatment for a trailing newline, the addition of complemented bracket expressions to the things affected
by newline-sensitive matching, the restrictions on parentheses and back references in lookahead/look-
behind constraints, and the longest/shortest-match (rather than first-match) matching semantics.

9.7.3.7. Basic Regular Expressions
BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \(and \), with (and) by them-
selves ordinary characters. ̂ is an ordinary character except at the beginning of the RE or the beginning
of a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of
a parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE
or the beginning of a parenthesized subexpression (after a possible leading ^). Finally, single-digit back
references are available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other
escapes are available in BREs.

9.7.3.8. Differences from SQL Standard and XQuery
Since SQL:2008, the SQL standard includes regular expression operators and functions that performs
pattern matching according to the XQuery regular expression standard:
• LIKE_REGEX

• OCCURRENCES_REGEX

• POSITION_REGEX

• SUBSTRING_REGEX

• TRANSLATE_REGEX

232

Functions and Operators

PostgreSQL does not currently implement these operators and functions. You can get approximately
equivalent functionality in each case as shown in Table 9.25. (Various optional clauses on both sides
have been omitted in this table.)

Table 9.25. Regular Expression Functions Equivalencies

SQL standard PostgreSQL
string LIKE_REGEX pattern regexp_like(string, pattern) or string ~

pattern

OCCURRENCES_REGEX(pattern IN string) regexp_count(string, pattern)

POSITION_REGEX(pattern IN string) regexp_instr(string, pattern)

SUBSTRING_REGEX(pattern IN string) regexp_substr(string, pattern)

TRANSLATE_REGEX(pattern IN string WITH
replacement)

regexp_replace(string, pattern, re-
placement)

Regular expression functions similar to those provided by PostgreSQL are also available in a number of
other SQL implementations, whereas the SQL-standard functions are not as widely implemented. Some
of the details of the regular expression syntax will likely differ in each implementation.

The SQL-standard operators and functions use XQuery regular expressions, which are quite close to the
ARE syntax described above. Notable differences between the existing POSIX-based regular-expression
feature and XQuery regular expressions include:
• XQuery character class subtraction is not supported. An example of this feature is using the follow-

ing to match only English consonants: [a-z-[aeiou]].
• XQuery character class shorthands \c, \C, \i, and \I are not supported.
• XQuery character class elements using \p{UnicodeProperty} or the inverse \P{UnicodeProperty}

are not supported.
• POSIX interprets character classes such as \w (see Table 9.21) according to the prevailing locale

(which you can control by attaching a COLLATE clause to the operator or function). XQuery specifies
these classes by reference to Unicode character properties, so equivalent behavior is obtained only
with a locale that follows the Unicode rules.

• The SQL standard (not XQuery itself) attempts to cater for more variants of “newline” than POSIX
does. The newline-sensitive matching options described above consider only ASCII NL (\n) to be a
newline, but SQL would have us treat CR (\r), CRLF (\r\n) (a Windows-style newline), and some
Unicode-only characters like LINE SEPARATOR (U+2028) as newlines as well. Notably, . and \s
should count \r\n as one character not two according to SQL.

• Of the character-entry escapes described in Table 9.20, XQuery supports only \n, \r, and \t.
• XQuery does not support the [:name:] syntax for character classes within bracket expressions.
• XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes de-

scribed in Table 9.22.
• The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.
• The regular expression flag letters defined by XQuery are related to but not the same as the option

letters for POSIX (Table 9.24). While the i and q options behave the same, others do not:
• XQuery's s (allow dot to match newline) and m (allow ^ and $ to match at newlines) flags pro-

vide access to the same behaviors as POSIX's n, p and w flags, but they do not match the behav-
ior of POSIX's s and m flags. Note in particular that dot-matches-newline is the default behavior
in POSIX but not XQuery.

• XQuery's x (ignore whitespace in pattern) flag is noticeably different from POSIX's expand-
ed-mode flag. POSIX's x flag also allows # to begin a comment in the pattern, and POSIX will not
ignore a whitespace character after a backslash.

233

Functions and Operators

9.8. Data Type Formatting Functions
The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.26 lists them. These functions all follow a common calling conven-
tion: the first argument is the value to be formatted and the second argument is a template that defines
the output or input format.

Table 9.26. Formatting Functions

Function
Description
Example(s)

to_char (timestamp, text) → text
to_char (timestamp with time zone, text) → text

Converts time stamp to string according to the given format.
to_char(timestamp '2002-04-20 17:31:12.66', 'HH12:MI:SS') → 05:31:12

to_char (interval, text) → text
Converts interval to string according to the given format.
to_char(interval '15h 2m 12s', 'HH24:MI:SS') → 15:02:12

to_char (numeric_type , text) → text
Converts number to string according to the given format; available for integer, bigint, nu-
meric, real, double precision.
to_char(125, '999') → 125
to_char(125.8::real, '999D9') → 125.8
to_char(-125.8, '999D99S') → 125.80-

to_date (text, text) → date
Converts string to date according to the given format.
to_date('05 Dec 2000', 'DD Mon YYYY') → 2000-12-05

to_number (text, text) → numeric
Converts string to numeric according to the given format.
to_number('12,454.8-', '99G999D9S') → -12454.8

to_timestamp (text, text) → timestamp with time zone
Converts string to time stamp according to the given format. (See also to_timestamp(dou-
ble precision) in Table 9.33.)
to_timestamp('05 Dec 2000', 'DD Mon YYYY') → 2000-12-05 00:00:00-05

Tip
to_timestamp and to_date exist to handle input formats that cannot be converted by simple cast-
ing. For most standard date/time formats, simply casting the source string to the required data
type works, and is much easier. Similarly, to_number is unnecessary for standard numeric repre-
sentations.

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns iden-
tify the values to be supplied by the input data string. If there are characters in the template string that
are not template patterns, the corresponding characters in the input data string are simply skipped over
(whether or not they are equal to the template string characters).

234

Functions and Operators

Table 9.27 shows the template patterns available for formatting date and time values.

Table 9.27. Template Patterns for Date/Time Formatting

Pattern Description
HH hour of day (01–12)
HH12 hour of day (01–12)
HH24 hour of day (00–23)
MI minute (00–59)
SS second (00–59)
MS millisecond (000–999)
US microsecond (000000–999999)
FF1 tenth of second (0–9)
FF2 hundredth of second (00–99)
FF3 millisecond (000–999)
FF4 tenth of a millisecond (0000–9999)
FF5 hundredth of a millisecond (00000–99999)
FF6 microsecond (000000–999999)
SSSS, SSSSS seconds past midnight (0–86399)
AM, am, PM or pm meridiem indicator (without periods)
A.M., a.m., P.M. or p.m. meridiem indicator (with periods)
Y,YYY year (4 or more digits) with comma
YYYY year (4 or more digits)
YYY last 3 digits of year
YY last 2 digits of year
Y last digit of year
IYYY ISO 8601 week-numbering year (4 or more digits)
IYY last 3 digits of ISO 8601 week-numbering year
IY last 2 digits of ISO 8601 week-numbering year
I last digit of ISO 8601 week-numbering year
BC, bc, AD or ad era indicator (without periods)
B.C., b.c., A.D. or a.d. era indicator (with periods)
MONTH full upper case month name (blank-padded to 9

chars)
Month full capitalized month name (blank-padded to 9

chars)
month full lower case month name (blank-padded to 9

chars)
MON abbreviated upper case month name (3 chars in

English, localized lengths vary)
Mon abbreviated capitalized month name (3 chars in

English, localized lengths vary)
mon abbreviated lower case month name (3 chars in

English, localized lengths vary)
MM month number (01–12)

235

Functions and Operators

Pattern Description
DAY full upper case day name (blank-padded to 9

chars)
Day full capitalized day name (blank-padded to 9

chars)
day full lower case day name (blank-padded to 9

chars)
DY abbreviated upper case day name (3 chars in Eng-

lish, localized lengths vary)
Dy abbreviated capitalized day name (3 chars in Eng-

lish, localized lengths vary)
dy abbreviated lower case day name (3 chars in Eng-

lish, localized lengths vary)
DDD day of year (001–366)
IDDD day of ISO 8601 week-numbering year (001–371;

day 1 of the year is Monday of the first ISO week)
DD day of month (01–31)
D day of the week, Sunday (1) to Saturday (7)
ID ISO 8601 day of the week, Monday (1) to Sunday (

7)
W week of month (1–5) (the first week starts on the

first day of the month)
WW week number of year (1–53) (the first week starts

on the first day of the year)
IW week number of ISO 8601 week-numbering year (

01–53; the first Thursday of the year is in week 1)
CC century (2 digits) (the twenty-first century starts

on 2001-01-01)
J Julian Date (integer days since November 24,

4714 BC at local midnight; see Section B.7)
Q quarter
RM month in upper case Roman numerals (I–XII;

I=January)
rm month in lower case Roman numerals (i–xii; i=Jan-

uary)
TZ upper case time-zone abbreviation
tz lower case time-zone abbreviation
TZH time-zone hours
TZM time-zone minutes
OF time-zone offset from UTC (HH or HH:MM)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the FM modifier. Table 9.28 shows the modifier patterns for date/time formatting.

Table 9.28. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress leading ze-

roes and padding blanks)
FMMonth

236

Functions and Operators

Modifier Description Example
TH suffix upper case ordinal number suffix DDTH, e.g., 12TH
th suffix lower case ordinal number suffix DDth, e.g., 12th
FX prefix fixed format global option (see

usage notes)
FX Month DD Day

TM prefix translation mode (use localized
day and month names based on
lc_time)

TMMonth

SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:
• FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output

of a pattern be fixed-width. In PostgreSQL, FM modifies only the next specification, while in Oracle
FM affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

• TM suppresses trailing blanks whether or not FM is specified.
• to_timestamp and to_date ignore letter case in the input; so for example MON, Mon, and mon all ac-

cept the same strings. When using the TM modifier, case-folding is done according to the rules of
the function's input collation (see Section 23.2).

• to_timestamp and to_date skip multiple blank spaces at the beginning of the input string
and around date and time values unless the FX option is used. For example, to_timestam-
p(' 2000 JUN', 'YYYY MON') and to_timestamp('2000 - JUN', 'YYYY-MON') work, but
to_timestamp('2000 JUN', 'FXYYYY MON') returns an error because to_timestamp expects
only a single space. FX must be specified as the first item in the template.

• A separator (a space or non-letter/non-digit character) in the template string of to_timestamp and
to_date matches any single separator in the input string or is skipped, unless the FX option is used.
For example, to_timestamp('2000JUN', 'YYYY///MON') and to_timestamp('2000/JUN', 'YYYY
MON') work, but to_timestamp('2000//JUN', 'YYYY/MON') returns an error because the number
of separators in the input string exceeds the number of separators in the template.

If FX is specified, a separator in the template string matches exactly one character in the input
string. But note that the input string character is not required to be the same as the separator
from the template string. For example, to_timestamp('2000/JUN', 'FXYYYY MON') works, but
to_timestamp('2000/JUN', 'FXYYYY MON') returns an error because the second space in the
template string consumes the letter J from the input string.

• A TZH template pattern can match a signed number. Without the FX option, minus signs may be am-
biguous, and could be interpreted as a separator. This ambiguity is resolved as follows: If the num-
ber of separators before TZH in the template string is less than the number of separators before
the minus sign in the input string, the minus sign is interpreted as part of TZH. Otherwise, the mi-
nus sign is considered to be a separator between values. For example, to_timestamp('2000 -10',
'YYYY TZH') matches -10 to TZH, but to_timestamp('2000 -10', 'YYYY TZH') matches 10 to
TZH.

• Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains template patterns. For
example, in '"Hello Year "YYYY', the YYYY will be replaced by the year data, but the single Y in
Year will not be. In to_date, to_number, and to_timestamp, literal text and double-quoted strings
result in skipping the number of characters contained in the string; for example "XX" skips two in-
put characters (whether or not they are XX).

Tip
Prior to PostgreSQL 12, it was possible to skip arbitrary text in the input string using non-let-
ter or non-digit characters. For example, to_timestamp('2000y6m1d', 'yyyy-MM-DD') used

237

Functions and Operators

to work. Now you can only use letter characters for this purpose. For example, to_timestam-
p('2000y6m1d', 'yyyytMMtDDt') and to_timestamp('2000y6m1d', 'yyyy"y"MM"m"DD"d"')
skip y, m, and d.

• If you want to have a double quote in the output you must precede it with a backslash, for example
'\"YYYY Month\"'. Backslashes are not otherwise special outside of double-quoted strings. With-
in a double-quoted string, a backslash causes the next character to be taken literally, whatever it is
(but this has no special effect unless the next character is a double quote or another backslash).

• In to_timestamp and to_date, if the year format specification is less than four digits, e.g., YYY, and
the supplied year is less than four digits, the year will be adjusted to be nearest to the year 2020,
e.g., 95 becomes 1995.

• In to_timestamp and to_date, negative years are treated as signifying BC. If you write both a neg-
ative year and an explicit BC field, you get AD again. An input of year zero is treated as 1 BC.

• In to_timestamp and to_date, the YYYY conversion has a restriction when processing years with
more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date('200001130',
'YYYYMMDD') will be interpreted as a 4-digit year; instead use a non-digit separator after the year,
like to_date('20000-1130', 'YYYY-MMDD') or to_date('20000Nov30', 'YYYYMonDD').

• In to_timestamp and to_date, the CC (century) field is accepted but ignored if there is a YYY, YYYY
or Y,YYY field. If CC is used with YY or Y then the result is computed as that year in the specified
century. If the century is specified but the year is not, the first year of the century is assumed.

• In to_timestamp and to_date, weekday names or numbers (DAY, D, and related field types) are ac-
cepted but are ignored for purposes of computing the result. The same is true for quarter (Q) fields.

• In to_timestamp and to_date, an ISO 8601 week-numbering date (as distinct from a Gregorian
date) can be specified in one of two ways:

• Year, week number, and weekday: for example to_date('2006-42-4', 'IYYY-IW-ID') returns
the date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

• Year and day of year: for example to_date('2006-291', 'IYYY-IDDD') also returns
2006-10-19.

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date
fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year, the
ISO week has no meaning.

Caution
While to_date will reject a mixture of Gregorian and ISO week-numbering date fields,
to_char will not, since output format specifications like YYYY-MM-DD (IYYY-IDDD) can be
useful. But avoid writing something like IYYY-MM-DD; that would yield surprising results near
the start of the year. (See Section 9.9.1 for more information.)

• In to_timestamp, millisecond (MS) or microsecond (US) fields are used as the seconds digits after
the decimal point. For example to_timestamp('12.3', 'SS.MS') is not 3 milliseconds, but 300,
because the conversion treats it as 12 + 0.3 seconds. So, for the format SS.MS, the input values
12.3, 12.30, and 12.300 specify the same number of milliseconds. To get three milliseconds, one
must write 12.003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp('15:12:02.020.001230', 'HH24:MI:SS.MS.US')
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230 sec-
onds.

238

Functions and Operators

• to_char(..., 'ID')'s day of the week numbering matches the extract(isodow from ...) func-
tion, but to_char(..., 'D')'s does not match extract(dow from ...)'s day numbering.

• to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero hours and
36 hours both output as 12, while HH24 outputs the full hour value, which can exceed 23 in an in-
terval value.

Table 9.29 shows the template patterns available for formatting numeric values.

Table 9.29. Template Patterns for Numeric Formatting

Pattern Description
9 digit position (can be dropped if insignificant)
0 digit position (will not be dropped, even if insignif-

icant)
. (period) decimal point
, (comma) group (thousands) separator
PR negative value in angle brackets
S sign anchored to number (uses locale)
L currency symbol (uses locale)
D decimal point (uses locale)
G group separator (uses locale)
MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position
RN or rn Roman numeral (values between 1 and 3999)
TH or th ordinal number suffix
V shift specified number of digits (see notes)
EEEE exponent for scientific notation

Usage notes for numeric formatting:

• 0 specifies a digit position that will always be printed, even if it contains a leading/trailing zero. 9
also specifies a digit position, but if it is a leading zero then it will be replaced by a space, while if it
is a trailing zero and fill mode is specified then it will be deleted. (For to_number(), these two pat-
tern characters are equivalent.)

• If the format provides fewer fractional digits than the number being formatted, to_char() will
round the number to the specified number of fractional digits.

• The pattern characters S, L, D, and G represent the sign, currency symbol, decimal point, and thou-
sands separator characters defined by the current locale (see lc_monetary and lc_numeric). The
pattern characters period and comma represent those exact characters, with the meanings of deci-
mal point and thousands separator, regardless of locale.

• If no explicit provision is made for a sign in to_char()'s pattern, one column will be reserved for
the sign, and it will be anchored to (appear just left of) the number. If S appears just left of some
9's, it will likewise be anchored to the number.

• A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char(-12,
'MI9999') produces '- 12' but to_char(-12, 'S9999') produces ' -12'. (The Oracle imple-
mentation does not allow the use of MI before 9, but rather requires that 9 precede MI.)

• TH does not convert values less than zero and does not convert fractional numbers.

239

Functions and Operators

• PL, SG, and TH are PostgreSQL extensions.

• In to_number, if non-data template patterns such as L or TH are used, the corresponding number of
input characters are skipped, whether or not they match the template pattern, unless they are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-data
characters.

• V with to_char multiplies the input values by 10^n, where n is the number of digits following V. V
with to_number divides in a similar manner. The V can be thought of as marking the position of an
implicit decimal point in the input or output string. to_char and to_number do not support the use
of V combined with a decimal point (e.g., 99.9V99 is not allowed).

• EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format
string (e.g., 9.99EEEE is a valid pattern).

• In to_number(), the RN pattern converts Roman numerals (in standard form) to numbers. Input is
case-insensitive, so RN and rn are equivalent. RN cannot be used in combination with any other for-
matting patterns or modifiers except FM, which is applicable only in to_char() and is ignored in
to_number().

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM99.99 is
the 99.99 pattern with the FM modifier. Table 9.30 shows the modifier patterns for numeric formatting.

Table 9.30. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example
FM prefix fill mode (suppress trailing ze-

roes and padding blanks)
FM99.99

TH suffix upper case ordinal number suffix 999TH

th suffix lower case ordinal number suffix 999th

Table 9.31 shows some examples of the use of the to_char function.

Table 9.31. to_char Examples

Expression Result
to_char(current_timestamp, 'Day,
 DD HH12:MI:SS')

'Tuesday , 06 05:39:18'

to_char(current_timestamp, 'FMDay,
 FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

to_char(current_timestamp AT TIME ZONE
'UTC', 'YYYY-MM-DD"T"HH24:MI:SS"Z"')

'2022-12-06T05:39:18Z', ISO 8601 extended for-
mat

to_char(-0.1, '99.99') ' -.10'

to_char(-0.1, 'FM9.99') '-.1'

to_char(-0.1, 'FM90.99') '-0.1'

to_char(0.1, '0.9') ' 0.1'

to_char(12, '9990999.9') ' 0012.0'

to_char(12, 'FM9990999.9') '0012.'

to_char(485, '999') ' 485'

to_char(-485, '999') '-485'

to_char(485, '9 9 9') ' 4 8 5'

to_char(1485, '9,999') ' 1,485'

240

Functions and Operators

Expression Result
to_char(1485, '9G999') ' 1 485'

to_char(148.5, '999.999') ' 148.500'

to_char(148.5, 'FM999.999') '148.5'

to_char(148.5, 'FM999.990') '148.500'

to_char(148.5, '999D999') ' 148,500'

to_char(3148.5, '9G999D999') ' 3 148,500'

to_char(-485, '999S') '485-'

to_char(-485, '999MI') '485-'

to_char(485, '999MI') '485 '

to_char(485, 'FM999MI') '485'

to_char(485, 'PL999') '+485'

to_char(485, 'SG999') '+485'

to_char(-485, 'SG999') '-485'

to_char(-485, '9SG99') '4-85'

to_char(-485, '999PR') '<485>'

to_char(485, 'L999') 'DM 485'

to_char(485, 'RN') ' CDLXXXV'

to_char(485, 'FMRN') 'CDLXXXV'

to_char(5.2, 'FMRN') 'V'

to_char(482, '999th') ' 482nd'

to_char(485, '"Good number:"999') 'Good number: 485'

to_char(485.8,
'"Pre:"999" Post:" .999')

'Pre: 485 Post: .800'

to_char(12, '99V999') ' 12000'

to_char(12.4, '99V999') ' 12400'

to_char(12.45, '99V9') ' 125'

to_char(0.0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions and Operators
Table 9.33 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9.32 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information
on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types.
Dates and timestamps (with or without time zone) are all comparable, while times (with or without time
zone) and intervals can only be compared to other values of the same data type. When comparing a
timestamp without time zone to a timestamp with time zone, the former value is assumed to be given in
the time zone specified by the TimeZone configuration parameter, and is rotated to UTC for comparison
to the latter value (which is already in UTC internally). Similarly, a date value is assumed to represent
midnight in the TimeZone zone when comparing it to a timestamp.

All the functions and operators described below that take time or timestamp inputs actually come in
two variants: one that takes time with time zone or timestamp with time zone, and one that takes
time without time zone or timestamp without time zone. For brevity, these variants are not shown

241

Functions and Operators

separately. Also, the + and * operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9.32. Date/Time Operators

Operator
Description
Example(s)

date + integer → date
Add a number of days to a date
date '2001-09-28' + 7 → 2001-10-05

date + interval → timestamp
Add an interval to a date
date '2001-09-28' + interval '1 hour' → 2001-09-28 01:00:00

date + time → timestamp
Add a time-of-day to a date
date '2001-09-28' + time '03:00' → 2001-09-28 03:00:00

interval + interval → interval
Add intervals
interval '1 day' + interval '1 hour' → 1 day 01:00:00

timestamp + interval → timestamp
Add an interval to a timestamp
timestamp '2001-09-28 01:00' + interval '23 hours' → 2001-09-29 00:00:00

time + interval → time
Add an interval to a time
time '01:00' + interval '3 hours' → 04:00:00

- interval → interval
Negate an interval
- interval '23 hours' → -23:00:00

date - date → integer
Subtract dates, producing the number of days elapsed
date '2001-10-01' - date '2001-09-28' → 3

date - integer → date
Subtract a number of days from a date
date '2001-10-01' - 7 → 2001-09-24

date - interval → timestamp
Subtract an interval from a date
date '2001-09-28' - interval '1 hour' → 2001-09-27 23:00:00

time - time → interval
Subtract times
time '05:00' - time '03:00' → 02:00:00

time - interval → time
Subtract an interval from a time
time '05:00' - interval '2 hours' → 03:00:00

timestamp - interval → timestamp
Subtract an interval from a timestamp
timestamp '2001-09-28 23:00' - interval '23 hours' → 2001-09-28 00:00:00

242

Functions and Operators

Operator
Description
Example(s)

interval - interval → interval
Subtract intervals
interval '1 day' - interval '1 hour' → 1 day -01:00:00

timestamp - timestamp → interval
Subtract timestamps (converting 24-hour intervals into days, similarly to justify_hours())
timestamp '2001-09-29 03:00' - timestamp '2001-07-27 12:00' → 63 days 15:00:00

interval * double precision → interval
Multiply an interval by a scalar
interval '1 second' * 900 → 00:15:00
interval '1 day' * 21 → 21 days
interval '1 hour' * 3.5 → 03:30:00

interval / double precision → interval
Divide an interval by a scalar
interval '1 hour' / 1.5 → 00:40:00

Table 9.33. Date/Time Functions

Function
Description
Example(s)

age (timestamp, timestamp) → interval
Subtract arguments, producing a “symbolic” result that uses years and months, rather than
just days
age(timestamp '2001-04-10', timestamp '1957-06-13') → 43 years 9 mons 27 days

age (timestamp) → interval
Subtract argument from current_date (at midnight)
age(timestamp '1957-06-13') → 62 years 6 mons 10 days

clock_timestamp () → timestamp with time zone
Current date and time (changes during statement execution); see Section 9.9.5
clock_timestamp() → 2019-12-23 14:39:53.662522-05

current_date → date
Current date; see Section 9.9.5
current_date → 2019-12-23

current_time → time with time zone
Current time of day; see Section 9.9.5
current_time → 14:39:53.662522-05

current_time (integer) → time with time zone
Current time of day, with limited precision; see Section 9.9.5
current_time(2) → 14:39:53.66-05

current_timestamp → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.5
current_timestamp → 2019-12-23 14:39:53.662522-05

current_timestamp (integer) → timestamp with time zone
Current date and time (start of current transaction), with limited precision; see Section 9.9.5

243

Functions and Operators

Function
Description
Example(s)
current_timestamp(0) → 2019-12-23 14:39:53-05

date_add (timestamp with time zone, interval [, text]) → timestamp with time zone
Add an interval to a timestamp with time zone, computing times of day and daylight-sav-
ings adjustments according to the time zone named by the third argument, or the current
TimeZone setting if that is omitted. The form with two arguments is equivalent to the time-
stamp with time zone + interval operator.
date_add('2021-10-31 00:00:00+02'::timestamptz, '1 day'::interval, 'Eu-

rope/Warsaw') → 2021-10-31 23:00:00+00

date_bin (interval, timestamp, timestamp) → timestamp
Bin input into specified interval aligned with specified origin; see Section 9.9.3
date_bin('15 minutes', timestamp '2001-02-16 20:38:40', timestamp

'2001-02-16 20:05:00') → 2001-02-16 20:35:00

date_part (text, timestamp) → double precision
Get timestamp subfield (equivalent to extract); see Section 9.9.1
date_part('hour', timestamp '2001-02-16 20:38:40') → 20

date_part (text, interval) → double precision
Get interval subfield (equivalent to extract); see Section 9.9.1
date_part('month', interval '2 years 3 months') → 3

date_subtract (timestamp with time zone, interval [, text]) → timestamp with time zone
Subtract an interval from a timestamp with time zone, computing times of day and day-
light-savings adjustments according to the time zone named by the third argument, or the
current TimeZone setting if that is omitted. The form with two arguments is equivalent to the
timestamp with time zone - interval operator.
date_subtract('2021-11-01 00:00:00+01'::timestamptz, '1 day'::interval,

'Europe/Warsaw') → 2021-10-30 22:00:00+00

date_trunc (text, timestamp) → timestamp
Truncate to specified precision; see Section 9.9.2
date_trunc('hour', timestamp '2001-02-16 20:38:40') → 2001-02-16 20:00:00

date_trunc (text, timestamp with time zone, text) → timestamp with time zone
Truncate to specified precision in the specified time zone; see Section 9.9.2
date_trunc('day', timestamptz '2001-02-16 20:38:40+00', 'Australia/Sydney')

→ 2001-02-16 13:00:00+00

date_trunc (text, interval) → interval
Truncate to specified precision; see Section 9.9.2
date_trunc('hour', interval '2 days 3 hours 40 minutes') → 2 days 03:00:00

extract (field from timestamp) → numeric
Get timestamp subfield; see Section 9.9.1
extract(hour from timestamp '2001-02-16 20:38:40') → 20

extract (field from interval) → numeric
Get interval subfield; see Section 9.9.1
extract(month from interval '2 years 3 months') → 3

isfinite (date) → boolean
Test for finite date (not +/-infinity)
isfinite(date '2001-02-16') → true

244

Functions and Operators

Function
Description
Example(s)

isfinite (timestamp) → boolean
Test for finite timestamp (not +/-infinity)
isfinite(timestamp 'infinity') → false

isfinite (interval) → boolean
Test for finite interval (not +/-infinity)
isfinite(interval '4 hours') → true

justify_days (interval) → interval
Adjust interval, converting 30-day time periods to months
justify_days(interval '1 year 65 days') → 1 year 2 mons 5 days

justify_hours (interval) → interval
Adjust interval, converting 24-hour time periods to days
justify_hours(interval '50 hours 10 minutes') → 2 days 02:10:00

justify_interval (interval) → interval
Adjust interval using justify_days and justify_hours , with additional sign adjustments
justify_interval(interval '1 mon -1 hour') → 29 days 23:00:00

localtime → time
Current time of day; see Section 9.9.5
localtime → 14:39:53.662522

localtime (integer) → time
Current time of day, with limited precision; see Section 9.9.5
localtime(0) → 14:39:53

localtimestamp → timestamp
Current date and time (start of current transaction); see Section 9.9.5
localtimestamp → 2019-12-23 14:39:53.662522

localtimestamp (integer) → timestamp
Current date and time (start of current transaction), with limited precision; see Section 9.9.5
localtimestamp(2) → 2019-12-23 14:39:53.66

make_date (year int, month int, day int) → date
Create date from year, month and day fields (negative years signify BC)
make_date(2013, 7, 15) → 2013-07-15

make_interval ([years int [, months int [, weeks int [, days int [, hours int [, mins int [, secs
double precision]]]]]]]) → interval
Create interval from years, months, weeks, days, hours, minutes and seconds fields, each of
which can default to zero
make_interval(days => 10) → 10 days

make_time (hour int, min int, sec double precision) → time
Create time from hour, minute and seconds fields
make_time(8, 15, 23.5) → 08:15:23.5

make_timestamp (year int, month int, day int, hour int, min int, sec double precision) →
timestamp
Create timestamp from year, month, day, hour, minute and seconds fields (negative years sig-
nify BC)
make_timestamp(2013, 7, 15, 8, 15, 23.5) → 2013-07-15 08:15:23.5

245

Functions and Operators

Function
Description
Example(s)

make_timestamptz (year int, month int, day int, hour int, min int, sec double precision [,
 timezone text]) → timestamp with time zone
Create timestamp with time zone from year, month, day, hour, minute and seconds fields (neg-
ative years signify BC). If timezone is not specified, the current time zone is used; the exam-
ples assume the session time zone is Europe/London
make_timestamptz(2013, 7, 15, 8, 15, 23.5) → 2013-07-15 08:15:23.5+01
make_timestamptz(2013, 7, 15, 8, 15, 23.5, 'America/New_York') →
2013-07-15 13:15:23.5+01

now () → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.5
now() → 2019-12-23 14:39:53.662522-05

statement_timestamp () → timestamp with time zone
Current date and time (start of current statement); see Section 9.9.5
statement_timestamp() → 2019-12-23 14:39:53.662522-05

timeofday () → text
Current date and time (like clock_timestamp , but as a text string); see Section 9.9.5
timeofday() → Mon Dec 23 14:39:53.662522 2019 EST

transaction_timestamp () → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.5
transaction_timestamp() → 2019-12-23 14:39:53.662522-05

to_timestamp (double precision) → timestamp with time zone
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time zone
to_timestamp(1284352323) → 2010-09-13 04:32:03+00

In addition to these functions, the SQL OVERLAPS operator is supported:

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date,
time, or time stamp followed by an interval. When a pair of values is provided, either the start or the end
can be written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time
period is considered to represent the half-open interval start <= time < end, unless start and end are
equal in which case it represents that single time instant. This means for instance that two time periods
with only an endpoint in common do not overlap.

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: true

246

Functions and Operators

When adding an interval value to (or subtracting an interval value from) a timestamp or timestamp
with time zone value, the months, days, and microseconds fields of the interval value are handled in
turn. First, a nonzero months field advances or decrements the date of the timestamp by the indicated
number of months, keeping the day of month the same unless it would be past the end of the new month,
in which case the last day of that month is used. (For example, March 31 plus 1 month becomes April
30, but March 31 plus 2 months becomes May 31.) Then the days field advances or decrements the date
of the timestamp by the indicated number of days. In both these steps the local time of day is kept the
same. Finally, if there is a nonzero microseconds field, it is added or subtracted literally. When doing
arithmetic on a timestamp with time zone value in a time zone that recognizes DST, this means that
adding or subtracting (say) interval '1 day' does not necessarily have the same result as adding or
subtracting interval '24 hours'. For example, with the session time zone set to America/Denver:

SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '1 day';
Result: 2005-04-03 12:00:00-06
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours';
Result: 2005-04-03 13:00:00-06

This happens because an hour was skipped due to a change in daylight saving time at 2005-04-03
02:00:00 in time zone America/Denver.

Note there can be ambiguity in the months field returned by age because different months have differ-
ent numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates when
calculating partial months. For example, age('2004-06-01', '2004-04-30') uses April to yield 1 mon
1 day, while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction is to convert each value to a number of seconds using EXTRACT(EPOCH FROM ...), then
subtract the results; this produces the number of seconds between the two values. This will adjust for
the number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction
of date or timestamp values with the “-” operator returns the number of days (24-hours) and hours/
minutes/seconds between the values, making the same adjustments. The age function returns years,
months, days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for
negative field values. The following queries illustrate the differences in these approaches. The sample
results were produced with timezone = 'US/Eastern'; there is a daylight saving time change between
the two dates used:

SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00');
Result: 10537200.000000
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'))
 / 60 / 60 / 24;
Result: 121.9583333333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00';
Result: 121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00');
Result: 4 mons

9.9.1. EXTRACT, date_part
EXTRACT(field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be
a value expression of type timestamp, date, time, or interval. (Timestamps and times can be with or
without time zone.) field is an identifier or string that selects what field to extract from the source
value. Not all fields are valid for every input data type; for example, fields smaller than a day cannot
be extracted from a date, while fields of a day or more cannot be extracted from a time. The extract
function returns values of type numeric.

The following are valid field names:

247

Functions and Operators

century

The century; for interval values, the year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21
SELECT EXTRACT(CENTURY FROM DATE '0001-01-01 AD');
Result: 1
SELECT EXTRACT(CENTURY FROM DATE '0001-12-31 BC');
Result: -1
SELECT EXTRACT(CENTURY FROM INTERVAL '2001 years');
Result: 20

day

The day of the month (1–31); for interval values, the number of days

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
Result: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

dow

The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

Note that extract's day of the week numbering differs from that of the to_char(..., 'D') function.

doy

The day of the year (1–365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47

epoch

For timestamp with time zone values, the number of seconds since 1970-01-01 00:00:00 UTC
(negative for timestamps before that); for date and timestamp values, the nominal number of sec-
onds since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules; for interval
values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08');
Result: 982384720.120000
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12');
Result: 982355920.120000
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800.000000

You can convert an epoch value back to a timestamp with time zone with to_timestamp:

SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00

248

Functions and Operators

Beware that applying to_timestamp to an epoch extracted from a date or timestamp value could
produce a misleading result: the result will effectively assume that the original value had been given
in UTC, which might not be the case.

hour

The hour field (0–23 in timestamps, unrestricted in intervals)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

isodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear

The ISO 8601 week-numbering year that the date falls in

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different from the Gregorian year.
See the week field for more information.

julian

The Julian Date corresponding to the date or timestamp. Timestamps that are not local midnight
result in a fractional value. See Section B.7 for more information.

SELECT EXTRACT(JULIAN FROM DATE '2006-01-01');
Result: 2453737
SELECT EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00');
Result: 2453737.50000000000000000000

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

millennium

The millennium; for interval values, the year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3
SELECT EXTRACT(MILLENNIUM FROM INTERVAL '2001 years');
Result: 2

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500.000

249

Functions and Operators

minute

The minutes field (0–59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

month

The number of the month within the year (1–12); for interval values, the number of months modulo
12 (0–11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

quarter

The quarter of the year (1–4) that the date is in; for interval values, the month field divided by 3
plus 1

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1
SELECT EXTRACT(QUARTER FROM INTERVAL '1 year 6 months');
Result: 3

second

The seconds field, including any fractional seconds

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40.000000
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.500000

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC. (Technically, PostgreSQL does not use UTC because
leap seconds are not handled.)

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on
Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday
of a year is in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or
53rd week of the previous year, and for late-December dates to be part of the first week of the next
year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the
52nd week of year 2005, while 2012-12-31 is part of the first week of 2013. It's recommended to use
the isoyear field together with week to get consistent results.

For interval values, the week field is simply the number of integral days divided by 7.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7

250

Functions and Operators

SELECT EXTRACT(WEEK FROM INTERVAL '13 days 24 hours');
Result: 1

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

When processing an interval value, the extract function produces field values that match the inter-
pretation used by the interval output function. This can produce surprising results if one starts with a
non-normalized interval representation, for example:
SELECT INTERVAL '80 minutes';
Result: 01:20:00
SELECT EXTRACT(MINUTES FROM INTERVAL '80 minutes');
Result: 20

Note
When the input value is +/-Infinity, extract returns +/-Infinity for monotonically-increasing fields
(epoch, julian, year, isoyear, decade, century, and millennium for timestamp inputs; epoch,
hour, day, year, decade, century, and millennium for interval inputs). For other fields, NULL
is returned. PostgreSQL versions before 9.6 returned zero for all cases of infinite input.

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:
date_part('field', source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract. For historical reasons, the date_part function returns values
of type double precision. This can result in a loss of precision in certain uses. Using extract is rec-
ommended instead.

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
Result: 4

9.9.2. date_trunc
The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc(field, source [, time_zone])

source is a value expression of type timestamp, timestamp with time zone, or interval. (Values of
type date and time are cast automatically to timestamp or interval, respectively.) field selects to
which precision to truncate the input value. The return value is likewise of type timestamp, timestamp
with time zone, or interval, and it has all fields that are less significant than the selected one set to
zero (or one, for day and month).

Valid values for field are:
microseconds
milliseconds
second
minute

251

Functions and Operators

hour
day
week
month
quarter
year
decade
century
millennium

When the input value is of type timestamp with time zone, the truncation is performed with respect
to a particular time zone; for example, truncation to day produces a value that is midnight in that zone.
By default, truncation is done with respect to the current TimeZone setting, but the optional time_zone
argument can be provided to specify a different time zone. The time zone name can be specified in any
of the ways described in Section 8.5.3.

A time zone cannot be specified when processing timestamp without time zone or interval inputs.
These are always taken at face value.

Examples (assuming the local time zone is America/New_York):
SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00
SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00');
Result: 2001-02-16 00:00:00-05
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00', 'Australia/
Sydney');
Result: 2001-02-16 08:00:00-05
SELECT date_trunc('hour', INTERVAL '3 days 02:47:33');
Result: 3 days 02:00:00

9.9.3. date_bin
The function date_bin “bins” the input timestamp into the specified interval (the stride) aligned with
a specified origin.

date_bin(stride, source, origin)

source is a value expression of type timestamp or timestamp with time zone. (Values of type date
are cast automatically to timestamp.) stride is a value expression of type interval. The return value
is likewise of type timestamp or timestamp with time zone, and it marks the beginning of the bin into
which the source is placed.

Examples:
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01');
Result: 2020-02-11 15:30:00
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01
 00:02:30');
Result: 2020-02-11 15:32:30

In the case of full units (1 minute, 1 hour, etc.), it gives the same result as the analogous date_trunc
call, but the difference is that date_bin can truncate to an arbitrary interval.

The stride interval must be greater than zero and cannot contain units of month or larger.

9.9.4. AT TIME ZONE and AT LOCAL
The AT TIME ZONE operator converts time stamp without time zone to/from time stamp with time zone,
and time with time zone values to different time zones. Table 9.34 shows its variants.

252

Functions and Operators

Table 9.34. AT TIME ZONE and AT LOCAL Variants

Operator
Description
Example(s)

timestamp without time zone AT TIME ZONE zone → timestamp with time zone
Converts given time stamp without time zone to time stamp with time zone, assuming the giv-
en value is in the named time zone.
timestamp '2001-02-16 20:38:40' at time zone 'America/Denver' → 2001-02-17
03:38:40+00

timestamp without time zone AT LOCAL → timestamp with time zone
Converts given time stamp without time zone to time stamp with the session's TimeZone value
as time zone.
timestamp '2001-02-16 20:38:40' at local → 2001-02-17 03:38:40+00

timestamp with time zone AT TIME ZONE zone → timestamp without time zone
Converts given time stamp with time zone to time stamp without time zone, as the time would
appear in that zone.
timestamp with time zone '2001-02-16 20:38:40-05' at time zone 'America/Denver'

→ 2001-02-16 18:38:40

timestamp with time zone AT LOCAL → timestamp without time zone
Converts given time stamp with time zone to time stamp without time zone, as the time would
appear with the session's TimeZone value as time zone.
timestamp with time zone '2001-02-16 20:38:40-05' at local → 2001-02-16 18:38:40

time with time zone AT TIME ZONE zone → time with time zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses
the currently active UTC offset for the named destination zone.
time with time zone '05:34:17-05' at time zone 'UTC' → 10:34:17+00

time with time zone AT LOCAL → time with time zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses
the currently active UTC offset for the session's TimeZone value.
Assuming the session's TimeZone is set to UTC:
time with time zone '05:34:17-05' at local → 10:34:17+00

In these expressions, the desired time zone zone can be specified either as a text value (e.g., 'Ameri-
ca/Los_Angeles') or as an interval (e.g., INTERVAL '-08:00'). In the text case, a time zone name can
be specified in any of the ways described in Section 8.5.3. The interval case is only useful for zones that
have fixed offsets from UTC, so it is not very common in practice.

The syntax AT LOCAL may be used as shorthand for AT TIME ZONE local, where local is the session's
TimeZone value.

Examples (assuming the current TimeZone setting is America/Los_Angeles):
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 18:38:40
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE 'America/
Chicago';
Result: 2001-02-16 05:38:40
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT LOCAL;
Result: 2001-02-16 17:38:40
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE '+05';
Result: 2001-02-16 20:38:40

253

Functions and Operators

SELECT TIME WITH TIME ZONE '20:38:40-05' AT LOCAL;
Result: 17:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current
TimeZone setting. The second example shifts the time stamp with time zone value to the specified time
zone, and returns the value without a time zone. This allows storage and display of values different
from the current TimeZone setting. The third example converts Tokyo time to Chicago time. The fourth
example shifts the time stamp with time zone value to the time zone currently specified by the TimeZone
setting and returns the value without a time zone. The fifth example demonstrates that the sign in a
POSIX-style time zone specification has the opposite meaning of the sign in an ISO-8601 datetime literal,
as described in Section 8.5.3 and Appendix B.

The sixth example is a cautionary tale. Due to the fact that there is no date associated with the input
value, the conversion is made using the current date of the session. Therefore, this static example may
show a wrong result depending on the time of the year it is viewed because 'America/Los_Angeles'
observes Daylight Savings Time.

The function timezone(zone, timestamp) is equivalent to the SQL-conforming construct timestamp AT
TIME ZONE zone.

The function timezone(zone, time) is equivalent to the SQL-conforming construct time AT TIME ZONE
zone.

The function timezone(timestamp) is equivalent to the SQL-conforming construct timestamp AT LOCAL.

The function timezone(time) is equivalent to the SQL-conforming construct time AT LOCAL.

9.9.5. Current Date/Time
PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and LOCALTIMESTAMP
deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a precision
parameter, which causes the result to be rounded to that many fractional digits in the seconds field.
Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05
SELECT CURRENT_DATE;
Result: 2019-12-23
SELECT CURRENT_TIMESTAMP;
Result: 2019-12-23 14:39:53.662522-05
SELECT CURRENT_TIMESTAMP(2);
Result: 2019-12-23 14:39:53.66-05
SELECT LOCALTIMESTAMP;
Result: 2019-12-23 14:39:53.662522

254

Functions and Operators

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same
time stamp.

Note
Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functions is:

transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()

transaction_timestamp() is equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect what it
returns. statement_timestamp() returns the start time of the current statement (more specifically, the
time of receipt of the latest command message from the client). statement_timestamp() and transac-
tion_timestamp() return the same value during the first statement of a transaction, but might differ
during subsequent statements. clock_timestamp() returns the actual current time, and therefore its
value changes even within a single SQL statement. timeofday() is a historical PostgreSQL function.
Like clock_timestamp(), it returns the actual current time, but as a formatted text string rather than a
timestamp with time zone value. now() is a traditional PostgreSQL equivalent to transaction_time-
stamp().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now'; -- but see tip below

Tip
Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT
clause for a table column. The system will convert now to a timestamp as soon as the constant is
parsed, so that when the default value is needed, the time of the table creation would be used!
The first two forms will not be evaluated until the default value is used, because they are function
calls. Thus they will give the desired behavior of defaulting to the time of row insertion. (See also
Section 8.5.1.4.)

9.9.6. Delaying Execution
The following functions are available to delay execution of the server process:

pg_sleep (double precision)
pg_sleep_for (interval)
pg_sleep_until (timestamp with time zone)

pg_sleep makes the current session's process sleep until the given number of seconds have elapsed.
Fractional-second delays can be specified. pg_sleep_for is a convenience function to allow the sleep
time to be specified as an interval. pg_sleep_until is a convenience function for when a specific wake-
up time is desired. For example:

255

Functions and Operators

SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');

Note
The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value.
The sleep delay will be at least as long as specified. It might be longer depending on factors such
as server load. In particular, pg_sleep_until is not guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

Warning
Make sure that your session does not hold more locks than necessary when calling pg_sleep or
its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down
the entire system.

9.10. Enum Support Functions
For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.35. The examples
assume an enum type created as:
CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'purple');

Table 9.35. Enum Support Functions

Function
Description
Example(s)

enum_first (anyenum) → anyenum
Returns the first value of the input enum type.
enum_first(null::rainbow) → red

enum_last (anyenum) → anyenum
Returns the last value of the input enum type.
enum_last(null::rainbow) → purple

enum_range (anyenum) → anyarray
Returns all values of the input enum type in an ordered array.
enum_range(null::rainbow) → {red,orange,yellow,green,blue,purple}

enum_range (anyenum, anyenum) → anyarray
Returns the range between the two given enum values, as an ordered array. The values must
be from the same enum type. If the first parameter is null, the result will start with the first
value of the enum type. If the second parameter is null, the result will end with the last value
of the enum type.
enum_range('orange'::rainbow, 'green'::rainbow) → {orange,yellow,green}
enum_range(NULL, 'green'::rainbow) → {red,orange,yellow,green}
enum_range('orange'::rainbow, NULL) → {orange,yellow,green,blue,purple}

Notice that except for the two-argument form of enum_range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type
can be passed, with the same result. It is more common to apply these functions to a table column or
function argument than to a hardwired type name as used in the examples.

256

Functions and Operators

9.11. Geometric Functions and Operators
The geometric types point, box, lseg, line, path, polygon, and circle have a large set of native support
functions and operators, shown in Table 9.36, Table 9.37, and Table 9.38.

Table 9.36. Geometric Operators

Operator
Description
Example(s)

geometric_type + point → geometric_type
Adds the coordinates of the second point to those of each point of the first argument, thus
performing translation. Available for point, box, path, circle.
box '(1,1),(0,0)' + point '(2,0)' → (3,1),(2,0)

path + path → path
Concatenates two open paths (returns NULL if either path is closed).
path '[(0,0),(1,1)]' + path '[(2,2),(3,3),(4,4)]' → [(0,0),(1,
1),(2,2),(3,3),(4,4)]

geometric_type - point → geometric_type
Subtracts the coordinates of the second point from those of each point of the first argument,
thus performing translation. Available for point, box, path, circle.
box '(1,1),(0,0)' - point '(2,0)' → (-1,1),(-2,0)

geometric_type * point → geometric_type
Multiplies each point of the first argument by the second point (treating a point as being a
complex number represented by real and imaginary parts, and performing standard complex
multiplication). If one interprets the second point as a vector, this is equivalent to scaling the
object's size and distance from the origin by the length of the vector, and rotating it counter-
clockwise around the origin by the vector's angle from the x axis. Available for point, box,a
path, circle.
path '((0,0),(1,0),(1,1))' * point '(3.0,0)' → ((0,0),(3,0),(
3,3))

path '((0,0),(1,0),(1,1))' * point(cosd(45), sind(45)) → ((0,
0),(0.7071067811865475,0.7071067811865475),(0,1.414213562373095))

geometric_type / point → geometric_type
Divides each point of the first argument by the second point (treating a point as being a com-
plex number represented by real and imaginary parts, and performing standard complex divi-
sion). If one interprets the second point as a vector, this is equivalent to scaling the object's
size and distance from the origin down by the length of the vector, and rotating it clockwise
around the origin by the vector's angle from the x axis. Available for point, box,a path, cir-
cle.
path '((0,0),(1,0),(1,1))' / point '(2.0,0)' → ((0,0),(0.5,0),
(0.5,0.5))

path '((0,0),(1,0),(1,1))' / point(cosd(45), sind(45)) → ((0,
0),(0.7071067811865476,-0.7071067811865476),(1.4142135623730951,0))

@-@ geometric_type → double precision
Computes the total length. Available for lseg, path.
@-@ path '[(0,0),(1,0),(1,1)]' → 2

@@ geometric_type → point
Computes the center point. Available for box, lseg, polygon, circle.
@@ box '(2,2),(0,0)' → (1,1)

geometric_type → integer

257

Functions and Operators

Operator
Description
Example(s)
Returns the number of points. Available for path, polygon.
path '((1,0),(0,1),(-1,0))' → 3

geometric_type # geometric_type → point
Computes the point of intersection, or NULL if there is none. Available for lseg, line.
lseg '[(0,0),(1,1)]' # lseg '[(1,0),(0,1)]' → (0.5,0.5)

box # box → box
Computes the intersection of two boxes, or NULL if there is none.
box '(2,2),(-1,-1)' # box '(1,1),(-2,-2)' → (1,1),(-1,-1)

geometric_type ## geometric_type → point
Computes the closest point to the first object on the second object. Available for these pairs
of types: (point, box), (point, lseg), (point, line), (lseg, box), (lseg, lseg), (line, lseg).
point '(0,0)' ## lseg '[(2,0),(0,2)]' → (1,1)

geometric_type <-> geometric_type → double precision
Computes the distance between the objects. Available for all seven geometric types, for all
combinations of point with another geometric type, and for these additional pairs of types: (
box, lseg), (lseg, line), (polygon, circle) (and the commutator cases).
circle '<(0,0),1>' <-> circle '<(5,0),1>' → 3

geometric_type @> geometric_type → boolean
Does first object contain second? Available for these pairs of types: (box, point), (box, box), (
path, point), (polygon, point), (polygon, polygon), (circle, point), (circle, circle).
circle '<(0,0),2>' @> point '(1,1)' → t

geometric_type <@ geometric_type → boolean
Is first object contained in or on second? Available for these pairs of types: (point, box), (
point, lseg), (point, line), (point, path), (point, polygon), (point, circle), (box, box), (
lseg, box), (lseg, line), (polygon, polygon), (circle, circle).
point '(1,1)' <@ circle '<(0,0),2>' → t

geometric_type && geometric_type → boolean
Do these objects overlap? (One point in common makes this true.) Available for box, polygon,
 circle.
box '(1,1),(0,0)' && box '(2,2),(0,0)' → t

geometric_type << geometric_type → boolean
Is first object strictly left of second? Available for point, box, polygon, circle.
circle '<(0,0),1>' << circle '<(5,0),1>' → t

geometric_type >> geometric_type → boolean
Is first object strictly right of second? Available for point, box, polygon, circle.
circle '<(5,0),1>' >> circle '<(0,0),1>' → t

geometric_type &< geometric_type → boolean
Does first object not extend to the right of second? Available for box, polygon, circle.
box '(1,1),(0,0)' &< box '(2,2),(0,0)' → t

geometric_type &> geometric_type → boolean
Does first object not extend to the left of second? Available for box, polygon, circle.
box '(3,3),(0,0)' &> box '(2,2),(0,0)' → t

geometric_type <<| geometric_type → boolean

258

Functions and Operators

Operator
Description
Example(s)
Is first object strictly below second? Available for point, box, polygon, circle.
box '(3,3),(0,0)' <<| box '(5,5),(3,4)' → t

geometric_type |>> geometric_type → boolean
Is first object strictly above second? Available for point, box, polygon, circle.
box '(5,5),(3,4)' |>> box '(3,3),(0,0)' → t

geometric_type &<| geometric_type → boolean
Does first object not extend above second? Available for box, polygon, circle.
box '(1,1),(0,0)' &<| box '(2,2),(0,0)' → t

geometric_type |&> geometric_type → boolean
Does first object not extend below second? Available for box, polygon, circle.
box '(3,3),(0,0)' |&> box '(2,2),(0,0)' → t

box <^ box → boolean
Is first object below second (allows edges to touch)?
box '((1,1),(0,0))' <^ box '((2,2),(1,1))' → t

box >^ box → boolean
Is first object above second (allows edges to touch)?
box '((2,2),(1,1))' >^ box '((1,1),(0,0))' → t

geometric_type ?# geometric_type → boolean
Do these objects intersect? Available for these pairs of types: (box, box), (lseg, box), (lseg,
 lseg), (lseg, line), (line, box), (line, line), (path, path).
lseg '[(-1,0),(1,0)]' ?# box '(2,2),(-2,-2)' → t

?- line → boolean
?- lseg → boolean

Is line horizontal?
?- lseg '[(-1,0),(1,0)]' → t

point ?- point → boolean
Are points horizontally aligned (that is, have same y coordinate)?
point '(1,0)' ?- point '(0,0)' → t

?| line → boolean
?| lseg → boolean

Is line vertical?
?| lseg '[(-1,0),(1,0)]' → f

point ?| point → boolean
Are points vertically aligned (that is, have same x coordinate)?
point '(0,1)' ?| point '(0,0)' → t

line ?-| line → boolean
lseg ?-| lseg → boolean

Are lines perpendicular?
lseg '[(0,0),(0,1)]' ?-| lseg '[(0,0),(1,0)]' → t

line ?|| line → boolean
lseg ?|| lseg → boolean

Are lines parallel?

259

Functions and Operators

Operator
Description
Example(s)
lseg '[(-1,0),(1,0)]' ?|| lseg '[(-1,2),(1,2)]' → t

geometric_type ~= geometric_type → boolean
Are these objects the same? Available for point, box, polygon, circle.
polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' → t

a“Rotating” a box with these operators only moves its corner points: the box is still considered to have sides parallel to the axes. Hence the box's size is not
preserved, as a true rotation would do.

Caution
Note that the “same as” operator, ~=, represents the usual notion of equality for the point, box,
polygon, and circle types. Some of the geometric types also have an = operator, but = compares
for equal areas only. The other scalar comparison operators (<= and so on), where available for
these types, likewise compare areas.

Note
Before PostgreSQL 14, the point is strictly below/above comparison operators point <<| point
and point |>> point were respectively called <^ and >^. These names are still available, but are
deprecated and will eventually be removed.

Table 9.37. Geometric Functions

Function
Description
Example(s)

area (geometric_type) → double precision
Computes area. Available for box, path, circle. A path input must be closed, else NULL is
returned. Also, if the path is self-intersecting, the result may be meaningless.
area(box '(2,2),(0,0)') → 4

center (geometric_type) → point
Computes center point. Available for box, circle.
center(box '(1,2),(0,0)') → (0.5,1)

diagonal (box) → lseg
Extracts box's diagonal as a line segment (same as lseg(box)).
diagonal(box '(1,2),(0,0)') → [(1,2),(0,0)]

diameter (circle) → double precision
Computes diameter of circle.
diameter(circle '<(0,0),2>') → 4

height (box) → double precision
Computes vertical size of box.
height(box '(1,2),(0,0)') → 2

isclosed (path) → boolean
Is path closed?
isclosed(path '((0,0),(1,1),(2,0))') → t

isopen (path) → boolean
Is path open?

260

Functions and Operators

Function
Description
Example(s)
isopen(path '[(0,0),(1,1),(2,0)]') → t

length (geometric_type) → double precision
Computes the total length. Available for lseg, path.
length(path '((-1,0),(1,0))') → 4

npoints (geometric_type) → integer
Returns the number of points. Available for path, polygon.
npoints(path '[(0,0),(1,1),(2,0)]') → 3

pclose (path) → path
Converts path to closed form.
pclose(path '[(0,0),(1,1),(2,0)]') → ((0,0),(1,1),(2,0))

popen (path) → path
Converts path to open form.
popen(path '((0,0),(1,1),(2,0))') → [(0,0),(1,1),(2,0)]

radius (circle) → double precision
Computes radius of circle.
radius(circle '<(0,0),2>') → 2

slope (point, point) → double precision
Computes slope of a line drawn through the two points.
slope(point '(0,0)', point '(2,1)') → 0.5

width (box) → double precision
Computes horizontal size of box.
width(box '(1,2),(0,0)') → 1

Table 9.38. Geometric Type Conversion Functions

Function
Description
Example(s)

box (circle) → box
Computes box inscribed within the circle.
box(circle '<(0,0),2>') → (1.414213562373095,1.414213562373095),(
-1.414213562373095,-1.414213562373095)

box (point) → box
Converts point to empty box.
box(point '(1,0)') → (1,0),(1,0)

box (point, point) → box
Converts any two corner points to box.
box(point '(0,1)', point '(1,0)') → (1,1),(0,0)

box (polygon) → box
Computes bounding box of polygon.
box(polygon '((0,0),(1,1),(2,0))') → (2,1),(0,0)

bound_box (box, box) → box
Computes bounding box of two boxes.
bound_box(box '(1,1),(0,0)', box '(4,4),(3,3)') → (4,4),(0,0)

261

Functions and Operators

Function
Description
Example(s)

circle (box) → circle
Computes smallest circle enclosing box.
circle(box '(1,1),(0,0)') → <(0.5,0.5),0.7071067811865476>

circle (point, double precision) → circle
Constructs circle from center and radius.
circle(point '(0,0)', 2.0) → <(0,0),2>

circle (polygon) → circle
Converts polygon to circle. The circle's center is the mean of the positions of the polygon's
points, and the radius is the average distance of the polygon's points from that center.
circle(polygon '((0,0),(1,3),(2,0))') → <(1,1),1.6094757082487299>

line (point, point) → line
Converts two points to the line through them.
line(point '(-1,0)', point '(1,0)') → {0,-1,0}

lseg (box) → lseg
Extracts box's diagonal as a line segment.
lseg(box '(1,0),(-1,0)') → [(1,0),(-1,0)]

lseg (point, point) → lseg
Constructs line segment from two endpoints.
lseg(point '(-1,0)', point '(1,0)') → [(-1,0),(1,0)]

path (polygon) → path
Converts polygon to a closed path with the same list of points.
path(polygon '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

point (double precision, double precision) → point
Constructs point from its coordinates.
point(23.4, -44.5) → (23.4,-44.5)

point (box) → point
Computes center of box.
point(box '(1,0),(-1,0)') → (0,0)

point (circle) → point
Computes center of circle.
point(circle '<(0,0),2>') → (0,0)

point (lseg) → point
Computes center of line segment.
point(lseg '[(-1,0),(1,0)]') → (0,0)

point (polygon) → point
Computes center of polygon (the mean of the positions of the polygon's points).
point(polygon '((0,0),(1,1),(2,0))') → (1,0.3333333333333333)

polygon (box) → polygon
Converts box to a 4-point polygon.
polygon(box '(1,1),(0,0)') → ((0,0),(0,1),(1,1),(1,0))

polygon (circle) → polygon
Converts circle to a 12-point polygon.

262

Functions and Operators

Function
Description
Example(s)
polygon(circle '<(0,0),2>') → ((-2,0),(-1.7320508075688774,
0.9999999999999999),(-1.0000000000000002,1.7320508075688772),(
-1.2246063538223773e-16,2),(0.9999999999999996,1.7320508075688774),
(1.732050807568877,1.0000000000000007),(2,2.4492127076447545e-16),
(1.7320508075688776,-0.9999999999999994),(1.0000000000000009,
-1.7320508075688767),(3.673819061467132e-16,-2),(-0.9999999999999987,
-1.732050807568878),(-1.7320508075688767,-1.0000000000000009))

polygon (integer, circle) → polygon
Converts circle to an n-point polygon.
polygon(4, circle '<(3,0),1>') → ((2,0),(3,1),(4,
1.2246063538223773e-16),(3,-1))

polygon (path) → polygon
Converts closed path to a polygon with the same list of points.
polygon(path '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of type
box or lseg can be treated as an array of two point values.

9.12. Network Address Functions and Operators
The IP network address types, cidr and inet, support the usual comparison operators shown in Table 9.1
as well as the specialized operators and functions shown in Table 9.39 and Table 9.40.

Any cidr value can be cast to inet implicitly; therefore, the operators and functions shown below as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr,
it is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet
value to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a
valid cidr value.

Table 9.39. IP Address Operators

Operator
Description
Example(s)

inet << inet → boolean
Is subnet strictly contained by subnet? This operator, and the next four, test for subnet inclu-
sion. They consider only the network parts of the two addresses (ignoring any bits to the right
of the netmasks) and determine whether one network is identical to or a subnet of the other.
inet '192.168.1.5' << inet '192.168.1/24' → t
inet '192.168.0.5' << inet '192.168.1/24' → f
inet '192.168.1/24' << inet '192.168.1/24' → f

inet <<= inet → boolean
Is subnet contained by or equal to subnet?
inet '192.168.1/24' <<= inet '192.168.1/24' → t

inet >> inet → boolean
Does subnet strictly contain subnet?
inet '192.168.1/24' >> inet '192.168.1.5' → t

inet >>= inet → boolean

263

Functions and Operators

Operator
Description
Example(s)
Does subnet contain or equal subnet?
inet '192.168.1/24' >>= inet '192.168.1/24' → t

inet && inet → boolean
Does either subnet contain or equal the other?
inet '192.168.1/24' && inet '192.168.1.80/28' → t
inet '192.168.1/24' && inet '192.168.2.0/28' → f

~ inet → inet
Computes bitwise NOT.
~ inet '192.168.1.6' → 63.87.254.249

inet & inet → inet
Computes bitwise AND.
inet '192.168.1.6' & inet '0.0.0.255' → 0.0.0.6

inet | inet → inet
Computes bitwise OR.
inet '192.168.1.6' | inet '0.0.0.255' → 192.168.1.255

inet + bigint → inet
Adds an offset to an address.
inet '192.168.1.6' + 25 → 192.168.1.31

bigint + inet → inet
Adds an offset to an address.
200 + inet '::ffff:fff0:1' → ::ffff:255.240.0.201

inet - bigint → inet
Subtracts an offset from an address.
inet '192.168.1.43' - 36 → 192.168.1.7

inet - inet → bigint
Computes the difference of two addresses.
inet '192.168.1.43' - inet '192.168.1.19' → 24
inet '::1' - inet '::ffff:1' → -4294901760

Table 9.40. IP Address Functions

Function
Description
Example(s)

abbrev (inet) → text
Creates an abbreviated display format as text. (The result is the same as the inet output
function produces; it is “abbreviated” only in comparison to the result of an explicit cast to
text, which for historical reasons will never suppress the netmask part.)
abbrev(inet '10.1.0.0/32') → 10.1.0.0

abbrev (cidr) → text
Creates an abbreviated display format as text. (The abbreviation consists of dropping all-zero
octets to the right of the netmask; more examples are in Table 8.22.)
abbrev(cidr '10.1.0.0/16') → 10.1/16

broadcast (inet) → inet

264

Functions and Operators

Function
Description
Example(s)
Computes the broadcast address for the address's network.
broadcast(inet '192.168.1.5/24') → 192.168.1.255/24

family (inet) → integer
Returns the address's family: 4 for IPv4, 6 for IPv6.
family(inet '::1') → 6

host (inet) → text
Returns the IP address as text, ignoring the netmask.
host(inet '192.168.1.0/24') → 192.168.1.0

hostmask (inet) → inet
Computes the host mask for the address's network.
hostmask(inet '192.168.23.20/30') → 0.0.0.3

inet_merge (inet, inet) → cidr
Computes the smallest network that includes both of the given networks.
inet_merge(inet '192.168.1.5/24', inet '192.168.2.5/24') → 192.168.0.0/22

inet_same_family (inet, inet) → boolean
Tests whether the addresses belong to the same IP family.
inet_same_family(inet '192.168.1.5/24', inet '::1') → f

masklen (inet) → integer
Returns the netmask length in bits.
masklen(inet '192.168.1.5/24') → 24

netmask (inet) → inet
Computes the network mask for the address's network.
netmask(inet '192.168.1.5/24') → 255.255.255.0

network (inet) → cidr
Returns the network part of the address, zeroing out whatever is to the right of the netmask.
(This is equivalent to casting the value to cidr.)
network(inet '192.168.1.5/24') → 192.168.1.0/24

set_masklen (inet, integer) → inet
Sets the netmask length for an inet value. The address part does not change.
set_masklen(inet '192.168.1.5/24', 16) → 192.168.1.5/16

set_masklen (cidr, integer) → cidr
Sets the netmask length for a cidr value. Address bits to the right of the new netmask are set
to zero.
set_masklen(cidr '192.168.1.0/24', 16) → 192.168.0.0/16

text (inet) → text
Returns the unabbreviated IP address and netmask length as text. (This has the same result
as an explicit cast to text.)
text(inet '192.168.1.5') → 192.168.1.5/32

Tip
The abbrev, host, and text functions are primarily intended to offer alternative display formats
for IP addresses.

265

Functions and Operators

The MAC address types, macaddr and macaddr8, support the usual comparison operators shown in Ta-
ble 9.1 as well as the specialized functions shown in Table 9.41. In addition, they support the bitwise
logical operators ~, & and | (NOT, AND and OR), just as shown above for IP addresses.

Table 9.41. MAC Address Functions

Function
Description
Example(s)

trunc (macaddr) → macaddr
Sets the last 3 bytes of the address to zero. The remaining prefix can be associated with a
particular manufacturer (using data not included in PostgreSQL).
trunc(macaddr '12:34:56:78:90:ab') → 12:34:56:00:00:00

trunc (macaddr8) → macaddr8
Sets the last 5 bytes of the address to zero. The remaining prefix can be associated with a
particular manufacturer (using data not included in PostgreSQL).
trunc(macaddr8 '12:34:56:78:90:ab:cd:ef') → 12:34:56:00:00:00:00:00

macaddr8_set7bit (macaddr8) → macaddr8
Sets the 7th bit of the address to one, creating what is known as modified EUI-64, for inclu-
sion in an IPv6 address.
macaddr8_set7bit(macaddr8 '00:34:56:ab:cd:ef') → 02:34:56:ff:fe:ab:cd:ef

9.13. Text Search Functions and Operators
Table 9.42, Table 9.43 and Table 9.44 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of PostgreSQL's text search facility.

Table 9.42. Text Search Operators

Operator
Description
Example(s)

tsvector @@ tsquery → boolean
tsquery @@ tsvector → boolean

Does tsvector match tsquery? (The arguments can be given in either order.)
to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat') → t

text @@ tsquery → boolean
Does text string, after implicit invocation of to_tsvector() , match tsquery?
'fat cats ate rats' @@ to_tsquery('cat & rat') → t

tsvector || tsvector → tsvector
Concatenates two tsvectors. If both inputs contain lexeme positions, the second input's posi-
tions are adjusted accordingly.
'a:1 b:2'::tsvector || 'c:1 d:2 b:3'::tsvector → 'a':1 'b':2,5 'c':3 'd':4

tsquery && tsquery → tsquery
ANDs two tsquerys together, producing a query that matches documents that match both in-
put queries.
'fat | rat'::tsquery && 'cat'::tsquery → ('fat' | 'rat') & 'cat'

tsquery || tsquery → tsquery
ORs two tsquerys together, producing a query that matches documents that match either in-
put query.
'fat | rat'::tsquery || 'cat'::tsquery → 'fat' | 'rat' | 'cat'

266

Functions and Operators

Operator
Description
Example(s)

!! tsquery → tsquery
Negates a tsquery, producing a query that matches documents that do not match the input
query.
!! 'cat'::tsquery → !'cat'

tsquery <-> tsquery → tsquery
Constructs a phrase query, which matches if the two input queries match at successive lex-
emes.
to_tsquery('fat') <-> to_tsquery('rat') → 'fat' <-> 'rat'

tsquery @> tsquery → boolean
Does first tsquery contain the second? (This considers only whether all the lexemes appear-
ing in one query appear in the other, ignoring the combining operators.)
'cat'::tsquery @> 'cat & rat'::tsquery → f

tsquery <@ tsquery → boolean
Is first tsquery contained in the second? (This considers only whether all the lexemes appear-
ing in one query appear in the other, ignoring the combining operators.)
'cat'::tsquery <@ 'cat & rat'::tsquery → t
'cat'::tsquery <@ '!cat & rat'::tsquery → t

In addition to these specialized operators, the usual comparison operators shown in Table 9.1 are avail-
able for types tsvector and tsquery. These are not very useful for text searching but allow, for example,
unique indexes to be built on columns of these types.

Table 9.43. Text Search Functions

Function
Description
Example(s)

array_to_tsvector (text[]) → tsvector
Converts an array of text strings to a tsvector. The given strings are used as lexemes as-is,
without further processing. Array elements must not be empty strings or NULL.
array_to_tsvector('{fat,cat,rat}'::text[]) → 'cat' 'fat' 'rat'

get_current_ts_config () → regconfig
Returns the OID of the current default text search configuration (as set by default_text_
search_config).
get_current_ts_config() → english

length (tsvector) → integer
Returns the number of lexemes in the tsvector.
length('fat:2,4 cat:3 rat:5A'::tsvector) → 3

numnode (tsquery) → integer
Returns the number of lexemes plus operators in the tsquery.
numnode('(fat & rat) | cat'::tsquery) → 5

plainto_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default configura-
tion. Any punctuation in the string is ignored (it does not determine query operators). The re-
sulting query matches documents containing all non-stopwords in the text.
plainto_tsquery('english', 'The Fat Rats') → 'fat' & 'rat'

phraseto_tsquery ([config regconfig,] query text) → tsquery

267

Functions and Operators

Function
Description
Example(s)
Converts text to a tsquery, normalizing words according to the specified or default configura-
tion. Any punctuation in the string is ignored (it does not determine query operators). The re-
sulting query matches phrases containing all non-stopwords in the text.
phraseto_tsquery('english', 'The Fat Rats') → 'fat' <-> 'rat'
phraseto_tsquery('english', 'The Cat and Rats') → 'cat' <2> 'rat'

websearch_to_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default config-
uration. Quoted word sequences are converted to phrase tests. The word “or” is understood
as producing an OR operator, and a dash produces a NOT operator; other punctuation is ig-
nored. This approximates the behavior of some common web search tools.
websearch_to_tsquery('english', '"fat rat" or cat dog') → 'fat' <-> 'rat' |
'cat' & 'dog'

querytree (tsquery) → text
Produces a representation of the indexable portion of a tsquery. A result that is empty or just
T indicates a non-indexable query.
querytree('foo & ! bar'::tsquery) → 'foo'

setweight (vector tsvector, weight "char") → tsvector
Assigns the specified weight to each element of the vector.
setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A') → 'cat':3A 'fat':2A,4A
'rat':5A

setweight (vector tsvector, weight "char", lexemes text[]) → tsvector
Assigns the specified weight to elements of the vector that are listed in lexemes. The strings
in lexemes are taken as lexemes as-is, without further processing. Strings that do not match
any lexeme in vector are ignored.
setweight('fat:2,4 cat:3 rat:5,6B'::tsvector, 'A', '{cat,rat}') → 'cat':3A
'fat':2,4 'rat':5A,6A

strip (tsvector) → tsvector
Removes positions and weights from the tsvector.
strip('fat:2,4 cat:3 rat:5A'::tsvector) → 'cat' 'fat' 'rat'

to_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default configura-
tion. The words must be combined by valid tsquery operators.
to_tsquery('english', 'The & Fat & Rats') → 'fat' & 'rat'

to_tsvector ([config regconfig,] document text) → tsvector
Converts text to a tsvector, normalizing words according to the specified or default configu-
ration. Position information is included in the result.
to_tsvector('english', 'The Fat Rats') → 'fat':2 'rat':3

to_tsvector ([config regconfig,] document json) → tsvector
to_tsvector ([config regconfig,] document jsonb) → tsvector

Converts each string value in the JSON document to a tsvector, normalizing words accord-
ing to the specified or default configuration. The results are then concatenated in document
order to produce the output. Position information is generated as though one stopword exists
between each pair of string values. (Beware that “document order” of the fields of a JSON ob-
ject is implementation-dependent when the input is jsonb; observe the difference in the ex-
amples.)

268

Functions and Operators

Function
Description
Example(s)
to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::json) → 'dog':5
'fat':2 'rat':3

to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::jsonb) →
'dog':1 'fat':4 'rat':5

json_to_tsvector ([config regconfig,] document json, filter jsonb) → tsvector
jsonb_to_tsvector ([config regconfig,] document jsonb, filter jsonb) → tsvector

Selects each item in the JSON document that is requested by the filter and converts each
one to a tsvector, normalizing words according to the specified or default configuration. The
results are then concatenated in document order to produce the output. Position information
is generated as though one stopword exists between each pair of selected items. (Beware that
“document order” of the fields of a JSON object is implementation-dependent when the in-
put is jsonb.) The filter must be a jsonb array containing zero or more of these keywords:
"string" (to include all string values), "numeric" (to include all numeric values), "boolean"
(to include all boolean values), "key" (to include all keys), or "all" (to include all the above).
As a special case, the filter can also be a simple JSON value that is one of these keywords.
json_to_tsvector('english', '{"a": "The Fat Rats", "b": 123}'::json,

'["string", "numeric"]') → '123':5 'fat':2 'rat':3
json_to_tsvector('english', '{"cat": "The Fat Rats", "dog": 123}'::json,

'"all"') → '123':9 'cat':1 'dog':7 'fat':4 'rat':5

ts_delete (vector tsvector, lexeme text) → tsvector
Removes any occurrence of the given lexeme from the vector. The lexeme string is treated as
a lexeme as-is, without further processing.
ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, 'fat') → 'cat':3 'rat':5A

ts_delete (vector tsvector, lexemes text[]) → tsvector
Removes any occurrences of the lexemes in lexemes from the vector. The strings in lexemes
are taken as lexemes as-is, without further processing. Strings that do not match any lexeme
in vector are ignored.
ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, ARRAY['fat','rat']) → 'cat':3

ts_filter (vector tsvector, weights "char"[]) → tsvector
Selects only elements with the given weights from the vector.
ts_filter('fat:2,4 cat:3b,7c rat:5A'::tsvector, '{a,b}') → 'cat':3B
'rat':5A

ts_headline ([config regconfig,] document text, query tsquery [, options text]) → text
Displays, in an abbreviated form, the match(es) for the query in the document, which must be
raw text not a tsvector. Words in the document are normalized according to the specified or
default configuration before matching to the query. Use of this function is discussed in Sec-
tion 12.3.4, which also describes the available options.
ts_headline('The fat cat ate the rat.', 'cat') → The fat cat ate the
rat.

ts_headline ([config regconfig,] document json, query tsquery [, options text]) → text
ts_headline ([config regconfig,] document jsonb, query tsquery [, options text]) → text

Displays, in an abbreviated form, match(es) for the query that occur in string values within
the JSON document. See Section 12.3.4 for more details.
ts_headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat') → {"cat": "rain-
ing cats and dogs"}

269

Functions and Operators

Function
Description
Example(s)

ts_rank ([weights real[],] vector tsvector, query tsquery [, normalization integer]) → re-
al
Computes a score showing how well the vector matches the query. See Section 12.3.3 for de-
tails.
ts_rank(to_tsvector('raining cats and dogs'), 'cat') → 0.06079271

ts_rank_cd ([weights real[],] vector tsvector, query tsquery [, normalization integer])
→ real
Computes a score showing how well the vector matches the query, using a cover density al-
gorithm. See Section 12.3.3 for details.
ts_rank_cd(to_tsvector('raining cats and dogs'), 'cat') → 0.1

ts_rewrite (query tsquery, target tsquery, substitute tsquery) → tsquery
Replaces occurrences of target with substitute within the query. See Section 12.4.2.1 for
details.
ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery) → 'b' & (
'foo' | 'bar')

ts_rewrite (query tsquery, select text) → tsquery
Replaces portions of the query according to target(s) and substitute(s) obtained by executing
a SELECT command. See Section 12.4.2.1 for details.
SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases') → 'b' & (
'foo' | 'bar')

tsquery_phrase (query1 tsquery, query2 tsquery) → tsquery
Constructs a phrase query that searches for matches of query1 and query2 at successive lex-
emes (same as <-> operator).
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat')) → 'fat' <-> 'cat'

tsquery_phrase (query1 tsquery, query2 tsquery, distance integer) → tsquery
Constructs a phrase query that searches for matches of query1 and query2 that occur exactly
distance lexemes apart.
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10) → 'fat' <10>
'cat'

tsvector_to_array (tsvector) → text[]
Converts a tsvector to an array of lexemes.
tsvector_to_array('fat:2,4 cat:3 rat:5A'::tsvector) → {cat,fat,rat}

unnest (tsvector) → setof record (lexeme text, positions smallint[], weights text)
Expands a tsvector into a set of rows, one per lexeme.
select * from unnest('cat:3 fat:2,4 rat:5A'::tsvector) →

 lexeme | positions | weights
--------+-----------+---------
 cat | {3} | {D}
 fat | {2,4} | {D,D}
 rat | {5} | {A}

Note
All the text search functions that accept an optional regconfig argument will use the configuration
specified by default_text_search_config when that argument is omitted.

270

Functions and Operators

The functions in Table 9.44 are listed separately because they are not usually used in everyday text
searching operations. They are primarily helpful for development and debugging of new text search
configurations.

Table 9.44. Text Search Debugging Functions

Function
Description
Example(s)

ts_debug ([config regconfig,] document text) → setof record (alias text, description
text, token text, dictionaries regdictionary[], dictionary regdictionary, lexemes
text[])
Extracts and normalizes tokens from the document according to the specified or default text
search configuration, and returns information about how each token was processed. See Sec-
tion 12.8.1 for details.
ts_debug('english', 'The Brightest supernovaes') → (asciiword,"Word, all
ASCII",The,{english_stem},english_stem,{}) ...

ts_lexize (dict regdictionary, token text) → text[]
Returns an array of replacement lexemes if the input token is known to the dictionary, or an
empty array if the token is known to the dictionary but it is a stop word, or NULL if it is not a
known word. See Section 12.8.3 for details.
ts_lexize('english_stem', 'stars') → {star}

ts_parse (parser_name text, document text) → setof record (tokid integer, token text)
Extracts tokens from the document using the named parser. See Section 12.8.2 for details.
ts_parse('default', 'foo - bar') → (1,foo) ...

ts_parse (parser_oid oid, document text) → setof record (tokid integer, token text)
Extracts tokens from the document using a parser specified by OID. See Section 12.8.2 for de-
tails.
ts_parse(3722, 'foo - bar') → (1,foo) ...

ts_token_type (parser_name text) → setof record (tokid integer, alias text, descrip-
tion text)
Returns a table that describes each type of token the named parser can recognize. See Sec-
tion 12.8.2 for details.
ts_token_type('default') → (1,asciiword,"Word, all ASCII") ...

ts_token_type (parser_oid oid) → setof record (tokid integer, alias text, description
text)
Returns a table that describes each type of token a parser specified by OID can recognize.
See Section 12.8.2 for details.
ts_token_type(3722) → (1,asciiword,"Word, all ASCII") ...

ts_stat (sqlquery text [, weights text]) → setof record (word text, ndoc integer, nentry
integer)
Executes the sqlquery, which must return a single tsvector column, and returns statistics
about each distinct lexeme contained in the data. See Section 12.4.4 for details.
ts_stat('SELECT vector FROM apod') → (foo,10,15) ...

9.14. UUID Functions
Table 9.45 shows the PostgreSQL functions that can be used to generate UUIDs.

271

Functions and Operators

Table 9.45. UUID Generation Functions

Function
Description
Example(s)

gen_random_uuid → uuid
uuidv4 → uuid

Generate a version 4 (random) UUID.
gen_random_uuid() → 5b30857f-0bfa-48b5-ac0b-5c64e28078d1
uuidv4() → b42410ee-132f-42ee-9e4f-09a6485c95b8

uuidv7 ([shift interval]) → uuid
Generate a version 7 (time-ordered) UUID. The timestamp is computed using UNIX time-
stamp with millisecond precision + sub-millisecond timestamp + random. The optional para-
meter shift will shift the computed timestamp by the given interval.
uuidv7() → 019535d9-3df7-79fb-b466-fa907fa17f9e

Note
The uuid-ossp module provides additional functions that implement other standard algorithms for
generating UUIDs.

Table 9.46 shows the PostgreSQL functions that can be used to extract information from UUIDs.

Table 9.46. UUID Extraction Functions

Function
Description
Example(s)

uuid_extract_timestamp (uuid) → timestamp with time zone
Extracts a timestamp with time zone from UUID version 1 and 7. For other versions, this
function returns null. Note that the extracted timestamp is not necessarily exactly equal to
the time the UUID was generated; this depends on the implementation that generated the
UUID.
uuid_extract_timestamp('019535d9-3df7-79fb-b466-fa907fa17f9e'::uuid) →
2025-02-23 21:46:24.503-05

uuid_extract_version (uuid) → smallint
Extracts the version from a UUID of the variant described by RFC 9562. For other variants,
this function returns null. For example, for a UUID generated by gen_random_uuid , this
function will return 4.
uuid_extract_version('41db1265-8bc1-4ab3-992f-885799a4af1d'::uuid) → 4
uuid_extract_version('019535d9-3df7-79fb-b466-fa907fa17f9e'::uuid) → 7

PostgreSQL also provides the usual comparison operators shown in Table 9.1 for UUIDs.

See Section 8.12 for details on the data type uuid in PostgreSQL.

9.15. XML Functions
The functions and function-like expressions described in this section operate on values of type xml. See
Section 8.13 for information about the xml type. The function-like expressions xmlparse and xmlseri-
alize for converting to and from type xml are documented there, not in this section.

Use of most of these functions requires PostgreSQL to have been built with configure --with-libxml.

272

https://datatracker.ietf.org/doc/html/rfc9562

Functions and Operators

9.15.1. Producing XML Content
A set of functions and function-like expressions is available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing
in client applications.

9.15.1.1. xmltext

xmltext (text) → xml

The function xmltext returns an XML value with a single text node containing the input argument as
its content. Predefined entities like ampersand (&), left and right angle brackets (< >), and quotation
marks ("") are escaped.

Example:

SELECT xmltext('< foo & bar >');
 xmltext

 < foo & bar >

9.15.1.2. xmlcomment

xmlcomment (text) → xml

The function xmlcomment creates an XML value containing an XML comment with the specified text as
content. The text cannot contain “--” or end with a “-”, otherwise the resulting construct would not be
a valid XML comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment('hello');

 xmlcomment

 <!--hello-->

9.15.1.3. xmlconcat

xmlconcat (xml [, ...]) → xml

The function xmlconcat concatenates a list of individual XML values to create a single value contain-
ing an XML content fragment. Null values are omitted; the result is only null if there are no nonnull
arguments.

Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

 xmlconcat

 <abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will
have no standalone declaration. If the result is determined to require a standalone declaration but no
version declaration, a version declaration with version 1.0 will be used because XML requires an XML
declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:

273

Functions and Operators

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?
><bar/>');

 xmlconcat

 <?xml version="1.1"?><foo/><bar/>

9.15.1.4. xmlelement
xmlelement (NAME name [, XMLATTRIBUTES (attvalue [AS attname] [, ...])]

 [, content [, ...]]) → xml

The xmlelement expression produces an XML element with the given name, attributes, and content.
The name and attname items shown in the syntax are simple identifiers, not values. The attvalue and
content items are expressions, which can yield any PostgreSQL data type. The argument(s) within XM-
LATTRIBUTES generate attributes of the XML element; the content value(s) are concatenated to form
its content.

Examples:

SELECT xmlelement(name foo);

 xmlelement

 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

 xmlelement

 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont', 'ent');

 xmlelement

 <foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal
notation. For example:

SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

 xmlelement

 <foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column's name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:

274

Functions and Operators

SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
 xmlelement(name abc),
 xmlcomment('test'),
 xmlelement(name xyz));

 xmlelement
--
 <foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented
in base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The
particular behavior for individual data types is expected to evolve in order to align the PostgreSQL
mappings with those specified in SQL:2006 and later, as discussed in Section D.3.1.3.

9.15.1.5. xmlforest
xmlforest (content [AS name] [, ...]) → xml

The xmlforest expression produces an XML forest (sequence) of elements using the given names and
content. As for xmlelement, each name must be a simple identifier, while the content expressions can
have any data type.

Examples:

SELECT xmlforest('abc' AS foo, 123 AS bar);

 xmlforest

 <foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

 xmlforest

 <table_name>pg_authid</table_name><column_name>rolname</column_name>
 <table_name>pg_authid</table_name><column_name>rolsuper</column_name>
 ...

As seen in the second example, the element name can be omitted if the content value is a column refer-
ence, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xml.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.15.1.6. xmlpi
xmlpi (NAME name [, content]) → xml

The xmlpi expression creates an XML processing instruction. As for xmlelement, the name must be a
simple identifier, while the content expression can have any data type. The content, if present, must
not contain the character sequence ?>.

Example:

SELECT xmlpi(name php, 'echo "hello world";');

275

Functions and Operators

 xmlpi

 <?php echo "hello world";?>

9.15.1.7. xmlroot

xmlroot (xml, VERSION {text|NO VALUE} [, STANDALONE {YES|NO|NO VALUE}]) → xml

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified, it
replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces
the value in the root node's standalone declaration.

SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</content>'),
 version '1.0', standalone yes);

 xmlroot
--
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>

9.15.1.8. xmlagg

xmlagg (xml) → xml

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xmlconcat does, except that concatenation
occurs across rows rather than across expressions in a single row. See Section 9.21 for additional infor-
mation about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
 xmlagg

 <foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
 xmlagg

 <bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
 xmlagg

 <bar/><foo>abc</foo>

9.15.2. XML Predicates
The expressions described in this section check properties of xml values.

9.15.2.1. IS DOCUMENT

276

Functions and Operators

xml IS DOCUMENT → boolean

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.15.2.2. IS NOT DOCUMENT

xml IS NOT DOCUMENT → boolean

The expression IS NOT DOCUMENT returns false if the argument XML value is a proper XML document,
true if it is not (that is, it is a content fragment), or null if the argument is null.

9.15.2.3. XMLEXISTS

XMLEXISTS (text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}]) → boolean

The function xmlexists evaluates an XPath 1.0 expression (the first argument), with the passed XML
value as its context item. The function returns false if the result of that evaluation yields an empty node-
set, true if it yields any other value. The function returns null if any argument is null. A nonnull value
passed as the context item must be an XML document, not a content fragment or any non-XML value.

Example:

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY VALUE
 '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists

 t
(1 row)

The BY REF and BY VALUE clauses are accepted in PostgreSQL, but are ignored, as discussed in Sec-
tion D.3.2.

In the SQL standard, the xmlexists function evaluates an expression in the XML Query language, but
PostgreSQL allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.15.2.4. xml_is_well_formed

xml_is_well_formed (text) → boolean
xml_is_well_formed_document (text) → boolean
xml_is_well_formed_content (text) → boolean

These functions check whether a text string represents well-formed XML, returning a Boolean result.
xml_is_well_formed_document checks for a well-formed document, while xml_is_well_formed_con-
tent checks for well-formed content. xml_is_well_formed does the former if the xmloption con-
figuration parameter is set to DOCUMENT, or the latter if it is set to CONTENT. This means that xm-
l_is_well_formed is useful for seeing whether a simple cast to type xml will succeed, whereas the other
two functions are useful for seeing whether the corresponding variants of XMLPARSE will succeed.

Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed

 f
(1 row)

277

Functions and Operators

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed

 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/
stuff">bar</pg:foo>');
 xml_is_well_formed_document

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/
stuff">bar</my:foo>');
 xml_is_well_formed_document

 f
(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

9.15.3. Processing XML
To process values of data type xml, PostgreSQL offers the functions xpath and xpath_exists, which
evaluate XPath 1.0 expressions, and the XMLTABLE table function.

9.15.3.1. xpath

xpath (xpath text, xml xml [, nsarray text[]]) → xml[]

The function xpath evaluates the XPath 1.0 expression xpath (given as text) against the XML value xml.
It returns an array of XML values corresponding to the node-set produced by the XPath expression. If
the XPath expression returns a scalar value rather than a node-set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be
a two-dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry is
the namespace name (alias), the second the namespace URI. It is not required that aliases provided in
this array be the same as those being used in the XML document itself (in other words, both in the XML
document and in the xpath function context, aliases are local).

Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath

 {test}

278

Functions and Operators

(1 row)

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', 'test',
 ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath

 {test}
(1 row)

9.15.3.2. xpath_exists

xpath_exists (xpath text, xml xml [, nsarray text[]]) → boolean

The function xpath_exists is a specialized form of the xpath function. Instead of returning the individual
XML values that satisfy the XPath 1.0 expression, this function returns a Boolean indicating whether the
query was satisfied or not (specifically, whether it produced any value other than an empty node-set).
This function is equivalent to the XMLEXISTS predicate, except that it also offers support for a namespace
mapping argument.

Example:

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists

 t
(1 row)

9.15.3.3. xmltable
XMLTABLE (
 [XMLNAMESPACES (namespace_uri AS namespace_name [, ...]),]
 row_expression PASSING [BY {REF|VALUE}] document_expression [BY {REF|VALUE}]
 COLUMNS name { type [PATH column_expression] [DEFAULT default_expression] [NOT NULL
 | NULL]
 | FOR ORDINALITY }
 [, ...]

) → setof record

The xmltable expression produces a table based on an XML value, an XPath filter to extract rows, and
a set of column definitions. Although it syntactically resembles a function, it can only appear as a table
in a query's FROM clause.

The optional XMLNAMESPACES clause gives a comma-separated list of namespace definitions, where each
namespace_uri is a text expression and each namespace_name is a simple identifier. It specifies the XML
namespaces used in the document and their aliases. A default namespace specification is not currently
supported.

The required row_expression argument is an XPath 1.0 expression (given as text) that is evaluated,
passing the XML value document_expression as its context item, to obtain a set of XML nodes. These
nodes are what xmltable transforms into output rows. No rows will be produced if the document_ex-
pression is null, nor if the row_expression produces an empty node-set or any value other than a node-
set.

document_expression provides the context item for the row_expression. It must be a well-formed XML
document; fragments/forests are not accepted. The BY REF and BY VALUE clauses are accepted but
ignored, as discussed in Section D.3.2.

279

Functions and Operators

In the SQL standard, the xmltable function evaluates expressions in the XML Query language, but
PostgreSQL allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The required COLUMNS clause specifies the column(s) that will be produced in the output table. See the
syntax summary above for the format. A name is required for each column, as is a data type (unless
FOR ORDINALITY is specified, in which case type integer is implicit). The path, default and nullability
clauses are optional.

A column marked FOR ORDINALITY will be populated with row numbers, starting with 1, in the order
of nodes retrieved from the row_expression's result node-set. At most one column may be marked FOR
ORDINALITY.

Note
XPath 1.0 does not specify an order for nodes in a node-set, so code that relies on a particular
order of the results will be implementation-dependent. Details can be found in Section D.3.1.2.

The column_expression for a column is an XPath 1.0 expression that is evaluated for each row, with the
current node from the row_expression result as its context item, to find the value of the column. If no
column_expression is given, then the column name is used as an implicit path.

If a column's XPath expression returns a non-XML value (which is limited to string, boolean, or double
in XPath 1.0) and the column has a PostgreSQL type other than xml, the column will be set as if by
assigning the value's string representation to the PostgreSQL type. (If the value is a boolean, its string
representation is taken to be 1 or 0 if the output column's type category is numeric, otherwise true
or false.)

If a column's XPath expression returns a non-empty set of XML nodes and the column's PostgreSQL type
is xml, the column will be assigned the expression result exactly, if it is of document or content form. 1

A non-XML result assigned to an xml output column produces content, a single text node with the string
value of the result. An XML result assigned to a column of any other type may not have more than one
node, or an error is raised. If there is exactly one node, the column will be set as if by assigning the
node's string value (as defined for the XPath 1.0 string function) to the PostgreSQL type.

The string value of an XML element is the concatenation, in document order, of all text nodes contained
in that element and its descendants. The string value of an element with no descendant text nodes is
an empty string (not NULL). Any xsi:nil attributes are ignored. Note that the whitespace-only text()
node between two non-text elements is preserved, and that leading whitespace on a text() node is not
flattened. The XPath 1.0 string function may be consulted for the rules defining the string value of other
XML node types and non-XML values.

The conversion rules presented here are not exactly those of the SQL standard, as discussed in Sec-
tion D.3.1.3.

If the path expression returns an empty node-set (typically, when it does not match) for a given row,
the column will be set to NULL, unless a default_expression is specified; then the value resulting from
evaluating that expression is used.

A default_expression, rather than being evaluated immediately when xmltable is called, is evaluated
each time a default is needed for the column. If the expression qualifies as stable or immutable, the
repeat evaluation may be skipped. This means that you can usefully use volatile functions like nextval
in default_expression.

Columns may be marked NOT NULL. If the column_expression for a NOT NULL column does not match
anything and there is no DEFAULT or the default_expression also evaluates to null, an error is reported.

1 A result containing more than one element node at the top level, or non-whitespace text outside of an element, is an example of content form. An XPath result can
be of neither form, for example if it returns an attribute node selected from the element that contains it. Such a result will be put into content form with each such
disallowed node replaced by its string value, as defined for the XPath 1.0 string function.

280

Functions and Operators

Examples:
CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
 <ROW id="1">
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 </ROW>
 <ROW id="5">
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
 <SIZE unit="sq_mi">145935</SIZE>
 </ROW>
 <ROW id="6">
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <SIZE unit="sq_km">697</SIZE>
 </ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
 FROM xmldata,
 XMLTABLE('//ROWS/ROW'
 PASSING data
 COLUMNS id int PATH '@id',
 ordinality FOR ORDINALITY,
 "COUNTRY_NAME" text,
 country_id text PATH 'COUNTRY_ID',
 size_sq_km float PATH 'SIZE[@unit = "sq_km"]',
 size_other text PATH
 'concat(SIZE[@unit!="sq_km"], " ", SIZE[@unit!="sq_km"]/
@unit)',
 premier_name text PATH 'PREMIER_NAME' DEFAULT 'not specified');

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km | size_other | premier_name
----+------------+--------------+------------+------------+--------------
+---------------
 1 | 1 | Australia | AU | | | not
 specified
 5 | 2 | Japan | JP | | 145935 sq_mi | Shinzo Abe
 6 | 3 | Singapore | SG | 697 | | not
 specified

The following example shows concatenation of multiple text() nodes, usage of the column name as XPath
filter, and the treatment of whitespace, XML comments and processing instructions:
CREATE TABLE xmlelements AS SELECT
xml $$
 <root>
 <element> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</x>CC </element>
 </root>
$$ AS data;

SELECT xmltable.*
 FROM xmlelements, XMLTABLE('/root' PASSING data COLUMNS element text);
 element

281

Functions and Operators

 Hello2a2 bbbxxxCC

The following example illustrates how the XMLNAMESPACES clause can be used to specify a list of name-
spaces used in the XML document as well as in the XPath expressions:

WITH xmldata(data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/b">
 <item foo="1" B:bar="2"/>
 <item foo="3" B:bar="4"/>
 <item foo="4" B:bar="5"/>
</example>'::xml)
)
SELECT xmltable.*
 FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
 'http://example.com/b' AS "B"),
 '/x:example/x:item'
 PASSING (SELECT data FROM xmldata)
 COLUMNS foo int PATH '@foo',
 bar int PATH '@B:bar');
 foo | bar
-----+-----
 1 | 2
 3 | 4
 4 | 5
(3 rows)

9.15.4. Mapping Tables to XML
The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xml (query text, nulls boolean,

 tableforest boolean, targetns text) → xml
cursor_to_xml (cursor refcursor, count integer, nulls boolean,

 tableforest boolean, targetns text) → xml

table_to_xml maps the content of the named table, passed as parameter table. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualification and
double quotes (see Section 8.19 for details). query_to_xml executes the query whose text is passed as
parameter query and maps the result set. cursor_to_xml fetches the indicated number of rows from
the cursor specified by the parameter cursor. This variant is recommended if large tables have to be
mapped, because the result value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:

<tablename>
 <row>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
 </row>

 <row>
 ...
 </row>

 ...
</tablename>

282

Functions and Operators

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
</tablename>

<tablename>
 ...
</tablename>

...

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which
will be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be reassembled into one document later on. The functions for produc-
ing XML content discussed above, in particular xmlelement, can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null
values in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace declara-
tion will be added to the result value. If false, columns containing null values are simply omitted from
the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the cor-
responding functions above:

table_to_xmlschema (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xmlschema (query text, nulls boolean,

 tableforest boolean, targetns text) → xml
cursor_to_xmlschema (cursor refcursor, nulls boolean,

 tableforest boolean, targetns text) → xml

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one docu-
ment (or forest), linked together. They can be useful where self-contained and self-describing results
are wanted:

table_to_xml_and_xmlschema (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xml_and_xmlschema (query text, nulls boolean,

 tableforest boolean, targetns text) → xml

In addition, the following functions are available to produce analogous mappings of entire schemas or
the entire current database:

schema_to_xml (schema name, nulls boolean,

283

Functions and Operators

 tableforest boolean, targetns text) → xml
schema_to_xmlschema (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml
schema_to_xml_and_xmlschema (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml

database_to_xml (nulls boolean,

 tableforest boolean, targetns text) → xml
database_to_xmlschema (nulls boolean,

 tableforest boolean, targetns text) → xml
database_to_xml_and_xmlschema (nulls boolean,

 tableforest boolean, targetns text) → xml

These functions ignore tables that are not readable by the current user. The database-wide functions
additionally ignore schemas that the current user does not have USAGE (lookup) privilege for.

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>

<schema1name>
 ...
</schema1name>

<schema2name>
 ...
</schema2name>

...

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Example 9.1 shows an XSLT stylesheet
that converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into
other XML-based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?>

284

Functions and Operators

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml"
>

 <xsl:output method="xml"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
 indent="yes"/>

 <xsl:template match="/*">
 <xsl:variable name="schema" select="//xsd:schema"/>
 <xsl:variable name="tabletypename"
 select="$schema/xsd:element[@name=name(current())]/@type"/>
 <xsl:variable name="rowtypename"
 select="$schema/xsd:complexType[@name=$tabletypename]/xsd:sequence/
xsd:element[@name='row']/@type"/>

 <html>
 <head>
 <title><xsl:value-of select="name(current())"/></title>
 </head>
 <body>
 <table>
 <tr>
 <xsl:for-each select="$schema/xsd:complexType[@name=$rowtypename]/
xsd:sequence/xsd:element/@name">
 <th><xsl:value-of select="."/></th>
 </xsl:for-each>
 </tr>

 <xsl:for-each select="row">
 <tr>
 <xsl:for-each select="*">
 <td><xsl:value-of select="."/></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

9.16. JSON Functions and Operators
This section describes:
• functions and operators for processing and creating JSON data
• the SQL/JSON path language
• the SQL/JSON query functions

To provide native support for JSON data types within the SQL environment, PostgreSQL implements
the SQL/JSON data model. This model comprises sequences of items. Each item can hold SQL scalar
values, with an additional SQL/JSON null value, and composite data structures that use JSON arrays and
objects. The model is a formalization of the implied data model in the JSON specification RFC 7159.

285

https://datatracker.ietf.org/doc/html/rfc7159

Functions and Operators

SQL/JSON allows you to handle JSON data alongside regular SQL data, with transaction support, in-
cluding:
• Uploading JSON data into the database and storing it in regular SQL columns as character or bina-

ry strings.
• Generating JSON objects and arrays from relational data.
• Querying JSON data using SQL/JSON query functions and SQL/JSON path language expressions.

To learn more about the SQL/JSON standard, see sqltr-19075-6. For details on JSON types supported
in PostgreSQL, see Section 8.14.

9.16.1. Processing and Creating JSON Data
Table 9.47 shows the operators that are available for use with JSON data types (see Section 8.14). In
addition, the usual comparison operators shown in Table 9.1 are available for jsonb, though not for json.
The comparison operators follow the ordering rules for B-tree operations outlined in Section 8.14.4.
See also Section 9.21 for the aggregate function json_agg which aggregates record values as JSON,
the aggregate function json_object_agg which aggregates pairs of values into a JSON object, and their
jsonb equivalents, jsonb_agg and jsonb_object_agg.

Table 9.47. json and jsonb Operators

Operator
Description
Example(s)

json -> integer → json
jsonb -> integer → jsonb

Extracts n'th element of JSON array (array elements are indexed from zero, but negative inte-
gers count from the end).
'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> 2 → {"c":"baz"}
'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> -3 → {"a":"foo"}

json -> text → json
jsonb -> text → jsonb

Extracts JSON object field with the given key.
'{"a": {"b":"foo"}}'::json -> 'a' → {"b":"foo"}

json ->> integer → text
jsonb ->> integer → text

Extracts n'th element of JSON array, as text.
'[1,2,3]'::json ->> 2 → 3

json ->> text → text
jsonb ->> text → text

Extracts JSON object field with the given key, as text.
'{"a":1,"b":2}'::json ->> 'b' → 2

json #> text[] → json
jsonb #> text[] → jsonb

Extracts JSON sub-object at the specified path, where path elements can be either field keys
or array indexes.
'{"a": {"b": ["foo","bar"]}}'::json #> '{a,b,1}' → "bar"

json #>> text[] → text
jsonb #>> text[] → text

Extracts JSON sub-object at the specified path as text.
'{"a": {"b": ["foo","bar"]}}'::json #>> '{a,b,1}' → bar

286

Functions and Operators

Note
The field/element/path extraction operators return NULL, rather than failing, if the JSON input
does not have the right structure to match the request; for example if no such key or array element
exists.

Some further operators exist only for jsonb, as shown in Table 9.48. Section 8.14.4 describes how these
operators can be used to effectively search indexed jsonb data.

Table 9.48. Additional jsonb Operators

Operator
Description
Example(s)

jsonb @> jsonb → boolean
Does the first JSON value contain the second? (See Section 8.14.3 for details about contain-
ment.)
'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb → t

jsonb <@ jsonb → boolean
Is the first JSON value contained in the second?
'{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb → t

jsonb ? text → boolean
Does the text string exist as a top-level key or array element within the JSON value?
'{"a":1, "b":2}'::jsonb ? 'b' → t
'["a", "b", "c"]'::jsonb ? 'b' → t

jsonb ?| text[] → boolean
Do any of the strings in the text array exist as top-level keys or array elements?
'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd'] → t

jsonb ?& text[] → boolean
Do all of the strings in the text array exist as top-level keys or array elements?
'["a", "b", "c"]'::jsonb ?& array['a', 'b'] → t

jsonb || jsonb → jsonb
Concatenates two jsonb values. Concatenating two arrays generates an array containing all
the elements of each input. Concatenating two objects generates an object containing the
union of their keys, taking the second object's value when there are duplicate keys. All oth-
er cases are treated by converting a non-array input into a single-element array, and then
proceeding as for two arrays. Does not operate recursively: only the top-level array or object
structure is merged.
'["a", "b"]'::jsonb || '["a", "d"]'::jsonb → ["a", "b", "a", "d"]
'{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb → {"a": "b", "c": "d"}
'[1, 2]'::jsonb || '3'::jsonb → [1, 2, 3]
'{"a": "b"}'::jsonb || '42'::jsonb → [{"a": "b"}, 42]
To append an array to another array as a single entry, wrap it in an additional layer of array,
for example:
'[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb) → [1, 2, [3, 4]]

jsonb - text → jsonb
Deletes a key (and its value) from a JSON object, or matching string value(s) from a JSON ar-
ray.
'{"a": "b", "c": "d"}'::jsonb - 'a' → {"c": "d"}
'["a", "b", "c", "b"]'::jsonb - 'b' → ["a", "c"]

287

Functions and Operators

Operator
Description
Example(s)

jsonb - text[] → jsonb
Deletes all matching keys or array elements from the left operand.
'{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[] → {}

jsonb - integer → jsonb
Deletes the array element with specified index (negative integers count from the end).
Throws an error if JSON value is not an array.
'["a", "b"]'::jsonb - 1 → ["a"]

jsonb #- text[] → jsonb
Deletes the field or array element at the specified path, where path elements can be either
field keys or array indexes.
'["a", {"b":1}]'::jsonb #- '{1,b}' → ["a", {}]

jsonb @? jsonpath → boolean
Does JSON path return any item for the specified JSON value? (This is useful only with SQL-
standard JSON path expressions, not predicate check expressions, since those always return
a value.)
'{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)' → t

jsonb @@ jsonpath → boolean
Returns the result of a JSON path predicate check for the specified JSON value. (This is use-
ful only with predicate check expressions, not SQL-standard JSON path expressions, since it
will return NULL if the path result is not a single boolean value.)
'{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2' → t

Note
The jsonpath operators @? and @@ suppress the following errors: missing object field or array el-
ement, unexpected JSON item type, datetime and numeric errors. The jsonpath-related functions
described below can also be told to suppress these types of errors. This behavior might be helpful
when searching JSON document collections of varying structure.

Table 9.49 shows the functions that are available for constructing json and jsonb values. Some functions
in this table have a RETURNING clause, which specifies the data type returned. It must be one of json,
jsonb, bytea, a character string type (text, char, or varchar), or a type that can be cast to json. By
default, the json type is returned.

Table 9.49. JSON Creation Functions

Function
Description
Example(s)

to_json (anyelement) → json
to_jsonb (anyelement) → jsonb

Converts any SQL value to json or jsonb. Arrays and composites are converted recursively to
arrays and objects (multidimensional arrays become arrays of arrays in JSON). Otherwise, if
there is a cast from the SQL data type to json, the cast function will be used to perform the
conversion;a otherwise, a scalar JSON value is produced. For any scalar other than a number,
a Boolean, or a null value, the text representation will be used, with escaping as necessary to
make it a valid JSON string value.
to_json('Fred said "Hi."'::text) → "Fred said \"Hi.\""

288

Functions and Operators

Function
Description
Example(s)
to_jsonb(row(42, 'Fred said "Hi."'::text)) → {"f1": 42, "f2": "Fred said
\"Hi.\""}

array_to_json (anyarray [, boolean]) → json
Converts an SQL array to a JSON array. The behavior is the same as to_json except that
line feeds will be added between top-level array elements if the optional boolean parameter is
true.
array_to_json('{{1,5},{99,100}}'::int[]) → [[1,5],[99,100]]

json_array ([{ value_expression [FORMAT JSON] } [, ...]] [{ NULL | ABSENT } ON NULL] [RE-
TURNING data_type [FORMAT JSON [ENCODING UTF8]]])

json_array ([query_expression] [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])
Constructs a JSON array from either a series of value_expression parameters or from the
results of query_expression , which must be a SELECT query returning a single column. If
ABSENT ON NULL is specified, NULL values are ignored. This is always the case if a query_
expression is used.
json_array(1,true,json '{"a":null}') → [1, true, {"a":null}]
json_array(SELECT * FROM (VALUES(1),(2)) t) → [1, 2]

row_to_json (record [, boolean]) → json
Converts an SQL composite value to a JSON object. The behavior is the same as to_json ex-
cept that line feeds will be added between top-level elements if the optional boolean parame-
ter is true.
row_to_json(row(1,'foo')) → {"f1":1,"f2":"foo"}

json_build_array (VARIADIC "any") → json
jsonb_build_array (VARIADIC "any") → jsonb

Builds a possibly-heterogeneously-typed JSON array out of a variadic argument list. Each ar-
gument is converted as per to_json or to_jsonb .
json_build_array(1, 2, 'foo', 4, 5) → [1, 2, "foo", 4, 5]

json_build_object (VARIADIC "any") → json
jsonb_build_object (VARIADIC "any") → jsonb

Builds a JSON object out of a variadic argument list. By convention, the argument list consists
of alternating keys and values. Key arguments are coerced to text; value arguments are con-
verted as per to_json or to_jsonb .
json_build_object('foo', 1, 2, row(3,'bar')) → {"foo" : 1, "2" :
{"f1":3,"f2":"bar"}}

json_object ([{ key_expression { VALUE | ':' } value_expression [FORMAT JSON [ENCODING
UTF8]] }[, ...]] [{ NULL | ABSENT } ON NULL] [{ WITH | WITHOUT } UNIQUE [KEYS]] [RE-
TURNING data_type [FORMAT JSON [ENCODING UTF8]]])
Constructs a JSON object of all the key/value pairs given, or an empty object if none are giv-
en. key_expression is a scalar expression defining the JSON key, which is converted to the
text type. It cannot be NULL nor can it belong to a type that has a cast to the json type. If
WITH UNIQUE KEYS is specified, there must not be any duplicate key_expression . Any pair
for which the value_expression evaluates to NULL is omitted from the output if ABSENT ON
NULL is specified; if NULL ON NULL is specified or the clause omitted, the key is included with
value NULL.
json_object('code' VALUE 'P123', 'title': 'Jaws') → {"code" : "P123", "ti-
tle" : "Jaws"}

json_object (text[]) → json
jsonb_object (text[]) → jsonb

289

Functions and Operators

Function
Description
Example(s)
Builds a JSON object out of a text array. The array must have either exactly one dimension
with an even number of members, in which case they are taken as alternating key/value pairs,
or two dimensions such that each inner array has exactly two elements, which are taken as a
key/value pair. All values are converted to JSON strings.
json_object('{a, 1, b, "def", c, 3.5}') → {"a" : "1", "b" : "def",
"c" : "3.5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') → {"a" : "1", "b" : "def",
 "c" : "3.5"}

json_object (keys text[], values text[]) → json
jsonb_object (keys text[], values text[]) → jsonb

This form of json_object takes keys and values pairwise from separate text arrays. Other-
wise it is identical to the one-argument form.
json_object('{a,b}', '{1,2}') → {"a": "1", "b": "2"}

json (expression [FORMAT JSON [ENCODING UTF8]] [{ WITH | WITHOUT } UNIQUE [KEYS]]) → json
Converts a given expression specified as text or bytea string (in UTF8 encoding) into a JSON
value. If expression is NULL, an SQL null value is returned. If WITH UNIQUE is specified, the
expression must not contain any duplicate object keys.
json('{"a":123, "b":[true,"foo"], "a":"bar"}') → {"a":123, "b":[true,
"foo"], "a":"bar"}

json_scalar (expression)
Converts a given SQL scalar value into a JSON scalar value. If the input is NULL, an SQL
null is returned. If the input is number or a boolean value, a corresponding JSON number or
boolean value is returned. For any other value, a JSON string is returned.
json_scalar(123.45) → 123.45
json_scalar(CURRENT_TIMESTAMP) → "2022-05-10T10:51:04.62128-04:00"

json_serialize (expression [FORMAT JSON [ENCODING UTF8]] [RETURNING data_type [FORMAT
JSON [ENCODING UTF8]]])
Converts an SQL/JSON expression into a character or binary string. The expression can be
of any JSON type, any character string type, or bytea in UTF8 encoding. The returned type
used in RETURNING can be any character string type or bytea. The default is text.
json_serialize('{ "a" : 1 } ' RETURNING bytea) → \x7b20226122203a2031207d20

a For example, the hstore extension has a cast from hstore to json, so that hstore values converted via the JSON creation functions will be represented as JSON
objects, not as primitive string values.

Table 9.50 details SQL/JSON facilities for testing JSON.

Table 9.50. SQL/JSON Testing Functions

Function signature
Description
Example(s)

expression IS [NOT] JSON [{ VALUE | SCALAR | ARRAY | OBJECT }] [{ WITH | WITHOUT } UNIQUE [KEYS
]]
This predicate tests whether expression can be parsed as JSON, possibly of a specified type.
If SCALAR or ARRAY or OBJECT is specified, the test is whether or not the JSON is of that partic-
ular type. If WITH UNIQUE KEYS is specified, then any object in the expression is also tested
to see if it has duplicate keys.

SELECT js,
 js IS JSON "json?",
 js IS JSON SCALAR "scalar?",
 js IS JSON OBJECT "object?",

290

Functions and Operators

Function signature
Description
Example(s)
 js IS JSON ARRAY "array?"
FROM (VALUES
 ('123'), ('"abc"'), ('{"a": "b"}'), ('[1,2]'),('abc')) foo(js);
 js | json? | scalar? | object? | array?
------------+-------+---------+---------+--------
 123 | t | t | f | f
 "abc" | t | t | f | f
 {"a": "b"} | t | f | t | f
 [1,2] | t | f | f | t
 abc | f | f | f | f

SELECT js,
 js IS JSON OBJECT "object?",
 js IS JSON ARRAY "array?",
 js IS JSON ARRAY WITH UNIQUE KEYS "array w. UK?",
 js IS JSON ARRAY WITHOUT UNIQUE KEYS "array w/o UK?"
FROM (VALUES ('[{"a":"1"},
 {"b":"2","b":"3"}]')) foo(js);
-[RECORD 1]-+--------------------
js | [{"a":"1"}, +
 | {"b":"2","b":"3"}]
object? | f
array? | t
array w. UK? | f
array w/o UK? | t

Table 9.51 shows the functions that are available for processing json and jsonb values.

Table 9.51. JSON Processing Functions

Function
Description
Example(s)

json_array_elements (json) → setof json
jsonb_array_elements (jsonb) → setof jsonb

Expands the top-level JSON array into a set of JSON values.
select * from json_array_elements('[1,true, [2,false]]') →

 value

 1
 true
 [2,false]

json_array_elements_text (json) → setof text
jsonb_array_elements_text (jsonb) → setof text

Expands the top-level JSON array into a set of text values.
select * from json_array_elements_text('["foo", "bar"]') →

 value

 foo
 bar

json_array_length (json) → integer
jsonb_array_length (jsonb) → integer

291

Functions and Operators

Function
Description
Example(s)
Returns the number of elements in the top-level JSON array.
json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]') → 5
jsonb_array_length('[]') → 0

json_each (json) → setof record (key text, value json)
jsonb_each (jsonb) → setof record (key text, value jsonb)

Expands the top-level JSON object into a set of key/value pairs.
select * from json_each('{"a":"foo", "b":"bar"}') →

 key | value
-----+-------
 a | "foo"
 b | "bar"

json_each_text (json) → setof record (key text, value text)
jsonb_each_text (jsonb) → setof record (key text, value text)

Expands the top-level JSON object into a set of key/value pairs. The returned values will be of
type text.
select * from json_each_text('{"a":"foo", "b":"bar"}') →

 key | value
-----+-------
 a | foo
 b | bar

json_extract_path (from_json json, VARIADIC path_elems text[]) → json
jsonb_extract_path (from_json jsonb, VARIADIC path_elems text[]) → jsonb

Extracts JSON sub-object at the specified path. (This is functionally equivalent to the #> oper-
ator, but writing the path out as a variadic list can be more convenient in some cases.)
json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4',

'f6') → "foo"

json_extract_path_text (from_json json, VARIADIC path_elems text[]) → text
jsonb_extract_path_text (from_json jsonb, VARIADIC path_elems text[]) → text

Extracts JSON sub-object at the specified path as text. (This is functionally equivalent to the
#>> operator.)
json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}',

'f4', 'f6') → foo

json_object_keys (json) → setof text
jsonb_object_keys (jsonb) → setof text

Returns the set of keys in the top-level JSON object.
select * from json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}') →

 json_object_keys

 f1
 f2

json_populate_record (base anyelement, from_json json) → anyelement
jsonb_populate_record (base anyelement, from_json jsonb) → anyelement

Expands the top-level JSON object to a row having the composite type of the base argument.
The JSON object is scanned for fields whose names match column names of the output row
type, and their values are inserted into those columns of the output. (Fields that do not cor-

292

Functions and Operators

Function
Description
Example(s)
respond to any output column name are ignored.) In typical use, the value of base is just
NULL, which means that any output columns that do not match any object field will be filled
with nulls. However, if base isn't NULL then the values it contains will be used for unmatched
columns.
To convert a JSON value to the SQL type of an output column, the following rules are applied
in sequence:
• A JSON null value is converted to an SQL null in all cases.
• If the output column is of type json or jsonb, the JSON value is just reproduced exactly.
• If the output column is a composite (row) type, and the JSON value is a JSON object, the

fields of the object are converted to columns of the output row type by recursive applica-
tion of these rules.

• Likewise, if the output column is an array type and the JSON value is a JSON array, the el-
ements of the JSON array are converted to elements of the output array by recursive appli-
cation of these rules.

• Otherwise, if the JSON value is a string, the contents of the string are fed to the input con-
version function for the column's data type.

• Otherwise, the ordinary text representation of the JSON value is fed to the input conver-
sion function for the column's data type.

While the example below uses a constant JSON value, typical use would be to reference a
json or jsonb column laterally from another table in the query's FROM clause. Writing json_
populate_record in the FROM clause is good practice, since all of the extracted columns are
available for use without duplicate function calls.
create type subrowtype as (d int, e text); create type myrowtype as (a int,
b text[], c subrowtype);
select * from json_populate_record(null::myrowtype, '{"a": 1, "b": ["2",

"a b"], "c": {"d": 4, "e": "a b c"}, "x": "foo"}') →

 a | b | c
---+-----------+-------------
 1 | {2,"a b"} | (4,"a b c")

jsonb_populate_record_valid (base anyelement, from_json json) → boolean
Function for testing jsonb_populate_record . Returns true if the input jsonb_popu-
late_record would finish without an error for the given input JSON object; that is, it's valid
input, false otherwise.
create type jsb_char2 as (a char(2));

select jsonb_populate_record_valid(NULL::jsb_char2, '{"a": "aaa"}'); →

 jsonb_populate_record_valid

 f
(1 row)

select * from jsonb_populate_record(NULL::jsb_char2, '{"a": "aaa"}') q; →

ERROR: value too long for type character(2)

select jsonb_populate_record_valid(NULL::jsb_char2, '{"a": "aa"}'); →

 jsonb_populate_record_valid

 t
(1 row)

select * from jsonb_populate_record(NULL::jsb_char2, '{"a": "aa"}') q; →

293

Functions and Operators

Function
Description
Example(s)
 a

 aa
(1 row)

json_populate_recordset (base anyelement, from_json json) → setof anyelement
jsonb_populate_recordset (base anyelement, from_json jsonb) → setof anyelement

Expands the top-level JSON array of objects to a set of rows having the composite type of
the base argument. Each element of the JSON array is processed as described above for
json[b]_populate_record .
create type twoints as (a int, b int);
select * from json_populate_recordset(null::twoints, '[{"a":1,"b":2},

{"a":3,"b":4}]') →

 a | b
---+---
 1 | 2
 3 | 4

json_to_record (json) → record
jsonb_to_record (jsonb) → record

Expands the top-level JSON object to a row having the composite type defined by an AS
clause. (As with all functions returning record, the calling query must explicitly define the
structure of the record with an AS clause.) The output record is filled from fields of the JSON
object, in the same way as described above for json[b]_populate_record . Since there is
no input record value, unmatched columns are always filled with nulls.
create type myrowtype as (a int, b text);
select * from json_to_record('{"a":1,"b":[1,2,3],"c":[1,2,3],
"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b text, c int[], d

text, r myrowtype) →

 a | b | c | d | r
---+---------+---------+---+---------------
 1 | [1,2,3] | {1,2,3} | | (123,"a b c")

json_to_recordset (json) → setof record
jsonb_to_recordset (jsonb) → setof record

Expands the top-level JSON array of objects to a set of rows having the composite type de-
fined by an AS clause. (As with all functions returning record, the calling query must explic-
itly define the structure of the record with an AS clause.) Each element of the JSON array is
processed as described above for json[b]_populate_record .
select * from json_to_recordset('[{"a":1,"b":"foo"}, {"a":"2",

"c":"bar"}]') as x(a int, b text) →

 a | b
---+-----
 1 | foo
 2 |

jsonb_set (target jsonb, path text[], new_value jsonb [, create_if_missing boolean]) →
jsonb
Returns target with the item designated by path replaced by new_value , or with new_
value added if create_if_missing is true (which is the default) and the item designated
by path does not exist. All earlier steps in the path must exist, or the target is returned un-
changed. As with the path oriented operators, negative integers that appear in the path count

294

Functions and Operators

Function
Description
Example(s)
from the end of JSON arrays. If the last path step is an array index that is out of range, and
create_if_missing is true, the new value is added at the beginning of the array if the in-
dex is negative, or at the end of the array if it is positive.
jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', '[2,3,4]',

false) → [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', '[2,3,4]') → [{"f1": 1,
"f2": null, "f3": [2, 3, 4]}, 2]

jsonb_set_lax (target jsonb, path text[], new_value jsonb [, create_if_missing boolean
[, null_value_treatment text]]) → jsonb
If new_value is not NULL, behaves identically to jsonb_set . Otherwise behaves according
to the value of null_value_treatment which must be one of 'raise_exception' , 'use_
json_null' , 'delete_key' , or 'return_target' . The default is 'use_json_null' .
jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', null) →
[{"f1": null, "f2": null}, 2, null, 3]
jsonb_set_lax('[{"f1":99,"f2":null},2]', '{0,f3}', null, true, 're-

turn_target') → [{"f1": 99, "f2": null}, 2]

jsonb_insert (target jsonb, path text[], new_value jsonb [, insert_after boolean]) →
jsonb
Returns target with new_value inserted. If the item designated by the path is an array el-
ement, new_value will be inserted before that item if insert_after is false (which is the
default), or after it if insert_after is true. If the item designated by the path is an object
field, new_value will be inserted only if the object does not already contain that key. All earli-
er steps in the path must exist, or the target is returned unchanged. As with the path orient-
ed operators, negative integers that appear in the path count from the end of JSON arrays. If
the last path step is an array index that is out of range, the new value is added at the begin-
ning of the array if the index is negative, or at the end of the array if it is positive.
jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"') → {"a": [0,
"new_value", 1, 2]}

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true) → {"a":
[0, 1, "new_value", 2]}

json_strip_nulls (target json [,strip_in_arrays boolean]) → json
jsonb_strip_nulls (target jsonb [,strip_in_arrays boolean]) → jsonb

Deletes all object fields that have null values from the given JSON value, recursively. If
strip_in_arrays is true (the default is false), null array elements are also stripped. Other-
wise they are not stripped. Bare null values are never stripped.
json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]') → [{"f1":1},2,
null,3]

jsonb_strip_nulls('[1,2,null,3,4]', true); → [1,2,3,4]

jsonb_path_exists (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean
Checks whether the JSON path returns any item for the specified JSON value. (This is useful
only with SQL-standard JSON path expressions, not predicate check expressions, since those
always return a value.) If the vars argument is specified, it must be a JSON object, and its
fields provide named values to be substituted into the jsonpath expression. If the silent ar-
gument is specified and is true, the function suppresses the same errors as the @? and @@ op-
erators do.
jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <=

$max)', '{"min":2, "max":4}') → t

295

Functions and Operators

Function
Description
Example(s)

jsonb_path_match (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) → boolean
Returns the SQL boolean result of a JSON path predicate check for the specified JSON value.
(This is useful only with predicate check expressions, not SQL-standard JSON path expres-
sions, since it will either fail or return NULL if the path result is not a single boolean value.)
The optional vars and silent arguments act the same as for jsonb_path_exists .
jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@ >= $min &&

@ <= $max))', '{"min":2, "max":4}') → t

jsonb_path_query (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) → setof
jsonb
Returns all JSON items returned by the JSON path for the specified JSON value. For SQL-
standard JSON path expressions it returns the JSON values selected from target. For predi-
cate check expressions it returns the result of the predicate check: true, false, or null. The
optional vars and silent arguments act the same as for jsonb_path_exists .
select * from jsonb_path_query('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >=

$min && @ <= $max)', '{"min":2, "max":4}') →

 jsonb_path_query

 2
 3
 4

jsonb_path_query_array (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
jsonb
Returns all JSON items returned by the JSON path for the specified JSON value, as a JSON ar-
ray. The parameters are the same as for jsonb_path_query .
jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @

<= $max)', '{"min":2, "max":4}') → [2, 3, 4]

jsonb_path_query_first (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
jsonb
Returns the first JSON item returned by the JSON path for the specified JSON value, or NULL
if there are no results. The parameters are the same as for jsonb_path_query .
jsonb_path_query_first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @

<= $max)', '{"min":2, "max":4}') → 2

jsonb_path_exists_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean

jsonb_path_match_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean

jsonb_path_query_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
setof jsonb

jsonb_path_query_array_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean
]]) → jsonb

jsonb_path_query_first_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean
]]) → jsonb
These functions act like their counterparts described above without the _tz suffix, except
that these functions support comparisons of date/time values that require timezone-aware
conversions. The example below requires interpretation of the date-only value 2015-08-02 as
a timestamp with time zone, so the result depends on the current TimeZone setting. Due to
this dependency, these functions are marked as stable, which means these functions cannot

296

Functions and Operators

Function
Description
Example(s)
be used in indexes. Their counterparts are immutable, and so can be used in indexes; but they
will throw errors if asked to make such comparisons.
jsonb_path_exists_tz('["2015-08-01 12:00:00-05"]', '$[*] ? (@.datetime()

< "2015-08-02".datetime())') → t

jsonb_pretty (jsonb) → text
Converts the given JSON value to pretty-printed, indented text.
jsonb_pretty('[{"f1":1,"f2":null}, 2]') →

[
 {
 "f1": 1,
 "f2": null
 },
 2
]

json_typeof (json) → text
jsonb_typeof (jsonb) → text

Returns the type of the top-level JSON value as a text string. Possible types are object, ar-
ray, string, number, boolean, and null. (The null result should not be confused with an SQL
NULL; see the examples.)
json_typeof('-123.4') → number
json_typeof('null'::json) → null
json_typeof(NULL::json) IS NULL → t

9.16.2. The SQL/JSON Path Language
SQL/JSON path expressions specify item(s) to be retrieved from a JSON value, similarly to XPath expres-
sions used for access to XML content. In PostgreSQL, path expressions are implemented as the jsonpath
data type and can use any elements described in Section 8.14.7.

JSON query functions and operators pass the provided path expression to the path engine for evaluation.
If the expression matches the queried JSON data, the corresponding JSON item, or set of items, is
returned. If there is no match, the result will be NULL, false, or an error, depending on the function.
Path expressions are written in the SQL/JSON path language and can include arithmetic expressions
and functions.

A path expression consists of a sequence of elements allowed by the jsonpath data type. The path
expression is normally evaluated from left to right, but you can use parentheses to change the order of
operations. If the evaluation is successful, a sequence of JSON items is produced, and the evaluation
result is returned to the JSON query function that completes the specified computation.

To refer to the JSON value being queried (the context item), use the $ variable in the path expression.
The first element of a path must always be $. It can be followed by one or more accessor operators,
which go down the JSON structure level by level to retrieve sub-items of the context item. Each accessor
operator acts on the result(s) of the previous evaluation step, producing zero, one, or more output items
from each input item.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:
SELECT '{
 "track": {
 "segments": [
 {
 "location": [47.763, 13.4034],

297

Functions and Operators

 "start time": "2018-10-14 10:05:14",
 "HR": 73
 },
 {
 "location": [47.706, 13.2635],
 "start time": "2018-10-14 10:39:21",
 "HR": 135
 }
]
 }
}' AS json \gset

(The above example can be copied-and-pasted into psql to set things up for the following examples. Then
psql will expand :'json' into a suitably-quoted string constant containing the JSON value.)

To retrieve the available track segments, you need to use the .key accessor operator to descend through
surrounding JSON objects, for example:
=> select jsonb_path_query(:'json', '$.track.segments');

 jsonb_path_query

 [{"HR": 73, "location": [47.763, 13.4034], "start time": "2018-10-14 10:05:14"},
 {"HR": 135, "location": [47.706, 13.2635], "start time": "2018-10-14 10:39:21"}]

To retrieve the contents of an array, you typically use the [*] operator. The following example will return
the location coordinates for all the available track segments:
=> select jsonb_path_query(:'json', '$.track.segments[*].location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]

Here we started with the whole JSON input value ($), then the .track accessor selected the JSON object
associated with the "track" object key, then the .segments accessor selected the JSON array associated
with the "segments" key within that object, then the [*] accessor selected each element of that array
(producing a series of items), then the .location accessor selected the JSON array associated with the
"location" key within each of those objects. In this example, each of those objects had a "location"
key; but if any of them did not, the .location accessor would have simply produced no output for that
input item.

To return the coordinates of the first segment only, you can specify the corresponding subscript in the
[] accessor operator. Recall that JSON array indexes are 0-relative:
=> select jsonb_path_query(:'json', '$.track.segments[0].location');
 jsonb_path_query

 [47.763, 13.4034]

The result of each path evaluation step can be processed by one or more of the jsonpath operators and
methods listed in Section 9.16.2.3. Each method name must be preceded by a dot. For example, you
can get the size of an array:
=> select jsonb_path_query(:'json', '$.track.segments.size()');
 jsonb_path_query

 2

More examples of using jsonpath operators and methods within path expressions appear below in Sec-
tion 9.16.2.3.

298

Functions and Operators

A path can also contain filter expressions that work similarly to the WHERE clause in SQL. A filter expres-
sion begins with a question mark and provides a condition in parentheses:
? (condition)

Filter expressions must be written just after the path evaluation step to which they should apply. The
result of that step is filtered to include only those items that satisfy the provided condition. SQL/JSON
defines three-valued logic, so the condition can produce true, false, or unknown. The unknown value
plays the same role as SQL NULL and can be tested for with the is unknown predicate. Further path
evaluation steps use only those items for which the filter expression returned true.

The functions and operators that can be used in filter expressions are listed in Table 9.53. Within a filter
expression, the @ variable denotes the value being considered (i.e., one result of the preceding path
step). You can write accessor operators after @ to retrieve component items.

For example, suppose you would like to retrieve all heart rate values higher than 130. You can achieve
this as follows:
=> select jsonb_path_query(:'json', '$.track.segments[*].HR ? (@ > 130)');
 jsonb_path_query

 135

To get the start times of segments with such values, you have to filter out irrelevant segments before
selecting the start times, so the filter expression is applied to the previous step, and the path used in
the condition is different:
=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.HR > 130)."start time"');
 jsonb_path_query

 "2018-10-14 10:39:21"

You can use several filter expressions in sequence, if required. The following example selects start times
of all segments that contain locations with relevant coordinates and high heart rate values:
=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.location[1] < 13.4) ?
 (@.HR > 130)."start time"');
 jsonb_path_query

 "2018-10-14 10:39:21"

Using filter expressions at different nesting levels is also allowed. The following example first filters all
segments by location, and then returns high heart rate values for these segments, if available:
=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.location[1] < 13.4).HR ?
 (@ > 130)');
 jsonb_path_query

 135

You can also nest filter expressions within each other. This example returns the size of the track if it
contains any segments with high heart rate values, or an empty sequence otherwise:
=> select jsonb_path_query(:'json', '$.track ? (exists(@.segments[*] ? (@.HR >
 130))).segments.size()');
 jsonb_path_query

 2

9.16.2.1. Deviations from the SQL Standard
PostgreSQL's implementation of the SQL/JSON path language has the following deviations from the
SQL/JSON standard.

299

Functions and Operators

9.16.2.1.1. Boolean Predicate Check Expressions
As an extension to the SQL standard, a PostgreSQL path expression can be a Boolean predicate, whereas
the SQL standard allows predicates only within filters. While SQL-standard path expressions return the
relevant element(s) of the queried JSON value, predicate check expressions return the single three-
valued jsonb result of the predicate: true, false, or null. For example, we could write this SQL-standard
filter expression:
=> select jsonb_path_query(:'json', '$.track.segments ?(@[*].HR > 130)');
 jsonb_path_query

 {"HR": 135, "location": [47.706, 13.2635], "start time": "2018-10-14 10:39:21"}

The similar predicate check expression simply returns true, indicating that a match exists:
=> select jsonb_path_query(:'json', '$.track.segments[*].HR > 130');
 jsonb_path_query

 true

Note
Predicate check expressions are required in the @@ operator (and the jsonb_path_match function),
and should not be used with the @? operator (or the jsonb_path_exists function).

9.16.2.1.2. Regular Expression Interpretation

There are minor differences in the interpretation of regular expression patterns used in like_regex
filters, as described in Section 9.16.2.4.

9.16.2.2. Strict and Lax Modes
When you query JSON data, the path expression may not match the actual JSON data structure. An
attempt to access a non-existent member of an object or element of an array is defined as a structural
error. SQL/JSON path expressions have two modes of handling structural errors:

• lax (default) — the path engine implicitly adapts the queried data to the specified path. Any struc-
tural errors that cannot be fixed as described below are suppressed, producing no match.

• strict — if a structural error occurs, an error is raised.
Lax mode facilitates matching of a JSON document and path expression when the JSON data does not
conform to the expected schema. If an operand does not match the requirements of a particular opera-
tion, it can be automatically wrapped as an SQL/JSON array, or unwrapped by converting its elements
into an SQL/JSON sequence before performing the operation. Also, comparison operators automatically
unwrap their operands in lax mode, so you can compare SQL/JSON arrays out-of-the-box. An array of
size 1 is considered equal to its sole element. Automatic unwrapping is not performed when:
• The path expression contains type() or size() methods that return the type and the number of el-

ements in the array, respectively.
• The queried JSON data contain nested arrays. In this case, only the outermost array is unwrapped,

while all the inner arrays remain unchanged. Thus, implicit unwrapping can only go one level down
within each path evaluation step.

For example, when querying the GPS data listed above, you can abstract from the fact that it stores an
array of segments when using lax mode:
=> select jsonb_path_query(:'json', 'lax $.track.segments.location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]

300

Functions and Operators

In strict mode, the specified path must exactly match the structure of the queried JSON document, so
using this path expression will cause an error:

=> select jsonb_path_query(:'json', 'strict $.track.segments.location');
ERROR: jsonpath member accessor can only be applied to an object

To get the same result as in lax mode, you have to explicitly unwrap the segments array:

=> select jsonb_path_query(:'json', 'strict $.track.segments[*].location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]

The unwrapping behavior of lax mode can lead to surprising results. For instance, the following query
using the .** accessor selects every HR value twice:

=> select jsonb_path_query(:'json', 'lax $.**.HR');
 jsonb_path_query

 73
 135
 73
 135

This happens because the .** accessor selects both the segments array and each of its elements, while
the .HR accessor automatically unwraps arrays when using lax mode. To avoid surprising results, we
recommend using the .** accessor only in strict mode. The following query selects each HR value just
once:

=> select jsonb_path_query(:'json', 'strict $.**.HR');
 jsonb_path_query

 73
 135

The unwrapping of arrays can also lead to unexpected results. Consider this example, which selects all
the location arrays:

=> select jsonb_path_query(:'json', 'lax $.track.segments[*].location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]
(2 rows)

As expected it returns the full arrays. But applying a filter expression causes the arrays to be unwrapped
to evaluate each item, returning only the items that match the expression:

=> select jsonb_path_query(:'json', 'lax $.track.segments[*].location ?(@[*] > 15)');
 jsonb_path_query

 47.763
 47.706
(2 rows)

This despite the fact that the full arrays are selected by the path expression. Use strict mode to restore
selecting the arrays:

=> select jsonb_path_query(:'json', 'strict $.track.segments[*].location ?(@[*] >
 15)');
 jsonb_path_query

 [47.763, 13.4034]

301

Functions and Operators

 [47.706, 13.2635]
(2 rows)

9.16.2.3. SQL/JSON Path Operators and Methods
Table 9.52 shows the operators and methods available in jsonpath. Note that while the unary operators
and methods can be applied to multiple values resulting from a preceding path step, the binary operators
(addition etc.) can only be applied to single values. In lax mode, methods applied to an array will be
executed for each value in the array. The exceptions are .type() and .size(), which apply to the array
itself.

Table 9.52. jsonpath Operators and Methods

Operator/Method
Description
Example(s)

number + number → number
Addition
jsonb_path_query('[2]', '$[0] + 3') → 5

+ number → number
Unary plus (no operation); unlike addition, this can iterate over multiple values
jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x') → [2, 3, 4]

number - number → number
Subtraction
jsonb_path_query('[2]', '7 - $[0]') → 5

- number → number
Negation; unlike subtraction, this can iterate over multiple values
jsonb_path_query_array('{"x": [2,3,4]}', '- $.x') → [-2, -3, -4]

number * number → number
Multiplication
jsonb_path_query('[4]', '2 * $[0]') → 8

number / number → number
Division
jsonb_path_query('[8.5]', '$[0] / 2') → 4.2500000000000000

number % number → number
Modulo (remainder)
jsonb_path_query('[32]', '$[0] % 10') → 2

value . type() → string
Type of the JSON item (see json_typeof)
jsonb_path_query_array('[1, "2", {}]', '$[*].type()') → ["number",
"string", "object"]

value . size() → number
Size of the JSON item (number of array elements, or 1 if not an array)
jsonb_path_query('{"m": [11, 15]}', '$.m.size()') → 2

value . boolean() → boolean
Boolean value converted from a JSON boolean, number, or string
jsonb_path_query_array('[1, "yes", false]', '$[*].boolean()') → [true,
true, false]

value . string() → string
String value converted from a JSON boolean, number, string, or datetime

302

Functions and Operators

Operator/Method
Description
Example(s)
jsonb_path_query_array('[1.23, "xyz", false]', '$[*].string()') →
["1.23", "xyz", "false"]

jsonb_path_query('"2023-08-15 12:34:56"', '$.timestamp().string()') →
"2023-08-15T12:34:56"

value . double() → number
Approximate floating-point number converted from a JSON number or string
jsonb_path_query('{"len": "1.9"}', '$.len.double() * 2') → 3.8

number . ceiling() → number
Nearest integer greater than or equal to the given number
jsonb_path_query('{"h": 1.3}', '$.h.ceiling()') → 2

number . floor() → number
Nearest integer less than or equal to the given number
jsonb_path_query('{"h": 1.7}', '$.h.floor()') → 1

number . abs() → number
Absolute value of the given number
jsonb_path_query('{"z": -0.3}', '$.z.abs()') → 0.3

value . bigint() → bigint
Big integer value converted from a JSON number or string
jsonb_path_query('{"len": "9876543219"}', '$.len.bigint()') → 9876543219

value . decimal([precision [, scale]]) → decimal
Rounded decimal value converted from a JSON number or string (precision and scale must
be integer values)
jsonb_path_query('1234.5678', '$.decimal(6, 2)') → 1234.57

value . integer() → integer
Integer value converted from a JSON number or string
jsonb_path_query('{"len": "12345"}', '$.len.integer()') → 12345

value . number() → numeric
Numeric value converted from a JSON number or string
jsonb_path_query('{"len": "123.45"}', '$.len.number()') → 123.45

string . datetime() → datetime_type (see note)
Date/time value converted from a string
jsonb_path_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@.datetime() <

"2015-08-2".datetime())') → "2015-8-1"

string . datetime(template) → datetime_type (see note)
Date/time value converted from a string using the specified to_timestamp template
jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("HH24:MI")')

→ ["12:30:00", "18:40:00"]

string . date() → date
Date value converted from a string
jsonb_path_query('"2023-08-15"', '$.date()') → "2023-08-15"

string . time() → time without time zone
Time without time zone value converted from a string
jsonb_path_query('"12:34:56"', '$.time()') → "12:34:56"

303

Functions and Operators

Operator/Method
Description
Example(s)

string . time(precision) → time without time zone
Time without time zone value converted from a string, with fractional seconds adjusted to the
given precision
jsonb_path_query('"12:34:56.789"', '$.time(2)') → "12:34:56.79"

string . time_tz() → time with time zone
Time with time zone value converted from a string
jsonb_path_query('"12:34:56 +05:30"', '$.time_tz()') → "12:34:56+05:30"

string . time_tz(precision) → time with time zone
Time with time zone value converted from a string, with fractional seconds adjusted to the
given precision
jsonb_path_query('"12:34:56.789 +05:30"', '$.time_tz(2)') →
"12:34:56.79+05:30"

string . timestamp() → timestamp without time zone
Timestamp without time zone value converted from a string
jsonb_path_query('"2023-08-15 12:34:56"', '$.timestamp()') →
"2023-08-15T12:34:56"

string . timestamp(precision) → timestamp without time zone
Timestamp without time zone value converted from a string, with fractional seconds adjusted
to the given precision
jsonb_path_query('"2023-08-15 12:34:56.789"', '$.timestamp(2)') →
"2023-08-15T12:34:56.79"

string . timestamp_tz() → timestamp with time zone
Timestamp with time zone value converted from a string
jsonb_path_query('"2023-08-15 12:34:56 +05:30"', '$.timestamp_tz()') →
"2023-08-15T12:34:56+05:30"

string . timestamp_tz(precision) → timestamp with time zone
Timestamp with time zone value converted from a string, with fractional seconds adjusted to
the given precision
jsonb_path_query('"2023-08-15 12:34:56.789 +05:30"', '$.timestamp_tz(2)')

→ "2023-08-15T12:34:56.79+05:30"

object . keyvalue() → array
The object's key-value pairs, represented as an array of objects containing three fields: "key",
 "value", and "id"; "id" is a unique identifier of the object the key-value pair belongs to
jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()') → [{"id":
0, "key": "x", "value": "20"}, {"id": 0, "key": "y", "value": 32}]

Note
The result type of the datetime() and datetime(template) methods can be date, timetz, time,
timestamptz, or timestamp. Both methods determine their result type dynamically.

The datetime() method sequentially tries to match its input string to the ISO formats for date,
timetz, time, timestamptz, and timestamp. It stops on the first matching format and emits the
corresponding data type.

The datetime(template) method determines the result type according to the fields used in the
provided template string.

304

Functions and Operators

The datetime() and datetime(template) methods use the same parsing rules as the to_time-
stamp SQL function does (see Section 9.8), with three exceptions. First, these methods don't allow
unmatched template patterns. Second, only the following separators are allowed in the template
string: minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon and space. Third,
separators in the template string must exactly match the input string.

If different date/time types need to be compared, an implicit cast is applied. A date value can be
cast to timestamp or timestamptz, timestamp can be cast to timestamptz, and time to timetz.
However, all but the first of these conversions depend on the current TimeZone setting, and thus
can only be performed within timezone-aware jsonpath functions. Similarly, other date/time-re-
lated methods that convert strings to date/time types also do this casting, which may involve the
current TimeZone setting. Therefore, these conversions can also only be performed within time-
zone-aware jsonpath functions.

Table 9.53 shows the available filter expression elements.

Table 9.53. jsonpath Filter Expression Elements

Predicate/Value
Description
Example(s)

value == value → boolean
Equality comparison (this, and the other comparison operators, work on all JSON scalar val-
ues)
jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == 1)') → [1, 1]
jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == "a")') → ["a"]

value != value → boolean
value <> value → boolean

Non-equality comparison
jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 1)') → [2, 3]
jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <> "b")') → ["a",
"c"]

value < value → boolean
Less-than comparison
jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)') → [1]

value <= value → boolean
Less-than-or-equal-to comparison
jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <= "b")') → ["a",
"b"]

value > value → boolean
Greater-than comparison
jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)') → [3]

value >= value → boolean
Greater-than-or-equal-to comparison
jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 2)') → [2, 3]

true → boolean
JSON constant true
jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris",

"parent": true}]', '$[*] ? (@.parent == true)') → {"name": "Chris", "parent":
true}

305

Functions and Operators

Predicate/Value
Description
Example(s)

false → boolean
JSON constant false
jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris",

"parent": true}]', '$[*] ? (@.parent == false)') → {"name": "John", "parent":
false}

null → value
JSON constant null (note that, unlike in SQL, comparison to null works normally)
jsonb_path_query('[{"name": "Mary", "job": null}, {"name": "Michael",

"job": "driver"}]', '$[*] ? (@.job == null) .name') → "Mary"

boolean && boolean → boolean
Boolean AND
jsonb_path_query('[1, 3, 7]', '$[*] ? (@ > 1 && @ < 5)') → 3

boolean || boolean → boolean
Boolean OR
jsonb_path_query('[1, 3, 7]', '$[*] ? (@ < 1 || @ > 5)') → 7

! boolean → boolean
Boolean NOT
jsonb_path_query('[1, 3, 7]', '$[*] ? (!(@ < 5))') → 7

boolean is unknown → boolean
Tests whether a Boolean condition is unknown.
jsonb_path_query('[-1, 2, 7, "foo"]', '$[*] ? ((@ > 0) is unknown)') →
"foo"

string like_regex string [flag string] → boolean
Tests whether the first operand matches the regular expression given by the second operand,
optionally with modifications described by a string of flag characters (see Section 9.16.2.4).
jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]',

'$[*] ? (@ like_regex "^ab.*c")') → ["abc", "abdacb"]
jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]',

'$[*] ? (@ like_regex "^ab.*c" flag "i")') → ["abc", "aBdC", "abdacb"]

string starts with string → boolean
Tests whether the second operand is an initial substring of the first operand.
jsonb_path_query('["John Smith", "Mary Stone", "Bob Johnson"]', '$[*] ?

(@ starts with "John")') → "John Smith"

exists (path_expression) → boolean
Tests whether a path expression matches at least one SQL/JSON item. Returns unknown if the
path expression would result in an error; the second example uses this to avoid a no-such-key
error in strict mode.
jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (exists (

@ ? (@[*] > 2)))') → [2, 4]
jsonb_path_query_array('{"value": 41}', 'strict $? (exists (

@.name)) .name') → []

9.16.2.4. SQL/JSON Regular Expressions

306

Functions and Operators

SQL/JSON path expressions allow matching text to a regular expression with the like_regex filter. For
example, the following SQL/JSON path query would case-insensitively match all strings in an array that
start with an English vowel:
$[*] ? (@ like_regex "^[aeiou]" flag "i")

The optional flag string may include one or more of the characters i for case-insensitive match, m to
allow ^ and $ to match at newlines, s to allow . to match a newline, and q to quote the whole pattern
(reducing the behavior to a simple substring match).

The SQL/JSON standard borrows its definition for regular expressions from the LIKE_REGEX operator,
which in turn uses the XQuery standard. PostgreSQL does not currently support the LIKE_REGEX oper-
ator. Therefore, the like_regex filter is implemented using the POSIX regular expression engine de-
scribed in Section 9.7.3. This leads to various minor discrepancies from standard SQL/JSON behavior,
which are cataloged in Section 9.7.3.8. Note, however, that the flag-letter incompatibilities described
there do not apply to SQL/JSON, as it translates the XQuery flag letters to match what the POSIX engine
expects.

Keep in mind that the pattern argument of like_regex is a JSON path string literal, written according
to the rules given in Section 8.14.7. This means in particular that any backslashes you want to use in
the regular expression must be doubled. For example, to match string values of the root document that
contain only digits:
$.* ? (@ like_regex "^\\d+$")

9.16.3. SQL/JSON Query Functions
SQL/JSON functions JSON_EXISTS(), JSON_QUERY(), and JSON_VALUE() described in Table 9.54 can be
used to query JSON documents. Each of these functions apply a path_expression (an SQL/JSON path
query) to a context_item (the document). See Section 9.16.2 for more details on what the path_ex-
pression can contain. The path_expression can also reference variables, whose values are specified
with their respective names in the PASSING clause that is supported by each function. context_item can
be a jsonb value or a character string that can be successfully cast to jsonb.

Table 9.54. SQL/JSON Query Functions

Function signature
Description
Example(s)

JSON_EXISTS (
context_item , path_expression
[PASSING { value AS varname } [, ...]]

[{ TRUE | FALSE | UNKNOWN | ERROR } ON ERROR]) → boolean

• Returns true if the SQL/JSON path_expression applied to the context_item yields any items,
false otherwise.

• The ON ERROR clause specifies the behavior if an error occurs during path_expression evalua-
tion. Specifying ERROR will cause an error to be thrown with the appropriate message. Other op-
tions include returning boolean values FALSE or TRUE or the value UNKNOWN which is actually an
SQL NULL. The default when no ON ERROR clause is specified is to return the boolean value FALSE.

Examples:
JSON_EXISTS(jsonb '{"key1": [1,2,3]}', 'strict $.key1[*] ? (@ > $x)'

PASSING 2 AS x) → t
JSON_EXISTS(jsonb '{"a": [1,2,3]}', 'lax $.a[5]' ERROR ON ERROR) → f
JSON_EXISTS(jsonb '{"a": [1,2,3]}', 'strict $.a[5]' ERROR ON ERROR) →

ERROR: jsonpath array subscript is out of bounds

307

Functions and Operators

Function signature
Description
Example(s)

JSON_QUERY (
context_item , path_expression
[PASSING { value AS varname } [, ...]]
[RETURNING data_type [FORMAT JSON [ENCODING UTF8]]]
[{ WITHOUT | WITH { CONDITIONAL | [UNCONDITIONAL] } } [ARRAY] WRAPPER]
[{ KEEP | OMIT } QUOTES [ON SCALAR STRING]]
[{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression } ON EMPTY
]
[{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression } ON ERROR

]) → jsonb

• Returns the result of applying the SQL/JSON path_expression to the context_item .
• By default, the result is returned as a value of type jsonb, though the RETURNING clause can be

used to return as some other type to which it can be successfully coerced.
• If the path expression may return multiple values, it might be necessary to wrap those values us-

ing the WITH WRAPPER clause to make it a valid JSON string, because the default behavior is to not
wrap them, as if WITHOUT WRAPPER were specified. The WITH WRAPPER clause is by default taken to
mean WITH UNCONDITIONAL WRAPPER, which means that even a single result value will be wrapped.
To apply the wrapper only when multiple values are present, specify WITH CONDITIONAL WRAPPER.
Getting multiple values in result will be treated as an error if WITHOUT WRAPPER is specified.

• If the result is a scalar string, by default, the returned value will be surrounded by quotes, mak-
ing it a valid JSON value. It can be made explicit by specifying KEEP QUOTES. Conversely, quotes
can be omitted by specifying OMIT QUOTES. To ensure that the result is a valid JSON value, OMIT
QUOTES cannot be specified when WITH WRAPPER is also specified.

• The ON EMPTY clause specifies the behavior if evaluating path_expression yields an empty set.
The ON ERROR clause specifies the behavior if an error occurs when evaluating path_expression ,
when coercing the result value to the RETURNING type, or when evaluating the ON EMPTY expression
if the path_expression evaluation returns an empty set.

• For both ON EMPTY and ON ERROR, specifying ERROR will cause an error to be thrown with the ap-
propriate message. Other options include returning an SQL NULL, an empty array (EMPTY [AR-
RAY]), an empty object (EMPTY OBJECT), or a user-specified expression (DEFAULT expression) that
can be coerced to jsonb or the type specified in RETURNING. The default when ON EMPTY or ON ER-
ROR is not specified is to return an SQL NULL value.

Examples:
JSON_QUERY(jsonb '[1,[2,3],null]', 'lax $[*][$off]' PASSING 1 AS off WITH

CONDITIONAL WRAPPER) → 3
JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' OMIT QUOTES) → [1, 2]
JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' RETURNING int[] OMIT QUOTES

ERROR ON ERROR) →

ERROR: malformed array literal: "[1, 2]"
DETAIL: Missing "]" after array dimensions.

JSON_VALUE (
context_item , path_expression
[PASSING { value AS varname } [, ...]]
[RETURNING data_type]
[{ ERROR | NULL | DEFAULT expression } ON EMPTY]

[{ ERROR | NULL | DEFAULT expression } ON ERROR]) → text

308

Functions and Operators

Function signature
Description
Example(s)

• Returns the result of applying the SQL/JSON path_expression to the context_item .
• Only use JSON_VALUE() if the extracted value is expected to be a single SQL/JSON scalar item;

getting multiple values will be treated as an error. If you expect that extracted value might be an
object or an array, use the JSON_QUERY function instead.

• By default, the result, which must be a single scalar value, is returned as a value of type text,
 though the RETURNING clause can be used to return as some other type to which it can be success-
fully coerced.

• The ON ERROR and ON EMPTY clauses have similar semantics as mentioned in the description of
JSON_QUERY , except the set of values returned in lieu of throwing an error is different.

• Note that scalar strings returned by JSON_VALUE always have their quotes removed, equivalent to
specifying OMIT QUOTES in JSON_QUERY .

Examples:
JSON_VALUE(jsonb '"123.45"', '$' RETURNING float) → 123.45
JSON_VALUE(jsonb '"03:04 2015-02-01"', '$.datetime("HH24:MI YYYY-MM-DD")'

RETURNING date) → 2015-02-01
JSON_VALUE(jsonb '[1,2]', 'strict $[$off]' PASSING 1 as off) → 2
JSON_VALUE(jsonb '[1,2]', 'strict $[*]' DEFAULT 9 ON ERROR) → 9

Note
The context_item expression is converted to jsonb by an implicit cast if the expression is not
already of type jsonb. Note, however, that any parsing errors that occur during that conversion
are thrown unconditionally, that is, are not handled according to the (specified or implicit) ON
ERROR clause.

Note
JSON_VALUE() returns an SQL NULL if path_expression returns a JSON null, whereas
JSON_QUERY() returns the JSON null as is.

9.16.4. JSON_TABLE
JSON_TABLE is an SQL/JSON function which queries JSON data and presents the results as a relational
view, which can be accessed as a regular SQL table. You can use JSON_TABLE inside the FROM clause of
a SELECT, UPDATE, or DELETE and as data source in a MERGE statement.

Taking JSON data as input, JSON_TABLE uses a JSON path expression to extract a part of the provided
data to use as a row pattern for the constructed view. Each SQL/JSON value given by the row pattern
serves as source for a separate row in the constructed view.

To split the row pattern into columns, JSON_TABLE provides the COLUMNS clause that defines the schema
of the created view. For each column, a separate JSON path expression can be specified to be evaluated
against the row pattern to get an SQL/JSON value that will become the value for the specified column
in a given output row.

JSON data stored at a nested level of the row pattern can be extracted using the NESTED PATH clause.
Each NESTED PATH clause can be used to generate one or more columns using the data from a nested
level of the row pattern. Those columns can be specified using a COLUMNS clause that looks similar to the
top-level COLUMNS clause. Rows constructed from NESTED COLUMNS are called child rows and are

309

Functions and Operators

joined against the row constructed from the columns specified in the parent COLUMNS clause to get the
row in the final view. Child columns themselves may contain a NESTED PATH specification thus allowing
to extract data located at arbitrary nesting levels. Columns produced by multiple NESTED PATHs at the
same level are considered to be siblings of each other and their rows after joining with the parent row
are combined using UNION.

The rows produced by JSON_TABLE are laterally joined to the row that generated them, so you do not
have to explicitly join the constructed view with the original table holding JSON data.

The syntax is:

JSON_TABLE (
 context_item, path_expression [AS json_path_name] [PASSING { value AS varname }
 [, ...]]
 COLUMNS (json_table_column [, ...])
 [{ ERROR | EMPTY [ARRAY]} ON ERROR]
)

where json_table_column is:

 name FOR ORDINALITY
 | name type
 [FORMAT JSON [ENCODING UTF8]]
 [PATH path_expression]
 [{ WITHOUT | WITH { CONDITIONAL | [UNCONDITIONAL] } } [ARRAY] WRAPPER]
 [{ KEEP | OMIT } QUOTES [ON SCALAR STRING]]
 [{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression } ON EMPTY]
 [{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression } ON ERROR]
 | name type EXISTS [PATH path_expression]
 [{ ERROR | TRUE | FALSE | UNKNOWN } ON ERROR]
 | NESTED [PATH] path_expression [AS json_path_name] COLUMNS (json_table_column
 [, ...])

Each syntax element is described below in more detail.

context_item, path_expression [AS json_path_name] [PASSING { value AS varname } [, ...]]

The context_item specifies the input document to query, the path_expression is an SQL/JSON path
expression defining the query, and json_path_name is an optional name for the path_expression.
The optional PASSING clause provides data values for the variables mentioned in the path_expres-
sion. The result of the input data evaluation using the aforementioned elements is called the row
pattern, which is used as the source for row values in the constructed view.

COLUMNS (json_table_column [, ...])
The COLUMNS clause defining the schema of the constructed view. In this clause, you can specify each
column to be filled with an SQL/JSON value obtained by applying a JSON path expression against
the row pattern. json_table_column has the following variants:

name FOR ORDINALITY
Adds an ordinality column that provides sequential row numbering starting from 1. Each NESTED
PATH (see below) gets its own counter for any nested ordinality columns.

name type [FORMAT JSON [ENCODING UTF8]] [PATH path_expression]

Inserts an SQL/JSON value obtained by applying path_expression against the row pattern into
the view's output row after coercing it to specified type.

Specifying FORMAT JSON makes it explicit that you expect the value to be a valid json object. It
only makes sense to specify FORMAT JSON if type is one of bpchar, bytea, character varying,
name, json, jsonb, text, or a domain over these types.

310

Functions and Operators

Optionally, you can specify WRAPPER and QUOTES clauses to format the output. Note that specifying
OMIT QUOTES overrides FORMAT JSON if also specified, because unquoted literals do not constitute
valid json values.

Optionally, you can use ON EMPTY and ON ERROR clauses to specify whether to throw the error or
return the specified value when the result of JSON path evaluation is empty and when an error
occurs during JSON path evaluation or when coercing the SQL/JSON value to the specified type,
respectively. The default for both is to return a NULL value.

Note
This clause is internally turned into and has the same semantics as JSON_VALUE or
JSON_QUERY. The latter if the specified type is not a scalar type or if either of FORMAT JSON,
WRAPPER, or QUOTES clause is present.

name type EXISTS [PATH path_expression]
Inserts a boolean value obtained by applying path_expression against the row pattern into the
view's output row after coercing it to specified type.

The value corresponds to whether applying the PATH expression to the row pattern yields any
values.

The specified type should have a cast from the boolean type.

Optionally, you can use ON ERROR to specify whether to throw the error or return the specified
value when an error occurs during JSON path evaluation or when coercing SQL/JSON value to
the specified type. The default is to return a boolean value FALSE.

Note
This clause is internally turned into and has the same semantics as JSON_EXISTS.

NESTED [PATH] path_expression [AS json_path_name] COLUMNS (json_table_column [, ...])
Extracts SQL/JSON values from nested levels of the row pattern, generates one or more columns
as defined by the COLUMNS subclause, and inserts the extracted SQL/JSON values into those
columns. The json_table_column expression in the COLUMNS subclause uses the same syntax as
in the parent COLUMNS clause.

The NESTED PATH syntax is recursive, so you can go down multiple nested levels by specifying
several NESTED PATH subclauses within each other. It allows to unnest the hierarchy of JSON
objects and arrays in a single function invocation rather than chaining several JSON_TABLE ex-
pressions in an SQL statement.

Note
In each variant of json_table_column described above, if the PATH clause is omitted, path
expression $.name is used, where name is the provided column name.

AS json_path_name
The optional json_path_name serves as an identifier of the provided path_expression. The name
must be unique and distinct from the column names.

{ ERROR | EMPTY } ON ERROR
The optional ON ERROR can be used to specify how to handle errors when evaluating the top-level
path_expression. Use ERROR if you want the errors to be thrown and EMPTY to return an empty table,

311

Functions and Operators

that is, a table containing 0 rows. Note that this clause does not affect the errors that occur when
evaluating columns, for which the behavior depends on whether the ON ERROR clause is specified
against a given column.

Examples

In the examples that follow, the following table containing JSON data will be used:
CREATE TABLE my_films (js jsonb);

INSERT INTO my_films VALUES (
'{ "favorites" : [
 { "kind" : "comedy", "films" : [
 { "title" : "Bananas",
 "director" : "Woody Allen"},
 { "title" : "The Dinner Game",
 "director" : "Francis Veber" }] },
 { "kind" : "horror", "films" : [
 { "title" : "Psycho",
 "director" : "Alfred Hitchcock" }] },
 { "kind" : "thriller", "films" : [
 { "title" : "Vertigo",
 "director" : "Alfred Hitchcock" }] },
 { "kind" : "drama", "films" : [
 { "title" : "Yojimbo",
 "director" : "Akira Kurosawa" }] }
] }');

The following query shows how to use JSON_TABLE to turn the JSON objects in the my_films table to a
view containing columns for the keys kind, title, and director contained in the original JSON along
with an ordinality column:
SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*]' COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 title text PATH '$.films[*].title' WITH WRAPPER,
 director text PATH '$.films[*].director' WITH WRAPPER)) AS jt;

 id | kind | title | director
----+----------+--------------------------------+----------------------------------
 1 | comedy | ["Bananas", "The Dinner Game"] | ["Woody Allen", "Francis Veber"]
 2 | horror | ["Psycho"] | ["Alfred Hitchcock"]
 3 | thriller | ["Vertigo"] | ["Alfred Hitchcock"]
 4 | drama | ["Yojimbo"] | ["Akira Kurosawa"]
(4 rows)

The following is a modified version of the above query to show the usage of PASSING arguments in the
filter specified in the top-level JSON path expression and the various options for the individual columns:
SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*] ? (@.films[*].director == $filter)'
 PASSING 'Alfred Hitchcock' AS filter
 COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 title text FORMAT JSON PATH '$.films[*].title' OMIT QUOTES,
 director text PATH '$.films[*].director' KEEP QUOTES)) AS jt;

 id | kind | title | director

312

Functions and Operators

----+----------+---------+--------------------
 1 | horror | Psycho | "Alfred Hitchcock"
 2 | thriller | Vertigo | "Alfred Hitchcock"
(2 rows)

The following is a modified version of the above query to show the usage of NESTED PATH for populating
title and director columns, illustrating how they are joined to the parent columns id and kind:
SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*] ? (@.films[*].director == $filter)'
 PASSING 'Alfred Hitchcock' AS filter
 COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 NESTED PATH '$.films[*]' COLUMNS (
 title text FORMAT JSON PATH '$.title' OMIT QUOTES,
 director text PATH '$.director' KEEP QUOTES))) AS jt;

 id | kind | title | director
----+----------+---------+--------------------
 1 | horror | Psycho | "Alfred Hitchcock"
 2 | thriller | Vertigo | "Alfred Hitchcock"
(2 rows)

The following is the same query but without the filter in the root path:
SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*]'
 COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 NESTED PATH '$.films[*]' COLUMNS (
 title text FORMAT JSON PATH '$.title' OMIT QUOTES,
 director text PATH '$.director' KEEP QUOTES))) AS jt;

 id | kind | title | director
----+----------+-----------------+--------------------
 1 | comedy | Bananas | "Woody Allen"
 1 | comedy | The Dinner Game | "Francis Veber"
 2 | horror | Psycho | "Alfred Hitchcock"
 3 | thriller | Vertigo | "Alfred Hitchcock"
 4 | drama | Yojimbo | "Akira Kurosawa"
(5 rows)

The following shows another query using a different JSON object as input. It shows the UNION "sibling
join" between NESTED paths $.movies[*] and $.books[*] and also the usage of FOR ORDINALITY column
at NESTED levels (columns movie_id, book_id, and author_id):
SELECT * FROM JSON_TABLE (
'{"favorites":
 [{"movies":
 [{"name": "One", "director": "John Doe"},
 {"name": "Two", "director": "Don Joe"}],
 "books":
 [{"name": "Mystery", "authors": [{"name": "Brown Dan"}]},
 {"name": "Wonder", "authors": [{"name": "Jun Murakami"}, {"name":"Craig Doe"}]}]
}]}'::json, '$.favorites[*]'
COLUMNS (
 user_id FOR ORDINALITY,
 NESTED '$.movies[*]'

313

Functions and Operators

 COLUMNS (
 movie_id FOR ORDINALITY,
 mname text PATH '$.name',
 director text),
 NESTED '$.books[*]'
 COLUMNS (
 book_id FOR ORDINALITY,
 bname text PATH '$.name',
 NESTED '$.authors[*]'
 COLUMNS (
 author_id FOR ORDINALITY,
 author_name text PATH '$.name'))));

 user_id | movie_id | mname | director | book_id | bname | author_id | author_name
---------+----------+-------+----------+---------+---------+-----------+--------------
 1 | 1 | One | John Doe | | | |
 1 | 2 | Two | Don Joe | | | |
 1 | | | | 1 | Mystery | 1 | Brown Dan
 1 | | | | 2 | Wonder | 1 | Jun Murakami
 1 | | | | 2 | Wonder | 2 | Craig Doe
(5 rows)

9.17. Sequence Manipulation Functions
This section describes functions for operating on sequence objects, also called sequence generators
or just sequences. Sequence objects are special single-row tables created with CREATE SEQUENCE.
Sequence objects are commonly used to generate unique identifiers for rows of a table. The sequence
functions, listed in Table 9.55, provide simple, multiuser-safe methods for obtaining successive sequence
values from sequence objects.

Table 9.55. Sequence Functions

Function
Description

nextval (regclass) → bigint
Advances the sequence object to its next value and returns that value. This is done atomical-
ly: even if multiple sessions execute nextval concurrently, each will safely receive a distinct
sequence value. If the sequence object has been created with default parameters, successive
nextval calls will return successive values beginning with 1. Other behaviors can be obtained
by using appropriate parameters in the CREATE SEQUENCE command.
This function requires USAGE or UPDATE privilege on the sequence.

setval (regclass, bigint [, boolean]) → bigint
Sets the sequence object's current value, and optionally its is_called flag. The two-parame-
ter form sets the sequence's last_value field to the specified value and sets its is_called
field to true, meaning that the next nextval will advance the sequence before returning a
value. The value that will be reported by currval is also set to the specified value. In the
three-parameter form, is_called can be set to either true or false. true has the same ef-
fect as the two-parameter form. If it is set to false, the next nextval will return exactly the
specified value, and sequence advancement commences with the following nextval. Further-
more, the value reported by currval is not changed in this case. For example,

SELECT setval('myseq', 42); Next nextval will return 43
SELECT setval('myseq', 42, true); Same as above
SELECT setval('myseq', 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.
This function requires UPDATE privilege on the sequence.

currval (regclass) → bigint

314

Functions and Operators

Function
Description
Returns the value most recently obtained by nextval for this sequence in the current session.
(An error is reported if nextval has never been called for this sequence in this session.) Be-
cause this is returning a session-local value, it gives a predictable answer whether or not oth-
er sessions have executed nextval since the current session did.
This function requires USAGE or SELECT privilege on the sequence.

lastval () → bigint
Returns the value most recently returned by nextval in the current session. This function
is identical to currval, except that instead of taking the sequence name as an argument it
refers to whichever sequence nextval was most recently applied to in the current session. It
is an error to call lastval if nextval has not yet been called in the current session.
This function requires USAGE or SELECT privilege on the last used sequence.

Caution
To avoid blocking concurrent transactions that obtain numbers from the same sequence, the value
obtained by nextval is not reclaimed for re-use if the calling transaction later aborts. This means
that transaction aborts or database crashes can result in gaps in the sequence of assigned values.
That can happen without a transaction abort, too. For example an INSERT with an ON CONFLICT
clause will compute the to-be-inserted tuple, including doing any required nextval calls, before
detecting any conflict that would cause it to follow the ON CONFLICT rule instead. Thus, PostgreSQL
sequence objects cannot be used to obtain “gapless” sequences.

Likewise, sequence state changes made by setval are immediately visible to other transactions,
and are not undone if the calling transaction rolls back.

If the database cluster crashes before committing a transaction containing a nextval or setval
call, the sequence state change might not have made its way to persistent storage, so that it is
uncertain whether the sequence will have its original or updated state after the cluster restarts.
This is harmless for usage of the sequence within the database, since other effects of uncommitted
transactions will not be visible either. However, if you wish to use a sequence value for persistent
outside-the-database purposes, make sure that the nextval call has been committed before doing
so.

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID by
hand, however, since the regclass data type's input converter will do the work for you. See Section 8.19
for details.

9.18. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip
If your needs go beyond the capabilities of these conditional expressions, you might want to con-
sider writing a server-side function in a more expressive programming language.

Note
Although COALESCE, GREATEST, and LEAST are syntactically similar to functions, they are not ordi-
nary functions, and thus cannot be used with explicit VARIADIC array arguments.

315

Functions and Operators

9.18.1. CASE
The SQL CASE expression is a generic conditional expression, similar to if/else statements in other pro-
gramming languages:
CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition's result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition's result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:
SELECT * FROM test;

 a

 1
 2
 3

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:
CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The first expression is computed, then compared to each of the value expressions in the WHEN clauses
until one is found that is equal to it. If no match is found, the result of the ELSE clause (or a null value)
is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:
SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'

316

Functions and Operators

 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:
SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note
As described in Section 4.2.14, there are various situations in which subexpressions of an expres-
sion are evaluated at different times, so that the principle that “CASE evaluates only necessary
subexpressions” is not ironclad. For example a constant 1/0 subexpression will usually result in a
division-by-zero failure at planning time, even if it's within a CASE arm that would never be entered
at run time.

9.18.2. COALESCE
COALESCE(value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:
SELECT COALESCE(description, short_description, '(none)') ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise (none).

The arguments must all be convertible to a common data type, which will be the type of the result (see
Section 10.5 for details).

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard func-
tion provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.18.3. NULLIF
NULLIF(value1, value2)

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1. This can
be used to perform the inverse operation of the COALESCE example given above:
SELECT NULLIF(value, '(none)') ...

In this example, if value is (none), null is returned, otherwise the value of value is returned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had
written value1 = value2, so there must be a suitable = operator available.

The result has the same type as the first argument — but there is a subtlety. What is actually returned is
the first argument of the implied = operator, and in some cases that will have been promoted to match
the second argument's type. For example, NULLIF(1, 2.2) yields numeric, because there is no integer
= numeric operator, only numeric = numeric.

9.18.4. GREATEST and LEAST

317

Functions and Operators

GREATEST(value [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of
the result (see Section 10.5 for details).

NULL values in the argument list are ignored. The result will be NULL only if all the expressions evaluate
to NULL. (This is a deviation from the SQL standard. According to the standard, the return value is
NULL if any argument is NULL. Some other databases behave this way.)

9.19. Array Functions and Operators
Table 9.56 shows the specialized operators available for array types. In addition to those, the usual
comparison operators shown in Table 9.1 are available for arrays. The comparison operators compare
the array contents element-by-element, using the default B-tree comparison function for the element
data type, and sort based on the first difference. In multidimensional arrays the elements are visited
in row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the
dimensionality is different, the first difference in the dimensionality information determines the sort
order.

Table 9.56. Array Operators

Operator
Description
Example(s)

anyarray @> anyarray → boolean
Does the first array contain the second, that is, does each element appearing in the second
array equal some element of the first array? (Duplicates are not treated specially, thus AR-
RAY[1] and ARRAY[1,1] are each considered to contain the other.)
ARRAY[1,4,3] @> ARRAY[3,1,3] → t

anyarray <@ anyarray → boolean
Is the first array contained by the second?
ARRAY[2,2,7] <@ ARRAY[1,7,4,2,6] → t

anyarray && anyarray → boolean
Do the arrays overlap, that is, have any elements in common?
ARRAY[1,4,3] && ARRAY[2,1] → t

anycompatiblearray || anycompatiblearray → anycompatiblearray
Concatenates the two arrays. Concatenating a null or empty array is a no-op; otherwise the
arrays must have the same number of dimensions (as illustrated by the first example) or differ
in number of dimensions by one (as illustrated by the second). If the arrays are not of identi-
cal element types, they will be coerced to a common type (see Section 10.5).
ARRAY[1,2,3] || ARRAY[4,5,6,7] → {1,2,3,4,5,6,7}
ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9.9]] → {{1,2,3},{4,5,6},{7,8,
9.9}}

anycompatible || anycompatiblearray → anycompatiblearray
Concatenates an element onto the front of an array (which must be empty or one-dimension-
al).
3 || ARRAY[4,5,6] → {3,4,5,6}

anycompatiblearray || anycompatible → anycompatiblearray
Concatenates an element onto the end of an array (which must be empty or one-dimensional).
ARRAY[4,5,6] || 7 → {4,5,6,7}

318

Functions and Operators

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about
which operators support indexed operations.

Table 9.57 shows the functions available for use with array types. See Section 8.15 for more information
and examples of the use of these functions.

Table 9.57. Array Functions

Function
Description
Example(s)

array_append (anycompatiblearray, anycompatible) → anycompatiblearray
Appends an element to the end of an array (same as the anycompatiblearray || anycompat-
ible operator).
array_append(ARRAY[1,2], 3) → {1,2,3}

array_cat (anycompatiblearray, anycompatiblearray) → anycompatiblearray
Concatenates two arrays (same as the anycompatiblearray || anycompatiblearray opera-
tor).
array_cat(ARRAY[1,2,3], ARRAY[4,5]) → {1,2,3,4,5}

array_dims (anyarray) → text
Returns a text representation of the array's dimensions.
array_dims(ARRAY[[1,2,3], [4,5,6]]) → [1:2][1:3]

array_fill (anyelement, integer[] [, integer[]]) → anyarray
Returns an array filled with copies of the given value, having dimensions of the lengths spec-
ified by the second argument. The optional third argument supplies lower-bound values for
each dimension (which default to all 1).
array_fill(11, ARRAY[2,3]) → {{11,11,11},{11,11,11}}
array_fill(7, ARRAY[3], ARRAY[2]) → [2:4]={7,7,7}

array_length (anyarray, integer) → integer
Returns the length of the requested array dimension. (Produces NULL instead of 0 for empty
or missing array dimensions.)
array_length(array[1,2,3], 1) → 3
array_length(array[]::int[], 1) → NULL
array_length(array['text'], 2) → NULL

array_lower (anyarray, integer) → integer
Returns the lower bound of the requested array dimension.
array_lower('[0:2]={1,2,3}'::integer[], 1) → 0

array_ndims (anyarray) → integer
Returns the number of dimensions of the array.
array_ndims(ARRAY[[1,2,3], [4,5,6]]) → 2

array_position (anycompatiblearray, anycompatible [, integer]) → integer
Returns the subscript of the first occurrence of the second argument in the array, or NULL if
it's not present. If the third argument is given, the search begins at that subscript. The array
must be one-dimensional. Comparisons are done using IS NOT DISTINCT FROM semantics, so
it is possible to search for NULL.
array_position(ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'],

'mon') → 2

array_positions (anycompatiblearray, anycompatible) → integer[]
Returns an array of the subscripts of all occurrences of the second argument in the array giv-
en as first argument. The array must be one-dimensional. Comparisons are done using IS NOT

319

Functions and Operators

Function
Description
Example(s)
DISTINCT FROM semantics, so it is possible to search for NULL. NULL is returned only if the ar-
ray is NULL; if the value is not found in the array, an empty array is returned.
array_positions(ARRAY['A','A','B','A'], 'A') → {1,2,4}

array_prepend (anycompatible, anycompatiblearray) → anycompatiblearray
Prepends an element to the beginning of an array (same as the anycompatible || any-
compatiblearray operator).
array_prepend(1, ARRAY[2,3]) → {1,2,3}

array_remove (anycompatiblearray, anycompatible) → anycompatiblearray
Removes all elements equal to the given value from the array. The array must be one-dimen-
sional. Comparisons are done using IS NOT DISTINCT FROM semantics, so it is possible to re-
move NULLs.
array_remove(ARRAY[1,2,3,2], 2) → {1,3}

array_replace (anycompatiblearray, anycompatible, anycompatible) → anycompatiblearray
Replaces each array element equal to the second argument with the third argument.
array_replace(ARRAY[1,2,5,4], 5, 3) → {1,2,3,4}

array_reverse (anyarray) → anyarray
Reverses the first dimension of the array.
array_reverse(ARRAY[[1,2],[3,4],[5,6]]) → {{5,6},{3,4},{1,2}}

array_sample (array anyarray, n integer) → anyarray
Returns an array of n items randomly selected from array. n may not exceed the length of
array's first dimension. If array is multi-dimensional, an “item” is a slice having a given first
subscript.
array_sample(ARRAY[1,2,3,4,5,6], 3) → {2,6,1}
array_sample(ARRAY[[1,2],[3,4],[5,6]], 2) → {{5,6},{1,2}}

array_shuffle (anyarray) → anyarray
Randomly shuffles the first dimension of the array.
array_shuffle(ARRAY[[1,2],[3,4],[5,6]]) → {{5,6},{1,2},{3,4}}

array_sort (array anyarray [, descending boolean [, nulls_first boolean]]) → anyarray
Sorts the first dimension of the array. The sort order is determined by the default sort order-
ing of the array's element type; however, if the element type is collatable, the collation to use
can be specified by adding a COLLATE clause to the array argument.
If descending is true then sort in descending order, otherwise ascending order. If omitted,
the default is ascending order. If nulls_first is true then nulls appear before non-null val-
ues, otherwise nulls appear after non-null values. If omitted, nulls_first is taken to have
the same value as descending.
array_sort(ARRAY[[2,4],[2,1],[6,5]]) → {{2,1},{2,4},{6,5}}

array_to_string (array anyarray, delimiter text [, null_string text]) → text
Converts each array element to its text representation, and concatenates those separated by
the delimiter string. If null_string is given and is not NULL, then NULL array entries are
represented by that string; otherwise, they are omitted. See also string_to_array .
array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*') → 1,2,3,*,5

array_upper (anyarray, integer) → integer
Returns the upper bound of the requested array dimension.
array_upper(ARRAY[1,8,3,7], 1) → 4

cardinality (anyarray) → integer

320

Functions and Operators

Function
Description
Example(s)
Returns the total number of elements in the array, or 0 if the array is empty.
cardinality(ARRAY[[1,2],[3,4]]) → 4

trim_array (array anyarray, n integer) → anyarray
Trims an array by removing the last n elements. If the array is multidimensional, only the first
dimension is trimmed.
trim_array(ARRAY[1,2,3,4,5,6], 2) → {1,2,3,4}

unnest (anyarray) → setof anyelement
Expands an array into a set of rows. The array's elements are read out in storage order.
unnest(ARRAY[1,2]) →

 1
 2

unnest(ARRAY[['foo','bar'],['baz','quux']]) →

 foo
 bar
 baz
 quux

unnest (anyarray, anyarray [, ...]) → setof anyelement, anyelement [, ...]
Expands multiple arrays (possibly of different data types) into a set of rows. If the arrays are
not all the same length then the shorter ones are padded with NULLs. This form is only al-
lowed in a query's FROM clause; see Section 7.2.1.4.
select * from unnest(ARRAY[1,2], ARRAY['foo','bar','baz']) as x(a,b) →

 a | b
---+-----
 1 | foo
 2 | bar
 | baz

See also Section 9.21 about the aggregate function array_agg for use with arrays.

9.20. Range/Multirange Functions and Operators
See Section 8.17 for an overview of range types.

Table 9.58 shows the specialized operators available for range types. Table 9.59 shows the specialized
operators available for multirange types. In addition to those, the usual comparison operators shown in
Table 9.1 are available for range and multirange types. The comparison operators order first by the range
lower bounds, and only if those are equal do they compare the upper bounds. The multirange operators
compare each range until one is unequal. This does not usually result in a useful overall ordering, but
the operators are provided to allow unique indexes to be constructed on ranges.

Table 9.58. Range Operators

Operator
Description
Example(s)

anyrange @> anyrange → boolean
Does the first range contain the second?
int4range(2,4) @> int4range(2,3) → t

anyrange @> anyelement → boolean

321

Functions and Operators

Operator
Description
Example(s)
Does the range contain the element?
'[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp → t

anyrange <@ anyrange → boolean
Is the first range contained by the second?
int4range(2,4) <@ int4range(1,7) → t

anyelement <@ anyrange → boolean
Is the element contained in the range?
42 <@ int4range(1,7) → f

anyrange && anyrange → boolean
Do the ranges overlap, that is, have any elements in common?
int8range(3,7) && int8range(4,12) → t

anyrange << anyrange → boolean
Is the first range strictly left of the second?
int8range(1,10) << int8range(100,110) → t

anyrange >> anyrange → boolean
Is the first range strictly right of the second?
int8range(50,60) >> int8range(20,30) → t

anyrange &< anyrange → boolean
Does the first range not extend to the right of the second?
int8range(1,20) &< int8range(18,20) → t

anyrange &> anyrange → boolean
Does the first range not extend to the left of the second?
int8range(7,20) &> int8range(5,10) → t

anyrange -|- anyrange → boolean
Are the ranges adjacent?
numrange(1.1,2.2) -|- numrange(2.2,3.3) → t

anyrange + anyrange → anyrange
Computes the union of the ranges. The ranges must overlap or be adjacent, so that the union
is a single range (but see range_merge()).
numrange(5,15) + numrange(10,20) → [5,20)

anyrange * anyrange → anyrange
Computes the intersection of the ranges.
int8range(5,15) * int8range(10,20) → [10,15)

anyrange - anyrange → anyrange
Computes the difference of the ranges. The second range must not be contained in the first in
such a way that the difference would not be a single range.
int8range(5,15) - int8range(10,20) → [5,10)

Table 9.59. Multirange Operators

Operator
Description
Example(s)

anymultirange @> anymultirange → boolean
Does the first multirange contain the second?

322

Functions and Operators

Operator
Description
Example(s)
'{[2,4)}'::int4multirange @> '{[2,3)}'::int4multirange → t

anymultirange @> anyrange → boolean
Does the multirange contain the range?
'{[2,4)}'::int4multirange @> int4range(2,3) → t

anymultirange @> anyelement → boolean
Does the multirange contain the element?
'{[2011-01-01,2011-03-01)}'::tsmultirange @> '2011-01-10'::timestamp → t

anyrange @> anymultirange → boolean
Does the range contain the multirange?
'[2,4)'::int4range @> '{[2,3)}'::int4multirange → t

anymultirange <@ anymultirange → boolean
Is the first multirange contained by the second?
'{[2,4)}'::int4multirange <@ '{[1,7)}'::int4multirange → t

anymultirange <@ anyrange → boolean
Is the multirange contained by the range?
'{[2,4)}'::int4multirange <@ int4range(1,7) → t

anyrange <@ anymultirange → boolean
Is the range contained by the multirange?
int4range(2,4) <@ '{[1,7)}'::int4multirange → t

anyelement <@ anymultirange → boolean
Is the element contained by the multirange?
4 <@ '{[1,7)}'::int4multirange → t

anymultirange && anymultirange → boolean
Do the multiranges overlap, that is, have any elements in common?
'{[3,7)}'::int8multirange && '{[4,12)}'::int8multirange → t

anymultirange && anyrange → boolean
Does the multirange overlap the range?
'{[3,7)}'::int8multirange && int8range(4,12) → t

anyrange && anymultirange → boolean
Does the range overlap the multirange?
int8range(3,7) && '{[4,12)}'::int8multirange → t

anymultirange << anymultirange → boolean
Is the first multirange strictly left of the second?
'{[1,10)}'::int8multirange << '{[100,110)}'::int8multirange → t

anymultirange << anyrange → boolean
Is the multirange strictly left of the range?
'{[1,10)}'::int8multirange << int8range(100,110) → t

anyrange << anymultirange → boolean
Is the range strictly left of the multirange?
int8range(1,10) << '{[100,110)}'::int8multirange → t

anymultirange >> anymultirange → boolean
Is the first multirange strictly right of the second?

323

Functions and Operators

Operator
Description
Example(s)
'{[50,60)}'::int8multirange >> '{[20,30)}'::int8multirange → t

anymultirange >> anyrange → boolean
Is the multirange strictly right of the range?
'{[50,60)}'::int8multirange >> int8range(20,30) → t

anyrange >> anymultirange → boolean
Is the range strictly right of the multirange?
int8range(50,60) >> '{[20,30)}'::int8multirange → t

anymultirange &< anymultirange → boolean
Does the first multirange not extend to the right of the second?
'{[1,20)}'::int8multirange &< '{[18,20)}'::int8multirange → t

anymultirange &< anyrange → boolean
Does the multirange not extend to the right of the range?
'{[1,20)}'::int8multirange &< int8range(18,20) → t

anyrange &< anymultirange → boolean
Does the range not extend to the right of the multirange?
int8range(1,20) &< '{[18,20)}'::int8multirange → t

anymultirange &> anymultirange → boolean
Does the first multirange not extend to the left of the second?
'{[7,20)}'::int8multirange &> '{[5,10)}'::int8multirange → t

anymultirange &> anyrange → boolean
Does the multirange not extend to the left of the range?
'{[7,20)}'::int8multirange &> int8range(5,10) → t

anyrange &> anymultirange → boolean
Does the range not extend to the left of the multirange?
int8range(7,20) &> '{[5,10)}'::int8multirange → t

anymultirange -|- anymultirange → boolean
Are the multiranges adjacent?
'{[1.1,2.2)}'::nummultirange -|- '{[2.2,3.3)}'::nummultirange → t

anymultirange -|- anyrange → boolean
Is the multirange adjacent to the range?
'{[1.1,2.2)}'::nummultirange -|- numrange(2.2,3.3) → t

anyrange -|- anymultirange → boolean
Is the range adjacent to the multirange?
numrange(1.1,2.2) -|- '{[2.2,3.3)}'::nummultirange → t

anymultirange + anymultirange → anymultirange
Computes the union of the multiranges. The multiranges need not overlap or be adjacent.
'{[5,10)}'::nummultirange + '{[15,20)}'::nummultirange → {[5,10), [15,20)}

anymultirange * anymultirange → anymultirange
Computes the intersection of the multiranges.
'{[5,15)}'::int8multirange * '{[10,20)}'::int8multirange → {[10,15)}

anymultirange - anymultirange → anymultirange
Computes the difference of the multiranges.

324

Functions and Operators

Operator
Description
Example(s)
'{[5,20)}'::int8multirange - '{[10,15)}'::int8multirange → {[5,10), [15,
20)}

The left-of/right-of/adjacent operators always return false when an empty range or multirange is in-
volved; that is, an empty range is not considered to be either before or after any other range.

Elsewhere empty ranges and multiranges are treated as the additive identity: anything unioned with
an empty value is itself. Anything minus an empty value is itself. An empty multirange has exactly the
same points as an empty range. Every range contains the empty range. Every multirange contains as
many empty ranges as you like.

The range union and difference operators will fail if the resulting range would need to contain two
disjoint sub-ranges, as such a range cannot be represented. There are separate operators for union and
difference that take multirange parameters and return a multirange, and they do not fail even if their
arguments are disjoint. So if you need a union or difference operation for ranges that may be disjoint,
you can avoid errors by first casting your ranges to multiranges.

Table 9.60 shows the functions available for use with range types. Table 9.61 shows the functions avail-
able for use with multirange types.

Table 9.60. Range Functions

Function
Description
Example(s)

lower (anyrange) → anyelement
Extracts the lower bound of the range (NULL if the range is empty or has no lower bound).
lower(numrange(1.1,2.2)) → 1.1

upper (anyrange) → anyelement
Extracts the upper bound of the range (NULL if the range is empty or has no upper bound).
upper(numrange(1.1,2.2)) → 2.2

isempty (anyrange) → boolean
Is the range empty?
isempty(numrange(1.1,2.2)) → f

lower_inc (anyrange) → boolean
Is the range's lower bound inclusive?
lower_inc(numrange(1.1,2.2)) → t

upper_inc (anyrange) → boolean
Is the range's upper bound inclusive?
upper_inc(numrange(1.1,2.2)) → f

lower_inf (anyrange) → boolean
Does the range have no lower bound? (A lower bound of -Infinity returns false.)
lower_inf('(,)'::daterange) → t

upper_inf (anyrange) → boolean
Does the range have no upper bound? (An upper bound of Infinity returns false.)
upper_inf('(,)'::daterange) → t

range_merge (anyrange, anyrange) → anyrange
Computes the smallest range that includes both of the given ranges.
range_merge('[1,2)'::int4range, '[3,4)'::int4range) → [1,4)

325

Functions and Operators

Table 9.61. Multirange Functions

Function
Description
Example(s)

lower (anymultirange) → anyelement
Extracts the lower bound of the multirange (NULL if the multirange is empty or has no lower
bound).
lower('{[1.1,2.2)}'::nummultirange) → 1.1

upper (anymultirange) → anyelement
Extracts the upper bound of the multirange (NULL if the multirange is empty or has no upper
bound).
upper('{[1.1,2.2)}'::nummultirange) → 2.2

isempty (anymultirange) → boolean
Is the multirange empty?
isempty('{[1.1,2.2)}'::nummultirange) → f

lower_inc (anymultirange) → boolean
Is the multirange's lower bound inclusive?
lower_inc('{[1.1,2.2)}'::nummultirange) → t

upper_inc (anymultirange) → boolean
Is the multirange's upper bound inclusive?
upper_inc('{[1.1,2.2)}'::nummultirange) → f

lower_inf (anymultirange) → boolean
Does the multirange have no lower bound? (A lower bound of -Infinity returns false.)
lower_inf('{(,)}'::datemultirange) → t

upper_inf (anymultirange) → boolean
Does the multirange have no upper bound? (An upper bound of Infinity returns false.)
upper_inf('{(,)}'::datemultirange) → t

range_merge (anymultirange) → anyrange
Computes the smallest range that includes the entire multirange.
range_merge('{[1,2), [3,4)}'::int4multirange) → [1,4)

multirange (anyrange) → anymultirange
Returns a multirange containing just the given range.
multirange('[1,2)'::int4range) → {[1,2)}

unnest (anymultirange) → setof anyrange
Expands a multirange into a set of ranges in ascending order.
unnest('{[1,2), [3,4)}'::int4multirange) →

 [1,2)
 [3,4)

The lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range or
multirange.

9.21. Aggregate Functions
Aggregate functions compute a single result from a set of input values. The built-in general-purpose
aggregate functions are listed in Table 9.62 while statistical aggregates are in Table 9.63. The built-in
within-group ordered-set aggregate functions are listed in Table 9.64 while the built-in within-group hy-
pothetical-set ones are in Table 9.65. Grouping operations, which are closely related to aggregate func-

326

Functions and Operators

tions, are listed in Table 9.66. The special syntax considerations for aggregate functions are explained
in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Aggregate functions that support Partial Mode are eligible to participate in various optimizations, such
as parallel aggregation.

While all aggregates below accept an optional ORDER BY clause (as outlined in Section 4.2.7), the clause
has only been added to aggregates whose output is affected by ordering.

Table 9.62. General-Purpose Aggregate Functions

Function
Description

Partial
Mode

any_value (anyelement) → same as input type
Returns an arbitrary value from the non-null input values.

Yes

array_agg (anynonarray ORDER BY input_sort_columns) → anyarray
Collects all the input values, including nulls, into an array.

Yes

array_agg (anyarray ORDER BY input_sort_columns) → anyarray
Concatenates all the input arrays into an array of one higher dimension. (The inputs
must all have the same dimensionality, and cannot be empty or null.)

Yes

avg (smallint) → numeric
avg (integer) → numeric
avg (bigint) → numeric
avg (numeric) → numeric
avg (real) → double precision
avg (double precision) → double precision
avg (interval) → interval

Computes the average (arithmetic mean) of all the non-null input values.

Yes

bit_and (smallint) → smallint
bit_and (integer) → integer
bit_and (bigint) → bigint
bit_and (bit) → bit

Computes the bitwise AND of all non-null input values.

Yes

bit_or (smallint) → smallint
bit_or (integer) → integer
bit_or (bigint) → bigint
bit_or (bit) → bit

Computes the bitwise OR of all non-null input values.

Yes

bit_xor (smallint) → smallint
bit_xor (integer) → integer
bit_xor (bigint) → bigint
bit_xor (bit) → bit

Computes the bitwise exclusive OR of all non-null input values. Can be useful as a
checksum for an unordered set of values.

Yes

bool_and (boolean) → boolean
Returns true if all non-null input values are true, otherwise false.

Yes

bool_or (boolean) → boolean
Returns true if any non-null input value is true, otherwise false.

Yes

count (*) → bigint Yes

327

Functions and Operators

Function
Description

Partial
Mode

Computes the number of input rows.

count ("any") → bigint
Computes the number of input rows in which the input value is not null.

Yes

every (boolean) → boolean
This is the SQL standard's equivalent to bool_and .

Yes

json_agg (anyelement ORDER BY input_sort_columns) → json
jsonb_agg (anyelement ORDER BY input_sort_columns) → jsonb

Collects all the input values, including nulls, into a JSON array. Values are convert-
ed to JSON as per to_json or to_jsonb .

No

json_agg_strict (anyelement) → json
jsonb_agg_strict (anyelement) → jsonb

Collects all the input values, skipping nulls, into a JSON array. Values are converted
to JSON as per to_json or to_jsonb .

No

json_arrayagg ([value_expression] [ORDER BY sort_expression] [{ NULL | ABSENT
} ON NULL] [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])
Behaves in the same way as json_array but as an aggregate function so it only
takes one value_expression parameter. If ABSENT ON NULL is specified, any NULL
values are omitted. If ORDER BY is specified, the elements will appear in the array in
that order rather than in the input order.
SELECT json_arrayagg(v) FROM (VALUES(2),(1)) t(v) → [2, 1]

No

json_objectagg ([{ key_expression { VALUE | ':' } value_expression }] [{ NULL |
ABSENT } ON NULL] [{ WITH | WITHOUT } UNIQUE [KEYS]] [RETURNING data_type [
FORMAT JSON [ENCODING UTF8]]])
Behaves like json_object , but as an aggregate function, so it only takes one key_
expression and one value_expression parameter.
SELECT json_objectagg(k:v) FROM (VALUES ('a'::text,current_

date),('b',current_date + 1)) AS t(k,v) → { "a" : "2022-05-10",
"b" : "2022-05-11" }

No

json_object_agg (key "any", value "any" ORDER BY input_sort_columns) → json
jsonb_object_agg (key "any", value "any" ORDER BY input_sort_columns) → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to
text; value arguments are converted as per to_json or to_jsonb . Values can be
null, but keys cannot.

No

json_object_agg_strict (key "any", value "any") → json
jsonb_object_agg_strict (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to
text; value arguments are converted as per to_json or to_jsonb . The key can not
be null. If the value is null then the entry is skipped,

No

json_object_agg_unique (key "any", value "any") → json
jsonb_object_agg_unique (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to
text; value arguments are converted as per to_json or to_jsonb . Values can be
null, but keys cannot. If there is a duplicate key an error is thrown.

No

json_object_agg_unique_strict (key "any", value "any") → json
jsonb_object_agg_unique_strict (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to
text; value arguments are converted as per to_json or to_jsonb . The key can not

No

328

Functions and Operators

Function
Description

Partial
Mode

be null. If the value is null then the entry is skipped. If there is a duplicate key an
error is thrown.

max (see text) → same as input type
Computes the maximum of the non-null input values. Available for any numeric,
string, date/time, or enum type, as well as bytea, inet, interval, money, oid, pg_
lsn , tid, xid8, and also arrays and composite types containing sortable data types.

Yes

min (see text) → same as input type
Computes the minimum of the non-null input values. Available for any numeric,
string, date/time, or enum type, as well as bytea, inet, interval, money, oid, pg_
lsn , tid, xid8, and also arrays and composite types containing sortable data types.

Yes

range_agg (value anyrange) → anymultirange
range_agg (value anymultirange) → anymultirange

Computes the union of the non-null input values.

No

range_intersect_agg (value anyrange) → anyrange
range_intersect_agg (value anymultirange) → anymultirange

Computes the intersection of the non-null input values.

No

string_agg (value text, delimiter text) → text
string_agg (value bytea, delimiter bytea ORDER BY input_sort_columns) → bytea

Concatenates the non-null input values into a string. Each value after the first is pre-
ceded by the corresponding delimiter (if it's not null).

Yes

sum (smallint) → bigint
sum (integer) → bigint
sum (bigint) → numeric
sum (numeric) → numeric
sum (real) → real
sum (double precision) → double precision
sum (interval) → interval
sum (money) → money

Computes the sum of the non-null input values.

Yes

xmlagg (xml ORDER BY input_sort_columns) → xml
Concatenates the non-null XML input values (see Section 9.15.1.8).

No

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute
zero or an empty array for null when necessary.

The aggregate functions array_agg, json_agg, jsonb_agg, json_agg_strict, jsonb_ag-
g_strict, json_object_agg, jsonb_object_agg, json_object_agg_strict, jsonb_object_ag-
g_strict, json_object_agg_unique, jsonb_object_agg_unique, json_object_agg_unique_strict,
jsonb_object_agg_unique_strict, string_agg, and xmlagg, as well as similar user-defined aggregate
functions, produce meaningfully different result values depending on the order of the input values. This
ordering is unspecified by default, but can be controlled by writing an ORDER BY clause within the ag-
gregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a sorted subquery
will usually work. For example:
SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as a join,
because that might cause the subquery's output to be reordered before the aggregate is computed.

329

Functions and Operators

Note
The boolean aggregates bool_and and bool_or correspond to the standard SQL aggregates every
and any or some. PostgreSQL supports every, but not any or some, because there is an ambiguity
built into the standard syntax:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

Here ANY can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

Note
Users accustomed to working with other SQL database management systems might be disappoint-
ed by the performance of the count aggregate when it is applied to the entire table. A query like:

SELECT count(*) FROM sometable;

will require effort proportional to the size of the table: PostgreSQL will need to scan either the
entire table or the entirety of an index that includes all rows in the table.

Table 9.63 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Functions shown as accepting
numeric_type are available for all the types smallint, integer, bigint, numeric, real, and double
precision. Where the description mentions N, it means the number of input rows for which all the input
expressions are non-null. In all cases, null is returned if the computation is meaningless, for example
when N is zero.

Table 9.63. Aggregate Functions for Statistics

Function
Description

Partial
Mode

corr (Y double precision, X double precision) → double precision
Computes the correlation coefficient.

Yes

covar_pop (Y double precision, X double precision) → double precision
Computes the population covariance.

Yes

covar_samp (Y double precision, X double precision) → double precision
Computes the sample covariance.

Yes

regr_avgx (Y double precision, X double precision) → double precision
Computes the average of the independent variable, sum(X)/N.

Yes

regr_avgy (Y double precision, X double precision) → double precision
Computes the average of the dependent variable, sum(Y)/N.

Yes

regr_count (Y double precision, X double precision) → bigint
Computes the number of rows in which both inputs are non-null.

Yes

regr_intercept (Y double precision, X double precision) → double precision
Computes the y-intercept of the least-squares-fit linear equation determined by the (
X, Y) pairs.

Yes

regr_r2 (Y double precision, X double precision) → double precision
Computes the square of the correlation coefficient.

Yes

330

Functions and Operators

Function
Description

Partial
Mode

regr_slope (Y double precision, X double precision) → double precision
Computes the slope of the least-squares-fit linear equation determined by the (X, Y)
pairs.

Yes

regr_sxx (Y double precision, X double precision) → double precision
Computes the “sum of squares” of the independent variable, sum(X^2) - sum(
X)^2/N.

Yes

regr_sxy (Y double precision, X double precision) → double precision
Computes the “sum of products” of independent times dependent variables, sum(
X*Y) - sum(X) * sum(Y)/N.

Yes

regr_syy (Y double precision, X double precision) → double precision
Computes the “sum of squares” of the dependent variable, sum(Y^2) - sum(
Y)^2/N.

Yes

stddev (numeric_type) → double precision for real or double precision, otherwise
numeric
This is a historical alias for stddev_samp .

Yes

stddev_pop (numeric_type) → double precision for real or double precision, oth-
erwise numeric
Computes the population standard deviation of the input values.

Yes

stddev_samp (numeric_type) → double precision for real or double precision, oth-
erwise numeric
Computes the sample standard deviation of the input values.

Yes

variance (numeric_type) → double precision for real or double precision, other-
wise numeric
This is a historical alias for var_samp .

Yes

var_pop (numeric_type) → double precision for real or double precision, other-
wise numeric
Computes the population variance of the input values (square of the population stan-
dard deviation).

Yes

var_samp (numeric_type) → double precision for real or double precision, other-
wise numeric
Computes the sample variance of the input values (square of the sample standard
deviation).

Yes

Table 9.64 shows some aggregate functions that use the ordered-set aggregate syntax. These functions
are sometimes referred to as “inverse distribution” functions. Their aggregated input is introduced by
ORDER BY, and they may also take a direct argument that is not aggregated, but is computed only once. All
these functions ignore null values in their aggregated input. For those that take a fraction parameter,
the fraction value must be between 0 and 1; an error is thrown if not. However, a null fraction value
simply produces a null result.

Table 9.64. Ordered-Set Aggregate Functions

Function
Description

Partial
Mode

mode () WITHIN GROUP (ORDER BY anyelement) → anyelement
Computes the mode, the most frequent value of the aggregated argument (arbitrari-
ly choosing the first one if there are multiple equally-frequent values). The aggregat-
ed argument must be of a sortable type.

No

331

Functions and Operators

Function
Description

Partial
Mode

percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY double pre-
cision) → double precision

percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY interval) →
interval
Computes the continuous percentile, a value corresponding to the specified frac-
tion within the ordered set of aggregated argument values. This will interpolate be-
tween adjacent input items if needed.

No

percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY double
precision) → double precision[]

percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY interval
) → interval[]
Computes multiple continuous percentiles. The result is an array of the same dimen-
sions as the fractions parameter, with each non-null element replaced by the (pos-
sibly interpolated) value corresponding to that percentile.

No

percentile_disc (fraction double precision) WITHIN GROUP (ORDER BY anyelement)
→ anyelement
Computes the discrete percentile, the first value within the ordered set of aggregat-
ed argument values whose position in the ordering equals or exceeds the specified
fraction. The aggregated argument must be of a sortable type.

No

percentile_disc (fractions double precision[]) WITHIN GROUP (ORDER BY anyele-
ment) → anyarray
Computes multiple discrete percentiles. The result is an array of the same dimen-
sions as the fractions parameter, with each non-null element replaced by the in-
put value corresponding to that percentile. The aggregated argument must be of a
sortable type.

No

Each of the “hypothetical-set” aggregates listed in Table 9.65 is associated with a window function of the
same name defined in Section 9.22. In each case, the aggregate's result is the value that the associated
window function would have returned for the “hypothetical” row constructed from args, if such a row
had been added to the sorted group of rows represented by the sorted_args. For each of these functions,
the list of direct arguments given in args must match the number and types of the aggregated arguments
given in sorted_args. Unlike most built-in aggregates, these aggregates are not strict, that is they do not
drop input rows containing nulls. Null values sort according to the rule specified in the ORDER BY clause.

Table 9.65. Hypothetical-Set Aggregate Functions

Function
Description

Partial
Mode

rank (args) WITHIN GROUP (ORDER BY sorted_args) → bigint
Computes the rank of the hypothetical row, with gaps; that is, the row number of the
first row in its peer group.

No

dense_rank (args) WITHIN GROUP (ORDER BY sorted_args) → bigint
Computes the rank of the hypothetical row, without gaps; this function effectively
counts peer groups.

No

percent_rank (args) WITHIN GROUP (ORDER BY sorted_args) → double precision
Computes the relative rank of the hypothetical row, that is (rank - 1) / (total rows -
1). The value thus ranges from 0 to 1 inclusive.

No

cume_dist (args) WITHIN GROUP (ORDER BY sorted_args) → double precision
Computes the cumulative distribution, that is (number of rows preceding or peers
with hypothetical row) / (total rows). The value thus ranges from 1/N to 1.

No

332

Functions and Operators

Table 9.66. Grouping Operations

Function
Description

GROUPING (group_by_expression(s)) → integer
Returns a bit mask indicating which GROUP BY expressions are not included in the current
grouping set. Bits are assigned with the rightmost argument corresponding to the least-sig-
nificant bit; each bit is 0 if the corresponding expression is included in the grouping criteria
of the grouping set generating the current result row, and 1 if it is not included.

The grouping operations shown in Table 9.66 are used in conjunction with grouping sets (see Sec-
tion 7.2.4) to distinguish result rows. The arguments to the GROUPING function are not actually evaluated,
but they must exactly match expressions given in the GROUP BY clause of the associated query level.
For example:
=> SELECT * FROM items_sold;
 make | model | sales
-------+-------+-------
 Foo | GT | 10
 Foo | Tour | 20
 Bar | City | 15
 Bar | Sport | 5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold GROUP BY
 ROLLUP(make,model);
 make | model | grouping | sum
-------+-------+----------+-----
 Foo | GT | 0 | 10
 Foo | Tour | 0 | 20
 Bar | City | 0 | 15
 Bar | Sport | 0 | 5
 Foo | | 1 | 30
 Bar | | 1 | 20
 | | 3 | 50
(7 rows)

Here, the grouping value 0 in the first four rows shows that those have been grouped normally, over both
the grouping columns. The value 1 indicates that model was not grouped by in the next-to-last two rows,
and the value 3 indicates that neither make nor model was grouped by in the last row (which therefore
is an aggregate over all the input rows).

9.22. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.67. Note that these functions must be invoked using
window function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined ordinary aggregate (i.e., not ordered-set or
hypothetical-set aggregates) can be used as a window function; see Section 9.21 for a list of the built-
in aggregates. Aggregate functions act as window functions only when an OVER clause follows the call;
otherwise they act as plain aggregates and return a single row for the entire set.

Table 9.67. General-Purpose Window Functions

Function
Description

row_number () → bigint

333

Functions and Operators

Function
Description
Returns the number of the current row within its partition, counting from 1.

rank () → bigint
Returns the rank of the current row, with gaps; that is, the row_number of the first row in its
peer group.

dense_rank () → bigint
Returns the rank of the current row, without gaps; this function effectively counts peer
groups.

percent_rank () → double precision
Returns the relative rank of the current row, that is (rank - 1) / (total partition rows - 1). The
value thus ranges from 0 to 1 inclusive.

cume_dist () → double precision
Returns the cumulative distribution, that is (number of partition rows preceding or peers with
current row) / (total partition rows). The value thus ranges from 1/N to 1.

ntile (num_buckets integer) → integer
Returns an integer ranging from 1 to the argument value, dividing the partition as equally as
possible.

lag (value anycompatible [, offset integer [, default anycompatible]]) → anycompatible
Returns value evaluated at the row that is offset rows before the current row within the
partition; if there is no such row, instead returns default (which must be of a type compat-
ible with value). Both offset and default are evaluated with respect to the current row. If
omitted, offset defaults to 1 and default to NULL.

lead (value anycompatible [, offset integer [, default anycompatible]]) → anycompatible
Returns value evaluated at the row that is offset rows after the current row within the par-
tition; if there is no such row, instead returns default (which must be of a type compatible
with value). Both offset and default are evaluated with respect to the current row. If omit-
ted, offset defaults to 1 and default to NULL.

first_value (value anyelement) → anyelement
Returns value evaluated at the row that is the first row of the window frame.

last_value (value anyelement) → anyelement
Returns value evaluated at the row that is the last row of the window frame.

nth_value (value anyelement, n integer) → anyelement
Returns value evaluated at the row that is the n'th row of the window frame (counting from
1); returns NULL if there is no such row.

All of the functions listed in Table 9.67 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct when considering only the ORDER BY
columns are said to be peers. The four ranking functions (including cume_dist) are defined so that they
give the same answer for all rows of a peer group.

Note that first_value, last_value, and nth_value consider only the rows within the “window frame”,
which by default contains the rows from the start of the partition through the last peer of the current
row. This is likely to give unhelpful results for last_value and sometimes also nth_value. You can
redefine the frame by adding a suitable frame specification (RANGE, ROWS or GROUPS) to the OVER clause.
See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the current
row's window frame. An aggregate used with ORDER BY and the default window frame definition pro-
duces a “running sum” type of behavior, which may or may not be what's wanted. To obtain aggregation

334

Functions and Operators

over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING. Other frame specifications can be used to obtain other effects.

Note
The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag, first_value,
last_value, and nth_value. This is not implemented in PostgreSQL: the behavior is always the
same as the standard's default, namely RESPECT NULLS. Likewise, the standard's FROM FIRST or
FROM LAST option for nth_value is not implemented: only the default FROM FIRST behavior is
supported. (You can achieve the result of FROM LAST by reversing the ORDER BY ordering.)

9.23. Merge Support Functions
PostgreSQL includes one merge support function that may be used in the RETURNING list of a MERGE
command to identify the action taken for each row; see Table 9.68.

Table 9.68. Merge Support Functions

Function
Description

merge_action () → text
Returns the merge action command executed for the current row. This will be 'INSERT', 'UP-
DATE', or 'DELETE'.

Example:
MERGE INTO products p
 USING stock s ON p.product_id = s.product_id
 WHEN MATCHED AND s.quantity > 0 THEN
 UPDATE SET in_stock = true, quantity = s.quantity
 WHEN MATCHED THEN
 UPDATE SET in_stock = false, quantity = 0
 WHEN NOT MATCHED THEN
 INSERT (product_id, in_stock, quantity)
 VALUES (s.product_id, true, s.quantity)
 RETURNING merge_action(), p.*;

 merge_action | product_id | in_stock | quantity
--------------+------------+----------+----------
 UPDATE | 1001 | t | 50
 UPDATE | 1002 | f | 0
 INSERT | 1003 | t | 10

Note that this function can only be used in the RETURNING list of a MERGE command. It is an error to use
it in any other part of a query.

9.24. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.24.1. EXISTS
EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if
the subquery returns no rows, the result of EXISTS is “false”.

335

Functions and Operators

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows,
the output list of the subquery is normally unimportant. A common coding convention is to write all
EXISTS tests in the form EXISTS(SELECT 1 WHERE ...). There are exceptions to this rule however, such
as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1
row, even if there are several matching tab2 rows:

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

9.24.2. IN
expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if
any equal subquery row is found. The result is “false” if no equal row is found (including the case where
the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are un-
equal if any corresponding members are non-null and unequal; otherwise the result of that row compar-
ison is unknown (null). If all the per-row results are either unequal or null, with at least one null, then
the result of IN is null.

9.24.3. NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

336

Functions and Operators

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.13. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are found
(including the case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are un-
equal if any corresponding members are non-null and unequal; otherwise the result of that row compar-
ison is unknown (null). If all the per-row results are either unequal or null, with at least one null, then
the result of NOT IN is null.

9.24.4. ANY/SOME
expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result,
the result of the ANY construct will be null, not false. This is in accordance with SQL's normal rules for
Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the case where the subquery returns no rows). The result is NULL if no comparison with a subquery row
returns true, and at least one comparison returns NULL.

See Section 9.25.5 for details about the meaning of a row constructor comparison.

9.24.5. ALL
expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if no comparison with a subquery row returns false, and at least one comparison returns NULL.

NOT IN is equivalent to <> ALL.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

337

Functions and Operators

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true for
all subquery rows (including the case where the subquery returns no rows). The result is “false” if the
comparison returns false for any subquery row. The result is NULL if no comparison with a subquery
row returns false, and at least one comparison returns NULL.

See Section 9.25.5 for details about the meaning of a row constructor comparison.

9.24.6. Single-Row Comparison
row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken
to be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.25.5 for details about the meaning of a row constructor comparison.

9.25. Row and Array Comparisons
This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.25.1. IN
expression IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's
result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the IN construct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

9.25.2. NOT IN
expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's
result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> value1
AND
expression <> value2
AND
...

338

Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip
x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more likely
to trip up the novice when working with NOT IN than when working with IN. It is best to express
your condition positively if possible.

9.25.3. ANY/SOME (array)
expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand ex-
pression is evaluated and compared to each element of the array using the given operator, which must
yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no
true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result
is obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This
is in accordance with SQL's normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.25.4. ALL (array)
expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand ex-
pression is evaluated and compared to each element of the array using the given operator, which must
yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case where
the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result
is obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This
is in accordance with SQL's normal rules for Boolean combinations of null values.

9.25.5. Row Constructor Comparison
row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row constructors must have the
same number of fields. The given operator is applied to each pair of corresponding fields. (Since the
fields could be of different types, this means that a different specific operator could be selected for each
pair.) All the selected operators must be members of some B-tree operator class, or be the negator of an
= member of a B-tree operator class, meaning that row constructor comparison is only possible when
the operator is =, <>, <, <=, >, or >=, or has semantics similar to one of these.

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members
are non-null and unequal; otherwise the result of the row comparison is unknown (null).

339

Functions and Operators

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an unequal
or null pair of elements is found. If either of this pair of elements is null, the result of the row comparison
is unknown (null); otherwise comparison of this pair of elements determines the result. For example,
ROW(1,2,NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are not considered.

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will always be either true or false, never null.

9.25.6. Composite Type Comparison
record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing
two NULL values or a NULL and a non-NULL. PostgreSQL does this only when comparing the results of
two row constructors (as in Section 9.25.5) or comparing a row constructor to the output of a subquery
(as in Section 9.24). In other contexts where two composite-type values are compared, two NULL field
values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in
order to have consistent sorting and indexing behavior for composite types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when
the operator is =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific, an operator
can be a row comparison operator if it is a member of a B-tree operator class, or is the negator of the
= member of a B-tree operator class.) The default behavior of the above operators is the same as for IS
[NOT] DISTINCT FROM for row constructors (see Section 9.25.5).

To support matching of rows which include elements without a default B-tree operator class, the follow-
ing operators are defined for composite type comparison: *=, *<>, *<, *<=, *>, and *>=. These operators
compare the internal binary representation of the two rows. Two rows might have a different binary
representation even though comparisons of the two rows with the equality operator is true. The ordering
of rows under these comparison operators is deterministic but not otherwise meaningful. These opera-
tors are used internally for materialized views and might be useful for other specialized purposes such
as replication and B-Tree deduplication (see Section 65.1.4.3). They are not intended to be generally
useful for writing queries, though.

9.26. Set Returning Functions
This section describes functions that possibly return more than one row. The most widely used functions
in this class are series generating functions, as detailed in Table 9.69 and Table 9.70. Other, more
specialized set-returning functions are described elsewhere in this manual. See Section 7.2.1.4 for ways
to combine multiple set-returning functions.

Table 9.69. Series Generating Functions

Function
Description

generate_series (start integer, stop integer [, step integer]) → setof integer
generate_series (start bigint, stop bigint [, step bigint]) → setof bigint
generate_series (start numeric, stop numeric [, step numeric]) → setof numeric

Generates a series of values from start to stop, with a step size of step. step defaults to 1.

generate_series (start timestamp, stop timestamp, step interval) → setof timestamp

340

Functions and Operators

Function
Description

generate_series (start timestamp with time zone, stop timestamp with time zone, step in-
terval [, timezone text]) → setof timestamp with time zone
Generates a series of values from start to stop, with a step size of step. In the time-
zone-aware form, times of day and daylight-savings adjustments are computed according to
the time zone named by the timezone argument, or the current TimeZone setting if that is
omitted.

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned if any input is
NULL. It is an error for step to be zero. Some examples follow:
SELECT * FROM generate_series(2,4);
 generate_series

 2
 3
 4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series

 5
 3
 1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series

(0 rows)

SELECT generate_series(1.1, 4, 1.3);
 generate_series

 1.1
 2.4
 3.7
(3 rows)

-- this example relies on the date-plus-integer operator:
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
 dates

 2004-02-05
 2004-02-12
 2004-02-19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp,
 '2008-03-04 12:00', '10 hours');
 generate_series

 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00

341

Functions and Operators

 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

-- this example assumes that TimeZone is set to UTC; note the DST transition:
SELECT * FROM generate_series('2001-10-22 00:00 -04:00'::timestamptz,
 '2001-11-01 00:00 -05:00'::timestamptz,
 '1 day'::interval, 'America/New_York');
 generate_series

 2001-10-22 04:00:00+00
 2001-10-23 04:00:00+00
 2001-10-24 04:00:00+00
 2001-10-25 04:00:00+00
 2001-10-26 04:00:00+00
 2001-10-27 04:00:00+00
 2001-10-28 04:00:00+00
 2001-10-29 05:00:00+00
 2001-10-30 05:00:00+00
 2001-10-31 05:00:00+00
 2001-11-01 05:00:00+00
(11 rows)

Table 9.70. Subscript Generating Functions

Function
Description

generate_subscripts (array anyarray, dim integer) → setof integer
Generates a series comprising the valid subscripts of the dim'th dimension of the given array.

generate_subscripts (array anyarray, dim integer, reverse boolean) → setof integer
Generates a series comprising the valid subscripts of the dim'th dimension of the given array.
When reverse is true, returns the series in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the spec-
ified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or if any input is NULL. Some examples follow:
-- basic usage:
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s

 1
 2
 3
 4
(4 rows)

-- presenting an array, the subscript and the subscripted
-- value requires a subquery:
SELECT * FROM arrays;
 a

 {-1,-2}
 {100,200,300}

342

Functions and Operators

(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;
 array | subscript | value
---------------+-----------+-------
 {-1,-2} | 1 | -1
 {-1,-2} | 2 | -2
 {100,200,300} | 1 | 100
 {100,200,300} | 2 | 200
 {100,200,300} | 3 | 300
(5 rows)

-- unnest a 2D array:
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]
 from generate_subscripts($1,1) g1(i),
 generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2

 1
 2
 3
 4
(4 rows)

When a function in the FROM clause is suffixed by WITH ORDINALITY, a bigint column is appended to
the function's output column(s), which starts from 1 and increments by 1 for each row of the function's
output. This is most useful in the case of set returning functions such as unnest().

-- set returning function WITH ORDINALITY:
SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
 ls | n
-----------------+----
 pg_serial | 1
 pg_twophase | 2
 postmaster.opts | 3
 pg_notify | 4
 postgresql.conf | 5
 pg_tblspc | 6
 logfile | 7
 base | 8
 postmaster.pid | 9
 pg_ident.conf | 10
 global | 11
 pg_xact | 12
 pg_snapshots | 13
 pg_multixact | 14
 PG_VERSION | 15
 pg_wal | 16
 pg_hba.conf | 17
 pg_stat_tmp | 18
 pg_subtrans | 19
(19 rows)

343

Functions and Operators

9.27. System Information Functions and Operators
The functions described in this section are used to obtain various information about a PostgreSQL in-
stallation.

9.27.1. Session Information Functions
Table 9.71 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 27.2.26 for more information.

Table 9.71. Session Information Functions

Function
Description

current_catalog → name
current_database () → name

Returns the name of the current database. (Databases are called “catalogs” in the SQL stan-
dard, so current_catalog is the standard's spelling.)

current_query () → text
Returns the text of the currently executing query, as submitted by the client (which might
contain more than one statement).

current_role → name
This is equivalent to current_user .

current_schema → name
current_schema () → name

Returns the name of the schema that is first in the search path (or a null value if the search
path is empty). This is the schema that will be used for any tables or other named objects that
are created without specifying a target schema.

current_schemas (include_implicit boolean) → name[]
Returns an array of the names of all schemas presently in the effective search path, in their
priority order. (Items in the current search_path setting that do not correspond to existing,
searchable schemas are omitted.) If the Boolean argument is true, then implicitly-searched
system schemas such as pg_catalog are included in the result.

current_user → name
Returns the user name of the current execution context.

inet_client_addr () → inet
Returns the IP address of the current client, or NULL if the current connection is via a Unix-
domain socket.

inet_client_port () → integer
Returns the IP port number of the current client, or NULL if the current connection is via a
Unix-domain socket.

inet_server_addr () → inet
Returns the IP address on which the server accepted the current connection, or NULL if the
current connection is via a Unix-domain socket.

inet_server_port () → integer
Returns the IP port number on which the server accepted the current connection, or NULL if
the current connection is via a Unix-domain socket.

pg_backend_pid () → integer
Returns the process ID of the server process attached to the current session.

344

Functions and Operators

Function
Description

pg_blocking_pids (integer) → integer[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with
the specified process ID from acquiring a lock, or an empty array if there is no such server
process or it is not blocked.
One server process blocks another if it either holds a lock that conflicts with the blocked
process's lock request (hard block), or is waiting for a lock that would conflict with the
blocked process's lock request and is ahead of it in the wait queue (soft block). When using
parallel queries the result always lists client-visible process IDs (that is, pg_backend_pid
results) even if the actual lock is held or awaited by a child worker process. As a result of
that, there may be duplicated PIDs in the result. Also note that when a prepared transaction
holds a conflicting lock, it will be represented by a zero process ID.
Frequent calls to this function could have some impact on database performance, because it
needs exclusive access to the lock manager's shared state for a short time.

pg_conf_load_time () → timestamp with time zone
Returns the time when the server configuration files were last loaded. If the current session
was alive at the time, this will be the time when the session itself re-read the configuration
files (so the reading will vary a little in different sessions). Otherwise it is the time when the
postmaster process re-read the configuration files.

pg_current_logfile ([text]) → text
Returns the path name of the log file currently in use by the logging collector. The path in-
cludes the log_directory directory and the individual log file name. The result is NULL if the
logging collector is disabled. When multiple log files exist, each in a different format, pg_
current_logfile without an argument returns the path of the file having the first format
found in the ordered list: stderr, csvlog, jsonlog. NULL is returned if no log file has any of
these formats. To request information about a specific log file format, supply either csvlog,
 jsonlog or stderr as the value of the optional parameter. The result is NULL if the log format
requested is not configured in log_destination. The result reflects the contents of the cur-
rent_logfiles file.
This function is restricted to superusers and roles with privileges of the pg_monitor role by
default, but other users can be granted EXECUTE to run the function.

pg_get_loaded_modules () → setof record (module_name text, version text, file_name
text)
Returns a list of the loadable modules that are loaded into the current server session. The
module_name and version fields are NULL unless the module author supplied values for
them using the PG_MODULE_MAGIC_EXT macro. The file_name field gives the file name of
the module (shared library).

pg_my_temp_schema () → oid
Returns the OID of the current session's temporary schema, or zero if it has none (because it
has not created any temporary tables).

pg_is_other_temp_schema (oid) → boolean
Returns true if the given OID is the OID of another session's temporary schema. (This can be
useful, for example, to exclude other sessions' temporary tables from a catalog display.)

pg_jit_available () → boolean
Returns true if a JIT compiler extension is available (see Chapter 30) and the jit configuration
parameter is set to on.

pg_numa_available () → boolean
Returns true if the server has been compiled with NUMA support.

pg_listening_channels () → setof text

345

Functions and Operators

Function
Description
Returns the set of names of asynchronous notification channels that the current session is lis-
tening to.

pg_notification_queue_usage () → double precision
Returns the fraction (0–1) of the asynchronous notification queue's maximum size that is cur-
rently occupied by notifications that are waiting to be processed. See LISTEN and NOTIFY
for more information.

pg_postmaster_start_time () → timestamp with time zone
Returns the time when the server started.

pg_safe_snapshot_blocking_pids (integer) → integer[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with
the specified process ID from acquiring a safe snapshot, or an empty array if there is no such
server process or it is not blocked.
A session running a SERIALIZABLE transaction blocks a SERIALIZABLE READ ONLY DE-
FERRABLE transaction from acquiring a snapshot until the latter determines that it is safe to
avoid taking any predicate locks. See Section 13.2.3 for more information about serializable
and deferrable transactions.
Frequent calls to this function could have some impact on database performance, because it
needs access to the predicate lock manager's shared state for a short time.

pg_trigger_depth () → integer
Returns the current nesting level of PostgreSQL triggers (0 if not called, directly or indirectly,
from inside a trigger).

session_user → name
Returns the session user's name.

system_user → text
Returns the authentication method and the identity (if any) that the user presented dur-
ing the authentication cycle before they were assigned a database role. It is represented as
auth_method:identity or NULL if the user has not been authenticated (for example if Trust
authentication has been used).

user → name
This is equivalent to current_user .

Note
current_catalog, current_role, current_schema, current_user, session_user, and user have
special syntactic status in SQL: they must be called without trailing parentheses. In PostgreSQL,
parentheses can optionally be used with current_schema, but not with the others.

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally it is equal to the session user, but it can be changed
with SET ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”. cur-
rent_role and user are synonyms for current_user. (The SQL standard draws a distinction between
current_role and current_user, but PostgreSQL does not, since it unifies users and roles into a single
kind of entity.)

9.27.2. Access Privilege Inquiry Functions
Table 9.72 lists functions that allow querying object access privileges programmatically. (See Section 5.8
for more information about privileges.) In these functions, the user whose privileges are being inquired

346

Functions and Operators

about can be specified by name or by OID (pg_authid.oid), or if the name is given as public then the
privileges of the PUBLIC pseudo-role are checked. Also, the user argument can be omitted entirely,
in which case the current_user is assumed. The object that is being inquired about can be specified
either by name or by OID, too. When specifying by name, a schema name can be included if relevant. The
access privilege of interest is specified by a text string, which must evaluate to one of the appropriate
privilege keywords for the object's type (e.g., SELECT). Optionally, WITH GRANT OPTION can be added
to a privilege type to test whether the privilege is held with grant option. Also, multiple privilege types
can be listed separated by commas, in which case the result will be true if any of the listed privileges
is held. (Case of the privilege string is not significant, and extra whitespace is allowed between but not
within privilege names.) Some examples:

SELECT has_table_privilege('myschema.mytable', 'select');
SELECT has_table_privilege('joe', 'mytable', 'INSERT, SELECT WITH GRANT OPTION');

Table 9.72. Access Privilege Inquiry Functions

Function
Description

has_any_column_privilege ([user name or oid,] table text or oid, privilege text) →
boolean
Does user have privilege for any column of table? This succeeds either if the privilege is held
for the whole table, or if there is a column-level grant of the privilege for at least one column.
Allowable privilege types are SELECT, INSERT, UPDATE, and REFERENCES.

has_column_privilege ([user name or oid,] table text or oid, column text or smallint, priv-
ilege text) → boolean
Does user have privilege for the specified table column? This succeeds either if the privilege
is held for the whole table, or if there is a column-level grant of the privilege for the column.
The column can be specified by name or by attribute number (pg_attribute .attnum). Allow-
able privilege types are SELECT, INSERT, UPDATE, and REFERENCES.

has_database_privilege ([user name or oid,] database text or oid, privilege text) →
boolean
Does user have privilege for database? Allowable privilege types are CREATE, CONNECT, TEMPO-
RARY, and TEMP (which is equivalent to TEMPORARY).

has_foreign_data_wrapper_privilege ([user name or oid,] fdw text or oid, privilege text
) → boolean
Does user have privilege for foreign-data wrapper? The only allowable privilege type is USAGE.

has_function_privilege ([user name or oid,] function text or oid, privilege text) →
boolean
Does user have privilege for function? The only allowable privilege type is EXECUTE.
When specifying a function by name rather than by OID, the allowed input is the same as for
the regprocedure data type (see Section 8.19). An example is:

SELECT has_function_privilege('joeuser', 'myfunc(int, text)', 'execute');

has_language_privilege ([user name or oid,] language text or oid, privilege text) →
boolean
Does user have privilege for language? The only allowable privilege type is USAGE.

has_largeobject_privilege ([user name or oid,] largeobject oid, privilege text) →
boolean
Does user have privilege for large object? Allowable privilege types are SELECT and UPDATE.

has_parameter_privilege ([user name or oid,] parameter text, privilege text) → boolean
Does user have privilege for configuration parameter? The parameter name is case-insensi-
tive. Allowable privilege types are SET and ALTER SYSTEM.

has_schema_privilege ([user name or oid,] schema text or oid, privilege text) → boolean

347

Functions and Operators

Function
Description
Does user have privilege for schema? Allowable privilege types are CREATE and USAGE.

has_sequence_privilege ([user name or oid,] sequence text or oid, privilege text) →
boolean
Does user have privilege for sequence? Allowable privilege types are USAGE, SELECT, and UP-
DATE.

has_server_privilege ([user name or oid,] server text or oid, privilege text) → boolean
Does user have privilege for foreign server? The only allowable privilege type is USAGE.

has_table_privilege ([user name or oid,] table text or oid, privilege text) → boolean
Does user have privilege for table? Allowable privilege types are SELECT, INSERT, UPDATE,
 DELETE, TRUNCATE, REFERENCES, TRIGGER, and MAINTAIN.

has_tablespace_privilege ([user name or oid,] tablespace text or oid, privilege text) →
boolean
Does user have privilege for tablespace? The only allowable privilege type is CREATE.

has_type_privilege ([user name or oid,] type text or oid, privilege text) → boolean
Does user have privilege for data type? The only allowable privilege type is USAGE. When
specifying a type by name rather than by OID, the allowed input is the same as for the reg-
type data type (see Section 8.19).

pg_has_role ([user name or oid,] role text or oid, privilege text) → boolean
Does user have privilege for role? Allowable privilege types are MEMBER, USAGE, and SET. MEM-
BER denotes direct or indirect membership in the role without regard to what specific priv-
ileges may be conferred. USAGE denotes whether the privileges of the role are immediately
available without doing SET ROLE, while SET denotes whether it is possible to change to the
role using the SET ROLE command. WITH ADMIN OPTION or WITH GRANT OPTION can be added
to any of these privilege types to test whether the ADMIN privilege is held (all six spellings test
the same thing). This function does not allow the special case of setting user to public, be-
cause the PUBLIC pseudo-role can never be a member of real roles.

row_security_active (table text or oid) → boolean
Is row-level security active for the specified table in the context of the current user and cur-
rent environment?

Table 9.73 shows the operators available for the aclitem type, which is the catalog representation of
access privileges. See Section 5.8 for information about how to read access privilege values.

Table 9.73. aclitem Operators

Operator
Description
Example(s)

aclitem = aclitem → boolean
Are aclitems equal? (Notice that type aclitem lacks the usual set of comparison operators; it
has only equality. In turn, aclitem arrays can only be compared for equality.)
'calvin=r*w/hobbes'::aclitem = 'calvin=r*w*/hobbes'::aclitem → f

aclitem[] @> aclitem → boolean
Does array contain the specified privileges? (This is true if there is an array entry that match-
es the aclitem's grantee and grantor, and has at least the specified set of privileges.)
'{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] @> 'calvin=r*/

hobbes'::aclitem → t

aclitem[] ~ aclitem → boolean
This is a deprecated alias for @>.

348

Functions and Operators

Operator
Description
Example(s)
'{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] ~ 'calvin=r*/hobbes'::a-

clitem → t

Table 9.74 shows some additional functions to manage the aclitem type.

Table 9.74. aclitem Functions

Function
Description

acldefault (type "char", ownerId oid) → aclitem[]
Constructs an aclitem array holding the default access privileges for an object of type type
belonging to the role with OID ownerId. This represents the access privileges that will be as-
sumed when an object's ACL entry is null. (The default access privileges are described in Sec-
tion 5.8.) The type parameter must be one of 'c' for COLUMN, 'r' for TABLE and table-like ob-
jects, 's' for SEQUENCE, 'd' for DATABASE, 'f' for FUNCTION or PROCEDURE, 'l' for LANGUAGE, 'L'
for LARGE OBJECT, 'n' for SCHEMA, 'p' for PARAMETER, 't' for TABLESPACE, 'F' for FOREIGN DATA
WRAPPER, 'S' for FOREIGN SERVER, or 'T' for TYPE or DOMAIN.

aclexplode (aclitem[]) → setof record (grantor oid, grantee oid, privilege_type text, is_
grantable boolean)
Returns the aclitem array as a set of rows. If the grantee is the pseudo-role PUBLIC, it is
represented by zero in the grantee column. Each granted privilege is represented as SELECT,
 INSERT, etc (see Table 5.1 for a full list). Note that each privilege is broken out as a separate
row, so only one keyword appears in the privilege_type column.

makeaclitem (grantee oid, grantor oid, privileges text, is_grantable boolean) → aclitem
Constructs an aclitem with the given properties. privileges is a comma-separated list of
privilege names such as SELECT, INSERT, etc, all of which are set in the result. (Case of the
privilege string is not significant, and extra whitespace is allowed between but not within
privilege names.)

9.27.3. Schema Visibility Inquiry Functions
Table 9.75 shows functions that determine whether a certain object is visible in the current schema
search path. For example, a table is said to be visible if its containing schema is in the search path and
no table of the same name appears earlier in the search path. This is equivalent to the statement that
the table can be referenced by name without explicit schema qualification. Thus, to list the names of
all visible tables:
SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

For functions and operators, an object in the search path is said to be visible if there is no object of the
same name and argument data type(s) earlier in the path. For operator classes and families, both the
name and the associated index access method are considered.

Table 9.75. Schema Visibility Inquiry Functions

Function
Description

pg_collation_is_visible (collation oid) → boolean
Is collation visible in search path?

pg_conversion_is_visible (conversion oid) → boolean
Is conversion visible in search path?

pg_function_is_visible (function oid) → boolean
Is function visible in search path? (This also works for procedures and aggregates.)

349

Functions and Operators

Function
Description

pg_opclass_is_visible (opclass oid) → boolean
Is operator class visible in search path?

pg_operator_is_visible (operator oid) → boolean
Is operator visible in search path?

pg_opfamily_is_visible (opclass oid) → boolean
Is operator family visible in search path?

pg_statistics_obj_is_visible (stat oid) → boolean
Is statistics object visible in search path?

pg_table_is_visible (table oid) → boolean
Is table visible in search path? (This works for all types of relations, including views, material-
ized views, indexes, sequences and foreign tables.)

pg_ts_config_is_visible (config oid) → boolean
Is text search configuration visible in search path?

pg_ts_dict_is_visible (dict oid) → boolean
Is text search dictionary visible in search path?

pg_ts_parser_is_visible (parser oid) → boolean
Is text search parser visible in search path?

pg_ts_template_is_visible (template oid) → boolean
Is text search template visible in search path?

pg_type_is_visible (type oid) → boolean
Is type (or domain) visible in search path?

All these functions require object OIDs to identify the object to be checked. If you want to test an object
by name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, regoperator,
regconfig, or regdictionary), for example:
SELECT pg_type_is_visible('myschema.widget'::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the
name can be recognized at all, it must be visible.

9.27.4. System Catalog Information Functions
Table 9.76 lists functions that extract information from the system catalogs.

Table 9.76. System Catalog Information Functions

Function
Description

format_type (type oid, typemod integer) → text
Returns the SQL name for a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_basetype (regtype) → regtype
Returns the OID of the base type of a domain identified by its type OID. If the argument is the
OID of a non-domain type, returns the argument as-is. Returns NULL if the argument is not a
valid type OID. If there's a chain of domain dependencies, it will recurse until finding the base
type.
Assuming CREATE DOMAIN mytext AS text:
pg_basetype('mytext'::regtype) → text

pg_char_to_encoding (encoding name) → integer

350

Functions and Operators

Function
Description
Converts the supplied encoding name into an integer representing the internal identifier used
in some system catalog tables. Returns -1 if an unknown encoding name is provided.

pg_encoding_to_char (encoding integer) → name
Converts the integer used as the internal identifier of an encoding in some system catalog ta-
bles into a human-readable string. Returns an empty string if an invalid encoding number is
provided.

pg_get_catalog_foreign_keys () → setof record (fktable regclass, fkcols text[], pk-
table regclass, pkcols text[], is_array boolean, is_opt boolean)
Returns a set of records describing the foreign key relationships that exist within the Post-
greSQL system catalogs. The fktable column contains the name of the referencing catalog,
and the fkcols column contains the name(s) of the referencing column(s). Similarly, the pk-
table column contains the name of the referenced catalog, and the pkcols column contains
the name(s) of the referenced column(s). If is_array is true, the last referencing column is
an array, each of whose elements should match some entry in the referenced catalog. If is_
opt is true, the referencing column(s) are allowed to contain zeroes instead of a valid refer-
ence.

pg_get_constraintdef (constraint oid [, pretty boolean]) → text
Reconstructs the creating command for a constraint. (This is a decompiled reconstruction,
not the original text of the command.)

pg_get_expr (expr pg_node_tree , relation oid [, pretty boolean]) → text
Decompiles the internal form of an expression stored in the system catalogs, such as the de-
fault value for a column. If the expression might contain Vars, specify the OID of the relation
they refer to as the second parameter; if no Vars are expected, passing zero is sufficient.

pg_get_functiondef (func oid) → text
Reconstructs the creating command for a function or procedure. (This is a decompiled recon-
struction, not the original text of the command.) The result is a complete CREATE OR REPLACE
FUNCTION or CREATE OR REPLACE PROCEDURE statement.

pg_get_function_arguments (func oid) → text
Reconstructs the argument list of a function or procedure, in the form it would need to ap-
pear in within CREATE FUNCTION (including default values).

pg_get_function_identity_arguments (func oid) → text
Reconstructs the argument list necessary to identify a function or procedure, in the form it
would need to appear in within commands such as ALTER FUNCTION. This form omits default
values.

pg_get_function_result (func oid) → text
Reconstructs the RETURNS clause of a function, in the form it would need to appear in within
CREATE FUNCTION. Returns NULL for a procedure.

pg_get_indexdef (index oid [, column integer, pretty boolean]) → text
Reconstructs the creating command for an index. (This is a decompiled reconstruction, not
the original text of the command.) If column is supplied and is not zero, only the definition of
that column is reconstructed.

pg_get_keywords () → setof record (word text, catcode "char", barelabel boolean, catdesc
text, baredesc text)
Returns a set of records describing the SQL keywords recognized by the server. The word
column contains the keyword. The catcode column contains a category code: U for an un-
reserved keyword, C for a keyword that can be a column name, T for a keyword that can be
a type or function name, or R for a fully reserved keyword. The barelabel column contains
true if the keyword can be used as a “bare” column label in SELECT lists, or false if it can on-

351

Functions and Operators

Function
Description
ly be used after AS. The catdesc column contains a possibly-localized string describing the
keyword's category. The baredesc column contains a possibly-localized string describing the
keyword's column label status.

pg_get_partkeydef (table oid) → text
Reconstructs the definition of a partitioned table's partition key, in the form it would have in
the PARTITION BY clause of CREATE TABLE. (This is a decompiled reconstruction, not the origi-
nal text of the command.)

pg_get_ruledef (rule oid [, pretty boolean]) → text
Reconstructs the creating command for a rule. (This is a decompiled reconstruction, not the
original text of the command.)

pg_get_serial_sequence (table text, column text) → text
Returns the name of the sequence associated with a column, or NULL if no sequence is asso-
ciated with the column. If the column is an identity column, the associated sequence is the se-
quence internally created for that column. For columns created using one of the serial types
(serial, smallserial, bigserial), it is the sequence created for that serial column defin-
ition. In the latter case, the association can be modified or removed with ALTER SEQUENCE
OWNED BY. (This function probably should have been called pg_get_owned_sequence ; its
current name reflects the fact that it has historically been used with serial-type columns.) The
first parameter is a table name with optional schema, and the second parameter is a column
name. Because the first parameter potentially contains both schema and table names, it is
parsed per usual SQL rules, meaning it is lower-cased by default. The second parameter, be-
ing just a column name, is treated literally and so has its case preserved. The result is suit-
ably formatted for passing to the sequence functions (see Section 9.17).
A typical use is in reading the current value of the sequence for an identity or serial column,
for example:

SELECT currval(pg_get_serial_sequence('sometable', 'id'));

pg_get_statisticsobjdef (statobj oid) → text
Reconstructs the creating command for an extended statistics object. (This is a decompiled
reconstruction, not the original text of the command.)

pg_get_triggerdef (trigger oid [, pretty boolean]) → text
Reconstructs the creating command for a trigger. (This is a decompiled reconstruction, not
the original text of the command.)

pg_get_userbyid (role oid) → name
Returns a role's name given its OID.

pg_get_viewdef (view oid [, pretty boolean]) → text
Reconstructs the underlying SELECT command for a view or materialized view. (This is a de-
compiled reconstruction, not the original text of the command.)

pg_get_viewdef (view oid, wrap_column integer) → text
Reconstructs the underlying SELECT command for a view or materialized view. (This is a de-
compiled reconstruction, not the original text of the command.) In this form of the function,
pretty-printing is always enabled, and long lines are wrapped to try to keep them shorter than
the specified number of columns.

pg_get_viewdef (view text [, pretty boolean]) → text
Reconstructs the underlying SELECT command for a view or materialized view, working from
a textual name for the view rather than its OID. (This is deprecated; use the OID variant in-
stead.)

pg_index_column_has_property (index regclass, column integer, property text) →
boolean

352

Functions and Operators

Function
Description
Tests whether an index column has the named property. Common index column properties
are listed in Table 9.77. (Note that extension access methods can define additional property
names for their indexes.) NULL is returned if the property name is not known or does not ap-
ply to the particular object, or if the OID or column number does not identify a valid object.

pg_index_has_property (index regclass, property text) → boolean
Tests whether an index has the named property. Common index properties are listed in Ta-
ble 9.78. (Note that extension access methods can define additional property names for their
indexes.) NULL is returned if the property name is not known or does not apply to the particu-
lar object, or if the OID does not identify a valid object.

pg_indexam_has_property (am oid, property text) → boolean
Tests whether an index access method has the named property. Access method properties are
listed in Table 9.79. NULL is returned if the property name is not known or does not apply to
the particular object, or if the OID does not identify a valid object.

pg_options_to_table (options_array text[]) → setof record (option_name text, op-
tion_value text)
Returns the set of storage options represented by a value from pg_class .reloptions or
pg_attribute .attoptions.

pg_settings_get_flags (guc text) → text[]
Returns an array of the flags associated with the given GUC, or NULL if it does not exist. The
result is an empty array if the GUC exists but there are no flags to show. Only the most useful
flags listed in Table 9.80 are exposed.

pg_tablespace_databases (tablespace oid) → setof oid
Returns the set of OIDs of databases that have objects stored in the specified tablespace. If
this function returns any rows, the tablespace is not empty and cannot be dropped. To identi-
fy the specific objects populating the tablespace, you will need to connect to the database(s)
identified by pg_tablespace_databases and query their pg_class catalogs.

pg_tablespace_location (tablespace oid) → text
Returns the file system path that this tablespace is located in.

pg_typeof ("any") → regtype
Returns the OID of the data type of the value that is passed to it. This can be helpful for trou-
bleshooting or dynamically constructing SQL queries. The function is declared as returning
regtype, which is an OID alias type (see Section 8.19); this means that it is the same as an
OID for comparison purposes but displays as a type name.
pg_typeof(33) → integer

COLLATION FOR ("any") → text
Returns the name of the collation of the value that is passed to it. The value is quoted and
schema-qualified if necessary. If no collation was derived for the argument expression, then
NULL is returned. If the argument is not of a collatable data type, then an error is raised.
collation for ('foo'::text) → "default"
collation for ('foo' COLLATE "de_DE") → "de_DE"

to_regclass (text) → regclass
Translates a textual relation name to its OID. A similar result is obtained by casting the string
to type regclass (see Section 8.19); however, this function will return NULL rather than
throwing an error if the name is not found.

to_regcollation (text) → regcollation
Translates a textual collation name to its OID. A similar result is obtained by casting the
string to type regcollation (see Section 8.19); however, this function will return NULL rather
than throwing an error if the name is not found.

353

Functions and Operators

Function
Description

to_regnamespace (text) → regnamespace
Translates a textual schema name to its OID. A similar result is obtained by casting the string
to type regnamespace (see Section 8.19); however, this function will return NULL rather than
throwing an error if the name is not found.

to_regoper (text) → regoper
Translates a textual operator name to its OID. A similar result is obtained by casting the
string to type regoper (see Section 8.19); however, this function will return NULL rather than
throwing an error if the name is not found or is ambiguous.

to_regoperator (text) → regoperator
Translates a textual operator name (with parameter types) to its OID. A similar result is ob-
tained by casting the string to type regoperator (see Section 8.19); however, this function
will return NULL rather than throwing an error if the name is not found.

to_regproc (text) → regproc
Translates a textual function or procedure name to its OID. A similar result is obtained by
casting the string to type regproc (see Section 8.19); however, this function will return NULL
rather than throwing an error if the name is not found or is ambiguous.

to_regprocedure (text) → regprocedure
Translates a textual function or procedure name (with argument types) to its OID. A similar
result is obtained by casting the string to type regprocedure (see Section 8.19); however, this
function will return NULL rather than throwing an error if the name is not found.

to_regrole (text) → regrole
Translates a textual role name to its OID. A similar result is obtained by casting the string to
type regrole (see Section 8.19); however, this function will return NULL rather than throwing
an error if the name is not found.

to_regtype (text) → regtype
Parses a string of text, extracts a potential type name from it, and translates that name into a
type OID. A syntax error in the string will result in an error; but if the string is a syntactically
valid type name that happens not to be found in the catalogs, the result is NULL. A similar re-
sult is obtained by casting the string to type regtype (see Section 8.19), except that that will
throw error for name not found.

to_regtypemod (text) → integer
Parses a string of text, extracts a potential type name from it, and translates its type modifi-
er, if any. A syntax error in the string will result in an error; but if the string is a syntactically
valid type name that happens not to be found in the catalogs, the result is NULL. The result is
-1 if no type modifier is present.
to_regtypemod can be combined with to_regtype to produce appropriate inputs for format_
type, allowing a string representing a type name to be canonicalized.
format_type(to_regtype('varchar(32)'), to_regtypemod('varchar(32)')) →
character varying(32)

Most of the functions that reconstruct (decompile) database objects have an optional pretty flag, which
if true causes the result to be “pretty-printed”. Pretty-printing suppresses unnecessary parentheses and
adds whitespace for legibility. The pretty-printed format is more readable, but the default format is more
likely to be interpreted the same way by future versions of PostgreSQL; so avoid using pretty-printed
output for dump purposes. Passing false for the pretty parameter yields the same result as omitting
the parameter.

354

Functions and Operators

Table 9.77. Index Column Properties

Name Description
asc Does the column sort in ascending order on a for-

ward scan?
desc Does the column sort in descending order on a

forward scan?
nulls_first Does the column sort with nulls first on a forward

scan?
nulls_last Does the column sort with nulls last on a forward

scan?
orderable Does the column possess any defined sort order-

ing?
distance_orderable Can the column be scanned in order by a “dis-

tance” operator, for example ORDER BY col <->
constant ?

returnable Can the column value be returned by an index-on-
ly scan?

search_array Does the column natively support col = ANY(
array) searches?

search_nulls Does the column support IS NULL and IS NOT
NULL searches?

Table 9.78. Index Properties

Name Description
clusterable Can the index be used in a CLUSTER command?
index_scan Does the index support plain (non-bitmap) scans?
bitmap_scan Does the index support bitmap scans?
backward_scan Can the scan direction be changed in mid-scan (

to support FETCH BACKWARD on a cursor without
needing materialization)?

Table 9.79. Index Access Method Properties

Name Description
can_order Does the access method support ASC, DESC and re-

lated keywords in CREATE INDEX?
can_unique Does the access method support unique indexes?
can_multi_col Does the access method support indexes with

multiple columns?
can_exclude Does the access method support exclusion con-

straints?
can_include Does the access method support the INCLUDE

clause of CREATE INDEX?

Table 9.80. GUC Flags

Flag Description
EXPLAIN Parameters with this flag are included in EXPLAIN

(SETTINGS) commands.

355

Functions and Operators

Flag Description
NO_SHOW_ALL Parameters with this flag are excluded from SHOW

ALL commands.
NO_RESET Parameters with this flag do not support RESET

commands.
NO_RESET_ALL Parameters with this flag are excluded from RESET

ALL commands.
NOT_IN_SAMPLE Parameters with this flag are not included in

postgresql.conf by default.
RUNTIME_COMPUTED Parameters with this flag are runtime-computed

ones.

9.27.5. Object Information and Addressing Functions
Table 9.81 lists functions related to database object identification and addressing.

Table 9.81. Object Information and Addressing Functions

Function
Description

pg_get_acl (classid oid, objid oid, objsubid integer) → aclitem[]
Returns the ACL for a database object, specified by catalog OID, object OID and sub-object
ID. This function returns NULL values for undefined objects.

pg_describe_object (classid oid, objid oid, objsubid integer) → text
Returns a textual description of a database object identified by catalog OID, object OID, and
sub-object ID (such as a column number within a table; the sub-object ID is zero when re-
ferring to a whole object). This description is intended to be human-readable, and might be
translated, depending on server configuration. This is especially useful to determine the iden-
tity of an object referenced in the pg_depend catalog. This function returns NULL values for
undefined objects.

pg_identify_object (classid oid, objid oid, objsubid integer) → record (type text, schema
text, name text, identity text)
Returns a row containing enough information to uniquely identify the database object spec-
ified by catalog OID, object OID and sub-object ID. This information is intended to be ma-
chine-readable, and is never translated. type identifies the type of database object; schema
is the schema name that the object belongs in, or NULL for object types that do not belong to
schemas; name is the name of the object, quoted if necessary, if the name (along with schema
name, if pertinent) is sufficient to uniquely identify the object, otherwise NULL; identity is
the complete object identity, with the precise format depending on object type, and each
name within the format being schema-qualified and quoted as necessary. Undefined objects
are identified with NULL values.

pg_identify_object_as_address (classid oid, objid oid, objsubid integer) → record (
 type text, object_names text[], object_args text[])
Returns a row containing enough information to uniquely identify the database object speci-
fied by catalog OID, object OID and sub-object ID. The returned information is independent of
the current server, that is, it could be used to identify an identically named object in another
server. type identifies the type of database object; object_names and object_args are text
arrays that together form a reference to the object. These three values can be passed to pg_
get_object_address to obtain the internal address of the object.

pg_get_object_address (type text, object_names text[], object_args text[]) → record (
 classid oid, objid oid, objsubid integer)
Returns a row containing enough information to uniquely identify the database object speci-
fied by a type code and object name and argument arrays. The returned values are the ones

356

Functions and Operators

Function
Description
that would be used in system catalogs such as pg_depend ; they can be passed to other sys-
tem functions such as pg_describe_object or pg_identify_object . classid is the OID
of the system catalog containing the object; objid is the OID of the object itself, and obj-
subid is the sub-object ID, or zero if none. This function is the inverse of pg_identify_ob-
ject_as_address . Undefined objects are identified with NULL values.

pg_get_acl is useful for retrieving and inspecting the privileges associated with database objects with-
out looking at specific catalogs. For example, to retrieve all the granted privileges on objects in the
current database:
postgres=# SELECT
 (pg_identify_object(s.classid,s.objid,s.objsubid)).*,
 pg_catalog.pg_get_acl(s.classid,s.objid,s.objsubid) AS acl
FROM pg_catalog.pg_shdepend AS s
JOIN pg_catalog.pg_database AS d
 ON d.datname = current_database() AND
 d.oid = s.dbid
JOIN pg_catalog.pg_authid AS a
 ON a.oid = s.refobjid AND
 s.refclassid = 'pg_authid'::regclass
WHERE s.deptype = 'a';
-[RECORD 1]---
type | table
schema | public
name | testtab
identity | public.testtab
acl | {postgres=arwdDxtm/postgres,foo=r/postgres}

9.27.6. Comment Information Functions
The functions shown in Table 9.82 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found for the specified parameters.

Table 9.82. Comment Information Functions

Function
Description

col_description (table oid, column integer) → text
Returns the comment for a table column, which is specified by the OID of its table and its col-
umn number. (obj_description cannot be used for table columns, since columns do not
have OIDs of their own.)

obj_description (object oid, catalog name) → text
Returns the comment for a database object specified by its OID and the name of the contain-
ing system catalog. For example, obj_description(123456, 'pg_class') would re-
trieve the comment for the table with OID 123456.

obj_description (object oid) → text
Returns the comment for a database object specified by its OID alone. This is deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore,
the wrong comment might be returned.

shobj_description (object oid, catalog name) → text
Returns the comment for a shared database object specified by its OID and the name of the
containing system catalog. This is just like obj_description except that it is used for re-
trieving comments on shared objects (that is, databases, roles, and tablespaces). Some sys-
tem catalogs are global to all databases within each cluster, and the descriptions for objects
in them are stored globally as well.

357

Functions and Operators

9.27.7. Data Validity Checking Functions
The functions shown in Table 9.83 can be helpful for checking validity of proposed input data.

Table 9.83. Data Validity Checking Functions

Function
Description
Example(s)

pg_input_is_valid (string text, type text) → boolean
Tests whether the given string is valid input for the specified data type, returning true or
false.
This function will only work as desired if the data type's input function has been updated to
report invalid input as a “soft” error. Otherwise, invalid input will abort the transaction, just
as if the string had been cast to the type directly.
pg_input_is_valid('42', 'integer') → t
pg_input_is_valid('42000000000', 'integer') → f
pg_input_is_valid('1234.567', 'numeric(7,4)') → f

pg_input_error_info (string text, type text) → record (message text, detail text, hint
text, sql_error_code text)
Tests whether the given string is valid input for the specified data type; if not, return the de-
tails of the error that would have been thrown. If the input is valid, the results are NULL. The
inputs are the same as for pg_input_is_valid .
This function will only work as desired if the data type's input function has been updated to
report invalid input as a “soft” error. Otherwise, invalid input will abort the transaction, just
as if the string had been cast to the type directly.
SELECT * FROM pg_input_error_info('42000000000', 'integer') →

 message | detail | hint |
 sql_error_code
--+--------+------
+----------------
 value "42000000000" is out of range for type integer | | | 22003

9.27.8. Transaction ID and Snapshot Information Functions
The functions shown in Table 9.84 provide server transaction information in an exportable form. The
main use of these functions is to determine which transactions were committed between two snapshots.

Table 9.84. Transaction ID and Snapshot Information Functions

Function
Description

age (xid) → integer
Returns the number of transactions between the supplied transaction id and the current
transaction counter.

mxid_age (xid) → integer
Returns the number of multixacts IDs between the supplied multixact ID and the current mul-
tixacts counter.

pg_current_xact_id () → xid8
Returns the current transaction's ID. It will assign a new one if the current transaction does
not have one already (because it has not performed any database updates); see Section 67.1
for details. If executed in a subtransaction, this will return the top-level transaction ID; see
Section 67.3 for details.

pg_current_xact_id_if_assigned () → xid8

358

Functions and Operators

Function
Description
Returns the current transaction's ID, or NULL if no ID is assigned yet. (It's best to use this
variant if the transaction might otherwise be read-only, to avoid unnecessary consumption of
an XID.) If executed in a subtransaction, this will return the top-level transaction ID.

pg_xact_status (xid8) → text
Reports the commit status of a recent transaction. The result is one of in progress, commit-
ted, or aborted, provided that the transaction is recent enough that the system retains the
commit status of that transaction. If it is old enough that no references to the transaction sur-
vive in the system and the commit status information has been discarded, the result is NULL.
Applications might use this function, for example, to determine whether their transaction
committed or aborted after the application and database server become disconnected while
a COMMIT is in progress. Note that prepared transactions are reported as in progress; appli-
cations must check pg_prepared_xacts if they need to determine whether a transaction ID
belongs to a prepared transaction.

pg_current_snapshot () → pg_snapshot
Returns a current snapshot, a data structure showing which transaction IDs are now in-
progress. Only top-level transaction IDs are included in the snapshot; subtransaction IDs are
not shown; see Section 67.3 for details.

pg_snapshot_xip (pg_snapshot) → setof xid8
Returns the set of in-progress transaction IDs contained in a snapshot.

pg_snapshot_xmax (pg_snapshot) → xid8
Returns the xmax of a snapshot.

pg_snapshot_xmin (pg_snapshot) → xid8
Returns the xmin of a snapshot.

pg_visible_in_snapshot (xid8, pg_snapshot) → boolean
Is the given transaction ID visible according to this snapshot (that is, was it completed before
the snapshot was taken)? Note that this function will not give the correct answer for a sub-
transaction ID (subxid); see Section 67.3 for details.

pg_get_multixact_members (multixid xid) → setof record (xid xid, mode text)
Returns the transaction ID and lock mode for each member of the specified multixact ID. The
lock modes forupd, fornokeyupd, sh, and keysh correspond to the row-level locks FOR UP-
DATE, FOR NO KEY UPDATE, FOR SHARE, and FOR KEY SHARE, respectively, as described in Sec-
tion 13.3.2. Two additional modes are specific to multixacts: nokeyupd, used by updates that
do not modify key columns, and upd, used by updates or deletes that modify key columns.

The internal transaction ID type xid is 32 bits wide and wraps around every 4 billion transactions. How-
ever, the functions shown in Table 9.84, except age, mxid_age, and pg_get_multixact_members, use
a 64-bit type xid8 that does not wrap around during the life of an installation and can be converted
to xid by casting if required; see Section 67.1 for details. The data type pg_snapshot stores informa-
tion about transaction ID visibility at a particular moment in time. Its components are described in Ta-
ble 9.85. pg_snapshot's textual representation is xmin:xmax:xip_list. For example 10:20:10,14,15
means xmin=10, xmax=20, xip_list=10, 14, 15.

Table 9.85. Snapshot Components

Name Description
xmin Lowest transaction ID that was still active. All

transaction IDs less than xmin are either commit-
ted and visible, or rolled back and dead.

xmax One past the highest completed transaction ID. All
transaction IDs greater than or equal to xmax had

359

Functions and Operators

Name Description
not yet completed as of the time of the snapshot,
and thus are invisible.

xip_list Transactions in progress at the time of the snap-
shot. A transaction ID that is xmin <= X < xmax
and not in this list was already completed at the
time of the snapshot, and thus is either visible or
dead according to its commit status. This list does
not include the transaction IDs of subtransactions
(subxids).

In releases of PostgreSQL before 13 there was no xid8 type, so variants of these functions were pro-
vided that used bigint to represent a 64-bit XID, with a correspondingly distinct snapshot data type
txid_snapshot. These older functions have txid in their names. They are still supported for backward
compatibility, but may be removed from a future release. See Table 9.86.

Table 9.86. Deprecated Transaction ID and Snapshot Information Functions

Function
Description

txid_current () → bigint
See pg_current_xact_id() .

txid_current_if_assigned () → bigint
See pg_current_xact_id_if_assigned() .

txid_current_snapshot () → txid_snapshot
See pg_current_snapshot() .

txid_snapshot_xip (txid_snapshot) → setof bigint
See pg_snapshot_xip() .

txid_snapshot_xmax (txid_snapshot) → bigint
See pg_snapshot_xmax() .

txid_snapshot_xmin (txid_snapshot) → bigint
See pg_snapshot_xmin() .

txid_visible_in_snapshot (bigint, txid_snapshot) → boolean
See pg_visible_in_snapshot() .

txid_status (bigint) → text
See pg_xact_status() .

9.27.9. Committed Transaction Information Functions
The functions shown in Table 9.87 provide information about when past transactions were committed.
They only provide useful data when the track_commit_timestamp configuration option is enabled, and
only for transactions that were committed after it was enabled. Commit timestamp information is rou-
tinely removed during vacuum.

Table 9.87. Committed Transaction Information Functions

Function
Description

pg_xact_commit_timestamp (xid) → timestamp with time zone
Returns the commit timestamp of a transaction.

pg_xact_commit_timestamp_origin (xid) → record (timestamp timestamp with time zone,
 roident oid)

360

Functions and Operators

Function
Description
Returns the commit timestamp and replication origin of a transaction.

pg_last_committed_xact () → record (xid xid, timestamp timestamp with time zone,
 roident oid)
Returns the transaction ID, commit timestamp and replication origin of the latest committed
transaction.

9.27.10. Control Data Functions
The functions shown in Table 9.88 print information initialized during initdb, such as the catalog ver-
sion. They also show information about write-ahead logging and checkpoint processing. This information
is cluster-wide, not specific to any one database. These functions provide most of the same information,
from the same source, as the pg_controldata application.

Table 9.88. Control Data Functions

Function
Description

pg_control_checkpoint () → record
Returns information about current checkpoint state, as shown in Table 9.89.

pg_control_system () → record
Returns information about current control file state, as shown in Table 9.90.

pg_control_init () → record
Returns information about cluster initialization state, as shown in Table 9.91.

pg_control_recovery () → record
Returns information about recovery state, as shown in Table 9.92.

Table 9.89. pg_control_checkpoint Output Columns

Column Name Data Type
checkpoint_lsn pg_lsn

redo_lsn pg_lsn

redo_wal_file text

timeline_id integer

prev_timeline_id integer

full_page_writes boolean

next_xid text

next_oid oid

next_multixact_id xid

next_multi_offset xid

oldest_xid xid

oldest_xid_dbid oid

oldest_active_xid xid

oldest_multi_xid xid

oldest_multi_dbid oid

oldest_commit_ts_xid xid

newest_commit_ts_xid xid

361

Functions and Operators

Column Name Data Type
checkpoint_time timestamp with time zone

Table 9.90. pg_control_system Output Columns

Column Name Data Type
pg_control_version integer

catalog_version_no integer

system_identifier bigint

pg_control_last_modified timestamp with time zone

Table 9.91. pg_control_init Output Columns

Column Name Data Type
max_data_alignment integer

database_block_size integer

blocks_per_segment integer

wal_block_size integer

bytes_per_wal_segment integer

max_identifier_length integer

max_index_columns integer

max_toast_chunk_size integer

large_object_chunk_size integer

float8_pass_by_value boolean

data_page_checksum_version integer

default_char_signedness boolean

Table 9.92. pg_control_recovery Output Columns

Column Name Data Type
min_recovery_end_lsn pg_lsn

min_recovery_end_timeline integer

backup_start_lsn pg_lsn

backup_end_lsn pg_lsn

end_of_backup_record_required boolean

9.27.11. Version Information Functions
The functions shown in Table 9.93 print version information.

Table 9.93. Version Information Functions

Function
Description

version () → text
Returns a string describing the PostgreSQL server's version. You can also get this information
from server_version, or for a machine-readable version use server_version_num. Software de-
velopers should use server_version_num (available since 8.2) or PQserverVersion instead
of parsing the text version.

unicode_version () → text
Returns a string representing the version of Unicode used by PostgreSQL.

362

Functions and Operators

Function
Description

icu_unicode_version () → text
Returns a string representing the version of Unicode used by ICU, if the server was built with
ICU support; otherwise returns NULL

9.27.12. WAL Summarization Information Functions
The functions shown in Table 9.94 print information about the status of WAL summarization. See sum-
marize_wal.

Table 9.94. WAL Summarization Information Functions

Function
Description

pg_available_wal_summaries () → setof record (tli bigint, start_lsn pg_lsn , end_lsn
pg_lsn)
Returns information about the WAL summary files present in the data directory, under pg_
wal/summaries. One row will be returned per WAL summary file. Each file summarizes WAL
on the indicated TLI within the indicated LSN range. This function might be useful to deter-
mine whether enough WAL summaries are present on the server to take an incremental back-
up based on some prior backup whose start LSN is known.

pg_wal_summary_contents (tli bigint, start_lsn pg_lsn , end_lsn pg_lsn) → setof
record (relfilenode oid, reltablespace oid, reldatabase oid, relforknumber smallint,
 relblocknumber bigint, is_limit_block boolean)
Returns one information about the contents of a single WAL summary file identified by TLI
and starting and ending LSNs. Each row with is_limit_block false indicates that the
block identified by the remaining output columns was modified by at least one WAL record
within the range of records summarized by this file. Each row with is_limit_block true in-
dicates either that (a) the relation fork was truncated to the length given by relblocknumber
within the relevant range of WAL records or (b) that the relation fork was created or dropped
within the relevant range of WAL records; in such cases, relblocknumber will be zero.

pg_get_wal_summarizer_state () → record (summarized_tli bigint, summarized_lsn pg_
lsn , pending_lsn pg_lsn , summarizer_pid int)
Returns information about the progress of the WAL summarizer. If the WAL summarizer has
never run since the instance was started, then summarized_tli and summarized_lsn will
be 0 and 0/0 respectively; otherwise, they will be the TLI and ending LSN of the last WAL
summary file written to disk. If the WAL summarizer is currently running, pending_lsn will
be the ending LSN of the last record that it has consumed, which must always be greater
than or equal to summarized_lsn ; if the WAL summarizer is not running, it will be equal to
summarized_lsn . summarizer_pid is the PID of the WAL summarizer process, if it is run-
ning, and otherwise NULL.
As a special exception, the WAL summarizer will refuse to generate WAL summary files if run
on WAL generated under wal_level=minimal , since such summaries would be unsafe to use
as the basis for an incremental backup. In this case, the fields above will continue to advance
as if summaries were being generated, but nothing will be written to disk. Once the summa-
rizer reaches WAL generated while wal_level was set to replica or higher, it will resume
writing summaries to disk.

9.28. System Administration Functions
The functions described in this section are used to control and monitor a PostgreSQL installation.

9.28.1. Configuration Settings Functions
Table 9.95 shows the functions available to query and alter run-time configuration parameters.

363

Functions and Operators

Table 9.95. Configuration Settings Functions

Function
Description
Example(s)

current_setting (setting_name text [, missing_ok boolean]) → text
Returns the current value of the setting setting_name . If there is no such setting, cur-
rent_setting throws an error unless missing_ok is supplied and is true (in which case
NULL is returned). This function corresponds to the SQL command SHOW.
current_setting('datestyle') → ISO, MDY

set_config (setting_name text, new_value text, is_local boolean) → text
Sets the parameter setting_name to new_value , and returns that value. If is_local is
true, the new value will only apply during the current transaction. If you want the new value
to apply for the rest of the current session, use false instead. This function corresponds to
the SQL command SET.
set_config accepts the NULL value for new_value , but as settings cannot be null, it is in-
terpreted as a request to reset the setting to its default value.
set_config('log_statement_stats', 'off', false) → off

9.28.2. Server Signaling Functions
The functions shown in Table 9.96 send control signals to other server processes. Use of these functions
is restricted to superusers by default but access may be granted to others using GRANT, with noted
exceptions.

Each of these functions returns true if the signal was successfully sent and false if sending the signal
failed.

Table 9.96. Server Signaling Functions

Function
Description

pg_cancel_backend (pid integer) → boolean
Cancels the current query of the session whose backend process has the specified process
ID. This is also allowed if the calling role is a member of the role whose backend is being can-
celed or the calling role has privileges of pg_signal_backend , however only superusers can
cancel superuser backends. As an exception, roles with privileges of pg_signal_autovacu-
um_worker are permitted to cancel autovacuum worker processes, which are otherwise con-
sidered superuser backends.

pg_log_backend_memory_contexts (pid integer) → boolean
Requests to log the memory contexts of the backend with the specified process ID. This func-
tion can send the request to backends and auxiliary processes except logger. These memory
contexts will be logged at LOG message level. They will appear in the server log based on the
log configuration set (see Section 19.8 for more information), but will not be sent to the client
regardless of client_min_messages.

pg_reload_conf () → boolean
Causes all processes of the PostgreSQL server to reload their configuration files. (This is ini-
tiated by sending a SIGHUP signal to the postmaster process, which in turn sends SIGHUP to
each of its children.) You can use the pg_file_settings , pg_hba_file_rules and pg_
ident_file_mappings views to check the configuration files for possible errors, before re-
loading.

pg_rotate_logfile () → boolean
Signals the log-file manager to switch to a new output file immediately. This works only when
the built-in log collector is running, since otherwise there is no log-file manager subprocess.

364

Functions and Operators

Function
Description

pg_terminate_backend (pid integer, timeout bigint DEFAULT 0) → boolean
Terminates the session whose backend process has the specified process ID. This is also al-
lowed if the calling role is a member of the role whose backend is being terminated or the
calling role has privileges of pg_signal_backend , however only superusers can terminate
superuser backends. As an exception, roles with privileges of pg_signal_autovacuum_
worker are permitted to terminate autovacuum worker processes, which are otherwise con-
sidered superuser backends.
If timeout is not specified or zero, this function returns true whether the process actually
terminates or not, indicating only that the sending of the signal was successful. If the timeout
is specified (in milliseconds) and greater than zero, the function waits until the process is ac-
tually terminated or until the given time has passed. If the process is terminated, the function
returns true. On timeout, a warning is emitted and false is returned.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respectively) to
backend processes identified by process ID. The process ID of an active backend can be found from the
pid column of the pg_stat_activity view, or by listing the postgres processes on the server (using ps
on Unix or the Task Manager on Windows). The role of an active backend can be found from the usename
column of the pg_stat_activity view.

pg_log_backend_memory_contexts can be used to log the memory contexts of a backend process. For
example:

postgres=# SELECT pg_log_backend_memory_contexts(pg_backend_pid());
 pg_log_backend_memory_contexts

 t
(1 row)

One message for each memory context will be logged. For example:

LOG: logging memory contexts of PID 10377
STATEMENT: SELECT pg_log_backend_memory_contexts(pg_backend_pid());
LOG: level: 1; TopMemoryContext: 80800 total in 6 blocks; 14432 free (5 chunks); 66368
 used
LOG: level: 2; pgstat TabStatusArray lookup hash table: 8192 total in 1 blocks; 1408
 free (0 chunks); 6784 used
LOG: level: 2; TopTransactionContext: 8192 total in 1 blocks; 7720 free (1 chunks);
 472 used
LOG: level: 2; RowDescriptionContext: 8192 total in 1 blocks; 6880 free (0 chunks);
 1312 used
LOG: level: 2; MessageContext: 16384 total in 2 blocks; 5152 free (0 chunks); 11232
 used
LOG: level: 2; Operator class cache: 8192 total in 1 blocks; 512 free (0 chunks); 7680
 used
LOG: level: 2; smgr relation table: 16384 total in 2 blocks; 4544 free (3 chunks);
 11840 used
LOG: level: 2; TransactionAbortContext: 32768 total in 1 blocks; 32504 free (0
 chunks); 264 used
...
LOG: level: 2; ErrorContext: 8192 total in 1 blocks; 7928 free (3 chunks); 264 used
LOG: Grand total: 1651920 bytes in 201 blocks; 622360 free (88 chunks); 1029560 used

If there are more than 100 child contexts under the same parent, the first 100 child contexts are logged,
along with a summary of the remaining contexts. Note that frequent calls to this function could incur
significant overhead, because it may generate a large number of log messages.

9.28.3. Backup Control Functions

365

Functions and Operators

The functions shown in Table 9.97 assist in making on-line backups. These functions cannot be executed
during recovery (except pg_backup_start, pg_backup_stop, and pg_wal_lsn_diff).

For details about proper usage of these functions, see Section 25.3.

Table 9.97. Backup Control Functions

Function
Description

pg_create_restore_point (name text) → pg_lsn
Creates a named marker record in the write-ahead log that can later be used as a recovery
target, and returns the corresponding write-ahead log location. The given name can then be
used with recovery_target_name to specify the point up to which recovery will proceed. Avoid
creating multiple restore points with the same name, since recovery will stop at the first one
whose name matches the recovery target.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_current_wal_flush_lsn () → pg_lsn
Returns the current write-ahead log flush location (see notes below).

pg_current_wal_insert_lsn () → pg_lsn
Returns the current write-ahead log insert location (see notes below).

pg_current_wal_lsn () → pg_lsn
Returns the current write-ahead log write location (see notes below).

pg_backup_start (label text [, fast boolean]) → pg_lsn
Prepares the server to begin an on-line backup. The only required parameter is an arbitrary
user-defined label for the backup. (Typically this would be the name under which the backup
dump file will be stored.) If the optional second parameter is given as true, it specifies exe-
cuting pg_backup_start as quickly as possible. This forces an immediate checkpoint which
will cause a spike in I/O operations, slowing any concurrently executing queries.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_backup_stop ([wait_for_archive boolean]) → record (lsn pg_lsn , labelfile text,
 spcmapfile text)
Finishes performing an on-line backup. The desired contents of the backup label file and the
tablespace map file are returned as part of the result of the function and must be written to
files in the backup area. These files must not be written to the live data directory (doing so
will cause PostgreSQL to fail to restart in the event of a crash).
There is an optional parameter of type boolean. If false, the function will return immediate-
ly after the backup is completed, without waiting for WAL to be archived. This behavior is on-
ly useful with backup software that independently monitors WAL archiving. Otherwise, WAL
required to make the backup consistent might be missing and make the backup useless. By
default or when this parameter is true, pg_backup_stop will wait for WAL to be archived
when archiving is enabled. (On a standby, this means that it will wait only when archive_
mode = always. If write activity on the primary is low, it may be useful to run pg_switch_
wal on the primary in order to trigger an immediate segment switch.)
When executed on a primary, this function also creates a backup history file in the write-
ahead log archive area. The history file includes the label given to pg_backup_start , the
starting and ending write-ahead log locations for the backup, and the starting and ending
times of the backup. After recording the ending location, the current write-ahead log inser-
tion point is automatically advanced to the next write-ahead log file, so that the ending write-
ahead log file can be archived immediately to complete the backup.
The result of the function is a single record. The lsn column holds the backup's ending write-
ahead log location (which again can be ignored). The second column returns the contents of
the backup label file, and the third column returns the contents of the tablespace map file.
These must be stored as part of the backup and are required as part of the restore process.

366

Functions and Operators

Function
Description
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_switch_wal () → pg_lsn
Forces the server to switch to a new write-ahead log file, which allows the current file to be
archived (assuming you are using continuous archiving). The result is the ending write-ahead
log location plus 1 within the just-completed write-ahead log file. If there has been no write-
ahead log activity since the last write-ahead log switch, pg_switch_wal does nothing and
returns the start location of the write-ahead log file currently in use.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_walfile_name (lsn pg_lsn) → text
Converts a write-ahead log location to the name of the WAL file holding that location.

pg_walfile_name_offset (lsn pg_lsn) → record (file_name text, file_offset integer)
Converts a write-ahead log location to a WAL file name and byte offset within that file.

pg_split_walfile_name (file_name text) → record (segment_number numeric, timeline_
id bigint)
Extracts the sequence number and timeline ID from a WAL file name.

pg_wal_lsn_diff (lsn1 pg_lsn , lsn2 pg_lsn) → numeric
Calculates the difference in bytes (lsn1 - lsn2) between two write-ahead log locations. This
can be used with pg_stat_replication or some of the functions shown in Table 9.97 to get
the replication lag.

pg_current_wal_lsn displays the current write-ahead log write location in the same format used by the
above functions. Similarly, pg_current_wal_insert_lsn displays the current write-ahead log insertion
location and pg_current_wal_flush_lsn displays the current write-ahead log flush location. The inser-
tion location is the “logical” end of the write-ahead log at any instant, while the write location is the end
of what has actually been written out from the server's internal buffers, and the flush location is the last
location known to be written to durable storage. The write location is the end of what can be examined
from outside the server, and is usually what you want if you are interested in archiving partially-complete
write-ahead log files. The insertion and flush locations are made available primarily for server debugging
purposes. These are all read-only operations and do not require superuser permissions.

You can use pg_walfile_name_offset to extract the corresponding write-ahead log file name and byte
offset from a pg_lsn value. For example:

postgres=# SELECT * FROM pg_walfile_name_offset((pg_backup_stop()).lsn);
 file_name | file_offset
--------------------------+-------------
 00000001000000000000000D | 4039624
(1 row)

Similarly, pg_walfile_name extracts just the write-ahead log file name.

pg_split_walfile_name is useful to compute a LSN from a file offset and WAL file name, for example:

postgres=# \set file_name '000000010000000100C000AB'
postgres=# \set offset 256
postgres=# SELECT '0/0'::pg_lsn + pd.segment_number * ps.setting::int + :offset AS lsn
 FROM pg_split_walfile_name(:'file_name') pd,
 pg_show_all_settings() ps
 WHERE ps.name = 'wal_segment_size';
 lsn

 C001/AB000100

367

Functions and Operators

(1 row)

9.28.4. Recovery Control Functions
The functions shown in Table 9.98 provide information about the current status of a standby server.
These functions may be executed both during recovery and in normal running.

Table 9.98. Recovery Information Functions

Function
Description

pg_is_in_recovery () → boolean
Returns true if recovery is still in progress.

pg_last_wal_receive_lsn () → pg_lsn
Returns the last write-ahead log location that has been received and synced to disk by
streaming replication. While streaming replication is in progress this will increase monoto-
nically. If recovery has completed then this will remain static at the location of the last WAL
record received and synced to disk during recovery. If streaming replication is disabled, or if
it has not yet started, the function returns NULL.

pg_last_wal_replay_lsn () → pg_lsn
Returns the last write-ahead log location that has been replayed during recovery. If recovery
is still in progress this will increase monotonically. If recovery has completed then this will re-
main static at the location of the last WAL record applied during recovery. When the server
has been started normally without recovery, the function returns NULL.

pg_last_xact_replay_timestamp () → timestamp with time zone
Returns the time stamp of the last transaction replayed during recovery. This is the time at
which the commit or abort WAL record for that transaction was generated on the primary. If
no transactions have been replayed during recovery, the function returns NULL. Otherwise, if
recovery is still in progress this will increase monotonically. If recovery has completed then
this will remain static at the time of the last transaction applied during recovery. When the
server has been started normally without recovery, the function returns NULL.

pg_get_wal_resource_managers () → setof record (rm_id integer, rm_name text, rm_
builtin boolean)
Returns the currently-loaded WAL resource managers in the system. The column rm_
builtin indicates whether it's a built-in resource manager, or a custom resource manager
loaded by an extension.

The functions shown in Table 9.99 control the progress of recovery. These functions may be executed
only during recovery.

Table 9.99. Recovery Control Functions

Function
Description

pg_is_wal_replay_paused () → boolean
Returns true if recovery pause is requested.

pg_get_wal_replay_pause_state () → text
Returns recovery pause state. The return values are not paused if pause is not requested,
pause requested if pause is requested but recovery is not yet paused, and paused if the re-
covery is actually paused.

pg_promote (wait boolean DEFAULT true, wait_seconds integer DEFAULT 60) → boolean
Promotes a standby server to primary status. With wait set to true (the default), the function
waits until promotion is completed or wait_seconds seconds have passed, and returns true
if promotion is successful and false otherwise. If wait is set to false, the function returns
true immediately after sending a SIGUSR1 signal to the postmaster to trigger promotion.

368

Functions and Operators

Function
Description
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_wal_replay_pause () → void
Request to pause recovery. A request doesn't mean that recovery stops right away. If you
want a guarantee that recovery is actually paused, you need to check for the recovery pause
state returned by pg_get_wal_replay_pause_state() . Note that pg_is_wal_re-
play_paused() returns whether a request is made. While recovery is paused, no further
database changes are applied. If hot standby is active, all new queries will see the same con-
sistent snapshot of the database, and no further query conflicts will be generated until recov-
ery is resumed.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_wal_replay_resume () → void
Restarts recovery if it was paused.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_wal_replay_pause and pg_wal_replay_resume cannot be executed while a promotion is ongoing. If
a promotion is triggered while recovery is paused, the paused state ends and promotion continues.

If streaming replication is disabled, the paused state may continue indefinitely without a problem. If
streaming replication is in progress then WAL records will continue to be received, which will eventually
fill available disk space, depending upon the duration of the pause, the rate of WAL generation and
available disk space.

9.28.5. Snapshot Synchronization Functions
PostgreSQL allows database sessions to synchronize their snapshots. A snapshot determines which data
is visible to the transaction that is using the snapshot. Synchronized snapshots are necessary when two
or more sessions need to see identical content in the database. If two sessions just start their transactions
independently, there is always a possibility that some third transaction commits between the executions
of the two START TRANSACTION commands, so that one session sees the effects of that transaction and
the other does not.

To solve this problem, PostgreSQL allows a transaction to export the snapshot it is using. As long as the
exporting transaction remains open, other transactions can import its snapshot, and thereby be guaran-
teed that they see exactly the same view of the database that the first transaction sees. But note that
any database changes made by any one of these transactions remain invisible to the other transactions,
as is usual for changes made by uncommitted transactions. So the transactions are synchronized with
respect to pre-existing data, but act normally for changes they make themselves.

Snapshots are exported with the pg_export_snapshot function, shown in Table 9.100, and imported
with the SET TRANSACTION command.

Table 9.100. Snapshot Synchronization Functions

Function
Description

pg_export_snapshot () → text
Saves the transaction's current snapshot and returns a text string identifying the snapshot.
This string must be passed (outside the database) to clients that want to import the snapshot.
The snapshot is available for import only until the end of the transaction that exported it.
A transaction can export more than one snapshot, if needed. Note that doing so is only useful
in READ COMMITTED transactions, since in REPEATABLE READ and higher isolation levels, trans-
actions use the same snapshot throughout their lifetime. Once a transaction has exported any
snapshots, it cannot be prepared with PREPARE TRANSACTION.

369

Functions and Operators

Function
Description

pg_log_standby_snapshot () → pg_lsn
Take a snapshot of running transactions and write it to WAL, without having to wait for bg-
writer or checkpointer to log one. This is useful for logical decoding on standby, as logical
slot creation has to wait until such a record is replayed on the standby.

9.28.6. Replication Management Functions
The functions shown in Table 9.101 are for controlling and interacting with replication features. See
Section 26.2.5, Section 26.2.6, and Chapter 48 for information about the underlying features. Use of
functions for replication origin is only allowed to the superuser by default, but may be allowed to other
users by using the GRANT command. Use of functions for replication slots is restricted to superusers and
users having REPLICATION privilege.

Many of these functions have equivalent commands in the replication protocol; see Section 54.4.

The functions described in Section 9.28.3, Section 9.28.4, and Section 9.28.5 are also relevant for repli-
cation.

Table 9.101. Replication Management Functions

Function
Description

pg_create_physical_replication_slot (slot_name name [, immediately_reserve boolean,
 temporary boolean]) → record (slot_name name, lsn pg_lsn)
Creates a new physical replication slot named slot_name . The optional second parameter,
when true, specifies that the LSN for this replication slot be reserved immediately; other-
wise the LSN is reserved on first connection from a streaming replication client. Stream-
ing changes from a physical slot is only possible with the streaming-replication protocol —
see Section 54.4. The optional third parameter, temporary, when set to true, specifies that
the slot should not be permanently stored to disk and is only meant for use by the current
session. Temporary slots are also released upon any error. This function corresponds to the
replication protocol command CREATE_REPLICATION_SLOT ... PHYSICAL .

pg_drop_replication_slot (slot_name name) → void
Drops the physical or logical replication slot named slot_name . Same as replication protocol
command DROP_REPLICATION_SLOT .

pg_create_logical_replication_slot (slot_name name, plugin name [, temporary boolean,
 twophase boolean, failover boolean]) → record (slot_name name, lsn pg_lsn)
Creates a new logical (decoding) replication slot named slot_name using the output plug-
in plugin. The optional third parameter, temporary, when set to true, specifies that the slot
should not be permanently stored to disk and is only meant for use by the current session.
Temporary slots are also released upon any error. The optional fourth parameter, twophase,
when set to true, specifies that the decoding of prepared transactions is enabled for this slot.
The optional fifth parameter, failover, when set to true, specifies that this slot is enabled
to be synced to the standbys so that logical replication can be resumed after failover. A call
to this function has the same effect as the replication protocol command CREATE_REPLI-
CATION_SLOT ... LOGICAL .

pg_copy_physical_replication_slot (src_slot_name name, dst_slot_name name [, tem-
porary boolean]) → record (slot_name name, lsn pg_lsn)
Copies an existing physical replication slot named src_slot_name to a physical replication
slot named dst_slot_name . The copied physical slot starts to reserve WAL from the same
LSN as the source slot. temporary is optional. If temporary is omitted, the same value as the
source slot is used. Copy of an invalidated slot is not allowed.

370

Functions and Operators

Function
Description

pg_copy_logical_replication_slot (src_slot_name name, dst_slot_name name [, tem-
porary boolean [, plugin name]]) → record (slot_name name, lsn pg_lsn)
Copies an existing logical replication slot named src_slot_name to a logical replication slot
named dst_slot_name , optionally changing the output plugin and persistence. The copied
logical slot starts from the same LSN as the source logical slot. Both temporary and plugin
are optional; if they are omitted, the values of the source slot are used. The failover option
of the source logical slot is not copied and is set to false by default. This is to avoid the risk
of being unable to continue logical replication after failover to standby where the slot is being
synchronized. Copy of an invalidated slot is not allowed.

pg_logical_slot_get_changes (slot_name name, upto_lsn pg_lsn , upto_nchanges inte-
ger, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid, data text)
Returns changes in the slot slot_name , starting from the point from which changes have
been consumed last. If upto_lsn and upto_nchanges are NULL, logical decoding will con-
tinue until end of WAL. If upto_lsn is non-NULL, decoding will include only those transac-
tions which commit prior to the specified LSN. If upto_nchanges is non-NULL, decoding will
stop when the number of rows produced by decoding exceeds the specified value. Note, how-
ever, that the actual number of rows returned may be larger, since this limit is only checked
after adding the rows produced when decoding each new transaction commit. If the specified
slot is a logical failover slot then the function will not return until all physical slots specified
in synchronized_standby_slots have confirmed WAL receipt.

pg_logical_slot_peek_changes (slot_name name, upto_lsn pg_lsn , upto_nchanges in-
teger, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid, data text)
Behaves just like the pg_logical_slot_get_changes() function, except that changes
are not consumed; that is, they will be returned again on future calls.

pg_logical_slot_get_binary_changes (slot_name name, upto_lsn pg_lsn , upto_
nchanges integer, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid, data
bytea)
Behaves just like the pg_logical_slot_get_changes() function, except that changes
are returned as bytea.

pg_logical_slot_peek_binary_changes (slot_name name, upto_lsn pg_lsn , upto_
nchanges integer, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid, data
bytea)
Behaves just like the pg_logical_slot_peek_changes() function, except that changes
are returned as bytea.

pg_replication_slot_advance (slot_name name, upto_lsn pg_lsn) → record (slot_name
name, end_lsn pg_lsn)
Advances the current confirmed position of a replication slot named slot_name . The slot will
not be moved backwards, and it will not be moved beyond the current insert location. Returns
the name of the slot and the actual position that it was advanced to. The updated slot position
information is written out at the next checkpoint if any advancing is done. So in the event of
a crash, the slot may return to an earlier position. If the specified slot is a logical failover slot
then the function will not return until all physical slots specified in synchronized_stand-
by_slots have confirmed WAL receipt.

pg_replication_origin_create (node_name text) → oid
Creates a replication origin with the given external name, and returns the internal ID as-
signed to it. The name must be no longer than 512 bytes.

pg_replication_origin_drop (node_name text) → void
Deletes a previously-created replication origin, including any associated replay progress.

pg_replication_origin_oid (node_name text) → oid

371

Functions and Operators

Function
Description
Looks up a replication origin by name and returns the internal ID. If no such replication ori-
gin is found, NULL is returned.

pg_replication_origin_session_setup (node_name text) → void
Marks the current session as replaying from the given origin, allowing replay progress to be
tracked. Can only be used if no origin is currently selected. Use pg_replication_origin_
session_reset to undo.

pg_replication_origin_session_reset () → void
Cancels the effects of pg_replication_origin_session_setup() .

pg_replication_origin_session_is_setup () → boolean
Returns true if a replication origin has been selected in the current session.

pg_replication_origin_session_progress (flush boolean) → pg_lsn
Returns the replay location for the replication origin selected in the current session. The pa-
rameter flush determines whether the corresponding local transaction will be guaranteed to
have been flushed to disk or not.

pg_replication_origin_xact_setup (origin_lsn pg_lsn , origin_timestamp timestamp
with time zone) → void
Marks the current transaction as replaying a transaction that has committed at the given LSN
and timestamp. Can only be called when a replication origin has been selected using pg_
replication_origin_session_setup .

pg_replication_origin_xact_reset () → void
Cancels the effects of pg_replication_origin_xact_setup() .

pg_replication_origin_advance (node_name text, lsn pg_lsn) → void
Sets replication progress for the given node to the given location. This is primarily useful for
setting up the initial location, or setting a new location after configuration changes and simi-
lar. Be aware that careless use of this function can lead to inconsistently replicated data.

pg_replication_origin_progress (node_name text, flush boolean) → pg_lsn
Returns the replay location for the given replication origin. The parameter flush determines
whether the corresponding local transaction will be guaranteed to have been flushed to disk
or not.

pg_logical_emit_message (transactional boolean, prefix text, content text [, flush
boolean DEFAULT false]) → pg_lsn

pg_logical_emit_message (transactional boolean, prefix text, content bytea [, flush
boolean DEFAULT false]) → pg_lsn
Emits a logical decoding message. This can be used to pass generic messages to logical de-
coding plugins through WAL. The transactional parameter specifies if the message should
be part of the current transaction, or if it should be written immediately and decoded as soon
as the logical decoder reads the record. The prefix parameter is a textual prefix that can be
used by logical decoding plugins to easily recognize messages that are interesting for them.
The content parameter is the content of the message, given either in text or binary form.
The flush parameter (default set to false) controls if the message is immediately flushed to
WAL or not. flush has no effect with transactional, as the message's WAL record is flushed
along with its transaction.

pg_sync_replication_slots () → void
Synchronize the logical failover replication slots from the primary server to the standby serv-
er. This function can only be executed on the standby server. Temporary synced slots, if any,
cannot be used for logical decoding and must be dropped after promotion. See Section 47.2.3
for details. Note that this function is primarily intended for testing and debugging purposes
and should be used with caution. Additionally, this function cannot be executed if sync_

372

Functions and Operators

Function
Description
replication_slots is enabled and the slotsync worker is already running to perform the
synchronization of slots.

Caution
If, after executing the function, hot_standby_feedback is disabled on the standby or the
physical slot configured in primary_slot_name is removed, then it is possible that the nec-
essary rows of the synchronized slot will be removed by the VACUUM process on the primary
server, resulting in the synchronized slot becoming invalidated.

9.28.7. Database Object Management Functions
The functions shown in Table 9.102 calculate the disk space usage of database objects, or assist in
presentation or understanding of usage results. bigint results are measured in bytes. If an OID that
does not represent an existing object is passed to one of these functions, NULL is returned.

Table 9.102. Database Object Size Functions

Function
Description

pg_column_size ("any") → integer
Shows the number of bytes used to store any individual data value. If applied directly to a ta-
ble column value, this reflects any compression that was done.

pg_column_compression ("any") → text
Shows the compression algorithm that was used to compress an individual variable-length
value. Returns NULL if the value is not compressed.

pg_column_toast_chunk_id ("any") → oid
Shows the chunk_id of an on-disk TOASTed value. Returns NULL if the value is un-TOASTed
or not on-disk. See Section 66.2 for more information about TOAST.

pg_database_size (name) → bigint
pg_database_size (oid) → bigint

Computes the total disk space used by the database with the specified name or OID. To use
this function, you must have CONNECT privilege on the specified database (which is granted by
default) or have privileges of the pg_read_all_stats role.

pg_indexes_size (regclass) → bigint
Computes the total disk space used by indexes attached to the specified table.

pg_relation_size (relation regclass [, fork text]) → bigint
Computes the disk space used by one “fork” of the specified relation. (Note that for most pur-
poses it is more convenient to use the higher-level functions pg_total_relation_size or
pg_table_size , which sum the sizes of all forks.) With one argument, this returns the size
of the main data fork of the relation. The second argument can be provided to specify which
fork to examine:
• main returns the size of the main data fork of the relation.
• fsm returns the size of the Free Space Map (see Section 66.3) associated with the relation.
• vm returns the size of the Visibility Map (see Section 66.4) associated with the relation.
• init returns the size of the initialization fork, if any, associated with the relation.

pg_size_bytes (text) → bigint
Converts a size in human-readable format (as returned by pg_size_pretty) into bytes.
Valid units are bytes, B, kB, MB, GB, TB, and PB.

373

Functions and Operators

Function
Description

pg_size_pretty (bigint) → text
pg_size_pretty (numeric) → text

Converts a size in bytes into a more easily human-readable format with size units (bytes, kB,
MB, GB, TB, or PB as appropriate). Note that the units are powers of 2 rather than powers of
10, so 1kB is 1024 bytes, 1MB is 10242 = 1048576 bytes, and so on.

pg_table_size (regclass) → bigint
Computes the disk space used by the specified table, excluding indexes (but including its
TOAST table if any, free space map, and visibility map).

pg_tablespace_size (name) → bigint
pg_tablespace_size (oid) → bigint

Computes the total disk space used in the tablespace with the specified name or OID. To use
this function, you must have CREATE privilege on the specified tablespace or have privileges of
the pg_read_all_stats role, unless it is the default tablespace for the current database.

pg_total_relation_size (regclass) → bigint
Computes the total disk space used by the specified table, including all indexes and TOAST
data. The result is equivalent to pg_table_size + pg_indexes_size .

The functions above that operate on tables or indexes accept a regclass argument, which is simply the
OID of the table or index in the pg_class system catalog. You do not have to look up the OID by hand,
however, since the regclass data type's input converter will do the work for you. See Section 8.19 for
details.

The functions shown in Table 9.103 assist in identifying the specific disk files associated with database
objects.

Table 9.103. Database Object Location Functions

Function
Description

pg_relation_filenode (relation regclass) → oid
Returns the “filenode” number currently assigned to the specified relation. The filenode is the
base component of the file name(s) used for the relation (see Section 66.1 for more informa-
tion). For most relations the result is the same as pg_class .relfilenode, but for certain sys-
tem catalogs relfilenode is zero and this function must be used to get the correct value. The
function returns NULL if passed a relation that does not have storage, such as a view.

pg_relation_filepath (relation regclass) → text
Returns the entire file path name (relative to the database cluster's data directory, PGDATA) of
the relation.

pg_filenode_relation (tablespace oid, filenode oid) → regclass
Returns a relation's OID given the tablespace OID and filenode it is stored under. This is es-
sentially the inverse mapping of pg_relation_filepath . For a relation in the database's
default tablespace, the tablespace can be specified as zero. Returns NULL if no relation in the
current database is associated with the given values, or if dealing with a temporary relation.

Table 9.104 lists functions used to manage collations.

Table 9.104. Collation Management Functions

Function
Description

pg_collation_actual_version (oid) → text

374

Functions and Operators

Function
Description
Returns the actual version of the collation object as it is currently installed in the operating
system. If this is different from the value in pg_collation .collversion, then objects de-
pending on the collation might need to be rebuilt. See also ALTER COLLATION.

pg_database_collation_actual_version (oid) → text
Returns the actual version of the database's collation as it is currently installed in the operat-
ing system. If this is different from the value in pg_database .datcollversion, then objects
depending on the collation might need to be rebuilt. See also ALTER DATABASE.

pg_import_system_collations (schema regnamespace) → integer
Adds collations to the system catalog pg_collation based on all the locales it finds in the
operating system. This is what initdb uses; see Section 23.2.2 for more details. If addition-
al locales are installed into the operating system later on, this function can be run again to
add collations for the new locales. Locales that match existing entries in pg_collation will
be skipped. (But collation objects based on locales that are no longer present in the operating
system are not removed by this function.) The schema parameter would typically be pg_cat-
alog, but that is not a requirement; the collations could be installed into some other schema
as well. The function returns the number of new collation objects it created. Use of this func-
tion is restricted to superusers.

Table 9.105 lists functions used to manipulate statistics. These functions cannot be executed during
recovery.

Warning
Changes made by these statistics manipulation functions are likely to be overwritten by autovac-
uum (or manual VACUUM or ANALYZE) and should be considered temporary.

Table 9.105. Database Object Statistics Manipulation Functions

Function
Description

pg_restore_relation_stats (VARIADIC kwargs "any") → boolean
Updates table-level statistics. Ordinarily, these statistics are collected automatically or updat-
ed as a part of VACUUM or ANALYZE, so it's not necessary to call this function. However, it
is useful after a restore to enable the optimizer to choose better plans if ANALYZE has not been
run yet.
The tracked statistics may change from version to version, so arguments are passed as pairs
of argname and argvalue in the form:

SELECT pg_restore_relation_stats(
 'arg1name', 'arg1value'::arg1type,
 'arg2name', 'arg2value'::arg2type,
 'arg3name', 'arg3value'::arg3type);

For example, to set the relpages and reltuples values for the table mytable:

SELECT pg_restore_relation_stats(
 'schemaname', 'myschema',
 'relname', 'mytable',
 'relpages', 173::integer,
 'reltuples', 10000::real);

The arguments schemaname and relname are required, and specify the table. Other arguments
are the names and values of statistics corresponding to certain columns in pg_class . The
currently-supported relation statistics are relpages with a value of type integer, reltuples

375

Functions and Operators

Function
Description
with a value of type real, relallvisible with a value of type integer, and relallfrozen
with a value of type integer.
Additionally, this function accepts argument name version of type integer, which specifies
the server version from which the statistics originated. This is anticipated to be helpful in
porting statistics from older versions of PostgreSQL.
Minor errors are reported as a WARNING and ignored, and remaining statistics will still be re-
stored. If all specified statistics are successfully restored, returns true, otherwise false.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

pg_clear_relation_stats (schemaname text, relname text) → void
Clears table-level statistics for the given relation, as though the table was newly created.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

pg_restore_attribute_stats (VARIADIC kwargs "any") → boolean
Creates or updates column-level statistics. Ordinarily, these statistics are collected automati-
cally or updated as a part of VACUUM or ANALYZE, so it's not necessary to call this function.
However, it is useful after a restore to enable the optimizer to choose better plans if ANALYZE
has not been run yet.
The tracked statistics may change from version to version, so arguments are passed as pairs
of argname and argvalue in the form:

SELECT pg_restore_attribute_stats(
 'arg1name', 'arg1value'::arg1type,
 'arg2name', 'arg2value'::arg2type,
 'arg3name', 'arg3value'::arg3type);

For example, to set the avg_width and null_frac values for the attribute col1 of the table
mytable:

SELECT pg_restore_attribute_stats(
 'schemaname', 'myschema',
 'relname', 'mytable',
 'attname', 'col1',
 'inherited', false,
 'avg_width', 125::integer,
 'null_frac', 0.5::real);

The required arguments are schemaname and relname with a value of type text which specify
the table; either attname with a value of type text or attnum with a value of type smallint,
which specifies the column; and inherited, which specifies whether the statistics include val-
ues from child tables. Other arguments are the names and values of statistics corresponding
to columns in pg_stats .
Additionally, this function accepts argument name version of type integer, which specifies
the server version from which the statistics originated. This is anticipated to be helpful in
porting statistics from older versions of PostgreSQL.
Minor errors are reported as a WARNING and ignored, and remaining statistics will still be re-
stored. If all specified statistics are successfully restored, returns true, otherwise false.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

pg_clear_attribute_stats (schemaname text, relname text, attname text, inherited
boolean) → void
Clears column-level statistics for the given relation and attribute, as though the table was
newly created.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

Table 9.106 lists functions that provide information about the structure of partitioned tables.

376

Functions and Operators

Table 9.106. Partitioning Information Functions

Function
Description

pg_partition_tree (regclass) → setof record (relid regclass, parentrelid regclass,
 isleaf boolean, level integer)
Lists the tables or indexes in the partition tree of the given partitioned table or partitioned in-
dex, with one row for each partition. Information provided includes the OID of the partition,
the OID of its immediate parent, a boolean value telling if the partition is a leaf, and an inte-
ger telling its level in the hierarchy. The level value is 0 for the input table or index, 1 for its
immediate child partitions, 2 for their partitions, and so on. Returns no rows if the relation
does not exist or is not a partition or partitioned table.

pg_partition_ancestors (regclass) → setof regclass
Lists the ancestor relations of the given partition, including the relation itself. Returns no
rows if the relation does not exist or is not a partition or partitioned table.

pg_partition_root (regclass) → regclass
Returns the top-most parent of the partition tree to which the given relation belongs. Returns
NULL if the relation does not exist or is not a partition or partitioned table.

For example, to check the total size of the data contained in a partitioned table measurement, one could
use the following query:

SELECT pg_size_pretty(sum(pg_relation_size(relid))) AS total_size
 FROM pg_partition_tree('measurement');

9.28.8. Index Maintenance Functions
Table 9.107 shows the functions available for index maintenance tasks. (Note that these maintenance
tasks are normally done automatically by autovacuum; use of these functions is only required in special
cases.) These functions cannot be executed during recovery. Use of these functions is restricted to su-
perusers and the owner of the given index.

Table 9.107. Index Maintenance Functions

Function
Description

brin_summarize_new_values (index regclass) → integer
Scans the specified BRIN index to find page ranges in the base table that are not currently
summarized by the index; for any such range it creates a new summary index tuple by scan-
ning those table pages. Returns the number of new page range summaries that were inserted
into the index.

brin_summarize_range (index regclass, blockNumber bigint) → integer
Summarizes the page range covering the given block, if not already summarized. This is like
brin_summarize_new_values except that it only processes the page range that covers the
given table block number.

brin_desummarize_range (index regclass, blockNumber bigint) → void
Removes the BRIN index tuple that summarizes the page range covering the given table
block, if there is one.

gin_clean_pending_list (index regclass) → bigint
Cleans up the “pending” list of the specified GIN index by moving entries in it, in bulk, to the
main GIN data structure. Returns the number of pages removed from the pending list. If the
argument is a GIN index built with the fastupdate option disabled, no cleanup happens and
the result is zero, because the index doesn't have a pending list. See Section 65.4.4.1 and
Section 65.4.5 for details about the pending list and fastupdate option.

377

Functions and Operators

9.28.9. Generic File Access Functions
The functions shown in Table 9.108 provide native access to files on the machine hosting the server.
Only files within the database cluster directory and the log_directory can be accessed, unless the user
is a superuser or is granted the role pg_read_server_files. Use a relative path for files in the cluster
directory, and a path matching the log_directory configuration setting for log files.

Note that granting users the EXECUTE privilege on pg_read_file(), or related functions, allows them
the ability to read any file on the server that the database server process can read; these functions
bypass all in-database privilege checks. This means that, for example, a user with such access is able to
read the contents of the pg_authid table where authentication information is stored, as well as read any
table data in the database. Therefore, granting access to these functions should be carefully considered.

When granting privilege on these functions, note that the table entries showing optional parameters
are mostly implemented as several physical functions with different parameter lists. Privilege must be
granted separately on each such function, if it is to be used. psql's \df command can be useful to check
what the actual function signatures are.

Some of these functions take an optional missing_ok parameter, which specifies the behavior when the
file or directory does not exist. If true, the function returns NULL or an empty result set, as appropriate.
If false, an error is raised. (Failure conditions other than “file not found” are reported as errors in any
case.) The default is false.

Table 9.108. Generic File Access Functions

Function
Description

pg_ls_dir (dirname text [, missing_ok boolean, include_dot_dirs boolean]) → setof
text
Returns the names of all files (and directories and other special files) in the specified directo-
ry. The include_dot_dirs parameter indicates whether “.” and “..” are to be included in
the result set; the default is to exclude them. Including them can be useful when missing_ok
is true, to distinguish an empty directory from a non-existent directory.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_ls_logdir () → setof record (name text, size bigint, modification timestamp with time
zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
log directory. Filenames beginning with a dot, directories, and other special files are exclud-
ed.
This function is restricted to superusers and roles with privileges of the pg_monitor role by
default, but other users can be granted EXECUTE to run the function.

pg_ls_waldir () → setof record (name text, size bigint, modification timestamp with time
zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
write-ahead log (WAL) directory. Filenames beginning with a dot, directories, and other spe-
cial files are excluded.
This function is restricted to superusers and roles with privileges of the pg_monitor role by
default, but other users can be granted EXECUTE to run the function.

pg_ls_logicalmapdir () → setof record (name text, size bigint, modification timestamp
with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
pg_logical/mappings directory. Filenames beginning with a dot, directories, and other spe-
cial files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

378

Functions and Operators

Function
Description

pg_ls_logicalsnapdir () → setof record (name text, size bigint, modification timestamp
with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the serv-
er's pg_logical/snapshots directory. Filenames beginning with a dot, directories, and oth-
er special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_replslotdir (slot_name text) → setof record (name text, size bigint, modifica-
tion timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
pg_replslot/slot_name directory, where slot_name is the name of the replication slot
provided as input of the function. Filenames beginning with a dot, directories, and other spe-
cial files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_summariesdir () → setof record (name text, size bigint, modification timestamp
with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
WAL summaries directory (pg_wal/summaries). Filenames beginning with a dot, directories,
and other special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_archive_statusdir () → setof record (name text, size bigint, modification time-
stamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
WAL archive status directory (pg_wal/archive_status). Filenames beginning with a dot,
directories, and other special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_tmpdir ([tablespace oid]) → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the tempo-
rary file directory for the specified tablespace. If tablespace is not provided, the pg_de-
fault tablespace is examined. Filenames beginning with a dot, directories, and other special
files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_read_file (filename text [, offset bigint, length bigint] [, missing_ok boolean]) →
text
Returns all or part of a text file, starting at the given byte offset, returning at most length
bytes (less if the end of file is reached first). If offset is negative, it is relative to the end of
the file. If offset and length are omitted, the entire file is returned. The bytes read from the
file are interpreted as a string in the database's encoding; an error is thrown if they are not
valid in that encoding.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_read_binary_file (filename text [, offset bigint, length bigint] [, missing_ok
boolean]) → bytea

379

Functions and Operators

Function
Description
Returns all or part of a file. This function is identical to pg_read_file except that it can
read arbitrary binary data, returning the result as bytea not text; accordingly, no encoding
checks are performed.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.
In combination with the convert_from function, this function can be used to read a text file
in a specified encoding and convert to the database's encoding:

SELECT convert_from(pg_read_binary_file('file_in_utf8.txt'), 'UTF8');

pg_stat_file (filename text [, missing_ok boolean]) → record (size bigint, access time-
stamp with time zone, modification timestamp with time zone, change timestamp with
time zone, creation timestamp with time zone, isdir boolean)
Returns a record containing the file's size, last access time stamp, last modification time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Win-
dows only), and a flag indicating if it is a directory.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

9.28.10. Advisory Lock Functions
The functions shown in Table 9.109 manage advisory locks. For details about proper use of these func-
tions, see Section 13.3.5.

All these functions are intended to be used to lock application-defined resources, which can be identified
either by a single 64-bit key value or two 32-bit key values (note that these two key spaces do not
overlap). If another session already holds a conflicting lock on the same resource identifier, the functions
will either wait until the resource becomes available, or return a false result, as appropriate for the
function. Locks can be either shared or exclusive: a shared lock does not conflict with other shared locks
on the same resource, only with exclusive locks. Locks can be taken at session level (so that they are
held until released or the session ends) or at transaction level (so that they are held until the current
transaction ends; there is no provision for manual release). Multiple session-level lock requests stack,
so that if the same resource identifier is locked three times there must then be three unlock requests
to release the resource in advance of session end.

Table 9.109. Advisory Lock Functions

Function
Description

pg_advisory_lock (key bigint) → void
pg_advisory_lock (key1 integer, key2 integer) → void

Obtains an exclusive session-level advisory lock, waiting if necessary.

pg_advisory_lock_shared (key bigint) → void
pg_advisory_lock_shared (key1 integer, key2 integer) → void

Obtains a shared session-level advisory lock, waiting if necessary.

pg_advisory_unlock (key bigint) → boolean
pg_advisory_unlock (key1 integer, key2 integer) → boolean

Releases a previously-acquired exclusive session-level advisory lock. Returns true if the lock
is successfully released. If the lock was not held, false is returned, and in addition, an SQL
warning will be reported by the server.

pg_advisory_unlock_all () → void
Releases all session-level advisory locks held by the current session. (This function is implicit-
ly invoked at session end, even if the client disconnects ungracefully.)

pg_advisory_unlock_shared (key bigint) → boolean

380

Functions and Operators

Function
Description

pg_advisory_unlock_shared (key1 integer, key2 integer) → boolean
Releases a previously-acquired shared session-level advisory lock. Returns true if the lock
is successfully released. If the lock was not held, false is returned, and in addition, an SQL
warning will be reported by the server.

pg_advisory_xact_lock (key bigint) → void
pg_advisory_xact_lock (key1 integer, key2 integer) → void

Obtains an exclusive transaction-level advisory lock, waiting if necessary.

pg_advisory_xact_lock_shared (key bigint) → void
pg_advisory_xact_lock_shared (key1 integer, key2 integer) → void

Obtains a shared transaction-level advisory lock, waiting if necessary.

pg_try_advisory_lock (key bigint) → boolean
pg_try_advisory_lock (key1 integer, key2 integer) → boolean

Obtains an exclusive session-level advisory lock if available. This will either obtain the lock
immediately and return true, or return false without waiting if the lock cannot be acquired
immediately.

pg_try_advisory_lock_shared (key bigint) → boolean
pg_try_advisory_lock_shared (key1 integer, key2 integer) → boolean

Obtains a shared session-level advisory lock if available. This will either obtain the lock imme-
diately and return true, or return false without waiting if the lock cannot be acquired imme-
diately.

pg_try_advisory_xact_lock (key bigint) → boolean
pg_try_advisory_xact_lock (key1 integer, key2 integer) → boolean

Obtains an exclusive transaction-level advisory lock if available. This will either obtain the
lock immediately and return true, or return false without waiting if the lock cannot be ac-
quired immediately.

pg_try_advisory_xact_lock_shared (key bigint) → boolean
pg_try_advisory_xact_lock_shared (key1 integer, key2 integer) → boolean

Obtains a shared transaction-level advisory lock if available. This will either obtain the lock
immediately and return true, or return false without waiting if the lock cannot be acquired
immediately.

9.29. Trigger Functions
While many uses of triggers involve user-written trigger functions, PostgreSQL provides a few built-in
trigger functions that can be used directly in user-defined triggers. These are summarized in Table 9.110.
(Additional built-in trigger functions exist, which implement foreign key constraints and deferred index
constraints. Those are not documented here since users need not use them directly.)

For more information about creating triggers, see CREATE TRIGGER.

Table 9.110. Built-In Trigger Functions

Function
Description
Example Usage

suppress_redundant_updates_trigger () → trigger
Suppresses do-nothing update operations. See below for details.
CREATE TRIGGER ... suppress_redundant_updates_trigger()

tsvector_update_trigger () → trigger

381

Functions and Operators

Function
Description
Example Usage
Automatically updates a tsvector column from associated plain-text document column(s).
The text search configuration to use is specified by name as a trigger argument. See Sec-
tion 12.4.3 for details.
CREATE TRIGGER ... tsvector_update_trigger(tsvcol, 'pg_catalog.swedish',
title, body)

tsvector_update_trigger_column () → trigger
Automatically updates a tsvector column from associated plain-text document column(s).
The text search configuration to use is taken from a regconfig column of the table. See Sec-
tion 12.4.3 for details.
CREATE TRIGGER ... tsvector_update_trigger_column(tsvcol, tsconfigcol,
title, body)

The suppress_redundant_updates_trigger function, when applied as a row-level BEFORE UPDATE trig-
ger, will prevent any update that does not actually change the data in the row from taking place. This
overrides the normal behavior which always performs a physical row update regardless of whether or
not the data has changed. (This normal behavior makes updates run faster, since no checking is required,
and is also useful in certain cases.)

Ideally, you should avoid running updates that don't actually change the data in the record. Redundant
updates can cost considerable unnecessary time, especially if there are lots of indexes to alter, and space
in dead rows that will eventually have to be vacuumed. However, detecting such situations in client
code is not always easy, or even possible, and writing expressions to detect them can be error-prone. An
alternative is to use suppress_redundant_updates_trigger, which will skip updates that don't change
the data. You should use this with care, however. The trigger takes a small but non-trivial time for each
record, so if most of the records affected by updates do actually change, use of this trigger will make
updates run slower on average.

The suppress_redundant_updates_trigger function can be added to a table like this:
CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE FUNCTION suppress_redundant_updates_trigger();

In most cases, you need to fire this trigger last for each row, so that it does not override other triggers
that might wish to alter the row. Bearing in mind that triggers fire in name order, you would therefore
choose a trigger name that comes after the name of any other trigger you might have on the table.
(Hence the “z” prefix in the example.)

9.30. Event Trigger Functions
PostgreSQL provides these helper functions to retrieve information from event triggers.

For more information about event triggers, see Chapter 38.

9.30.1. Capturing Changes at Command End
pg_event_trigger_ddl_commands () → setof record

pg_event_trigger_ddl_commands returns a list of DDL commands executed by each user action, when
invoked in a function attached to a ddl_command_end event trigger. If called in any other context, an
error is raised. pg_event_trigger_ddl_commands returns one row for each base command executed;
some commands that are a single SQL sentence may return more than one row. This function returns
the following columns:

Name Type Description
classid oid OID of catalog the object belongs

in

382

Functions and Operators

Name Type Description
objid oid OID of the object itself
objsubid integer Sub-object ID (e.g., attribute

number for a column)
command_tag text Command tag
object_type text Type of the object
schema_name text Name of the schema the object

belongs in, if any; otherwise
NULL. No quoting is applied.

object_identity text Text rendering of the object iden-
tity, schema-qualified. Each iden-
tifier included in the identity is
quoted if necessary.

in_extension boolean True if the command is part of
an extension script

command pg_ddl_command A complete representation of the
command, in internal format.
This cannot be output direct-
ly, but it can be passed to oth-
er functions to obtain different
pieces of information about the
command.

9.30.2. Processing Objects Dropped by a DDL Command
pg_event_trigger_dropped_objects () → setof record

pg_event_trigger_dropped_objects returns a list of all objects dropped by the command in whose
sql_drop event it is called. If called in any other context, an error is raised. This function returns the
following columns:

Name Type Description
classid oid OID of catalog the object be-

longed in
objid oid OID of the object itself
objsubid integer Sub-object ID (e.g., attribute

number for a column)
original boolean True if this was one of the root

object(s) of the deletion
normal boolean True if there was a normal de-

pendency relationship in the de-
pendency graph leading to this
object

is_temporary boolean True if this was a temporary ob-
ject

object_type text Type of the object
schema_name text Name of the schema the object

belonged in, if any; otherwise
NULL. No quoting is applied.

object_name text Name of the object, if the combi-
nation of schema and name can

383

Functions and Operators

Name Type Description
be used as a unique identifier for
the object; otherwise NULL. No
quoting is applied, and name is
never schema-qualified.

object_identity text Text rendering of the object iden-
tity, schema-qualified. Each iden-
tifier included in the identity is
quoted if necessary.

address_names text[] An array that, together with ob-
ject_type and address_args ,
 can be used by the pg_get_
object_address function to
recreate the object address in
a remote server containing an
identically named object of the
same kind.

address_args text[] Complement for address_names

The pg_event_trigger_dropped_objects function can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_for_drops()
 RETURNS event_trigger LANGUAGE plpgsql AS $$
DECLARE
 obj record;
BEGIN
 FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects()
 LOOP
 RAISE NOTICE '% dropped object: % %.% %',
 tg_tag,
 obj.object_type,
 obj.schema_name,
 obj.object_name,
 obj.object_identity;
 END LOOP;
END;
$$;
CREATE EVENT TRIGGER test_event_trigger_for_drops
 ON sql_drop
 EXECUTE FUNCTION test_event_trigger_for_drops();

9.30.3. Handling a Table Rewrite Event
The functions shown in Table 9.111 provide information about a table for which a table_rewrite event
has just been called. If called in any other context, an error is raised.

Table 9.111. Table Rewrite Information Functions

Function
Description

pg_event_trigger_table_rewrite_oid () → oid
Returns the OID of the table about to be rewritten.

pg_event_trigger_table_rewrite_reason () → integer
Returns a code explaining the reason(s) for rewriting. The value is a bitmap built from the
following values: 1 (the table has changed its persistence), 2 (default value of a column has
changed), 4 (a column has a new data type) and 8 (the table access method has changed).

384

Functions and Operators

These functions can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_table_rewrite_oid()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
 RAISE NOTICE 'rewriting table % for reason %',
 pg_event_trigger_table_rewrite_oid()::regclass,
 pg_event_trigger_table_rewrite_reason();
END;
$$;

CREATE EVENT TRIGGER test_table_rewrite_oid
 ON table_rewrite
 EXECUTE FUNCTION test_event_trigger_table_rewrite_oid();

9.31. Statistics Information Functions
PostgreSQL provides a function to inspect complex statistics defined using the CREATE STATISTICS
command.

9.31.1. Inspecting MCV Lists
pg_mcv_list_items (pg_mcv_list) → setof record

pg_mcv_list_items returns a set of records describing all items stored in a multi-column MCV list. It
returns the following columns:

Name Type Description
index integer index of the item in the MCV list
values text[] values stored in the MCV item
nulls boolean[] flags identifying NULL values
frequency double precision frequency of this MCV item
base_frequency double precision base frequency of this MCV item

The pg_mcv_list_items function can be used like this:

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts';

Values of the pg_mcv_list type can be obtained only from the pg_statistic_ext_data.stxdmcv column.

385

Chapter 10. Type Conversion
SQL statements can, intentionally or not, require the mixing of different data types in the same expres-
sion. PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism. How-
ever, implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these
results can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed
functions and operators.

10.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which determines
its behavior and allowed usage. PostgreSQL has an extensible type system that is more general and
flexible than other SQL implementations. Hence, most type conversion behavior in PostgreSQL is gov-
erned by general rules rather than by ad hoc heuristics. This allows the use of mixed-type expressions
even with user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers, non-
integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first clas-
sified as strings. The SQL language definition allows specifying type names with strings, and this mech-
anism can be used in PostgreSQL to start the parser down the correct path. For example, the query:
SELECT text 'Origin' AS "label", point '(0,0)' AS "value";

 label | value
--------+-------
 Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:
Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have one
or more arguments. Since PostgreSQL permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on
the data types of the supplied arguments.

Operators
PostgreSQL allows expressions with prefix (one-argument) operators, as well as infix (two-argument)
operators. Like functions, operators can be overloaded, so the same problem of selecting the right
operator exists.

Value Storage
SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions in
the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs
Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that
the CASE expression as a whole has a known output type. Some other constructs, such as ARRAY[]

386

Type Conversion

and the GREATEST and LEAST functions, likewise require determination of a common type for several
subexpressions.

The system catalogs store information about which conversions, or casts, exist between which data types,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between
built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper casting
behavior among groups of types that have implicit casts. Data types are divided into several basic type
categories, including boolean, numeric, string, bitstring, datetime, timespan, geometric, network,
and user-defined. (For a list see Table 52.65; but note it is also possible to create custom type categories.)
Within each category there can be one or more preferred types, which are preferred when there is
a choice of possible types. With careful selection of preferred types and available implicit casts, it is
possible to ensure that ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed with several principles in mind:
• Implicit conversions should never have surprising or unpredictable outcomes.
• There should be no extra overhead in the parser or executor if a query does not need implicit type

conversion. That is, if a query is well-formed and the types already match, then the query should
execute without spending extra time in the parser and without introducing unnecessary implicit
conversion calls in the query.

• Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function
and no longer do implicit conversion to use the old function.

10.2. Operators
The specific operator that is referenced by an operator expression is determined using the following
procedure. Note that this procedure is indirectly affected by the precedence of the operators involved,
since that will determine which sub-expressions are taken to be the inputs of which operators. See
Section 4.1.6 for more information.

Operator Type Resolution
1. Select the operators to be considered from the pg_operator system catalog. If a non-schema-quali-

fied operator name was used (the usual case), the operators considered are those with the matching
name and argument count that are visible in the current search path (see Section 5.10.3). If a qual-
ified operator name was given, only operators in the specified schema are considered.

• (Optional) If the search path finds multiple operators with identical argument types, only the
one appearing earliest in the path is considered. Operators with different argument types are
considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it. Lack of an exact match creates a security
hazard when calling, via qualified name 1 (not typical), any operator found in a schema that permits
untrusted users to create objects. In such situations, cast arguments to force an exact match.

a. (Optional) If one argument of a binary operator invocation is of the unknown type, then assume it
is the same type as the other argument for this check. Invocations involving two unknown inputs,
or a prefix operator with an unknown input, will never find a match at this step.

b. (Optional) If one argument of a binary operator invocation is of the unknown type and the other
is of a domain type, next check to see if there is an operator accepting exactly the domain's base
type on both sides; if so, use it.

1 The hazard does not arise with a non-schema-qualified name, because a search path containing schemas that permit untrusted users to create objects is not a
secure schema usage pattern.

387

Type Conversion

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to any-
thing for this purpose. If only one candidate remains, use it; else continue to the next step.

b. If any input argument is of a domain type, treat it as being of the domain's base type for all
subsequent steps. This ensures that domains act like their base types for purposes of ambigu-
ous-operator resolution.

c. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have exact matches. If only one candidate remains, use it; else continue
to the next step.

d. Run through all candidates and keep those that accept preferred types (of the input data type's
type category) at the most positions where type conversion will be required. Keep all candidates
if none accept preferred types. If only one candidate remains, use it; else continue to the next
step.

e. If any input arguments are unknown, check the type categories accepted at those argument posi-
tions by the remaining candidates. At each position, select the string category if any candidate
accepts that category. (This bias towards string is appropriate since an unknown-type literal
looks like a string.) Otherwise, if all the remaining candidates accept the same type category,
select that category; otherwise fail because the correct choice cannot be deduced without more
clues. Now discard candidates that do not accept the selected type category. Furthermore, if
any candidate accepts a preferred type in that category, discard candidates that accept non-
preferred types for that argument. Keep all candidates if none survive these tests. If only one
candidate remains, use it; else continue to the next step.

f. If there are both unknown and known-type arguments, and all the known-type arguments have the
same type, assume that the unknown arguments are also of that type, and check which candidates
can accept that type at the unknown-argument positions. If exactly one candidate passes this
test, use it. Otherwise, fail.

Some examples follow.

Example 10.1. Square Root Operator Type Resolution

There is only one square root operator (prefix |/) defined in the standard catalog, and it takes an ar-
gument of type double precision. The scanner assigns an initial type of integer to the argument in
this query expression:

SELECT |/ 40 AS "square root of 40";
 square root of 40

 6.324555320336759
(1 row)

So the parser does a type conversion on the operand and the query is equivalent to:

SELECT |/ CAST(40 AS double precision) AS "square root of 40";

Example 10.2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text 'abc' || 'def' AS "text and unknown";

 text and unknown

 abcdef

388

Type Conversion

(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there
is, it assumes that the second argument should be interpreted as type text.

Here is a concatenation of two values of unspecified types:

SELECT 'abc' || 'def' AS "unspecified";

 unspecified

 abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So,
the parser looks for all candidate operators and finds that there are candidates accepting both string-
category and bit-string-category inputs. Since string category is preferred when available, that category
is selected, and then the preferred type for strings, text, is used as the specific type to resolve the
unknown-type literals as.

Example 10.3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type float8, which
is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced
with an unknown input:

SELECT @ '-4.5' AS "abs";
 abs

 4.5
(1 row)

Here the system has implicitly resolved the unknown-type literal as type float8 before applying the
chosen operator. We can verify that float8 and not some other type was used:

SELECT @ '-4.5e500' AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not
for float8. So, if we try a similar case with ~, we get:

SELECT ~ '20' AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to add
explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be
preferred. We can help it out with an explicit cast:

SELECT ~ CAST('20' AS int8) AS "negation";

 negation

 -21
(1 row)

Example 10.4. Array Inclusion Operator Type Resolution

Here is another example of resolving an operator with one known and one unknown input:

SELECT array[1,2] <@ '{1,2,3}' as "is subset";

389

Type Conversion

 is subset

 t
(1 row)

The PostgreSQL operator catalog has several entries for the infix operator <@, but the only two that
could possibly accept an integer array on the left-hand side are array inclusion (anyarray <@ anyarray)
and range inclusion (anyelement <@ anyrange). Since none of these polymorphic pseudo-types (see Sec-
tion 8.21) are considered preferred, the parser cannot resolve the ambiguity on that basis. However,
Step 3.f tells it to assume that the unknown-type literal is of the same type as the other input, that is,
integer array. Now only one of the two operators can match, so array inclusion is selected. (Had range
inclusion been selected, we would have gotten an error, because the string does not have the right for-
mat to be a range literal.)

Example 10.5. Custom Operator on a Domain Type

Users sometimes try to declare operators applying just to a domain type. This is possible but is not
nearly as useful as it might seem, because the operator resolution rules are designed to select operators
applying to the domain's base type. As an example consider

CREATE DOMAIN mytext AS text CHECK(...);
CREATE FUNCTION mytext_eq_text (mytext, text) RETURNS boolean AS ...;
CREATE OPERATOR = (procedure=mytext_eq_text, leftarg=mytext, rightarg=text);
CREATE TABLE mytable (val mytext);

SELECT * FROM mytable WHERE val = 'foo';

This query will not use the custom operator. The parser will first see if there is a mytext = mytext operator
(Step 2.a), which there is not; then it will consider the domain's base type text, and see if there is a text
= text operator (Step 2.b), which there is; so it resolves the unknown-type literal as text and uses the
text = text operator. The only way to get the custom operator to be used is to explicitly cast the literal:

SELECT * FROM mytable WHERE val = text 'foo';

so that the mytext = text operator is found immediately according to the exact-match rule. If the best-
match rules are reached, they actively discriminate against operators on domain types. If they did not,
such an operator would create too many ambiguous-operator failures, because the casting rules always
consider a domain as castable to or from its base type, and so the domain operator would be considered
usable in all the same cases as a similarly-named operator on the base type.

10.3. Functions
The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If a non-schema-qualified
function name was used, the functions considered are those with the matching name and argument
count that are visible in the current search path (see Section 5.10.3). If a qualified function name
was given, only functions in the specified schema are considered.

a. (Optional) If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. Functions of different argument types are consid-
ered on an equal footing regardless of search path position.

b. (Optional) If a function is declared with a VARIADIC array parameter, and the call does not use
the VARIADIC keyword, then the function is treated as if the array parameter were replaced by
one or more occurrences of its element type, as needed to match the call. After such expansion
the function might have effective argument types identical to some non-variadic function. In that
case the function appearing earlier in the search path is used, or if the two functions are in the
same schema, the non-variadic one is preferred.

390

Type Conversion

This creates a security hazard when calling, via qualified name 2, a variadic function found in
a schema that permits untrusted users to create objects. A malicious user can take control and
execute arbitrary SQL functions as though you executed them. Substitute a call bearing the
VARIADIC keyword, which bypasses this hazard. Calls populating VARIADIC "any" parameters
often have no equivalent formulation containing the VARIADIC keyword. To issue those calls
safely, the function's schema must permit only trusted users to create objects.

c. (Optional) Functions that have default values for parameters are considered to match any call
that omits zero or more of the defaultable parameter positions. If more than one such function
matches a call, the one appearing earliest in the search path is used. If there are two or more
such functions in the same schema with identical parameter types in the non-defaulted positions
(which is possible if they have different sets of defaultable parameters), the system will not be
able to determine which to prefer, and so an “ambiguous function call” error will result if no
better match to the call can be found.

This creates an availability hazard when calling, via qualified name2, any function found in a
schema that permits untrusted users to create objects. A malicious user can create a function
with the name of an existing function, replicating that function's parameters and appending
novel parameters having default values. This precludes new calls to the original function. To
forestall this hazard, place functions in schemas that permit only trusted users to create objects.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of functions considered), use it. Lack of an exact match creates a secu-
rity hazard when calling, via qualified name2, a function found in a schema that permits untrusted
users to create objects. In such situations, cast arguments to force an exact match. (Cases involving
unknown will never find a match at this step.)

3. If no exact match is found, see if the function call appears to be a special type conversion request. This
happens if the function call has just one argument and the function name is the same as the (internal)
name of some data type. Furthermore, the function argument must be either an unknown-type literal,
or a type that is binary-coercible to the named data type, or a type that could be converted to the
named data type by applying that type's I/O functions (that is, the conversion is either to or from
one of the standard string types). When these conditions are met, the function call is treated as a
form of CAST specification. 3

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to any-
thing for this purpose. If only one candidate remains, use it; else continue to the next step.

b. If any input argument is of a domain type, treat it as being of the domain's base type for all
subsequent steps. This ensures that domains act like their base types for purposes of ambigu-
ous-function resolution.

c. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have exact matches. If only one candidate remains, use it; else continue
to the next step.

d. Run through all candidates and keep those that accept preferred types (of the input data type's
type category) at the most positions where type conversion will be required. Keep all candidates
if none accept preferred types. If only one candidate remains, use it; else continue to the next
step.

e. If any input arguments are unknown, check the type categories accepted at those argument posi-
tions by the remaining candidates. At each position, select the string category if any candidate
accepts that category. (This bias towards string is appropriate since an unknown-type literal
looks like a string.) Otherwise, if all the remaining candidates accept the same type category,

2 The hazard does not arise with a non-schema-qualified name, because a search path containing schemas that permit untrusted users to create objects is not a
secure schema usage pattern.
3 The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function. If there is a cast function, it is conventionally
named after its output type, and so there is no need to have a special case. See CREATE CAST for additional commentary.

391

Type Conversion

select that category; otherwise fail because the correct choice cannot be deduced without more
clues. Now discard candidates that do not accept the selected type category. Furthermore, if
any candidate accepts a preferred type in that category, discard candidates that accept non-
preferred types for that argument. Keep all candidates if none survive these tests. If only one
candidate remains, use it; else continue to the next step.

f. If there are both unknown and known-type arguments, and all the known-type arguments have the
same type, assume that the unknown arguments are also of that type, and check which candidates
can accept that type at the unknown-argument positions. If exactly one candidate passes this
test, use it. Otherwise, fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10.6. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric and
a second argument of type integer. So the following query automatically converts the first argument
of type integer to numeric:

SELECT round(4, 4);

 round

 4.0000
(1 row)

That query is actually transformed by the parser to:

SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and therefore might be slightly more efficient:

SELECT round(4.0, 4);

Example 10.7. Variadic Function Resolution

CREATE FUNCTION public.variadic_example(VARIADIC numeric[]) RETURNS int
 LANGUAGE sql AS 'SELECT 1';
CREATE FUNCTION

This function accepts, but does not require, the VARIADIC keyword. It tolerates both integer and numeric
arguments:

SELECT public.variadic_example(0),
 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 1 | 1 | 1
(1 row)

However, the first and second calls will prefer more-specific functions, if available:

CREATE FUNCTION public.variadic_example(numeric) RETURNS int
 LANGUAGE sql AS 'SELECT 2';
CREATE FUNCTION

CREATE FUNCTION public.variadic_example(int) RETURNS int
 LANGUAGE sql AS 'SELECT 3';
CREATE FUNCTION

SELECT public.variadic_example(0),

392

Type Conversion

 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 3 | 2 | 1
(1 row)

Given the default configuration and only the first function existing, the first and second calls are insecure.
Any user could intercept them by creating the second or third function. By matching the argument type
exactly and using the VARIADIC keyword, the third call is secure.

Example 10.8. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category string (namely of type text).

SELECT substr('1234', 3);

 substr

 34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr(varchar '1234', 3);

 substr

 34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (varchar '1234' AS text), 3);

Note
The parser learns from the pg_cast catalog that text and varchar are binary-compatible, meaning
that one can be passed to a function that accepts the other without doing any physical conversion.
Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to text:

SELECT substr(1234, 3);
ERROR: function substr(integer, integer) does not exist
HINT: No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will work,
however:

SELECT substr(CAST (1234 AS text), 3);

 substr

 34
(1 row)

393

Type Conversion

10.4. Value Storage
Values to be inserted into a table are converted to the destination column's data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.
2. Otherwise, try to convert the expression to the target type. This is possible if an assignment cast

between the two types is registered in the pg_cast catalog (see CREATE CAST). Alternatively, if
the expression is an unknown-type literal, the contents of the literal string will be fed to the input
conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to
itself. If one is found in the pg_cast catalog, apply it to the expression before storing into the desti-
nation column. The implementation function for such a cast always takes an extra parameter of type
integer, which receives the destination column's atttypmod value (typically its declared length,
although the interpretation of atttypmod varies for different data types), and it may take a third
boolean parameter that says whether the cast is explicit or implicit. The cast function is responsible
for applying any length-dependent semantics such as size checking or truncation.

Example 10.9. character Storage Type Conversion

For a target column declared as character(20) the following statement shows that the stored value
is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT 'abc' || 'def';
SELECT v, octet_length(v) FROM vv;

 v | octet_length
----------------------+--------------
 abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the || operator to be resolved as text concatenation. Then the text result of the operator is converted
to bpchar (“blank-padded char”, the internal name of the character data type) to match the target
column type. (Since the conversion from text to bpchar is binary-coercible, this conversion does not
insert any real function call.) Finally, the sizing function bpchar(bpchar, integer, boolean) is found in
the system catalog and applied to the operator's result and the stored column length. This type-specific
function performs the required length check and addition of padding spaces.

10.5. UNION, CASE, and Related Constructs
SQL UNION constructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union query. The INTERSECT and EXCEPT
constructs resolve dissimilar types in the same way as UNION. Some other constructs, including CASE,
ARRAY, VALUES, and the GREATEST and LEAST functions, use the identical algorithm to match up their
component expressions and select a result data type.

Type Resolution for UNION, CASE, and Related Constructs

1. If all inputs are of the same type, and it is not unknown, resolve as that type.
2. If any input is of a domain type, treat it as being of the domain's base type for all subsequent steps. 4

3. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored for the purposes of the remaining rules.

4 Somewhat like the treatment of domain inputs for operators and functions, this behavior allows a domain type to be preserved through a UNION or similar construct,
so long as the user is careful to ensure that all inputs are implicitly or explicitly of that exact type. Otherwise the domain's base type will be used.

394

Type Conversion

4. If the non-unknown inputs are not all of the same type category, fail.
5. Select the first non-unknown input type as the candidate type, then consider each other non-unknown

input type, left to right. 5 If the candidate type can be implicitly converted to the other type, but not
vice-versa, select the other type as the new candidate type. Then continue considering the remaining
inputs. If, at any stage of this process, a preferred type is selected, stop considering additional inputs.

6. Convert all inputs to the final candidate type. Fail if there is not an implicit conversion from a given
input type to the candidate type.

Some examples follow.

Example 10.10. Type Resolution with Underspecified Types in a Union

SELECT text 'a' AS "text" UNION SELECT 'b';

 text

 a
 b
(2 rows)

Here, the unknown-type literal 'b' will be resolved to type text.

Example 10.11. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

 numeric

 1
 1.2
(2 rows)

The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so that
type is used.

Example 10.12. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);

 real

 1
 2.2
(2 rows)

Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to real,
the union result type is resolved as real.

Example 10.13. Type Resolution in a Nested Union

SELECT NULL UNION SELECT NULL UNION SELECT 1;

ERROR: UNION types text and integer cannot be matched

This failure occurs because PostgreSQL treats multiple UNIONs as a nest of pairwise operations; that is,
this input is the same as
(SELECT NULL UNION SELECT NULL) UNION SELECT 1;

The inner UNION is resolved as emitting type text, according to the rules given above. Then the outer
UNION has inputs of types text and integer, leading to the observed error. The problem can be fixed by
ensuring that the leftmost UNION has at least one input of the desired result type.

5 For historical reasons, CASE treats its ELSE clause (if any) as the “first” input, with the THEN clauses(s) considered after that. In all other cases, “left to right” means
the order in which the expressions appear in the query text.

395

Type Conversion

INTERSECT and EXCEPT operations are likewise resolved pairwise. However, the other constructs de-
scribed in this section consider all of their inputs in one resolution step.

10.6. SELECT Output Columns
The rules given in the preceding sections will result in assignment of non-unknown data types to all
expressions in an SQL query, except for unspecified-type literals that appear as simple output columns
of a SELECT command. For example, in

SELECT 'Hello World';

there is nothing to identify what type the string literal should be taken as. In this situation PostgreSQL
will fall back to resolving the literal's type as text.

When the SELECT is one arm of a UNION (or INTERSECT or EXCEPT) construct, or when it appears within
INSERT ... SELECT, this rule is not applied since rules given in preceding sections take precedence.
The type of an unspecified-type literal can be taken from the other UNION arm in the first case, or from
the destination column in the second case.

RETURNING lists are treated the same as SELECT output lists for this purpose.

Note
Prior to PostgreSQL 10, this rule did not exist, and unspecified-type literals in a SELECT output list
were left as type unknown. That had assorted bad consequences, so it's been changed.

396

Chapter 11. Indexes
Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:
CREATE TABLE test1 (
 id integer,
 content varchar
);

and the application issues many queries of the form:
SELECT content FROM test1 WHERE id = constant;

With no advance preparation, the system would have to scan the entire test1 table, row by row, to find all
matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one) that would
be returned by such a query, this is clearly an inefficient method. But if the system has been instructed
to maintain an index on the id column, it can use a more efficient method for locating matching rows.
For instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book
to find the material of interest. Just as it is the task of the author to anticipate the items that readers are
likely to look up, it is the task of the database programmer to foresee which indexes will be useful.

The following command can be used to create an index on the id column, as discussed:
CREATE INDEX test1_id_index ON test1 (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables
at any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient than
a sequential table scan. But you might have to run the ANALYZE command regularly to update statistics
to allow the query planner to make educated decisions. See Chapter 14 for information about how to
find out whether an index is used and when and why the planner might choose not to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover
be used in join searches. Thus, an index defined on a column that is part of a join condition can also
significantly speed up queries with joins.

In general, PostgreSQL indexes can be used to optimize queries that contain one or more WHERE or JOIN
clauses of the form
indexed-column indexable-operator comparison-value

Here, the indexed-column is whatever column or expression the index has been defined on. The index-
able-operator is an operator that is a member of the index's operator class for the indexed column.
(More details about that appear below.) And the comparison-value can be any expression that is not
volatile and does not reference the index's table.

In some cases the query planner can extract an indexable clause of this form from another SQL construct.
A simple example is that if the original clause was

397

Indexes

comparison-value operator indexed-column

then it can be flipped around into indexable form if the original operator has a commutator operator
that is a member of the index's operator class.

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (SELECT
statements) to occur on the table in parallel with index creation, but writes (INSERT, UPDATE, DELETE)
are blocked until the index build is finished. In production environments this is often unacceptable. It
is possible to allow writes to occur in parallel with index creation, but there are several caveats to be
aware of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead
to data manipulation operations. Indexes can also prevent the creation of heap-only tuples. Therefore
indexes that are seldom or never used in queries should be removed.

11.2. Index Types
PostgreSQL provides several index types: B-tree, Hash, GiST, SP-GiST, GIN, BRIN, and the extension
bloom. Each index type uses a different algorithm that is best suited to different types of indexable
clauses. By default, the CREATE INDEX command creates B-tree indexes, which fit the most common
situations. The other index types are selected by writing the keyword USING followed by the index type
name. For example, to create a Hash index:

CREATE INDEX name ON table USING HASH (column);

11.2.1. B-Tree
B-trees can handle equality and range queries on data that can be sorted into some ordering. In partic-
ular, the PostgreSQL query planner will consider using a B-tree index whenever an indexed column is
involved in a comparison using one of these operators:

< <= = >= >

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be imple-
mented with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index column can
be used with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE and
~ if the pattern is a constant and is anchored to the beginning of the string — for example, col LIKE
'foo%' or col ~ '^foo', but not col LIKE '%bar'. However, if your database does not use the C locale
you will need to create the index with a special operator class to support indexing of pattern-matching
queries; see Section 11.10 below. It is also possible to use B-tree indexes for ILIKE and ~*, but only if
the pattern starts with non-alphabetic characters, i.e., characters that are not affected by upper/lower
case conversion.

B-tree indexes can also be used to retrieve data in sorted order. This is not always faster than a simple
scan and sort, but it is often helpful.

11.2.2. Hash
Hash indexes store a 32-bit hash code derived from the value of the indexed column. Hence, such in-
dexes can only handle simple equality comparisons. The query planner will consider using a hash index
whenever an indexed column is involved in a comparison using the equal operator:

=

11.2.3. GiST
GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard

398

Indexes

distribution of PostgreSQL includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:
<< &< &> >> <<| &<| |&> |>> @> <@ ~= &&

(See Section 9.11 for the meaning of these operators.) The GiST operator classes included in the standard
distribution are documented in Table 65.1. Many other GiST operator classes are available in the contrib
collection or as separate projects. For more information see Section 65.2.

GiST indexes are also capable of optimizing “nearest-neighbor” searches, such as
SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

which finds the ten places closest to a given target point. The ability to do this is again dependent on
the particular operator class being used. In Table 65.1, operators that can be used in this way are listed
in the column “Ordering Operators”.

11.2.4. SP-GiST
SP-GiST indexes, like GiST indexes, offer an infrastructure that supports various kinds of searches. SP-
GiST permits implementation of a wide range of different non-balanced disk-based data structures, such
as quadtrees, k-d trees, and radix trees (tries). As an example, the standard distribution of PostgreSQL
includes SP-GiST operator classes for two-dimensional points, which support indexed queries using these
operators:
<< >> ~= <@ <<| |>>

(See Section 9.11 for the meaning of these operators.) The SP-GiST operator classes included in the
standard distribution are documented in Table 65.2. For more information see Section 65.3.

Like GiST, SP-GiST supports “nearest-neighbor” searches. For SP-GiST operator classes that support
distance ordering, the corresponding operator is listed in the “Ordering Operators” column in Table 65.2.

11.2.5. GIN
GIN indexes are “inverted indexes” which are appropriate for data values that contain multiple compo-
nent values, such as arrays. An inverted index contains a separate entry for each component value, and
can efficiently handle queries that test for the presence of specific component values.

Like GiST and SP-GiST, GIN can support many different user-defined indexing strategies, and the par-
ticular operators with which a GIN index can be used vary depending on the indexing strategy. As an
example, the standard distribution of PostgreSQL includes a GIN operator class for arrays, which sup-
ports indexed queries using these operators:
<@ @> = &&

(See Section 9.19 for the meaning of these operators.) The GIN operator classes included in the standard
distribution are documented in Table 65.3. Many other GIN operator classes are available in the contrib
collection or as separate projects. For more information see Section 65.4.

11.2.6. BRIN
BRIN indexes (a shorthand for Block Range INdexes) store summaries about the values stored in con-
secutive physical block ranges of a table. Thus, they are most effective for columns whose values are
well-correlated with the physical order of the table rows. Like GiST, SP-GiST and GIN, BRIN can support
many different indexing strategies, and the particular operators with which a BRIN index can be used
vary depending on the indexing strategy. For data types that have a linear sort order, the indexed data
corresponds to the minimum and maximum values of the values in the column for each block range. This
supports indexed queries using these operators:
< <= = >= >

The BRIN operator classes included in the standard distribution are documented in Table 65.4. For more
information see Section 65.5.

399

Indexes

11.3. Multicolumn Indexes
An index can be defined on more than one column of a table. For example, if you have a table of this form:

CREATE TABLE test2 (
 major int,
 minor int,
 name varchar
);

(say, you keep your /dev directory in a database...) and you frequently issue queries like:

SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST, GIN, and BRIN index types support multiple-key-column indexes.
Whether there can be multiple key columns is independent of whether INCLUDE columns can be added
to the index. Indexes can have up to 32 columns, including INCLUDE columns. (This limit can be altered
when building PostgreSQL; see the file pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index's
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the
first column that does not have an equality constraint, will always be used to limit the portion of the
index that is scanned. Constraints on columns to the right of these columns are checked in the index,
so they'll always save visits to the table proper, but they do not necessarily reduce the portion of the
index that has to be scanned. If a B-tree index scan can apply the skip scan optimization effectively, it
will apply every column constraint when navigating through the index via repeated index searches. This
can reduce the portion of the index that has to be read, even though one or more columns (prior to the
least significant index column from the query predicate) lacks a conventional equality constraint. Skip
scan works by generating a dynamic equality constraint internally, that matches every possible value
in an index column (though only given a column that lacks an equality constraint that comes from the
query predicate, and only when the generated constraint can be used in conjunction with a later column
constraint from the query predicate).

For example, given an index on (x, y), and a query condition WHERE y = 7700, a B-tree index scan might
be able to apply the skip scan optimization. This generally happens when the query planner expects that
repeated WHERE x = N AND y = 7700 searches for every possible value of N (or for every x value that
is actually stored in the index) is the fastest possible approach, given the available indexes on the table.
This approach is generally only taken when there are so few distinct x values that the planner expects
the scan to skip over most of the index (because most of its leaf pages cannot possibly contain relevant
tuples). If there are many distinct x values, then the entire index will have to be scanned, so in most
cases the planner will prefer a sequential table scan over using the index.

The skip scan optimization can also be applied selectively, during B-tree scans that have at least some
useful constraints from the query predicate. For example, given an index on (a, b, c) and a query
condition WHERE a = 5 AND b >= 42 AND c < 77, the index might have to be scanned from the first
entry with a = 5 and b = 42 up through the last entry with a = 5. Index entries with c >= 77 will never
need to be filtered at the table level, but it may or may not be profitable to skip over them within the
index. When skipping takes place, the scan starts a new index search to reposition itself from the end
of the current a = 5 and b = N grouping (i.e. from the position in the index where the first tuple a = 5
AND b = N AND c >= 77 appears), to the start of the next such grouping (i.e. the position in the index
where the first tuple a = 5 AND b = N + 1 appears).

A multicolumn GiST index can be used with query conditions that involve any subset of the index's
columns. Conditions on additional columns restrict the entries returned by the index, but the condition
on the first column is the most important one for determining how much of the index needs to be scanned.

400

Indexes

A GiST index will be relatively ineffective if its first column has only a few distinct values, even if there
are many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index's
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index colum-
n(s) the query conditions use.

A multicolumn BRIN index can be used with query conditions that involve any subset of the index's
columns. Like GIN and unlike B-tree or GiST, index search effectiveness is the same regardless of which
index column(s) the query conditions use. The only reason to have multiple BRIN indexes instead of one
multicolumn BRIN index on a single table is to have a different pages_per_range storage parameter.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is suffi-
cient and saves space and time. Indexes with more than three columns are unlikely to be helpful unless
the usage of the table is extremely stylized. See also Section 11.5 and Section 11.9 for some discussion
of the merits of different index configurations.

11.4. Indexes and ORDER BY
In addition to simply finding the rows to be returned by a query, an index may be able to deliver them in
a specific sorted order. This allows a query's ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted out-
put — the other index types return matching rows in an unspecified, implementation-dependent order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index that
matches the specification, or by scanning the table in physical order and doing an explicit sort. For a
query that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using
an index because it requires less disk I/O due to following a sequential access pattern. Indexes are more
useful when only a few rows need be fetched. An important special case is ORDER BY in combination with
LIMIT n: an explicit sort will have to process all the data to identify the first n rows, but if there is an index
matching the ORDER BY, the first n rows can be retrieved directly, without scanning the remainder at all.

By default, B-tree indexes store their entries in ascending order with nulls last (table TID is treated as
a tiebreaker column among otherwise equal entries). This means that a forward scan of an index on
column x produces output satisfying ORDER BY x (or more verbosely, ORDER BY x ASC NULLS LAST). The
index can also be scanned backward, producing output satisfying ORDER BY x DESC (or more verbosely,
ORDER BY x DESC NULLS FIRST, since NULLS FIRST is the default for ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST, and/or
NULLS LAST when creating the index; for example:
CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS FIRST or
ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the possibility
of backward scan would cover all the variants of ORDER BY. In single-column indexes the options are
indeed redundant, but in multicolumn indexes they can be useful. Consider a two-column index on (x,
y): this can satisfy ORDER BY x, y if we scan forward, or ORDER BY x DESC, y DESC if we scan backward.
But it might be that the application frequently needs to use ORDER BY x ASC, y DESC. There is no way
to get that ordering from a plain index, but it is possible if the index is defined as (x ASC, y DESC)
or (x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they
can produce tremendous speedups for certain queries. Whether it's worth maintaining such an index
depends on how often you use queries that require a special sort ordering.

401

Indexes

11.5. Combining Multiple Indexes
A single index scan can only use query clauses that use the index's columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE a = 5
AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not directly use the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the same
index) to handle cases that cannot be implemented by single index scans. The system can form AND and
OR conditions across several index scans. For example, a query like WHERE x = 42 OR x = 47 OR x
= 53 OR x = 99 could be broken down into four separate scans of an index on x, each scan using one
of the query clauses. The results of these scans are then ORed together to produce the result. Another
example is that if we have separate indexes on x and y, one possible implementation of a query like
WHERE x = 5 AND y = 6 is to use each index with the appropriate query clause and then AND together
the index results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index's conditions. The bitmaps
are then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited
and returned. The table rows are visited in physical order, because that is how the bitmap is laid out;
this means that any ordering of the original indexes is lost, and so a separate sort step will be needed if
the query has an ORDER BY clause. For this reason, and because each additional index scan adds extra
time, the planner will sometimes choose to use a simple index scan even though additional indexes are
available that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful, and
the database developer must make trade-offs to decide which indexes to provide. Sometimes multicol-
umn indexes are best, but sometimes it's better to create separate indexes and rely on the index-com-
bination feature. For example, if your workload includes a mix of queries that sometimes involve only
column x, sometimes only column y, and sometimes both columns, you might choose to create two sep-
arate indexes on x and y, relying on index combination to process the queries that use both columns.
You could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be less
useful for queries involving only y. Just how useful will depend on how effective the B-tree index skip
scan optimization is; if x has no more than several hundred distinct values, skip scan will make searches
for specific y values execute reasonably efficiently. A combination of a multicolumn index on (x, y) and
a separate index on y might also serve reasonably well. For queries involving only x, the multicolumn
index could be used, though it would be larger and hence slower than an index on x alone. The last
alternative is to create all three indexes, but this is probably only reasonable if the table is searched
much more often than it is updated and all three types of query are common. If one of the types of query
is much less common than the others, you'd probably settle for creating just the two indexes that best
match the common types.

11.6. Unique Indexes
Indexes can also be used to enforce uniqueness of a column's value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]) [NULLS [NOT] DISTINCT];

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed. By
default, null values in a unique column are not considered equal, allowing multiple nulls in the column.
The NULLS NOT DISTINCT option modifies this and causes the index to treat nulls as equal. A multicolumn
unique index will only reject cases where all indexed columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is defined for
a table. The index covers the columns that make up the primary key or unique constraint (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

402

Indexes

Note
There's no need to manually create indexes on unique columns; doing so would just duplicate the
automatically-created index.

11.7. Indexes on Expressions
An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:

SELECT * FROM test1 WHERE lower(col1) = 'value';

This query can use an index if one has been defined on the result of the lower(col1) function:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

If we were to declare this index UNIQUE, it would prevent creation of rows whose col1 values differ only
in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';

then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the CREATE INDEX command normally requires writing parentheses around index expres-
sions, as shown in the second example. The parentheses can be omitted when the expression is just a
function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be com-
puted for each row insertion and non-HOT update. However, the index expressions are not recomputed
during an indexed search, since they are already stored in the index. In both examples above, the system
sees the query as just WHERE indexedcolumn = 'constant' and so the speed of the search is equivalent
to any other simple index query. Thus, indexes on expressions are useful when retrieval speed is more
important than insertion and update speed.

11.8. Partial Indexes
A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries only for those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they
are useful.

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the
index, which will speed up those queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in all cases. Example 11.1 shows a possible
application of this idea.

Example 11.1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
address range of your organization but some are from elsewhere (say, employees on dial-up connections).

403

Indexes

If your searches by IP are primarily for outside accesses, you probably do not need to index the IP range
that corresponds to your organization's subnet.

Assume a table like this:

CREATE TABLE access_log (
 url varchar,
 client_ip inet,
 ...
);

To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND
 client_ip < inet '192.168.100.255');

A typical query that can use this index would be:

SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '212.78.10.32';

Here the query's IP address is covered by the partial index. The following query cannot use the partial
index, as it uses an IP address that is excluded from the index:

SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '192.168.100.23';

Observe that this kind of partial index requires that the common values be predetermined, so such
partial indexes are best used for data distributions that do not change. Such indexes can be recreated
occasionally to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11.2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index, even if an index scan might
be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a
lot of care and experimentation.

Example 11.2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve performance
by creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
 WHERE billed is not true;

A possible query to use this index would be:

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:

SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 might be among the billed or unbilled orders.

404

Indexes

Example 11.2 also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be
used in a query only if the system can recognize that the WHERE condition of the query mathematically
implies the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent expressions that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x < 1” implies “x < 2”;
otherwise the predicate condition must exactly match part of the query's WHERE condition or the index
will not be recognized as usable. Matching takes place at query planning time, not at run time. As a
result, parameterized query clauses do not work with a partial index. For example a prepared query with
a parameter might specify “x < ?” which will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11.3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11.3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “suc-
cessful” entry for a given subject and target combination, but there might be any number of “unsuccess-
ful” entries. Here is one way to do it:

CREATE TABLE tests (
 subject text,
 target text,
 success boolean,
 ...
);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
 WHERE success;

This is a particularly efficient approach when there are few successful tests and many unsuccessful
ones. It is also possible to allow only one null in a column by creating a unique partial index with an
IS NULL restriction.

Finally, a partial index can also be used to override the system's query plan choices. Also, data sets
with peculiar distributions might cause the system to use an index when it really should not. In that
case the index can be set up so that it is not available for the offending query. Normally, PostgreSQL
makes reasonable choices about index usage (e.g., it avoids them when retrieving common values, so
the earlier example really only saves index size, it is not required to avoid index usage), and grossly
incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query plan-
ner knows, in particular you know when an index might be profitable. Forming this knowledge requires
experience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a
partial index over a regular index will be minimal. There are cases where they are quite counterproduc-
tive, as in Example 11.4.

Example 11.4. Do Not Use Partial Indexes as a Substitute for Partitioning

You might be tempted to create a large set of non-overlapping partial indexes, for example

CREATE INDEX mytable_cat_1 ON mytable (data) WHERE category = 1;
CREATE INDEX mytable_cat_2 ON mytable (data) WHERE category = 2;
CREATE INDEX mytable_cat_3 ON mytable (data) WHERE category = 3;
...
CREATE INDEX mytable_cat_N ON mytable (data) WHERE category = N;

This is a bad idea! Almost certainly, you'll be better off with a single non-partial index, declared like

405

Indexes

CREATE INDEX mytable_cat_data ON mytable (category, data);

(Put the category column first, for the reasons described in Section 11.3.) While a search in this larger
index might have to descend through a couple more tree levels than a search in a smaller index, that's
almost certainly going to be cheaper than the planner effort needed to select the appropriate one of the
partial indexes. The core of the problem is that the system does not understand the relationship among
the partial indexes, and will laboriously test each one to see if it's applicable to the current query.

If your table is large enough that a single index really is a bad idea, you should look into using partitioning
instead (see Section 5.12). With that mechanism, the system does understand that the tables and indexes
are non-overlapping, so far better performance is possible.

More information about partial indexes can be found in ston89b, olson93, and seshadri95.

11.9. Index-Only Scans and Covering Indexes
All indexes in PostgreSQL are secondary indexes, meaning that each index is stored separately from
the table's main data area (which is called the table's heap in PostgreSQL terminology). This means
that in an ordinary index scan, each row retrieval requires fetching data from both the index and the
heap. Furthermore, while the index entries that match a given indexable WHERE condition are usually
close together in the index, the table rows they reference might be anywhere in the heap. The heap-
access portion of an index scan thus involves a lot of random access into the heap, which can be slow,
particularly on traditional rotating media. (As described in Section 11.5, bitmap scans try to alleviate
this cost by doing the heap accesses in sorted order, but that only goes so far.)

To solve this performance problem, PostgreSQL supports index-only scans, which can answer queries
from an index alone without any heap access. The basic idea is to return values directly out of each
index entry instead of consulting the associated heap entry. There are two fundamental restrictions on
when this method can be used:

1. The index type must support index-only scans. B-tree indexes always do. GiST and SP-GiST indexes
support index-only scans for some operator classes but not others. Other index types have no support.
The underlying requirement is that the index must physically store, or else be able to reconstruct, the
original data value for each index entry. As a counterexample, GIN indexes cannot support index-only
scans because each index entry typically holds only part of the original data value.

2. The query must reference only columns stored in the index. For example, given an index on columns
x and y of a table that also has a column z, these queries could use index-only scans:

SELECT x, y FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND y < 42;

but these queries could not:

SELECT x, z FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND z < 42;

(Expression indexes and partial indexes complicate this rule, as discussed below.)

If these two fundamental requirements are met, then all the data values required by the query are avail-
able from the index, so an index-only scan is physically possible. But there is an additional requirement
for any table scan in PostgreSQL: it must verify that each retrieved row be “visible” to the query's MVCC
snapshot, as discussed in Chapter 13. Visibility information is not stored in index entries, only in heap
entries; so at first glance it would seem that every row retrieval would require a heap access anyway.
And this is indeed the case, if the table row has been modified recently. However, for seldom-changing
data there is a way around this problem. PostgreSQL tracks, for each page in a table's heap, whether all
rows stored in that page are old enough to be visible to all current and future transactions. This infor-
mation is stored in a bit in the table's visibility map. An index-only scan, after finding a candidate index
entry, checks the visibility map bit for the corresponding heap page. If it's set, the row is known visible
and so the data can be returned with no further work. If it's not set, the heap entry must be visited to find
out whether it's visible, so no performance advantage is gained over a standard index scan. Even in the
successful case, this approach trades visibility map accesses for heap accesses; but since the visibility

406

Indexes

map is four orders of magnitude smaller than the heap it describes, far less physical I/O is needed to
access it. In most situations the visibility map remains cached in memory all the time.

In short, while an index-only scan is possible given the two fundamental requirements, it will be a win
only if a significant fraction of the table's heap pages have their all-visible map bits set. But tables in
which a large fraction of the rows are unchanging are common enough to make this type of scan very
useful in practice.

To make effective use of the index-only scan feature, you might choose to create a covering index, which
is an index specifically designed to include the columns needed by a particular type of query that you
run frequently. Since queries typically need to retrieve more columns than just the ones they search on,
PostgreSQL allows you to create an index in which some columns are just “payload” and are not part
of the search key. This is done by adding an INCLUDE clause listing the extra columns. For example, if
you commonly run queries like

SELECT y FROM tab WHERE x = 'key';

the traditional approach to speeding up such queries would be to create an index on x only. However,
an index defined as

CREATE INDEX tab_x_y ON tab(x) INCLUDE (y);

could handle these queries as index-only scans, because y can be obtained from the index without visiting
the heap.

Because column y is not part of the index's search key, it does not have to be of a data type that the
index can handle; it's merely stored in the index and is not interpreted by the index machinery. Also,
if the index is a unique index, that is

CREATE UNIQUE INDEX tab_x_y ON tab(x) INCLUDE (y);

the uniqueness condition applies to just column x, not to the combination of x and y. (An INCLUDE clause
can also be written in UNIQUE and PRIMARY KEY constraints, providing alternative syntax for setting up
an index like this.)

It's wise to be conservative about adding non-key payload columns to an index, especially wide columns.
If an index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any case,
non-key columns duplicate data from the index's table and bloat the size of the index, thus potentially
slowing searches. And remember that there is little point in including payload columns in an index unless
the table changes slowly enough that an index-only scan is likely to not need to access the heap. If the
heap tuple must be visited anyway, it costs nothing more to get the column's value from there. Other
restrictions are that expressions are not currently supported as included columns, and that only B-tree,
GiST and SP-GiST indexes currently support included columns.

Before PostgreSQL had the INCLUDE feature, people sometimes made covering indexes by writing the
payload columns as ordinary index columns, that is writing

CREATE INDEX tab_x_y ON tab(x, y);

even though they had no intention of ever using y as part of a WHERE clause. This works fine as long
as the extra columns are trailing columns; making them be leading columns is unwise for the reasons
explained in Section 11.3. However, this method doesn't support the case where you want the index to
enforce uniqueness on the key column(s).

Suffix truncation always removes non-key columns from upper B-Tree levels. As payload columns, they
are never used to guide index scans. The truncation process also removes one or more trailing key
column(s) when the remaining prefix of key column(s) happens to be sufficient to describe tuples on the
lowest B-Tree level. In practice, covering indexes without an INCLUDE clause often avoid storing columns
that are effectively payload in the upper levels. However, explicitly defining payload columns as non-key
columns reliably keeps the tuples in upper levels small.

In principle, index-only scans can be used with expression indexes. For example, given an index on f(x)
where x is a table column, it should be possible to execute

407

Indexes

SELECT f(x) FROM tab WHERE f(x) < 1;

as an index-only scan; and this is very attractive if f() is an expensive-to-compute function. However,
PostgreSQL's planner is currently not very smart about such cases. It considers a query to be potentially
executable by index-only scan only when all columns needed by the query are available from the index.
In this example, x is not needed except in the context f(x), but the planner does not notice that and
concludes that an index-only scan is not possible. If an index-only scan seems sufficiently worthwhile,
this can be worked around by adding x as an included column, for example

CREATE INDEX tab_f_x ON tab (f(x)) INCLUDE (x);

An additional caveat, if the goal is to avoid recalculating f(x), is that the planner won't necessarily
match uses of f(x) that aren't in indexable WHERE clauses to the index column. It will usually get this
right in simple queries such as shown above, but not in queries that involve joins. These deficiencies
may be remedied in future versions of PostgreSQL.

Partial indexes also have interesting interactions with index-only scans. Consider the partial index shown
in Example 11.3:

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
 WHERE success;

In principle, we could do an index-only scan on this index to satisfy a query like

SELECT target FROM tests WHERE subject = 'some-subject' AND success;

But there's a problem: the WHERE clause refers to success which is not available as a result column of
the index. Nonetheless, an index-only scan is possible because the plan does not need to recheck that
part of the WHERE clause at run time: all entries found in the index necessarily have success = true so
this need not be explicitly checked in the plan. PostgreSQL versions 9.6 and later will recognize such
cases and allow index-only scans to be generated, but older versions will not.

11.10. Operator Classes and Operator Families
An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [(opclass_options)] [sort options]
 [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a
B-tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column's data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index. The operator class determines
the basic sort ordering (which can then be modified by adding sort options COLLATE, ASC/DESC and/or
NULLS FIRST/NULLS LAST).

There are also some built-in operator classes besides the default ones:
• The operator classes text_pattern_ops, varchar_pattern_ops, and bpchar_pattern_ops sup-

port B-tree indexes on the types text, varchar, and char respectively. The difference from the de-
fault operator classes is that the values are compared strictly character by character rather than
according to the locale-specific collation rules. This makes these operator classes suitable for use
by queries involving pattern matching expressions (LIKE or POSIX regular expressions) when the
database does not use the standard “C” locale. As an example, you might index a varchar column
like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries in-
volving ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the xxx_pat-
tern_ops operator classes. (Ordinary equality comparisons can use these operator classes, howev-

408

Indexes

er.) It is possible to create multiple indexes on the same column with different operator classes. If
you do use the C locale, you do not need the xxx_pattern_ops operator classes, because an index
with the default operator class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc
 WHERE opc.opcmethod = am.oid
 ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators and
allow these to work with indexes. To do this, the operator classes for each of the types must be grouped
into the same operator family. The cross-type operators are members of the family, but are not associated
with any single class within the family.

This expanded version of the previous query shows the operator family each operator class belongs to:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opf.opfname AS opfamily_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc, pg_opfamily opf
 WHERE opc.opcmethod = am.oid AND
 opc.opcfamily = opf.oid
 ORDER BY index_method, opclass_name;

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
 opf.opfname AS opfamily_name,
 amop.amopopr::regoperator AS opfamily_operator
 FROM pg_am am, pg_opfamily opf, pg_amop amop
 WHERE opf.opfmethod = am.oid AND
 amop.amopfamily = opf.oid
 ORDER BY index_method, opfamily_name, opfamily_operator;

Tip
psql has commands \dAc, \dAf, and \dAo, which provide slightly more sophisticated versions of
these queries.

11.11. Indexes and Collations
An index can support only one collation per index column. If multiple collations are of interest, multiple
indexes may be needed.

Consider these statements:

CREATE TABLE test1c (
 id integer,
 content varchar COLLATE "x"
);

409

Indexes

CREATE INDEX test1c_content_index ON test1c (content);

The index automatically uses the collation of the underlying column. So a query of the form

SELECT * FROM test1c WHERE content > constant;

could use the index, because the comparison will by default use the collation of the column. However,
this index cannot accelerate queries that involve some other collation. So if queries of the form, say,

SELECT * FROM test1c WHERE content > constant COLLATE "y";

are also of interest, an additional index could be created that supports the "y" collation, like this:

CREATE INDEX test1c_content_y_index ON test1c (content COLLATE "y");

11.12. Examining Index Usage
Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 14.1. It is also
possible to gather overall statistics about index usage in a running server, as described in Section 27.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A good
deal of experimentation is often necessary. The rest of this section gives some tips for that:

• Always run ANALYZE first. This command collects statistics about the distribution of the values in
the table. This information is required to estimate the number of rows returned by a query, which
is needed by the planner to assign realistic costs to each possible query plan. In absence of any re-
al statistics, some default values are assumed, which are almost certain to be inaccurate. Exam-
ining an application's index usage without having run ANALYZE is therefore a lost cause. See Sec-
tion 24.1.3 and Section 24.1.6 for more information.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could
be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows prob-
ably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not
yet in production. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time para-
meters that can turn off various plan types (see Section 19.7.1). For instance, turning off sequential
scans (enable_seqscan) and nested-loop joins (enable_nestloop), which are the most basic plans,
will force the system to use a different plan. If the system still chooses a sequential scan or nest-
ed-loop join then there is probably a more fundamental reason why the index is not being used; for
example, the query condition does not match the index. (What kind of query can use what kind of
index is explained in the previous sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not re-
flecting reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE
command can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs estimated for the plan nodes can be adjusted via run-time parameters (described in Sec-
tion 19.7.2). An inaccurate selectivity estimate is due to insufficient statistics. It might be possible
to improve this by tuning the statistics-gathering parameters (see ALTER TABLE).

410

Indexes

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort
to forcing index usage explicitly. You might also want to contact the PostgreSQL developers to ex-
amine the issue.

411

Chapter 12. Full Text Search
12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type of
search is to find all documents containing given query terms and return them in order of their similarity
to the query. Notions of query and similarity are very flexible and depend on the specific application.
The simplest search considers query as a set of words and similarity as the frequency of query words
in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~*, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern information
systems:

• There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy. It
is possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some
words can have several thousand derivatives).

• They provide no ordering (ranking) of search results, which makes them ineffective when thou-
sands of matching documents are found.

• They tend to be slow because there is no index support, so they must process all documents for
every search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers,
words, complex words, email addresses, so that they can be processed differently. In principle to-
ken classes depend on the specific application, but for most purposes it is adequate to use a prede-
fined set of classes. PostgreSQL uses a parser to perform this step. A standard parser is provided,
and custom parsers can be created for specific needs.
Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized
so that different forms of the same word are made alike. For example, normalization almost always
includes folding upper-case letters to lower-case, and often involves removal of suffixes (such as s
or es in English). This allows searches to find variant forms of the same word, without tediously en-
tering all the possible variants. Also, this step typically eliminates stop words, which are words that
are so common that they are useless for searching. (In short, then, tokens are raw fragments of the
document text, while lexemes are words that are believed useful for indexing and searching.) Post-
greSQL uses dictionaries to perform this step. Various standard dictionaries are provided, and cus-
tom ones can be created for specific needs.
Storing preprocessed documents optimized for searching. For example, each document can be rep-
resented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to
store positional information to use for proximity ranking, so that a document that contains a more
“dense” region of query words is assigned a higher rank than one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

• Define stop words that should not be indexed.
• Map synonyms to a single word using Ispell.
• Map phrases to a single word using a thesaurus.
• Map different variations of a word to a canonical form using an Ispell dictionary.
• Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery for
representing processed queries (Section 8.11). There are many functions and operators available for

412

Full Text Search

these data types (Section 9.13), the most important of which is the match operator @@, which we intro-
duce in Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?
A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes
(key words) with their parent document. Later, these associations are used to search for documents that
contain query words.

For searches within PostgreSQL, a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it
might not be stored anywhere as a whole. For example:
SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE m.mid = d.did AND m.mid = 12;

Note
Actually, in these example queries, coalesce should be used to prevent a single NULL attribute
from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the
database can be used to store the full text index and to execute searches, and some unique identifier
can be used to retrieve the document from the file system. However, retrieving files from outside the
database requires superuser permissions or special function support, so this is usually less convenient
than keeping all the data inside PostgreSQL. Also, keeping everything inside the database allows easy
access to document metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed tsvector format. Search-
ing and ranking are performed entirely on the tsvector representation of a document — the original
text need only be retrieved when the document has been selected for display to a user. We therefore
often speak of the tsvector as being the document, but of course it is only a compact representation
of the full document.

12.1.2. Basic Text Matching
Full text searching in PostgreSQL is based on the match operator @@, which returns true if a tsvector
(document) matches a tsquery (query). It doesn't matter which data type is written first:
SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery;
 ?column?

 t

SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 ?column?

 f

As the above example suggests, a tsquery is not just raw text, any more than a tsvector is. A tsquery
contains search terms, which must be already-normalized lexemes, and may combine multiple terms
using AND, OR, NOT, and FOLLOWED BY operators. (For syntax details see Section 8.11.2.) There are
functions to_tsquery, plainto_tsquery, and phraseto_tsquery that are helpful in converting user-

413

Full Text Search

written text into a proper tsquery, primarily by normalizing words appearing in the text. Similarly,
to_tsvector is used to parse and normalize a document string. So in practice a text search match would
look more like this:
SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
 ?column?

 t

Observe that this match would not succeed if written as
SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
 ?column?

 f

since here no normalization of the word rats will occur. The elements of a tsvector are lexemes, which
are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:
tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector(x) @@
y. The form text @@ text is equivalent to to_tsvector(x) @@ plainto_tsquery(y).

Within a tsquery, the & (AND) operator specifies that both its arguments must appear in the document
to have a match. Similarly, the | (OR) operator specifies that at least one of its arguments must appear,
while the ! (NOT) operator specifies that its argument must not appear in order to have a match. For
example, the query fat & ! rat matches documents that contain fat but not rat.

Searching for phrases is possible with the help of the <-> (FOLLOWED BY) tsquery operator, which
matches only if its arguments have matches that are adjacent and in the given order. For example:
SELECT to_tsvector('fatal error') @@ to_tsquery('fatal <-> error');
 ?column?

 t

SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal <-> error');
 ?column?

 f

There is a more general version of the FOLLOWED BY operator having the form <N>, where N is an integer
standing for the difference between the positions of the matching lexemes. <1> is the same as <->, while
<2> allows exactly one other lexeme to appear between the matches, and so on. The phraseto_tsquery
function makes use of this operator to construct a tsquery that can match a multi-word phrase when
some of the words are stop words. For example:
SELECT phraseto_tsquery('cats ate rats');
 phraseto_tsquery

 'cat' <-> 'ate' <-> 'rat'

SELECT phraseto_tsquery('the cats ate the rats');
 phraseto_tsquery

 'cat' <-> 'ate' <2> 'rat'

414

Full Text Search

A special case that's sometimes useful is that <0> can be used to require that two patterns match the
same word.

Parentheses can be used to control nesting of the tsquery operators. Without parentheses, | binds least
tightly, then &, then <->, and ! most tightly.

It's worth noticing that the AND/OR/NOT operators mean something subtly different when they are
within the arguments of a FOLLOWED BY operator than when they are not, because within FOLLOWED
BY the exact position of the match is significant. For example, normally !x matches only documents that
do not contain x anywhere. But !x <-> y matches y if it is not immediately after an x; an occurrence
of x elsewhere in the document does not prevent a match. Another example is that x & y normally only
requires that x and y both appear somewhere in the document, but (x & y) <-> z requires x and y to
match at the same place, immediately before a z. Thus this query behaves differently from x <-> z &
y <-> z, which will match a document containing two separate sequences x z and y z. (This specific
query is useless as written, since x and y could not match at the same place; but with more complex
situations such as prefix-match patterns, a query of this form could be useful.)

12.1.3. Configurations
The above are all simple text search examples. As mentioned before, full text search functionality in-
cludes the ability to do many more things: skip indexing certain words (stop words), process synonyms,
and use sophisticated parsing, e.g., parse based on more than just white space. This functionality is
controlled by text search configurations. PostgreSQL comes with predefined configurations for many
languages, and you can easily create your own configurations. (psql's \dF command shows all available
configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set ac-
cordingly in postgresql.conf. If you are using the same text search configuration for the entire cluster
you can use the value in postgresql.conf. To use different configurations throughout the cluster but
the same configuration within any one database, use ALTER DATABASE ... SET. Otherwise, you can set
default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only when
this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. PostgreSQL's text search facility provides four types of configuration-related database
objects:

• Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

• Text search dictionaries convert tokens to normalized form and reject stop words.
• Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a

template and a set of parameters for the template.)
• Text search configurations select a parser and a set of dictionaries to use to normalize the tokens

produced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C program-
ming ability to develop new ones, and superuser privileges to install one into a database. (There are
examples of add-on parsers and templates in the contrib/ area of the PostgreSQL distribution.) Since
dictionaries and configurations just parameterize and connect together some underlying parsers and
templates, no special privilege is needed to create a new dictionary or configuration. Examples of cre-
ating custom dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes
The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

415

Full Text Search

12.2.1. Searching a Table
It is possible to do a full text search without an index. A simple query to print the title of each row
that contains the word friend in its body field is:
SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');

This will also find related words such as friends and friendly, since all these are reduced to the same
normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:
SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table in
the title or body:
SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain NULL
in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow,
except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating
an index.

12.2.2. Creating Indexes
We can create a GIN index (Section 12.9) to speed up text searches:
CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify a
configuration name can be used in expression indexes (Section 11.7). This is because the index contents
must be unaffected by default_text_search_config. If they were affected, the index contents might be
inconsistent because different entries could contain tsvectors that were created with different text
search configurations, and there would be no way to guess which was which. It would be impossible to
dump and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the 2-argument version of to_tsvector with the same configuration name will use that index.
That is, WHERE to_tsvector('english', body) @@ 'a & b' can use the index, but WHERE to_tsvec-
tor(body) @@ 'a & b' cannot. This ensures that an index will be used only with the same configuration
used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified
by another column, e.g.:
CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example, if
the document collection contained documents in different languages. Again, queries that are meant to
use the index must be phrased to match, e.g., WHERE to_tsvector(config_name, body) @@ 'a & b'.

416

Full Text Search

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' ||
 body));

Another approach is to create a separate tsvector column to hold the output of to_tsvector. To keep
this column automatically up to date with its source data, use a stored generated column. This example
is a concatenation of title and body, using coalesce to ensure that one field will still be indexed when
the other is NULL:

ALTER TABLE pgweb
 ADD COLUMN textsearchable_index_col tsvector
 GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' '
 || coalesce(body, ''))) STORED;

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown
in the example above, the query can depend on default_text_search_config. Another advantage is
that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify index
matches. (This is more important when using a GiST index than a GIN index; see Section 12.9.) The ex-
pression-index approach is simpler to set up, however, and it requires less disk space since the tsvector
representation is not stored explicitly.

12.3. Controlling Text Search
To implement full text searching there must be a function to create a tsvector from a document and
a tsquery from a user query. Also, we need to return results in a useful order, so we need a function
that compares documents with respect to their relevance to the query. It's also important to be able to
display the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents
PostgreSQL provides the function to_tsvector for converting a document to the tsvector data type.

to_tsvector([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a tsvec-
tor which lists the lexemes together with their positions in the document. The document is processed
according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats');
 to_tsvector

 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign - was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where

417

Full Text Search

the list can vary depending on the token type. The first dictionary that recognizes the token emits one
or more normalized lexemes to represent the token. For example, rats became rat because one of the
dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then
it is also ignored. In this example that happened to the punctuation sign - because there are in fact no
dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed.
The choices of parser, dictionaries and which types of tokens to index are determined by the selected
text search configuration (Section 12.7). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used
the default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts
of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field might
be null. Here is the recommended method for creating a tsvector from a structured document:
UPDATE tt SET ti =
 setweight(to_tsvector(coalesce(title,'')), 'A') ||
 setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
 setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
 setweight(to_tsvector(coalesce(body,'')), 'D');

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator ||. (Section 12.4.1
gives details about these operations.)

12.3.2. Parsing Queries
PostgreSQL provides the functions to_tsquery, plainto_tsquery, phraseto_tsquery and web-
search_to_tsquery for converting a query to the tsquery data type. to_tsquery offers access to more
features than either plainto_tsquery or phraseto_tsquery, but it is less forgiving about its input. web-
search_to_tsquery is a simplified version of to_tsquery with an alternative syntax, similar to the one
used by web search engines.

to_tsquery([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens separated
by the tsquery operators & (AND), | (OR), ! (NOT), and <-> (FOLLOWED BY), possibly grouped using
parentheses. In other words, the input to to_tsquery must already follow the general rules for tsquery
input, as described in Section 8.11.2. The difference is that while basic tsquery input takes the tokens at
face value, to_tsquery normalizes each token into a lexeme using the specified or default configuration,
and discards any tokens that are stop words according to the configuration. For example:
SELECT to_tsquery('english', 'The & Fat & Rats');
 to_tsquery

 'fat' & 'rat'

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector
lexemes of those weight(s). For example:
SELECT to_tsquery('english', 'Fat | Rats:AB');
 to_tsquery

 'fat' | 'rat':AB

Also, * can be attached to a lexeme to specify prefix matching:
SELECT to_tsquery('supern:*A & star:A*B');

418

Full Text Search

 to_tsquery

 'supern':*A & 'star':*AB

Such a lexeme will match any word in a tsvector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration in-
cludes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus con-
tains the rule supernovae stars : sn:

SELECT to_tsquery('''supernovae stars'' & !crab');
 to_tsquery

 'sn' & !'crab'

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND,
OR, or FOLLOWED BY operator.

plainto_tsquery([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms the unformatted text querytext to a tsquery value. The text is parsed and
normalized much as for to_tsvector, then the & (AND) tsquery operator is inserted between surviving
words.

Example:

SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery

 'fat' & 'rat'

Note that plainto_tsquery will not recognize tsquery operators, weight labels, or prefix-match labels
in its input:

SELECT plainto_tsquery('english', 'The Fat & Rats:C');
 plainto_tsquery

 'fat' & 'rat' & 'c'

Here, all the input punctuation was discarded.

phraseto_tsquery([config regconfig,] querytext text) returns tsquery

phraseto_tsquery behaves much like plainto_tsquery, except that it inserts the <-> (FOLLOWED BY)
operator between surviving words instead of the & (AND) operator. Also, stop words are not simply
discarded, but are accounted for by inserting <N> operators rather than <-> operators. This function is
useful when searching for exact lexeme sequences, since the FOLLOWED BY operators check lexeme
order not just the presence of all the lexemes.

Example:

SELECT phraseto_tsquery('english', 'The Fat Rats');
 phraseto_tsquery

 'fat' <-> 'rat'

Like plainto_tsquery, the phraseto_tsquery function will not recognize tsquery operators, weight
labels, or prefix-match labels in its input:

SELECT phraseto_tsquery('english', 'The Fat & Rats:C');
 phraseto_tsquery

 'fat' <-> 'rat' <-> 'c'

419

Full Text Search

websearch_to_tsquery([config regconfig,] querytext text) returns tsquery

websearch_to_tsquery creates a tsquery value from querytext using an alternative syntax in which
simple unformatted text is a valid query. Unlike plainto_tsquery and phraseto_tsquery, it also recog-
nizes certain operators. Moreover, this function will never raise syntax errors, which makes it possible
to use raw user-supplied input for search. The following syntax is supported:

• unquoted text: text not inside quote marks will be converted to terms separated by & operators, as
if processed by plainto_tsquery.

• "quoted text": text inside quote marks will be converted to terms separated by <-> operators, as
if processed by phraseto_tsquery.

• OR: the word “or” will be converted to the | operator.
• -: a dash will be converted to the ! operator.

Other punctuation is ignored. So like plainto_tsquery and phraseto_tsquery, the websearch_to_ts-
query function will not recognize tsquery operators, weight labels, or prefix-match labels in its input.

Examples:

SELECT websearch_to_tsquery('english', 'The fat rats');
 websearch_to_tsquery

 'fat' & 'rat'
(1 row)

SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
 websearch_to_tsquery

 'supernova' <-> 'star' & !'crab'
(1 row)

SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
 websearch_to_tsquery

 'sad' <-> 'cat' | 'fat' <-> 'rat'
(1 row)

SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
 websearch_to_tsquery

 'signal' & !('segment' <-> 'fault')
(1 row)

SELECT websearch_to_tsquery('english', '""")(dummy \\ query <->');
 websearch_to_tsquery

 'dummi' & 'queri'
(1 row)

12.3.3. Ranking Search Results
Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking
functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document,
and how important is the part of the document where they occur. However, the concept of relevancy
is vague and very application-specific. Different applications might require additional information for
ranking, e.g., document modification time. The built-in ranking functions are only examples. You can
write your own ranking functions and/or combine their results with additional factors to fit your specific
needs.

420

Full Text Search

The two ranking functions currently available are:
ts_rank([weights float4[],] vector tsvector, query tsquery [, normalization integer
]) returns float4

Ranks vectors based on the frequency of their matching lexemes.

ts_rank_cd([weights float4[],] vector tsvector, query tsquery [, normalization integer
]) returns float4

This function computes the cover density ranking for the given document vector and query, as de-
scribed in Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three Term Queries" in
the journal "Information Processing and Management", 1999. Cover density is similar to ts_rank
ranking except that the proximity of matching lexemes to each other is taken into consideration.

This function requires lexeme positional information to perform its calculation. Therefore, it ignores
any “stripped” lexemes in the tsvector. If there are no unstripped lexemes in the input, the result will
be zero. (See Section 12.4.1 for more information about the strip function and positional information
in tsvectors.)

For both these functions, the optional weights argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:
{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:
{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an inte-
ger normalization option that specifies whether and how a document's length should impact its rank.
The integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors
using | (for example, 2|4).
• 0 (the default) ignores the document length
• 1 divides the rank by 1 + the logarithm of the document length
• 2 divides the rank by the document length
• 4 divides the rank by the mean harmonic distance between extents (this is implemented only by

ts_rank_cd)
• 8 divides the rank by the number of unique words in document
• 16 divides the rank by 1 + the logarithm of the number of unique words in document
• 32 divides the rank by itself + 1
If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impossible to
produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32 (rank/(rank
+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a cosmetic
change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:
SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank

421

Full Text Search

---+----------
 Neutrinos in the Sun | 3.1
 The Sudbury Neutrino Detector | 2.4
 A MACHO View of Galactic Dark Matter | 2.01317
 Hot Gas and Dark Matter | 1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
 Rafting for Solar Neutrinos | 1.9
 NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
 Hot Gas and Dark Matter | 1.6123
 Ice Fishing for Cosmic Neutrinos | 1.6
 Weak Lensing Distorts the Universe | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+-------------------
 Neutrinos in the Sun | 0.756097569485493
 The Sudbury Neutrino Detector | 0.705882361190954
 A MACHO View of Galactic Dark Matter | 0.668123210574724
 Hot Gas and Dark Matter | 0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
 Hot Gas and Dark Matter | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos | 0.615384618911517
 Weak Lensing Distorts the Universe | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document, which
can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical
queries often result in large numbers of matches.

12.3.4. Highlighting Results
To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. PostgreSQL pro-
vides a function ts_headline that implements this functionality.

ts_headline([config regconfig,] document text, query tsquery [, options text])
 returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in which
terms from the query are highlighted. Specifically, the function will use the query to select relevant text
fragments, and then highlight all words that appear in the query, even if those word positions do not
match the query's restrictions. The configuration to be used to parse the document can be specified by
config; if config is omitted, the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or more option=value
pairs. The available options are:
• MaxWords, MinWords (integers): these numbers determine the longest and shortest headlines to out-

put. The default values are 35 and 15.
• ShortWord (integer): words of this length or less will be dropped at the start and end of a headline,

unless they are query terms. The default value of three eliminates common English articles.
• HighlightAll (boolean): if true the whole document will be used as the headline, ignoring the pre-

ceding three parameters. The default is false.

422

Full Text Search

• MaxFragments (integer): maximum number of text fragments to display. The default value of zero
selects a non-fragment-based headline generation method. A value greater than zero selects frag-
ment-based headline generation (see below).

• StartSel, StopSel (strings): the strings with which to delimit query words appearing in the doc-
ument, to distinguish them from other excerpted words. The default values are “” and “”,
which can be suitable for HTML output (but see the warning below).

• FragmentDelimiter (string): When more than one fragment is displayed, the fragments will be sep-
arated by this string. The default is “ ... ”.

Warning: Cross-site Scripting (XSS) Safety
The output from ts_headline is not guaranteed to be safe for direct inclusion in web pages. When
HighlightAll is false (the default), some simple XML tags are removed from the document, but
this is not guaranteed to remove all HTML markup. Therefore, this does not provide an effective
defense against attacks such as cross-site scripting (XSS) attacks, when working with untrusted
input. To guard against such attacks, all HTML markup should be removed from the input docu-
ment, or an HTML sanitizer should be used on the output.

These option names are recognized case-insensitively. You must double-quote string values if they con-
tain spaces or commas.

In non-fragment-based headline generation, ts_headline locates matches for the given query and choos-
es a single one to display, preferring matches that have more query words within the allowed headline
length. In fragment-based headline generation, ts_headline locates the query matches and splits each
match into “fragments” of no more than MaxWords words each, preferring fragments with more query
words, and when possible “stretching” fragments to include surrounding words. The fragment-based
mode is thus more useful when the query matches span large sections of the document, or when it's
desirable to display multiple matches. In either mode, if no query matches can be identified, then a
single fragment of the first MinWords words in the document will be displayed.

For example:

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('english', 'query & similarity'));
 ts_headline
--
 containing given query terms +
 and return them in order of their similarity to the+
 query.

SELECT ts_headline('english',
 'Search terms may occur
many times in a document,
requiring ranking of the search matches to decide which
occurrences to display in the result.',
 to_tsquery('english', 'search & term'),
 'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=<<, StopSel=>>');
 ts_headline
--
 <<Search>> <<terms>> may occur +
 many times ... ranking of the <<search>> matches to decide

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be
used with care.

423

Full Text Search

12.4. Additional Features
This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents
Section 12.3.1 showed how raw textual documents can be converted into tsvector values. PostgreSQL
also provides functions and operators that can be used to manipulate documents that are already in
tsvector form.

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional
information of the two vectors given as arguments. Positions and weight labels are retained during
the concatenation. Positions appearing in the right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two original document strings. (The equivalence is not
exact, because any stop-words removed from the end of the left-hand argument will not affect the
result, whereas they would have affected the positions of the lexemes in the right-hand argument
if textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before
applying to_tsvector, is that you can use different configurations to parse different sections of the
document. Also, because the setweight function marks all lexemes of the given vector the same way,
it is necessary to parse the text and do setweight before concatenating if you want to label different
parts of the document with different weights.

setweight(vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the given
weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on output.)
These labels are retained when vectors are concatenated, allowing words from different parts of a
document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

length(vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector

Returns a vector that lists the same lexemes as the given vector, but lacks any position or weight
information. The result is usually much smaller than an unstripped vector, but it is also less use-
ful. Relevance ranking does not work as well on stripped vectors as unstripped ones. Also, the <->
(FOLLOWED BY) tsquery operator will never match stripped input, since it cannot determine the
distance between lexeme occurrences.

A full list of tsvector-related functions is available in Table 9.43.

12.4.2. Manipulating Queries
Section 12.3.2 showed how raw textual queries can be converted into tsquery values. PostgreSQL also
provides functions and operators that can be used to manipulate queries that are already in tsquery
form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

424

Full Text Search

!! tsquery

Returns the negation (NOT) of the given query.

tsquery <-> tsquery

Returns a query that searches for a match to the first given query immediately followed by a match
to the second given query, using the <-> (FOLLOWED BY) tsquery operator. For example:

SELECT to_tsquery('fat') <-> to_tsquery('cat | rat');
 ?column?

 'fat' <-> ('cat' | 'rat')

tsquery_phrase(query1 tsquery, query2 tsquery [, distance integer]) returns tsquery

Returns a query that searches for a match to the first given query followed by a match to the second
given query at a distance of exactly distance lexemes, using the <N> tsquery operator. For example:

SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
 tsquery_phrase

 'fat' <10> 'cat'

numnode(query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a tsquery. This function is useful to deter-
mine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode(plainto_tsquery('the any'));
NOTICE: query contains only stopword(s) or doesn't contain lexeme(s), ignored
 numnode

 0

SELECT numnode('foo & bar'::tsquery);
 numnode

 3

querytree(query tsquery) returns text

Returns the portion of a tsquery that can be used for searching an index. This function is useful for
detecting unindexable queries, for example those containing only stop words or only negated terms.
For example:

SELECT querytree(to_tsquery('defined'));
 querytree

 'defin'

SELECT querytree(to_tsquery('!defined'));
 querytree

 T

12.4.2.1. Query Rewriting
The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and
replace each occurrence with a substitute subquery. In essence this operation is a tsquery-specific
version of substring replacement. A target and substitute combination can be thought of as a query
rewrite rule. A collection of such rewrite rules can be a powerful search aid. For example, you can
expand the search using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search

425

Full Text Search

to direct the user to some hot topic. There is some overlap in functionality between this feature and
thesaurus dictionaries (Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without
reindexing, whereas updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by substitute
wherever it appears in query. For example:
SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
 ts_rewrite

 'b' & 'c'

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and an SQL select command, which is given as a
text string. The select must yield two columns of tsquery type. For each row of the select result,
occurrences of the first column value (the target) are replaced by the second column value (the
substitute) within the current query value. For example:
CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
 ts_rewrite

 'b' & 'c'

Note that when multiple rewrite rules are applied in this way, the order of application can be impor-
tant; so in practice you will want the source query to ORDER BY some ordering key.

Let's consider a real-life astronomical example. We'll expand query supernovae using table-driven rewrit-
ing rules:
CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn')

We can change the rewriting rules just by updating the table:
UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn' & !'nebula')

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible
match. To filter out obvious non-candidate rules we can use the containment operators for the tsquery
type. In the example below, we select only those rules which might match the original query:
SELECT ts_rewrite('a & b'::tsquery,
 'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
 ts_rewrite

 'b' & 'c'

426

Full Text Search

12.4.3. Triggers for Automatic Updates

Note
The method described in this section has been obsoleted by the use of stored generated columns,
as described in Section 12.2.2.

When using a separate column to store the tsvector representation of your documents, it is necessary
to create a trigger to update the tsvector column when the document content columns change. Two
built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger(tsvector_column_name, config_name, text_column_name [, ...])
tsvector_update_trigger_column(tsvector_column_name,
 config_column_name, text_column_name [, ...])

These trigger functions automatically compute a tsvector column from one or more textual columns,
under the control of parameters specified in the CREATE TRIGGER command. An example of their use is:
CREATE TABLE messages (
 title text,
 body text,
 tsv tsvector
);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);

INSERT INTO messages VALUES('title here', 'the body text is here');

SELECT * FROM messages;
 title | body | tsv
------------+-----------------------+----------------------------
 title here | the body text is here | 'bodi':4 'text':5 'titl':1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body');
 title | body
------------+-----------------------
 title here | the body text is here

Having created this trigger, any change in title or body will automatically be reflected into tsv, without
the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The second
argument specifies the text search configuration to be used to perform the conversion. For tsvec-
tor_update_trigger, the configuration name is simply given as the second trigger argument. It must
be schema-qualified as shown above, so that the trigger behavior will not change with changes in
search_path. For tsvector_update_trigger_column, the second trigger argument is the name of an-
other table column, which must be of type regconfig. This allows a per-row selection of configuration
to be made. The remaining argument(s) are the names of textual columns (of type text, varchar, or
char). These will be included in the document in the order given. NULL values will be skipped (but the
other columns will still be indexed).

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns
differently — for example, to weight title differently from body — it is necessary to write a custom trigger.
Here is an example using PL/pgSQL as the trigger language:
CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin

427

Full Text Search

 new.tsv :=
 setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
 setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
 return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
 ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating tsvector
values inside triggers, so that the column's contents will not be affected by changes to default_tex-
t_search_config. Failure to do this is likely to lead to problems such as search results changing after
a dump and restore.

12.4.4. Gathering Document Statistics
The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [weights text,]
 OUT word text, OUT ndoc integer,
 OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single tsvector column. ts_stat
executes the query and returns statistics about each distinct lexeme (word) contained in the tsvector
data. The columns returned are
• word text — the value of a lexeme
• ndoc integer — number of documents (tsvectors) the word occurred in
• nentry integer — total number of occurrences of the word
If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:
SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:
SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

12.5. Parsers
Text search parsers are responsible for splitting raw document text into tokens and identifying each
token's type, where the set of possible types is defined by the parser itself. Note that a parser does not
modify the text at all — it simply identifies plausible word boundaries. Because of this limited scope,
there is less need for application-specific custom parsers than there is for custom dictionaries. At present
PostgreSQL provides just one built-in parser, which has been found to be useful for a wide range of
applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types, shown in Table 12.1.

Table 12.1. Default Parser's Token Types

Alias Description Example
asciiword Word, all ASCII letters elephant

word Word, all letters mañana

numword Word, letters and digits beta1

428

Full Text Search

Alias Description Example
asciihword Hyphenated word, all ASCII up-to-date

hword Hyphenated word, all let-
ters

lógico-matemática

numhword Hyphenated word, letters
and digits

postgresql-beta1

hword_asciipart Hyphenated word part, all
ASCII

postgresql in the context post-
gresql-beta1

hword_part Hyphenated word part, all
letters

lógico or matemática in the context lógi-
co-matemática

hword_numpart Hyphenated word part, let-
ters and digits

beta1 in the context postgresql-beta1

email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the context of a
URL

file File or path name /usr/local/foo.txt, if not within a URL
sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity &

blank Space symbols (any whitespace or punctuation not other-
wise recognized)

Note
The parser's notion of a “letter” is determined by the database's locale setting, specifically lc_c-
type. Words containing only the basic ASCII letters are reported as a separate token type, since
it is sometimes useful to distinguish them. In most European languages, token types word and
asciiword should be treated alike.

email does not support all valid email characters as defined by RFC 5322. Specifically, the only
non-alphanumeric characters supported for email user names are period, dash, and underscore.

tag does not support all valid tag names as defined by W3C Recommendation, XML. Specifically,
the only tag names supported are those starting with an ASCII letter, underscore, or colon, and
containing only letters, digits, hyphens, underscores, periods, and colons. tag also includes XML
comments starting with <!-- and ending with -->, and XML declarations (but note that this in-
cludes anything starting with <?x and ending with >).

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example,
a hyphenated word will be reported both as the entire word and as each component:

SELECT alias, description, token FROM ts_debug('foo-bar-beta1');

429

https://datatracker.ietf.org/doc/html/rfc5322
https://www.w3.org/TR/xml/

Full Text Search

 alias | description | token
-----------------+--+---------------
 numhword | Hyphenated word, letters and digits | foo-bar-beta1
 hword_asciipart | Hyphenated word part, all ASCII | foo
 blank | Space symbols | -
 hword_asciipart | Hyphenated word part, all ASCII | bar
 blank | Space symbols | -
 hword_numpart | Hyphenated word part, letters and digits | beta1

This behavior is desirable since it allows searches to work for both the whole compound word and for
components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');
 alias | description | token
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url | URL | example.com/stuff/index.html
 host | Host | example.com
 url_path | URL path | /stuff/index.html

12.6. Dictionaries
Dictionaries are used to eliminate words that should not be considered in a search (stop words), and
to normalize words so that different derived forms of the same word will match. A successfully normal-
ized word is called a lexeme. Aside from improving search quality, normalization and removal of stop
words reduce the size of the tsvector representation of a document, thereby improving performance.
Normalization does not always have linguistic meaning and usually depends on application semantics.

Some examples of normalization:
• Linguistic — Ispell dictionaries try to reduce input words to a normalized form; stemmer dictionar-

ies remove word endings
• URL locations can be canonicalized to make equivalent URLs match:

• http://www.pgsql.ru/db/mw/index.html
• http://www.pgsql.ru/db/mw/
• http://www.pgsql.ru/db/../db/mw/index.html

• Color names can be replaced by their hexadecimal values, e.g., red, green, blue, magenta ->
FF0000, 00FF00, 0000FF, FF00FF

• If indexing numbers, we can remove some fractional digits to reduce the range of possible num-
bers, so for example 3.14159265359, 3.1415926, 3.14 will be the same after normalization if only
two digits are kept after the decimal point.

A dictionary is a program that accepts a token as input and returns:
• an array of lexemes if the input token is known to the dictionary (notice that one token can produce

more than one lexeme)
• a single lexeme with the TSL_FILTER flag set, to replace the original token with a new token to be

passed to subsequent dictionaries (a dictionary that does this is called a filtering dictionary)
• an empty array if the dictionary knows the token, but it is a stop word
• NULL if the dictionary does not recognize the input token

PostgreSQL provides predefined dictionaries for many languages. There are also several predefined
templates that can be used to create new dictionaries with custom parameters. Each predefined dictio-
nary template is described below. If no existing template is suitable, it is possible to create new ones;
see the contrib/ area of the PostgreSQL distribution for examples.

A text search configuration binds a parser together with a set of dictionaries to process the parser's
output tokens. For each token type that the parser can return, a separate list of dictionaries is specified
by the configuration. When a token of that type is found by the parser, each dictionary in the list is
consulted in turn, until some dictionary recognizes it as a known word. If it is identified as a stop word,

430

Full Text Search

or if no dictionary recognizes the token, it will be discarded and not indexed or searched for. Normally,
the first dictionary that returns a non-NULL output determines the result, and any remaining dictionaries
are not consulted; but a filtering dictionary can replace the given word with a modified word, which is
then passed to subsequent dictionaries.

The general rule for configuring a list of dictionaries is to place first the most narrow, most specific
dictionary, then the more general dictionaries, finishing with a very general dictionary, like a Snowball
stemmer or simple, which recognizes everything. For example, for an astronomy-specific search (as-
tro_en configuration) one could bind token type asciiword (ASCII word) to a synonym dictionary of
astronomical terms, a general English dictionary and a Snowball English stemmer:
ALTER TEXT SEARCH CONFIGURATION astro_en
 ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;

A filtering dictionary can be placed anywhere in the list, except at the end where it'd be useless. Filtering
dictionaries are useful to partially normalize words to simplify the task of later dictionaries. For example,
a filtering dictionary could be used to remove accents from accented letters, as is done by the unaccent
module.

12.6.1. Stop Words
Stop words are words that are very common, appear in almost every document, and have no discrimi-
nation value. Therefore, they can be ignored in the context of full text searching. For example, every
English text contains words like a and the, so it is useless to store them in an index. However, stop
words do affect the positions in tsvector, which in turn affect ranking:
SELECT to_tsvector('english', 'in the list of stop words');
 to_tsvector

 'list':3 'stop':5 'word':6

The missing positions 1,2,4 are because of stop words. Ranks calculated for documents with and without
stop words are quite different:
SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'),
 to_tsquery('list & stop'));
 ts_rank_cd

 0.05

SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list &
 stop'));
 ts_rank_cd

 0.1

It is up to the specific dictionary how it treats stop words. For example, ispell dictionaries first nor-
malize words and then look at the list of stop words, while Snowball stemmers first check the list of stop
words. The reason for the different behavior is an attempt to decrease noise.

12.6.2. Simple Dictionary
The simple dictionary template operates by converting the input token to lower case and checking it
against a file of stop words. If it is found in the file then an empty array is returned, causing the token to be
discarded. If not, the lower-cased form of the word is returned as the normalized lexeme. Alternatively,
the dictionary can be configured to report non-stop-words as unrecognized, allowing them to be passed
on to the next dictionary in the list.

Here is an example of a dictionary definition using the simple template:
CREATE TEXT SEARCH DICTIONARY public.simple_dict (
 TEMPLATE = pg_catalog.simple,

431

Full Text Search

 STOPWORDS = english
);

Here, english is the base name of a file of stop words. The file's full name will be $SHAREDIR/
tsearch_data/english.stop, where $SHAREDIR means the PostgreSQL installation's shared-data direc-
tory, often /usr/local/share/postgresql (use pg_config --sharedir to determine it if you're not
sure). The file format is simply a list of words, one per line. Blank lines and trailing spaces are ignored,
and upper case is folded to lower case, but no other processing is done on the file contents.

Now we can test our dictionary:
SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize

 {yes}

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize

 {}

We can also choose to return NULL, instead of the lower-cased word, if it is not found in the stop words file.
This behavior is selected by setting the dictionary's Accept parameter to false. Continuing the example:
ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize

 {}

With the default setting of Accept = true, it is only useful to place a simple dictionary at the end of a
list of dictionaries, since it will never pass on any token to a following dictionary. Conversely, Accept =
false is only useful when there is at least one following dictionary.

Caution
Most types of dictionaries rely on configuration files, such as files of stop words. These files must
be stored in UTF-8 encoding. They will be translated to the actual database encoding, if that is
different, when they are read into the server.

Caution
Normally, a database session will read a dictionary configuration file only once, when it is first
used within the session. If you modify a configuration file and want to force existing sessions to
pick up the new contents, issue an ALTER TEXT SEARCH DICTIONARY command on the dictionary.
This can be a “dummy” update that doesn't actually change any parameter values.

12.6.3. Synonym Dictionary
This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases are
not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used

432

Full Text Search

to overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing
the word “Paris” to “pari”. It is enough to have a Paris paris line in the synonym dictionary and put
it before the english_stem dictionary. For example:

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
 TEMPLATE = synonym,
 SYNONYMS = my_synonyms
);

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR asciiword
 WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+---------------------------+------------
+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}

The only parameter required by the synonym template is SYNONYMS, which is the base name of its config-
uration file — my_synonyms in the above example. The file's full name will be $SHAREDIR/tsearch_da-
ta/my_synonyms.syn (where $SHAREDIR means the PostgreSQL installation's shared-data directory). The
file format is just one line per word to be substituted, with the word followed by its synonym, separated
by white space. Blank lines and trailing spaces are ignored.

The synonym template also has an optional parameter CaseSensitive, which defaults to false. When
CaseSensitive is false, words in the synonym file are folded to lower case, as are input tokens. When
it is true, words and tokens are not folded to lower case, but are compared as-is.

An asterisk (*) can be placed at the end of a synonym in the configuration file. This indicates that the
synonym is a prefix. The asterisk is ignored when the entry is used in to_tsvector(), but when it is
used in to_tsquery(), the result will be a query item with the prefix match marker (see Section 12.3.2).
For example, suppose we have these entries in $SHAREDIR/tsearch_data/synonym_sample.syn:

postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*

Then we will get these results:

mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn', 'indices');
 ts_lexize

 {index}
(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
mydb=# SELECT to_tsvector('tst', 'indices');
 to_tsvector

 'index':1

433

Full Text Search

(1 row)

mydb=# SELECT to_tsquery('tst', 'indices');
 to_tsquery

 'index':*
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector;
 tsvector

 'are' 'indexes' 'useful' 'very'
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
 ?column?

 t
(1 row)

12.6.4. Thesaurus Dictionary
A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that includes information
about the relationships of words and phrases, i.e., broader terms (BT), narrower terms (NT), preferred
terms, non-preferred terms, related terms, etc.

Basically a thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally,
preserves the original terms for indexing as well. PostgreSQL's current implementation of the thesaurus
dictionary is an extension of the synonym dictionary with added phrase support. A thesaurus dictionary
requires a configuration file of the following format:

this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...

where the colon (:) symbol acts as a delimiter between a phrase and its replacement.

A thesaurus dictionary uses a subdictionary (which is specified in the dictionary's configuration) to nor-
malize the input text before checking for phrase matches. It is only possible to select one subdictionary.
An error is reported if the subdictionary fails to recognize a word. In that case, you should remove the
use of the word or teach the subdictionary about it. You can place an asterisk (*) at the beginning of
an indexed word to skip applying the subdictionary to it, but all sample words must be known to the
subdictionary.

The thesaurus dictionary chooses the longest match if there are multiple phrases matching the input,
and ties are broken by using the last definition.

Specific stop words recognized by the subdictionary cannot be specified; instead use ? to mark the
location where any stop word can appear. For example, assuming that a and the are stop words according
to the subdictionary:

? one ? two : swsw

matches a one the two and the one a two; both would be replaced by swsw.

Since a thesaurus dictionary has the capability to recognize phrases it must remember its state and
interact with the parser. A thesaurus dictionary uses these assignments to check if it should handle the
next word or stop accumulation. The thesaurus dictionary must be configured carefully. For example,
if the thesaurus dictionary is assigned to handle only the asciiword token, then a thesaurus dictionary
definition like one 7 will not work since token type uint is not assigned to the thesaurus dictionary.

434

Full Text Search

Caution
Thesauruses are used during indexing so any change in the thesaurus dictionary's parameters
requires reindexing. For most other dictionary types, small changes such as adding or removing
stopwords does not force reindexing.

12.6.4.1. Thesaurus Configuration
To define a new thesaurus dictionary, use the thesaurus template. For example:

CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
 TEMPLATE = thesaurus,
 DictFile = mythesaurus,
 Dictionary = pg_catalog.english_stem
);

Here:
• thesaurus_simple is the new dictionary's name
• mythesaurus is the base name of the thesaurus configuration file. (Its full name will be $SHAREDIR/

tsearch_data/mythesaurus.ths, where $SHAREDIR means the installation shared-data directory.)
• pg_catalog.english_stem is the subdictionary (here, a Snowball English stemmer) to use for the-

saurus normalization. Notice that the subdictionary will have its own configuration (for example,
stop words), which is not shown here.

Now it is possible to bind the thesaurus dictionary thesaurus_simple to the desired token types in a
configuration, for example:

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_simple;

12.6.4.2. Thesaurus Example
Consider a simple astronomical thesaurus thesaurus_astro, which contains some astronomical word
combinations:

supernovae stars : sn
crab nebulae : crab

Below we create a dictionary and bind some token types to an astronomical thesaurus and English
stemmer:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
 TEMPLATE = thesaurus,
 DictFile = thesaurus_astro,
 Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_astro, english_stem;

Now we can see how it works. ts_lexize is not very useful for testing a thesaurus, because it treats its
input as a single token. Instead we can use plainto_tsquery and to_tsvector which will break their
input strings into multiple tokens:

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn'

435

Full Text Search

SELECT to_tsvector('supernova star');
 to_tsvector

 'sn':1

In principle, one can use to_tsquery if you quote the argument:

SELECT to_tsquery('''supernova star''');
 to_tsquery

 'sn'

Notice that supernova star matches supernovae stars in thesaurus_astro because we specified the
english_stem stemmer in the thesaurus definition. The stemmer removed the e and s.

To index the original phrase as well as the substitute, just include it in the right-hand part of the defi-
nition:

supernovae stars : sn supernovae stars

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn' & 'supernova' & 'star'

12.6.5. Ispell Dictionary
The Ispell dictionary template supports morphological dictionaries, which can normalize many different
linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can match all
declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks', and bank's.

The standard PostgreSQL distribution does not include any Ispell configuration files. Dictionaries for a
large number of languages are available from Ispell. Also, some more modern dictionary file formats are
supported — MySpell (OO < 2.0.1) and Hunspell (OO >= 2.0.2). A large list of dictionaries is available
on the OpenOffice Wiki.

To create an Ispell dictionary perform these steps:

• download dictionary configuration files. OpenOffice extension files have the .oxt extension. It is
necessary to extract .aff and .dic files, change extensions to .affix and .dict. For some dictio-
nary files it is also needed to convert characters to the UTF-8 encoding with commands (for exam-
ple, for a Norwegian language dictionary):

iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic

• copy files to the $SHAREDIR/tsearch_data directory
• load files into PostgreSQL with the following command:

CREATE TEXT SEARCH DICTIONARY english_hunspell (
 TEMPLATE = ispell,
 DictFile = en_us,
 AffFile = en_us,
 Stopwords = english);

Here, DictFile, AffFile, and StopWords specify the base names of the dictionary, affixes, and stop-
words files. The stop-words file has the same format explained above for the simple dictionary type. The
format of the other files is not specified here but is available from the above-mentioned web sites.

Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader
dictionary; for example, a Snowball dictionary, which recognizes everything.

The .affix file of Ispell has the following structure:

436

https://www.cs.hmc.edu/~geoff/ispell.html
https://en.wikipedia.org/wiki/MySpell
https://hunspell.github.io/
https://wiki.openoffice.org/wiki/Dictionaries

Full Text Search

prefixes
flag *A:
 . > RE # As in enter > reenter
suffixes
flag T:
 E > ST # As in late > latest
 [^AEIOU]Y > -Y,IEST # As in dirty > dirtiest
 [AEIOU]Y > EST # As in gray > grayest
 [^EY] > EST # As in small > smallest

And the .dict file has the following structure:

lapse/ADGRS
lard/DGRS
large/PRTY
lark/MRS

Format of the .dict file is:

basic_form/affix_class_name

In the .affix file every affix flag is described in the following format:

condition > [-stripping_letters,] adding_affix

Here, condition has a format similar to the format of regular expressions. It can use groupings [...]
and [^...]. For example, [AEIOU]Y means that the last letter of the word is "y" and the penultimate
letter is "a", "e", "i", "o" or "u". [^EY] means that the last letter is neither "e" nor "y".

Ispell dictionaries support splitting compound words; a useful feature. Notice that the affix file should
specify a special flag using the compoundwords controlled statement that marks dictionary words that
can participate in compound formation:

compoundwords controlled z

Here are some examples for the Norwegian language:

SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
 {over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
 {sjokoladefabrikk,sjokolade,fabrikk}

MySpell format is a subset of Hunspell. The .affix file of Hunspell has the following structure:

PFX A Y 1
PFX A 0 re .
SFX T N 4
SFX T 0 st e
SFX T y iest [^aeiou]y
SFX T 0 est [aeiou]y
SFX T 0 est [^ey]

The first line of an affix class is the header. Fields of an affix rules are listed after the header:

• parameter name (PFX or SFX)
• flag (name of the affix class)
• stripping characters from beginning (at prefix) or end (at suffix) of the word
• adding affix
• condition that has a format similar to the format of regular expressions.

The .dict file looks like the .dict file of Ispell:

larder/M

437

Full Text Search

lardy/RT
large/RSPMYT
largehearted

Note
MySpell does not support compound words. Hunspell has sophisticated support for compound
words. At present, PostgreSQL implements only the basic compound word operations of Hunspell.

12.6.6. Snowball Dictionary
The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular Porter's
stemming algorithm for the English language. Snowball now provides stemming algorithms for many
languages (see the Snowball site for more information). Each algorithm understands how to reduce
common variant forms of words to a base, or stem, spelling within its language. A Snowball dictionary
requires a language parameter to identify which stemmer to use, and optionally can specify a stopword
file name that gives a list of words to eliminate. (PostgreSQL's standard stopword lists are also provided
by the Snowball project.) For example, there is a built-in definition equivalent to

CREATE TEXT SEARCH DICTIONARY english_stem (
 TEMPLATE = snowball,
 Language = english,
 StopWords = english
);

The stopword file format is the same as already explained.

A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it should
be placed at the end of the dictionary list. It is useless to have it before any other dictionary because a
token will never pass through it to the next dictionary.

12.7. Configuration Example
A text search configuration specifies all options necessary to transform a document into a tsvector: the
parser to use to break text into tokens, and the dictionaries to use to transform each token into a lexeme.
Every call of to_tsvector or to_tsquery needs a text search configuration to perform its processing.
The configuration parameter default_text_search_config specifies the name of the default configuration,
which is the one used by text search functions if an explicit configuration parameter is omitted. It can
be set in postgresql.conf, or set for an individual session using the SET command.

Several predefined text search configurations are available, and you can create custom configurations
easily. To facilitate management of text search objects, a set of SQL commands is available, and there
are several psql commands that display information about text search objects (Section 12.10).

As an example we will create a configuration pg, starting by duplicating the built-in english configu-
ration:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY = pg_catalog.english);

We will use a PostgreSQL-specific synonym list and store it in $SHAREDIR/tsearch_data/pg_dict.syn.
The file contents look like:

postgres pg
pgsql pg
postgresql pg

We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
 TEMPLATE = synonym,

438

https://snowballstem.org/

Full Text Search

 SYNONYMS = pg_dict
);

Next we register the Ispell dictionary english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

Now we can set up the mappings for words in configuration pg:

ALTER TEXT SEARCH CONFIGURATION pg
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH pg_dict, english_ispell, english_stem;

We choose not to index or search some token types that the built-in configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
 DROP MAPPING FOR email, url, url_path, sfloat, float;

Now we can test our configuration:

SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.
');

The next step is to set the session to use the new configuration, which was created in the public schema:

=> \dF
 List of text search configurations
 Schema | Name | Description
---------+------+-------------
 public | pg |

SET default_text_search_config = 'public.pg';
SET

SHOW default_text_search_config;
 default_text_search_config

 public.pg

12.8. Testing and Debugging Text Search
The behavior of a custom text search configuration can easily become confusing. The functions described
in this section are useful for testing text search objects. You can test a complete configuration, or test
parsers and dictionaries separately.

12.8.1. Configuration Testing
The function ts_debug allows easy testing of a text search configuration.

ts_debug([config regconfig,] document text,
 OUT alias text,
 OUT description text,
 OUT token text,

439

Full Text Search

 OUT dictionaries regdictionary[],
 OUT dictionary regdictionary,
 OUT lexemes text[])
 returns setof record

ts_debug displays information about every token of document as produced by the parser and processed
by the configured dictionaries. It uses the configuration specified by config, or default_tex-
t_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The columns returned are
• alias text — short name of the token type
• description text — description of the token type
• token text — text of the token
• dictionaries regdictionary[] — the dictionaries selected by the configuration for this token type
• dictionary regdictionary — the dictionary that recognized the token, or NULL if none did
• lexemes text[] — the lexeme(s) produced by the dictionary that recognized the token, or NULL if

none did; an empty array ({}) means it was recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug('english', 'a fat cat sat on a mat - it ate a fat rats');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
 blank | Space symbols | | {} | |
 blank | Space symbols | - | {} | |
 asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}

For a more extensive demonstration, we first create a public.english configuration and Ispell dictio-
nary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english (COPY = pg_catalog.english);

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

440

Full Text Search

ALTER TEXT SEARCH CONFIGURATION public.english
 ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
 alias | description | token | dictionaries |
 dictionary | lexemes
-----------+-----------------+-------------+-------------------------------
+----------------+-------------
 asciiword | Word, all ASCII | The | {english_ispell,english_stem} |
 english_ispell | {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} |
 english_ispell | {bright}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} |
 english_stem | {supernova}

In this example, the word Brightest was recognized by the parser as an ASCII word (alias asciiword).
For this token type the dictionary list is english_ispell and english_stem. The word was recognized
by english_ispell, which reduced it to the noun bright. The word supernovaes is unknown to the
english_ispell dictionary so it was passed to the next dictionary, and, fortunately, was recognized (in
fact, english_stem is a Snowball dictionary which recognizes everything; that is why it was placed at
the end of the dictionary list).

The word The was recognized by the english_ispell dictionary as a stop word (Section 12.6.1) and
will not be indexed. The spaces are discarded too, since the configuration provides no dictionaries at
all for them.

You can reduce the width of the output by explicitly specifying which columns you want to see:
SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english', 'The Brightest supernovaes');
 alias | token | dictionary | lexemes
-----------+-------------+----------------+-------------
 asciiword | The | english_ispell | {}
 blank | | |
 asciiword | Brightest | english_ispell | {bright}
 blank | | |
 asciiword | supernovaes | english_stem | {supernova}

12.8.2. Parser Testing
The following functions allow direct testing of a text search parser.

ts_parse(parser_name text, document text,
 OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
 OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each token produced by
parsing. Each record includes a tokid showing the assigned token type and a token which is the text
of the token. For example:
SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
 22 | 123
 12 |

441

Full Text Search

 12 | -
 1 | a
 12 |
 1 | number

ts_token_type(parser_name text, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record
ts_token_type(parser_oid oid, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record

ts_token_type returns a table which describes each type of token the specified parser can recognize.
For each token type, the table gives the integer tokid that the parser uses to label a token of that type,
the alias that names the token type in configuration commands, and a short description. For example:
SELECT * FROM ts_token_type('default');
 tokid | alias | description
-------+-----------------+--
 1 | asciiword | Word, all ASCII
 2 | word | Word, all letters
 3 | numword | Word, letters and digits
 4 | email | Email address
 5 | url | URL
 6 | host | Host
 7 | sfloat | Scientific notation
 8 | version | Version number
 9 | hword_numpart | Hyphenated word part, letters and digits
 10 | hword_part | Hyphenated word part, all letters
 11 | hword_asciipart | Hyphenated word part, all ASCII
 12 | blank | Space symbols
 13 | tag | XML tag
 14 | protocol | Protocol head
 15 | numhword | Hyphenated word, letters and digits
 16 | asciihword | Hyphenated word, all ASCII
 17 | hword | Hyphenated word, all letters
 18 | url_path | URL path
 19 | file | File or path name
 20 | float | Decimal notation
 21 | int | Signed integer
 22 | uint | Unsigned integer
 23 | entity | XML entity

12.8.3. Dictionary Testing
The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[]

ts_lexize returns an array of lexemes if the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is an unknown word.

Examples:
SELECT ts_lexize('english_stem', 'stars');
 ts_lexize

 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize

442

Full Text Search

 {}

Note
The ts_lexize function expects a single token, not text. Here is a case where this can be confusing:

SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
 ?column?

 t

The thesaurus dictionary thesaurus_astro does know the phrase supernovae stars, but ts_lex-
ize fails since it does not parse the input text but treats it as a single token. Use plainto_tsquery
or to_tsvector to test thesaurus dictionaries, for example:

SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery

 'sn'

12.9. Preferred Index Types for Text Search
There are two kinds of indexes that can be used to speed up full text searches: GIN and GiST. Note that
indexes are not mandatory for full text searching, but in cases where a column is searched on a regular
basis, an index is usually desirable.

To create such an index, do one of:

CREATE INDEX name ON table USING GIN (column);

Creates a GIN (Generalized Inverted Index)-based index. The column must be of tsvector type.

CREATE INDEX name ON table USING GIST (column [{ DEFAULT | tsvector_ops } (siglen =
number)]);

Creates a GiST (Generalized Search Tree)-based index. The column can be of tsvector or tsquery
type. Optional integer parameter siglen determines signature length in bytes (see below for details).

GIN indexes are the preferred text search index type. As inverted indexes, they contain an index entry
for each word (lexeme), with a compressed list of matching locations. Multi-word searches can find the
first match, then use the index to remove rows that are lacking additional words. GIN indexes store only
the words (lexemes) of tsvector values, and not their weight labels. Thus a table row recheck is needed
when using a query that involves weights.

A GiST index is lossy, meaning that the index might produce false matches, and it is necessary to check
the actual table row to eliminate such false matches. (PostgreSQL does this automatically when needed.)
GiST indexes are lossy because each document is represented in the index by a fixed-length signature.
The signature length in bytes is determined by the value of the optional integer parameter siglen. The
default signature length (when siglen is not specified) is 124 bytes, the maximum signature length is
2024 bytes. The signature is generated by hashing each word into a single bit in an n-bit string, with all
these bits OR-ed together to produce an n-bit document signature. When two words hash to the same bit
position there will be a false match. If all words in the query have matches (real or false) then the table
row must be retrieved to see if the match is correct. Longer signatures lead to a more precise search
(scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

A GiST index can be covering, i.e., use the INCLUDE clause. Included columns can have data types without
any GiST operator class. Included attributes will be stored uncompressed.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to
be false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes.

443

Full Text Search

The likelihood of false matches depends on several factors, in particular the number of unique words,
so using dictionaries to reduce this number is recommended.

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while
GiST index build time is not sensitive to that parameter.

Partitioning of big collections and the proper use of GIN and GiST indexes allows the implementation
of very fast searches with online update. Partitioning can be done at the database level using table
inheritance, or by distributing documents over servers and collecting external search results, e.g., via
Foreign Data access. The latter is possible because ranking functions use only local information.

12.10. psql Support
Information about text search configuration objects can be obtained in psql using a set of commands:

\dF{d,p,t}[+] [PATTERN]

An optional + produces more details.

The optional parameter PATTERN can be the name of a text search object, optionally schema-qualified. If
PATTERN is omitted then information about all visible objects will be displayed. PATTERN can be a regular
expression and can provide separate patterns for the schema and object names. The following examples
illustrate this:

=> \dF *fulltext*
 List of text search configurations
 Schema | Name | Description
--------+--------------+-------------
 public | fulltext_cfg |

=> \dF *.fulltext*
 List of text search configurations
 Schema | Name | Description
----------+----------------------------
 fulltext | fulltext_cfg |
 public | fulltext_cfg |

The available commands are:

\dF[+] [PATTERN]

List text search configurations (add + for more detail).

=> \dF russian
 List of text search configurations
 Schema | Name | Description
------------+---------+------------------------------------
 pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"
 Token | Dictionaries
-----------------+--------------
 asciihword | english_stem
 asciiword | english_stem
 email | simple
 file | simple
 float | simple
 host | simple
 hword | russian_stem
 hword_asciipart | english_stem

444

Full Text Search

 hword_numpart | simple
 hword_part | russian_stem
 int | simple
 numhword | simple
 numword | simple
 sfloat | simple
 uint | simple
 url | simple
 url_path | simple
 version | simple
 word | russian_stem

\dFd[+] [PATTERN]

List text search dictionaries (add + for more detail).

=> \dFd
 List of text search dictionaries
 Schema | Name | Description
------------+-----------------
+---
 pg_catalog | arabic_stem | snowball stemmer for arabic language
 pg_catalog | armenian_stem | snowball stemmer for armenian language
 pg_catalog | basque_stem | snowball stemmer for basque language
 pg_catalog | catalan_stem | snowball stemmer for catalan language
 pg_catalog | danish_stem | snowball stemmer for danish language
 pg_catalog | dutch_stem | snowball stemmer for dutch language
 pg_catalog | english_stem | snowball stemmer for english language
 pg_catalog | estonian_stem | snowball stemmer for estonian language
 pg_catalog | finnish_stem | snowball stemmer for finnish language
 pg_catalog | french_stem | snowball stemmer for french language
 pg_catalog | german_stem | snowball stemmer for german language
 pg_catalog | greek_stem | snowball stemmer for greek language
 pg_catalog | hindi_stem | snowball stemmer for hindi language
 pg_catalog | hungarian_stem | snowball stemmer for hungarian language
 pg_catalog | indonesian_stem | snowball stemmer for indonesian language
 pg_catalog | irish_stem | snowball stemmer for irish language
 pg_catalog | italian_stem | snowball stemmer for italian language
 pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
 pg_catalog | nepali_stem | snowball stemmer for nepali language
 pg_catalog | norwegian_stem | snowball stemmer for norwegian language
 pg_catalog | portuguese_stem | snowball stemmer for portuguese language
 pg_catalog | romanian_stem | snowball stemmer for romanian language
 pg_catalog | russian_stem | snowball stemmer for russian language
 pg_catalog | serbian_stem | snowball stemmer for serbian language
 pg_catalog | simple | simple dictionary: just lower case and check for
 stopword
 pg_catalog | spanish_stem | snowball stemmer for spanish language
 pg_catalog | swedish_stem | snowball stemmer for swedish language
 pg_catalog | tamil_stem | snowball stemmer for tamil language
 pg_catalog | turkish_stem | snowball stemmer for turkish language
 pg_catalog | yiddish_stem | snowball stemmer for yiddish language

\dFp[+] [PATTERN]

List text search parsers (add + for more detail).

=> \dFp
 List of text search parsers
 Schema | Name | Description

445

Full Text Search

------------+---------+---------------------
 pg_catalog | default | default word parser
=> \dFp+
 Text search parser "pg_catalog.default"
 Method | Function | Description
-----------------+----------------+-------------
 Start parse | prsd_start |
 Get next token | prsd_nexttoken |
 End parse | prsd_end |
 Get headline | prsd_headline |
 Get token types | prsd_lextype |

 Token types for parser "pg_catalog.default"
 Token name | Description
-----------------+--
 asciihword | Hyphenated word, all ASCII
 asciiword | Word, all ASCII
 blank | Space symbols
 email | Email address
 entity | XML entity
 file | File or path name
 float | Decimal notation
 host | Host
 hword | Hyphenated word, all letters
 hword_asciipart | Hyphenated word part, all ASCII
 hword_numpart | Hyphenated word part, letters and digits
 hword_part | Hyphenated word part, all letters
 int | Signed integer
 numhword | Hyphenated word, letters and digits
 numword | Word, letters and digits
 protocol | Protocol head
 sfloat | Scientific notation
 tag | XML tag
 uint | Unsigned integer
 url | URL
 url_path | URL path
 version | Version number
 word | Word, all letters
(23 rows)

\dFt[+] [PATTERN]

List text search templates (add + for more detail).
=> \dFt
 List of text search templates
 Schema | Name | Description
------------+-----------+---
 pg_catalog | ispell | ispell dictionary
 pg_catalog | simple | simple dictionary: just lower case and check for stopword
 pg_catalog | snowball | snowball stemmer
 pg_catalog | synonym | synonym dictionary: replace word by its synonym
 pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution

12.11. Limitations
The current limitations of PostgreSQL's text search features are:
• The length of each lexeme must be less than 2 kilobytes
• The length of a tsvector (lexemes + positions) must be less than 1 megabyte

446

Full Text Search

• The number of lexemes must be less than 264

• Position values in tsvector must be greater than 0 and no more than 16,383
• The match distance in a <N> (FOLLOWED BY) tsquery operator cannot be more than 16,384
• No more than 256 positions per lexeme
• The number of nodes (lexemes + operators) in a tsquery must be less than 32,768

For comparison, the PostgreSQL 8.1 documentation contained 10,441 unique words, a total of 335,420
words, and the most frequent word “postgresql” was mentioned 6,127 times in 655 documents.

Another example — the PostgreSQL mailing list archives contained 910,989 unique words with
57,491,343 lexemes in 461,020 messages.

447

Chapter 13. Concurrency Control
This chapter describes the behavior of the PostgreSQL database system when two or more sessions try
to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should be
familiar with the topics covered in this chapter.

13.1. Introduction
PostgreSQL provides a rich set of tools for developers to manage concurrent access to data. Internal-
ly, data consistency is maintained by using a multiversion model (Multiversion Concurrency Control,
MVCC). This means that each SQL statement sees a snapshot of data (a database version) as it was some
time ago, regardless of the current state of the underlying data. This prevents statements from viewing
inconsistent data produced by concurrent transactions performing updates on the same data rows, pro-
viding transaction isolation for each database session. MVCC, by eschewing the locking methodologies
of traditional database systems, minimizes lock contention in order to allow for reasonable performance
in multiuser environments.

The main advantage of using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading. PostgreSQL maintains this guar-
antee even when providing the strictest level of transaction isolation through the use of an innovative
Serializable Snapshot Isolation (SSI) level.

Table- and row-level locking facilities are also available in PostgreSQL for applications which don't gen-
erally need full transaction isolation and prefer to explicitly manage particular points of conflict. Howev-
er, proper use of MVCC will generally provide better performance than locks. In addition, application-de-
fined advisory locks provide a mechanism for acquiring locks that are not tied to a single transaction.

13.2. Transaction Isolation
The SQL standard defines four levels of transaction isolation. The most strict is Serializable, which is
defined by the standard in a paragraph which says that any concurrent execution of a set of Serializable
transactions is guaranteed to produce the same effect as running them one at a time in some order. The
other three levels are defined in terms of phenomena, resulting from interaction between concurrent
transactions, which must not occur at each level. The standard notes that due to the definition of Serial-
izable, none of these phenomena are possible at that level. (This is hardly surprising -- if the effect of the
transactions must be consistent with having been run one at a time, how could you see any phenomena
caused by interactions?)

The phenomena which are prohibited at various levels are:

dirty read

A transaction reads data written by a concurrent uncommitted transaction.

nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

serialization anomaly

The result of successfully committing a group of transactions is inconsistent with all possible order-
ings of running those transactions one at a time.

448

Concurrency Control

The SQL standard and PostgreSQL-implemented transaction isolation levels are described in Table 13.1.

Table 13.1. Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable
Read

Phantom Read Serialization
Anomaly

Read uncommitted Allowed, but not in
PG

Possible Possible Possible

Read committed Not possible Possible Possible Possible
Repeatable read Not possible Not possible Allowed, but not in

PG
Possible

Serializable Not possible Not possible Not possible Not possible

In PostgreSQL, you can request any of the four standard transaction isolation levels, but internally only
three distinct isolation levels are implemented, i.e., PostgreSQL's Read Uncommitted mode behaves
like Read Committed. This is because it is the only sensible way to map the standard isolation levels to
PostgreSQL's multiversion concurrency control architecture.

The table also shows that PostgreSQL's Repeatable Read implementation does not allow phantom reads.
This is acceptable under the SQL standard because the standard specifies which anomalies must not
occur at certain isolation levels; higher guarantees are acceptable. The behavior of the available isolation
levels is detailed in the following subsections.

To set the transaction isolation level of a transaction, use the command SET TRANSACTION.

Important
Some PostgreSQL data types and functions have special rules regarding transactional behavior.
In particular, changes made to a sequence (and therefore the counter of a column declared using
serial) are immediately visible to all other transactions and are not rolled back if the transaction
that made the changes aborts. See Section 9.17 and Section 8.1.4.

13.2.1. Read Committed Isolation Level
Read Committed is the default isolation level in PostgreSQL. When a transaction uses this isolation
level, a SELECT query (without a FOR UPDATE/SHARE clause) sees only data committed before the query
began; it never sees either uncommitted data or changes committed by concurrent transactions during
the query's execution. In effect, a SELECT query sees a snapshot of the database as of the instant the
query begins to run. However, SELECT does see the effects of previous updates executed within its own
transaction, even though they are not yet committed. Also note that two successive SELECT commands
can see different data, even though they are within a single transaction, if other transactions commit
changes after the first SELECT starts and before the second SELECT starts.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as SELECT
in terms of searching for target rows: they will only find target rows that were committed as of the
command start time. However, such a target row might have already been updated (or deleted or locked)
by another concurrent transaction by the time it is found. In this case, the would-be updater will wait
for the first updating transaction to commit or roll back (if it is still in progress). If the first updater rolls
back, then its effects are negated and the second updater can proceed with updating the originally found
row. If the first updater commits, the second updater will ignore the row if the first updater deleted it,
otherwise it will attempt to apply its operation to the updated version of the row. The search condition
of the command (the WHERE clause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation using the updated version of
the row. In the case of SELECT FOR UPDATE and SELECT FOR SHARE, this means it is the updated version
of the row that is locked and returned to the client.

449

Concurrency Control

INSERT with an ON CONFLICT DO UPDATE clause behaves similarly. In Read Committed mode, each row
proposed for insertion will either insert or update. Unless there are unrelated errors, one of those two
outcomes is guaranteed. If a conflict originates in another transaction whose effects are not yet visible
to the INSERT, the UPDATE clause will affect that row, even though possibly no version of that row is
conventionally visible to the command.

INSERT with an ON CONFLICT DO NOTHING clause may have insertion not proceed for a row due to the
outcome of another transaction whose effects are not visible to the INSERT snapshot. Again, this is only
the case in Read Committed mode.

MERGE allows the user to specify various combinations of INSERT, UPDATE and DELETE subcommands. A
MERGE command with both INSERT and UPDATE subcommands looks similar to INSERT with an ON CONFLICT
DO UPDATE clause but does not guarantee that either INSERT or UPDATE will occur. If MERGE attempts an
UPDATE or DELETE and the row is concurrently updated but the join condition still passes for the current
target and the current source tuple, then MERGE will behave the same as the UPDATE or DELETE commands
and perform its action on the updated version of the row. However, because MERGE can specify several
actions and they can be conditional, the conditions for each action are re-evaluated on the updated
version of the row, starting from the first action, even if the action that had originally matched appears
later in the list of actions. On the other hand, if the row is concurrently updated so that the join condition
fails, then MERGE will evaluate the command's NOT MATCHED BY SOURCE and NOT MATCHED [BY TARGET]
actions next, and execute the first one of each kind that succeeds. If the row is concurrently deleted, then
MERGE will evaluate the command's NOT MATCHED [BY TARGET] actions, and execute the first one that
succeeds. If MERGE attempts an INSERT and a unique index is present and a duplicate row is concurrently
inserted, then a uniqueness violation error is raised; MERGE does not attempt to avoid such errors by
restarting evaluation of MATCHED conditions.

Because of the above rules, it is possible for an updating command to see an inconsistent snapshot:
it can see the effects of concurrent updating commands on the same rows it is trying to update, but
it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions; however, it is just
right for simpler cases. For example, consider transferring $100 from one account to another:

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If another transaction concurrently tries to change the balance of account 7534, we clearly want the
second statement to start with the updated version of the account's row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

More complex usage can produce undesirable results in Read Committed mode. For example, consider
a DELETE command operating on data that is being both added and removed from its restriction criteria
by another command, e.g., assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;
UPDATE website SET hits = hits + 1;
-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

The DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE. This occurs because the pre-update row value 9 is skipped, and when the UPDATE completes and
DELETE obtains a lock, the new row value is no longer 10 but 11, which no longer matches the criteria.

Because Read Committed mode starts each command with a new snapshot that includes all transactions
committed up to that instant, subsequent commands in the same transaction will see the effects of
the committed concurrent transaction in any case. The point at issue above is whether or not a single
command sees an absolutely consistent view of the database.

450

Concurrency Control

The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use; however, it is not sufficient for all cases. Applications that do
complex queries and updates might require a more rigorously consistent view of the database than Read
Committed mode provides.

13.2.2. Repeatable Read Isolation Level
The Repeatable Read isolation level only sees data committed before the transaction began; it never
sees either uncommitted data or changes committed by concurrent transactions during the transaction's
execution. (However, each query does see the effects of previous updates executed within its own trans-
action, even though they are not yet committed.) This is a stronger guarantee than is required by the
SQL standard for this isolation level, and prevents all of the phenomena described in Table 13.1 except
for serialization anomalies. As mentioned above, this is specifically allowed by the standard, which only
describes the minimum protections each isolation level must provide.

This level is different from Read Committed in that a query in a repeatable read transaction sees a
snapshot as of the start of the first non-transaction-control statement in the transaction, not as of the
start of the current statement within the transaction. Thus, successive SELECT commands within a single
transaction see the same data, i.e., they do not see changes made by other transactions that committed
after their own transaction started.

Applications using this level must be prepared to retry transactions due to serialization failures.

UPDATE, DELETE, MERGE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as
of the transaction start time. However, such a target row might have already been updated (or deleted
or locked) by another concurrent transaction by the time it is found. In this case, the repeatable read
transaction will wait for the first updating transaction to commit or roll back (if it is still in progress). If
the first updater rolls back, then its effects are negated and the repeatable read transaction can proceed
with updating the originally found row. But if the first updater commits (and actually updated or deleted
the row, not just locked it) then the repeatable read transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a repeatable read transaction cannot modify or lock rows changed by other transactions after
the repeatable read transaction began.

When an application receives this error message, it should abort the current transaction and retry the
whole transaction from the beginning. The second time through, the transaction will see the previous-
ly-committed change as part of its initial view of the database, so there is no logical conflict in using the
new version of the row as the starting point for the new transaction's update.

Note that only updating transactions might need to be retried; read-only transactions will never have
serialization conflicts.

The Repeatable Read mode provides a rigorous guarantee that each transaction sees a completely stable
view of the database. However, this view will not necessarily always be consistent with some serial
(one at a time) execution of concurrent transactions of the same level. For example, even a read-only
transaction at this level may see a control record updated to show that a batch has been completed but
not see one of the detail records which is logically part of the batch because it read an earlier revision
of the control record. Attempts to enforce business rules by transactions running at this isolation level
are not likely to work correctly without careful use of explicit locks to block conflicting transactions.

The Repeatable Read isolation level is implemented using a technique known in academic database lit-
erature and in some other database products as Snapshot Isolation. Differences in behavior and per-
formance may be observed when compared with systems that use a traditional locking technique that
reduces concurrency. Some other systems may even offer Repeatable Read and Snapshot Isolation as
distinct isolation levels with different behavior. The permitted phenomena that distinguish the two tech-
niques were not formalized by database researchers until after the SQL standard was developed, and
are outside the scope of this manual. For a full treatment, please see berenson95.

451

Concurrency Control

Note
Prior to PostgreSQL version 9.1, a request for the Serializable transaction isolation level provided
exactly the same behavior described here. To retain the legacy Serializable behavior, Repeatable
Read should now be requested.

13.2.3. Serializable Isolation Level
The Serializable isolation level provides the strictest transaction isolation. This level emulates serial
transaction execution for all committed transactions; as if transactions had been executed one after
another, serially, rather than concurrently. However, like the Repeatable Read level, applications using
this level must be prepared to retry transactions due to serialization failures. In fact, this isolation level
works exactly the same as Repeatable Read except that it also monitors for conditions which could
make execution of a concurrent set of serializable transactions behave in a manner inconsistent with
all possible serial (one at a time) executions of those transactions. This monitoring does not introduce
any blocking beyond that present in repeatable read, but there is some overhead to the monitoring, and
detection of the conditions which could cause a serialization anomaly will trigger a serialization failure.

As an example, consider a table mytab, initially containing:

 class | value
-------+-------
 1 | 10
 1 | 20
 2 | 100
 2 | 200

Suppose that serializable transaction A computes:

SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as the value in a new row with class = 2. Concurrently, serializable
transaction B computes:

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row with class = 1. Then both transactions try to
commit. If either transaction were running at the Repeatable Read isolation level, both would be allowed
to commit; but since there is no serial order of execution consistent with the result, using Serializable
transactions will allow one transaction to commit and will roll the other back with this message:

ERROR: could not serialize access due to read/write dependencies among transactions

This is because if A had executed before B, B would have computed the sum 330, not 300, and similarly
the other order would have resulted in a different sum computed by A.

When relying on Serializable transactions to prevent anomalies, it is important that any data read from
a permanent user table not be considered valid until the transaction which read it has successfully
committed. This is true even for read-only transactions, except that data read within a deferrable read-
only transaction is known to be valid as soon as it is read, because such a transaction waits until it
can acquire a snapshot guaranteed to be free from such problems before starting to read any data. In
all other cases applications must not depend on results read during a transaction that later aborted;
instead, they should retry the transaction until it succeeds.

To guarantee true serializability PostgreSQL uses predicate locking, which means that it keeps locks
which allow it to determine when a write would have had an impact on the result of a previous read
from a concurrent transaction, had it run first. In PostgreSQL these locks do not cause any blocking
and therefore can not play any part in causing a deadlock. They are used to identify and flag dependen-
cies among concurrent Serializable transactions which in certain combinations can lead to serialization
anomalies. In contrast, a Read Committed or Repeatable Read transaction which wants to ensure data
consistency may need to take out a lock on an entire table, which could block other users attempting to

452

Concurrency Control

use that table, or it may use SELECT FOR UPDATE or SELECT FOR SHARE which not only can block other
transactions but cause disk access.

Predicate locks in PostgreSQL, like in most other database systems, are based on data actually accessed
by a transaction. These will show up in the pg_locks system view with a mode of SIReadLock. The par-
ticular locks acquired during execution of a query will depend on the plan used by the query, and multi-
ple finer-grained locks (e.g., tuple locks) may be combined into fewer coarser-grained locks (e.g., page
locks) during the course of the transaction to prevent exhaustion of the memory used to track the locks.
A READ ONLY transaction may be able to release its SIRead locks before completion, if it detects that
no conflicts can still occur which could lead to a serialization anomaly. In fact, READ ONLY transactions
will often be able to establish that fact at startup and avoid taking any predicate locks. If you explicitly
request a SERIALIZABLE READ ONLY DEFERRABLE transaction, it will block until it can establish this fact.
(This is the only case where Serializable transactions block but Repeatable Read transactions don't.)
On the other hand, SIRead locks often need to be kept past transaction commit, until overlapping read
write transactions complete.

Consistent use of Serializable transactions can simplify development. The guarantee that any set of
successfully committed concurrent Serializable transactions will have the same effect as if they were
run one at a time means that if you can demonstrate that a single transaction, as written, will do the
right thing when run by itself, you can have confidence that it will do the right thing in any mix of
Serializable transactions, even without any information about what those other transactions might do,
or it will not successfully commit. It is important that an environment which uses this technique have
a generalized way of handling serialization failures (which always return with an SQLSTATE value of
'40001'), because it will be very hard to predict exactly which transactions might contribute to the read/
write dependencies and need to be rolled back to prevent serialization anomalies. The monitoring of
read/write dependencies has a cost, as does the restart of transactions which are terminated with a
serialization failure, but balanced against the cost and blocking involved in use of explicit locks and
SELECT FOR UPDATE or SELECT FOR SHARE, Serializable transactions are the best performance choice
for some environments.

While PostgreSQL's Serializable transaction isolation level only allows concurrent transactions to com-
mit if it can prove there is a serial order of execution that would produce the same effect, it doesn't
always prevent errors from being raised that would not occur in true serial execution. In particular, it
is possible to see unique constraint violations caused by conflicts with overlapping Serializable transac-
tions even after explicitly checking that the key isn't present before attempting to insert it. This can be
avoided by making sure that all Serializable transactions that insert potentially conflicting keys explicitly
check if they can do so first. For example, imagine an application that asks the user for a new key and
then checks that it doesn't exist already by trying to select it first, or generates a new key by selecting
the maximum existing key and adding one. If some Serializable transactions insert new keys directly
without following this protocol, unique constraints violations might be reported even in cases where
they could not occur in a serial execution of the concurrent transactions.

For optimal performance when relying on Serializable transactions for concurrency control, these issues
should be considered:
• Declare transactions as READ ONLY when possible.
• Control the number of active connections, using a connection pool if needed. This is always an im-

portant performance consideration, but it can be particularly important in a busy system using Se-
rializable transactions.

• Don't put more into a single transaction than needed for integrity purposes.
• Don't leave connections dangling “idle in transaction” longer than necessary. The configuration pa-

rameter idle_in_transaction_session_timeout may be used to automatically disconnect lingering ses-
sions.

• Eliminate explicit locks, SELECT FOR UPDATE, and SELECT FOR SHARE where no longer needed due
to the protections automatically provided by Serializable transactions.

• When the system is forced to combine multiple page-level predicate locks into a single relation-lev-
el predicate lock because the predicate lock table is short of memory, an increase in the rate of se-

453

Concurrency Control

rialization failures may occur. You can avoid this by increasing max_pred_locks_per_transaction,
max_pred_locks_per_relation, and/or max_pred_locks_per_page.

• A sequential scan will always necessitate a relation-level predicate lock. This can result in an in-
creased rate of serialization failures. It may be helpful to encourage the use of index scans by re-
ducing random_page_cost and/or increasing cpu_tuple_cost. Be sure to weigh any decrease in
transaction rollbacks and restarts against any overall change in query execution time.

The Serializable isolation level is implemented using a technique known in academic database literature
as Serializable Snapshot Isolation, which builds on Snapshot Isolation by adding checks for serialization
anomalies. Some differences in behavior and performance may be observed when compared with other
systems that use a traditional locking technique. Please see ports12 for detailed information.

13.3. Explicit Locking
PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes
can be used for application-controlled locking in situations where MVCC does not give the desired be-
havior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to ensure
that referenced tables are not dropped or modified in incompatible ways while the command executes.
(For example, TRUNCATE cannot safely be executed concurrently with other operations on the same table,
so it obtains an ACCESS EXCLUSIVE lock on the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system view.
For more information on monitoring the status of the lock manager subsystem, refer to Chapter 27.

13.3.1. Table-Level Locks
The list below shows the available lock modes and the contexts in which they are used automatically
by PostgreSQL. You can also acquire any of these locks explicitly with the command LOCK. Remember
that all of these lock modes are table-level locks, even if the name contains the word “row”; the names
of the lock modes are historical. To some extent the names reflect the typical usage of each lock mode
— but the semantics are all the same. The only real difference between one lock mode and another is
the set of lock modes with which each conflicts (see Table 13.2). Two transactions cannot hold locks
of conflicting modes on the same table at the same time. (However, a transaction never conflicts with
itself. For example, it might acquire ACCESS EXCLUSIVE lock and later acquire ACCESS SHARE lock on
the same table.) Non-conflicting lock modes can be held concurrently by many transactions. Notice in
particular that some lock modes are self-conflicting (for example, an ACCESS EXCLUSIVE lock cannot be
held by more than one transaction at a time) while others are not self-conflicting (for example, an ACCESS
SHARE lock can be held by multiple transactions).

Table-Level Lock Modes

ACCESS SHARE (AccessShareLock)

Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query that
only reads a table and does not modify it will acquire this lock mode.

ROW SHARE (RowShareLock)

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT command acquires a lock of this mode on all tables on which one of the FOR UPDATE, FOR
NO KEY UPDATE, FOR SHARE, or FOR KEY SHARE options is specified (in addition to ACCESS SHARE locks
on any other tables that are referenced without any explicit FOR ... locking option).

ROW EXCLUSIVE (RowExclusiveLock)

Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

454

Concurrency Control

The commands UPDATE, DELETE, INSERT, and MERGE acquire this lock mode on the target table (in
addition to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will be
acquired by any command that modifies data in a table.

SHARE UPDATE EXCLUSIVE (ShareUpdateExclusiveLock)

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE lock modes. This mode protects a table against concurrent schema changes and VACUUM
runs.

Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX CONCURRENTLY, CREATE STATISTICS,
COMMENT ON, REINDEX CONCURRENTLY, and certain ALTER INDEX and ALTER TABLE variants (for full
details see the documentation of these commands).

SHARE (ShareLock)

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE,
and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent data changes.

Acquired by CREATE INDEX (without CONCURRENTLY).

SHARE ROW EXCLUSIVE (ShareRowExclusiveLock)

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EX-
CLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent data
changes, and is self-exclusive so that only one session can hold it at a time.

Acquired by CREATE TRIGGER and some forms of ALTER TABLE.

EXCLUSIVE (ExclusiveLock)

Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EX-
CLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode allows only concurrent ACCESS
SHARE locks, i.e., only reads from the table can proceed in parallel with a transaction holding this
lock mode.

Acquired by REFRESH MATERIALIZED VIEW CONCURRENTLY.

ACCESS EXCLUSIVE (AccessExclusiveLock)

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EX-
CLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE). This mode guarantees
that the holder is the only transaction accessing the table in any way.

Acquired by the DROP TABLE, TRUNCATE, REINDEX, CLUSTER, VACUUM FULL, and REFRESH MATERIALIZED
VIEW (without CONCURRENTLY) commands. Many forms of ALTER INDEX and ALTER TABLE also acquire
a lock at this level. This is also the default lock mode for LOCK TABLE statements that do not specify
a mode explicitly.

Tip
Only an ACCESS EXCLUSIVE lock blocks a SELECT (without FOR UPDATE/SHARE) statement.

Once acquired, a lock is normally held until the end of the transaction. But if a lock is acquired after
establishing a savepoint, the lock is released immediately if the savepoint is rolled back to. This is con-
sistent with the principle that ROLLBACK cancels all effects of the commands since the savepoint. The
same holds for locks acquired within a PL/pgSQL exception block: an error escape from the block re-
leases locks acquired within it.

455

Concurrency Control

Table 13.2. Conflicting Lock Modes

Existing Lock ModeRequested
Lock Mode ACCESS

SHARE
ROW
SHARE

ROW EX-
CL.

SHARE
UPDATE
EXCL.

SHARE SHARE
ROW EX-
CL.

EXCL. ACCESS
EXCL.

ACCESS
SHARE

 X

ROW SHARE X X
ROW EXCL. X X X X
SHARE UP-
DATE EXCL.

 X X X X X

SHARE X X X X X
SHARE ROW
EXCL.

 X X X X X X

EXCL. X X X X X X X
ACCESS EX-
CL.

X X X X X X X X

13.3.2. Row-Level Locks
In addition to table-level locks, there are row-level locks, which are listed as below with the contexts
in which they are used automatically by PostgreSQL. See Table 13.3 for a complete table of row-level
lock conflicts. Note that a transaction can hold conflicting locks on the same row, even in different
subtransactions; but other than that, two transactions can never hold conflicting locks on the same row.
Row-level locks do not affect data querying; they block only writers and lockers to the same row. Row-
level locks are released at transaction end or during savepoint rollback, just like table-level locks.

Row-Level Lock Modes

FOR UPDATE

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update.
This prevents them from being locked, modified or deleted by other transactions until the current
transaction ends. That is, other transactions that attempt UPDATE, DELETE, SELECT FOR UPDATE,
SELECT FOR NO KEY UPDATE, SELECT FOR SHARE or SELECT FOR KEY SHARE of these rows will be
blocked until the current transaction ends; conversely, SELECT FOR UPDATE will wait for a concurrent
transaction that has run any of those commands on the same row, and will then lock and return
the updated row (or no row, if the row was deleted). Within a REPEATABLE READ or SERIALIZABLE
transaction, however, an error will be thrown if a row to be locked has changed since the transaction
started. For further discussion see Section 13.4.

The FOR UPDATE lock mode is also acquired by any DELETE on a row, and also by an UPDATE that
modifies the values of certain columns. Currently, the set of columns considered for the UPDATE case
are those that have a unique index on them that can be used in a foreign key (so partial indexes and
expressional indexes are not considered), but this may change in the future.

FOR NO KEY UPDATE

Behaves similarly to FOR UPDATE, except that the lock acquired is weaker: this lock will not block
SELECT FOR KEY SHARE commands that attempt to acquire a lock on the same rows. This lock mode
is also acquired by any UPDATE that does not acquire a FOR UPDATE lock.

FOR SHARE

Behaves similarly to FOR NO KEY UPDATE, except that it acquires a shared lock rather than exclusive
lock on each retrieved row. A shared lock blocks other transactions from performing UPDATE, DELETE,

456

Concurrency Control

SELECT FOR UPDATE or SELECT FOR NO KEY UPDATE on these rows, but it does not prevent them from
performing SELECT FOR SHARE or SELECT FOR KEY SHARE.

FOR KEY SHARE

Behaves similarly to FOR SHARE, except that the lock is weaker: SELECT FOR UPDATE is blocked, but
not SELECT FOR NO KEY UPDATE. A key-shared lock blocks other transactions from performing DELETE
or any UPDATE that changes the key values, but not other UPDATE, and neither does it prevent SELECT
FOR NO KEY UPDATE, SELECT FOR SHARE, or SELECT FOR KEY SHARE.

PostgreSQL doesn't remember any information about modified rows in memory, so there is no limit on
the number of rows locked at one time. However, locking a row might cause a disk write, e.g., SELECT
FOR UPDATE modifies selected rows to mark them locked, and so will result in disk writes.

Table 13.3. Conflicting Row-Level Locks

Current Lock ModeRequested Lock Mode
FOR KEY
SHARE

FOR SHARE FOR NO KEY
UPDATE

FOR UPDATE

FOR KEY SHARE X
FOR SHARE X X
FOR NO KEY UPDATE X X X
FOR UPDATE X X X X

13.3.3. Page-Level Locks
In addition to table and row locks, page-level share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a row is fetched
or updated. Application developers normally need not be concerned with page-level locks, but they are
mentioned here for completeness.

13.3.4. Deadlocks
The use of explicit locking can increase the likelihood of deadlocks, wherein two (or more) transactions
each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock on table A
and then tries to acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked
table B and now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL auto-
matically detects deadlock situations and resolves them by aborting one of the transactions involved,
allowing the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and
should not be relied upon.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if
explicit locking is not used). Consider the case in which two concurrent transactions modify a table. The
first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second transac-
tion executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The first UPDATE statement successfully acquires a row-level lock on the specified row, so it succeeds in
updating that row. However, the second UPDATE statement finds that the row it is attempting to update
has already been locked, so it waits for the transaction that acquired the lock to complete. Transaction
two is now waiting on transaction one to complete before it continues execution. Now, transaction one
executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

457

Concurrency Control

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction two
already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is blocked
on transaction two, and transaction two is blocked on transaction one: a deadlock condition. PostgreSQL
will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. In the example above, if both
transactions had updated the rows in the same order, no deadlock would have occurred. One should also
ensure that the first lock acquired on an object in a transaction is the most restrictive mode that will be
needed for that object. If it is not feasible to verify this in advance, then deadlocks can be handled on-
the-fly by retrying transactions that abort due to deadlocks.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

13.3.5. Advisory Locks
PostgreSQL provides a means for creating locks that have application-defined meanings. These are
called advisory locks, because the system does not enforce their use — it is up to the application to
use them correctly. Advisory locks can be useful for locking strategies that are an awkward fit for the
MVCC model. For example, a common use of advisory locks is to emulate pessimistic locking strategies
typical of so-called “flat file” data management systems. While a flag stored in a table could be used for
the same purpose, advisory locks are faster, avoid table bloat, and are automatically cleaned up by the
server at the end of the session.

There are two ways to acquire an advisory lock in PostgreSQL: at session level or at transaction level.
Once acquired at session level, an advisory lock is held until explicitly released or the session ends.
Unlike standard lock requests, session-level advisory lock requests do not honor transaction semantics:
a lock acquired during a transaction that is later rolled back will still be held following the rollback,
and likewise an unlock is effective even if the calling transaction fails later. A lock can be acquired
multiple times by its owning process; for each completed lock request there must be a corresponding
unlock request before the lock is actually released. Transaction-level lock requests, on the other hand,
behave more like regular lock requests: they are automatically released at the end of the transaction,
and there is no explicit unlock operation. This behavior is often more convenient than the session-level
behavior for short-term usage of an advisory lock. Session-level and transaction-level lock requests for
the same advisory lock identifier will block each other in the expected way. If a session already holds a
given advisory lock, additional requests by it will always succeed, even if other sessions are awaiting the
lock; this statement is true regardless of whether the existing lock hold and new request are at session
level or transaction level.

Like all locks in PostgreSQL, a complete list of advisory locks currently held by any session can be found
in the pg_locks system view.

Both advisory locks and regular locks are stored in a shared memory pool whose size is defined by
the configuration variables max_locks_per_transaction and max_connections. Care must be taken not to
exhaust this memory or the server will be unable to grant any locks at all. This imposes an upper limit
on the number of advisory locks grantable by the server, typically in the tens to hundreds of thousands
depending on how the server is configured.

In certain cases using advisory locking methods, especially in queries involving explicit ordering and
LIMIT clauses, care must be taken to control the locks acquired because of the order in which SQL
expressions are evaluated. For example:

SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger!
SELECT pg_advisory_lock(q.id) FROM
(
 SELECT id FROM foo WHERE id > 12345 LIMIT 100
) q; -- ok

458

Concurrency Control

In the above queries, the second form is dangerous because the LIMIT is not guaranteed to be applied
before the locking function is executed. This might cause some locks to be acquired that the application
was not expecting, and hence would fail to release (until it ends the session). From the point of view of
the application, such locks would be dangling, although still viewable in pg_locks.

The functions provided to manipulate advisory locks are described in Section 9.28.10.

13.4. Data Consistency Checks at the Application Level
It is very difficult to enforce business rules regarding data integrity using Read Committed transactions
because the view of the data is shifting with each statement, and even a single statement may not restrict
itself to the statement's snapshot if a write conflict occurs.

While a Repeatable Read transaction has a stable view of the data throughout its execution, there is
a subtle issue with using MVCC snapshots for data consistency checks, involving something known as
read/write conflicts. If one transaction writes data and a concurrent transaction attempts to read the
same data (whether before or after the write), it cannot see the work of the other transaction. The reader
then appears to have executed first regardless of which started first or which committed first. If that is
as far as it goes, there is no problem, but if the reader also writes data which is read by a concurrent
transaction there is now a transaction which appears to have run before either of the previously men-
tioned transactions. If the transaction which appears to have executed last actually commits first, it is
very easy for a cycle to appear in a graph of the order of execution of the transactions. When such a
cycle appears, integrity checks will not work correctly without some help.

As mentioned in Section 13.2.3, Serializable transactions are just Repeatable Read transactions which
add nonblocking monitoring for dangerous patterns of read/write conflicts. When a pattern is detected
which could cause a cycle in the apparent order of execution, one of the transactions involved is rolled
back to break the cycle.

13.4.1. Enforcing Consistency with Serializable Transactions
If the Serializable transaction isolation level is used for all writes and for all reads which need a consistent
view of the data, no other effort is required to ensure consistency. Software from other environments
which is written to use serializable transactions to ensure consistency should “just work” in this regard
in PostgreSQL.

When using this technique, it will avoid creating an unnecessary burden for application programmers if
the application software goes through a framework which automatically retries transactions which are
rolled back with a serialization failure. It may be a good idea to set default_transaction_isolation
to serializable. It would also be wise to take some action to ensure that no other transaction isolation
level is used, either inadvertently or to subvert integrity checks, through checks of the transaction iso-
lation level in triggers.

See Section 13.2.3 for performance suggestions.

Warning: Serializable Transactions and Data Replication
This level of integrity protection using Serializable transactions does not yet extend to hot standby
mode (Section 26.4) or logical replicas. Because of that, those using hot standby or logical repli-
cation may want to use Repeatable Read and explicit locking on the primary.

13.4.2. Enforcing Consistency with Explicit Blocking Locks
When non-serializable writes are possible, to ensure the current validity of a row and protect it against
concurrent updates one must use SELECT FOR UPDATE, SELECT FOR SHARE, or an appropriate LOCK TABLE
statement. (SELECT FOR UPDATE and SELECT FOR SHARE lock just the returned rows against concurrent
updates, while LOCK TABLE locks the whole table.) This should be taken into account when porting
applications to PostgreSQL from other environments.

459

Concurrency Control

Also of note to those converting from other environments is the fact that SELECT FOR UPDATE does not
ensure that a concurrent transaction will not update or delete a selected row. To do that in PostgreSQL
you must actually update the row, even if no values need to be changed. SELECT FOR UPDATE temporarily
blocks other transactions from acquiring the same lock or executing an UPDATE or DELETE which would
affect the locked row, but once the transaction holding this lock commits or rolls back, a blocked trans-
action will proceed with the conflicting operation unless an actual UPDATE of the row was performed
while the lock was held.

Global validity checks require extra thought under non-serializable MVCC. For example, a banking ap-
plication might wish to check that the sum of all credits in one table equals the sum of debits in another
table, when both tables are being actively updated. Comparing the results of two successive SELECT
sum(...) commands will not work reliably in Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single repeatable
read transaction will give an accurate picture of only the effects of transactions that committed before
the repeatable read transaction started — but one might legitimately wonder whether the answer is still
relevant by the time it is delivered. If the repeatable read transaction itself applied some changes before
trying to make the consistency check, the usefulness of the check becomes even more debatable, since
now it includes some but not all post-transaction-start changes. In such cases a careful person might
wish to lock all tables needed for the check, in order to get an indisputable picture of current reality.
A SHARE mode (or higher) lock guarantees that there are no uncommitted changes in the locked table,
other than those of the current transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should either use
Read Committed mode, or in Repeatable Read mode be careful to obtain locks before performing queries.
A lock obtained by a repeatable read transaction guarantees that no other transactions modifying the
table are still running, but if the snapshot seen by the transaction predates obtaining the lock, it might
predate some now-committed changes in the table. A repeatable read transaction's snapshot is actually
frozen at the start of its first query or data-modification command (SELECT, INSERT, UPDATE, DELETE, or
MERGE), so it is possible to obtain locks explicitly before the snapshot is frozen.

13.5. Serialization Failure Handling
Both Repeatable Read and Serializable isolation levels can produce errors that are designed to prevent
serialization anomalies. As previously stated, applications using these levels must be prepared to retry
transactions that fail due to serialization errors. Such an error's message text will vary according to the
precise circumstances, but it will always have the SQLSTATE code 40001 (serialization_failure).

It may also be advisable to retry deadlock failures. These have the SQLSTATE code 40P01 (deadlock_de-
tected).

In some cases it is also appropriate to retry unique-key failures, which have SQLSTATE code 23505
(unique_violation), and exclusion constraint failures, which have SQLSTATE code 23P01 (exclu-
sion_violation). For example, if the application selects a new value for a primary key column after
inspecting the currently stored keys, it could get a unique-key failure because another application in-
stance selected the same new key concurrently. This is effectively a serialization failure, but the server
will not detect it as such because it cannot “see” the connection between the inserted value and the
previous reads. There are also some corner cases in which the server will issue a unique-key or exclusion
constraint error even though in principle it has enough information to determine that a serialization
problem is the underlying cause. While it's recommendable to just retry serialization_failure errors
unconditionally, more care is needed when retrying these other error codes, since they might represent
persistent error conditions rather than transient failures.

It is important to retry the complete transaction, including all logic that decides which SQL to issue and/
or which values to use. Therefore, PostgreSQL does not offer an automatic retry facility, since it cannot
do so with any guarantee of correctness.

Transaction retry does not guarantee that the retried transaction will complete; multiple retries may be
needed. In cases with very high contention, it is possible that completion of a transaction may take many

460

Concurrency Control

attempts. In cases involving a conflicting prepared transaction, it may not be possible to make progress
until the prepared transaction commits or rolls back.

13.6. Caveats
Some DDL commands, currently only TRUNCATE and the table-rewriting forms of ALTER TABLE, are not
MVCC-safe. This means that after the truncation or rewrite commits, the table will appear empty to
concurrent transactions, if they are using a snapshot taken before the DDL command committed. This
will only be an issue for a transaction that did not access the table in question before the DDL command
started — any transaction that has done so would hold at least an ACCESS SHARE table lock, which
would block the DDL command until that transaction completes. So these commands will not cause any
apparent inconsistency in the table contents for successive queries on the target table, but they could
cause visible inconsistency between the contents of the target table and other tables in the database.

Support for the Serializable transaction isolation level has not yet been added to hot standby replication
targets (described in Section 26.4). The strictest isolation level currently supported in hot standby mode
is Repeatable Read. While performing all permanent database writes within Serializable transactions
on the primary will ensure that all standbys will eventually reach a consistent state, a Repeatable Read
transaction run on the standby can sometimes see a transient state that is inconsistent with any serial
execution of the transactions on the primary.

Internal access to the system catalogs is not done using the isolation level of the current transaction. This
means that newly created database objects such as tables are visible to concurrent Repeatable Read and
Serializable transactions, even though the rows they contain are not. In contrast, queries that explicitly
examine the system catalogs don't see rows representing concurrently created database objects, in the
higher isolation levels.

13.7. Locking and Indexes
Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL. The various index
types are handled as follows:
B-tree, GiST and SP-GiST indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released im-
mediately after each index row is fetched or inserted. These index types provide the highest concur-
rency without deadlock conditions.

Hash indexes
Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after the
whole bucket is processed. Bucket-level locks provide better concurrency than index-level ones, but
deadlock is possible since the locks are held longer than one index operation.

GIN indexes
Short-term share/exclusive page-level locks are used for read/write access. Locks are released im-
mediately after each index row is fetched or inserted. But note that insertion of a GIN-indexed value
usually produces several index key insertions per row, so GIN might do substantial work for a single
value's insertion.

Currently, B-tree indexes offer the best performance for concurrent applications; since they also have
more features than hash indexes, they are the recommended index type for concurrent applications that
need to index scalar data. When dealing with non-scalar data, B-trees are not useful, and GiST, SP-GiST
or GIN indexes should be used instead.

461

Chapter 14. Performance Tips
Query performance can be affected by many things. Some of these can be controlled by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

14.1. Using EXPLAIN
PostgreSQL devises a query plan for each query it receives. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance, so the system in-
cludes a complex planner that tries to choose good plans. You can use the EXPLAIN command to see what
query plan the planner creates for any query. Plan-reading is an art that requires some experience to
master, but this section attempts to cover the basics.

Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE,
using v18 development sources. You should be able to get similar results if you try the examples yourself,
but your estimated costs and row counts might vary slightly because ANALYZE's statistics are random
samples rather than exact, and because costs are inherently somewhat platform-dependent.

The examples use EXPLAIN's default “text” output format, which is compact and convenient for humans
to read. If you want to feed EXPLAIN's output to a program for further analysis, you should use one of its
machine-readable output formats (XML, JSON, or YAML) instead.

14.1.1. EXPLAIN Basics
The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are scan
nodes: they return raw rows from a table. There are different types of scan nodes for different table
access methods: sequential scans, index scans, and bitmap index scans. There are also non-table row
sources, such as VALUES clauses and set-returning functions in FROM, which have their own scan node
types. If the query requires joining, aggregation, sorting, or other operations on the raw rows, then there
will be additional nodes above the scan nodes to perform these operations. Again, there is usually more
than one possible way to do these operations, so different node types can appear here too. The output of
EXPLAIN has one line for each node in the plan tree, showing the basic node type plus the cost estimates
that the planner made for the execution of that plan node. Additional lines might appear, indented from
the node's summary line, to show additional properties of the node. The very first line (the summary
line for the topmost node) has the estimated total execution cost for the plan; it is this number that the
planner seeks to minimize.

Here is a trivial example, just to show what the output looks like:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)

Since this query has no WHERE clause, it must scan all the rows of the table, so the planner has chosen
to use a simple sequential scan plan. The numbers that are quoted in parentheses are (left to right):

• Estimated start-up cost. This is the time expended before the output phase can begin, e.g., time to
do the sorting in a sort node.

• Estimated total cost. This is stated on the assumption that the plan node is run to completion, i.e.,
all available rows are retrieved. In practice a node's parent node might stop short of reading all
available rows (see the LIMIT example below).

• Estimated number of rows output by this plan node. Again, the node is assumed to be run to com-
pletion.

• Estimated average width of rows output by this plan node (in bytes).

462

Performance Tips

The costs are measured in arbitrary units determined by the planner's cost parameters (see Sec-
tion 19.7.2). Traditional practice is to measure the costs in units of disk page fetches; that is, se-
q_page_cost is conventionally set to 1.0 and the other cost parameters are set relative to that. The ex-
amples in this section are run with the default cost parameters.

It's important to understand that the cost of an upper-level node includes the cost of all its child nodes.
It's also important to realize that the cost only reflects things that the planner cares about. In particular,
the cost does not consider the time spent to convert output values to text form or to transmit them to
the client, which could be important factors in the real elapsed time; but the planner ignores those costs
because it cannot change them by altering the plan. (Every correct plan will output the same row set,
we trust.)

The rows value is a little tricky because it is not the number of rows processed or scanned by the plan
node, but rather the number emitted by the node. This is often less than the number scanned, as a result
of filtering by any WHERE-clause conditions that are being applied at the node. Ideally the top-level rows
estimate will approximate the number of rows actually returned, updated, or deleted by the query.

Returning to our example:
EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)

These numbers are derived very straightforwardly. If you do:
SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

you will find that tenk1 has 345 disk pages and 10000 rows. The estimated cost is computed as (disk
pages read * seq_page_cost) + (rows scanned * cpu_tuple_cost). By default, seq_page_cost is 1.0 and
cpu_tuple_cost is 0.01, so the estimated cost is (345 * 1.0) + (10000 * 0.01) = 445.

Now let's modify the query to add a WHERE condition:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..470.00 rows=7000 width=244)
 Filter: (unique1 < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition attached to
the Seq Scan plan node. This means that the plan node checks the condition for each row it scans, and
outputs only the ones that pass the condition. The estimate of output rows has been reduced because of
the WHERE clause. However, the scan will still have to visit all 10000 rows, so the cost hasn't decreased;
in fact it has gone up a bit (by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU time
spent checking the WHERE condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate.
If you try to duplicate this experiment, you may well get a slightly different estimate; moreover, it can
change after each ANALYZE command, because the statistics produced by ANALYZE are taken from a
randomized sample of the table.

Now, let's make the condition more restrictive:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.06..224.98 rows=100 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100 width=0)

463

Performance Tips

 Index Cond: (unique1 < 100)

Here the planner has decided to use a two-step plan: the child plan node visits an index to find the
locations of rows matching the index condition, and then the upper plan node actually fetches those rows
from the table itself. Fetching rows separately is much more expensive than reading them sequentially,
but because not all the pages of the table have to be visited, this is still cheaper than a sequential scan.
(The reason for using two plan levels is that the upper plan node sorts the row locations identified by the
index into physical order before reading them, to minimize the cost of separate fetches. The “bitmap”
mentioned in the node names is the mechanism that does the sorting.)

Now let's add another condition to the WHERE clause:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.04..225.20 rows=1 width=244)
 Recheck Cond: (unique1 < 100)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100 width=0)
 Index Cond: (unique1 < 100)

The added condition stringu1 = 'xxx' reduces the output row count estimate, but not the cost because
we still have to visit the same set of rows. That's because the stringu1 clause cannot be applied as an
index condition, since this index is only on the unique1 column. Instead it is applied as a filter on the
rows retrieved using the index. Thus the cost has actually gone up slightly to reflect this extra checking.

In some cases the planner will prefer a “simple” index scan plan:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

 QUERY PLAN

 Index Scan using tenk1_unique1 on tenk1 (cost=0.29..8.30 rows=1 width=244)
 Index Cond: (unique1 = 42)

In this type of plan the table rows are fetched in index order, which makes them even more expensive
to read, but there are so few that the extra cost of sorting the row locations is not worth it. You'll most
often see this plan type for queries that fetch just a single row. It's also often used for queries that have
an ORDER BY condition that matches the index order, because then no extra sorting step is needed to
satisfy the ORDER BY. In this example, adding ORDER BY unique1 would use the same plan because the
index already implicitly provides the requested ordering.

The planner may implement an ORDER BY clause in several ways. The above example shows that such an
ordering clause may be implemented implicitly. The planner may also add an explicit Sort step:
EXPLAIN SELECT * FROM tenk1 ORDER BY unique1;

 QUERY PLAN

 Sort (cost=1109.39..1134.39 rows=10000 width=244)
 Sort Key: unique1
 -> Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)

If a part of the plan guarantees an ordering on a prefix of the required sort keys, then the planner may
instead decide to use an Incremental Sort step:
EXPLAIN SELECT * FROM tenk1 ORDER BY hundred, ten LIMIT 100;

 QUERY PLAN

 Limit (cost=19.35..39.49 rows=100 width=244)

464

Performance Tips

 -> Incremental Sort (cost=19.35..2033.39 rows=10000 width=244)
 Sort Key: hundred, ten
 Presorted Key: hundred
 -> Index Scan using tenk1_hundred on tenk1 (cost=0.29..1574.20 rows=10000
 width=244)

Compared to regular sorts, sorting incrementally allows returning tuples before the entire result set has
been sorted, which particularly enables optimizations with LIMIT queries. It may also reduce memory
usage and the likelihood of spilling sorts to disk, but it comes at the cost of the increased overhead of
splitting the result set into multiple sorting batches.

If there are separate indexes on several of the columns referenced in WHERE, the planner might choose
to use an AND or OR combination of the indexes:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=25.07..60.11 rows=10 width=244)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 -> BitmapAnd (cost=25.07..25.07 rows=10 width=0)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100 width=0)
 Index Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
 Index Cond: (unique2 > 9000)

But this requires visiting both indexes, so it's not necessarily a win compared to using just one index
and treating the other condition as a filter. If you vary the ranges involved you'll see the plan change
accordingly.

Here is an example showing the effects of LIMIT:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN

 Limit (cost=0.29..14.28 rows=2 width=244)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..70.27 rows=10 width=244)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)

This is the same query as above, but we added a LIMIT so that not all the rows need be retrieved, and
the planner changed its mind about what to do. Notice that the total cost and row count of the Index
Scan node are shown as if it were run to completion. However, the Limit node is expected to stop after
retrieving only a fifth of those rows, so its total cost is only a fifth as much, and that's the actual estimated
cost of the query. This plan is preferred over adding a Limit node to the previous plan because the Limit
could not avoid paying the startup cost of the bitmap scan, so the total cost would be something over
25 units with that approach.

Let's try joining two tables, using the columns we have been discussing:
EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.65..118.50 rows=10 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.38 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)

465

Performance Tips

 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.90 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

In this plan, we have a nested-loop join node with two table scans as inputs, or children. The indentation
of the node summary lines reflects the plan tree structure. The join's first, or “outer”, child is a bitmap
scan similar to those we saw before. Its cost and row count are the same as we'd get from SELECT ...
WHERE unique1 < 10 because we are applying the WHERE clause unique1 < 10 at that node. The
t1.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect the row count of the outer
scan. The nested-loop join node will run its second, or “inner” child once for each row obtained from
the outer child. Column values from the current outer row can be plugged into the inner scan; here, the
t1.unique2 value from the outer row is available, so we get a plan and costs similar to what we saw
above for a simple SELECT ... WHERE t2.unique2 = constant case. (The estimated cost is actually a
bit lower than what was seen above, as a result of caching that's expected to occur during the repeated
index scans on t2.) The costs of the loop node are then set on the basis of the cost of the outer scan,
plus one repetition of the inner scan for each outer row (10 * 7.90, here), plus a little CPU time for join
processing.

In this example the join's output row count is the same as the product of the two scans' row counts, but
that's not true in all cases because there can be additional WHERE clauses that mention both tables and
so can only be applied at the join point, not to either input scan. Here's an example:
EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;

 QUERY PLAN

 Nested Loop (cost=4.65..49.36 rows=33 width=488)
 Join Filter: (t1.hundred < t2.hundred)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.38 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Materialize (cost=0.29..8.51 rows=10 width=244)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10
 width=244)
 Index Cond: (unique2 < 10)

The condition t1.hundred < t2.hundred can't be tested in the tenk2_unique2 index, so it's applied
at the join node. This reduces the estimated output row count of the join node, but does not change
either input scan.

Notice that here the planner has chosen to “materialize” the inner relation of the join, by putting a
Materialize plan node atop it. This means that the t2 index scan will be done just once, even though
the nested-loop join node needs to read that data ten times, once for each row from the outer relation.
The Materialize node saves the data in memory as it's read, and then returns the data from memory
on each subsequent pass.

When dealing with outer joins, you might see join plan nodes with both “Join Filter” and plain “Filter”
conditions attached. Join Filter conditions come from the outer join's ON clause, so a row that fails the
Join Filter condition could still get emitted as a null-extended row. But a plain Filter condition is applied
after the outer-join rules and so acts to remove rows unconditionally. In an inner join there is no semantic
difference between these types of filters.

If we change the query's selectivity a bit, we might get a very different join plan:
EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

466

Performance Tips

 QUERY PLAN

 Hash Join (cost=226.23..709.73 rows=100 width=488)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
 -> Hash (cost=224.98..224.98 rows=100 width=244)
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.06..224.98 rows=100 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100
 width=0)
 Index Cond: (unique1 < 100)

Here, the planner has chosen to use a hash join, in which rows of one table are entered into an in-memory
hash table, after which the other table is scanned and the hash table is probed for matches to each row.
Again note how the indentation reflects the plan structure: the bitmap scan on tenk1 is the input to the
Hash node, which constructs the hash table. That's then returned to the Hash Join node, which reads
rows from its outer child plan and searches the hash table for each one.

Another possible type of join is a merge join, illustrated here:
EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Merge Join (cost=0.56..233.49 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..643.28 rows=100
 width=244)
 Filter: (unique1 < 100)
 -> Index Scan using onek_unique2 on onek t2 (cost=0.28..166.28 rows=1000
 width=244)

Merge join requires its input data to be sorted on the join keys. In this example each input is sorted by
using an index scan to visit the rows in the correct order; but a sequential scan and sort could also be
used. (Sequential-scan-and-sort frequently beats an index scan for sorting many rows, because of the
nonsequential disk access required by the index scan.)

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was
the cheapest, using the enable/disable flags described in Section 19.7.1. (This is a crude tool, but useful.
See also Section 14.3.) For example, if we're unconvinced that merge join is the best join type for the
previous example, we could try
SET enable_mergejoin = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Hash Join (cost=226.23..344.08 rows=10 width=488)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on onek t2 (cost=0.00..114.00 rows=1000 width=244)
 -> Hash (cost=224.98..224.98 rows=100 width=244)
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.06..224.98 rows=100 width=244)

467

Performance Tips

 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100
 width=0)
 Index Cond: (unique1 < 100)

which shows that the planner thinks that hash join would be nearly 50% more expensive than merge
join for this case. Of course, the next question is whether it's right about that. We can investigate that
using EXPLAIN ANALYZE, as discussed below.

When using the enable/disable flags to disable plan node types, many of the flags only discourage the
use of the corresponding plan node and don't outright disallow the planner's ability to use the plan node
type. This is by design so that the planner still maintains the ability to form a plan for a given query.
When the resulting plan contains a disabled node, the EXPLAIN output will indicate this fact.
SET enable_seqscan = off;
EXPLAIN SELECT * FROM unit;

 QUERY PLAN

 Seq Scan on unit (cost=0.00..21.30 rows=1130 width=44)
 Disabled: true

Because the unit table has no indexes, there is no other means to read the table data, so the sequential
scan is the only option available to the query planner.

Some query plans involve subplans, which arise from sub-SELECTs in the original query. Such queries
can sometimes be transformed into ordinary join plans, but when they cannot be, we get plans like:
EXPLAIN VERBOSE SELECT unique1
FROM tenk1 t
WHERE t.ten < ALL (SELECT o.ten FROM onek o WHERE o.four = t.four);

 QUERY PLAN

 Seq Scan on public.tenk1 t (cost=0.00..586095.00 rows=5000 width=4)
 Output: t.unique1
 Filter: (ALL (t.ten < (SubPlan 1).col1))
 SubPlan 1
 -> Seq Scan on public.onek o (cost=0.00..116.50 rows=250 width=4)
 Output: o.ten
 Filter: (o.four = t.four)

This rather artificial example serves to illustrate a couple of points: values from the outer plan level
can be passed down into a subplan (here, t.four is passed down) and the results of the sub-select
are available to the outer plan. Those result values are shown by EXPLAIN with notations like (sub-
plan_name).colN, which refers to the N'th output column of the sub-SELECT.

In the example above, the ALL operator runs the subplan again for each row of the outer query (which
accounts for the high estimated cost). Some queries can use a hashed subplan to avoid that:
EXPLAIN SELECT *
FROM tenk1 t
WHERE t.unique1 NOT IN (SELECT o.unique1 FROM onek o);

 QUERY PLAN

 Seq Scan on tenk1 t (cost=61.77..531.77 rows=5000 width=244)
 Filter: (NOT (ANY (unique1 = (hashed SubPlan 1).col1)))
 SubPlan 1
 -> Index Only Scan using onek_unique1 on onek o (cost=0.28..59.27 rows=1000
 width=4)

468

Performance Tips

(4 rows)

Here, the subplan is run a single time and its output is loaded into an in-memory hash table, which is
then probed by the outer ANY operator. This requires that the sub-SELECT not reference any variables of
the outer query, and that the ANY's comparison operator be amenable to hashing.

If, in addition to not referencing any variables of the outer query, the sub-SELECT cannot return more
than one row, it may instead be implemented as an initplan:

EXPLAIN VERBOSE SELECT unique1
FROM tenk1 t1 WHERE t1.ten = (SELECT (random() * 10)::integer);

 QUERY PLAN
--
 Seq Scan on public.tenk1 t1 (cost=0.02..470.02 rows=1000 width=4)
 Output: t1.unique1
 Filter: (t1.ten = (InitPlan 1).col1)
 InitPlan 1
 -> Result (cost=0.00..0.02 rows=1 width=4)
 Output: ((random() * '10'::double precision))::integer

An initplan is run only once per execution of the outer plan, and its results are saved for re-use in later
rows of the outer plan. So in this example random() is evaluated only once and all the values of t1.ten
are compared to the same randomly-chosen integer. That's quite different from what would happen
without the sub-SELECT construct.

14.1.2. EXPLAIN ANALYZE
It is possible to check the accuracy of the planner's estimates by using EXPLAIN's ANALYZE option. With
this option, EXPLAIN actually executes the query, and then displays the true row counts and true run
time accumulated within each plan node, along with the same estimates that a plain EXPLAIN shows. For
example, we might get a result like this:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN

--
 Nested Loop (cost=4.65..118.50 rows=10 width=488) (actual time=0.017..0.051
 rows=10.00 loops=1)
 Buffers: shared hit=36 read=6
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.38 rows=10 width=244) (actual
 time=0.009..0.017 rows=10.00 loops=1)
 Recheck Cond: (unique1 < 10)
 Heap Blocks: exact=10
 Buffers: shared hit=3 read=5 written=4
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 (actual time=0.004..0.004 rows=10.00 loops=1)
 Index Cond: (unique1 < 10)
 Index Searches: 1
 Buffers: shared hit=2
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.90 rows=1 width=244)
 (actual time=0.003..0.003 rows=1.00 loops=10)
 Index Cond: (unique2 = t1.unique2)
 Index Searches: 10
 Buffers: shared hit=24 read=6
 Planning:
 Buffers: shared hit=15 dirtied=9

469

Performance Tips

 Planning Time: 0.485 ms
 Execution Time: 0.073 ms

Note that the “actual time” values are in milliseconds of real time, whereas the cost estimates are
expressed in arbitrary units; so they are unlikely to match up. The thing that's usually most important
to look for is whether the estimated row counts are reasonably close to reality. In this example the
estimates were all dead-on, but that's quite unusual in practice.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the
inner index scan will be executed once per outer row in the above nested-loop plan. In such cases, the
loops value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that the
cost estimates are shown. Multiply by the loops value to get the total time actually spent in the node.
In the above example, we spent a total of 0.030 milliseconds executing the index scans on tenk2.

In some cases EXPLAIN ANALYZE shows additional execution statistics beyond the plan node execution
times and row counts. For example, Sort and Hash nodes provide extra information:
EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;

 QUERY PLAN

 Sort (cost=713.05..713.30 rows=100 width=488) (actual time=2.995..3.002 rows=100.00
 loops=1)
 Sort Key: t1.fivethous
 Sort Method: quicksort Memory: 74kB
 Buffers: shared hit=440
 -> Hash Join (cost=226.23..709.73 rows=100 width=488) (actual time=0.515..2.920
 rows=100.00 loops=1)
 Hash Cond: (t2.unique2 = t1.unique2)
 Buffers: shared hit=437
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual
 time=0.026..1.790 rows=10000.00 loops=1)
 Buffers: shared hit=345
 -> Hash (cost=224.98..224.98 rows=100 width=244) (actual time=0.476..0.477
 rows=100.00 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 35kB
 Buffers: shared hit=92
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.06..224.98 rows=100 width=244)
 (actual time=0.030..0.450 rows=100.00 loops=1)
 Recheck Cond: (unique1 < 100)
 Heap Blocks: exact=90
 Buffers: shared hit=92
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100
 width=0) (actual time=0.013..0.013 rows=100.00 loops=1)
 Index Cond: (unique1 < 100)
 Index Searches: 1
 Buffers: shared hit=2
 Planning:
 Buffers: shared hit=12
 Planning Time: 0.187 ms
 Execution Time: 3.036 ms

The Sort node shows the sort method used (in particular, whether the sort was in-memory or on-disk)
and the amount of memory or disk space needed. The Hash node shows the number of hash buckets
and batches as well as the peak amount of memory used for the hash table. (If the number of batches
exceeds one, there will also be disk space usage involved, but that is not shown.)

470

Performance Tips

Index Scan nodes (as well as Bitmap Index Scan and Index-Only Scan nodes) show an “Index Searches”
line that reports the total number of searches across all node executions/loops:
EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE thousand IN (1, 500, 700, 999);
 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=9.45..73.44 rows=40 width=244) (actual
 time=0.012..0.028 rows=40.00 loops=1)
 Recheck Cond: (thousand = ANY ('{1,500,700,999}'::integer[]))
 Heap Blocks: exact=39
 Buffers: shared hit=47
 -> Bitmap Index Scan on tenk1_thous_tenthous (cost=0.00..9.44 rows=40 width=0)
 (actual time=0.009..0.009 rows=40.00 loops=1)
 Index Cond: (thousand = ANY ('{1,500,700,999}'::integer[]))
 Index Searches: 4
 Buffers: shared hit=8
 Planning Time: 0.029 ms
 Execution Time: 0.034 ms

Here we see a Bitmap Index Scan node that needed 4 separate index searches. The scan had to search
the index from the tenk1_thous_tenthous index root page once per integer value from the predicate's
IN construct. However, the number of index searches often won't have such a simple correspondence
to the query predicate:
EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE thousand IN (1, 2, 3, 4);
 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=9.45..73.44 rows=40 width=244) (actual
 time=0.009..0.019 rows=40.00 loops=1)
 Recheck Cond: (thousand = ANY ('{1,2,3,4}'::integer[]))
 Heap Blocks: exact=38
 Buffers: shared hit=40
 -> Bitmap Index Scan on tenk1_thous_tenthous (cost=0.00..9.44 rows=40 width=0)
 (actual time=0.005..0.005 rows=40.00 loops=1)
 Index Cond: (thousand = ANY ('{1,2,3,4}'::integer[]))
 Index Searches: 1
 Buffers: shared hit=2
 Planning Time: 0.029 ms
 Execution Time: 0.026 ms

This variant of our IN query performed only 1 index search. It spent less time traversing the index
(compared to the original query) because its IN construct uses values matching index tuples stored next
to each other, on the same tenk1_thous_tenthous index leaf page.

The “Index Searches” line is also useful with B-tree index scans that apply the skip scan optimization
to more efficiently traverse through an index:
EXPLAIN ANALYZE SELECT four, unique1 FROM tenk1 WHERE four BETWEEN 1 AND 3 AND unique1
 = 42;
 QUERY PLAN

 Index Only Scan using tenk1_four_unique1_idx on tenk1 (cost=0.29..6.90 rows=1
 width=8) (actual time=0.006..0.007 rows=1.00 loops=1)
 Index Cond: ((four >= 1) AND (four <= 3) AND (unique1 = 42))
 Heap Fetches: 0
 Index Searches: 3
 Buffers: shared hit=7
 Planning Time: 0.029 ms

471

Performance Tips

 Execution Time: 0.012 ms

Here we see an Index-Only Scan node using tenk1_four_unique1_idx, a multi-column index on the
tenk1 table's four and unique1 columns. The scan performs 3 searches that each read a single index
leaf page: “four = 1 AND unique1 = 42”, “four = 2 AND unique1 = 42”, and “four = 3 AND unique1
= 42”. This index is generally a good target for skip scan, since, as discussed in Section 11.3, its leading
column (the four column) contains only 4 distinct values, while its second/final column (the unique1
column) contains many distinct values.

Another type of extra information is the number of rows removed by a filter condition:

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..470.00 rows=7000 width=244) (actual time=0.030..1.995
 rows=7000.00 loops=1)
 Filter: (ten < 7)
 Rows Removed by Filter: 3000
 Buffers: shared hit=345
 Planning Time: 0.102 ms
 Execution Time: 2.145 ms

These counts can be particularly valuable for filter conditions applied at join nodes. The “Rows Removed”
line only appears when at least one scanned row, or potential join pair in the case of a join node, is
rejected by the filter condition.

A case similar to filter conditions occurs with “lossy” index scans. For example, consider this search for
polygons containing a specific point:

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN

 Seq Scan on polygon_tbl (cost=0.00..1.09 rows=1 width=85) (actual time=0.023..0.023
 rows=0.00 loops=1)
 Filter: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Filter: 7
 Buffers: shared hit=1
 Planning Time: 0.039 ms
 Execution Time: 0.033 ms

The planner thinks (quite correctly) that this sample table is too small to bother with an index scan, so
we have a plain sequential scan in which all the rows got rejected by the filter condition. But if we force
an index scan to be used, we see:

SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN

 Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1 width=85) (actual
 time=0.074..0.074 rows=0.00 loops=1)
 Index Cond: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Index Recheck: 1
 Index Searches: 1
 Buffers: shared hit=1

472

Performance Tips

 Planning Time: 0.039 ms
 Execution Time: 0.098 ms

Here we can see that the index returned one candidate row, which was then rejected by a recheck of the
index condition. This happens because a GiST index is “lossy” for polygon containment tests: it actually
returns the rows with polygons that overlap the target, and then we have to do the exact containment
test on those rows.

EXPLAIN has a BUFFERS option which provides additional detail about I/O operations performed during
the planning and execution of the given query. The buffer numbers displayed show the count of the non-
distinct buffers hit, read, dirtied, and written for the given node and all of its child nodes. The ANALYZE
option implicitly enables the BUFFERS option. If this is undesired, BUFFERS may be explicitly disabled:
EXPLAIN (ANALYZE, BUFFERS OFF) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 >
 9000;

 QUERY PLAN

--
 Bitmap Heap Scan on tenk1 (cost=25.07..60.11 rows=10 width=244) (actual
 time=0.105..0.114 rows=10.00 loops=1)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 Heap Blocks: exact=10
 -> BitmapAnd (cost=25.07..25.07 rows=10 width=0) (actual time=0.100..0.101
 rows=0.00 loops=1)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100 width=0)
 (actual time=0.027..0.027 rows=100.00 loops=1)
 Index Cond: (unique1 < 100)
 Index Searches: 1
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
 (actual time=0.070..0.070 rows=999.00 loops=1)
 Index Cond: (unique2 > 9000)
 Index Searches: 1
 Planning Time: 0.162 ms
 Execution Time: 0.143 ms

Keep in mind that because EXPLAIN ANALYZE actually runs the query, any side-effects will happen as
usual, even though whatever results the query might output are discarded in favor of printing the EX-
PLAIN data. If you want to analyze a data-modifying query without changing your tables, you can roll
the command back afterwards, for example:
BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;

 QUERY PLAN

 Update on tenk1 (cost=5.06..225.23 rows=0 width=0) (actual time=1.634..1.635
 rows=0.00 loops=1)
 -> Bitmap Heap Scan on tenk1 (cost=5.06..225.23 rows=100 width=10) (actual
 time=0.065..0.141 rows=100.00 loops=1)
 Recheck Cond: (unique1 < 100)
 Heap Blocks: exact=90
 Buffers: shared hit=4 read=2
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=100 width=0)
 (actual time=0.031..0.031 rows=100.00 loops=1)
 Index Cond: (unique1 < 100)
 Index Searches: 1
 Buffers: shared read=2

473

Performance Tips

 Planning Time: 0.151 ms
 Execution Time: 1.856 ms

ROLLBACK;

As seen in this example, when the query is an INSERT, UPDATE, DELETE, or MERGE command, the actual
work of applying the table changes is done by a top-level Insert, Update, Delete, or Merge plan node.
The plan nodes underneath this node perform the work of locating the old rows and/or computing the
new data. So above, we see the same sort of bitmap table scan we've seen already, and its output is
fed to an Update node that stores the updated rows. It's worth noting that although the data-modifying
node can take a considerable amount of run time (here, it's consuming the lion's share of the time), the
planner does not currently add anything to the cost estimates to account for that work. That's because
the work to be done is the same for every correct query plan, so it doesn't affect planning decisions.

When an UPDATE, DELETE, or MERGE command affects a partitioned table or inheritance hierarchy, the
output might look like this:
EXPLAIN UPDATE gtest_parent SET f1 = CURRENT_DATE WHERE f2 = 101;

 QUERY PLAN

 Update on gtest_parent (cost=0.00..3.06 rows=0 width=0)
 Update on gtest_child gtest_parent_1
 Update on gtest_child2 gtest_parent_2
 Update on gtest_child3 gtest_parent_3
 -> Append (cost=0.00..3.06 rows=3 width=14)
 -> Seq Scan on gtest_child gtest_parent_1 (cost=0.00..1.01 rows=1 width=14)
 Filter: (f2 = 101)
 -> Seq Scan on gtest_child2 gtest_parent_2 (cost=0.00..1.01 rows=1 width=14)
 Filter: (f2 = 101)
 -> Seq Scan on gtest_child3 gtest_parent_3 (cost=0.00..1.01 rows=1 width=14)
 Filter: (f2 = 101)

In this example the Update node needs to consider three child tables, but not the originally-mentioned
partitioned table (since that never stores any data). So there are three input scanning subplans, one per
table. For clarity, the Update node is annotated to show the specific target tables that will be updated,
in the same order as the corresponding subplans.

The Planning time shown by EXPLAIN ANALYZE is the time it took to generate the query plan from the
parsed query and optimize it. It does not include parsing or rewriting.

The Execution time shown by EXPLAIN ANALYZE includes executor start-up and shut-down time, as well
as the time to run any triggers that are fired, but it does not include parsing, rewriting, or planning
time. Time spent executing BEFORE triggers, if any, is included in the time for the related Insert, Update,
or Delete node; but time spent executing AFTER triggers is not counted there because AFTER triggers
are fired after completion of the whole plan. The total time spent in each trigger (either BEFORE or
AFTER) is also shown separately. Note that deferred constraint triggers will not be executed until end of
transaction and are thus not considered at all by EXPLAIN ANALYZE.

The time shown for the top-level node does not include any time needed to convert the query's output
data into displayable form or to send it to the client. While EXPLAIN ANALYZE will never send the data
to the client, it can be told to convert the query's output data to displayable form and measure the time
needed for that, by specifying the SERIALIZE option. That time will be shown separately, and it's also
included in the total Execution time.

14.1.3. Caveats
There are two significant ways in which run times measured by EXPLAIN ANALYZE can deviate from
normal execution of the same query. First, since no output rows are delivered to the client, network

474

Performance Tips

transmission costs are not included. I/O conversion costs are not included either unless SERIALIZE is
specified. Second, the measurement overhead added by EXPLAIN ANALYZE can be significant, especially
on machines with slow gettimeofday() operating-system calls. You can use the pg_test_timing tool to
measure the overhead of timing on your system.

EXPLAIN results should not be extrapolated to situations much different from the one you are actually
testing; for example, results on a toy-sized table cannot be assumed to apply to large tables. The planner's
cost estimates are not linear and so it might choose a different plan for a larger or smaller table. An
extreme example is that on a table that only occupies one disk page, you'll nearly always get a sequential
scan plan whether indexes are available or not. The planner realizes that it's going to take one disk page
read to process the table in any case, so there's no value in expending additional page reads to look at
an index. (We saw this happening in the polygon_tbl example above.)

There are cases in which the actual and estimated values won't match up well, but nothing is really
wrong. One such case occurs when plan node execution is stopped short by a LIMIT or similar effect.
For example, in the LIMIT query we used before,

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN

--
 Limit (cost=0.29..14.33 rows=2 width=244) (actual time=0.051..0.071 rows=2.00
 loops=1)
 Buffers: shared hit=16
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..70.50 rows=10 width=244)
 (actual time=0.051..0.070 rows=2.00 loops=1)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)
 Rows Removed by Filter: 287
 Index Searches: 1
 Buffers: shared hit=16
 Planning Time: 0.077 ms
 Execution Time: 0.086 ms

the estimated cost and row count for the Index Scan node are shown as though it were run to completion.
But in reality the Limit node stopped requesting rows after it got two, so the actual row count is only
2 and the run time is less than the cost estimate would suggest. This is not an estimation error, only a
discrepancy in the way the estimates and true values are displayed.

Merge joins also have measurement artifacts that can confuse the unwary. A merge join will stop reading
one input if it's exhausted the other input and the next key value in the one input is greater than the last
key value of the other input; in such a case there can be no more matches and so no need to scan the
rest of the first input. This results in not reading all of one child, with results like those mentioned for
LIMIT. Also, if the outer (first) child contains rows with duplicate key values, the inner (second) child is
backed up and rescanned for the portion of its rows matching that key value. EXPLAIN ANALYZE counts
these repeated emissions of the same inner rows as if they were real additional rows. When there are
many outer duplicates, the reported actual row count for the inner child plan node can be significantly
larger than the number of rows that are actually in the inner relation.

BitmapAnd and BitmapOr nodes always report their actual row counts as zero, due to implementation
limitations.

Normally, EXPLAIN will display every plan node created by the planner. However, there are cases where
the executor can determine that certain nodes need not be executed because they cannot produce any
rows, based on parameter values that were not available at planning time. (Currently this can only hap-
pen for child nodes of an Append or MergeAppend node that is scanning a partitioned table.) When this
happens, those plan nodes are omitted from the EXPLAIN output and a Subplans Removed: N annotation
appears instead.

475

Performance Tips

14.2. Statistics Used by the Planner
14.2.1. Single-Column Statistics

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the
number of disk blocks occupied by each table and index. This information is kept in the table pg_class,
in the columns reltuples and relpages. We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

 relname | relkind | reltuples | relpages
----------------------+---------+-----------+----------
 tenk1 | r | 10000 | 345
 tenk1_hundred | i | 10000 | 11
 tenk1_thous_tenthous | i | 10000 | 30
 tenk1_unique1 | i | 10000 | 30
 tenk1_unique2 | i | 10000 | 30
(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually contain
somewhat out-of-date values. They are updated by VACUUM, ANALYZE, and a few DDL commands such as
CREATE INDEX. A VACUUM or ANALYZE operation that does not scan the entire table (which is commonly
the case) will incrementally update the reltuples count on the basis of the part of the table it did scan,
resulting in an approximate value. In any case, the planner will scale the values it finds in pg_class to
match the current physical table size, thus obtaining a closer approximation.

Most queries retrieve only a fraction of the rows in a table, due to WHERE clauses that restrict the rows
to be examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that is,
the fraction of rows that match each condition in the WHERE clause. The information used for this task
is stored in the pg_statistic system catalog. Entries in pg_statistic are updated by the ANALYZE and
VACUUM ANALYZE commands, and are always approximate even when freshly updated.

Rather than look at pg_statistic directly, it's better to look at its view pg_stats when examining the
statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is readable
by all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged users from
learning something about the contents of other people's tables from the statistics. The pg_stats view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

SELECT attname, inherited, n_distinct,
 array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct | most_common_vals
---------+-----------+------------+------------------------------------
 name | f | -0.5681108 | I- 580 Ramp+
 | | | I- 880 Ramp+
 | | | Sp Railroad +
 | | | I- 580 +

476

Performance Tips

 | | | I- 680 Ramp+
 | | | I- 80 Ramp+
 | | | 14th St +
 | | | I- 880 +
 | | | Mac Arthur Blvd+
 | | | Mission Blvd+
...
 name | t | -0.5125 | I- 580 Ramp+
 | | | I- 880 Ramp+
 | | | I- 580 +
 | | | I- 680 Ramp+
 | | | I- 80 Ramp+
 | | | Sp Railroad +
 | | | I- 880 +
 | | | State Hwy 13 Ramp+
 | | | I- 80 +
 | | | State Hwy 24 Ramp+
...
 thepath | f | 0 |
 thepath | t | 0 |
(4 rows)

Note that two rows are displayed for the same column, one corresponding to the complete inheritance
hierarchy starting at the road table (inherited=t), and another one including only the road table itself
(inherited=f). (For brevity, we have only shown the first ten most-common values for the name column.)

The amount of information stored in pg_statistic by ANALYZE, in particular the maximum number of
entries in the most_common_vals and histogram_bounds arrays for each column, can be set on a col-
umn-by-column basis using the ALTER TABLE SET STATISTICS command, or globally by setting the de-
fault_statistics_target configuration variable. The default limit is presently 100 entries. Raising the limit
might allow more accurate planner estimates to be made, particularly for columns with irregular data
distributions, at the price of consuming more space in pg_statistic and slightly more time to compute
the estimates. Conversely, a lower limit might be sufficient for columns with simple data distributions.

Further details about the planner's use of statistics can be found in Chapter 69.

14.2.2. Extended Statistics
It is common to see slow queries running bad execution plans because multiple columns used in the
query clauses are correlated. The planner normally assumes that multiple conditions are independent
of each other, an assumption that does not hold when column values are correlated. Regular statistics,
because of their per-individual-column nature, cannot capture any knowledge about cross-column cor-
relation. However, PostgreSQL has the ability to compute multivariate statistics, which can capture such
information.

Because the number of possible column combinations is very large, it's impractical to compute multi-
variate statistics automatically. Instead, extended statistics objects, more often called just statistics ob-
jects, can be created to instruct the server to obtain statistics across interesting sets of columns.

Statistics objects are created using the CREATE STATISTICS command. Creation of such an object merely
creates a catalog entry expressing interest in the statistics. Actual data collection is performed by AN-
ALYZE (either a manual command, or background auto-analyze). The collected values can be examined
in the pg_statistic_ext_data catalog.

ANALYZE computes extended statistics based on the same sample of table rows that it takes for computing
regular single-column statistics. Since the sample size is increased by increasing the statistics target
for the table or any of its columns (as described in the previous section), a larger statistics target will
normally result in more accurate extended statistics, as well as more time spent calculating them.

The following subsections describe the kinds of extended statistics that are currently supported.

477

Performance Tips

14.2.2.1. Functional Dependencies
The simplest kind of extended statistics tracks functional dependencies, a concept used in definitions of
database normal forms. We say that column b is functionally dependent on column a if knowledge of the
value of a is sufficient to determine the value of b, that is there are no two rows having the same value of
a but different values of b. In a fully normalized database, functional dependencies should exist only on
primary keys and superkeys. However, in practice many data sets are not fully normalized for various
reasons; intentional denormalization for performance reasons is a common example. Even in a fully
normalized database, there may be partial correlation between some columns, which can be expressed
as partial functional dependency.

The existence of functional dependencies directly affects the accuracy of estimates in certain queries.
If a query contains conditions on both the independent and the dependent column(s), the conditions on
the dependent columns do not further reduce the result size; but without knowledge of the functional
dependency, the query planner will assume that the conditions are independent, resulting in underes-
timating the result size.

To inform the planner about functional dependencies, ANALYZE can collect measurements of cross-col-
umn dependency. Assessing the degree of dependency between all sets of columns would be prohibitive-
ly expensive, so data collection is limited to those groups of columns appearing together in a statistics
object defined with the dependencies option. It is advisable to create dependencies statistics only for
column groups that are strongly correlated, to avoid unnecessary overhead in both ANALYZE and later
query planning.

Here is an example of collecting functional-dependency statistics:
CREATE STATISTICS stts (dependencies) ON city, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxddependencies
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts';
 stxname | stxkeys | stxddependencies
---------+---------+--
 stts | 1 5 | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)

Here it can be seen that column 1 (zip code) fully determines column 5 (city) so the coefficient is 1.0,
while city only determines zip code about 42% of the time, meaning that there are many cities (58%)
that are represented by more than a single ZIP code.

When computing the selectivity for a query involving functionally dependent columns, the planner ad-
justs the per-condition selectivity estimates using the dependency coefficients so as not to produce an
underestimate.

14.2.2.1.1. Limitations of Functional Dependencies
Functional dependencies are currently only applied when considering simple equality conditions that
compare columns to constant values, and IN clauses with constant values. They are not used to improve
estimates for equality conditions comparing two columns or comparing a column to an expression, nor
for range clauses, LIKE or any other type of condition.

When estimating with functional dependencies, the planner assumes that conditions on the involved
columns are compatible and hence redundant. If they are incompatible, the correct estimate would be
zero rows, but that possibility is not considered. For example, given a query like
SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';

the planner will disregard the city clause as not changing the selectivity, which is correct. However,
it will make the same assumption about
SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';

478

Performance Tips

even though there will really be zero rows satisfying this query. Functional dependency statistics do not
provide enough information to conclude that, however.

In many practical situations, this assumption is usually satisfied; for example, there might be a GUI in
the application that only allows selecting compatible city and ZIP code values to use in a query. But if
that's not the case, functional dependencies may not be a viable option.

14.2.2.2. Multivariate N-Distinct Counts
Single-column statistics store the number of distinct values in each column. Estimates of the number of
distinct values when combining more than one column (for example, for GROUP BY a, b) are frequently
wrong when the planner only has single-column statistical data, causing it to select bad plans.

To improve such estimates, ANALYZE can collect n-distinct statistics for groups of columns. As before,
it's impractical to do this for every possible column grouping, so data is collected only for those groups
of columns appearing together in a statistics object defined with the ndistinct option. Data will be
collected for each possible combination of two or more columns from the set of listed columns.

Continuing the previous example, the n-distinct counts in a table of ZIP codes might look like the fol-
lowing:

CREATE STATISTICS stts2 (ndistinct) ON city, state, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxkeys AS k, stxdndistinct AS nd
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts2';
-[RECORD 1]--
k | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)

This indicates that there are three combinations of columns that have 33178 distinct values: ZIP code
and state; ZIP code and city; and ZIP code, city and state (the fact that they are all equal is expected
given that ZIP code alone is unique in this table). On the other hand, the combination of city and state
has only 27435 distinct values.

It's advisable to create ndistinct statistics objects only on combinations of columns that are actually
used for grouping, and for which misestimation of the number of groups is resulting in bad plans. Oth-
erwise, the ANALYZE cycles are just wasted.

14.2.2.3. Multivariate MCV Lists
Another type of statistic stored for each column are most-common value lists. This allows very accurate
estimates for individual columns, but may result in significant misestimates for queries with conditions
on multiple columns.

To improve such estimates, ANALYZE can collect MCV lists on combinations of columns. Similarly to
functional dependencies and n-distinct coefficients, it's impractical to do this for every possible column
grouping. Even more so in this case, as the MCV list (unlike functional dependencies and n-distinct
coefficients) does store the common column values. So data is collected only for those groups of columns
appearing together in a statistics object defined with the mcv option.

Continuing the previous example, the MCV list for a table of ZIP codes might look like the following
(unlike for simpler types of statistics, a function is required for inspection of MCV contents):

CREATE STATISTICS stts3 (mcv) ON city, state FROM zipcodes;

ANALYZE zipcodes;

479

Performance Tips

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts3';

 index | values | nulls | frequency | base_frequency
-------+------------------------+-------+-----------+----------------
 0 | {Washington, DC} | {f,f} | 0.003467 | 2.7e-05
 1 | {Apo, AE} | {f,f} | 0.003067 | 1.9e-05
 2 | {Houston, TX} | {f,f} | 0.002167 | 0.000133
 3 | {El Paso, TX} | {f,f} | 0.002 | 0.000113
 4 | {New York, NY} | {f,f} | 0.001967 | 0.000114
 5 | {Atlanta, GA} | {f,f} | 0.001633 | 3.3e-05
 6 | {Sacramento, CA} | {f,f} | 0.001433 | 7.8e-05
 7 | {Miami, FL} | {f,f} | 0.0014 | 6e-05
 8 | {Dallas, TX} | {f,f} | 0.001367 | 8.8e-05
 9 | {Chicago, IL} | {f,f} | 0.001333 | 5.1e-05
 ...
(99 rows)

This indicates that the most common combination of city and state is Washington in DC, with actual
frequency (in the sample) about 0.35%. The base frequency of the combination (as computed from the
simple per-column frequencies) is only 0.0027%, resulting in two orders of magnitude under-estimates.

It's advisable to create MCV statistics objects only on combinations of columns that are actually used
in conditions together, and for which misestimation of the number of groups is resulting in bad plans.
Otherwise, the ANALYZE and planning cycles are just wasted.

14.3. Controlling the Planner with Explicit JOIN Clauses
It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see why
this matters, we first need some background.

In a simple join query, such as:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table, using
the other WHERE condition. Or it could join B to C and then join A to that result. Or it could join A to C
and then join them with B — but that would be inefficient, since the full Cartesian product of A and C
would have to be formed, there being no applicable condition in the WHERE clause to allow optimization
of the join. (All joins in the PostgreSQL executor happen between two input tables, so it's necessary
to build up the result in one or another of these fashions.) The important point is that these different
join possibilities give semantically equivalent results but might have hugely different execution costs.
Therefore, the planner will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren't many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it's no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning might take an annoyingly long time. When there are too many input tables,
the PostgreSQL planner will switch from exhaustive search to a genetic probabilistic search through a
limited number of possibilities. (The switch-over threshold is set by the geqo_threshold run-time para-
meter.) The genetic search takes less time, but it won't necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins.
For example, consider:

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Although this query's restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to

480

Performance Tips

that result. Accordingly, this query takes less time to plan than the previous query. In other cases, the
planner might be able to determine that more than one join order is safe. For example, given:
SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid = c.id);

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join order.
Most practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same as
listing the input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don't completely constrain the join order, it is possible to instruct the
PostgreSQL query planner to treat all JOIN clauses as constraining the join order anyway. For example,
these three queries are logically equivalent:
SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the
first. This effect is not worth worrying about for only three tables, but it can be a lifesaver with many
tables.

To force the planner to follow the join order laid out by explicit JOINs, set the join_collapse_limit run-
time parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it's OK to
use JOIN operators within items of a plain FROM list. For example, consider:
SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn't constrain its choices otherwise. In this example, the number of possible join orders
is reduced by a factor of 5.

Constraining the planner's search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you
can force it to choose a better order via JOIN syntax — assuming that you know of a better order, that
is. Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider:
SELECT *
FROM x, y,
 (SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view's SELECT rule will be inserted
in place of the view reference, yielding a query much like the above. Normally, the planner will try to
collapse the subquery into the parent, yielding:
SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer
WHERE conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the
need to form the full logical output of the subquery.) But at the same time, we have increased the
planning time; here, we have a five-way join problem replacing two separate three-way join problems.
Because of the exponential growth of the number of possibilities, this makes a big difference. The planner
tries to avoid getting stuck in huge join search problems by not collapsing a subquery if more than
from_collapse_limit FROM items would result in the parent query. You can trade off planning time
against quality of plan by adjusting this run-time parameter up or down.

from_collapse_limit and join_collapse_limit are similarly named because they do almost the same thing:
one controls when the planner will “flatten out” subqueries, and the other controls when it will flatten

481

Performance Tips

out explicit joins. Typically you would either set join_collapse_limit equal to from_collapse_limit
(so that explicit joins and subqueries act similarly) or set join_collapse_limit to 1 (if you want to
control join order with explicit joins). But you might set them differently if you are trying to fine-tune
the trade-off between planning time and run time.

14.4. Populating a Database
One might need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

14.4.1. Disable Autocommit
When using multiple INSERTs, turn off autocommit and just do one commit at the end. (In plain SQL,
this means issuing BEGIN at the start and COMMIT at the end. Some client libraries might do this behind
your back, in which case you need to make sure the library does it when you want it done.) If you allow
each insertion to be committed separately, PostgreSQL is doing a lot of work for each row that is added.
An additional benefit of doing all insertions in one transaction is that if the insertion of one row were to
fail then the insertion of all rows inserted up to that point would be rolled back, so you won't be stuck
with partially loaded data.

14.4.2. Use COPY
Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The
COPY command is optimized for loading large numbers of rows; it is less flexible than INSERT, but incurs
significantly less overhead for large data loads. Since COPY is a single command, there is no need to
disable autocommit if you use this method to populate a table.

If you cannot use COPY, it might help to use PREPARE to create a prepared INSERT statement, and then use
EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing and planning
INSERT. Different interfaces provide this facility in different ways; look for “prepared statements” in the
interface documentation.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even if
PREPARE is used and multiple insertions are batched into a single transaction.

COPY is fastest when used within the same transaction as an earlier CREATE TABLE or TRUNCATE command.
In such cases no WAL needs to be written, because in case of an error, the files containing the newly
loaded data will be removed anyway. However, this consideration only applies when wal_level is minimal
as all commands must write WAL otherwise.

14.4.3. Remove Indexes
If you are loading a freshly created table, the fastest method is to create the table, bulk load the table's
data using COPY, then create any indexes needed for the table. Creating an index on pre-existing data is
quicker than updating it incrementally as each row is loaded.

If you are adding large amounts of data to an existing table, it might be a win to drop the indexes, load
the table, and then recreate the indexes. Of course, the database performance for other users might
suffer during the time the indexes are missing. One should also think twice before dropping a unique
index, since the error checking afforded by the unique constraint will be lost while the index is missing.

14.4.4. Remove Foreign Key Constraints
Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-row.
So it might be useful to drop foreign key constraints, load data, and re-create the constraints. Again,
there is a trade-off between data load speed and loss of error checking while the constraint is missing.

What's more, when you load data into a table with existing foreign key constraints, each new row requires
an entry in the server's list of pending trigger events (since it is the firing of a trigger that checks
the row's foreign key constraint). Loading many millions of rows can cause the trigger event queue to

482

Performance Tips

overflow available memory, leading to intolerable swapping or even outright failure of the command.
Therefore it may be necessary, not just desirable, to drop and re-apply foreign keys when loading large
amounts of data. If temporarily removing the constraint isn't acceptable, the only other recourse may
be to split up the load operation into smaller transactions.

14.4.5. Increase maintenance_work_mem
Temporarily increasing the maintenance_work_mem configuration variable when loading large amounts
of data can lead to improved performance. This will help to speed up CREATE INDEX commands and
ALTER TABLE ADD FOREIGN KEY commands. It won't do much for COPY itself, so this advice is only useful
when you are using one or both of the above techniques.

14.4.6. Increase max_wal_size
Temporarily increasing the max_wal_size configuration variable can also make large data loads faster.
This is because loading a large amount of data into PostgreSQL will cause checkpoints to occur more
often than the normal checkpoint frequency (specified by the checkpoint_timeout configuration vari-
able). Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By increasing max_wal_size
temporarily during bulk data loads, the number of checkpoints that are required can be reduced.

14.4.7. Disable WAL Archival and Streaming Replication
When loading large amounts of data into an installation that uses WAL archiving or streaming replication,
it might be faster to take a new base backup after the load has completed than to process a large amount
of incremental WAL data. To prevent incremental WAL logging while loading, disable archiving and
streaming replication, by setting wal_level to minimal, archive_mode to off, and max_wal_senders to
zero. But note that changing these settings requires a server restart, and makes any base backups taken
before unavailable for archive recovery and standby server, which may lead to data loss.

Aside from avoiding the time for the archiver or WAL sender to process the WAL data, doing this will
actually make certain commands faster, because they do not to write WAL at all if wal_level is minimal
and the current subtransaction (or top-level transaction) created or truncated the table or index they
change. (They can guarantee crash safety more cheaply by doing an fsync at the end than by writing
WAL.)

14.4.8. Run ANALYZE Afterwards
Whenever you have significantly altered the distribution of data within a table, running ANALYZE is
strongly recommended. This includes bulk loading large amounts of data into the table. Running ANA-
LYZE (or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table. With no
statistics or obsolete statistics, the planner might make poor decisions during query planning, leading
to poor performance on any tables with inaccurate or nonexistent statistics. Note that if the autovacuum
daemon is enabled, it might run ANALYZE automatically; see Section 24.1.3 and Section 24.1.6 for more
information.

14.4.9. Some Notes about pg_dump
Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines. To
restore a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note that
these points apply while restoring a dump, not while creating it. The same points apply whether loading
a text dump with psql or using pg_restore to load from a pg_dump archive file.)

By default, pg_dump uses COPY, and when it is generating a complete schema-and-data dump, it is careful
to load data before creating indexes and foreign keys. So in this case several guidelines are handled
automatically. What is left for you to do is to:
• Set appropriate (i.e., larger than normal) values for maintenance_work_mem and max_wal_size.
• If using WAL archiving or streaming replication, consider disabling them during the restore. To do

that, set archive_mode to off, wal_level to minimal, and max_wal_senders to zero before loading
the dump. Afterwards, set them back to the right values and take a fresh base backup.

483

Performance Tips

• Experiment with the parallel dump and restore modes of both pg_dump and pg_restore and find the
optimal number of concurrent jobs to use. Dumping and restoring in parallel by means of the -j op-
tion should give you a significantly higher performance over the serial mode.

• Consider whether the whole dump should be restored as a single transaction. To do that, pass the
-1 or --single-transaction command-line option to psql or pg_restore. When using this mode,
even the smallest of errors will rollback the entire restore, possibly discarding many hours of pro-
cessing. Depending on how interrelated the data is, that might seem preferable to manual cleanup,
or not. COPY commands will run fastest if you use a single transaction and have WAL archiving
turned off.

• If multiple CPUs are available in the database server, consider using pg_restore's --jobs option.
This allows concurrent data loading and index creation.

• Run ANALYZE afterwards.

A data-only dump will still use COPY, but it does not drop or recreate indexes, and it does not normally
touch foreign keys. 1 So when loading a data-only dump, it is up to you to drop and recreate indexes
and foreign keys if you wish to use those techniques. It's still useful to increase max_wal_size while
loading the data, but don't bother increasing maintenance_work_mem; rather, you'd do that while manu-
ally recreating indexes and foreign keys afterwards. And don't forget to ANALYZE when you're done; see
Section 24.1.3 and Section 24.1.6 for more information.

14.5. Non-Durable Settings
Durability is a database feature that guarantees the recording of committed transactions even if the
server crashes or loses power. However, durability adds significant database overhead, so if your site
does not require such a guarantee, PostgreSQL can be configured to run much faster. The following
are configuration changes you can make to improve performance in such cases. Except as noted below,
durability is still guaranteed in case of a crash of the database software; only an abrupt operating system
crash creates a risk of data loss or corruption when these settings are used.
• Place the database cluster's data directory in a memory-backed file system (i.e., RAM disk). This

eliminates all database disk I/O, but limits data storage to the amount of available memory (and
perhaps swap).

• Turn off fsync; there is no need to flush data to disk.
• Turn off synchronous_commit; there might be no need to force WAL writes to disk on every commit.

This setting does risk transaction loss (though not data corruption) in case of a crash of the data-
base.

• Turn off full_page_writes; there is no need to guard against partial page writes.
• Increase max_wal_size and checkpoint_timeout; this reduces the frequency of checkpoints, but in-

creases the storage requirements of /pg_wal.
• Create unlogged tables to avoid WAL writes, though it makes the tables non-crash-safe.

1 You can get the effect of disabling foreign keys by using the --disable-triggers option — but realize that that eliminates, rather than just postpones, foreign
key validation, and so it is possible to insert bad data if you use it.

484

Chapter 15. Parallel Query
PostgreSQL can devise query plans that can leverage multiple CPUs in order to answer queries faster.
This feature is known as parallel query. Many queries cannot benefit from parallel query, either due
to limitations of the current implementation or because there is no imaginable query plan that is any
faster than the serial query plan. However, for queries that can benefit, the speedup from parallel query
is often very significant. Many queries can run more than twice as fast when using parallel query, and
some queries can run four times faster or even more. Queries that touch a large amount of data but
return only a few rows to the user will typically benefit most. This chapter explains some details of how
parallel query works and in which situations it can be used so that users who wish to make use of it
can understand what to expect.

15.1. How Parallel Query Works
When the optimizer determines that parallel query is the fastest execution strategy for a particular query,
it will create a query plan that includes a Gather or Gather Merge node. Here is a simple example:
EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
 QUERY PLAN

 Gather (cost=1000.00..217018.43 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..216018.33 rows=1 width=97)
 Filter: (filler ~~ '%x%'::text)
(4 rows)

In all cases, the Gather or Gather Merge node will have exactly one child plan, which is the portion of
the plan that will be executed in parallel. If the Gather or Gather Merge node is at the very top of the
plan tree, then the entire query will execute in parallel. If it is somewhere else in the plan tree, then only
the portion of the plan below it will run in parallel. In the example above, the query accesses only one
table, so there is only one plan node other than the Gather node itself; since that plan node is a child
of the Gather node, it will run in parallel.

Using EXPLAIN, you can see the number of workers chosen by the planner. When the Gather node is
reached during query execution, the process that is implementing the user's session will request a num-
ber of background worker processes equal to the number of workers chosen by the planner. The number
of background workers that the planner will consider using is limited to at most max_parallel_worker-
s_per_gather. The total number of background workers that can exist at any one time is limited by both
max_worker_processes and max_parallel_workers. Therefore, it is possible for a parallel query to run
with fewer workers than planned, or even with no workers at all. The optimal plan may depend on the
number of workers that are available, so this can result in poor query performance. If this occurrence
is frequent, consider increasing max_worker_processes and max_parallel_workers so that more work-
ers can be run simultaneously or alternatively reducing max_parallel_workers_per_gather so that the
planner requests fewer workers.

Every background worker process that is successfully started for a given parallel query will execute
the parallel portion of the plan. The leader will also execute that portion of the plan, but it has an
additional responsibility: it must also read all of the tuples generated by the workers. When the parallel
portion of the plan generates only a small number of tuples, the leader will often behave very much like
an additional worker, speeding up query execution. Conversely, when the parallel portion of the plan
generates a large number of tuples, the leader may be almost entirely occupied with reading the tuples
generated by the workers and performing any further processing steps that are required by plan nodes
above the level of the Gather node or Gather Merge node. In such cases, the leader will do very little
of the work of executing the parallel portion of the plan.

When the node at the top of the parallel portion of the plan is Gather Merge rather than Gather, it
indicates that each process executing the parallel portion of the plan is producing tuples in sorted order,
and that the leader is performing an order-preserving merge. In contrast, Gather reads tuples from the
workers in whatever order is convenient, destroying any sort order that may have existed.

485

Parallel Query

15.2. When Can Parallel Query Be Used?
There are several settings that can cause the query planner not to generate a parallel query plan under
any circumstances. In order for any parallel query plans whatsoever to be generated, the following
settings must be configured as indicated.

• max_parallel_workers_per_gather must be set to a value that is greater than zero. This is a special
case of the more general principle that no more workers should be used than the number config-
ured via max_parallel_workers_per_gather.

In addition, the system must not be running in single-user mode. Since the entire database system is
running as a single process in this situation, no background workers will be available.

Even when it is in general possible for parallel query plans to be generated, the planner will not generate
them for a given query if any of the following are true:

• The query writes any data or locks any database rows. If a query contains a data-modifying oper-
ation either at the top level or within a CTE, no parallel plans for that query will be generated. As
an exception, the following commands, which create a new table and populate it, can use a parallel
plan for the underlying SELECT part of the query:
• CREATE TABLE ... AS

• SELECT INTO

• CREATE MATERIALIZED VIEW

• REFRESH MATERIALIZED VIEW

• The query might be suspended during execution. In any situation in which the system thinks that
partial or incremental execution might occur, no parallel plan is generated. For example, a cursor
created using DECLARE CURSOR will never use a parallel plan. Similarly, a PL/pgSQL loop of the
form FOR x IN query LOOP .. END LOOP will never use a parallel plan, because the parallel query
system is unable to verify that the code in the loop is safe to execute while parallel query is active.

• The query uses any function marked PARALLEL UNSAFE. Most system-defined functions are PARAL-
LEL SAFE, but user-defined functions are marked PARALLEL UNSAFE by default. See the discussion
of Section 15.4.

• The query is running inside of another query that is already parallel. For example, if a function
called by a parallel query issues an SQL query itself, that query will never use a parallel plan. This
is a limitation of the current implementation, but it may not be desirable to remove this limitation,
since it could result in a single query using a very large number of processes.

Even when a parallel query plan is generated for a particular query, there are several circumstances
under which it will be impossible to execute that plan in parallel at execution time. If this occurs, the
leader will execute the portion of the plan below the Gather node entirely by itself, almost as if the
Gather node were not present. This will happen if any of the following conditions are met:

• No background workers can be obtained because of the limitation that the total number of back-
ground workers cannot exceed max_worker_processes.

• No background workers can be obtained because of the limitation that the total number of back-
ground workers launched for purposes of parallel query cannot exceed max_parallel_workers.

• The client sends an Execute message with a non-zero fetch count. See the discussion of the ex-
tended query protocol. Since libpq currently provides no way to send such a message, this can on-
ly occur when using a client that does not rely on libpq. If this is a frequent occurrence, it may be
a good idea to set max_parallel_workers_per_gather to zero in sessions where it is likely, so as to
avoid generating query plans that may be suboptimal when run serially.

15.3. Parallel Plans
Because each worker executes the parallel portion of the plan to completion, it is not possible to simply
take an ordinary query plan and run it using multiple workers. Each worker would produce a full copy

486

Parallel Query

of the output result set, so the query would not run any faster than normal but would produce incorrect
results. Instead, the parallel portion of the plan must be what is known internally to the query optimizer
as a partial plan; that is, it must be constructed so that each process that executes the plan will generate
only a subset of the output rows in such a way that each required output row is guaranteed to be gen-
erated by exactly one of the cooperating processes. Generally, this means that the scan on the driving
table of the query must be a parallel-aware scan.

15.3.1. Parallel Scans
The following types of parallel-aware table scans are currently supported.
• In a parallel sequential scan, the table's blocks will be divided into ranges and shared among the

cooperating processes. Each worker process will complete the scanning of its given range of blocks
before requesting an additional range of blocks.

• In a parallel bitmap heap scan, one process is chosen as the leader. That process performs a scan
of one or more indexes and builds a bitmap indicating which table blocks need to be visited. These
blocks are then divided among the cooperating processes as in a parallel sequential scan. In other
words, the heap scan is performed in parallel, but the underlying index scan is not.

• In a parallel index scan or parallel index-only scan, the cooperating processes take turns reading
data from the index. Currently, parallel index scans are supported only for btree indexes. Each
process will claim a single index block and will scan and return all tuples referenced by that block;
other processes can at the same time be returning tuples from a different index block. The results
of a parallel btree scan are returned in sorted order within each worker process.

Other scan types, such as scans of non-btree indexes, may support parallel scans in the future.

15.3.2. Parallel Joins
Just as in a non-parallel plan, the driving table may be joined to one or more other tables using a nested
loop, hash join, or merge join. The inner side of the join may be any kind of non-parallel plan that is
otherwise supported by the planner provided that it is safe to run within a parallel worker. Depending
on the join type, the inner side may also be a parallel plan.

• In a nested loop join, the inner side is always non-parallel. Although it is executed in full, this is effi-
cient if the inner side is an index scan, because the outer tuples and thus the loops that look up val-
ues in the index are divided over the cooperating processes.

• In a merge join, the inner side is always a non-parallel plan and therefore executed in full. This may
be inefficient, especially if a sort must be performed, because the work and resulting data are du-
plicated in every cooperating process.

• In a hash join (without the "parallel" prefix), the inner side is executed in full by every cooperat-
ing process to build identical copies of the hash table. This may be inefficient if the hash table is
large or the plan is expensive. In a parallel hash join, the inner side is a parallel hash that divides
the work of building a shared hash table over the cooperating processes.

15.3.3. Parallel Aggregation
PostgreSQL supports parallel aggregation by aggregating in two stages. First, each process participating
in the parallel portion of the query performs an aggregation step, producing a partial result for each
group of which that process is aware. This is reflected in the plan as a Partial Aggregate node. Second,
the partial results are transferred to the leader via Gather or Gather Merge. Finally, the leader re-
aggregates the results across all workers in order to produce the final result. This is reflected in the
plan as a Finalize Aggregate node.

Because the Finalize Aggregate node runs on the leader process, queries that produce a relatively
large number of groups in comparison to the number of input rows will appear less favorable to the
query planner. For example, in the worst-case scenario the number of groups seen by the Finalize
Aggregate node could be as many as the number of input rows that were seen by all worker processes
in the Partial Aggregate stage. For such cases, there is clearly going to be no performance benefit to

487

Parallel Query

using parallel aggregation. The query planner takes this into account during the planning process and
is unlikely to choose parallel aggregate in this scenario.

Parallel aggregation is not supported in all situations. Each aggregate must be safe for parallelism and
must have a combine function. If the aggregate has a transition state of type internal, it must have
serialization and deserialization functions. See CREATE AGGREGATE for more details. Parallel aggre-
gation is not supported if any aggregate function call contains DISTINCT or ORDER BY clause and is also
not supported for ordered set aggregates or when the query involves GROUPING SETS. It can only be used
when all joins involved in the query are also part of the parallel portion of the plan.

15.3.4. Parallel Append
Whenever PostgreSQL needs to combine rows from multiple sources into a single result set, it uses
an Append or MergeAppend plan node. This commonly happens when implementing UNION ALL or when
scanning a partitioned table. Such nodes can be used in parallel plans just as they can in any other plan.
However, in a parallel plan, the planner may instead use a Parallel Append node.

When an Append node is used in a parallel plan, each process will execute the child plans in the order in
which they appear, so that all participating processes cooperate to execute the first child plan until it is
complete and then move to the second plan at around the same time. When a Parallel Append is used
instead, the executor will instead spread out the participating processes as evenly as possible across its
child plans, so that multiple child plans are executed simultaneously. This avoids contention, and also
avoids paying the startup cost of a child plan in those processes that never execute it.

Also, unlike a regular Append node, which can only have partial children when used within a parallel plan,
a Parallel Append node can have both partial and non-partial child plans. Non-partial children will be
scanned by only a single process, since scanning them more than once would produce duplicate results.
Plans that involve appending multiple result sets can therefore achieve coarse-grained parallelism even
when efficient partial plans are not available. For example, consider a query against a partitioned table
that can only be implemented efficiently by using an index that does not support parallel scans. The
planner might choose a Parallel Append of regular Index Scan plans; each individual index scan would
have to be executed to completion by a single process, but different scans could be performed at the
same time by different processes.

enable_parallel_append can be used to disable this feature.

15.3.5. Parallel Plan Tips
If a query that is expected to do so does not produce a parallel plan, you can try reducing parallel_set-
up_cost or parallel_tuple_cost. Of course, this plan may turn out to be slower than the serial plan that
the planner preferred, but this will not always be the case. If you don't get a parallel plan even with very
small values of these settings (e.g., after setting them both to zero), there may be some reason why the
query planner is unable to generate a parallel plan for your query. See Section 15.2 and Section 15.4
for information on why this may be the case.

When executing a parallel plan, you can use EXPLAIN (ANALYZE, VERBOSE) to display per-worker statis-
tics for each plan node. This may be useful in determining whether the work is being evenly distributed
between all plan nodes and more generally in understanding the performance characteristics of the plan.

15.4. Parallel Safety
The planner classifies operations involved in a query as either parallel safe, parallel restricted, or parallel
unsafe. A parallel safe operation is one that does not conflict with the use of parallel query. A parallel
restricted operation is one that cannot be performed in a parallel worker, but that can be performed
in the leader while parallel query is in use. Therefore, parallel restricted operations can never occur
below a Gather or Gather Merge node, but can occur elsewhere in a plan that contains such a node.
A parallel unsafe operation is one that cannot be performed while parallel query is in use, not even in
the leader. When a query contains anything that is parallel unsafe, parallel query is completely disabled
for that query.

488

Parallel Query

The following operations are always parallel restricted:

• Scans of common table expressions (CTEs).
• Scans of temporary tables.
• Scans of foreign tables, unless the foreign data wrapper has an IsForeignScanParallelSafe API

that indicates otherwise.
• Plan nodes that reference a correlated SubPlan.

15.4.1. Parallel Labeling for Functions and Aggregates
The planner cannot automatically determine whether a user-defined function or aggregate is parallel
safe, parallel restricted, or parallel unsafe, because this would require predicting every operation that
the function could possibly perform. In general, this is equivalent to the Halting Problem and therefore
impossible. Even for simple functions where it could conceivably be done, we do not try, since this would
be expensive and error-prone. Instead, all user-defined functions are assumed to be parallel unsafe
unless otherwise marked. When using CREATE FUNCTION or ALTER FUNCTION, markings can be set
by specifying PARALLEL SAFE, PARALLEL RESTRICTED, or PARALLEL UNSAFE as appropriate. When using
CREATE AGGREGATE, the PARALLEL option can be specified with SAFE, RESTRICTED, or UNSAFE as the
corresponding value.

Functions and aggregates must be marked PARALLEL UNSAFE if they write to the database, change the
transaction state (other than by using a subtransaction for error recovery), access sequences, or make
persistent changes to settings. Similarly, functions must be marked PARALLEL RESTRICTED if they access
temporary tables, client connection state, cursors, prepared statements, or miscellaneous backend-local
state that the system cannot synchronize across workers. For example, setseed and random are parallel
restricted for this last reason.

In general, if a function is labeled as being safe when it is restricted or unsafe, or if it is labeled as being
restricted when it is in fact unsafe, it may throw errors or produce wrong answers when used in a parallel
query. C-language functions could in theory exhibit totally undefined behavior if mislabeled, since there
is no way for the system to protect itself against arbitrary C code, but in most likely cases the result will
be no worse than for any other function. If in doubt, it is probably best to label functions as UNSAFE.

If a function executed within a parallel worker acquires locks that are not held by the leader, for example
by querying a table not referenced in the query, those locks will be released at worker exit, not end of
transaction. If you write a function that does this, and this behavior difference is important to you, mark
such functions as PARALLEL RESTRICTED to ensure that they execute only in the leader.

Note that the query planner does not consider deferring the evaluation of parallel-restricted functions
or aggregates involved in the query in order to obtain a superior plan. So, for example, if a WHERE clause
applied to a particular table is parallel restricted, the query planner will not consider performing a scan
of that table in the parallel portion of a plan. In some cases, it would be possible (and perhaps even
efficient) to include the scan of that table in the parallel portion of the query and defer the evaluation of
the WHERE clause so that it happens above the Gather node. However, the planner does not do this.

489

Part III. Server Administration
This part covers topics that are of interest to a PostgreSQL administrator. This includes installation, con-
figuration of the server, management of users and databases, and maintenance tasks. Anyone running
PostgreSQL server, even for personal use, but especially in production, should be familiar with these
topics.

The information attempts to be in the order in which a new user should read it. The chapters are self-
contained and can be read individually as desired. The information is presented in a narrative form in
topical units. Readers looking for a complete description of a command are encouraged to review the
Part VI.

The first few chapters are written so they can be understood without prerequisite knowledge, so new users
who need to set up their own server can begin their exploration. The rest of this part is about tuning and
management; that material assumes that the reader is familiar with the general use of the PostgreSQL
database system. Readers are encouraged review the Part I and Part II parts for additional information.

Chapter 16. Installation from Binaries
PostgreSQL is available in the form of binary packages for most common operating systems today. When
available, this is the recommended way to install PostgreSQL for users of the system. Building from
source (see Chapter 17) is only recommended for people developing PostgreSQL or extensions.

For an updated list of platforms providing binary packages, please visit the download section on the
PostgreSQL website at https://www.postgresql.org/download/ and follow the instructions for the specific
platform.

491

https://www.postgresql.org/download/

Chapter 17. Installation from Source Code
This chapter describes the installation of PostgreSQL using the source code distribution. If you are
installing a pre-packaged distribution, such as an RPM or Debian package, ignore this chapter and see
Chapter 16 instead.

17.1. Requirements
In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms that
had received specific testing at the time of release are described in Section 17.6 below.

The following software packages are required for building PostgreSQL:

• GNU make version 3.81 or newer is required; other make programs or older GNU make versions
will not work. (GNU make is sometimes installed under the name gmake.) To test for GNU make en-
ter:

make --version

• Alternatively, PostgreSQL can be built using Meson. This is the only option for building PostgreSQL
on Windows using Visual Studio. For other platforms, using Meson is currently experimental. If you
choose to use Meson, then you don't need GNU make, but the other requirements below still apply.

The minimum required version of Meson is 0.54.

• You need an ISO/ANSI C compiler (at least C99-compliant). Recent versions of GCC are recom-
mended, but PostgreSQL is known to build using a wide variety of compilers from different ven-
dors.

• tar is required to unpack the source distribution, in addition to either gzip or bzip2.

• Flex and Bison are required. Other lex and yacc programs cannot be used. Bison needs to be at
least version 2.3.

• Perl 5.14 or later is needed during the build process and to run some test suites. (This requirement
is separate from the requirements for building PL/Perl; see below.)

• The GNU Readline library is used by default. It allows psql (the PostgreSQL command line SQL in-
terpreter) to remember each command you type, and allows you to use arrow keys to recall and ed-
it previous commands. This is very helpful and is strongly recommended. If you don't want to use
it then you must specify the --without-readline option to configure. As an alternative, you can
often use the BSD-licensed libedit library, originally developed on NetBSD. The libedit library
is GNU Readline-compatible and is used if libreadline is not found, or if --with-libedit-pre-
ferred is used as an option to configure. If you are using a package-based Linux distribution, be
aware that you need both the readline and readline-devel packages, if those are separate in
your distribution.

• The zlib compression library is used by default. If you don't want to use it then you must specify the
--without-zlib option to configure. Using this option disables support for compressed archives
in pg_dump and pg_restore.

• The ICU library is used by default. If you don't want to use it then you must specify the --with-
out-icu option to configure. Using this option disables support for ICU collation features (see
Section 23.2).

ICU support requires the ICU4C package to be installed. The minimum required version of ICU4C
is currently 4.2.

By default, pkg-config will be used to find the required compilation options. This is supported for
ICU4C version 4.6 and later. For older versions, or if pkg-config is not available, the variables
ICU_CFLAGS and ICU_LIBS can be specified to configure, like in this example:

492

https://mesonbuild.com/

Installation from Source Code

./configure ... ICU_CFLAGS='-I/some/where/include' ICU_LIBS='-L/some/where/lib -
licui18n -licuuc -licudata'

(If ICU4C is in the default search path for the compiler, then you still need to specify nonempty
strings in order to avoid use of pkg-config, for example, ICU_CFLAGS=' '.)

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below:
• To build the server programming language PL/Perl you need a full Perl installation, including the

libperl library and the header files. The minimum required version is Perl 5.14. Since PL/Perl will
be a shared library, the libperl library must be a shared library also on most platforms. This ap-
pears to be the default in recent Perl versions, but it was not in earlier versions, and in any case it
is the choice of whomever installed Perl at your site. configure will fail if building PL/Perl is select-
ed but it cannot find a shared libperl. In that case, you will have to rebuild and install Perl manu-
ally to be able to build PL/Perl. During the configuration process for Perl, request a shared library.

If you intend to make more than incidental use of PL/Perl, you should ensure that the Perl instal-
lation was built with the usemultiplicity option enabled (perl -V will show whether this is the
case).

• To build the PL/Python server programming language, you need a Python installation with the
header files and the sysconfig module. The minimum supported version is Python 3.6.8.

Since PL/Python will be a shared library, the libpython library must be a shared library also on
most platforms. This is not the case in a default Python installation built from source, but a shared
library is available in many operating system distributions. configure will fail if building PL/Python
is selected but it cannot find a shared libpython. That might mean that you either have to install
additional packages or rebuild (part of) your Python installation to provide this shared library.
When building from source, run Python's configure with the --enable-shared flag.

• To build the PL/Tcl procedural language, you of course need a Tcl installation. The minimum re-
quired version is Tcl 8.4.

• To enable Native Language Support (NLS), that is, the ability to display a program's messages in a
language other than English, you need an implementation of the Gettext API. Some operating sys-
tems have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an add-on
package from https://www.gnu.org/software/gettext/. If you are using the Gettext implementation
in the GNU C library, then you will additionally need the GNU Gettext package for some utility pro-
grams. For any of the other implementations you will not need it.

• You need OpenSSL, if you want to support encrypted client connections. OpenSSL is also required
for random number generation on platforms that do not have /dev/urandom (except Windows). The
minimum required version is 1.1.1.

Additionally, LibreSSL is supported using the OpenSSL compatibility layer. The minimum required
version is 3.4 (from OpenBSD version 7.0).

• You need MIT Kerberos (for GSSAPI), OpenLDAP, and/or PAM, if you want to support authentica-
tion using those services.

• You need Curl to build an optional module which implements the OAuth Device Authorization flow
for client applications.

• You need LZ4, if you want to support compression of data with that method; see default_toast_com-
pression and wal_compression.

• You need Zstandard, if you want to support compression of data with that method; see wal_com-
pression. The minimum required version is 1.4.0.

• To build the PostgreSQL documentation, there is a separate set of requirements; see Section J.2.

If you need to get a GNU package, you can find it at your local GNU mirror site (see https://www.gnu.org/
prep/ftp for a list) or at ftp://ftp.gnu.org/gnu/.

493

https://www.gnu.org/software/gettext/
https://www.gnu.org/prep/ftp
https://www.gnu.org/prep/ftp
ftp://ftp.gnu.org/gnu/

Installation from Source Code

17.2. Getting the Source
The PostgreSQL source code for released versions can be obtained from the download section of our
website: https://www.postgresql.org/ftp/source/. Download the postgresql-version.tar.gz or post-
gresql-version.tar.bz2 file you're interested in, then unpack it:

tar xf postgresql-version.tar.bz2

This will create a directory postgresql-version under the current directory with the PostgreSQL
sources. Change into that directory for the rest of the installation procedure.

Alternatively, you can use the Git version control system; see Section I.1 for more information.

17.3. Building and Installation with Autoconf and Make
17.3.1. Short Version

./configure
make
su
make install
adduser postgres
mkdir -p /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

The long version is the rest of this section.

17.3.2. Installation Procedure
1. Configuration

The first step of the installation procedure is to configure the source tree for your system and choose
the options you would like. This is done by running the configure script. For a default installation
simply enter:

./configure

This script will run a number of tests to determine values for various system dependent variables
and detect any quirks of your operating system, and finally will create several files in the build tree
to record what it found.

You can also run configure in a directory outside the source tree, and then build there, if you want
to keep the build directory separate from the original source files. This procedure is called a VPATH
build. Here's how:

mkdir build_dir
cd build_dir
/path/to/source/tree/configure [options go here]
make

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed under /usr/local/pgsql by
default.

You can customize the build and installation process by supplying one or more command line options
to configure. Typically you would customize the install location, or the set of optional features that
are built. configure has a large number of options, which are described in Section 17.3.3.

494

https://www.postgresql.org/ftp/source/

Installation from Source Code

Also, configure responds to certain environment variables, as described in Section 17.3.4. These
provide additional ways to customize the configuration.

2. Build
To start the build, type either of:
make
make all

(Remember to use GNU make.) The build will take a few minutes depending on your hardware.

If you want to build everything that can be built, including the documentation (HTML and man
pages), and the additional modules (contrib), type instead:
make world

If you want to build everything that can be built, including the additional modules (contrib), but
without the documentation, type instead:
make world-bin

If you want to invoke the build from another makefile rather than manually, you must unset MAKELEV-
EL or set it to zero, for instance like this:
build-postgresql:
 $(MAKE) -C postgresql MAKELEVEL=0 all

Failure to do that can lead to strange error messages, typically about missing header files.
3. Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at
this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in
the way the developers expected it to. Type:
make check

(This won't work as root; do it as an unprivileged user.) See Chapter 31 for detailed information about
interpreting the test results. You can repeat this test at any later time by issuing the same command.

4. Installing the Files

Note
If you are upgrading an existing system be sure to read Section 18.6, which has instructions
about upgrading a cluster.

To install PostgreSQL enter:
make install

This will install files into the directories that were specified in Step 1. Make sure that you have
appropriate permissions to write into that area. Normally you need to do this step as root. Alterna-
tively, you can create the target directories in advance and arrange for appropriate permissions to
be granted.

To install the documentation (HTML and man pages), enter:
make install-docs

If you built the world above, type instead:
make install-world

This also installs the documentation.

495

Installation from Source Code

If you built the world without the documentation above, type instead:
make install-world-bin

You can use make install-strip instead of make install to strip the executable files and libraries
as they are installed. This will save some space. If you built with debugging support, stripping will
effectively remove the debugging support, so it should only be done if debugging is no longer needed.
install-strip tries to do a reasonable job saving space, but it does not have perfect knowledge of
how to strip every unneeded byte from an executable file, so if you want to save all the disk space
you possibly can, you will have to do manual work.

The standard installation provides all the header files needed for client application development as
well as for server-side program development, such as custom functions or data types written in C.

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:
make -C src/bin install
make -C src/include install
make -C src/interfaces install
make -C doc install

src/bin has a few binaries for server-only use, but they are small.
Uninstallation: To undo the installation use the command make uninstall. However, this will not
remove any created directories.

Cleaning: After the installation you can free disk space by removing the built files from the source
tree with the command make clean. This will preserve the files made by the configure program, so
that you can rebuild everything with make later on. To reset the source tree to the state in which it was
distributed, use make distclean. If you are going to build for several platforms within the same source
tree you must do this and re-configure for each platform. (Alternatively, use a separate build tree for
each platform, so that the source tree remains unmodified.)

If you perform a build and then discover that your configure options were wrong, or if you change
anything that configure investigates (for example, software upgrades), then it's a good idea to do make
distclean before reconfiguring and rebuilding. Without this, your changes in configuration choices
might not propagate everywhere they need to.

17.3.3. configure Options
configure's command line options are explained below. This list is not exhaustive (use ./configure --
help to get one that is). The options not covered here are meant for advanced use-cases such as cross-
compilation, and are documented in the standard Autoconf documentation.

17.3.3.1. Installation Locations
These options control where make install will put the files. The --prefix option is sufficient for most
cases. If you have special needs, you can customize the installation subdirectories with the other options
described in this section. Beware however that changing the relative locations of the different subdirec-
tories may render the installation non-relocatable, meaning you won't be able to move it after installa-
tion. (The man and doc locations are not affected by this restriction.) For relocatable installs, you might
want to use the --disable-rpath option described later.

--prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsql. The actual files will be
installed into various subdirectories; no files will ever be installed directly into the PREFIX directory.

--exec-prefix=EXEC-PREFIX

You can install architecture-dependent files under a different prefix, EXEC-PREFIX, than what PREFIX
was set to. This can be useful to share architecture-independent files between hosts. If you omit this,

496

Installation from Source Code

then EXEC-PREFIX is set equal to PREFIX and both architecture-dependent and independent files will
be installed under the same tree, which is probably what you want.

--bindir=DIRECTORY

Specifies the directory for executable programs. The default is EXEC-PREFIX/bin, which normally
means /usr/local/pgsql/bin.

--sysconfdir=DIRECTORY

Sets the directory for various configuration files, PREFIX/etc by default.

--libdir=DIRECTORY

Sets the location to install libraries and dynamically loadable modules. The default is EXEC-PREFIX/
lib.

--includedir=DIRECTORY

Sets the directory for installing C and C++ header files. The default is PREFIX/include.

--datarootdir=DIRECTORY

Sets the root directory for various types of read-only data files. This only sets the default for some
of the following options. The default is PREFIX/share.

--datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is DATAROOTDIR.
Note that this has nothing to do with where your database files will be placed.

--localedir=DIRECTORY

Sets the directory for installing locale data, in particular message translation catalog files. The de-
fault is DATAROOTDIR/locale.

--mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their respective
manx subdirectories. The default is DATAROOTDIR/man.

--docdir=DIRECTORY

Sets the root directory for installing documentation files, except “man” pages. This only sets the
default for the following options. The default value for this option is DATAROOTDIR/doc/postgresql.

--htmldir=DIRECTORY

The HTML-formatted documentation for PostgreSQL will be installed under this directory. The de-
fault is DATAROOTDIR.

Note
Care has been taken to make it possible to install PostgreSQL into shared installation locations
(such as /usr/local/include) without interfering with the namespace of the rest of the system.
First, the string “/postgresql” is automatically appended to datadir, sysconfdir, and docdir,
unless the fully expanded directory name already contains the string “postgres” or “pgsql”. For
example, if you choose /usr/local as prefix, the documentation will be installed in /usr/lo-
cal/doc/postgresql, but if the prefix is /opt/postgres, then it will be in /opt/postgres/doc.
The public C header files of the client interfaces are installed into includedir and are name-
space-clean. The internal header files and the server header files are installed into private direc-
tories under includedir. See the documentation of each interface for information about how to

497

Installation from Source Code

access its header files. Finally, a private subdirectory will also be created, if appropriate, under
libdir for dynamically loadable modules.

17.3.3.2. PostgreSQL Features
The options described in this section enable building of various PostgreSQL features that are not built
by default. Most of these are non-default only because they require additional software, as described
in Section 17.1.

--enable-nls[=LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program's messages in a
language other than English. LANGUAGES is an optional space-separated list of codes of the languages
that you want supported, for example --enable-nls='de fr'. (The intersection between your list
and the set of actually provided translations will be computed automatically.) If you do not specify
a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API.

--with-perl

Build the PL/Perl server-side language.

--with-python

Build the PL/Python server-side language.

--with-tcl

Build the PL/Tcl server-side language.

--with-tclconfig=DIRECTORY

Tcl installs the file tclConfig.sh, which contains configuration information needed to build modules
interfacing to Tcl. This file is normally found automatically at a well-known location, but if you want
to use a different version of Tcl you can specify the directory in which to look for tclConfig.sh.

--with-llvm

Build with support for LLVM based JIT compilation (see Chapter 30). This requires the LLVM library
to be installed. The minimum required version of LLVM is currently 14.

llvm-configwill be used to find the required compilation options. llvm-config will be searched for
in your PATH. If that would not yield the desired program, use LLVM_CONFIG to specify a path to the
correct llvm-config. For example
./configure ... --with-llvm LLVM_CONFIG='/path/to/llvm/bin/llvm-config'

LLVM support requires a compatible clang compiler (specified, if necessary, using the CLANG envi-
ronment variable), and a working C++ compiler (specified, if necessary, using the CXX environment
variable).

--with-lz4

Build with LZ4 compression support.

--with-zstd

Build with Zstandard compression support.

--with-ssl=LIBRARY

Build with support for SSL (encrypted) connections. The only LIBRARY supported is openssl, which is
used for both OpenSSL and LibreSSL. This requires the OpenSSL package to be installed. configure

498

Installation from Source Code

will check for the required header files and libraries to make sure that your OpenSSL installation
is sufficient before proceeding.

--with-openssl

Obsolete equivalent of --with-ssl=openssl.

--with-gssapi

Build with support for GSSAPI authentication. MIT Kerberos is required to be installed for GSSAPI.
On many systems, the GSSAPI system (a part of the MIT Kerberos installation) is not installed in
a location that is searched by default (e.g., /usr/include, /usr/lib), so you must use the options
--with-includes and --with-libraries in addition to this option. configure will check for the
required header files and libraries to make sure that your GSSAPI installation is sufficient before
proceeding.

--with-ldap

Build with LDAP support for authentication and connection parameter lookup (see Section 32.18 and
Section 20.10 for more information). On Unix, this requires the OpenLDAP package to be installed.
On Windows, the default WinLDAP library is used. configure will check for the required header files
and libraries to make sure that your OpenLDAP installation is sufficient before proceeding.

--with-pam

Build with PAM (Pluggable Authentication Modules) support.

--with-bsd-auth

Build with BSD Authentication support. (The BSD Authentication framework is currently only avail-
able on OpenBSD.)

--with-systemd

Build with support for systemd service notifications. This improves integration if the server is started
under systemd but has no impact otherwise; see Section 18.3 for more information. libsystemd and
the associated header files need to be installed to use this option.

--with-bonjour

Build with support for Bonjour automatic service discovery. This requires Bonjour support in your
operating system. Recommended on macOS.

--with-uuid=LIBRARY

Build the uuid-ossp module (which provides functions to generate UUIDs), using the specified UUID
library. LIBRARY must be one of:

• bsd to use the UUID functions found in FreeBSD and some other BSD-derived systems

• e2fs to use the UUID library created by the e2fsprogs project; this library is present in most
Linux systems and in macOS, and can be obtained for other platforms as well

• ossp to use the OSSP UUID library

--with-ossp-uuid

Obsolete equivalent of --with-uuid=ossp.

--with-libcurl

Build with libcurl support for OAuth 2.0 client flows. Libcurl version 7.61.0 or later is required for
this feature. Building with this will check for the required header files and libraries to make sure
that your curl installation is sufficient before proceeding.

499

http://www.ossp.org/pkg/lib/uuid/

Installation from Source Code

--with-libnuma

Build with libnuma support for basic NUMA support. Only supported on platforms for which the
libnuma library is implemented.

--with-liburing

Build with liburing, enabling io_uring support for asynchronous I/O.

To detect the required compiler and linker options, PostgreSQL will query pkg-config.

To use a liburing installation that is in an unusual location, you can set pkg-config-related environ-
ment variables (see its documentation).

--with-libxml

Build with libxml2, enabling SQL/XML support. Libxml2 version 2.6.23 or later is required for this
feature.

To detect the required compiler and linker options, PostgreSQL will query pkg-config, if that is in-
stalled and knows about libxml2. Otherwise the program xml2-config, which is installed by libxml2,
will be used if it is found. Use of pkg-config is preferred, because it can deal with multi-architecture
installations better.

To use a libxml2 installation that is in an unusual location, you can set pkg-config-related environ-
ment variables (see its documentation), or set the environment variable XML2_CONFIG to point to the
xml2-config program belonging to the libxml2 installation, or set the variables XML2_CFLAGS and
XML2_LIBS. (If pkg-config is installed, then to override its idea of where libxml2 is you must either
set XML2_CONFIG or set both XML2_CFLAGS and XML2_LIBS to nonempty strings.)

--with-libxslt

Build with libxslt, enabling the xml2 module to perform XSL transformations of XML. --with-libxml
must be specified as well.

--with-selinux

Build with SElinux support, enabling the sepgsql extension.

17.3.3.3. Anti-Features
The options described in this section allow disabling certain PostgreSQL features that are built by de-
fault, but which might need to be turned off if the required software or system features are not available.
Using these options is not recommended unless really necessary.

--without-icu

Build without support for the ICU library, disabling the use of ICU collation features (see Sec-
tion 23.2).

--without-readline

Prevents use of the Readline library (and libedit as well). This option disables command-line editing
and history in psql.

--with-libedit-preferred

Favors the use of the BSD-licensed libedit library rather than GPL-licensed Readline. This option is
significant only if you have both libraries installed; the default in that case is to use Readline.

--without-zlib

Prevents use of the Zlib library. This disables support for compressed archives in pg_dump and
pg_restore.

500

Installation from Source Code

17.3.3.4. Build Process Details
--with-includes=DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the compiler searches
for header files. If you have optional packages (such as GNU Readline) installed in a non-standard
location, you have to use this option and probably also the corresponding --with-libraries option.

Example: --with-includes=/opt/gnu/include:/usr/sup/include.

--with-libraries=DIRECTORIES

DIRECTORIES is a colon-separated list of directories to search for libraries. You will probably have
to use this option (and the corresponding --with-includes option) if you have packages installed
in non-standard locations.

Example: --with-libraries=/opt/gnu/lib:/usr/sup/lib.

--with-system-tzdata=DIRECTORY
PostgreSQL includes its own time zone database, which it requires for date and time operations.
This time zone database is in fact compatible with the IANA time zone database provided by many
operating systems such as FreeBSD, Linux, and Solaris, so it would be redundant to install it again.
When this option is used, the system-supplied time zone database in DIRECTORY is used instead of
the one included in the PostgreSQL source distribution. DIRECTORY must be specified as an absolute
path. /usr/share/zoneinfo is a likely directory on some operating systems. Note that the installation
routine will not detect mismatching or erroneous time zone data. If you use this option, you are
advised to run the regression tests to verify that the time zone data you have pointed to works
correctly with PostgreSQL.

This option is mainly aimed at binary package distributors who know their target operating system
well. The main advantage of using this option is that the PostgreSQL package won't need to be
upgraded whenever any of the many local daylight-saving time rules change. Another advantage is
that PostgreSQL can be cross-compiled more straightforwardly if the time zone database files do not
need to be built during the installation.

--with-extra-version=STRING

Append STRING to the PostgreSQL version number. You can use this, for example, to mark binaries
built from unreleased Git snapshots or containing custom patches with an extra version string, such
as a git describe identifier or a distribution package release number.

--disable-rpath

Do not mark PostgreSQL's executables to indicate that they should search for shared libraries in the
installation's library directory (see --libdir). On most platforms, this marking uses an absolute path
to the library directory, so that it will be unhelpful if you relocate the installation later. However, you
will then need to provide some other way for the executables to find the shared libraries. Typically
this requires configuring the operating system's dynamic linker to search the library directory; see
Section 17.5.1 for more detail.

17.3.3.5. Miscellaneous
It's fairly common, particularly for test builds, to adjust the default port number with --with-pgport.
The other options in this section are recommended only for advanced users.

--with-pgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port can always
be changed later on, but if you specify it here then both server and clients will have the same default
compiled in, which can be very convenient. Usually the only good reason to select a non-default value
is if you intend to run multiple PostgreSQL servers on the same machine.

501

Installation from Source Code

--with-krb-srvnam=NAME

The default name of the Kerberos service principal used by GSSAPI. postgres is the default. There's
usually no reason to change this unless you are building for a Windows environment, in which case
it must be set to upper case POSTGRES.

--with-segsize=SEGSIZE

Set the segment size, in gigabytes. Large tables are divided into multiple operating-system files,
each of size equal to the segment size. This avoids problems with file size limits that exist on many
platforms. The default segment size, 1 gigabyte, is safe on all supported platforms. If your operating
system has “largefile” support (which most do, nowadays), you can use a larger segment size. This
can be helpful to reduce the number of file descriptors consumed when working with very large
tables. But be careful not to select a value larger than is supported by your platform and the file
systems you intend to use. Other tools you might wish to use, such as tar, could also set limits on
the usable file size. It is recommended, though not absolutely required, that this value be a power
of 2. Note that changing this value breaks on-disk database compatibility, meaning you cannot use
pg_upgrade to upgrade to a build with a different segment size.

--with-blocksize=BLOCKSIZE

Set the block size, in kilobytes. This is the unit of storage and I/O within tables. The default, 8 kilo-
bytes, is suitable for most situations; but other values may be useful in special cases. The value must
be a power of 2 between 1 and 32 (kilobytes). Note that changing this value breaks on-disk database
compatibility, meaning you cannot use pg_upgrade to upgrade to a build with a different block size.

--with-wal-blocksize=BLOCKSIZE

Set the WAL block size, in kilobytes. This is the unit of storage and I/O within the WAL log. The
default, 8 kilobytes, is suitable for most situations; but other values may be useful in special cases.
The value must be a power of 2 between 1 and 64 (kilobytes). Note that changing this value breaks
on-disk database compatibility, meaning you cannot use pg_upgrade to upgrade to a build with a
different WAL block size.

17.3.3.6. Developer Options
Most of the options in this section are only of interest for developing or debugging PostgreSQL. They
are not recommended for production builds, except for --enable-debug, which can be useful to enable
detailed bug reports in the unlucky event that you encounter a bug. On platforms supporting DTrace,
--enable-dtrace may also be reasonable to use in production.

When building an installation that will be used to develop code inside the server, it is recommended to
use at least the options --enable-debug and --enable-cassert.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run the pro-
grams in a debugger to analyze problems. This enlarges the size of the installed executables consid-
erably, and on non-GCC compilers it usually also disables compiler optimization, causing slowdowns.
However, having the symbols available is extremely helpful for dealing with any problems that might
arise. Currently, this option is recommended for production installations only if you use GCC. But
you should always have it on if you are doing development work or running a beta version.

--enable-cassert

Enables assertion checks in the server, which test for many “cannot happen” conditions. This is
invaluable for code development purposes, but the tests can slow down the server significantly.
Also, having the tests turned on won't necessarily enhance the stability of your server! The assertion
checks are not categorized for severity, and so what might be a relatively harmless bug will still lead
to server restarts if it triggers an assertion failure. This option is not recommended for production
use, but you should have it on for development work or when running a beta version.

502

Installation from Source Code

--enable-tap-tests

Enable tests using the Perl TAP tools. This requires a Perl installation and the Perl module IPC::Run.
See Section 31.4 for more information.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that all affected
object files will be rebuilt when any header file is changed. This is useful if you are doing development
work, but is just wasted overhead if you intend only to compile once and install. At present, this
option only works with GCC.

--enable-coverage

If using GCC, all programs and libraries are compiled with code coverage testing instrumentation.
When run, they generate files in the build directory with code coverage metrics. See Section 31.5
for more information. This option is for use only with GCC and when doing development work.

--enable-profiling

If using GCC, all programs and libraries are compiled so they can be profiled. On backend exit, a
subdirectory will be created that contains the gmon.out file containing profile data. This option is for
use only with GCC and when doing development work.

--enable-dtrace

Compiles PostgreSQL with support for the dynamic tracing tool DTrace. See Section 27.5 for more
information.

To point to the dtrace program, the environment variable DTRACE can be set. This will often be
necessary because dtrace is typically installed under /usr/sbin, which might not be in your PATH.

Extra command-line options for the dtrace program can be specified in the environment variable
DTRACEFLAGS. On Solaris, to include DTrace support in a 64-bit binary, you must specify DTRACE-
FLAGS="-64". For example, using the GCC compiler:
./configure CC='gcc -m64' --enable-dtrace DTRACEFLAGS='-64' ...

Using Sun's compiler:
./configure CC='/opt/SUNWspro/bin/cc -xtarget=native64' --enable-dtrace
 DTRACEFLAGS='-64' ...

--enable-injection-points

Compiles PostgreSQL with support for injection points in the server. Injection points allow to run
user-defined code from within the server in pre-defined code paths. This helps in testing and in the
investigation of concurrency scenarios in a controlled fashion. This option is disabled by default. See
Section 36.10.14 for more details. This option is intended to be used only by developers for testing.

--with-segsize-blocks=SEGSIZE_BLOCKS

Specify the relation segment size in blocks. If both --with-segsize and this option are specified,
this option wins. This option is only for developers, to test segment related code.

17.3.4. configure Environment Variables
In addition to the ordinary command-line options described above, configure responds to a number
of environment variables. You can specify environment variables on the configure command line, for
example:
./configure CC=/opt/bin/gcc CFLAGS='-O2 -pipe'

In this usage an environment variable is little different from a command-line option. You can also set
such variables beforehand:
export CC=/opt/bin/gcc

503

Installation from Source Code

export CFLAGS='-O2 -pipe'
./configure

This usage can be convenient because many programs' configuration scripts respond to these variables
in similar ways.

The most commonly used of these environment variables are CC and CFLAGS. If you prefer a C compiler
different from the one configure picks, you can set the variable CC to the program of your choice. By
default, configure will pick gcc if available, else the platform's default (usually cc). Similarly, you can
override the default compiler flags if needed with the CFLAGS variable.

Here is a list of the significant variables that can be set in this manner:
BISON

Bison program

CC

C compiler

CFLAGS

options to pass to the C compiler

CLANG

path to clang program used to process source code for inlining when compiling with --with-llvm

CPP

C preprocessor

CPPFLAGS

options to pass to the C preprocessor

CXX

C++ compiler

CXXFLAGS

options to pass to the C++ compiler

DTRACE

location of the dtrace program

DTRACEFLAGS

options to pass to the dtrace program

FLEX

Flex program

LDFLAGS

options to use when linking either executables or shared libraries

LDFLAGS_EX

additional options for linking executables only

LDFLAGS_SL

additional options for linking shared libraries only

LLVM_CONFIG

llvm-config program used to locate the LLVM installation

504

Installation from Source Code

MSGFMT

msgfmt program for native language support

PERL

Perl interpreter program. This will be used to determine the dependencies for building PL/Perl. The
default is perl.

PYTHON

Python interpreter program. This will be used to determine the dependencies for building PL/Python.
If this is not set, the following are probed in this order: python3 python.

TCLSH

Tcl interpreter program. This will be used to determine the dependencies for building PL/Tcl. If this
is not set, the following are probed in this order: tclsh tcl tclsh8.6 tclsh86 tclsh8.5 tclsh85
tclsh8.4 tclsh84.

XML2_CONFIG

xml2-config program used to locate the libxml2 installation

Sometimes it is useful to add compiler flags after-the-fact to the set that were chosen by configure. An
important example is that gcc's -Werror option cannot be included in the CFLAGS passed to configure,
because it will break many of configure's built-in tests. To add such flags, include them in the COPT
environment variable while running make. The contents of COPT are added to the CFLAGS, CXXFLAGS, and
LDFLAGS options set up by configure. For example, you could do

make COPT='-Werror'

or

export COPT='-Werror'
make

Note
If using GCC, it is best to build with an optimization level of at least -O1, because using no optimiza-
tion (-O0) disables some important compiler warnings (such as the use of uninitialized variables).
However, non-zero optimization levels can complicate debugging because stepping through com-
piled code will usually not match up one-to-one with source code lines. If you get confused while
trying to debug optimized code, recompile the specific files of interest with -O0. An easy way to
do this is by passing an option to make: make PROFILE=-O0 file.o.

The COPT and PROFILE environment variables are actually handled identically by the PostgreSQL
makefiles. Which to use is a matter of preference, but a common habit among developers is to use
PROFILE for one-time flag adjustments, while COPT might be kept set all the time.

17.4. Building and Installation with Meson
17.4.1. Short Version

meson setup build --prefix=/usr/local/pgsql
cd build
ninja
su
ninja install
adduser postgres

505

Installation from Source Code

mkdir -p /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

The long version is the rest of this section.

17.4.2. Installation Procedure
1. Configuration

The first step of the installation procedure is to configure the build tree for your system and choose
the options you would like. To create and configure the build directory, you can start with the meson
setup command.

meson setup build

The setup command takes a builddir and a srcdir argument. If no srcdir is given, Meson will
deduce the srcdir based on the current directory and the location of meson.build. The builddir
is mandatory.

Running meson setup loads the build configuration file and sets up the build directory. Additionally,
you can also pass several build options to Meson. Some commonly used options are mentioned in
the subsequent sections. For example:

configure with a different installation prefix
meson setup build --prefix=/home/user/pg-install

configure to generate a debug build
meson setup build --buildtype=debug

configure to build with OpenSSL support
meson setup build -Dssl=openssl

Setting up the build directory is a one-time step. To reconfigure before a new build, you can simply
use the meson configure command

meson configure -Dcassert=true

meson configure's commonly used command-line options are explained in Section 17.4.3.

2. Build

By default, Meson uses the Ninja build tool. To build PostgreSQL from source using Meson, you can
simply use the ninja command in the build directory.

ninja

Ninja will automatically detect the number of CPUs in your computer and parallelize itself accord-
ingly. You can override the number of parallel processes used with the command line argument -j.

It should be noted that after the initial configure step, ninja is the only command you ever need to
type to compile. No matter how you alter your source tree (short of moving it to a completely new
location), Meson will detect the changes and regenerate itself accordingly. This is especially handy
if you have multiple build directories. Often one of them is used for development (the "debug" build)
and others only every now and then (such as a "static analysis" build). Any configuration can be built
just by cd'ing to the corresponding directory and running Ninja.

If you'd like to build with a backend other than ninja, you can use configure with the --backend option
to select the one you want to use and then build using meson compile. To learn more about these
backends and other arguments you can provide to ninja, you can refer to the Meson documentation.

506

https://ninja-build.org/
https://mesonbuild.com/Running-Meson.html#building-from-the-source

Installation from Source Code

3. Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at
this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in
the way the developers expected it to. Type:

meson test

(This won't work as root; do it as an unprivileged user.) See Chapter 31 for detailed information about
interpreting the test results. You can repeat this test at any later time by issuing the same command.

To run pg_regress and pg_isolation_regress tests against a running postgres instance, specify --
setup running as an argument to meson test.

4. Installing the Files

Note
If you are upgrading an existing system be sure to read Section 18.6, which has instructions
about upgrading a cluster.

Once PostgreSQL is built, you can install it by simply running the ninja install command.

ninja install

This will install files into the directories that were specified in Step 1. Make sure that you have appro-
priate permissions to write into that area. You might need to do this step as root. Alternatively, you
can create the target directories in advance and arrange for appropriate permissions to be granted.
The standard installation provides all the header files needed for client application development as
well as for server-side program development, such as custom functions or data types written in C.

ninja install should work for most cases, but if you'd like to use more options (such as --quiet to
suppress extra output), you could also use meson install instead. You can learn more about meson
install and its options in the Meson documentation.

Uninstallation: To undo the installation, you can use the ninja uninstall command.

Cleaning: After the installation, you can free disk space by removing the built files from the source
tree with the ninja clean command.

17.4.3. meson setup Options
meson setup's command-line options are explained below. This list is not exhaustive (use meson con-
figure --help to get one that is). The options not covered here are meant for advanced use-cases,
and are documented in the standard Meson documentation. These arguments can be used with meson
setup as well.

17.4.3.1. Installation Locations
These options control where ninja install (or meson install) will put the files. The --prefix option
(example Section 17.4.1) is sufficient for most cases. If you have special needs, you can customize the in-
stallation subdirectories with the other options described in this section. Beware however that changing
the relative locations of the different subdirectories may render the installation non-relocatable, mean-
ing you won't be able to move it after installation. (The man and doc locations are not affected by this
restriction.) For relocatable installs, you might want to use the -Drpath=false option described later.

--prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsql (on Unix based systems)
or current drive letter:/usr/local/pgsql (on Windows). The actual files will be installed into
various subdirectories; no files will ever be installed directly into the PREFIX directory.

507

https://mesonbuild.com/Commands.html#install
https://mesonbuild.com/Commands.html#install
https://mesonbuild.com/Commands.html#configure

Installation from Source Code

--bindir=DIRECTORY

Specifies the directory for executable programs. The default is PREFIX/bin.

--sysconfdir=DIRECTORY

Sets the directory for various configuration files, PREFIX/etc by default.

--libdir=DIRECTORY

Sets the location to install libraries and dynamically loadable modules. The default is PREFIX/lib.

--includedir=DIRECTORY

Sets the directory for installing C and C++ header files. The default is PREFIX/include.

--datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is PREFIX/
share. Note that this has nothing to do with where your database files will be placed.

--localedir=DIRECTORY

Sets the directory for installing locale data, in particular message translation catalog files. The de-
fault is DATADIR/locale.

--mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their respective
manx subdirectories. The default is DATADIR/man.

Note
Care has been taken to make it possible to install PostgreSQL into shared installation locations
(such as /usr/local/include) without interfering with the namespace of the rest of the system.
First, the string “/postgresql” is automatically appended to datadir, sysconfdir, and docdir,
unless the fully expanded directory name already contains the string “postgres” or “pgsql”. For
example, if you choose /usr/local as prefix, the documentation will be installed in /usr/lo-
cal/doc/postgresql, but if the prefix is /opt/postgres, then it will be in /opt/postgres/doc.
The public C header files of the client interfaces are installed into includedir and are name-
space-clean. The internal header files and the server header files are installed into private direc-
tories under includedir. See the documentation of each interface for information about how to
access its header files. Finally, a private subdirectory will also be created, if appropriate, under
libdir for dynamically loadable modules.

17.4.3.2. PostgreSQL Features
The options described in this section enable building of various optional PostgreSQL features. Most of
these require additional software, as described in Section 17.1, and will be automatically enabled if the
required software is found. You can change this behavior by manually setting these features to enabled
to require them or disabled to not build with them.

To specify PostgreSQL-specific options, the name of the option must be prefixed by -D.

-Dnls={ auto | enabled | disabled }

Enables or disables Native Language Support (NLS), that is, the ability to display a program's mes-
sages in a language other than English. Defaults to auto and will be enabled automatically if an im-
plementation of the Gettext API is found.

-Dplperl={ auto | enabled | disabled }

Build the PL/Perl server-side language. Defaults to auto.

508

Installation from Source Code

-Dplpython={ auto | enabled | disabled }

Build the PL/Python server-side language. Defaults to auto.

-Dpltcl={ auto | enabled | disabled }

Build the PL/Tcl server-side language. Defaults to auto.

-Dtcl_version=TCL_VERSION

Specifies the Tcl version to use when building PL/Tcl.

-Dicu={ auto | enabled | disabled }

Build with support for the ICU library, enabling use of ICU collation features (see Section 23.2).
Defaults to auto and requires the ICU4C package to be installed. The minimum required version of
ICU4C is currently 4.2.

-Dllvm={ auto | enabled | disabled }

Build with support for LLVM based JIT compilation (see Chapter 30). This requires the LLVM library
to be installed. The minimum required version of LLVM is currently 14. Disabled by default.

llvm-configwill be used to find the required compilation options. llvm-config, and then llvm-
config-$version for all supported versions, will be searched for in your PATH. If that would not yield
the desired program, use LLVM_CONFIG to specify a path to the correct llvm-config.

-Dlz4={ auto | enabled | disabled }

Build with LZ4 compression support. Defaults to auto.

-Dzstd={ auto | enabled | disabled }

Build with Zstandard compression support. Defaults to auto.

-Dssl={ auto | LIBRARY }
Build with support for SSL (encrypted) connections. The only LIBRARY supported is openssl. This
requires the OpenSSL package to be installed. Building with this will check for the required header
files and libraries to make sure that your OpenSSL installation is sufficient before proceeding. The
default for this option is auto.

-Dgssapi={ auto | enabled | disabled }

Build with support for GSSAPI authentication. MIT Kerberos is required to be installed for GSSAPI.
On many systems, the GSSAPI system (a part of the MIT Kerberos installation) is not installed in
a location that is searched by default (e.g., /usr/include, /usr/lib). In those cases, PostgreSQL
will query pkg-config to detect the required compiler and linker options. Defaults to auto. meson
configure will check for the required header files and libraries to make sure that your GSSAPI
installation is sufficient before proceeding.

-Dldap={ auto | enabled | disabled }

Build with LDAP support for authentication and connection parameter lookup (see Section 32.18 and
Section 20.10 for more information). On Unix, this requires the OpenLDAP package to be installed.
On Windows, the default WinLDAP library is used. Defaults to auto. meson configure will check for
the required header files and libraries to make sure that your OpenLDAP installation is sufficient
before proceeding.

-Dpam={ auto | enabled | disabled }

Build with PAM (Pluggable Authentication Modules) support. Defaults to auto.

-Dbsd_auth={ auto | enabled | disabled }

Build with BSD Authentication support. (The BSD Authentication framework is currently only avail-
able on OpenBSD.) Defaults to auto.

509

Installation from Source Code

-Dsystemd={ auto | enabled | disabled }

Build with support for systemd service notifications. This improves integration if the server is started
under systemd but has no impact otherwise; see Section 18.3 for more information. Defaults to auto.
libsystemd and the associated header files need to be installed to use this option.

-Dbonjour={ auto | enabled | disabled }

Build with support for Bonjour automatic service discovery. Defaults to auto and requires Bonjour
support in your operating system. Recommended on macOS.

-Duuid=LIBRARY

Build the uuid-ossp module (which provides functions to generate UUIDs), using the specified UUID
library. LIBRARY must be one of:

• none to not build the uuid module. This is the default.

• bsd to use the UUID functions found in FreeBSD, and some other BSD-derived systems

• e2fs to use the UUID library created by the e2fsprogs project; this library is present in most
Linux systems and in macOS, and can be obtained for other platforms as well

• ossp to use the OSSP UUID library

-Dlibcurl={ auto | enabled | disabled }

Build with libcurl support for OAuth 2.0 client flows. Libcurl version 7.61.0 or later is required for
this feature. Building with this will check for the required header files and libraries to make sure
that your Curl installation is sufficient before proceeding. The default for this option is auto.

-Dliburing={ auto | enabled | disabled }

Build with liburing, enabling io_uring support for asynchronous I/O. Defaults to auto.

To use a liburing installation that is in an unusual location, you can set pkg-config-related environ-
ment variables (see its documentation).

-Dlibnuma={ auto | enabled | disabled }

Build with libnuma support for basic NUMA support. Only supported on platforms for which the
libnuma library is implemented. The default for this option is auto.

-Dlibxml={ auto | enabled | disabled }

Build with libxml2, enabling SQL/XML support. Defaults to auto. Libxml2 version 2.6.23 or later is
required for this feature.

To use a libxml2 installation that is in an unusual location, you can set pkg-config-related environ-
ment variables (see its documentation).

-Dlibxslt={ auto | enabled | disabled }

Build with libxslt, enabling the xml2 module to perform XSL transformations of XML. -Dlibxml must
be specified as well. Defaults to auto.

-Dselinux={ auto | enabled | disabled }

Build with SElinux support, enabling the sepgsql extension. Defaults to auto.

17.4.3.3. Anti-Features
-Dreadline={ auto | enabled | disabled }

Allows use of the Readline library (and libedit as well). This option defaults to auto and enables
command-line editing and history in psql and is strongly recommended.

510

http://www.ossp.org/pkg/lib/uuid/

Installation from Source Code

-Dlibedit_preferred={ true | false }

Setting this to true favors the use of the BSD-licensed libedit library rather than GPL-licensed Read-
line. This option is significant only if you have both libraries installed; the default is false, that is
to use Readline.

-Dzlib={ auto | enabled | disabled }

Enables use of the Zlib library. It defaults to auto and enables support for compressed archives in
pg_dump, pg_restore and pg_basebackup and is recommended.

17.4.3.4. Build Process Details
--auto-features={ auto | enabled | disabled }

Setting this option allows you to override the value of all “auto” features (features that are enabled
automatically if the required software is found). This can be useful when you want to disable or
enable all the “optional” features at once without having to set each of them manually. The default
value for this parameter is auto.

--backend=BACKEND

The default backend Meson uses is ninja and that should suffice for most use cases. However, if you'd
like to fully integrate with Visual Studio, you can set the BACKEND to vs.

-Dc_args=OPTIONS

This option can be used to pass extra options to the C compiler.

-Dc_link_args=OPTIONS

This option can be used to pass extra options to the C linker.

-Dextra_include_dirs=DIRECTORIES

DIRECTORIES is a comma-separated list of directories that will be added to the list the compil-
er searches for header files. If you have optional packages (such as GNU Readline) installed in
a non-standard location, you have to use this option and probably also the corresponding -Dex-
tra_lib_dirs option.

Example: -Dextra_include_dirs=/opt/gnu/include,/usr/sup/include.

-Dextra_lib_dirs=DIRECTORIES

DIRECTORIES is a comma-separated list of directories to search for libraries. You will probably have to
use this option (and the corresponding -Dextra_include_dirs option) if you have packages installed
in non-standard locations.

Example: -Dextra_lib_dirs=/opt/gnu/lib,/usr/sup/lib.

-Dsystem_tzdata=DIRECTORY
PostgreSQL includes its own time zone database, which it requires for date and time operations.
This time zone database is in fact compatible with the IANA time zone database provided by many
operating systems such as FreeBSD, Linux, and Solaris, so it would be redundant to install it again.
When this option is used, the system-supplied time zone database in DIRECTORY is used instead of
the one included in the PostgreSQL source distribution. DIRECTORY must be specified as an absolute
path. /usr/share/zoneinfo is a likely directory on some operating systems. Note that the installation
routine will not detect mismatching or erroneous time zone data. If you use this option, you are
advised to run the regression tests to verify that the time zone data you have pointed to works
correctly with PostgreSQL.

This option is mainly aimed at binary package distributors who know their target operating system
well. The main advantage of using this option is that the PostgreSQL package won't need to be

511

Installation from Source Code

upgraded whenever any of the many local daylight-saving time rules change. Another advantage is
that PostgreSQL can be cross-compiled more straightforwardly if the time zone database files do not
need to be built during the installation.

-Dextra_version=STRING

Append STRING to the PostgreSQL version number. You can use this, for example, to mark binaries
built from unreleased Git snapshots or containing custom patches with an extra version string, such
as a git describe identifier or a distribution package release number.

-Drpath={ true | false }

This option is set to true by default. If set to false, do not mark PostgreSQL's executables to indicate
that they should search for shared libraries in the installation's library directory (see --libdir). On
most platforms, this marking uses an absolute path to the library directory, so that it will be unhelpful
if you relocate the installation later. However, you will then need to provide some other way for the
executables to find the shared libraries. Typically this requires configuring the operating system's
dynamic linker to search the library directory; see Section 17.5.1 for more detail.

-DBINARY_NAME=PATH

If a program required to build PostgreSQL (with or without optional flags) is stored at a non-standard
path, you can specify it manually to meson configure. The complete list of programs for which this
is supported can be found by running meson configure. Example:

meson configure -DBISON=PATH_TO_BISON

17.4.3.5. Documentation
See Section J.2 for the tools needed for building the documentation.

-Ddocs={ auto | enabled | disabled }

Enables building the documentation in HTML and man format. It defaults to auto.

-Ddocs_pdf={ auto | enabled | disabled }

Enables building the documentation in PDF format. It defaults to auto.

-Ddocs_html_style={ simple | website }

Controls which CSS stylesheet is used. The default is simple. If set to website, the HTML documen-
tation will reference the stylesheet for postgresql.org.

17.4.3.6. Miscellaneous
-Dpgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port can always
be changed later on, but if you specify it here then both server and clients will have the same default
compiled in, which can be very convenient. Usually the only good reason to select a non-default value
is if you intend to run multiple PostgreSQL servers on the same machine.

-Dkrb_srvnam=NAME

The default name of the Kerberos service principal used by GSSAPI. postgres is the default. There's
usually no reason to change this unless you are building for a Windows environment, in which case
it must be set to upper case POSTGRES.

-Dsegsize=SEGSIZE

Set the segment size, in gigabytes. Large tables are divided into multiple operating-system files,
each of size equal to the segment size. This avoids problems with file size limits that exist on many
platforms. The default segment size, 1 gigabyte, is safe on all supported platforms. If your operating

512

https://www.postgresql.org/docs/current/

Installation from Source Code

system has “largefile” support (which most do, nowadays), you can use a larger segment size. This
can be helpful to reduce the number of file descriptors consumed when working with very large
tables. But be careful not to select a value larger than is supported by your platform and the file
systems you intend to use. Other tools you might wish to use, such as tar, could also set limits on the
usable file size. It is recommended, though not absolutely required, that this value be a power of 2.

-Dblocksize=BLOCKSIZE

Set the block size, in kilobytes. This is the unit of storage and I/O within tables. The default, 8 kilo-
bytes, is suitable for most situations; but other values may be useful in special cases. The value must
be a power of 2 between 1 and 32 (kilobytes).

-Dwal_blocksize=BLOCKSIZE

Set the WAL block size, in kilobytes. This is the unit of storage and I/O within the WAL log. The
default, 8 kilobytes, is suitable for most situations; but other values may be useful in special cases.
The value must be a power of 2 between 1 and 64 (kilobytes).

17.4.3.7. Developer Options
Most of the options in this section are only of interest for developing or debugging PostgreSQL. They
are not recommended for production builds, except for --debug, which can be useful to enable detailed
bug reports in the unlucky event that you encounter a bug. On platforms supporting DTrace, -Ddtrace
may also be reasonable to use in production.

When building an installation that will be used to develop code inside the server, it is recommended to
use at least the --buildtype=debug and -Dcassert options.

--buildtype=BUILDTYPE

This option can be used to specify the buildtype to use; defaults to debugoptimized. If you'd like
finer control on the debug symbols and optimization levels than what this option provides, you can
refer to the --debug and --optimization flags.

The following build types are generally used: plain, debug, debugoptimized and release. More
information about them can be found in the Meson documentation.

--debug

Compiles all programs and libraries with debugging symbols. This means that you can run the pro-
grams in a debugger to analyze problems. This enlarges the size of the installed executables consid-
erably, and on non-GCC compilers it usually also disables compiler optimization, causing slowdowns.
However, having the symbols available is extremely helpful for dealing with any problems that might
arise. Currently, this option is recommended for production installations only if you use GCC. But
you should always have it on if you are doing development work or running a beta version.

--optimization=LEVEL

Specify the optimization level. LEVEL can be set to any of {0,g,1,2,3,s}.

--werror

Setting this option asks the compiler to treat warnings as errors. This can be useful for code devel-
opment.

-Dcassert={ true | false }

Enables assertion checks in the server, which test for many “cannot happen” conditions. This is
invaluable for code development purposes, but the tests slow down the server significantly. Also,
having the tests turned on won't necessarily enhance the stability of your server! The assertion
checks are not categorized for severity, and so what might be a relatively harmless bug will still lead
to server restarts if it triggers an assertion failure. This option is not recommended for production
use, but you should have it on for development work or when running a beta version.

513

https://mesonbuild.com/Running-Meson.html#configuring-the-build-directory

Installation from Source Code

-Dtap_tests={ auto | enabled | disabled }

Enable tests using the Perl TAP tools. Defaults to auto and requires a Perl installation and the Perl
module IPC::Run. See Section 31.4 for more information.

-DPG_TEST_EXTRA=TEST_SUITES

Enable additional test suites, which are not run by default because they are not secure to run on
a multiuser system, require special software to run, or are resource intensive. The argument is a
whitespace-separated list of tests to enable. See Section 31.1.3 for details. If the PG_TEST_EXTRA
environment variable is set when the tests are run, it overrides this setup-time option.

-Db_coverage={ true | false }

If using GCC, all programs and libraries are compiled with code coverage testing instrumentation.
When run, they generate files in the build directory with code coverage metrics. See Section 31.5
for more information. This option is for use only with GCC and when doing development work.

-Ddtrace={ auto | enabled | disabled }

Enabling this compiles PostgreSQL with support for the dynamic tracing tool DTrace. See Sec-
tion 27.5 for more information.

To point to the dtrace program, the DTRACE option can be set. This will often be necessary because
dtrace is typically installed under /usr/sbin, which might not be in your PATH.

-Dinjection_points={ true | false }

Compiles PostgreSQL with support for injection points in the server. Injection points allow to run
user-defined code from within the server in pre-defined code paths. This helps in testing and in the
investigation of concurrency scenarios in a controlled fashion. This option is disabled by default. See
Section 36.10.14 for more details. This option is intended to be used only by developers for testing.

-Dsegsize_blocks=SEGSIZE_BLOCKS

Specify the relation segment size in blocks. If both -Dsegsize and this option are specified, this
option wins. This option is only for developers, to test segment related code.

17.4.4. meson Build Targets
Individual build targets can be built using ninja target. When no target is specified, everything except
documentation is built. Individual build products can be built using the path/filename as target.

17.4.4.1. Code Targets
all

Build everything other than documentation

backend

Build backend and related modules

bin

Build frontend binaries

contrib

Build contrib modules

pl

Build procedural languages

514

Installation from Source Code

17.4.4.2. Developer Targets
reformat-dat-files

Rewrite catalog data files into standard format

expand-dat-files

Expand all data files to include defaults

update-unicode

Update unicode data to new version

17.4.4.3. Documentation Targets
html

Build documentation in multi-page HTML format

man

Build documentation in man page format

docs

Build documentation in multi-page HTML and man page format

doc/src/sgml/postgres-A4.pdf

Build documentation in PDF format, with A4 pages

doc/src/sgml/postgres-US.pdf

Build documentation in PDF format, with US letter pages

doc/src/sgml/postgres.html

Build documentation in single-page HTML format

alldocs

Build documentation in all supported formats

17.4.4.4. Installation Targets
install

Install postgres, excluding documentation

install-docs

Install documentation in multi-page HTML and man page formats

install-html

Install documentation in multi-page HTML format

install-man

Install documentation in man page format

install-quiet

Like "install", but installed files are not displayed

install-world

Install postgres, including multi-page HTML and man page documentation

515

Installation from Source Code

uninstall

Remove installed files

17.4.4.5. Other Targets
clean

Remove all build products

test

Run all enabled tests (including contrib)

world

Build everything, including documentation

help

List important targets

17.5. Post-Installation Setup
17.5.1. Shared Libraries

On some systems with shared libraries you need to tell the system how to find the newly installed shared
libraries. The systems on which this is not necessary include FreeBSD, Linux, NetBSD, OpenBSD, and
Solaris.

The method to set the shared library search path varies between platforms, but the most widely-used
method is to set the environment variable LD_LIBRARY_PATH like so: In Bourne shells (sh, ksh, bash, zsh):
LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

or in csh or tcsh:
setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replace /usr/local/pgsql/lib with whatever you set --libdir to in Step 1. You should put these
commands into a shell start-up file such as /etc/profile or ~/.bash_profile. Some good information
about the caveats associated with this method can be found at http://xahlee.info/UnixResource_dir/_/
ldpath.html.

On some systems it might be preferable to set the environment variable LD_RUN_PATH before building.

On Cygwin, put the library directory in the PATH or move the .dll files into the bin directory.

If in doubt, refer to the manual pages of your system (perhaps ld.so or rld). If you later get a message
like:
psql: error in loading shared libraries
libpq.so.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.

If you are on Linux and you have root access, you can run:
/sbin/ldconfig /usr/local/pgsql/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries faster.
Refer to the manual page of ldconfig for more information. On FreeBSD, NetBSD, and OpenBSD the
command is:
/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

516

http://xahlee.info/UnixResource_dir/_/ldpath.html
http://xahlee.info/UnixResource_dir/_/ldpath.html

Installation from Source Code

17.5.2. Environment Variables
If you installed into /usr/local/pgsql or some other location that is not searched for programs by de-
fault, you should add /usr/local/pgsql/bin (or whatever you set --bindir to in Step 1) into your PATH.
Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more convenient.

To do this, add the following to your shell start-up file, such as ~/.bash_profile (or /etc/profile, if
you want it to affect all users):
PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are using csh or tcsh, then use this command:
set path = (/usr/local/pgsql/bin $path)

To enable your system to find the man documentation, you need to add lines like the following to a shell
start-up file unless you installed into a location that is searched by default:
MANPATH=/usr/local/pgsql/share/man:$MANPATH
export MANPATH

The environment variables PGHOST and PGPORT specify to client applications the host and port of the
database server, overriding the compiled-in defaults. If you are going to run client applications remotely
then it is convenient if every user that plans to use the database sets PGHOST. This is not required,
however; the settings can be communicated via command line options to most client programs.

17.6. Supported Platforms
A platform (that is, a CPU architecture and operating system combination) is considered supported by
the PostgreSQL development community if the code contains provisions to work on that platform and it
has recently been verified to build and pass its regression tests on that platform. Currently, most testing
of platform compatibility is done automatically by test machines in the PostgreSQL Build Farm. If you
are interested in using PostgreSQL on a platform that is not represented in the build farm, but on which
the code works or can be made to work, you are strongly encouraged to set up a build farm member
machine so that continued compatibility can be assured.

In general, PostgreSQL can be expected to work on these CPU architectures: x86, PowerPC, S/390,
SPARC, ARM, MIPS, and RISC-V, including big-endian, little-endian, 32-bit, and 64-bit variants where
applicable.

PostgreSQL can be expected to work on current versions of these operating systems: Linux, Windows,
FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, macOS, Solaris, and illumos. Other Unix-like systems may
also work but are not currently being tested. In most cases, all CPU architectures supported by a given
operating system will work. Look in Section 17.7 below to see if there is information specific to your
operating system, particularly if using an older system.

If you have installation problems on a platform that is known to be supported according to recent build
farm results, please report it to <pgsql-bugs@lists.postgresql.org>. If you are interested in porting
PostgreSQL to a new platform, <pgsql-hackers@lists.postgresql.org> is the appropriate place to
discuss that.

Historical versions of PostgreSQL or POSTGRES also ran on CPU architectures including Alpha, Itanium,
M32R, M68K, M88K, NS32K, PA-RISC, SuperH, and VAX, and operating systems including 4.3BSD, AIX,
BEOS, BSD/OS, DG/UX, Dynix, HP-UX, IRIX, NeXTSTEP, QNX, SCO, SINIX, Sprite, SunOS, Tru64 UNIX,
and ULTRIX.

17.7. Platform-Specific Notes
This section documents additional platform-specific issues regarding the installation and setup of Post-
greSQL. Be sure to read the installation instructions, and in particular Section 17.1 as well. Also, check
Chapter 31 regarding the interpretation of regression test results.

517

https://buildfarm.postgresql.org/

Installation from Source Code

Platforms that are not covered here have no known platform-specific installation issues.

17.7.1. Cygwin
PostgreSQL can be built using Cygwin, a Linux-like environment for Windows, but that method is inferior
to the native Windows build and running a server under Cygwin is no longer recommended.

When building from source, proceed according to the Unix-style installation procedure (i.e., ./config-
ure; make; etc.), noting the following Cygwin-specific differences:

• Set your path to use the Cygwin bin directory before the Windows utilities. This will help prevent
problems with compilation.

• The adduser command is not supported; use the appropriate user management application on Win-
dows. Otherwise, skip this step.

• The su command is not supported; use ssh to simulate su on Windows. Otherwise, skip this step.

• OpenSSL is not supported.

• Start cygserver for shared memory support. To do this, enter the command /usr/sbin/cygserver
&. This program needs to be running anytime you start the PostgreSQL server or initialize a data-
base cluster (initdb). The default cygserver configuration may need to be changed (e.g., increase
SEMMNS) to prevent PostgreSQL from failing due to a lack of system resources.

• Building might fail on some systems where a locale other than C is in use. To fix this, set the locale
to C by doing export LANG=C.utf8 before building, and then setting it back to the previous setting
after you have installed PostgreSQL.

• The parallel regression tests (make check) can generate spurious regression test failures due to
overflowing the listen() backlog queue which causes connection refused errors or hangs. You can
limit the number of connections using the make variable MAX_CONNECTIONS thus:

make MAX_CONNECTIONS=5 check

(On some systems you can have up to about 10 simultaneous connections.)

It is possible to install cygserver and the PostgreSQL server as Windows NT services. For information
on how to do this, please refer to the README document included with the PostgreSQL binary package
on Cygwin. It is installed in the directory /usr/share/doc/Cygwin.

17.7.2. macOS
To build PostgreSQL from source on macOS, you will need to install Apple's command line developer
tools, which can be done by issuing

xcode-select --install

(note that this will pop up a GUI dialog window for confirmation). You may or may not wish to also install
Xcode.

On recent macOS releases, it's necessary to embed the “sysroot” path in the include switches used to find
some system header files. This results in the outputs of the configure script varying depending on which
SDK version was used during configure. That shouldn't pose any problem in simple scenarios, but if you
are trying to do something like building an extension on a different machine than the server code was
built on, you may need to force use of a different sysroot path. To do that, set PG_SYSROOT, for example

make PG_SYSROOT=/desired/path all

To find out the appropriate path on your machine, run

xcrun --show-sdk-path

Note that building an extension using a different sysroot version than was used to build the core server
is not really recommended; in the worst case it could result in hard-to-debug ABI inconsistencies.

518

Installation from Source Code

You can also select a non-default sysroot path when configuring, by specifying PG_SYSROOT to configure:

./configure ... PG_SYSROOT=/desired/path

This would primarily be useful to cross-compile for some other macOS version. There is no guarantee
that the resulting executables will run on the current host.

To suppress the -isysroot options altogether, use

./configure ... PG_SYSROOT=none

(any nonexistent pathname will work). This might be useful if you wish to build with a non-Apple compiler,
but beware that that case is not tested or supported by the PostgreSQL developers.

macOS's “System Integrity Protection” (SIP) feature breaks make check, because it prevents passing
the needed setting of DYLD_LIBRARY_PATH down to the executables being tested. You can work around
that by doing make install before make check. Most PostgreSQL developers just turn off SIP, though.

17.7.3. MinGW
PostgreSQL for Windows can be built using MinGW, a Unix-like build environment for Windows. It is
recommended to use the MSYS2 environment for this and also to install any prerequisite packages.

17.7.3.1. Collecting Crash Dumps
If PostgreSQL on Windows crashes, it has the ability to generate minidumps that can be used to track
down the cause for the crash, similar to core dumps on Unix. These dumps can be read using the Win-
dows Debugger Tools or using Visual Studio. To enable the generation of dumps on Windows, create a
subdirectory named crashdumps inside the cluster data directory. The dumps will then be written into
this directory with a unique name based on the identifier of the crashing process and the current time
of the crash.

17.7.4. Solaris
PostgreSQL is well-supported on Solaris. The more up to date your operating system, the fewer issues
you will experience.

17.7.4.1. Required Tools
You can build with either GCC or Sun's compiler suite. For better code optimization, Sun's compiler is
strongly recommended on the SPARC architecture. If you are using Sun's compiler, be careful not to
select /usr/ucb/cc; use /opt/SUNWspro/bin/cc.

You can download Sun Studio from https://www.oracle.com/technetwork/server-storage/solarisstu-
dio/downloads/. Many GNU tools are integrated into Solaris 10, or they are present on the Solaris com-
panion CD. If you need packages for older versions of Solaris, you can find these tools at http://www.sun-
freeware.com. If you prefer sources, look at https://www.gnu.org/prep/ftp.

17.7.4.2. configure Complains About a Failed Test Program
If configure complains about a failed test program, this is probably a case of the run-time linker being
unable to find some library, probably libz, libreadline or some other non-standard library such as libssl.
To point it to the right location, set the LDFLAGS environment variable on the configure command line,
e.g.,

configure ... LDFLAGS="-R /usr/sfw/lib:/opt/sfw/lib:/usr/local/lib"

See the ld man page for more information.

17.7.4.3. Compiling for Optimal Performance
On the SPARC architecture, Sun Studio is strongly recommended for compilation. Try using the -xO5
optimization flag to generate significantly faster binaries. Do not use any flags that modify behavior of
floating-point operations and errno processing (e.g., -fast).

519

https://www.msys2.org/
https://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/
https://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/
http://www.sunfreeware.com
http://www.sunfreeware.com
https://www.gnu.org/prep/ftp

Installation from Source Code

If you do not have a reason to use 64-bit binaries on SPARC, prefer the 32-bit version. The 64-bit oper-
ations are slower and 64-bit binaries are slower than the 32-bit variants. On the other hand, 32-bit code
on the AMD64 CPU family is not native, so 32-bit code is significantly slower on that CPU family.

17.7.4.4. Using DTrace for Tracing PostgreSQL
Yes, using DTrace is possible. See Section 27.5 for further information.

If you see the linking of the postgres executable abort with an error message like:

Undefined first referenced
 symbol in file
AbortTransaction utils/probes.o
CommitTransaction utils/probes.o
ld: fatal: Symbol referencing errors. No output written to postgres
collect2: ld returned 1 exit status
make: *** [postgres] Error 1

your DTrace installation is too old to handle probes in static functions. You need Solaris 10u4 or newer
to use DTrace.

17.7.5. Visual Studio
It is recommended that most users download the binary distribution for Windows, available as a graphical
installer package from the PostgreSQL website at https://www.postgresql.org/download/. Building from
source is only intended for people developing PostgreSQL or extensions.

PostgreSQL for Windows with Visual Studio can be built using Meson, as described in Section 17.4. The
native Windows port requires a 32 or 64-bit version of Windows 10 or later.

Native builds of psql don't support command line editing. The Cygwin build does support command line
editing, so it should be used where psql is needed for interactive use on Windows.

PostgreSQL can be built using the Visual C++ compiler suite from Microsoft. These compilers can be
either from Visual Studio, Visual Studio Express or some versions of the Microsoft Windows SDK. If you
do not already have a Visual Studio environment set up, the easiest ways are to use the compilers from
Visual Studio 2022 or those in the Windows SDK 10, which are both free downloads from Microsoft.

Both 32-bit and 64-bit builds are possible with the Microsoft Compiler suite. 32-bit PostgreSQL builds
are possible with Visual Studio 2015 to Visual Studio 2022, as well as standalone Windows SDK releases
10 and above. 64-bit PostgreSQL builds are supported with Microsoft Windows SDK version 10 and
above or Visual Studio 2015 and above.

If your build environment doesn't ship with a supported version of the Microsoft Windows SDK it is
recommended that you upgrade to the latest version (currently version 10), available for download from
https://www.microsoft.com/download.

You must always include the Windows Headers and Libraries part of the SDK. If you install a Windows
SDK including the Visual C++ Compilers, you don't need Visual Studio to build. Note that as of Version
8.0a the Windows SDK no longer ships with a complete command-line build environment.

17.7.5.1. Requirements
The following additional products are required to build PostgreSQL on Windows.
Strawberry Perl

Strawberry Perl is required to run the build generation scripts. MinGW or Cygwin Perl will not work.
It must also be present in the PATH. Binaries can be downloaded from https://strawberryperl.com.

Bison and Flex
Binaries for Bison and Flex can be downloaded from https://github.com/lexxmark/winflexbison.

520

https://www.postgresql.org/download/
https://www.microsoft.com/download
https://strawberryperl.com
https://github.com/lexxmark/winflexbison

Installation from Source Code

The following additional products are not required to get started, but are required to build the complete
package.
Magicsplat Tcl

Required for building PL/Tcl. Binaries can be downloaded from https://www.magicsplat.com/tcl-in-
staller/index.html.

Diff
Diff is required to run the regression tests, and can be downloaded from http://gnuwin32.source-
forge.net.

Gettext
Gettext is required to build with NLS support, and can be downloaded from http://gnuwin32.source-
forge.net. Note that binaries, dependencies and developer files are all needed.

MIT Kerberos
Required for GSSAPI authentication support. MIT Kerberos can be downloaded from https://we-
b.mit.edu/Kerberos/dist/index.html.

libxml2 and libxslt
Required for XML support. Binaries can be downloaded from https://zlatkovic.com/pub/libxml or
source from http://xmlsoft.org. Note that libxml2 requires iconv, which is available from the same
download location.

LZ4
Required for supporting LZ4 compression. Binaries and source can be downloaded from https://
github.com/lz4/lz4/releases.

Zstandard
Required for supporting Zstandard compression. Binaries and source can be downloaded from
https://github.com/facebook/zstd/releases.

OpenSSL
Required for SSL support. Binaries can be downloaded from https://slproweb.com/prod-
ucts/Win32OpenSSL.html or source from https://www.openssl.org.

ossp-uuid
Required for UUID-OSSP support (contrib only). Source can be downloaded from http://www.os-
sp.org/pkg/lib/uuid/.

Python
Required for building PL/Python. Binaries can be downloaded from https://www.python.org.

zlib
Required for compression support in pg_dump and pg_restore. Binaries can be downloaded from
https://www.zlib.net.

17.7.5.2. Special Considerations for 64-Bit Windows
PostgreSQL will only build for the x64 architecture on 64-bit Windows.

Mixing 32- and 64-bit versions in the same build tree is not supported. The build system will automatically
detect if it's running in a 32- or 64-bit environment, and build PostgreSQL accordingly. For this reason,
it is important to start the correct command prompt before building.

To use a server-side third party library such as Python or OpenSSL, this library must also be 64-bit.
There is no support for loading a 32-bit library in a 64-bit server. Several of the third party libraries

521

https://www.magicsplat.com/tcl-installer/index.html
https://www.magicsplat.com/tcl-installer/index.html
http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net
https://web.mit.edu/Kerberos/dist/index.html
https://web.mit.edu/Kerberos/dist/index.html
https://zlatkovic.com/pub/libxml
http://xmlsoft.org
https://github.com/lz4/lz4/releases
https://github.com/lz4/lz4/releases
https://github.com/facebook/zstd/releases
https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html
https://www.openssl.org
http://www.ossp.org/pkg/lib/uuid/
http://www.ossp.org/pkg/lib/uuid/
https://www.python.org
https://www.zlib.net

Installation from Source Code

that PostgreSQL supports may only be available in 32-bit versions, in which case they cannot be used
with 64-bit PostgreSQL.

17.7.5.3. Collecting Crash Dumps
If PostgreSQL on Windows crashes, it has the ability to generate minidumps that can be used to track
down the cause for the crash, similar to core dumps on Unix. These dumps can be read using the Win-
dows Debugger Tools or using Visual Studio. To enable the generation of dumps on Windows, create a
subdirectory named crashdumps inside the cluster data directory. The dumps will then be written into
this directory with a unique name based on the identifier of the crashing process and the current time
of the crash.

522

Chapter 18. Server Setup and Operation
This chapter discusses how to set up and run the database server, and its interactions with the operating
system.

The directions in this chapter assume that you are working with plain PostgreSQL without any additional
infrastructure, for example a copy that you built from source according to the directions in the preceding
chapters. If you are working with a pre-packaged or vendor-supplied version of PostgreSQL, it is likely
that the packager has made special provisions for installing and starting the database server according
to your system's conventions. Consult the package-level documentation for details.

18.1. The PostgreSQL User Account
As with any server daemon that is accessible to the outside world, it is advisable to run PostgreSQL
under a separate user account. This user account should only own the data that is managed by the server,
and should not be shared with other daemons. (For example, using the user nobody is a bad idea.) In
particular, it is advisable that this user account not own the PostgreSQL executable files, to ensure that
a compromised server process could not modify those executables.

Pre-packaged versions of PostgreSQL will typically create a suitable user account automatically during
package installation.

To add a Unix user account to your system, look for a command useradd or adduser. The user name
postgres is often used, and is assumed throughout this book, but you can use another name if you like.

18.2. Creating a Database Cluster
Before you can do anything, you must initialize a database storage area on disk. We call this a database
cluster. (The SQL standard uses the term catalog cluster.) A database cluster is a collection of databases
that is managed by a single instance of a running database server. After initialization, a database clus-
ter will contain a database named postgres, which is meant as a default database for use by utilities,
users and third party applications. The database server itself does not require the postgres database to
exist, but many external utility programs assume it exists. There are two more databases created within
each cluster during initialization, named template1 and template0. As the names suggest, these will
be used as templates for subsequently-created databases; they should not be used for actual work. (See
Chapter 22 for information about creating new databases within a cluster.)

In file system terms, a database cluster is a single directory under which all data will be stored. We call
this the data directory or data area. It is completely up to you where you choose to store your data.
There is no default, although locations such as /usr/local/pgsql/data or /var/lib/pgsql/data are
popular. The data directory must be initialized before being used, using the program initdbwhich is
installed with PostgreSQL.

If you are using a pre-packaged version of PostgreSQL, it may well have a specific convention for where
to place the data directory, and it may also provide a script for creating the data directory. In that
case you should use that script in preference to running initdb directly. Consult the package-level
documentation for details.

To initialize a database cluster manually, run initdb and specify the desired file system location of the
database cluster with the -D option, for example:
$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip
As an alternative to the -D option, you can set the environment variable PGDATA.

523

Server Setup and Operation

Alternatively, you can run initdb via the pg_ctl program like so:
$ pg_ctl -D /usr/local/pgsql/data initdb

This may be more intuitive if you are using pg_ctl for starting and stopping the server (see Section 18.3),
so that pg_ctl would be the sole command you use for managing the database server instance.

initdb will attempt to create the directory you specify if it does not already exist. Of course, this will
fail if initdb does not have permissions to write in the parent directory. It's generally recommendable
that the PostgreSQL user own not just the data directory but its parent directory as well, so that this
should not be a problem. If the desired parent directory doesn't exist either, you will need to create it
first, using root privileges if the grandparent directory isn't writable. So the process might look like this:
root# mkdir /usr/local/pgsql
root# chown postgres /usr/local/pgsql
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data

initdb will refuse to run if the data directory exists and already contains files; this is to prevent acci-
dentally overwriting an existing installation.

Because the data directory contains all the data stored in the database, it is essential that it be secured
from unauthorized access. initdb therefore revokes access permissions from everyone but the Post-
greSQL user, and optionally, group. Group access, when enabled, is read-only. This allows an unprivi-
leged user in the same group as the cluster owner to take a backup of the cluster data or perform other
operations that only require read access.

Note that enabling or disabling group access on an existing cluster requires the cluster to be shut down
and the appropriate mode to be set on all directories and files before restarting PostgreSQL. Otherwise,
a mix of modes might exist in the data directory. For clusters that allow access only by the owner, the
appropriate modes are 0700 for directories and 0600 for files. For clusters that also allow reads by the
group, the appropriate modes are 0750 for directories and 0640 for files.

However, while the directory contents are secure, the default client authentication setup allows any local
user to connect to the database and even become the database superuser. If you do not trust other local
users, we recommend you use one of initdb's -W, --pwprompt or --pwfile options to assign a password
to the database superuser. Also, specify -A scram-sha-256 so that the default trust authentication
mode is not used; or modify the generated pg_hba.conf file after running initdb, but before you start
the server for the first time. (Other reasonable approaches include using peer authentication or file
system permissions to restrict connections. See Chapter 20 for more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a different
locale for the database; more information about that can be found in Section 23.1. The default sort order
used within the particular database cluster is set by initdb, and while you can create new databases
using different sort order, the order used in the template databases that initdb creates cannot be changed
without dropping and recreating them. There is also a performance impact for using locales other than
C or POSIX. Therefore, it is important to make this choice correctly the first time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details see Section 23.3.

Non-C and non-POSIX locales rely on the operating system's collation library for character set ordering.
This controls the ordering of keys stored in indexes. For this reason, a cluster cannot switch to an
incompatible collation library version, either through snapshot restore, binary streaming replication, a
different operating system, or an operating system upgrade.

18.2.1. Use of Secondary File Systems
Many installations create their database clusters on file systems (volumes) other than the machine's
“root” volume. If you choose to do this, it is not advisable to try to use the secondary volume's topmost

524

Server Setup and Operation

directory (mount point) as the data directory. Best practice is to create a directory within the mount-
point directory that is owned by the PostgreSQL user, and then create the data directory within that.
This avoids permissions problems, particularly for operations such as pg_upgrade, and it also ensures
clean failures if the secondary volume is taken offline.

18.2.2. File Systems
Generally, any file system with POSIX semantics can be used for PostgreSQL. Users prefer different
file systems for a variety of reasons, including vendor support, performance, and familiarity. Experience
suggests that, all other things being equal, one should not expect major performance or behavior changes
merely from switching file systems or making minor file system configuration changes.

18.2.2.1. NFS
It is possible to use an NFS file system for storing the PostgreSQL data directory. PostgreSQL does
nothing special for NFS file systems, meaning it assumes NFS behaves exactly like locally-connected
drives. PostgreSQL does not use any functionality that is known to have nonstandard behavior on NFS,
such as file locking.

The only firm requirement for using NFS with PostgreSQL is that the file system is mounted using the
hard option. With the hard option, processes can “hang” indefinitely if there are network problems, so
this configuration will require a careful monitoring setup. The soft option will interrupt system calls in
case of network problems, but PostgreSQL will not repeat system calls interrupted in this way, so any
such interruption will result in an I/O error being reported.

It is not necessary to use the sync mount option. The behavior of the async option is sufficient, since
PostgreSQL issues fsync calls at appropriate times to flush the write caches. (This is analogous to how
it works on a local file system.) However, it is strongly recommended to use the sync export option on
the NFS server on systems where it exists (mainly Linux). Otherwise, an fsync or equivalent on the NFS
client is not actually guaranteed to reach permanent storage on the server, which could cause corruption
similar to running with the parameter fsync off. The defaults of these mount and export options differ
between vendors and versions, so it is recommended to check and perhaps specify them explicitly in
any case to avoid any ambiguity.

In some cases, an external storage product can be accessed either via NFS or a lower-level protocol such
as iSCSI. In the latter case, the storage appears as a block device and any available file system can be
created on it. That approach might relieve the DBA from having to deal with some of the idiosyncrasies
of NFS, but of course the complexity of managing remote storage then happens at other levels.

18.3. Starting the Database Server
Before anyone can access the database, you must start the database server. The database server program
is called postgres.

If you are using a pre-packaged version of PostgreSQL, it almost certainly includes provisions for run-
ning the server as a background task according to the conventions of your operating system. Using the
package's infrastructure to start the server will be much less work than figuring out how to do this
yourself. Consult the package-level documentation for details.

The bare-bones way to start the server manually is just to invoke postgres directly, specifying the loca-
tion of the data directory with the -D option, for example:

$ postgres -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the Post-
greSQL user account. Without -D, the server will try to use the data directory named by the environment
variable PGDATA. If that variable is not provided either, it will fail.

Normally it is better to start postgres in the background. For this, use the usual Unix shell syntax:

$ postgres -D /usr/local/pgsql/data >logfile 2>&1 &

525

Server Setup and Operation

It is important to store the server's stdout and stderr output somewhere, as shown above. It will help
for auditing purposes and to diagnose problems. (See Section 24.3 for a more thorough discussion of
log file handling.)

The postgres program also takes a number of other command-line options. For more information, see
the postgres reference page and Chapter 19 below.

This shell syntax can get tedious quickly. Therefore the wrapper program pg_ctlis provided to simplify
some tasks. For example:

pg_ctl start -l logfile

will start the server in the background and put the output into the named log file. The -D option has the
same meaning here as for postgres. pg_ctl is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart scripts are
operating-system-specific. There are a few example scripts distributed with PostgreSQL in the con-
trib/start-scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have
a file /etc/rc.local or /etc/rc.d/rc.local. Others use init.d or rc.d directories. Whatever you do,
the server must be run by the PostgreSQL user account and not by root or any other user. Therefore you
probably should form your commands using su postgres -c '...'. For example:

su postgres -c 'pg_ctl start -D /usr/local/pgsql/data -l serverlog'

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper
installation directory and user name where we show generic values.)

• For FreeBSD, look at the file contrib/start-scripts/freebsd in the PostgreSQL source distribu-
tion.

• On OpenBSD, add the following lines to the file /etc/rc.local:

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/postgres]; then
 su -l postgres -c '/usr/local/pgsql/bin/pg_ctl start -s -l /var/postgresql/log -
D /usr/local/pgsql/data'
 echo -n ' postgresql'
fi

• On Linux systems either add

/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data

to /etc/rc.d/rc.local or /etc/rc.local or look at the file contrib/start-scripts/linux in the
PostgreSQL source distribution.

When using systemd, you can use the following service unit file (e.g., at /etc/systemd/sys-
tem/postgresql.service):

[Unit]
Description=PostgreSQL database server
Documentation=man:postgres(1)
After=network-online.target
Wants=network-online.target

[Service]
Type=notify
User=postgres
ExecStart=/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data
ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed
KillSignal=SIGINT

526

Server Setup and Operation

TimeoutSec=infinity

[Install]
WantedBy=multi-user.target

Using Type=notify requires that the server binary was built with configure --with-systemd.

Consider carefully the timeout setting. systemd has a default timeout of 90 seconds as of this writ-
ing and will kill a process that does not report readiness within that time. But a PostgreSQL server
that might have to perform crash recovery at startup could take much longer to become ready. The
suggested value of infinity disables the timeout logic.

• On NetBSD, use either the FreeBSD or Linux start scripts, depending on preference.

• On Solaris, create a file called /etc/init.d/postgresql that contains the following line:

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/
data"

Then, create a symbolic link to it in /etc/rc3.d as S99postgresql.

While the server is running, its PID is stored in the file postmaster.pid in the data directory. This is
used to prevent multiple server instances from running in the same data directory and can also be used
for shutting down the server.

18.3.1. Server Start-up Failures
There are several common reasons the server might fail to start. Check the server's log file, or start it
by hand (without redirecting standard output or standard error) and see what error messages appear.
Below we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 address "127.0.0.1": Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds
 and retry.
FATAL: could not create any TCP/IP sockets

This usually means just what it suggests: you tried to start another server on the same port where one is
already running. However, if the kernel error message is not Address already in use or some variant
of that, there might be a different problem. For example, trying to start a server on a reserved port
number might draw something like:

$ postgres -p 666
LOG: could not bind IPv4 address "127.0.0.1": Permission denied
HINT: Is another postmaster already running on port 666? If not, wait a few seconds
 and retry.
FATAL: could not create any TCP/IP sockets

A message like:

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

probably means your kernel's limit on the size of shared memory is smaller than the work area Post-
greSQL is trying to create (4011376640 bytes in this example). This is only likely to happen if you have
set shared_memory_type to sysv. In that case, you can try starting the server with a smaller-than-normal
number of buffers (shared_buffers), or reconfigure your kernel to increase the allowed shared memory
size. You might also see this message when trying to start multiple servers on the same machine, if their
total space requested exceeds the kernel limit.

An error like:

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

527

Server Setup and Operation

does not mean you've run out of disk space. It means your kernel's limit on the number of System V
semaphores is smaller than the number PostgreSQL wants to create. As above, you might be able to work
around the problem by starting the server with a reduced number of allowed connections (max_connec-
tions), but you'll eventually want to increase the kernel limit.

Details about configuring System V IPC facilities are given in Section 18.4.1.

18.3.2. Client Connection Problems
Although the error conditions possible on the client side are quite varied and application-dependent, a
few of them might be directly related to how the server was started. Conditions other than those shown
below should be documented with the respective client application.

psql: error: connection to server at "server.joe.com" (123.123.123.123), port 5432
 failed: Connection refused
 Is the server running on that host and accepting TCP/IP connections?

This is the generic “I couldn't find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure listen_addresses so that the
server accepts remote TCP connections.

Alternatively, you might get this when attempting Unix-domain socket communication to a local server:

psql: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such file
 or directory
 Is the server running locally and accepting connections on that socket?

If the server is indeed running, check that the client's idea of the socket path (here /tmp) agrees with
the server's unix_socket_directories setting.

A connection failure message always shows the server address or socket path name, which is useful in
verifying that the client is trying to connect to the right place. If there is in fact no server listening there,
the kernel error message will typically be either Connection refused or No such file or directory,
as illustrated. (It is important to realize that Connection refused in this context does not mean that
the server got your connection request and rejected it. That case will produce a different message, as
shown in Section 20.16.) Other error messages such as Connection timed out might indicate more
fundamental problems, like lack of network connectivity, or a firewall blocking the connection.

18.4. Managing Kernel Resources
PostgreSQL can sometimes exhaust various operating system resource limits, especially when multiple
copies of the server are running on the same system, or in very large installations. This section explains
the kernel resources used by PostgreSQL and the steps you can take to resolve problems related to
kernel resource consumption.

18.4.1. Shared Memory and Semaphores
PostgreSQL requires the operating system to provide inter-process communication (IPC) features,
specifically shared memory and semaphores. Unix-derived systems typically provide “System V” IPC,
“POSIX” IPC, or both. Windows has its own implementation of these features and is not discussed here.

By default, PostgreSQL allocates a very small amount of System V shared memory, as well as a much
larger amount of anonymous mmap shared memory. Alternatively, a single large System V shared memory
region can be used (see shared_memory_type). In addition a significant number of semaphores, which
can be either System V or POSIX style, are created at server startup. Currently, POSIX semaphores are
used on Linux and FreeBSD systems while other platforms use System V semaphores.

System V IPC features are typically constrained by system-wide allocation limits. When PostgreSQL
exceeds one of these limits, the server will refuse to start and should leave an instructive error message
describing the problem and what to do about it. (See also Section 18.3.1.) The relevant kernel parameters

528

Server Setup and Operation

are named consistently across different systems; Table 18.1 gives an overview. The methods to set them,
however, vary. Suggestions for some platforms are given below.

Table 18.1. System V IPC Parameters

Name Description Values needed to run one PostgreSQL
instance

SHMMAX Maximum size of shared memory segment
(bytes)

at least 1kB, but the default is usually
much higher

SHMMIN Minimum size of shared memory segment (
bytes)

1

SHMALL Total amount of shared memory available (
bytes or pages)

same as SHMMAX if bytes, or ceil(SHM-
MAX/PAGE_SIZE) if pages, plus room for
other applications

SHMSEG Maximum number of shared memory seg-
ments per process

only 1 segment is needed, but the default
is much higher

SHMMNI Maximum number of shared memory seg-
ments system-wide

like SHMSEG plus room for other applica-
tions

SEMMNI Maximum number of semaphore identi-
fiers (i.e., sets)

at least ceil(num_os_semaphores /
16) plus room for other applications

SEMMNS Maximum number of semaphores sys-
tem-wide

ceil(num_os_semaphores / 16) * 17
plus room for other applications

SEMMSL Maximum number of semaphores per set at least 17
SEMMAP Number of entries in semaphore map see text
SEMVMX Maximum value of semaphore at least 1000 (The default is often 32767;

do not change unless necessary)

PostgreSQL requires a few bytes of System V shared memory (typically 48 bytes, on 64-bit platforms)
for each copy of the server. On most modern operating systems, this amount can easily be allocated.
However, if you are running many copies of the server or you explicitly configure the server to use large
amounts of System V shared memory (see shared_memory_type and dynamic_shared_memory_type), it
may be necessary to increase SHMALL, which is the total amount of System V shared memory system-wide.
Note that SHMALL is measured in pages rather than bytes on many systems.

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which should
be at most approximately 32 bytes for PostgreSQL (it is usually just 1). The maximum number of seg-
ments system-wide (SHMMNI) or per-process (SHMSEG) are unlikely to cause a problem unless your system
has them set to zero.

When using System V semaphores, PostgreSQL uses one semaphore per allowed connection (max_con-
nections), allowed autovacuum worker process (autovacuum_worker_slots), allowed WAL sender
process (max_wal_senders), allowed background process (max_worker_processes), etc., in sets of 16.
The runtime-computed parameter num_os_semaphores reports the number of semaphores required.
This parameter can be viewed before starting the server with a postgres command like:

$ postgres -D $PGDATA -C num_os_semaphores

Each set of 16 semaphores will also contain a 17th semaphore which contains a “magic number”, to
detect collision with semaphore sets used by other applications. The maximum number of semaphores
in the system is set by SEMMNS, which consequently must be at least as high as num_os_semaphores plus
one extra for each set of 16 required semaphores (see the formula in Table 18.1). The parameter SEMMNI
determines the limit on the number of semaphore sets that can exist on the system at one time. Hence
this parameter must be at least ceil(num_os_semaphores / 16). Lowering the number of allowed
connections is a temporary workaround for failures, which are usually confusingly worded “No space
left on device”, from the function semget.

529

Server Setup and Operation

In some cases it might also be necessary to increase SEMMAP to be at least on the order of SEMMNS. If the
system has this parameter (many do not), it defines the size of the semaphore resource map, in which
each contiguous block of available semaphores needs an entry. When a semaphore set is freed it is either
added to an existing entry that is adjacent to the freed block or it is registered under a new map entry.
If the map is full, the freed semaphores get lost (until reboot). Fragmentation of the semaphore space
could over time lead to fewer available semaphores than there should be.

Various other settings related to “semaphore undo”, such as SEMMNU and SEMUME, do not affect Post-
greSQL.

When using POSIX semaphores, the number of semaphores needed is the same as for System V, that
is one semaphore per allowed connection (max_connections), allowed autovacuum worker process (au-
tovacuum_worker_slots), allowed WAL sender process (max_wal_senders), allowed background process
(max_worker_processes), etc. On the platforms where this option is preferred, there is no specific kernel
limit on the number of POSIX semaphores.

FreeBSD

The default shared memory settings are usually good enough, unless you have set shared_memo-
ry_type to sysv. System V semaphores are not used on this platform.

The default IPC settings can be changed using the sysctl or loader interfaces. The following para-
meters can be set using sysctl:

sysctl kern.ipc.shmall=32768
sysctl kern.ipc.shmmax=134217728

To make these settings persist over reboots, modify /etc/sysctl.conf.

If you have set shared_memory_type to sysv, you might also want to configure your kernel to lock
System V shared memory into RAM and prevent it from being paged out to swap. This can be accom-
plished using the sysctl setting kern.ipc.shm_use_phys.

If running in a FreeBSD jail, you should set its sysvshm parameter to new, so that it has its own
separate System V shared memory namespace. (Before FreeBSD 11.0, it was necessary to enable
shared access to the host's IPC namespace from jails, and take measures to avoid collisions.)

NetBSD

The default shared memory settings are usually good enough, unless you have set shared_memo-
ry_type to sysv. However, you will need to increase kern.ipc.semmni and kern.ipc.semmns, as
NetBSD's default settings for these are unworkably small.

IPC parameters can be adjusted using sysctl, for example:

sysctl -w kern.ipc.semmni=100

To make these settings persist over reboots, modify /etc/sysctl.conf.

If you have set shared_memory_type to sysv, you might also want to configure your kernel to lock
System V shared memory into RAM and prevent it from being paged out to swap. This can be accom-
plished using the sysctl setting kern.ipc.shm_use_phys.

OpenBSD

The default shared memory settings are usually good enough, unless you have set shared_mem-
ory_type to sysv. However, you will need to increase kern.seminfo.semmni and kern.semin-
fo.semmns, as OpenBSD's default settings for these are unworkably small.

IPC parameters can be adjusted using sysctl, for example:

sysctl kern.seminfo.semmni=100

To make these settings persist over reboots, modify /etc/sysctl.conf.

530

Server Setup and Operation

Linux

The default shared memory settings are usually good enough, unless you have set shared_memo-
ry_type to sysv, and even then only on older kernel versions that shipped with low defaults. System
V semaphores are not used on this platform.

The shared memory size settings can be changed via the sysctl interface. For example, to allow
16 GB:

$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304

To make these settings persist over reboots, see /etc/sysctl.conf.

macOS

The default shared memory and semaphore settings are usually good enough, unless you have set
shared_memory_type to sysv.

The recommended method for configuring shared memory in macOS is to create a file named /etc/
sysctl.conf, containing variable assignments such as:

kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024

Note that in some macOS versions, all five shared-memory parameters must be set in /etc/
sysctl.conf, else the values will be ignored.

SHMMAX can only be set to a multiple of 4096.

SHMALL is measured in 4 kB pages on this platform.

It is possible to change all but SHMMNI on the fly, using sysctl. But it's still best to set up your preferred
values via /etc/sysctl.conf, so that the values will be kept across reboots.

Solaris
illumos

The default shared memory and semaphore settings are usually good enough for most PostgreSQL
applications. Solaris defaults to a SHMMAX of one-quarter of system RAM. To further adjust this setting,
use a project setting associated with the postgres user. For example, run the following as root:

projadd -c "PostgreSQL DB User" -K "project.max-shm-memory=(privileged,8GB,deny)" -U
 postgres -G postgres user.postgres

This command adds the user.postgres project and sets the shared memory maximum for the post-
gres user to 8GB, and takes effect the next time that user logs in, or when you restart PostgreSQL
(not reload). The above assumes that PostgreSQL is run by the postgres user in the postgres group.
No server reboot is required.

Other recommended kernel setting changes for database servers which will have a large number
of connections are:

project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)

Additionally, if you are running PostgreSQL inside a zone, you may need to raise the zone resource
usage limits as well. See "Chapter2: Projects and Tasks" in the System Administrator's Guide for
more information on projects and prctl.

531

Server Setup and Operation

18.4.2. systemd RemoveIPC
If systemd is in use, some care must be taken that IPC resources (including shared memory) are not
prematurely removed by the operating system. This is especially of concern when installing PostgreSQL
from source. Users of distribution packages of PostgreSQL are less likely to be affected, as the postgres
user is then normally created as a system user.

The setting RemoveIPC in logind.conf controls whether IPC objects are removed when a user fully logs
out. System users are exempt. This setting defaults to on in stock systemd, but some operating system
distributions default it to off.

A typical observed effect when this setting is on is that shared memory objects used for parallel query
execution are removed at apparently random times, leading to errors and warnings while attempting
to open and remove them, like

WARNING: could not remove shared memory segment "/PostgreSQL.1450751626": No such file
 or directory

Different types of IPC objects (shared memory vs. semaphores, System V vs. POSIX) are treated slightly
differently by systemd, so one might observe that some IPC resources are not removed in the same way
as others. But it is not advisable to rely on these subtle differences.

A “user logging out” might happen as part of a maintenance job or manually when an administrator logs
in as the postgres user or something similar, so it is hard to prevent in general.

What is a “system user” is determined at systemd compile time from the SYS_UID_MAX setting in /etc/
login.defs.

Packaging and deployment scripts should be careful to create the postgres user as a system user by
using useradd -r, adduser --system, or equivalent.

Alternatively, if the user account was created incorrectly or cannot be changed, it is recommended to set

RemoveIPC=no

in /etc/systemd/logind.conf or another appropriate configuration file.

Caution
At least one of these two things has to be ensured, or the PostgreSQL server will be very unreliable.

18.4.3. Resource Limits
Unix-like operating systems enforce various kinds of resource limits that might interfere with the opera-
tion of your PostgreSQL server. Of particular importance are limits on the number of processes per user,
the number of open files per process, and the amount of memory available to each process. Each of these
have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be changed by the user
up to the hard limit. The hard limit can only be changed by the root user. The system call setrlimit is
responsible for setting these parameters. The shell's built-in command ulimit (Bourne shells) or limit
(csh) is used to control the resource limits from the command line. On BSD-derived systems the file /
etc/login.conf controls the various resource limits set during login. See the operating system docu-
mentation for details. The relevant parameters are maxproc, openfiles, and datasize. For example:

default:\
...
 :datasize-cur=256M:\
 :maxproc-cur=256:\
 :openfiles-cur=256:\
...

532

Server Setup and Operation

(-cur is the soft limit. Append -max to set the hard limit.)

Kernels can also have system-wide limits on some resources.
• On Linux the kernel parameter fs.file-max determines the maximum number of open files that

the kernel will support. It can be changed with sysctl -w fs.file-max=N. To make the setting
persist across reboots, add an assignment in /etc/sysctl.conf. The maximum limit of files per
process is fixed at the time the kernel is compiled; see /usr/src/linux/Documentation/proc.txt
for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is usually
not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users to
coexist on a machine without using an inappropriate fraction of the system resources. If you run many
servers on a machine this is perhaps what you want, but on dedicated servers you might want to raise
this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set PostgreSQL's
max_files_per_process configuration parameter to limit the consumption of open files.

Another kernel limit that may be of concern when supporting large numbers of client connections is the
maximum socket connection queue length. If more than that many connection requests arrive within a
very short period, some may get rejected before the PostgreSQL server can service the requests, with
those clients receiving unhelpful connection failure errors such as “Resource temporarily unavailable”
or “Connection refused”. The default queue length limit is 128 on many platforms. To raise it, adjust the
appropriate kernel parameter via sysctl, then restart the PostgreSQL server. The parameter is variously
named net.core.somaxconn on Linux, kern.ipc.soacceptqueue on newer FreeBSD, and kern.ipc.so-
maxconn on macOS and other BSD variants.

18.4.4. Linux Memory Overcommit
The default virtual memory behavior on Linux is not optimal for PostgreSQL. Because of the way that
the kernel implements memory overcommit, the kernel might terminate the PostgreSQL postmaster (the
supervisor server process) if the memory demands of either PostgreSQL or another process cause the
system to run out of virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation
and configuration on where to look for such a message):
Out of Memory: Killed process 12345 (postgres).

This indicates that the postgres process has been terminated due to memory pressure. Although exist-
ing database connections will continue to function normally, no new connections will be accepted. To
recover, PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory. If memory is tight, increasing the swap space of the
operating system can help avoid the problem, because the out-of-memory (OOM) killer is invoked only
when physical memory and swap space are exhausted.

If PostgreSQL itself is the cause of the system running out of memory, you can avoid the problem by
changing your configuration. In some cases, it may help to lower memory-related configuration parame-
ters, particularly shared_buffers, work_mem, and hash_mem_multiplier. In other cases, the problem
may be caused by allowing too many connections to the database server itself. In many cases, it may be
better to reduce max_connections and instead make use of external connection-pooling software.

It is possible to modify the kernel's behavior so that it will not “overcommit” memory. Although this
setting will not prevent the OOM killer from being invoked altogether, it will lower the chances signifi-

533

https://lwn.net/Articles/104179/

Server Setup and Operation

cantly and will therefore lead to more robust system behavior. This is done by selecting strict overcom-
mit mode via sysctl:
sysctl -w vm.overcommit_memory=2

or placing an equivalent entry in /etc/sysctl.conf. You might also wish to modify the related setting
vm.overcommit_ratio. For details see the kernel documentation file https://www.kernel.org/doc/Docu-
mentation/vm/overcommit-accounting.

Another approach, which can be used with or without altering vm.overcommit_memory, is to set the
process-specific OOM score adjustment value for the postmaster process to -1000, thereby guaranteeing
it will not be targeted by the OOM killer. The simplest way to do this is to execute
echo -1000 > /proc/self/oom_score_adj

in the PostgreSQL startup script just before invoking postgres. Note that this action must be done as
root, or it will have no effect; so a root-owned startup script is the easiest place to do it. If you do this,
you should also set these environment variables in the startup script before invoking postgres:
export PG_OOM_ADJUST_FILE=/proc/self/oom_score_adj
export PG_OOM_ADJUST_VALUE=0

These settings will cause postmaster child processes to run with the normal OOM score adjustment of
zero, so that the OOM killer can still target them at need. You could use some other value for PG_OOM_AD-
JUST_VALUE if you want the child processes to run with some other OOM score adjustment. (PG_OOM_AD-
JUST_VALUE can also be omitted, in which case it defaults to zero.) If you do not set PG_OOM_ADJUST_FILE,
the child processes will run with the same OOM score adjustment as the postmaster, which is unwise
since the whole point is to ensure that the postmaster has a preferential setting.

18.4.5. Linux Huge Pages
Using huge pages reduces overhead when using large contiguous chunks of memory, as PostgreSQL
does, particularly when using large values of shared_buffers. To use this feature in PostgreSQL you need
a kernel with CONFIG_HUGETLBFS=y and CONFIG_HUGETLB_PAGE=y. You will also have to configure the
operating system to provide enough huge pages of the desired size. The runtime-computed parameter
shared_memory_size_in_huge_pages reports the number of huge pages required. This parameter can be
viewed before starting the server with a postgres command like:
$ postgres -D $PGDATA -C shared_memory_size_in_huge_pages
3170
$ grep ^Hugepagesize /proc/meminfo
Hugepagesize: 2048 kB
$ ls /sys/kernel/mm/hugepages
hugepages-1048576kB hugepages-2048kB

In this example the default is 2MB, but you can also explicitly request either 2MB or 1GB with
huge_page_size to adapt the number of pages calculated by shared_memory_size_in_huge_pages. While
we need at least 3170 huge pages in this example, a larger setting would be appropriate if other pro-
grams on the machine also need huge pages. We can set this with:
sysctl -w vm.nr_hugepages=3170

Don't forget to add this setting to /etc/sysctl.conf so that it is reapplied after reboots. For non-default
huge page sizes, we can instead use:
echo 3170 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

It is also possible to provide these settings at boot time using kernel parameters such as hugepagesz=2M
hugepages=3170.

Sometimes the kernel is not able to allocate the desired number of huge pages immediately due to
fragmentation, so it might be necessary to repeat the command or to reboot. (Immediately after a reboot,
most of the machine's memory should be available to convert into huge pages.) To verify the huge page
allocation situation for a given size, use:
$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

534

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Server Setup and Operation

It may also be necessary to give the database server's operating system user permission to use huge
pages by setting vm.hugetlb_shm_group via sysctl, and/or give permission to lock memory with ulimit
-l.

The default behavior for huge pages in PostgreSQL is to use them when possible, with the system's
default huge page size, and to fall back to normal pages on failure. To enforce the use of huge pages,
you can set huge_pages to on in postgresql.conf. Note that with this setting PostgreSQL will fail to
start if not enough huge pages are available.

For a detailed description of the Linux huge pages feature have a look at https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt.

18.5. Shutting Down the Server
There are several ways to shut down the database server. Under the hood, they all reduce to sending
a signal to the supervisor postgres process.

If you are using a pre-packaged version of PostgreSQL, and you used its provisions for starting the server,
then you should also use its provisions for stopping the server. Consult the package-level documentation
for details.

When managing the server directly, you can control the type of shutdown by sending different signals
to the postgres process:
SIGTERM

This is the Smart Shutdown mode. After receiving SIGTERM, the server disallows new connections,
but lets existing sessions end their work normally. It shuts down only after all of the sessions ter-
minate. If the server is in recovery when a smart shutdown is requested, recovery and streaming
replication will be stopped only after all regular sessions have terminated.

SIGINT
This is the Fast Shutdown mode. The server disallows new connections and sends all existing server
processes SIGTERM, which will cause them to abort their current transactions and exit promptly. It
then waits for all server processes to exit and finally shuts down.

SIGQUIT
This is the Immediate Shutdown mode. The server will send SIGQUIT to all child processes and
wait for them to terminate. If any do not terminate within 5 seconds, they will be sent SIGKILL.
The supervisor server process exits as soon as all child processes have exited, without doing normal
database shutdown processing. This will lead to recovery (by replaying the WAL log) upon next start-
up. This is recommended only in emergencies.

The pg_ctl program provides a convenient interface for sending these signals to shut down the server.
Alternatively, you can send the signal directly using kill on non-Windows systems. The PID of the
postgres process can be found using the ps program, or from the file postmaster.pid in the data
directory. For example, to do a fast shutdown:
$ kill -INT `head -1 /usr/local/pgsql/data/postmaster.pid`

Important
It is best not to use SIGKILL to shut down the server. Doing so will prevent the server from re-
leasing shared memory and semaphores. Furthermore, SIGKILL kills the postgres process with-
out letting it relay the signal to its subprocesses, so it might be necessary to kill the individual
subprocesses by hand as well.

To terminate an individual session while allowing other sessions to continue, use pg_terminate_back-
end() (see Table 9.96) or send a SIGTERM signal to the child process associated with the session.

535

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Server Setup and Operation

18.6. Upgrading a PostgreSQL Cluster
This section discusses how to upgrade your database data from one PostgreSQL release to a newer one.

Current PostgreSQL version numbers consist of a major and a minor version number. For example, in
the version number 10.1, the 10 is the major version number and the 1 is the minor version number,
meaning this would be the first minor release of the major release 10. For releases before PostgreSQL
version 10.0, version numbers consist of three numbers, for example, 9.5.3. In those cases, the major
version consists of the first two digit groups of the version number, e.g., 9.5, and the minor version is
the third number, e.g., 3, meaning this would be the third minor release of the major release 9.5.

Minor releases never change the internal storage format and are always compatible with earlier and
later minor releases of the same major version number. For example, version 10.1 is compatible with
version 10.0 and version 10.6. Similarly, for example, 9.5.3 is compatible with 9.5.0, 9.5.1, and 9.5.6. To
update between compatible versions, you simply replace the executables while the server is down and
restart the server. The data directory remains unchanged — minor upgrades are that simple.

For major releases of PostgreSQL, the internal data storage format is subject to change, thus compli-
cating upgrades. The traditional method for moving data to a new major version is to dump and restore
the database, though this can be slow. A faster method is pg_upgrade. Replication methods are also
available, as discussed below. (If you are using a pre-packaged version of PostgreSQL, it may provide
scripts to assist with major version upgrades. Consult the package-level documentation for details.)

New major versions also typically introduce some user-visible incompatibilities, so application program-
ming changes might be required. All user-visible changes are listed in the release notes (Appendix E);
pay particular attention to the section labeled "Migration". Though you can upgrade from one major
version to another without upgrading to intervening versions, you should read the major release notes
of all intervening versions.

Cautious users will want to test their client applications on the new version before switching over fully;
therefore, it's often a good idea to set up concurrent installations of old and new versions. When testing
a PostgreSQL major upgrade, consider the following categories of possible changes:

Administration
The capabilities available for administrators to monitor and control the server often change and
improve in each major release.

SQL
Typically this includes new SQL command capabilities and not changes in behavior, unless specifi-
cally mentioned in the release notes.

Library API
Typically libraries like libpq only add new functionality, again unless mentioned in the release notes.

System Catalogs
System catalog changes usually only affect database management tools.

Server C-language API
This involves changes in the backend function API, which is written in the C programming language.
Such changes affect code that references backend functions deep inside the server.

18.6.1. Upgrading Data via pg_dumpall
One upgrade method is to dump data from one major version of PostgreSQL and restore it in another
— to do this, you must use a logical backup tool like pg_dumpall; file system level backup methods will
not work. (There are checks in place that prevent you from using a data directory with an incompatible
version of PostgreSQL, so no great harm can be done by trying to start the wrong server version on
a data directory.)

536

Server Setup and Operation

It is recommended that you use the pg_dump and pg_dumpall programs from the newer version of
PostgreSQL, to take advantage of enhancements that might have been made in these programs. Current
releases of the dump programs can read data from any server version back to 9.2.

These instructions assume that your existing installation is under the /usr/local/pgsql directory, and
that the data area is in /usr/local/pgsql/data. Substitute your paths appropriately.

1. If making a backup, make sure that your database is not being updated. This does not affect the
integrity of the backup, but the changed data would of course not be included. If necessary, edit
the permissions in the file /usr/local/pgsql/data/pg_hba.conf (or equivalent) to disallow access
from everyone except you. See Chapter 20 for additional information on access control.

To back up your database installation, type:

pg_dumpall > outputfile

To make the backup, you can use the pg_dumpall command from the version you are currently
running; see Section 25.1.2 for more details. For best results, however, try to use the pg_dumpall
command from PostgreSQL 18.0, since this version contains bug fixes and improvements over older
versions. While this advice might seem idiosyncratic since you haven't installed the new version yet,
it is advisable to follow it if you plan to install the new version in parallel with the old version. In that
case you can complete the installation normally and transfer the data later. This will also decrease
the downtime.

2. Shut down the old server:

pg_ctl stop

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that this works:

/etc/rc.d/init.d/postgresql stop

See Chapter 18 for details about starting and stopping the server.
3. If restoring from backup, rename or delete the old installation directory if it is not version-specific.

It is a good idea to rename the directory, rather than delete it, in case you have trouble and need
to revert to it. Keep in mind the directory might consume significant disk space. To rename the
directory, use a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

(Be sure to move the directory as a single unit so relative paths remain unchanged.)
4. Install the new version of PostgreSQL as outlined in Chapter 17.
5. Create a new database cluster if needed. Remember that you must execute these commands while

logged in to the special database user account (which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

6. Restore your previous pg_hba.conf and any postgresql.conf modifications.
7. Start the database server, again using the special database user account:

/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

8. Finally, restore your data from backup with:

/usr/local/pgsql/bin/psql -d postgres -f outputfile

using the new psql.
The least downtime can be achieved by installing the new server in a different directory and running
both the old and the new servers in parallel, on different ports. Then you can use something like:

pg_dumpall -p 5432 | psql -d postgres -p 5433

to transfer your data.

537

Server Setup and Operation

18.6.2. Upgrading Data via pg_upgrade
The pg_upgrade module allows an installation to be migrated in-place from one major PostgreSQL ver-
sion to another. Upgrades can be performed in minutes, particularly with --link mode. It requires steps
similar to pg_dumpall above, e.g., starting/stopping the server, running initdb. The pg_upgrade docu-
mentation outlines the necessary steps.

18.6.3. Upgrading Data via Replication
It is also possible to use logical replication methods to create a standby server with the updated version
of PostgreSQL. This is possible because logical replication supports replication between different major
versions of PostgreSQL. The standby can be on the same computer or a different computer. Once it has
synced up with the primary server (running the older version of PostgreSQL), you can switch primaries
and make the standby the primary and shut down the older database instance. Such a switch-over results
in only several seconds of downtime for an upgrade.

This method of upgrading can be performed using the built-in logical replication facilities as well as
using external logical replication systems such as pglogical, Slony, Londiste, and Bucardo.

18.7. Preventing Server Spoofing
While the server is running, it is not possible for a malicious user to take the place of the normal database
server. However, when the server is down, it is possible for a local user to spoof the normal server by
starting their own server. The spoof server could read passwords and queries sent by clients, but could
not return any data because the PGDATA directory would still be secure because of directory permissions.
Spoofing is possible because any user can start a database server; a client cannot identify an invalid
server unless it is specially configured.

One way to prevent spoofing of local connections is to use a Unix domain socket directory (unix_sock-
et_directories) that has write permission only for a trusted local user. This prevents a malicious user from
creating their own socket file in that directory. If you are concerned that some applications might still
reference /tmp for the socket file and hence be vulnerable to spoofing, during operating system startup
create a symbolic link /tmp/.s.PGSQL.5432 that points to the relocated socket file. You also might need
to modify your /tmp cleanup script to prevent removal of the symbolic link.

Another option for local connections is for clients to use requirepeer to specify the required owner of
the server process connected to the socket.

To prevent spoofing on TCP connections, either use SSL certificates and make sure that clients check
the server's certificate, or use GSSAPI encryption (or both, if they're on separate connections).

To prevent spoofing with SSL, the server must be configured to accept only hostssl connections
(Section 20.1) and have SSL key and certificate files (Section 18.9). The TCP client must connect us-
ing sslmode=verify-ca or verify-full and have the appropriate root certificate file installed (Sec-
tion 32.19.1). Alternatively the system CA pool, as defined by the SSL implementation, can be used using
sslrootcert=system; in this case, sslmode=verify-full is forced for safety, since it is generally trivial
to obtain certificates which are signed by a public CA.

To prevent server spoofing from occurring when using scram-sha-256 password authentication over a
network, you should ensure that you connect to the server using SSL and with one of the anti-spoofing
methods described in the previous paragraph. Additionally, the SCRAM implementation in libpq cannot
protect the entire authentication exchange, but using the channel_binding=require connection para-
meter provides a mitigation against server spoofing. An attacker that uses a rogue server to intercept a
SCRAM exchange can use offline analysis to potentially determine the hashed password from the client.

To prevent spoofing with GSSAPI, the server must be configured to accept only hostgssenc connections
(Section 20.1) and use gss authentication with them. The TCP client must connect using gssencmod-
e=require.

18.8. Encryption Options

538

Server Setup and Operation

PostgreSQL offers encryption at several levels, and provides flexibility in protecting data from disclosure
due to database server theft, unscrupulous administrators, and insecure networks. Encryption might
also be required to secure sensitive data such as medical records or financial transactions.

Password Encryption
Database user passwords are stored as hashes (determined by the setting password_encryption),
so the administrator cannot determine the actual password assigned to the user. If SCRAM or MD5
encryption is used for client authentication, the unencrypted password is never even temporarily
present on the server because the client encrypts it before being sent across the network. SCRAM is
preferred, because it is an Internet standard and is more secure than the PostgreSQL-specific MD5
authentication protocol.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future release
of PostgreSQL. Refer to Section 20.5 for details about migrating to another password type.

Encryption For Specific Columns
The pgcrypto module allows certain fields to be stored encrypted. This is useful if only some of the
data is sensitive. The client supplies the decryption key and the data is decrypted on the server and
then sent to the client.

The decrypted data and the decryption key are present on the server for a brief time while it is being
decrypted and communicated between the client and server. This presents a brief moment where
the data and keys can be intercepted by someone with complete access to the database server, such
as the system administrator.

Data Partition Encryption
Storage encryption can be performed at the file system level or the block level. Linux file system
encryption options include eCryptfs and EncFS, while FreeBSD uses PEFS. Block level or full disk
encryption options include dm-crypt + LUKS on Linux and GEOM modules geli and gbde on FreeBSD.
Many other operating systems support this functionality, including Windows.

This mechanism prevents unencrypted data from being read from the drives if the drives or the entire
computer is stolen. This does not protect against attacks while the file system is mounted, because
when mounted, the operating system provides an unencrypted view of the data. However, to mount
the file system, you need some way for the encryption key to be passed to the operating system, and
sometimes the key is stored somewhere on the host that mounts the disk.

Encrypting Data Across A Network
SSL connections encrypt all data sent across the network: the password, the queries, and the data
returned. The pg_hba.conf file allows administrators to specify which hosts can use non-encrypted
connections (host) and which require SSL-encrypted connections (hostssl). Also, clients can specify
that they connect to servers only via SSL.

GSSAPI-encrypted connections encrypt all data sent across the network, including queries and data
returned. (No password is sent across the network.) The pg_hba.conf file allows administrators to
specify which hosts can use non-encrypted connections (host) and which require GSSAPI-encrypted
connections (hostgssenc). Also, clients can specify that they connect to servers only on GSSAPI-
encrypted connections (gssencmode=require).

Stunnel or SSH can also be used to encrypt transmissions.

SSL Host Authentication
It is possible for both the client and server to provide SSL certificates to each other. It takes some
extra configuration on each side, but this provides stronger verification of identity than the mere

539

Server Setup and Operation

use of passwords. It prevents a computer from pretending to be the server just long enough to read
the password sent by the client. It also helps prevent “man in the middle” attacks where a computer
between the client and server pretends to be the server and reads and passes all data between the
client and server.

Client-Side Encryption
If the system administrator for the server's machine cannot be trusted, it is necessary for the client to
encrypt the data; this way, unencrypted data never appears on the database server. Data is encrypted
on the client before being sent to the server, and database results have to be decrypted on the client
before being used.

18.9. Secure TCP/IP Connections with SSL
PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. This requires that OpenSSL is installed on both client and server systems and that
support in PostgreSQL is enabled at build time (see Chapter 17).

The terms SSL and TLS are often used interchangeably to mean a secure encrypted connection using
a TLS protocol. SSL protocols are the precursors to TLS protocols, and the term SSL is still used for
encrypted connections even though SSL protocols are no longer supported. SSL is used interchangeably
with TLS in PostgreSQL.

18.9.1. Basic Setup
With SSL support compiled in, the PostgreSQL server can be started with support for encrypted connec-
tions using TLS protocols enabled by setting the parameter ssl to on in postgresql.conf. The server will
listen for both normal and SSL connections on the same TCP port, and will negotiate with any connecting
client on whether to use SSL. By default, this is at the client's option; see Section 20.1 about how to set
up the server to require use of SSL for some or all connections.

To start in SSL mode, files containing the server certificate and private key must exist. By default, these
files are expected to be named server.crt and server.key, respectively, in the server's data directory,
but other names and locations can be specified using the configuration parameters ssl_cert_file and
ssl_key_file.

On Unix systems, the permissions on server.key must disallow any access to world or group; achieve
this by the command chmod 0600 server.key. Alternatively, the file can be owned by root and have
group read access (that is, 0640 permissions). That setup is intended for installations where certificate
and key files are managed by the operating system. The user under which the PostgreSQL server runs
should then be made a member of the group that has access to those certificate and key files.

If the data directory allows group read access then certificate files may need to be located outside of the
data directory in order to conform to the security requirements outlined above. Generally, group access
is enabled to allow an unprivileged user to backup the database, and in that case the backup software
will not be able to read the certificate files and will likely error.

If the private key is protected with a passphrase, the server will prompt for the passphrase and will
not start until it has been entered. Using a passphrase by default disables the ability to change the
server's SSL configuration without a server restart, but see ssl_passphrase_command_supports_reload.
Furthermore, passphrase-protected private keys cannot be used at all on Windows.

The first certificate in server.crt must be the server's certificate because it must match the server's
private key. The certificates of “intermediate” certificate authorities can also be appended to the file.
Doing this avoids the necessity of storing intermediate certificates on clients, assuming the root and
intermediate certificates were created with v3_ca extensions. (This sets the certificate's basic constraint
of CA to true.) This allows easier expiration of intermediate certificates.

It is not necessary to add the root certificate to server.crt. Instead, clients must have the root certificate
of the server's certificate chain.

540

Server Setup and Operation

18.9.2. OpenSSL Configuration
PostgreSQL reads the system-wide OpenSSL configuration file. By default, this file is named openss-
l.cnf and is located in the directory reported by openssl version -d. This default can be overridden
by setting environment variable OPENSSL_CONF to the name of the desired configuration file.

OpenSSL supports a wide range of ciphers and authentication algorithms, of varying strength. While a
list of ciphers can be specified in the OpenSSL configuration file, you can specify ciphers specifically for
use by the database server by modifying ssl_ciphers in postgresql.conf.

Note
It is possible to have authentication without encryption overhead by using NULL-SHA or NULL-MD5
ciphers. However, a man-in-the-middle could read and pass communications between client and
server. Also, encryption overhead is minimal compared to the overhead of authentication. For
these reasons NULL ciphers are not recommended.

18.9.3. Using Client Certificates
To require the client to supply a trusted certificate, place certificates of the root certificate authorities
(CAs) you trust in a file in the data directory, set the parameter ssl_ca_file in postgresql.conf to the new
file name, and add the authentication option clientcert=verify-ca or clientcert=verify-full to the
appropriate hostssl line(s) in pg_hba.conf. A certificate will then be requested from the client during
SSL connection startup. (See Section 32.19 for a description of how to set up certificates on the client.)

For a hostssl entry with clientcert=verify-ca, the server will verify that the client's certificate is
signed by one of the trusted certificate authorities. If clientcert=verify-full is specified, the server
will not only verify the certificate chain, but it will also check whether the username or its mapping
matches the cn (Common Name) of the provided certificate. Note that certificate chain validation is
always ensured when the cert authentication method is used (see Section 20.12).

Intermediate certificates that chain up to existing root certificates can also appear in the ssl_ca_file file if
you wish to avoid storing them on clients (assuming the root and intermediate certificates were created
with v3_ca extensions). Certificate Revocation List (CRL) entries are also checked if the parameter
ssl_crl_file or ssl_crl_dir is set.

The clientcert authentication option is available for all authentication methods, but only in pg_h-
ba.conf lines specified as hostssl. When clientcert is not specified, the server verifies the client cer-
tificate against its CA file only if a client certificate is presented and the CA is configured.

There are two approaches to enforce that users provide a certificate during login.

The first approach makes use of the cert authentication method for hostssl entries in pg_hba.conf,
such that the certificate itself is used for authentication while also providing ssl connection security. See
Section 20.12 for details. (It is not necessary to specify any clientcert options explicitly when using the
cert authentication method.) In this case, the cn (Common Name) provided in the certificate is checked
against the user name or an applicable mapping.

The second approach combines any authentication method for hostssl entries with the verification of
client certificates by setting the clientcert authentication option to verify-ca or verify-full. The
former option only enforces that the certificate is valid, while the latter also ensures that the cn (Common
Name) in the certificate matches the user name or an applicable mapping.

18.9.4. SSL Server File Usage
Table 18.2 summarizes the files that are relevant to the SSL setup on the server. (The shown file names
are default names. The locally configured names could be different.)

541

Server Setup and Operation

Table 18.2. SSL Server File Usage

File Contents Effect
ssl_cert_file ($PGDATA/serv-
er.crt)

server certificate sent to client to indicate server's
identity

ssl_key_file ($PGDATA/serv-
er.key)

server private key proves server certificate was
sent by the owner; does not in-
dicate certificate owner is trust-
worthy

ssl_ca_file trusted certificate authorities checks that client certificate is
signed by a trusted certificate
authority

ssl_crl_file certificates revoked by certifi-
cate authorities

client certificate must not be on
this list

The server reads these files at server start and whenever the server configuration is reloaded. On Win-
dows systems, they are also re-read whenever a new backend process is spawned for a new client con-
nection.

If an error in these files is detected at server start, the server will refuse to start. But if an error is
detected during a configuration reload, the files are ignored and the old SSL configuration continues to
be used. On Windows systems, if an error in these files is detected at backend start, that backend will be
unable to establish an SSL connection. In all these cases, the error condition is reported in the server log.

18.9.5. Creating Certificates
To create a simple self-signed certificate for the server, valid for 365 days, use the following OpenSSL
command, replacing dbhost.yourdomain.com with the server's host name:

openssl req -new -x509 -days 365 -nodes -text -out server.crt \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"

Then do:

chmod og-rwx server.key

because the server will reject the file if its permissions are more liberal than this. For more details on
how to create your server private key and certificate, refer to the OpenSSL documentation.

While a self-signed certificate can be used for testing, a certificate signed by a certificate authority (CA)
(usually an enterprise-wide root CA) should be used in production.

To create a server certificate whose identity can be validated by clients, first create a certificate signing
request (CSR) and a public/private key file:

openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key

Then, sign the request with the key to create a root certificate authority (using the default OpenSSL
configuration file location on Linux):

openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

Finally, create a server certificate signed by the new root certificate authority:

openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key

542

Server Setup and Operation

openssl x509 -req -in server.csr -text -days 365 \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out server.crt

server.crt and server.key should be stored on the server, and root.crt should be stored on the
client so the client can verify that the server's leaf certificate was signed by its trusted root certificate.
root.key should be stored offline for use in creating future certificates.

It is also possible to create a chain of trust that includes intermediate certificates:

root
openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key
openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

intermediate
openssl req -new -nodes -text -out intermediate.csr \
 -keyout intermediate.key -subj "/CN=intermediate.yourdomain.com"
chmod og-rwx intermediate.key
openssl x509 -req -in intermediate.csr -text -days 1825 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out intermediate.crt

leaf
openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key
openssl x509 -req -in server.csr -text -days 365 \
 -CA intermediate.crt -CAkey intermediate.key -CAcreateserial \
 -out server.crt

server.crt and intermediate.crt should be concatenated into a certificate file bundle and stored on
the server. server.key should also be stored on the server. root.crt should be stored on the client
so the client can verify that the server's leaf certificate was signed by a chain of certificates linked to
its trusted root certificate. root.key and intermediate.key should be stored offline for use in creating
future certificates.

18.10. Secure TCP/IP Connections with GSSAPI Encryp-
tion

PostgreSQL also has native support for using GSSAPI to encrypt client/server communications for in-
creased security. Support requires that a GSSAPI implementation (such as MIT Kerberos) is installed on
both client and server systems, and that support in PostgreSQL is enabled at build time (see Chapter 17).

18.10.1. Basic Setup
The PostgreSQL server will listen for both normal and GSSAPI-encrypted connections on the same TCP
port, and will negotiate with any connecting client whether to use GSSAPI for encryption (and for au-
thentication). By default, this decision is up to the client (which means it can be downgraded by an
attacker); see Section 20.1 about setting up the server to require the use of GSSAPI for some or all
connections.

When using GSSAPI for encryption, it is common to use GSSAPI for authentication as well, since the
underlying mechanism will determine both client and server identities (according to the GSSAPI imple-

543

Server Setup and Operation

mentation) in any case. But this is not required; another PostgreSQL authentication method can be cho-
sen to perform additional verification.

Other than configuration of the negotiation behavior, GSSAPI encryption requires no setup beyond
that which is necessary for GSSAPI authentication. (For more information on configuring that, see Sec-
tion 20.6.)

18.11. Secure TCP/IP Connections with SSH Tunnels
It is possible to use SSH to encrypt the network connection between clients and a PostgreSQL server.
Done properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL server
and that you can log in using ssh as some user; you then can establish a secure tunnel to the remote
server. A secure tunnel listens on a local port and forwards all traffic to a port on the remote machine.
Traffic sent to the remote port can arrive on its localhost address, or different bind address if desired;
it does not appear as coming from your local machine. This command creates a secure tunnel from the
client machine to the remote machine foo.com:

ssh -L 63333:localhost:5432 joe@foo.com

The first number in the -L argument, 63333, is the local port number of the tunnel; it can be any unused
port. (IANA reserves ports 49152 through 65535 for private use.) The name or IP address after this is the
remote bind address you are connecting to, i.e., localhost, which is the default. The second number,
5432, is the remote end of the tunnel, e.g., the port number your database server is using. In order to
connect to the database server using this tunnel, you connect to port 63333 on the local machine:

psql -h localhost -p 63333 postgres

To the database server it will then look as though you are user joe on host foo.com connecting to the
localhost bind address, and it will use whatever authentication procedure was configured for connec-
tions by that user to that bind address. Note that the server will not think the connection is SSL-encrypt-
ed, since in fact it is not encrypted between the SSH server and the PostgreSQL server. This should not
pose any extra security risk because they are on the same machine.

In order for the tunnel setup to succeed you must be allowed to connect via ssh as joe@foo.com, just as
if you had attempted to use ssh to create a terminal session.

You could also have set up port forwarding as

ssh -L 63333:foo.com:5432 joe@foo.com

but then the database server will see the connection as coming in on its foo.com bind address, which is
not opened by the default setting listen_addresses = 'localhost'. This is usually not what you want.

If you have to “hop” to the database server via some login host, one possible setup could look like this:

ssh -L 63333:db.foo.com:5432 joe@shell.foo.com

Note that this way the connection from shell.foo.com to db.foo.com will not be encrypted by the SSH
tunnel. SSH offers quite a few configuration possibilities when the network is restricted in various ways.
Please refer to the SSH documentation for details.

Tip
Several other applications exist that can provide secure tunnels using a procedure similar in con-
cept to the one just described.

18.12. Registering Event Log on Windows
To register a Windows event log library with the operating system, issue this command:

544

Server Setup and Operation

regsvr32 pgsql_library_directory/pgevent.dll

This creates registry entries used by the event viewer, under the default event source named Post-
greSQL.

To specify a different event source name (see event_source), use the /n and /i options:

regsvr32 /n /i:event_source_name pgsql_library_directory/pgevent.dll

To unregister the event log library from the operating system, issue this command:

regsvr32 /u [/i:event_source_name] pgsql_library_directory/pgevent.dll

Note
To enable event logging in the database server, modify log_destination to include eventlog in
postgresql.conf.

545

Chapter 19. Server Configuration
There are many configuration parameters that affect the behavior of the database system. In the first
section of this chapter we describe how to interact with configuration parameters. The subsequent sec-
tions discuss each parameter in detail.

19.1. Setting Parameters
19.1.1. Parameter Names and Values

All parameter names are case-insensitive. Every parameter takes a value of one of five types: boolean,
string, integer, floating point, or enumerated (enum). The type determines the syntax for setting the
parameter:

• Boolean: Values can be written as on, off, true, false, yes, no, 1, 0 (all case-insensitive) or any un-
ambiguous prefix of one of these.

• String: In general, enclose the value in single quotes, doubling any single quotes within the value.
Quotes can usually be omitted if the value is a simple number or identifier, however. (Values that
match an SQL keyword require quoting in some contexts.)

• Numeric (integer and floating point): Numeric parameters can be specified in the customary inte-
ger and floating-point formats; fractional values are rounded to the nearest integer if the parame-
ter is of integer type. Integer parameters additionally accept hexadecimal input (beginning with 0x)
and octal input (beginning with 0), but these formats cannot have a fraction. Do not use thousands
separators. Quotes are not required, except for hexadecimal input.

• Numeric with Unit: Some numeric parameters have an implicit unit, because they describe quan-
tities of memory or time. The unit might be bytes, kilobytes, blocks (typically eight kilobytes), mil-
liseconds, seconds, or minutes. An unadorned numeric value for one of these settings will use the
setting's default unit, which can be learned from pg_settings.unit. For convenience, settings
can be given with a unit specified explicitly, for example '120 ms' for a time value, and they will
be converted to whatever the parameter's actual unit is. Note that the value must be written as a
string (with quotes) to use this feature. The unit name is case-sensitive, and there can be white-
space between the numeric value and the unit.

• Valid memory units are B (bytes), kB (kilobytes), MB (megabytes), GB (gigabytes), and TB (ter-
abytes). The multiplier for memory units is 1024, not 1000.

• Valid time units are us (microseconds), ms (milliseconds), s (seconds), min (minutes), h (hours),
and d (days).

If a fractional value is specified with a unit, it will be rounded to a multiple of the next smaller unit
if there is one. For example, 30.1 GB will be converted to 30822 MB not 32319628902 B. If the para-
meter is of integer type, a final rounding to integer occurs after any unit conversion.

• Enumerated: Enumerated-type parameters are written in the same way as string parameters, but
are restricted to have one of a limited set of values. The values allowable for such a parameter can
be found from pg_settings.enumvals. Enum parameter values are case-insensitive.

19.1.2. Parameter Interaction via the Configuration File
The most fundamental way to set these parameters is to edit the file postgresql.conf, which is normally
kept in the data directory. A default copy is installed when the database cluster directory is initialized.
An example of what this file might look like is:

This is a comment
log_connections = all
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

546

Server Configuration

One parameter is specified per line. The equal sign between name and value is optional. Whitespace
is insignificant (except within a quoted parameter value) and blank lines are ignored. Hash marks (#)
designate the remainder of the line as a comment. Parameter values that are not simple identifiers or
numbers must be single-quoted. To embed a single quote in a parameter value, write either two quotes
(preferred) or backslash-quote. If the file contains multiple entries for the same parameter, all but the
last one are ignored.

Parameters set in this way provide default values for the cluster. The settings seen by active sessions
will be these values unless they are overridden. The following sections describe ways in which the ad-
ministrator or user can override these defaults.

The configuration file is reread whenever the main server process receives a SIGHUP signal; this signal
is most easily sent by running pg_ctl reload from the command line or by calling the SQL function
pg_reload_conf(). The main server process also propagates this signal to all currently running server
processes, so that existing sessions also adopt the new values (this will happen after they complete any
currently-executing client command). Alternatively, you can send the signal to a single server process
directly. Some parameters can only be set at server start; any changes to their entries in the configura-
tion file will be ignored until the server is restarted. Invalid parameter settings in the configuration file
are likewise ignored (but logged) during SIGHUP processing.

In addition to postgresql.conf, a PostgreSQL data directory contains a file postgresql.auto.conf,
which has the same format as postgresql.conf but is intended to be edited automatically, not manu-
ally. This file holds settings provided through the ALTER SYSTEM command. This file is read whenever
postgresql.conf is, and its settings take effect in the same way. Settings in postgresql.auto.conf
override those in postgresql.conf.

External tools may also modify postgresql.auto.conf. It is not recommended to do this while the server
is running unless allow_alter_system is set to off, since a concurrent ALTER SYSTEM command could
overwrite such changes. Such tools might simply append new settings to the end, or they might choose
to remove duplicate settings and/or comments (as ALTER SYSTEM will).

The system view pg_file_settings can be helpful for pre-testing changes to the configuration files, or
for diagnosing problems if a SIGHUP signal did not have the desired effects.

19.1.3. Parameter Interaction via SQL
PostgreSQL provides three SQL commands to establish configuration defaults. The already-mentioned
ALTER SYSTEM command provides an SQL-accessible means of changing global defaults; it is function-
ally equivalent to editing postgresql.conf. In addition, there are two commands that allow setting of
defaults on a per-database or per-role basis:

• The ALTER DATABASE command allows global settings to be overridden on a per-database basis.

• The ALTER ROLE command allows both global and per-database settings to be overridden with user-
specific values.

Values set with ALTER DATABASE and ALTER ROLE are applied only when starting a fresh database ses-
sion. They override values obtained from the configuration files or server command line, and constitute
defaults for the rest of the session. Note that some settings cannot be changed after server start, and
so cannot be set with these commands (or the ones listed below).

Once a client is connected to the database, PostgreSQL provides two additional SQL commands (and
equivalent functions) to interact with session-local configuration settings:

• The SHOW command allows inspection of the current value of any parameter. The corresponding
SQL function is current_setting(setting_name text) (see Section 9.28.1).

• The SET command allows modification of the current value of those parameters that can be set
locally to a session; it has no effect on other sessions. Many parameters can be set this way by
any user, but some can only be set by superusers and users who have been granted SET privilege

547

Server Configuration

on that parameter. The corresponding SQL function is set_config(setting_name, new_value,
is_local) (see Section 9.28.1).

In addition, the system view pg_settings can be used to view and change session-local values:

• Querying this view is similar to using SHOW ALL but provides more detail. It is also more flexible,
since it's possible to specify filter conditions or join against other relations.

• Using UPDATE on this view, specifically updating the setting column, is the equivalent of issuing
SET commands. For example, the equivalent of
SET configuration_parameter TO DEFAULT;

is:
UPDATE pg_settings SET setting = reset_val WHERE name = 'configuration_parameter';

19.1.4. Parameter Interaction via the Shell
In addition to setting global defaults or attaching overrides at the database or role level, you can pass
settings to PostgreSQL via shell facilities. Both the server and libpq client library accept parameter
values via the shell.

• During server startup, parameter settings can be passed to the postgres command via the -c
name=value command-line parameter, or its equivalent --name=value variation. For example,
postgres -c log_connections=all --log-destination='syslog'

Settings provided in this way override those set via postgresql.conf or ALTER SYSTEM, so they
cannot be changed globally without restarting the server.

• When starting a client session via libpq, parameter settings can be specified using the PGOPTIONS
environment variable. Settings established in this way constitute defaults for the life of the ses-
sion, but do not affect other sessions. For historical reasons, the format of PGOPTIONS is similar to
that used when launching the postgres command; specifically, the -c, or prepended --, before the
name must be specified. For example,
env PGOPTIONS="-c geqo=off --statement-timeout=5min" psql

Other clients and libraries might provide their own mechanisms, via the shell or otherwise, that al-
low the user to alter session settings without direct use of SQL commands.

19.1.5. Managing Configuration File Contents
PostgreSQL provides several features for breaking down complex postgresql.conf files into sub-files.
These features are especially useful when managing multiple servers with related, but not identical,
configurations.

In addition to individual parameter settings, the postgresql.conf file can contain include directives,
which specify another file to read and process as if it were inserted into the configuration file at this point.
This feature allows a configuration file to be divided into physically separate parts. Include directives
simply look like:
include 'filename'

If the file name is not an absolute path, it is taken as relative to the directory containing the referencing
configuration file. Inclusions can be nested.

There is also an include_if_exists directive, which acts the same as the include directive, except
when the referenced file does not exist or cannot be read. A regular include will consider this an error
condition, but include_if_exists merely logs a message and continues processing the referencing
configuration file.

The postgresql.conf file can also contain include_dir directives, which specify an entire directory of
configuration files to include. These look like

548

Server Configuration

include_dir 'directory'

Non-absolute directory names are taken as relative to the directory containing the referencing config-
uration file. Within the specified directory, only non-directory files whose names end with the suffix
.conf will be included. File names that start with the . character are also ignored, to prevent mistakes
since such files are hidden on some platforms. Multiple files within an include directory are processed
in file name order (according to C locale rules, i.e., numbers before letters, and uppercase letters before
lowercase ones).

Include files or directories can be used to logically separate portions of the database configuration,
rather than having a single large postgresql.conf file. Consider a company that has two database
servers, each with a different amount of memory. There are likely elements of the configuration both
will share, for things such as logging. But memory-related parameters on the server will vary between
the two. And there might be server specific customizations, too. One way to manage this situation is to
break the custom configuration changes for your site into three files. You could add this to the end of
your postgresql.conf file to include them:
include 'shared.conf'
include 'memory.conf'
include 'server.conf'

All systems would have the same shared.conf. Each server with a particular amount of memory could
share the same memory.conf; you might have one for all servers with 8GB of RAM, another for those
having 16GB. And finally server.conf could have truly server-specific configuration information in it.

Another possibility is to create a configuration file directory and put this information into files there. For
example, a conf.d directory could be referenced at the end of postgresql.conf:
include_dir 'conf.d'

Then you could name the files in the conf.d directory like this:
00shared.conf
01memory.conf
02server.conf

This naming convention establishes a clear order in which these files will be loaded. This is important
because only the last setting encountered for a particular parameter while the server is reading config-
uration files will be used. In this example, something set in conf.d/02server.conf would override a
value set in conf.d/01memory.conf.

You might instead use this approach to naming the files descriptively:
00shared.conf
01memory-8GB.conf
02server-foo.conf

This sort of arrangement gives a unique name for each configuration file variation. This can help elim-
inate ambiguity when several servers have their configurations all stored in one place, such as in a
version control repository. (Storing database configuration files under version control is another good
practice to consider.)

19.2. File Locations
In addition to the postgresql.conf file already mentioned, PostgreSQL uses two other manually-edited
configuration files, which control client authentication (their use is discussed in Chapter 20). By default,
all three configuration files are stored in the database cluster's data directory. The parameters described
in this section allow the configuration files to be placed elsewhere. (Doing so can ease administration.
In particular it is often easier to ensure that the configuration files are properly backed-up when they
are kept separate.)

data_directory (string)
Specifies the directory to use for data storage. This parameter can only be set at server start.

549

Server Configuration

config_file (string)

Specifies the main server configuration file (customarily called postgresql.conf). This parameter
can only be set on the postgres command line.

hba_file (string)

Specifies the configuration file for host-based authentication (customarily called pg_hba.conf). This
parameter can only be set at server start.

ident_file (string)

Specifies the configuration file for user name mapping (customarily called pg_ident.conf). This
parameter can only be set at server start. See also Section 20.2.

external_pid_file (string)
Specifies the name of an additional process-ID (PID) file that the server should create for use by
server administration programs. This parameter can only be set at server start.

In a default installation, none of the above parameters are set explicitly. Instead, the data directory is
specified by the -D command-line option or the PGDATA environment variable, and the configuration files
are all found within the data directory.

If you wish to keep the configuration files elsewhere than the data directory, the postgres -D com-
mand-line option or PGDATA environment variable must point to the directory containing the configura-
tion files, and the data_directory parameter must be set in postgresql.conf (or on the command line)
to show where the data directory is actually located. Notice that data_directory overrides -D and PG-
DATA for the location of the data directory, but not for the location of the configuration files.

If you wish, you can specify the configuration file names and locations individually using the parame-
ters config_file, hba_file and/or ident_file. config_file can only be specified on the postgres
command line, but the others can be set within the main configuration file. If all three parameters plus
data_directory are explicitly set, then it is not necessary to specify -D or PGDATA.

When setting any of these parameters, a relative path will be interpreted with respect to the directory
in which postgres is started.

19.3. Connections and Authentication
19.3.1. Connection Settings

listen_addresses (string)
Specifies the TCP/IP address(es) on which the server is to listen for connections from client applica-
tions. The value takes the form of a comma-separated list of host names and/or numeric IP addresses.
The special entry * corresponds to all available IP interfaces. The entry 0.0.0.0 allows listening for
all IPv4 addresses and :: allows listening for all IPv6 addresses. If the list is empty, the server does
not listen on any IP interface at all, in which case only Unix-domain sockets can be used to connect to
it. If the list is not empty, the server will start if it can listen on at least one TCP/IP address. A warning
will be emitted for any TCP/IP address which cannot be opened. The default value is localhost, which
allows only local TCP/IP “loopback” connections to be made.

While client authentication (Chapter 20) allows fine-grained control over who can access the server,
listen_addresses controls which interfaces accept connection attempts, which can help prevent
repeated malicious connection requests on insecure network interfaces. This parameter can only be
set at server start.

port (integer)
The TCP port the server listens on; 5432 by default. Note that the same port number is used for all
IP addresses the server listens on. This parameter can only be set at server start.

550

Server Configuration

max_connections (integer)
Determines the maximum number of concurrent connections to the database server. The default is
typically 100 connections, but might be less if your kernel settings will not support it (as determined
during initdb). This parameter can only be set at server start.

PostgreSQL sizes certain resources based directly on the value of max_connections. Increasing its
value leads to higher allocation of those resources, including shared memory.

When running a standby server, you must set this parameter to the same or higher value than on the
primary server. Otherwise, queries will not be allowed in the standby server.

reserved_connections (integer)
Determines the number of connection “slots” that are reserved for connections by roles with priv-
ileges of the pg_use_reserved_connections role. Whenever the number of free connection slots is
greater than superuser_reserved_connections but less than or equal to the sum of superuser_re-
served_connections and reserved_connections, new connections will be accepted only for supe-
rusers and roles with privileges of pg_use_reserved_connections. If superuser_reserved_connec-
tions or fewer connection slots are available, new connections will be accepted only for superusers.

The default value is zero connections. The value must be less than max_connections minus supe-
ruser_reserved_connections. This parameter can only be set at server start.

superuser_reserved_connections (integer)
Determines the number of connection “slots” that are reserved for connections by PostgreSQL supe-
rusers. At most max_connections connections can ever be active simultaneously. Whenever the num-
ber of active concurrent connections is at least max_connections minus superuser_reserved_con-
nections, new connections will be accepted only for superusers. The connection slots reserved
by this parameter are intended as final reserve for emergency use after the slots reserved by re-
served_connections have been exhausted.

The default value is three connections. The value must be less than max_connections minus re-
served_connections. This parameter can only be set at server start.

unix_socket_directories (string)
Specifies the directory of the Unix-domain socket(s) on which the server is to listen for connections
from client applications. Multiple sockets can be created by listing multiple directories separated by
commas. Whitespace between entries is ignored; surround a directory name with double quotes if
you need to include whitespace or commas in the name. An empty value specifies not listening on
any Unix-domain sockets, in which case only TCP/IP sockets can be used to connect to the server.

A value that starts with @ specifies that a Unix-domain socket in the abstract namespace should be
created (currently supported on Linux only). In that case, this value does not specify a “directory”
but a prefix from which the actual socket name is computed in the same manner as for the file-system
namespace. While the abstract socket name prefix can be chosen freely, since it is not a file-system
location, the convention is to nonetheless use file-system-like values such as @/tmp.

The default value is normally /tmp, but that can be changed at build time. On Windows, the default
is empty, which means no Unix-domain socket is created by default. This parameter can only be set
at server start.

In addition to the socket file itself, which is named .s.PGSQL.nnnn where nnnn is the server's port
number, an ordinary file named .s.PGSQL.nnnn.lock will be created in each of the unix_socket_di-
rectories directories. Neither file should ever be removed manually. For sockets in the abstract
namespace, no lock file is created.

unix_socket_group (string)
Sets the owning group of the Unix-domain socket(s). (The owning user of the sockets is always the
user that starts the server.) In combination with the parameter unix_socket_permissions this can

551

Server Configuration

be used as an additional access control mechanism for Unix-domain connections. By default this is
the empty string, which uses the default group of the server user. This parameter can only be set
at server start.

This parameter is not supported on Windows. Any setting will be ignored. Also, sockets in the abstract
namespace have no file owner, so this setting is also ignored in that case.

unix_socket_permissions (integer)

Sets the access permissions of the Unix-domain socket(s). Unix-domain sockets use the usual Unix
file system permission set. The parameter value is expected to be a numeric mode specified in the
format accepted by the chmod and umask system calls. (To use the customary octal format the number
must start with a 0 (zero).)

The default permissions are 0777, meaning anyone can connect. Reasonable alternatives are 0770
(only user and group, see also unix_socket_group) and 0700 (only user). (Note that for a Unix-
domain socket, only write permission matters, so there is no point in setting or revoking read or
execute permissions.)

This access control mechanism is independent of the one described in Chapter 20.

This parameter can only be set at server start.

This parameter is irrelevant on systems, notably Solaris as of Solaris 10, that ignore socket permis-
sions entirely. There, one can achieve a similar effect by pointing unix_socket_directories to a
directory having search permission limited to the desired audience.

Sockets in the abstract namespace have no file permissions, so this setting is also ignored in that case.

bonjour (boolean)

Enables advertising the server's existence via Bonjour. The default is off. This parameter can only
be set at server start.

bonjour_name (string)

Specifies the Bonjour service name. The computer name is used if this parameter is set to the empty
string '' (which is the default). This parameter is ignored if the server was not compiled with Bonjour
support. This parameter can only be set at server start.

19.3.2. TCP Settings
tcp_keepalives_idle (integer)

Specifies the amount of time with no network activity after which the operating system should send
a TCP keepalive message to the client. If this value is specified without units, it is taken as seconds.
A value of 0 (the default) selects the operating system's default. On Windows, setting a value of 0 will
set this parameter to 2 hours, since Windows does not provide a way to read the system default value.
This parameter is supported only on systems that support TCP_KEEPIDLE or an equivalent socket
option, and on Windows; on other systems, it must be zero. In sessions connected via a Unix-domain
socket, this parameter is ignored and always reads as zero.

tcp_keepalives_interval (integer)

Specifies the amount of time after which a TCP keepalive message that has not been acknowledged
by the client should be retransmitted. If this value is specified without units, it is taken as seconds.
A value of 0 (the default) selects the operating system's default. On Windows, setting a value of 0
will set this parameter to 1 second, since Windows does not provide a way to read the system default
value. This parameter is supported only on systems that support TCP_KEEPINTVL or an equivalent
socket option, and on Windows; on other systems, it must be zero. In sessions connected via a Unix-
domain socket, this parameter is ignored and always reads as zero.

552

Server Configuration

tcp_keepalives_count (integer)
Specifies the number of TCP keepalive messages that can be lost before the server's connection to
the client is considered dead. A value of 0 (the default) selects the operating system's default. This
parameter is supported only on systems that support TCP_KEEPCNT or an equivalent socket option
(which does not include Windows); on other systems, it must be zero. In sessions connected via a
Unix-domain socket, this parameter is ignored and always reads as zero.

tcp_user_timeout (integer)
Specifies the amount of time that transmitted data may remain unacknowledged before the TCP
connection is forcibly closed. If this value is specified without units, it is taken as milliseconds. A value
of 0 (the default) selects the operating system's default. This parameter is supported only on systems
that support TCP_USER_TIMEOUT (which does not include Windows); on other systems, it must be zero.
In sessions connected via a Unix-domain socket, this parameter is ignored and always reads as zero.

client_connection_check_interval (integer)
Sets the time interval between optional checks that the client is still connected, while running
queries. The check is performed by polling the socket, and allows long running queries to be aborted
sooner if the kernel reports that the connection is closed.

This option relies on kernel events exposed by Linux, macOS, illumos and the BSD family of operating
systems, and is not currently available on other systems.

If the value is specified without units, it is taken as milliseconds. The default value is 0, which disables
connection checks. Without connection checks, the server will detect the loss of the connection only
at the next interaction with the socket, when it waits for, receives or sends data.

For the kernel itself to detect lost TCP connections reliably and within a known timeframe in all
scenarios including network failure, it may also be necessary to adjust the TCP keepalive settings of
the operating system, or the tcp_keepalives_idle, tcp_keepalives_interval and tcp_keepalives_count
settings of PostgreSQL.

19.3.3. Authentication
authentication_timeout (integer)

Maximum amount of time allowed to complete client authentication. If a would-be client has not
completed the authentication protocol in this much time, the server closes the connection. This pre-
vents hung clients from occupying a connection indefinitely. If this value is specified without units,
it is taken as seconds. The default is one minute (1m). This parameter can only be set in the post-
gresql.conf file or on the server command line.

password_encryption (enum)
When a password is specified in CREATE ROLE or ALTER ROLE, this parameter determines the
algorithm to use to encrypt the password. Possible values are scram-sha-256, which will encrypt the
password with SCRAM-SHA-256, and md5, which stores the password as an MD5 hash. The default
is scram-sha-256.

Note that older clients might lack support for the SCRAM authentication mechanism, and hence not
work with passwords encrypted with SCRAM-SHA-256. See Section 20.5 for more details.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future release
of PostgreSQL. Refer to Section 20.5 for details about migrating to another password type.

scram_iterations (integer)
The number of computational iterations to be performed when encrypting a password using SCRAM-
SHA-256. The default is 4096. A higher number of iterations provides additional protection against

553

Server Configuration

brute-force attacks on stored passwords, but makes authentication slower. Changing the value has
no effect on existing passwords encrypted with SCRAM-SHA-256 as the iteration count is fixed at
the time of encryption. In order to make use of a changed value, a new password must be set.

md5_password_warnings (boolean)

Controls whether a WARNING about MD5 password deprecation is produced when a CREATE ROLE or
ALTER ROLE statement sets an MD5-encrypted password. The default value is on.

krb_server_keyfile (string)

Sets the location of the server's Kerberos key file. The default is FILE:/usr/local/pgsql/etc/kr-
b5.keytab (where the directory part is whatever was specified as sysconfdir at build time; use
pg_config --sysconfdir to determine that). If this parameter is set to an empty string, it is ignored
and a system-dependent default is used. This parameter can only be set in the postgresql.conf file
or on the server command line. See Section 20.6 for more information.

krb_caseins_users (boolean)

Sets whether GSSAPI user names should be treated case-insensitively. The default is off (case sen-
sitive). This parameter can only be set in the postgresql.conf file or on the server command line.

gss_accept_delegation (boolean)

Sets whether GSSAPI delegation should be accepted from the client. The default is off meaning
credentials from the client will not be accepted. Changing this to on will make the server accept
credentials delegated to it from the client. This parameter can only be set in the postgresql.conf
file or on the server command line.

oauth_validator_libraries (string)

The library/libraries to use for validating OAuth connection tokens. If only one validator library is
provided, it will be used by default for any OAuth connections; otherwise, all oauth HBA entries
must explicitly set a validator chosen from this list. If set to an empty string (the default), OAuth
connections will be refused. This parameter can only be set in the postgresql.conf file.

Validator modules must be implemented/obtained separately; PostgreSQL does not ship with any
default implementations. For more information on implementing OAuth validators, see Chapter 50.

19.3.4. SSL
See Section 18.9 for more information about setting up SSL. The configuration parameters for controlling
transfer encryption using TLS protocols are named ssl for historic reasons, even though support for the
SSL protocol has been deprecated. SSL is in this context used interchangeably with TLS.

ssl (boolean)

Enables SSL connections. This parameter can only be set in the postgresql.conf file or on the server
command line. The default is off.

ssl_ca_file (string)

Specifies the name of the file containing the SSL server certificate authority (CA). Relative paths
are relative to the data directory. This parameter can only be set in the postgresql.conf file or on
the server command line. The default is empty, meaning no CA file is loaded, and client certificate
verification is not performed.

ssl_cert_file (string)

Specifies the name of the file containing the SSL server certificate. Relative paths are relative to the
data directory. This parameter can only be set in the postgresql.conf file or on the server command
line. The default is server.crt.

554

Server Configuration

ssl_crl_file (string)
Specifies the name of the file containing the SSL client certificate revocation list (CRL). Relative
paths are relative to the data directory. This parameter can only be set in the postgresql.conf file
or on the server command line. The default is empty, meaning no CRL file is loaded (unless ssl_crl_dir
is set).

ssl_crl_dir (string)
Specifies the name of the directory containing the SSL client certificate revocation list (CRL). Relative
paths are relative to the data directory. This parameter can only be set in the postgresql.conf file
or on the server command line. The default is empty, meaning no CRLs are used (unless ssl_crl_file
is set).

The directory needs to be prepared with the OpenSSL command openssl rehash or c_rehash. See
its documentation for details.

When using this setting, CRLs in the specified directory are loaded on-demand at connection time.
New CRLs can be added to the directory and will be used immediately. This is unlike ssl_crl_file,
which causes the CRL in the file to be loaded at server start time or when the configuration is re-
loaded. Both settings can be used together.

ssl_key_file (string)
Specifies the name of the file containing the SSL server private key. Relative paths are relative to the
data directory. This parameter can only be set in the postgresql.conf file or on the server command
line. The default is server.key.

ssl_tls13_ciphers (string)
Specifies a list of cipher suites that are allowed by connections using TLS version 1.3. Multiple cipher
suites can be specified by using a colon separated list. If left blank, the default set of cipher suites
in OpenSSL will be used.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_ciphers (string)
Specifies a list of SSL ciphers that are allowed by connections using TLS version 1.2 and lower, see
ssl_tls13_ciphers for TLS version 1.3 connections. See the ciphers manual page in the OpenSSL pack-
age for the syntax of this setting and a list of supported values. The default value is HIGH:MEDIUM:
+3DES:!aNULL. The default is usually a reasonable choice unless you have specific security require-
ments.

This parameter can only be set in the postgresql.conf file or on the server command line.

Explanation of the default value:
HIGH

Cipher suites that use ciphers from HIGH group (e.g., AES, Camellia, 3DES)

MEDIUM

Cipher suites that use ciphers from MEDIUM group (e.g., RC4, SEED)

+3DES

The OpenSSL default order for HIGH is problematic because it orders 3DES higher than AES128.
This is wrong because 3DES offers less security than AES128, and it is also much slower. +3DES
reorders it after all other HIGH and MEDIUM ciphers.

!aNULL

Disables anonymous cipher suites that do no authentication. Such cipher suites are vulnerable
to MITM attacks and therefore should not be used.

555

Server Configuration

Available cipher suite details will vary across OpenSSL versions. Use the command openssl ciphers
-v 'HIGH:MEDIUM:+3DES:!aNULL' to see actual details for the currently installed OpenSSL version.
Note that this list is filtered at run time based on the server key type.

ssl_prefer_server_ciphers (boolean)
Specifies whether to use the server's SSL cipher preferences, rather than the client's. This parameter
can only be set in the postgresql.conf file or on the server command line. The default is on.

PostgreSQL versions before 9.4 do not have this setting and always use the client's preferences. This
setting is mainly for backward compatibility with those versions. Using the server's preferences is
usually better because it is more likely that the server is appropriately configured.

ssl_groups (string)
Specifies the name of the curve to use in ECDH key exchange. It needs to be supported by all clients
that connect. Multiple curves can be specified by using a colon-separated list. It does not need to
be the same curve used by the server's Elliptic Curve key. This parameter can only be set in the
postgresql.conf file or on the server command line. The default is X25519:prime256v1.

OpenSSL names for the most common curves are: prime256v1 (NIST P-256), secp384r1 (NIST P-384),
secp521r1 (NIST P-521). An incomplete list of available groups can be shown with the command
openssl ecparam -list_curves. Not all of them are usable with TLS though, and many supported
group names and aliases are omitted.

In PostgreSQL versions before 18.0 this setting was named ssl_ecdh_curve and only accepted a
single value.

ssl_min_protocol_version (enum)
Sets the minimum SSL/TLS protocol version to use. Valid values are currently: TLSv1, TLSv1.1,
TLSv1.2, TLSv1.3. Older versions of the OpenSSL library do not support all values; an error will be
raised if an unsupported setting is chosen. Protocol versions before TLS 1.0, namely SSL version 2
and 3, are always disabled.

The default is TLSv1.2, which satisfies industry best practices as of this writing.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_max_protocol_version (enum)
Sets the maximum SSL/TLS protocol version to use. Valid values are as for ssl_min_protocol_version,
with addition of an empty string, which allows any protocol version. The default is to allow any
version. Setting the maximum protocol version is mainly useful for testing or if some component has
issues working with a newer protocol.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_dh_params_file (string)
Specifies the name of the file containing Diffie-Hellman parameters used for so-called ephemeral DH
family of SSL ciphers. The default is empty, in which case compiled-in default DH parameters used.
Using custom DH parameters reduces the exposure if an attacker manages to crack the well-known
compiled-in DH parameters. You can create your own DH parameters file with the command openssl
dhparam -out dhparams.pem 2048.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_passphrase_command (string)
Sets an external command to be invoked when a passphrase for decrypting an SSL file such as a
private key needs to be obtained. By default, this parameter is empty, which means the built-in
prompting mechanism is used.

556

Server Configuration

The command must print the passphrase to the standard output and exit with code 0. In the parameter
value, %p is replaced by a prompt string. (Write %% for a literal %.) Note that the prompt string will
probably contain whitespace, so be sure to quote adequately. A single newline is stripped from the
end of the output if present.

The command does not actually have to prompt the user for a passphrase. It can read it from a file,
obtain it from a keychain facility, or similar. It is up to the user to make sure the chosen mechanism
is adequately secure.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_passphrase_command_supports_reload (boolean)

This parameter determines whether the passphrase command set by ssl_passphrase_command will
also be called during a configuration reload if a key file needs a passphrase. If this parameter is off
(the default), then ssl_passphrase_command will be ignored during a reload and the SSL configura-
tion will not be reloaded if a passphrase is needed. That setting is appropriate for a command that
requires a TTY for prompting, which might not be available when the server is running. Setting this
parameter to on might be appropriate if the passphrase is obtained from a file, for example.

This parameter can only be set in the postgresql.conf file or on the server command line.

19.4. Resource Consumption
19.4.1. Memory

shared_buffers (integer)

Sets the amount of memory the database server uses for shared memory buffers. The default is
typically 128 megabytes (128MB), but might be less if your kernel settings will not support it (as
determined during initdb). This setting must be at least 128 kilobytes. However, settings significantly
higher than the minimum are usually needed for good performance. If this value is specified without
units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. (Non-default values of BLCKSZ change
the minimum value.) This parameter can only be set at server start.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting value
for shared_buffers is 25% of the memory in your system. There are some workloads where even
larger settings for shared_buffers are effective, but because PostgreSQL also relies on the operating
system cache, it is unlikely that an allocation of more than 40% of RAM to shared_buffers will work
better than a smaller amount. Larger settings for shared_buffers usually require a corresponding
increase in max_wal_size, in order to spread out the process of writing large quantities of new or
changed data over a longer period of time.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so as to leave
adequate space for the operating system.

huge_pages (enum)

Controls whether huge pages are requested for the main shared memory area. Valid values are try
(the default), on, and off. With huge_pages set to try, the server will try to request huge pages, but
fall back to the default if that fails. With on, failure to request huge pages will prevent the server from
starting up. With off, huge pages will not be requested. The actual state of huge pages is indicated
by the server variable huge_pages_status.

At present, this setting is supported only on Linux and Windows. The setting is ignored on other
systems when set to try. On Linux, it is only supported when shared_memory_type is set to mmap
(the default).

The use of huge pages results in smaller page tables and less CPU time spent on memory manage-
ment, increasing performance. For more details about using huge pages on Linux, see Section 18.4.5.

557

Server Configuration

Huge pages are known as large pages on Windows. To use them, you need to assign the user right
“Lock pages in memory” to the Windows user account that runs PostgreSQL. You can use Windows
Group Policy tool (gpedit.msc) to assign the user right “Lock pages in memory”. To start the database
server on the command prompt as a standalone process, not as a Windows service, the command
prompt must be run as an administrator or User Access Control (UAC) must be disabled. When the
UAC is enabled, the normal command prompt revokes the user right “Lock pages in memory” when
started.

Note that this setting only affects the main shared memory area. Operating systems such as Linux,
FreeBSD, and Illumos can also use huge pages (also known as “super” pages or “large” pages) au-
tomatically for normal memory allocation, without an explicit request from PostgreSQL. On Linux,
this is called “transparent huge pages”(THP). That feature has been known to cause performance
degradation with PostgreSQL for some users on some Linux versions, so its use is currently discour-
aged (unlike explicit use of huge_pages).

huge_page_size (integer)

Controls the size of huge pages, when they are enabled with huge_pages. The default is zero (0).
When set to 0, the default huge page size on the system will be used. This parameter can only be
set at server start.

Some commonly available page sizes on modern 64 bit server architectures include: 2MB and 1GB
(Intel and AMD), 16MB and 16GB (IBM POWER), and 64kB, 2MB, 32MB and 1GB (ARM). For more infor-
mation about usage and support, see Section 18.4.5.

Non-default settings are currently supported only on Linux.

temp_buffers (integer)

Sets the maximum amount of memory used for temporary buffers within each database session. These
are session-local buffers used only for access to temporary tables. If this value is specified without
units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The default is eight megabytes (8MB).
(If BLCKSZ is not 8kB, the default value scales proportionally to it.) This setting can be changed within
individual sessions, but only before the first use of temporary tables within the session; subsequent
attempts to change the value will have no effect on that session.

A session will allocate temporary buffers as needed up to the limit given by temp_buffers. The cost
of setting a large value in sessions that do not actually need many temporary buffers is only a buffer
descriptor, or about 64 bytes, per increment in temp_buffers. However if a buffer is actually used
an additional 8192 bytes will be consumed for it (or in general, BLCKSZ bytes).

max_prepared_transactions (integer)

Sets the maximum number of transactions that can be in the “prepared” state simultaneously (see
PREPARE TRANSACTION). Setting this parameter to zero (which is the default) disables the pre-
pared-transaction feature. This parameter can only be set at server start.

If you are not planning to use prepared transactions, this parameter should be set to zero to prevent
accidental creation of prepared transactions. If you are using prepared transactions, you will prob-
ably want max_prepared_transactions to be at least as large as max_connections, so that every
session can have a prepared transaction pending.

When running a standby server, you must set this parameter to the same or higher value than on the
primary server. Otherwise, queries will not be allowed in the standby server.

work_mem (integer)

Sets the base maximum amount of memory to be used by a query operation (such as a sort or hash
table) before writing to temporary disk files. If this value is specified without units, it is taken as
kilobytes. The default value is four megabytes (4MB). Note that a complex query might perform several
sort and hash operations at the same time, with each operation generally being allowed to use as

558

Server Configuration

much memory as this value specifies before it starts to write data into temporary files. Also, several
running sessions could be doing such operations concurrently. Therefore, the total memory used
could be many times the value of work_mem; it is necessary to keep this fact in mind when choosing
the value. Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used
in hash joins, hash-based aggregation, memoize nodes and hash-based processing of IN subqueries.

Hash-based operations are generally more sensitive to memory availability than equivalent sort-
based operations. The memory limit for a hash table is computed by multiplying work_mem by
hash_mem_multiplier. This makes it possible for hash-based operations to use an amount of memory
that exceeds the usual work_mem base amount.

hash_mem_multiplier (floating point)
Used to compute the maximum amount of memory that hash-based operations can use. The final limit
is determined by multiplying work_mem by hash_mem_multiplier. The default value is 2.0, which
makes hash-based operations use twice the usual work_mem base amount.

Consider increasing hash_mem_multiplier in environments where spilling by query operations is a
regular occurrence, especially when simply increasing work_mem results in memory pressure (mem-
ory pressure typically takes the form of intermittent out of memory errors). The default setting of
2.0 is often effective with mixed workloads. Higher settings in the range of 2.0 - 8.0 or more may be
effective in environments where work_mem has already been increased to 40MB or more.

maintenance_work_mem (integer)

Specifies the maximum amount of memory to be used by maintenance operations, such as VACUUM,
CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. If this value is specified without units, it is
taken as kilobytes. It defaults to 64 megabytes (64MB). Since only one of these operations can be
executed at a time by a database session, and an installation normally doesn't have many of them
running concurrently, it's safe to set this value significantly larger than work_mem. Larger settings
might improve performance for vacuuming and for restoring database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory may be allo-
cated, so be careful not to set the default value too high. It may be useful to control for this by sep-
arately setting autovacuum_work_mem.

autovacuum_work_mem (integer)
Specifies the maximum amount of memory to be used by each autovacuum worker process. If this
value is specified without units, it is taken as kilobytes. It defaults to -1, indicating that the value of
maintenance_work_mem should be used instead. The setting has no effect on the behavior of VACUUM
when run in other contexts. This parameter can only be set in the postgresql.conf file or on the
server command line.

vacuum_buffer_usage_limit (integer)

Specifies the size of the Buffer Access Strategy used by the VACUUM and ANALYZE commands. A setting
of 0 will allow the operation to use any number of shared_buffers. Otherwise valid sizes range from
128 kB to 16 GB. If the specified size would exceed 1/8 the size of shared_buffers, the size is silently
capped to that value. The default value is 2MB. If this value is specified without units, it is taken as
kilobytes. This parameter can be set at any time. It can be overridden for VACUUM and ANALYZE
when passing the BUFFER_USAGE_LIMIT option. Higher settings can allow VACUUM and ANALYZE to run
more quickly, but having too large a setting may cause too many other useful pages to be evicted
from shared buffers.

logical_decoding_work_mem (integer)
Specifies the maximum amount of memory to be used by logical decoding, before some of the decod-
ed changes are written to local disk. This limits the amount of memory used by logical streaming
replication connections. It defaults to 64 megabytes (64MB). Since each replication connection only
uses a single buffer of this size, and an installation normally doesn't have many such connections

559

Server Configuration

concurrently (as limited by max_wal_senders), it's safe to set this value significantly higher than
work_mem, reducing the amount of decoded changes written to disk.

commit_timestamp_buffers (integer)
Specifies the amount of memory to use to cache the contents of pg_commit_ts (see Table 66.1). If
this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default value is 0, which requests shared_buffers/512 up to 1024 blocks, but not fewer than 16
blocks. This parameter can only be set at server start.

multixact_member_buffers (integer)
Specifies the amount of shared memory to use to cache the contents of pg_multixact/members (see
Table 66.1). If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically
8kB. The default value is 32. This parameter can only be set at server start.

multixact_offset_buffers (integer)
Specifies the amount of shared memory to use to cache the contents of pg_multixact/offsets (see
Table 66.1). If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically
8kB. The default value is 16. This parameter can only be set at server start.

notify_buffers (integer)
Specifies the amount of shared memory to use to cache the contents of pg_notify (see Table 66.1).
If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default value is 16. This parameter can only be set at server start.

serializable_buffers (integer)
Specifies the amount of shared memory to use to cache the contents of pg_serial (see Table 66.1).
If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default value is 32. This parameter can only be set at server start.

subtransaction_buffers (integer)
Specifies the amount of shared memory to use to cache the contents of pg_subtrans (see Table 66.1).
If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default value is 0, which requests shared_buffers/512 up to 1024 blocks, but not fewer than 16
blocks. This parameter can only be set at server start.

transaction_buffers (integer)
Specifies the amount of shared memory to use to cache the contents of pg_xact (see Table 66.1).
If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default value is 0, which requests shared_buffers/512 up to 1024 blocks, but not fewer than 16
blocks. This parameter can only be set at server start.

max_stack_depth (integer)
Specifies the maximum safe depth of the server's execution stack. The ideal setting for this parameter
is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equivalent), less
a safety margin of a megabyte or so. The safety margin is needed because the stack depth is not
checked in every routine in the server, but only in key potentially-recursive routines. If this value is
specified without units, it is taken as kilobytes. The default setting is two megabytes (2MB), which is
conservatively small and unlikely to risk crashes. However, it might be too small to allow execution
of complex functions. Only superusers and users with the appropriate SET privilege can change this
setting.

Setting max_stack_depth higher than the actual kernel limit will mean that a runaway recursive
function can crash an individual backend process. On platforms where PostgreSQL can determine
the kernel limit, the server will not allow this variable to be set to an unsafe value. However, not all
platforms provide the information, so caution is recommended in selecting a value.

560

Server Configuration

shared_memory_type (enum)
Specifies the shared memory implementation that the server should use for the main shared memory
region that holds PostgreSQL's shared buffers and other shared data. Possible values are mmap (for
anonymous shared memory allocated using mmap), sysv (for System V shared memory allocated via
shmget) and windows (for Windows shared memory). Not all values are supported on all platforms;
the first supported option is the default for that platform. The use of the sysv option, which is not
the default on any platform, is generally discouraged because it typically requires non-default kernel
settings to allow for large allocations (see Section 18.4.1).

dynamic_shared_memory_type (enum)
Specifies the dynamic shared memory implementation that the server should use. Possible values
are posix (for POSIX shared memory allocated using shm_open), sysv (for System V shared memory
allocated via shmget), windows (for Windows shared memory), and mmap (to simulate shared memory
using memory-mapped files stored in the data directory). Not all values are supported on all plat-
forms; the first supported option is usually the default for that platform. The use of the mmap option,
which is not the default on any platform, is generally discouraged because the operating system
may write modified pages back to disk repeatedly, increasing system I/O load; however, it may be
useful for debugging, when the pg_dynshmem directory is stored on a RAM disk, or when other shared
memory facilities are not available.

min_dynamic_shared_memory (integer)
Specifies the amount of memory that should be allocated at server startup for use by parallel queries.
When this memory region is insufficient or exhausted by concurrent queries, new parallel queries try
to allocate extra shared memory temporarily from the operating system using the method configured
with dynamic_shared_memory_type, which may be slower due to memory management overheads.
Memory that is allocated at startup with min_dynamic_shared_memory is affected by the huge_pages
setting on operating systems where that is supported, and may be more likely to benefit from larger
pages on operating systems where that is managed automatically. The default value is 0 (none). This
parameter can only be set at server start.

19.4.2. Disk
temp_file_limit (integer)

Specifies the maximum amount of disk space that a process can use for temporary files, such as sort
and hash temporary files, or the storage file for a held cursor. A transaction attempting to exceed this
limit will be canceled. If this value is specified without units, it is taken as kilobytes. -1 (the default)
means no limit. Only superusers and users with the appropriate SET privilege can change this setting.

This setting constrains the total space used at any instant by all temporary files used by a given
PostgreSQL process. It should be noted that disk space used for explicit temporary tables, as opposed
to temporary files used behind-the-scenes in query execution, does not count against this limit.

file_copy_method (enum)
Specifies the method used to copy files. Possible values are COPY (default) and CLONE (if operating
support is available).

This parameter affects:

• CREATE DATABASE ... STRATEGY=FILE_COPY

• ALTER DATABASE ... SET TABLESPACE ...

CLONE uses the copy_file_range() (Linux, FreeBSD) or copyfile (macOS) system calls, giving the
kernel the opportunity to share disk blocks or push work down to lower layers on some file systems.

max_notify_queue_pages (integer)
Specifies the maximum amount of allocated pages for NOTIFY / LISTEN queue. The default value is
1048576. For 8 KB pages it allows to consume up to 8 GB of disk space.

561

Server Configuration

19.4.3. Kernel Resource Usage
max_files_per_process (integer)

Sets the maximum number of open files each server subprocess is allowed to open simultaneously;
files already opened in the postmaster are not counted toward this limit. The default is one thousand
files.

If the kernel is enforcing a safe per-process limit, you don't need to worry about this setting. But on
some platforms (notably, most BSD systems), the kernel will allow individual processes to open many
more files than the system can actually support if many processes all try to open that many files.
If you find yourself seeing “Too many open files” failures, try reducing this setting. This parameter
can only be set at server start.

19.4.4. Background Writer
There is a separate server process called the background writer, whose function is to issue writes of
“dirty” (new or modified) shared buffers. When the number of clean shared buffers appears to be insuf-
ficient, the background writer writes some dirty buffers to the file system and marks them as clean. This
reduces the likelihood that server processes handling user queries will be unable to find clean buffers
and have to write dirty buffers themselves. However, the background writer does cause a net overall
increase in I/O load, because while a repeatedly-dirtied page might otherwise be written only once per
checkpoint interval, the background writer might write it several times as it is dirtied in the same inter-
val. The parameters discussed in this subsection can be used to tune the behavior for local needs.

bgwriter_delay (integer)
Specifies the delay between activity rounds for the background writer. In each round the writer issues
writes for some number of dirty buffers (controllable by the following parameters). It then sleeps
for the length of bgwriter_delay, and repeats. When there are no dirty buffers in the buffer pool,
though, it goes into a longer sleep regardless of bgwriter_delay. If this value is specified without
units, it is taken as milliseconds. The default value is 200 milliseconds (200ms). Note that on some
systems, the effective resolution of sleep delays is 10 milliseconds; setting bgwriter_delay to a value
that is not a multiple of 10 might have the same results as setting it to the next higher multiple of
10. This parameter can only be set in the postgresql.conf file or on the server command line.

bgwriter_lru_maxpages (integer)
In each round, no more than this many buffers will be written by the background writer. Setting
this to zero disables background writing. (Note that checkpoints, which are managed by a separate,
dedicated auxiliary process, are unaffected.) The default value is 100 buffers. This parameter can
only be set in the postgresql.conf file or on the server command line.

bgwriter_lru_multiplier (floating point)
The number of dirty buffers written in each round is based on the number of new buffers that have
been needed by server processes during recent rounds. The average recent need is multiplied by
bgwriter_lru_multiplier to arrive at an estimate of the number of buffers that will be needed
during the next round. Dirty buffers are written until there are that many clean, reusable buffers
available. (However, no more than bgwriter_lru_maxpages buffers will be written per round.) Thus,
a setting of 1.0 represents a “just in time” policy of writing exactly the number of buffers predicted
to be needed. Larger values provide some cushion against spikes in demand, while smaller values
intentionally leave writes to be done by server processes. The default is 2.0. This parameter can only
be set in the postgresql.conf file or on the server command line.

bgwriter_flush_after (integer)
Whenever more than this amount of data has been written by the background writer, attempt to
force the OS to issue these writes to the underlying storage. Doing so will limit the amount of dirty
data in the kernel's page cache, reducing the likelihood of stalls when an fsync is issued at the
end of a checkpoint, or when the OS writes data back in larger batches in the background. Often
that will result in greatly reduced transaction latency, but there also are some cases, especially

562

Server Configuration

with workloads that are bigger than shared_buffers, but smaller than the OS's page cache, where
performance might degrade. This setting may have no effect on some platforms. If this value is
specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The valid range is
between 0, which disables forced writeback, and 2MB. The default is 512kB on Linux, 0 elsewhere. (If
BLCKSZ is not 8kB, the default and maximum values scale proportionally to it.) This parameter can
only be set in the postgresql.conf file or on the server command line.

Smaller values of bgwriter_lru_maxpages and bgwriter_lru_multiplier reduce the extra I/O load
caused by the background writer, but make it more likely that server processes will have to issue writes
for themselves, delaying interactive queries.

19.4.5. I/O
backend_flush_after (integer)

Whenever more than this amount of data has been written by a single backend, attempt to force the
OS to issue these writes to the underlying storage. Doing so will limit the amount of dirty data in
the kernel's page cache, reducing the likelihood of stalls when an fsync is issued at the end of a
checkpoint, or when the OS writes data back in larger batches in the background. Often that will
result in greatly reduced transaction latency, but there also are some cases, especially with work-
loads that are bigger than shared_buffers, but smaller than the OS's page cache, where performance
might degrade. This setting may have no effect on some platforms. If this value is specified without
units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The valid range is between 0, which
disables forced writeback, and 2MB. The default is 0, i.e., no forced writeback. (If BLCKSZ is not 8kB,
the maximum value scales proportionally to it.)

effective_io_concurrency (integer)
Sets the number of concurrent storage I/O operations that PostgreSQL expects can be executed
simultaneously. Raising this value will increase the number of I/O operations that any individual
PostgreSQL session attempts to initiate in parallel. The allowed range is 1 to 1000, or 0 to disable
issuance of asynchronous I/O requests. The default is 16.

Higher values will have the most impact on higher latency storage where queries otherwise experi-
ence noticeable I/O stalls and on devices with high IOPs. Unnecessarily high values may increase I/
O latency for all queries on the system

On systems with prefetch advice support, effective_io_concurrency also controls the prefetch
distance.

This value can be overridden for tables in a particular tablespace by setting the tablespace parameter
of the same name (see ALTER TABLESPACE).

maintenance_io_concurrency (integer)

Similar to effective_io_concurrency, but used for maintenance work that is done on behalf of
many client sessions.

The default is 16. This value can be overridden for tables in a particular tablespace by setting the
tablespace parameter of the same name (see ALTER TABLESPACE).

io_max_combine_limit (integer)
Controls the largest I/O size in operations that combine I/O, and silently limits the user-settable
parameter io_combine_limit. This parameter can only be set in the postgresql.conf file or on the
server command line. The maximum possible size depends on the operating system and block size,
but is typically 1MB on Unix and 128kB on Windows. The default is 128kB.

io_combine_limit (integer)

Controls the largest I/O size in operations that combine I/O. If set higher than the io_max_com-
bine_limit parameter, the lower value will silently be used instead, so both may need to be raised

563

Server Configuration

to increase the I/O size. The maximum possible size depends on the operating system and block size,
but is typically 1MB on Unix and 128kB on Windows. The default is 128kB.

io_max_concurrency (integer)
Controls the maximum number of I/O operations that one process can execute simultaneously.

The default setting of -1 selects a number based on shared_buffers and the maximum num-
ber of processes (max_connections, autovacuum_worker_slots, max_worker_processes and max_w-
al_senders), but not more than 64.

This parameter can only be set at server start.

io_method (enum)
Selects the method for executing asynchronous I/O. Possible values are:
• worker (execute asynchronous I/O using worker processes)
• io_uring (execute asynchronous I/O using io_uring, requires a build with --with-liburing / -

Dliburing)
• sync (execute asynchronous-eligible I/O synchronously)

The default is worker.

This parameter can only be set at server start.

io_workers (integer)
Selects the number of I/O worker processes to use. The default is 3. This parameter can only be set
in the postgresql.conf file or on the server command line.

Only has an effect if io_method is set to worker.

19.4.6. Worker Processes
max_worker_processes (integer)

Sets the maximum number of background processes that the cluster can support. This parameter
can only be set at server start. The default is 8.

When running a standby server, you must set this parameter to the same or higher value than on the
primary server. Otherwise, queries will not be allowed in the standby server.

When changing this value, consider also adjusting max_parallel_workers, max_parallel_mainte-
nance_workers, and max_parallel_workers_per_gather.

max_parallel_workers_per_gather (integer)

Sets the maximum number of workers that can be started by a single Gather or Gather Merge node.
Parallel workers are taken from the pool of processes established by max_worker_processes, limited
by max_parallel_workers. Note that the requested number of workers may not actually be available at
run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient.
The default value is 2. Setting this value to 0 disables parallel query execution.

Note that parallel queries may consume very substantially more resources than non-parallel queries,
because each worker process is a completely separate process which has roughly the same impact
on the system as an additional user session. This should be taken into account when choosing a value
for this setting, as well as when configuring other settings that control resource utilization, such as
work_mem. Resource limits such as work_mem are applied individually to each worker, which means
the total utilization may be much higher across all processes than it would normally be for any single
process. For example, a parallel query using 4 workers may use up to 5 times as much CPU time,
memory, I/O bandwidth, and so forth as a query which uses no workers at all.

564

Server Configuration

For more information on parallel query, see Chapter 15.

max_parallel_maintenance_workers (integer)

Sets the maximum number of parallel workers that can be started by a single utility command. Cur-
rently, the parallel utility commands that support the use of parallel workers are CREATE INDEX when
building a B-tree, GIN, or BRIN index, and VACUUM without FULL option. Parallel workers are taken
from the pool of processes established by max_worker_processes, limited by max_parallel_workers.
Note that the requested number of workers may not actually be available at run time. If this occurs,
the utility operation will run with fewer workers than expected. The default value is 2. Setting this
value to 0 disables the use of parallel workers by utility commands.

Note that parallel utility commands should not consume substantially more memory than equiva-
lent non-parallel operations. This strategy differs from that of parallel query, where resource lim-
its generally apply per worker process. Parallel utility commands treat the resource limit mainte-
nance_work_mem as a limit to be applied to the entire utility command, regardless of the number of
parallel worker processes. However, parallel utility commands may still consume substantially more
CPU resources and I/O bandwidth.

max_parallel_workers (integer)

Sets the maximum number of workers that the cluster can support for parallel operations. The default
value is 8. When increasing or decreasing this value, consider also adjusting max_parallel_mainte-
nance_workers and max_parallel_workers_per_gather. Also, note that a setting for this value which
is higher than max_worker_processes will have no effect, since parallel workers are taken from the
pool of worker processes established by that setting.

parallel_leader_participation (boolean)

Allows the leader process to execute the query plan under Gather and Gather Merge nodes instead
of waiting for worker processes. The default is on. Setting this value to off reduces the likelihood
that workers will become blocked because the leader is not reading tuples fast enough, but requires
the leader process to wait for worker processes to start up before the first tuples can be produced.
The degree to which the leader can help or hinder performance depends on the plan type, number
of workers and query duration.

19.5. Write Ahead Log
For additional information on tuning these settings, see Section 28.5.

19.5.1. Settings
wal_level (enum)

wal_level determines how much information is written to the WAL. The default value is replica,
which writes enough data to support WAL archiving and replication, including running read-only
queries on a standby server. minimal removes all logging except the information required to recover
from a crash or immediate shutdown. Finally, logical adds information necessary to support logical
decoding. Each level includes the information logged at all lower levels. This parameter can only be
set at server start.

The minimal level generates the least WAL volume. It logs no row information for permanent rela-
tions in transactions that create or rewrite them. This can make operations much faster (see Sec-
tion 14.4.7). Operations that initiate this optimization include:

ALTER ... SET TABLESPACE
CLUSTER
CREATE TABLE
REFRESH MATERIALIZED VIEW (without CONCURRENTLY)
REINDEX

565

Server Configuration

TRUNCATE

However, minimal WAL does not contain sufficient information for point-in-time recovery, so replica
or higher must be used to enable continuous archiving (archive_mode) and streaming binary repli-
cation. In fact, the server will not even start in this mode if max_wal_senders is non-zero. Note that
changing wal_level to minimal makes previous base backups unusable for point-in-time recovery
and standby servers.

In logical level, the same information is logged as with replica, plus information needed to extract
logical change sets from the WAL. Using a level of logical will increase the WAL volume, particularly
if many tables are configured for REPLICA IDENTITY FULL and many UPDATE and DELETE statements
are executed.

In releases prior to 9.6, this parameter also allowed the values archive and hot_standby. These are
still accepted but mapped to replica.

fsync (boolean)

If this parameter is on, the PostgreSQL server will try to make sure that updates are physically written
to disk, by issuing fsync() system calls or various equivalent methods (see wal_sync_method). This
ensures that the database cluster can recover to a consistent state after an operating system or
hardware crash.

While turning off fsync is often a performance benefit, this can result in unrecoverable data corrup-
tion in the event of a power failure or system crash. Thus it is only advisable to turn off fsync if you
can easily recreate your entire database from external data.

Examples of safe circumstances for turning off fsync include the initial loading of a new database
cluster from a backup file, using a database cluster for processing a batch of data after which the
database will be thrown away and recreated, or for a read-only database clone which gets recreated
frequently and is not used for failover. High quality hardware alone is not a sufficient justification
for turning off fsync.

For reliable recovery when changing fsync off to on, it is necessary to force all modified buffers in
the kernel to durable storage. This can be done while the cluster is shutdown or while fsync is on by
running initdb --sync-only, running sync, unmounting the file system, or rebooting the server.

In many situations, turning off synchronous_commit for noncritical transactions can provide much of
the potential performance benefit of turning off fsync, without the attendant risks of data corruption.

fsync can only be set in the postgresql.conf file or on the server command line. If you turn this
parameter off, also consider turning off full_page_writes.

synchronous_commit (enum)

Specifies how much WAL processing must complete before the database server returns a “success”
indication to the client. Valid values are remote_apply, on (the default), remote_write, local, and
off.

If synchronous_standby_names is empty, the only meaningful settings are on and off; remote_apply,
remote_write and local all provide the same local synchronization level as on. The local behavior
of all non-off modes is to wait for local flush of WAL to disk. In off mode, there is no waiting, so
there can be a delay between when success is reported to the client and when the transaction is later
guaranteed to be safe against a server crash. (The maximum delay is three times wal_writer_delay.)
Unlike fsync, setting this parameter to off does not create any risk of database inconsistency: an op-
erating system or database crash might result in some recent allegedly-committed transactions being
lost, but the database state will be just the same as if those transactions had been aborted cleanly.
So, turning synchronous_commit off can be a useful alternative when performance is more important
than exact certainty about the durability of a transaction. For more discussion see Section 28.4.

566

Server Configuration

If synchronous_standby_names is non-empty, synchronous_commit also controls whether transaction
commits will wait for their WAL records to be processed on the standby server(s).

When set to remote_apply, commits will wait until replies from the current synchronous standby(s)
indicate they have received the commit record of the transaction and applied it, so that it has become
visible to queries on the standby(s), and also written to durable storage on the standbys. This will
cause much larger commit delays than previous settings since it waits for WAL replay. When set to on,
commits wait until replies from the current synchronous standby(s) indicate they have received the
commit record of the transaction and flushed it to durable storage. This ensures the transaction will
not be lost unless both the primary and all synchronous standbys suffer corruption of their database
storage. When set to remote_write, commits will wait until replies from the current synchronous
standby(s) indicate they have received the commit record of the transaction and written it to their
file systems. This setting ensures data preservation if a standby instance of PostgreSQL crashes,
but not if the standby suffers an operating-system-level crash because the data has not necessarily
reached durable storage on the standby. The setting local causes commits to wait for local flush
to disk, but not for replication. This is usually not desirable when synchronous replication is in use,
but is provided for completeness.

This parameter can be changed at any time; the behavior for any one transaction is determined by
the setting in effect when it commits. It is therefore possible, and useful, to have some transactions
commit synchronously and others asynchronously. For example, to make a single multistatement
transaction commit asynchronously when the default is the opposite, issue SET LOCAL synchro-
nous_commit TO OFF within the transaction.

Table 19.1 summarizes the capabilities of the synchronous_commit settings.

Table 19.1. synchronous_commit Modes

synchronous_commit
setting

local durable
commit

standby
durable com-
mit after PG
crash

standby
durable com-
mit after OS
crash

standby query
consistency

remote_apply • • • •
on • • •
remote_write • •
local •
off

wal_sync_method (enum)

Method used for forcing WAL updates out to disk. If fsync is off then this setting is irrelevant, since
WAL file updates will not be forced out at all. Possible values are:

• open_datasync (write WAL files with open() option O_DSYNC)
• fdatasync (call fdatasync() at each commit)
• fsync (call fsync() at each commit)
• fsync_writethrough (call fsync() at each commit, forcing write-through of any disk write

cache)
• open_sync (write WAL files with open() option O_SYNC)
Not all of these choices are available on all platforms. The default is the first method in the above list
that is supported by the platform, except that fdatasync is the default on Linux and FreeBSD. The
default is not necessarily ideal; it might be necessary to change this setting or other aspects of your
system configuration in order to create a crash-safe configuration or achieve optimal performance.
These aspects are discussed in Section 28.1. This parameter can only be set in the postgresql.conf
file or on the server command line.

567

Server Configuration

full_page_writes (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page to WAL
during the first modification of that page after a checkpoint. This is needed because a page write
that is in process during an operating system crash might be only partially completed, leading to an
on-disk page that contains a mix of old and new data. The row-level change data normally stored in
WAL will not be enough to completely restore such a page during post-crash recovery. Storing the
full page image guarantees that the page can be correctly restored, but at the price of increasing the
amount of data that must be written to WAL. (Because WAL replay always starts from a checkpoint,
it is sufficient to do this during the first change of each page after a checkpoint. Therefore, one way
to reduce the cost of full-page writes is to increase the checkpoint interval parameters.)

Turning this parameter off speeds normal operation, but might lead to either unrecoverable data
corruption, or silent data corruption, after a system failure. The risks are similar to turning off fsync,
though smaller, and it should be turned off only based on the same circumstances recommended
for that parameter.

Turning off this parameter does not affect use of WAL archiving for point-in-time recovery (PITR)
(see Section 25.3).

This parameter can only be set in the postgresql.conf file or on the server command line. The
default is on.

wal_log_hints (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page to
WAL during the first modification of that page after a checkpoint, even for non-critical modifications
of so-called hint bits.

If data checksums are enabled, hint bit updates are always WAL-logged and this setting is ignored.
You can use this setting to test how much extra WAL-logging would occur if your database had data
checksums enabled.

This parameter can only be set at server start. The default value is off.

wal_compression (enum)

This parameter enables compression of WAL using the specified compression method. When enabled,
the PostgreSQL server compresses full page images written to WAL (e.g. when full_page_writes is
on, during a base backup, etc.). A compressed page image will be decompressed during WAL replay.
The supported methods are pglz, lz4 (if PostgreSQL was compiled with --with-lz4) and zstd (if
PostgreSQL was compiled with --with-zstd). The default value is off. Only superusers and users
with the appropriate SET privilege can change this setting.

Enabling compression can reduce the WAL volume without increasing the risk of unrecoverable data
corruption, but at the cost of some extra CPU spent on the compression during WAL logging and on
the decompression during WAL replay.

wal_init_zero (boolean)

If set to on (the default), this option causes new WAL files to be filled with zeroes. On some file
systems, this ensures that space is allocated before we need to write WAL records. However, Copy-
On-Write (COW) file systems may not benefit from this technique, so the option is given to skip the
unnecessary work. If set to off, only the final byte is written when the file is created so that it has
the expected size.

wal_recycle (boolean)

If set to on (the default), this option causes WAL files to be recycled by renaming them, avoiding the
need to create new ones. On COW file systems, it may be faster to create new ones, so the option
is given to disable this behavior.

568

Server Configuration

wal_buffers (integer)
The amount of shared memory used for WAL data that has not yet been written to disk. The default
setting of -1 selects a size equal to 1/32nd (about 3%) of shared_buffers, but not less than 64kB
nor more than the size of one WAL segment, typically 16MB. This value can be set manually if the
automatic choice is too large or too small, but any positive value less than 32kB will be treated as
32kB. If this value is specified without units, it is taken as WAL blocks, that is XLOG_BLCKSZ bytes,
typically 8kB. This parameter can only be set at server start.

The contents of the WAL buffers are written out to disk at every transaction commit, so extremely
large values are unlikely to provide a significant benefit. However, setting this value to at least a
few megabytes can improve write performance on a busy server where many clients are committing
at once. The auto-tuning selected by the default setting of -1 should give reasonable results in most
cases.

wal_writer_delay (integer)
Specifies how often the WAL writer flushes WAL, in time terms. After flushing WAL the writer sleeps
for the length of time given by wal_writer_delay, unless woken up sooner by an asynchronously
committing transaction. If the last flush happened less than wal_writer_delay ago and less than
wal_writer_flush_after worth of WAL has been produced since, then WAL is only written to the
operating system, not flushed to disk. If this value is specified without units, it is taken as millisec-
onds. The default value is 200 milliseconds (200ms). Note that on some systems, the effective reso-
lution of sleep delays is 10 milliseconds; setting wal_writer_delay to a value that is not a multiple
of 10 might have the same results as setting it to the next higher multiple of 10. This parameter can
only be set in the postgresql.conf file or on the server command line.

wal_writer_flush_after (integer)
Specifies how often the WAL writer flushes WAL, in volume terms. If the last flush happened less than
wal_writer_delay ago and less than wal_writer_flush_after worth of WAL has been produced
since, then WAL is only written to the operating system, not flushed to disk. If wal_writer_flush_af-
ter is set to 0 then WAL data is always flushed immediately. If this value is specified without units, it
is taken as WAL blocks, that is XLOG_BLCKSZ bytes, typically 8kB. The default is 1MB. This parameter
can only be set in the postgresql.conf file or on the server command line.

wal_skip_threshold (integer)
When wal_level is minimal and a transaction commits after creating or rewriting a permanent rela-
tion, this setting determines how to persist the new data. If the data is smaller than this setting, write
it to the WAL log; otherwise, use an fsync of affected files. Depending on the properties of your stor-
age, raising or lowering this value might help if such commits are slowing concurrent transactions.
If this value is specified without units, it is taken as kilobytes. The default is two megabytes (2MB).

commit_delay (integer)
Setting commit_delay adds a time delay before a WAL flush is initiated. This can improve group
commit throughput by allowing a larger number of transactions to commit via a single WAL flush,
if system load is high enough that additional transactions become ready to commit within the given
interval. However, it also increases latency by up to the commit_delay for each WAL flush. Because
the delay is just wasted if no other transactions become ready to commit, a delay is only performed
if at least commit_siblings other transactions are active when a flush is about to be initiated. Also,
no delays are performed if fsync is disabled. If this value is specified without units, it is taken as
microseconds. The default commit_delay is zero (no delay). Only superusers and users with the
appropriate SET privilege can change this setting.

In PostgreSQL releases prior to 9.3, commit_delay behaved differently and was much less effective:
it affected only commits, rather than all WAL flushes, and waited for the entire configured delay even
if the WAL flush was completed sooner. Beginning in PostgreSQL 9.3, the first process that becomes
ready to flush waits for the configured interval, while subsequent processes wait only until the leader
completes the flush operation.

569

Server Configuration

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the commit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready
to commit during the delay interval. The default is five transactions.

19.5.2. Checkpoints
checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints. If this value is specified without units, it is
taken as seconds. The valid range is between 30 seconds and one day. The default is five minutes
(5min). Increasing this parameter can increase the amount of time needed for crash recovery. This
parameter can only be set in the postgresql.conf file or on the server command line.

checkpoint_completion_target (floating point)
Specifies the target of checkpoint completion, as a fraction of total time between checkpoints. The
default is 0.9, which spreads the checkpoint across almost all of the available interval, providing
fairly consistent I/O load while also leaving some time for checkpoint completion overhead. Reduc-
ing this parameter is not recommended because it causes the checkpoint to complete faster. This
results in a higher rate of I/O during the checkpoint followed by a period of less I/O between the
checkpoint completion and the next scheduled checkpoint. This parameter can only be set in the
postgresql.conf file or on the server command line.

checkpoint_flush_after (integer)
Whenever more than this amount of data has been written while performing a checkpoint, attempt
to force the OS to issue these writes to the underlying storage. Doing so will limit the amount of
dirty data in the kernel's page cache, reducing the likelihood of stalls when an fsync is issued at
the end of the checkpoint, or when the OS writes data back in larger batches in the background.
Often that will result in greatly reduced transaction latency, but there also are some cases, especially
with workloads that are bigger than shared_buffers, but smaller than the OS's page cache, where
performance might degrade. This setting may have no effect on some platforms. If this value is
specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The valid range is
between 0, which disables forced writeback, and 2MB. The default is 256kB on Linux, 0 elsewhere. (If
BLCKSZ is not 8kB, the default and maximum values scale proportionally to it.) This parameter can
only be set in the postgresql.conf file or on the server command line.

checkpoint_warning (integer)
Write a message to the server log if checkpoints caused by the filling of WAL segment files happen
closer together than this amount of time (which suggests that max_wal_size ought to be raised).
If this value is specified without units, it is taken as seconds. The default is 30 seconds (30s). Ze-
ro disables the warning. No warnings will be generated if checkpoint_timeout is less than check-
point_warning. This parameter can only be set in the postgresql.conf file or on the server com-
mand line.

max_wal_size (integer)
Maximum size to let the WAL grow during automatic checkpoints. This is a soft limit; WAL size can
exceed max_wal_size under special circumstances, such as heavy load, a failing archive_command
or archive_library, or a high wal_keep_size setting. If this value is specified without units, it is
taken as megabytes. The default is 1 GB. Increasing this parameter can increase the amount of time
needed for crash recovery. This parameter can only be set in the postgresql.conf file or on the
server command line.

min_wal_size (integer)
As long as WAL disk usage stays below this setting, old WAL files are always recycled for future use
at a checkpoint, rather than removed. This can be used to ensure that enough WAL space is reserved
to handle spikes in WAL usage, for example when running large batch jobs. If this value is specified

570

Server Configuration

without units, it is taken as megabytes. The default is 80 MB. This parameter can only be set in the
postgresql.conf file or on the server command line.

19.5.3. Archiving
archive_mode (enum)

When archive_mode is enabled, completed WAL segments are sent to archive storage by setting
archive_command or archive_library. In addition to off, to disable, there are two modes: on, and
always. During normal operation, there is no difference between the two modes, but when set to
always the WAL archiver is enabled also during archive recovery or standby mode. In always mode,
all files restored from the archive or streamed with streaming replication will be archived (again).
See Section 26.2.9 for details.

archive_mode is a separate setting from archive_command and archive_library so that
archive_command and archive_library can be changed without leaving archiving mode. This para-
meter can only be set at server start. archive_mode cannot be enabled when wal_level is set to
minimal.

archive_command (string)

The local shell command to execute to archive a completed WAL file segment. Any %p in the string is
replaced by the path name of the file to archive, and any %f is replaced by only the file name. (The
path name is relative to the working directory of the server, i.e., the cluster's data directory.) Use %
% to embed an actual % character in the command. It is important for the command to return a zero
exit status only if it succeeds. For more information see Section 25.3.1.

This parameter can only be set in the postgresql.conf file or on the server command line. It is only
used if archive_mode was enabled at server start and archive_library is set to an empty string.
If both archive_command and archive_library are set, an error will be raised. If archive_command
is an empty string (the default) while archive_mode is enabled (and archive_library is set to an
empty string), WAL archiving is temporarily disabled, but the server continues to accumulate WAL
segment files in the expectation that a command will soon be provided. Setting archive_command to
a command that does nothing but return true, e.g., /bin/true (REM on Windows), effectively disables
archiving, but also breaks the chain of WAL files needed for archive recovery, so it should only be
used in unusual circumstances.

archive_library (string)

The library to use for archiving completed WAL file segments. If set to an empty string (the de-
fault), archiving via shell is enabled, and archive_command is used. If both archive_command and
archive_library are set, an error will be raised. Otherwise, the specified shared library is used for
archiving. The WAL archiver process is restarted by the postmaster when this parameter changes.
For more information, see Section 25.3.1 and Chapter 49.

This parameter can only be set in the postgresql.conf file or on the server command line.

archive_timeout (integer)

The archive_command or archive_library is only invoked for completed WAL segments. Hence, if
your server generates little WAL traffic (or has slack periods where it does so), there could be a long
delay between the completion of a transaction and its safe recording in archive storage. To limit how
old unarchived data can be, you can set archive_timeout to force the server to switch to a new WAL
segment file periodically. When this parameter is greater than zero, the server will switch to a new
segment file whenever this amount of time has elapsed since the last segment file switch, and there
has been any database activity, including a single checkpoint (checkpoints are skipped if there is no
database activity). Note that archived files that are closed early due to a forced switch are still the
same length as completely full files. Therefore, it is unwise to use a very short archive_timeout — it
will bloat your archive storage. archive_timeout settings of a minute or so are usually reasonable.
You should consider using streaming replication, instead of archiving, if you want data to be copied

571

Server Configuration

off the primary server more quickly than that. If this value is specified without units, it is taken as
seconds. This parameter can only be set in the postgresql.conf file or on the server command line.

19.5.4. Recovery
This section describes the settings that apply to recovery in general, affecting crash recovery, streaming
replication and archive-based replication.

recovery_prefetch (enum)
Whether to try to prefetch blocks that are referenced in the WAL that are not yet in the buffer pool,
during recovery. Valid values are off, on and try (the default). The setting try enables prefetching
only if the operating system provides support for issuing read-ahead advice.

Prefetching blocks that will soon be needed can reduce I/O wait times during recovery with some
workloads. See also the wal_decode_buffer_size and maintenance_io_concurrency settings, which
limit prefetching activity.

wal_decode_buffer_size (integer)
A limit on how far ahead the server can look in the WAL, to find blocks to prefetch. If this value is
specified without units, it is taken as bytes. The default is 512kB.

19.5.5. Archive Recovery
This section describes the settings that apply only for the duration of the recovery. They must be reset
for any subsequent recovery you wish to perform.

“Recovery” covers using the server as a standby or for executing a targeted recovery. Typically, standby
mode would be used to provide high availability and/or read scalability, whereas a targeted recovery is
used to recover from data loss.

To start the server in standby mode, create a file called standby.signalin the data directory. The server
will enter recovery and will not stop recovery when the end of archived WAL is reached, but will keep
trying to continue recovery by connecting to the sending server as specified by the primary_conninfo
setting and/or by fetching new WAL segments using restore_command. For this mode, the parameters
from this section and Section 19.6.3 are of interest. Parameters from Section 19.5.6 will also be applied
but are typically not useful in this mode.

To start the server in targeted recovery mode, create a file called recovery.signalin the data directo-
ry. If both standby.signal and recovery.signal files are created, standby mode takes precedence.
Targeted recovery mode ends when the archived WAL is fully replayed, or when recovery_target is
reached. In this mode, the parameters from both this section and Section 19.5.6 will be used.

restore_command (string)
The local shell command to execute to retrieve an archived segment of the WAL file series. This
parameter is required for archive recovery, but optional for streaming replication. Any %f in the
string is replaced by the name of the file to retrieve from the archive, and any %p is replaced by
the copy destination path name on the server. (The path name is relative to the current working
directory, i.e., the cluster's data directory.) Any %r is replaced by the name of the file containing the
last valid restart point. That is the earliest file that must be kept to allow a restore to be restartable,
so this information can be used to truncate the archive to just the minimum required to support
restarting from the current restore. %r is typically only used by warm-standby configurations (see
Section 26.2). Write %% to embed an actual % character.

It is important for the command to return a zero exit status only if it succeeds. The command will
be asked for file names that are not present in the archive; it must return nonzero when so asked.
Examples:
restore_command = 'cp /mnt/server/archivedir/%f "%p"'
restore_command = 'copy "C:\\server\\archivedir\\%f" "%p"' # Windows

572

Server Configuration

An exception is that if the command was terminated by a signal (other than SIGTERM, which is used
as part of a database server shutdown) or an error by the shell (such as command not found), then
recovery will abort and the server will not start up.

This parameter can only be set in the postgresql.conf file or on the server command line.

archive_cleanup_command (string)
This optional parameter specifies a shell command that will be executed at every restartpoint. The
purpose of archive_cleanup_command is to provide a mechanism for cleaning up old archived WAL
files that are no longer needed by the standby server. Any %r is replaced by the name of the file
containing the last valid restart point. That is the earliest file that must be kept to allow a restore to
be restartable, and so all files earlier than %r may be safely removed. This information can be used
to truncate the archive to just the minimum required to support restart from the current restore.
The pg_archivecleanup module is often used in archive_cleanup_command for single-standby con-
figurations, for example:
archive_cleanup_command = 'pg_archivecleanup /mnt/server/archivedir %r'

Note however that if multiple standby servers are restoring from the same archive directory, you
will need to ensure that you do not delete WAL files until they are no longer needed by any of the
servers. archive_cleanup_command would typically be used in a warm-standby configuration (see
Section 26.2). Write %% to embed an actual % character in the command.

If the command returns a nonzero exit status then a warning log message will be written. An excep-
tion is that if the command was terminated by a signal or an error by the shell (such as command
not found), a fatal error will be raised.

This parameter can only be set in the postgresql.conf file or on the server command line.

recovery_end_command (string)
This parameter specifies a shell command that will be executed once only at the end of recovery.
This parameter is optional. The purpose of the recovery_end_command is to provide a mechanism for
cleanup following replication or recovery. Any %r is replaced by the name of the file containing the
last valid restart point, like in archive_cleanup_command.

If the command returns a nonzero exit status then a warning log message will be written and the
database will proceed to start up anyway. An exception is that if the command was terminated by
a signal or an error by the shell (such as command not found), the database will not proceed with
startup.

This parameter can only be set in the postgresql.conf file or on the server command line.

19.5.6. Recovery Target
By default, recovery will recover to the end of the WAL log. The following parameters can be used
to specify an earlier stopping point. At most one of recovery_target, recovery_target_lsn, recov-
ery_target_name, recovery_target_time, or recovery_target_xid can be used; if more than one of
these is specified in the configuration file, an error will be raised. These parameters can only be set
at server start.

recovery_target = 'immediate'
This parameter specifies that recovery should end as soon as a consistent state is reached, i.e., as
early as possible. When restoring from an online backup, this means the point where taking the
backup ended.

Technically, this is a string parameter, but 'immediate' is currently the only allowed value.

recovery_target_name (string)
This parameter specifies the named restore point (created with pg_create_restore_point()) to
which recovery will proceed.

573

Server Configuration

recovery_target_time (timestamp)
This parameter specifies the time stamp up to which recovery will proceed. The precise stopping
point is also influenced by recovery_target_inclusive.

The value of this parameter is a time stamp in the same format accepted by the timestamp with
time zone data type, except that you cannot use a time zone abbreviation (unless the timezone_ab-
breviations variable has been set earlier in the configuration file). Preferred style is to use a numeric
offset from UTC, or you can write a full time zone name, e.g., Europe/Helsinki not EEST.

recovery_target_xid (string)
This parameter specifies the transaction ID up to which recovery will proceed. Keep in mind that
while transaction IDs are assigned sequentially at transaction start, transactions can complete in a
different numeric order. The transactions that will be recovered are those that committed before
(and optionally including) the specified one. The precise stopping point is also influenced by recov-
ery_target_inclusive.

recovery_target_lsn (pg_lsn)
This parameter specifies the LSN of the write-ahead log location up to which recovery will proceed.
The precise stopping point is also influenced by recovery_target_inclusive. This parameter is parsed
using the system data type pg_lsn.

The following options further specify the recovery target, and affect what happens when the target is
reached:

recovery_target_inclusive (boolean)
Specifies whether to stop just after the specified recovery target (on), or just before the recovery tar-
get (off). Applies when recovery_target_lsn, recovery_target_time, or recovery_target_xid is speci-
fied. This setting controls whether transactions having exactly the target WAL location (LSN), com-
mit time, or transaction ID, respectively, will be included in the recovery. Default is on.

recovery_target_timeline (string)
Specifies recovering into a particular timeline. The value can be a numeric timeline ID or a special
value. The value current recovers along the same timeline that was current when the base backup
was taken. The value latest recovers to the latest timeline found in the archive, which is useful in
a standby server. latest is the default.

To specify a timeline ID in hexadecimal (for example, if extracted from a WAL file name or history
file), prefix it with a 0x. For instance, if the WAL file name is 00000011000000A10000004F, then the
timeline ID is 0x11 (or 17 decimal).

You usually only need to set this parameter in complex re-recovery situations, where you need to re-
turn to a state that itself was reached after a point-in-time recovery. See Section 25.3.6 for discussion.

recovery_target_action (enum)
Specifies what action the server should take once the recovery target is reached. The default is
pause, which means recovery will be paused. promote means the recovery process will finish and
the server will start to accept connections. Finally shutdown will stop the server after reaching the
recovery target.

The intended use of the pause setting is to allow queries to be executed against the database to check
if this recovery target is the most desirable point for recovery. The paused state can be resumed by
using pg_wal_replay_resume() (see Table 9.99), which then causes recovery to end. If this recovery
target is not the desired stopping point, then shut down the server, change the recovery target
settings to a later target and restart to continue recovery.

The shutdown setting is useful to have the instance ready at the exact replay point desired. The
instance will still be able to replay more WAL records (and in fact will have to replay WAL records
since the last checkpoint next time it is started).

574

Server Configuration

Note that because recovery.signal will not be removed when recovery_target_action is set
to shutdown, any subsequent start will end with immediate shutdown unless the configuration is
changed or the recovery.signal file is removed manually.

This setting has no effect if no recovery target is set. If hot_standby is not enabled, a setting of pause
will act the same as shutdown. If the recovery target is reached while a promotion is ongoing, a
setting of pause will act the same as promote.

In any case, if a recovery target is configured but the archive recovery ends before the target is
reached, the server will shut down with a fatal error.

19.5.7. WAL Summarization
These settings control WAL summarization, a feature which must be enabled in order to perform an
incremental backup.

summarize_wal (boolean)
Enables the WAL summarizer process. Note that WAL summarization can be enabled either on a
primary or on a standby. This parameter can only be set in the postgresql.conf file or on the server
command line. The default is off.

The server cannot be started with summarize_wal=on if wal_level is set to minimal. If summarize_w-
al=on is configured after server startup while wal_level=minimal, the summarizer will run but
refuse to generate summary files for any WAL generated with wal_level=minimal.

wal_summary_keep_time (integer)
Configures the amount of time after which the WAL summarizer automatically removes old WAL
summaries. The file timestamp is used to determine which files are old enough to remove. Typically,
you should set this comfortably higher than the time that could pass between a backup and a later
incremental backup that depends on it. WAL summaries must be available for the entire range of
WAL records between the preceding backup and the new one being taken; if not, the incremental
backup will fail. If this parameter is set to zero, WAL summaries will not be automatically deleted, but
it is safe to manually remove files that you know will not be required for future incremental backups.
This parameter can only be set in the postgresql.conf file or on the server command line. If this
value is specified without units, it is taken as minutes. The default is 10 days. If summarize_wal =
off, existing WAL summaries will not be removed regardless of the value of this parameter, because
the WAL summarizer will not run.

19.6. Replication
These settings control the behavior of the built-in streaming replication feature (see Section 26.2.5), and
the built-in logical replication feature (see Chapter 29).

For streaming replication, servers will be either a primary or a standby server. Primaries can send data,
while standbys are always receivers of replicated data. When cascading replication (see Section 26.2.7)
is used, standby servers can also be senders, as well as receivers. Parameters are mainly for sending
and standby servers, though some parameters have meaning only on the primary server. Settings may
vary across the cluster without problems if that is required.

For logical replication, publishers (servers that do CREATE PUBLICATION) replicate data to subscribers
(servers that do CREATE SUBSCRIPTION). Servers can also be publishers and subscribers at the same time.
Note, the following sections refer to publishers as "senders". For more details about logical replication
configuration settings refer to Section 29.12.

19.6.1. Sending Servers
These parameters can be set on any server that is to send replication data to one or more standby
servers. The primary is always a sending server, so these parameters must always be set on the primary.
The role and meaning of these parameters does not change after a standby becomes the primary.

575

Server Configuration

max_wal_senders (integer)

Specifies the maximum number of concurrent connections from standby servers or streaming base
backup clients (i.e., the maximum number of simultaneously running WAL sender processes). The
default is 10. The value 0 means replication is disabled. Abrupt disconnection of a streaming client
might leave an orphaned connection slot behind until a timeout is reached, so this parameter should
be set slightly higher than the maximum number of expected clients so disconnected clients can
immediately reconnect. This parameter can only be set at server start. Also, wal_level must be set
to replica or higher to allow connections from standby servers.

When running a standby server, you must set this parameter to the same or higher value than on the
primary server. Otherwise, queries will not be allowed in the standby server.

max_replication_slots (integer)

Specifies the maximum number of replication slots (see Section 26.2.6) that the server can support.
The default is 10. This parameter can only be set at server start. Setting it to a lower value than the
number of currently existing replication slots will prevent the server from starting. Also, wal_level
must be set to replica or higher to allow replication slots to be used.

wal_keep_size (integer)

Specifies the minimum size of past WAL files kept in the pg_wal directory, in case a standby server
needs to fetch them for streaming replication. If a standby server connected to the sending server
falls behind by more than wal_keep_size megabytes, the sending server might remove a WAL seg-
ment still needed by the standby, in which case the replication connection will be terminated. Down-
stream connections will also eventually fail as a result. (However, the standby server can recover by
fetching the segment from archive, if WAL archiving is in use.)

This sets only the minimum size of segments retained in pg_wal; the system might need to retain
more segments for WAL archival or to recover from a checkpoint. If wal_keep_size is zero (the
default), the system doesn't keep any extra segments for standby purposes, so the number of old
WAL segments available to standby servers is a function of the location of the previous checkpoint
and status of WAL archiving. If this value is specified without units, it is taken as megabytes. This
parameter can only be set in the postgresql.conf file or on the server command line.

max_slot_wal_keep_size (integer)

Specify the maximum size of WAL files that replication slots are allowed to retain in the pg_wal
directory at checkpoint time. If max_slot_wal_keep_size is -1 (the default), replication slots may
retain an unlimited amount of WAL files. Otherwise, if restart_lsn of a replication slot falls behind the
current LSN by more than the given size, the standby using the slot may no longer be able to continue
replication due to removal of required WAL files. You can see the WAL availability of replication
slots in pg_replication_slots. If this value is specified without units, it is taken as megabytes. This
parameter can only be set in the postgresql.conf file or on the server command line.

idle_replication_slot_timeout (integer)

Invalidate replication slots that have remained inactive (not used by a replication connection) for
longer than this duration. If this value is specified without units, it is taken as seconds. A value of
zero (the default) disables the idle timeout invalidation mechanism. This parameter can only be set
in the postgresql.conf file or on the server command line.

Slot invalidation due to idle timeout occurs during checkpoint. Because checkpoints happen at
checkpoint_timeout intervals, there can be some lag between when the idle_replication_s-
lot_timeout was exceeded and when the slot invalidation is triggered at the next checkpoint. To
avoid such lags, users can force a checkpoint to promptly invalidate inactive slots. The duration of
slot inactivity is calculated using the slot's pg_replication_slots.inactive_since value.

Note that the idle timeout invalidation mechanism is not applicable for slots that do not reserve WAL
or for slots on the standby server that are being synced from the primary server (i.e., standby slots

576

Server Configuration

having pg_replication_slots.synced value true). Synced slots are always considered to be inactive
because they don't perform logical decoding to produce changes.

wal_sender_timeout (integer)
Terminate replication connections that are inactive for longer than this amount of time. This is useful
for the sending server to detect a standby crash or network outage. If this value is specified without
units, it is taken as milliseconds. The default value is 60 seconds. A value of zero disables the timeout
mechanism.

With a cluster distributed across multiple geographic locations, using different values per location
brings more flexibility in the cluster management. A smaller value is useful for faster failure detection
with a standby having a low-latency network connection, and a larger value helps in judging better
the health of a standby if located on a remote location, with a high-latency network connection.

track_commit_timestamp (boolean)

Record commit time of transactions. This parameter can only be set in postgresql.conf file or on
the server command line. The default value is off.

synchronized_standby_slots (string)
A comma-separated list of streaming replication standby server slot names that logical WAL sender
processes will wait for. Logical WAL sender processes will send decoded changes to plugins only
after the specified replication slots confirm receiving WAL. This guarantees that logical replication
failover slots do not consume changes until those changes are received and flushed to corresponding
physical standbys. If a logical replication connection is meant to switch to a physical standby after
the standby is promoted, the physical replication slot for the standby should be listed here. Note
that logical replication will not proceed if the slots specified in the synchronized_standby_slots do
not exist or are invalidated. Additionally, the replication management functions pg_replication_s-
lot_advance, pg_logical_slot_get_changes, and pg_logical_slot_peek_changes, when used
with logical failover slots, will block until all physical slots specified in synchronized_standby_slots
have confirmed WAL receipt.

The standbys corresponding to the physical replication slots in synchronized_standby_slots must
configure sync_replication_slots = true so they can receive logical failover slot changes from
the primary.

19.6.2. Primary Server
These parameters can be set on the primary server that is to send replication data to one or more standby
servers. Note that in addition to these parameters, wal_level must be set appropriately on the primary
server, and optionally WAL archiving can be enabled as well (see Section 19.5.3). The values of these
parameters on standby servers are irrelevant, although you may wish to set them there in preparation
for the possibility of a standby becoming the primary.

synchronous_standby_names (string)
Specifies a list of standby servers that can support synchronous replication, as described in Sec-
tion 26.2.8. There will be one or more active synchronous standbys; transactions waiting for commit
will be allowed to proceed after these standby servers confirm receipt of their data. The synchronous
standbys will be those whose names appear in this list, and that are both currently connected and
streaming data in real-time (as shown by a state of streaming in the pg_stat_replication view).
Specifying more than one synchronous standby can allow for very high availability and protection
against data loss.

The name of a standby server for this purpose is the application_name setting of the standby, as set
in the standby's connection information. In case of a physical replication standby, this should be set in
the primary_conninfo setting; the default is the setting of cluster_name if set, else walreceiver. For
logical replication, this can be set in the connection information of the subscription, and it defaults
to the subscription name. For other replication stream consumers, consult their documentation.

577

Server Configuration

This parameter specifies a list of standby servers using either of the following syntaxes:

[FIRST] num_sync (standby_name [, ...])
ANY num_sync (standby_name [, ...])
standby_name [, ...]

where num_sync is the number of synchronous standbys that transactions need to wait for replies
from, and standby_name is the name of a standby server. num_sync must be an integer value greater
than zero. FIRST and ANY specify the method to choose synchronous standbys from the listed servers.

The keyword FIRST, coupled with num_sync, specifies a priority-based synchronous replication and
makes transaction commits wait until their WAL records are replicated to num_sync synchronous
standbys chosen based on their priorities. For example, a setting of FIRST 3 (s1, s2, s3, s4)
will cause each commit to wait for replies from three higher-priority standbys chosen from standby
servers s1, s2, s3 and s4. The standbys whose names appear earlier in the list are given higher
priority and will be considered as synchronous. Other standby servers appearing later in this list
represent potential synchronous standbys. If any of the current synchronous standbys disconnects for
whatever reason, it will be replaced immediately with the next-highest-priority standby. The keyword
FIRST is optional.

The keyword ANY, coupled with num_sync, specifies a quorum-based synchronous replication and
makes transaction commits wait until their WAL records are replicated to at least num_sync listed
standbys. For example, a setting of ANY 3 (s1, s2, s3, s4) will cause each commit to proceed as
soon as at least any three standbys of s1, s2, s3 and s4 reply.

FIRST and ANY are case-insensitive. If these keywords are used as the name of a standby server, its
standby_name must be double-quoted.

The third syntax was used before PostgreSQL version 9.6 and is still supported. It's the same as the
first syntax with FIRST and num_sync equal to 1. For example, FIRST 1 (s1, s2) and s1, s2 have
the same meaning: either s1 or s2 is chosen as a synchronous standby.

The special entry * matches any standby name.

There is no mechanism to enforce uniqueness of standby names. In case of duplicates one of the
matching standbys will be considered as higher priority, though exactly which one is indeterminate.

Note
Each standby_name should have the form of a valid SQL identifier, unless it is *. You can use
double-quoting if necessary. But note that standby_names are compared to standby application
names case-insensitively, whether double-quoted or not.

If no synchronous standby names are specified here, then synchronous replication is not enabled and
transaction commits will not wait for replication. This is the default configuration. Even when syn-
chronous replication is enabled, individual transactions can be configured not to wait for replication
by setting the synchronous_commit parameter to local or off.

This parameter can only be set in the postgresql.conf file or on the server command line.

19.6.3. Standby Servers
These settings control the behavior of a standby server that is to receive replication data. Their values
on the primary server are irrelevant.

primary_conninfo (string)

Specifies a connection string to be used for the standby server to connect with a sending server. This
string is in the format described in Section 32.1.1. If any option is unspecified in this string, then

578

Server Configuration

the corresponding environment variable (see Section 32.15) is checked. If the environment variable
is not set either, then defaults are used.

The connection string should specify the host name (or address) of the sending server, as well as
the port number if it is not the same as the standby server's default. Also specify a user name cor-
responding to a suitably-privileged role on the sending server (see Section 26.2.5.1). A password
needs to be provided too, if the sender demands password authentication. It can be provided in the
primary_conninfo string, or in a separate ~/.pgpass file on the standby server (use replication
as the database name).

For replication slot synchronization (see Section 47.2.3), it is also necessary to specify a valid dbname
in the primary_conninfo string. This will only be used for slot synchronization. It is ignored for
streaming.

This parameter can only be set in the postgresql.conf file or on the server command line. If this
parameter is changed while the WAL receiver process is running, that process is signaled to shut
down and expected to restart with the new setting (except if primary_conninfo is an empty string).
This setting has no effect if the server is not in standby mode.

primary_slot_name (string)

Optionally specifies an existing replication slot to be used when connecting to the sending server
via streaming replication to control resource removal on the upstream node (see Section 26.2.6).
This parameter can only be set in the postgresql.conf file or on the server command line. If this
parameter is changed while the WAL receiver process is running, that process is signaled to shut
down and expected to restart with the new setting. This setting has no effect if primary_conninfo
is not set or the server is not in standby mode.

hot_standby (boolean)

Specifies whether or not you can connect and run queries during recovery, as described in Sec-
tion 26.4. The default value is on. This parameter can only be set at server start. It only has effect
during archive recovery or in standby mode.

max_standby_archive_delay (integer)

When hot standby is active, this parameter determines how long the standby server should wait
before canceling standby queries that conflict with about-to-be-applied WAL entries, as described in
Section 26.4.2. max_standby_archive_delay applies when WAL data is being read from WAL archive
(and is therefore not current). If this value is specified without units, it is taken as milliseconds.
The default is 30 seconds. A value of -1 allows the standby to wait forever for conflicting queries to
complete. This parameter can only be set in the postgresql.conf file or on the server command line.

Note that max_standby_archive_delay is not the same as the maximum length of time a query can
run before cancellation; rather it is the maximum total time allowed to apply any one WAL segment's
data. Thus, if one query has resulted in significant delay earlier in the WAL segment, subsequent
conflicting queries will have much less grace time.

max_standby_streaming_delay (integer)

When hot standby is active, this parameter determines how long the standby server should wait be-
fore canceling standby queries that conflict with about-to-be-applied WAL entries, as described in
Section 26.4.2. max_standby_streaming_delay applies when WAL data is being received via stream-
ing replication. If this value is specified without units, it is taken as milliseconds. The default is 30
seconds. A value of -1 allows the standby to wait forever for conflicting queries to complete. This
parameter can only be set in the postgresql.conf file or on the server command line.

Note that max_standby_streaming_delay is not the same as the maximum length of time a query
can run before cancellation; rather it is the maximum total time allowed to apply WAL data once
it has been received from the primary server. Thus, if one query has resulted in significant delay,

579

Server Configuration

subsequent conflicting queries will have much less grace time until the standby server has caught
up again.

wal_receiver_create_temp_slot (boolean)
Specifies whether the WAL receiver process should create a temporary replication slot on the remote
instance when no permanent replication slot to use has been configured (using primary_slot_name).
The default is off. This parameter can only be set in the postgresql.conf file or on the server com-
mand line. If this parameter is changed while the WAL receiver process is running, that process is
signaled to shut down and expected to restart with the new setting.

wal_receiver_status_interval (integer)
Specifies the minimum frequency for the WAL receiver process on the standby to send information
about replication progress to the primary or upstream standby, where it can be seen using the pg_s-
tat_replication view. The standby will report the last write-ahead log location it has written, the
last position it has flushed to disk, and the last position it has applied. This parameter's value is the
maximum amount of time between reports. Updates are sent each time the write or flush positions
change, or as often as specified by this parameter if set to a non-zero value. There are additional
cases where updates are sent while ignoring this parameter; for example, when processing of the
existing WAL completes or when synchronous_commit is set to remote_apply. Thus, the apply posi-
tion may lag slightly behind the true position. If this value is specified without units, it is taken as
seconds. The default value is 10 seconds. This parameter can only be set in the postgresql.conf
file or on the server command line.

hot_standby_feedback (boolean)
Specifies whether or not a hot standby will send feedback to the primary or upstream standby about
queries currently executing on the standby. This parameter can be used to eliminate query cancels
caused by cleanup records, but can cause database bloat on the primary for some workloads. Feed-
back messages will not be sent more frequently than once per wal_receiver_status_interval. The
default value is off. This parameter can only be set in the postgresql.conf file or on the server
command line.

If cascaded replication is in use the feedback is passed upstream until it eventually reaches the
primary. Standbys make no other use of feedback they receive other than to pass upstream.

Note that if the clock on standby is moved ahead or backward, the feedback message might not be
sent at the required interval. In extreme cases, this can lead to a prolonged risk of not removing
dead rows on the primary for extended periods, as the feedback mechanism is based on timestamps.

wal_receiver_timeout (integer)
Terminate replication connections that are inactive for longer than this amount of time. This is useful
for the receiving standby server to detect a primary node crash or network outage. If this value is
specified without units, it is taken as milliseconds. The default value is 60 seconds. A value of zero
disables the timeout mechanism. This parameter can only be set in the postgresql.conf file or on
the server command line.

wal_retrieve_retry_interval (integer)
Specifies how long the standby server should wait when WAL data is not available from any sources
(streaming replication, local pg_wal or WAL archive) before trying again to retrieve WAL data. If
this value is specified without units, it is taken as milliseconds. The default value is 5 seconds. This
parameter can only be set in the postgresql.conf file or on the server command line.

This parameter is useful in configurations where a node in recovery needs to control the amount
of time to wait for new WAL data to be available. For example, in archive recovery, it is possible
to make the recovery more responsive in the detection of a new WAL file by reducing the value of
this parameter. On a system with low WAL activity, increasing it reduces the amount of requests
necessary to access WAL archives, something useful for example in cloud environments where the
number of times an infrastructure is accessed is taken into account.

580

Server Configuration

In logical replication, this parameter also limits how often a failing replication apply worker or table
synchronization worker will be respawned.

recovery_min_apply_delay (integer)
By default, a standby server restores WAL records from the sending server as soon as possible. It may
be useful to have a time-delayed copy of the data, offering opportunities to correct data loss errors.
This parameter allows you to delay recovery by a specified amount of time. For example, if you set
this parameter to 5min, the standby will replay each transaction commit only when the system time
on the standby is at least five minutes past the commit time reported by the primary. If this value is
specified without units, it is taken as milliseconds. The default is zero, adding no delay.

It is possible that the replication delay between servers exceeds the value of this parameter, in which
case no delay is added. Note that the delay is calculated between the WAL time stamp as written on
primary and the current time on the standby. Delays in transfer because of network lag or cascading
replication configurations may reduce the actual wait time significantly. If the system clocks on
primary and standby are not synchronized, this may lead to recovery applying records earlier than
expected; but that is not a major issue because useful settings of this parameter are much larger
than typical time deviations between servers.

The delay occurs only on WAL records for transaction commits. Other records are replayed as quickly
as possible, which is not a problem because MVCC visibility rules ensure their effects are not visible
until the corresponding commit record is applied.

The delay occurs once the database in recovery has reached a consistent state, until the standby is
promoted or triggered. After that the standby will end recovery without further waiting.

WAL records must be kept on the standby until they are ready to be applied. Therefore, longer
delays will result in a greater accumulation of WAL files, increasing disk space requirements for the
standby's pg_wal directory.

This parameter is intended for use with streaming replication deployments; however, if the parame-
ter is specified it will be honored in all cases except crash recovery. hot_standby_feedback will be
delayed by use of this feature which could lead to bloat on the primary; use both together with care.

Warning
Synchronous replication is affected by this setting when synchronous_commit is set to re-
mote_apply; every COMMIT will need to wait to be applied.

This parameter can only be set in the postgresql.conf file or on the server command line.

sync_replication_slots (boolean)
It enables a physical standby to synchronize logical failover slots from the primary server so that
logical subscribers can resume replication from the new primary server after failover.

It is disabled by default. This parameter can only be set in the postgresql.conf file or on the server
command line.

19.6.4. Subscribers
These settings control the behavior of a logical replication subscriber. Their values on the publisher are
irrelevant. See Section 29.12 for more details.

max_active_replication_origins (integer)
Specifies how many replication origins (see Chapter 48) can be tracked simultaneously, effectively
limiting how many logical replication subscriptions can be created on the server. Setting it to a lower
value than the current number of tracked replication origins (reflected in pg_replication_origin_sta-

581

Server Configuration

tus) will prevent the server from starting. It defaults to 10. This parameter can only be set at server
start. max_active_replication_origins must be set to at least the number of subscriptions that
will be added to the subscriber, plus some reserve for table synchronization.

max_logical_replication_workers (integer)

Specifies maximum number of logical replication workers. This includes leader apply workers, par-
allel apply workers, and table synchronization workers.

Logical replication workers are taken from the pool defined by max_worker_processes.

The default value is 4. This parameter can only be set at server start.

max_sync_workers_per_subscription (integer)

Maximum number of synchronization workers per subscription. This parameter controls the amount
of parallelism of the initial data copy during the subscription initialization or when new tables are
added.

Currently, there can be only one synchronization worker per table.

The synchronization workers are taken from the pool defined by max_logical_replication_work-
ers.

The default value is 2. This parameter can only be set in the postgresql.conf file or on the server
command line.

max_parallel_apply_workers_per_subscription (integer)

Maximum number of parallel apply workers per subscription. This parameter controls the amount
of parallelism for streaming of in-progress transactions with subscription parameter streaming =
parallel.

The parallel apply workers are taken from the pool defined by max_logical_replication_workers.

The default value is 2. This parameter can only be set in the postgresql.conf file or on the server
command line.

19.7. Query Planning
19.7.1. Planner Method Configuration

These configuration parameters provide a crude method of influencing the query plans chosen by the
query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a
temporary solution is to use one of these configuration parameters to force the optimizer to choose a
different plan. Better ways to improve the quality of the plans chosen by the optimizer include adjusting
the planner cost constants (see Section 19.7.2), running ANALYZE manually, increasing the value of the
default_statistics_target configuration parameter, and increasing the amount of statistics collected for
specific columns using ALTER TABLE SET STATISTICS.

enable_async_append (boolean)

Enables or disables the query planner's use of async-aware append plan types. The default is on.

enable_bitmapscan (boolean)

Enables or disables the query planner's use of bitmap-scan plan types. The default is on.

enable_distinct_reordering (boolean)

Enables or disables the query planner's ability to reorder DISTINCT keys to match the input path's
pathkeys. The default is on.

582

Server Configuration

enable_gathermerge (boolean)

Enables or disables the query planner's use of gather merge plan types. The default is on.

enable_group_by_reordering (boolean)

Controls if the query planner will produce a plan which will provide GROUP BY keys sorted in the
order of keys of a child node of the plan, such as an index scan. When disabled, the query planner will
produce a plan with GROUP BY keys only sorted to match the ORDER BY clause, if any. When enabled,
the planner will try to produce a more efficient plan. The default value is on.

enable_hashagg (boolean)

Enables or disables the query planner's use of hashed aggregation plan types. The default is on.

enable_hashjoin (boolean)

Enables or disables the query planner's use of hash-join plan types. The default is on.

enable_incremental_sort (boolean)

Enables or disables the query planner's use of incremental sort steps. The default is on.

enable_indexscan (boolean)

Enables or disables the query planner's use of index-scan and index-only-scan plan types. The default
is on. Also see enable_indexonlyscan.

enable_indexonlyscan (boolean)

Enables or disables the query planner's use of index-only-scan plan types (see Section 11.9). The
default is on. The enable_indexscan setting must also be enabled to have the query planner consider
index-only-scans.

enable_material (boolean)

Enables or disables the query planner's use of materialization. It is impossible to suppress material-
ization entirely, but turning this variable off prevents the planner from inserting materialize nodes
except in cases where it is required for correctness. The default is on.

enable_memoize (boolean)

Enables or disables the query planner's use of memoize plans for caching results from parameterized
scans inside nested-loop joins. This plan type allows scans to the underlying plans to be skipped when
the results for the current parameters are already in the cache. Less commonly looked up results
may be evicted from the cache when more space is required for new entries. The default is on.

enable_mergejoin (boolean)

Enables or disables the query planner's use of merge-join plan types. The default is on.

enable_nestloop (boolean)

Enables or disables the query planner's use of nested-loop join plans. It is impossible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_parallel_append (boolean)

Enables or disables the query planner's use of parallel-aware append plan types. The default is on.

enable_parallel_hash (boolean)

Enables or disables the query planner's use of hash-join plan types with parallel hash. Has no effect
if hash-join plans are not also enabled. The default is on.

583

Server Configuration

enable_partition_pruning (boolean)
Enables or disables the query planner's ability to eliminate a partitioned table's partitions from query
plans. This also controls the planner's ability to generate query plans which allow the query executor
to remove (ignore) partitions during query execution. The default is on. See Section 5.12.4 for details.

enable_partitionwise_join (boolean)
Enables or disables the query planner's use of partitionwise join, which allows a join between parti-
tioned tables to be performed by joining the matching partitions. Partitionwise join currently applies
only when the join conditions include all the partition keys, which must be of the same data type and
have one-to-one matching sets of child partitions. With this setting enabled, the number of nodes
whose memory usage is restricted by work_mem appearing in the final plan can increase linearly
according to the number of partitions being scanned. This can result in a large increase in overall
memory consumption during the execution of the query. Query planning also becomes significantly
more expensive in terms of memory and CPU. The default value is off.

enable_partitionwise_aggregate (boolean)
Enables or disables the query planner's use of partitionwise grouping or aggregation, which allows
grouping or aggregation on partitioned tables to be performed separately for each partition. If the
GROUP BY clause does not include the partition keys, only partial aggregation can be performed on a
per-partition basis, and finalization must be performed later. With this setting enabled, the number
of nodes whose memory usage is restricted by work_mem appearing in the final plan can increase
linearly according to the number of partitions being scanned. This can result in a large increase
in overall memory consumption during the execution of the query. Query planning also becomes
significantly more expensive in terms of memory and CPU. The default value is off.

enable_presorted_aggregate (boolean)
Controls if the query planner will produce a plan which will provide rows which are presorted in
the order required for the query's ORDER BY / DISTINCT aggregate functions. When disabled, the
query planner will produce a plan which will always require the executor to perform a sort before
performing aggregation of each aggregate function containing an ORDER BY or DISTINCT clause.
When enabled, the planner will try to produce a more efficient plan which provides input to the
aggregate functions which is presorted in the order they require for aggregation. The default value
is on.

enable_self_join_elimination (boolean)
Enables or disables the query planner's optimization which analyses the query tree and replaces
self joins with semantically equivalent single scans. Takes into consideration only plain tables. The
default is on.

enable_seqscan (boolean)
Enables or disables the query planner's use of sequential scan plan types. It is impossible to suppress
sequential scans entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_sort (boolean)
Enables or disables the query planner's use of explicit sort steps. It is impossible to suppress explicit
sorts entirely, but turning this variable off discourages the planner from using one if there are other
methods available. The default is on.

enable_tidscan (boolean)
Enables or disables the query planner's use of TID scan plan types. The default is on.

19.7.2. Planner Cost Constants
The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the

584

Server Configuration

planner's choices. By default, these cost variables are based on the cost of sequential page fetches; that
is, seq_page_cost is conventionally set to 1.0 and the other cost variables are set with reference to
that. But you can use a different scale if you prefer, such as actual execution times in milliseconds on
a particular machine.

Note
Unfortunately, there is no well-defined method for determining ideal values for the cost variables.
They are best treated as averages over the entire mix of queries that a particular installation will
receive. This means that changing them on the basis of just a few experiments is very risky.

seq_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of sequential fetches.
The default is 1.0. This value can be overridden for tables and indexes in a particular tablespace by
setting the tablespace parameter of the same name (see ALTER TABLESPACE).

random_page_cost (floating point)

Sets the planner's estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0. This
value can be overridden for tables and indexes in a particular tablespace by setting the tablespace
parameter of the same name (see ALTER TABLESPACE).

Reducing this value relative to seq_page_cost will cause the system to prefer index scans; raising it
will make index scans look relatively more expensive. You can raise or lower both values together to
change the importance of disk I/O costs relative to CPU costs, which are described by the following
parameters.

Random access to mechanical disk storage is normally much more expensive than four times se-
quential access. However, a lower default is used (4.0) because the majority of random accesses
to disk, such as indexed reads, are assumed to be in cache. The default value can be thought of as
modeling random access as 40 times slower than sequential, while expecting 90% of random reads
to be cached.

If you believe a 90% cache rate is an incorrect assumption for your workload, you can increase
random_page_cost to better reflect the true cost of random storage reads. Correspondingly, if your
data is likely to be completely in cache, such as when the database is smaller than the total server
memory, decreasing random_page_cost can be appropriate. Storage that has a low random read cost
relative to sequential, e.g., solid-state drives, might also be better modeled with a lower value for
random_page_cost, e.g., 1.1.

Tip
Although the system will let you set random_page_cost to less than seq_page_cost, it is not
physically sensible to do so. However, setting them equal makes sense if the database is entire-
ly cached in RAM, since in that case there is no penalty for touching pages out of sequence. Al-
so, in a heavily-cached database you should lower both values relative to the CPU parameters,
since the cost of fetching a page already in RAM is much smaller than it would normally be.

cpu_tuple_cost (floating point)

Sets the planner's estimate of the cost of processing each row during a query. The default is 0.01.

cpu_index_tuple_cost (floating point)

Sets the planner's estimate of the cost of processing each index entry during an index scan. The
default is 0.005.

585

Server Configuration

cpu_operator_cost (floating point)

Sets the planner's estimate of the cost of processing each operator or function executed during a
query. The default is 0.0025.

parallel_setup_cost (floating point)

Sets the planner's estimate of the cost of launching parallel worker processes. The default is 1000.

parallel_tuple_cost (floating point)

Sets the planner's estimate of the cost of transferring one tuple from a parallel worker process to
another process. The default is 0.1.

min_parallel_table_scan_size (integer)

Sets the minimum amount of table data that must be scanned in order for a parallel scan to be
considered. For a parallel sequential scan, the amount of table data scanned is always equal to the
size of the table, but when indexes are used the amount of table data scanned will normally be less.
If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default is 8 megabytes (8MB).

min_parallel_index_scan_size (integer)

Sets the minimum amount of index data that must be scanned in order for a parallel scan to be
considered. Note that a parallel index scan typically won't touch the entire index; it is the number
of pages which the planner believes will actually be touched by the scan which is relevant. This
parameter is also used to decide whether a particular index can participate in a parallel vacuum. See
VACUUM. If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically
8kB. The default is 512 kilobytes (512kB).

effective_cache_size (integer)

Sets the planner's assumption about the effective size of the disk cache that is available to a single
query. This is factored into estimates of the cost of using an index; a higher value makes it more
likely index scans will be used, a lower value makes it more likely sequential scans will be used.
When setting this parameter you should consider both PostgreSQL's shared buffers and the portion
of the kernel's disk cache that will be used for PostgreSQL data files, though some data might exist in
both places. Also, take into account the expected number of concurrent queries on different tables,
since they will have to share the available space. This parameter has no effect on the size of shared
memory allocated by PostgreSQL, nor does it reserve kernel disk cache; it is used only for estimation
purposes. The system also does not assume data remains in the disk cache between queries. If this
value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The default
is 4 gigabytes (4GB). (If BLCKSZ is not 8kB, the default value scales proportionally to it.)

jit_above_cost (floating point)

Sets the query cost above which JIT compilation is activated, if enabled (see Chapter 30). Performing
JIT costs planning time but can accelerate query execution. Setting this to -1 disables JIT compilation.
The default is 100000.

jit_inline_above_cost (floating point)

Sets the query cost above which JIT compilation attempts to inline functions and operators. Inlining
adds planning time, but can improve execution speed. It is not meaningful to set this to less than
jit_above_cost. Setting this to -1 disables inlining. The default is 500000.

jit_optimize_above_cost (floating point)

Sets the query cost above which JIT compilation applies expensive optimizations. Such optimization
adds planning time, but can improve execution speed. It is not meaningful to set this to less than
jit_above_cost, and it is unlikely to be beneficial to set it to more than jit_inline_above_cost.
Setting this to -1 disables expensive optimizations. The default is 500000.

586

Server Configuration

19.7.3. Genetic Query Optimizer
The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic searching.
This reduces planning time for complex queries (those joining many relations), at the cost of producing
plans that are sometimes inferior to those found by the normal exhaustive-search algorithm. For more
information see Chapter 61.

geqo (boolean)

Enables or disables genetic query optimization. This is on by default. It is usually best not to turn it
off in production; the geqo_threshold variable provides more granular control of GEQO.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this many FROM items involved. (Note
that a FULL OUTER JOIN construct counts as only one FROM item.) The default is 12. For simpler
queries it is usually best to use the regular, exhaustive-search planner, but for queries with many
tables the exhaustive search takes too long, often longer than the penalty of executing a suboptimal
plan. Thus, a threshold on the size of the query is a convenient way to manage use of GEQO.

geqo_effort (integer)

Controls the trade-off between planning time and query plan quality in GEQO. This variable must be
an integer in the range from 1 to 10. The default value is five. Larger values increase the time spent
doing query planning, but also increase the likelihood that an efficient query plan will be chosen.

geqo_effort doesn't actually do anything directly; it is only used to compute the default values for
the other variables that influence GEQO behavior (described below). If you prefer, you can set the
other parameters by hand instead.

geqo_pool_size (integer)

Controls the pool size used by GEQO, that is the number of individuals in the genetic population.
It must be at least two, and useful values are typically 100 to 1000. If it is set to zero (the default
setting) then a suitable value is chosen based on geqo_effort and the number of tables in the query.

geqo_generations (integer)

Controls the number of generations used by GEQO, that is the number of iterations of the algorithm.
It must be at least one, and useful values are in the same range as the pool size. If it is set to zero
(the default setting) then a suitable value is chosen based on geqo_pool_size.

geqo_selection_bias (floating point)

Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

geqo_seed (floating point)

Controls the initial value of the random number generator used by GEQO to select random paths
through the join order search space. The value can range from zero (the default) to one. Varying the
value changes the set of join paths explored, and may result in a better or worse best path being
found.

19.7.4. Other Planner Options
default_statistics_target (integer)

Sets the default statistics target for table columns without a column-specific target set via ALTER
TABLE SET STATISTICS. Larger values increase the time needed to do ANALYZE, but might improve
the quality of the planner's estimates. The default is 100. For more information on the use of statistics
by the PostgreSQL query planner, refer to Section 14.2.

587

Server Configuration

constraint_exclusion (enum)

Controls the query planner's use of table constraints to optimize queries. The allowed values of con-
straint_exclusion are on (examine constraints for all tables), off (never examine constraints), and
partition (examine constraints only for inheritance child tables and UNION ALL subqueries). parti-
tion is the default setting. It is often used with traditional inheritance trees to improve performance.

When this parameter allows it for a particular table, the planner compares query conditions with
the table's CHECK constraints, and omits scanning tables for which the conditions contradict the
constraints. For example:

CREATE TABLE parent(key integer, ...);
CREATE TABLE child1000(check (key between 1000 and 1999)) INHERITS(parent);
CREATE TABLE child2000(check (key between 2000 and 2999)) INHERITS(parent);
...
SELECT * FROM parent WHERE key = 2400;

With constraint exclusion enabled, this SELECT will not scan child1000 at all, improving performance.

Currently, constraint exclusion is enabled by default only for cases that are often used to implement
table partitioning via inheritance trees. Turning it on for all tables imposes extra planning overhead
that is quite noticeable on simple queries, and most often will yield no benefit for simple queries.
If you have no tables that are partitioned using traditional inheritance, you might prefer to turn
it off entirely. (Note that the equivalent feature for partitioned tables is controlled by a separate
parameter, enable_partition_pruning.)

Refer to Section 5.12.5 for more information on using constraint exclusion to implement partitioning.

cursor_tuple_fraction (floating point)

Sets the planner's estimate of the fraction of a cursor's rows that will be retrieved. The default is 0.1.
Smaller values of this setting bias the planner towards using “fast start” plans for cursors, which
will retrieve the first few rows quickly while perhaps taking a long time to fetch all rows. Larger
values put more emphasis on the total estimated time. At the maximum setting of 1.0, cursors are
planned exactly like regular queries, considering only the total estimated time and not how soon the
first rows might be delivered.

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FROM list would have no more
than this many items. Smaller values reduce planning time but might yield inferior query plans. The
default is eight. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in non-
optimal plans. See Section 19.7.3.

jit (boolean)

Determines whether JIT compilation may be used by PostgreSQL, if available (see Chapter 30). The
default is on.

join_collapse_limit (integer)

The planner will rewrite explicit JOIN constructs (except FULL JOINs) into lists of FROM items when-
ever a list of no more than this many items would result. Smaller values reduce planning time but
might yield inferior query plans.

By default, this variable is set the same as from_collapse_limit, which is appropriate for most uses.
Setting it to 1 prevents any reordering of explicit JOINs. Thus, the explicit join order specified in the
query will be the actual order in which the relations are joined. Because the query planner does not
always choose the optimal join order, advanced users can elect to temporarily set this variable to 1,
and then specify the join order they desire explicitly. For more information see Section 14.3.

588

Server Configuration

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in non-
optimal plans. See Section 19.7.3.

plan_cache_mode (enum)

Prepared statements (either explicitly prepared or implicitly generated, for example by PL/pgSQL)
can be executed using custom or generic plans. Custom plans are made afresh for each execution
using its specific set of parameter values, while generic plans do not rely on the parameter values and
can be re-used across executions. Thus, use of a generic plan saves planning time, but if the ideal plan
depends strongly on the parameter values then a generic plan may be inefficient. The choice between
these options is normally made automatically, but it can be overridden with plan_cache_mode. The
allowed values are auto (the default), force_custom_plan and force_generic_plan. This setting is
considered when a cached plan is to be executed, not when it is prepared. For more information
see PREPARE.

recursive_worktable_factor (floating point)

Sets the planner's estimate of the average size of the working table of a recursive query, as a multiple
of the estimated size of the initial non-recursive term of the query. This helps the planner choose
the most appropriate method for joining the working table to the query's other tables. The default
value is 10.0. A smaller value such as 1.0 can be helpful when the recursion has low “fan-out” from
one step to the next, as for example in shortest-path queries. Graph analytics queries may benefit
from larger-than-default values.

19.8. Error Reporting and Logging
19.8.1. Where to Log

log_destination (string)

PostgreSQL supports several methods for logging server messages, including stderr, csvlog, jsonlog,
and syslog. On Windows, eventlog is also supported. Set this parameter to a list of desired log des-
tinations separated by commas. The default is to log to stderr only. This parameter can only be set
in the postgresql.conf file or on the server command line.

If csvlog is included in log_destination, log entries are output in “comma-separated value” (CSV)
format, which is convenient for loading logs into programs. See Section 19.8.4 for details. log-
ging_collector must be enabled to generate CSV-format log output.

If jsonlog is included in log_destination, log entries are output in JSON format, which is convenient
for loading logs into programs. See Section 19.8.5 for details. logging_collector must be enabled to
generate JSON-format log output.

When either stderr, csvlog or jsonlog are included, the file current_logfiles is created to record
the location of the log file(s) currently in use by the logging collector and the associated logging
destination. This provides a convenient way to find the logs currently in use by the instance. Here
is an example of this file's content:

stderr log/postgresql.log
csvlog log/postgresql.csv
jsonlog log/postgresql.json

current_logfiles is recreated when a new log file is created as an effect of rotation, and when
log_destination is reloaded. It is removed when none of stderr, csvlog or jsonlog are included in
log_destination, and when the logging collector is disabled.

Note
On most Unix systems, you will need to alter the configuration of your system's syslog daemon
in order to make use of the syslog option for log_destination. PostgreSQL can log to syslog

589

Server Configuration

facilities LOCAL0 through LOCAL7 (see syslog_facility), but the default syslog configuration on
most platforms will discard all such messages. You will need to add something like:
local0.* /var/log/postgresql

to the syslog daemon's configuration file to make it work.

On Windows, when you use the eventlog option for log_destination, you should register an
event source and its library with the operating system so that the Windows Event Viewer can
display event log messages cleanly. See Section 18.12 for details.

logging_collector (boolean)
This parameter enables the logging collector, which is a background process that captures log mes-
sages sent to stderr and redirects them into log files. This approach is often more useful than log-
ging to syslog, since some types of messages might not appear in syslog output. (One common ex-
ample is dynamic-linker failure messages; another is error messages produced by scripts such as
archive_command.) This parameter can only be set at server start.

Note
It is possible to log to stderr without using the logging collector; the log messages will just go
to wherever the server's stderr is directed. However, that method is only suitable for low log
volumes, since it provides no convenient way to rotate log files. Also, on some platforms not
using the logging collector can result in lost or garbled log output, because multiple processes
writing concurrently to the same log file can overwrite each other's output.

Note
The logging collector is designed to never lose messages. This means that in case of extremely
high load, server processes could be blocked while trying to send additional log messages
when the collector has fallen behind. In contrast, syslog prefers to drop messages if it cannot
write them, which means it may fail to log some messages in such cases but it will not block
the rest of the system.

log_directory (string)
When logging_collector is enabled, this parameter determines the directory in which log files will
be created. It can be specified as an absolute path, or relative to the cluster data directory. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is log.

log_filename (string)
When logging_collector is enabled, this parameter sets the file names of the created log files. The
value is treated as a strftime pattern, so %-escapes can be used to specify time-varying file names.
(Note that if there are any time-zone-dependent %-escapes, the computation is done in the zone
specified by log_timezone.) The supported %-escapes are similar to those listed in the Open Group's
strftime specification. Note that the system's strftime is not used directly, so platform-specific
(nonstandard) extensions do not work. The default is postgresql-%Y-%m-%d_%H%M%S.log.

If you specify a file name without escapes, you should plan to use a log rotation utility to avoid
eventually filling the entire disk. In releases prior to 8.4, if no % escapes were present, PostgreSQL
would append the epoch of the new log file's creation time, but this is no longer the case.

If CSV-format output is enabled in log_destination, .csv will be appended to the timestamped log
file name to create the file name for CSV-format output. (If log_filename ends in .log, the suffix
is replaced instead.)

590

https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html

Server Configuration

If JSON-format output is enabled in log_destination, .json will be appended to the timestamped
log file name to create the file name for JSON-format output. (If log_filename ends in .log, the
suffix is replaced instead.)

This parameter can only be set in the postgresql.conf file or on the server command line.

log_file_mode (integer)

On Unix systems this parameter sets the permissions for log files when logging_collector is en-
abled. (On Microsoft Windows this parameter is ignored.) The parameter value is expected to be a
numeric mode specified in the format accepted by the chmod and umask system calls. (To use the
customary octal format the number must start with a 0 (zero).)

The default permissions are 0600, meaning only the server owner can read or write the log files.
The other commonly useful setting is 0640, allowing members of the owner's group to read the files.
Note however that to make use of such a setting, you'll need to alter log_directory to store the files
somewhere outside the cluster data directory. In any case, it's unwise to make the log files world-
readable, since they might contain sensitive data.

This parameter can only be set in the postgresql.conf file or on the server command line.

log_rotation_age (integer)

When logging_collector is enabled, this parameter determines the maximum amount of time to
use an individual log file, after which a new log file will be created. If this value is specified without
units, it is taken as minutes. The default is 24 hours. Set to zero to disable time-based creation of new
log files. This parameter can only be set in the postgresql.conf file or on the server command line.

log_rotation_size (integer)

When logging_collector is enabled, this parameter determines the maximum size of an individual
log file. After this amount of data has been emitted into a log file, a new log file will be created. If this
value is specified without units, it is taken as kilobytes. The default is 10 megabytes. Set to zero to
disable size-based creation of new log files. This parameter can only be set in the postgresql.conf
file or on the server command line.

log_truncate_on_rotation (boolean)

When logging_collector is enabled, this parameter will cause PostgreSQL to truncate (overwrite),
rather than append to, any existing log file of the same name. However, truncation will occur only
when a new file is being opened due to time-based rotation, not during server startup or size-based
rotation. When off, pre-existing files will be appended to in all cases. For example, using this setting
in combination with a log_filename like postgresql-%H.log would result in generating twenty-four
hourly log files and then cyclically overwriting them. This parameter can only be set in the post-
gresql.conf file or on the server command line.

Example: To keep 7 days of logs, one log file per day named server_log.Mon, server_log.Tue, etc.,
and automatically overwrite last week's log with this week's log, set log_filename to server_log.%a,
log_truncate_on_rotation to on, and log_rotation_age to 1440.

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log file size
exceeds 1GB, set log_filename to server_log.%H%M, log_truncate_on_rotation to on, log_rota-
tion_age to 60, and log_rotation_size to 1000000. Including %M in log_filename allows any size-
driven rotations that might occur to select a file name different from the hour's initial file name.

syslog_facility (enum)

When logging to syslog is enabled, this parameter determines the syslog “facility” to be used. You
can choose from LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7; the default is
LOCAL0. See also the documentation of your system's syslog daemon. This parameter can only be set
in the postgresql.conf file or on the server command line.

591

Server Configuration

syslog_ident (string)
When logging to syslog is enabled, this parameter determines the program name used to identify
PostgreSQL messages in syslog logs. The default is postgres. This parameter can only be set in the
postgresql.conf file or on the server command line.

syslog_sequence_numbers (boolean)
When logging to syslog and this is on (the default), then each message will be prefixed by an increas-
ing sequence number (such as [2]). This circumvents the “--- last message repeated N times ---” sup-
pression that many syslog implementations perform by default. In more modern syslog implemen-
tations, repeated message suppression can be configured (for example, $RepeatedMsgReduction in
rsyslog), so this might not be necessary. Also, you could turn this off if you actually want to suppress
repeated messages.

This parameter can only be set in the postgresql.conf file or on the server command line.

syslog_split_messages (boolean)
When logging to syslog is enabled, this parameter determines how messages are delivered to syslog.
When on (the default), messages are split by lines, and long lines are split so that they will fit into
1024 bytes, which is a typical size limit for traditional syslog implementations. When off, PostgreSQL
server log messages are delivered to the syslog service as is, and it is up to the syslog service to
cope with the potentially bulky messages.

If syslog is ultimately logging to a text file, then the effect will be the same either way, and it is best
to leave the setting on, since most syslog implementations either cannot handle large messages or
would need to be specially configured to handle them. But if syslog is ultimately writing into some
other medium, it might be necessary or more useful to keep messages logically together.

This parameter can only be set in the postgresql.conf file or on the server command line.

event_source (string)
When logging to event log is enabled, this parameter determines the program name used to identify
PostgreSQL messages in the log. The default is PostgreSQL. This parameter can only be set in the
postgresql.conf file or on the server command line.

19.8.2. When to Log
log_min_messages (enum)

Controls which message levels are written to the server log. Valid values are DEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. Each level includes all the
levels that follow it. The later the level, the fewer messages are sent to the log. The default is WARNING.
Note that LOG has a different rank here than in client_min_messages. Only superusers and users with
the appropriate SET privilege can change this setting.

log_min_error_statement (enum)
Controls which SQL statements that cause an error condition are recorded in the server log. The
current SQL statement is included in the log entry for any message of the specified severity or higher.
Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL,
and PANIC. The default is ERROR, which means statements causing errors, log messages, fatal errors,
or panics will be logged. To effectively turn off logging of failing statements, set this parameter to
PANIC. Only superusers and users with the appropriate SET privilege can change this setting.

log_min_duration_statement (integer)
Causes the duration of each completed statement to be logged if the statement ran for at least the
specified amount of time. For example, if you set it to 250ms then all SQL statements that run 250ms or
longer will be logged. Enabling this parameter can be helpful in tracking down unoptimized queries
in your applications. If this value is specified without units, it is taken as milliseconds. Setting this

592

Server Configuration

to zero prints all statement durations. -1 (the default) disables logging statement durations. Only
superusers and users with the appropriate SET privilege can change this setting.

This overrides log_min_duration_sample, meaning that queries with duration exceeding this setting
are not subject to sampling and are always logged.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note
When using this option together with log_statement, the text of statements that are logged
because of log_statement will not be repeated in the duration log message. If you are not
using syslog, it is recommended that you log the PID or session ID using log_line_prefix so
that you can link the statement message to the later duration message using the process ID
or session ID.

log_min_duration_sample (integer)
Allows sampling the duration of completed statements that ran for at least the specified amount
of time. This produces the same kind of log entries as log_min_duration_statement, but only for a
subset of the executed statements, with sample rate controlled by log_statement_sample_rate. For
example, if you set it to 100ms then all SQL statements that run 100ms or longer will be considered
for sampling. Enabling this parameter can be helpful when the traffic is too high to log all queries.
If this value is specified without units, it is taken as milliseconds. Setting this to zero samples all
statement durations. -1 (the default) disables sampling statement durations. Only superusers and
users with the appropriate SET privilege can change this setting.

This setting has lower priority than log_min_duration_statement, meaning that statements with du-
rations exceeding log_min_duration_statement are not subject to sampling and are always logged.

Other notes for log_min_duration_statement apply also to this setting.

log_statement_sample_rate (floating point)
Determines the fraction of statements with duration exceeding log_min_duration_sample that will be
logged. Sampling is stochastic, for example 0.5 means there is statistically one chance in two that any
given statement will be logged. The default is 1.0, meaning to log all sampled statements. Setting this
to zero disables sampled statement-duration logging, the same as setting log_min_duration_sample
to -1. Only superusers and users with the appropriate SET privilege can change this setting.

log_transaction_sample_rate (floating point)
Sets the fraction of transactions whose statements are all logged, in addition to statements logged for
other reasons. It applies to each new transaction regardless of its statements' durations. Sampling is
stochastic, for example 0.1 means there is statistically one chance in ten that any given transaction
will be logged. log_transaction_sample_rate can be helpful to construct a sample of transactions.
The default is 0, meaning not to log statements from any additional transactions. Setting this to 1
logs all statements of all transactions. Only superusers and users with the appropriate SET privilege
can change this setting.

Note
Like all statement-logging options, this option can add significant overhead.

log_startup_progress_interval (integer)
Sets the amount of time after which the startup process will log a message about a long-running
operation that is still in progress, as well as the interval between further progress messages for that

593

Server Configuration

operation. The default is 10 seconds. A setting of 0 disables the feature. If this value is specified
without units, it is taken as milliseconds. This setting is applied separately to each operation. This
parameter can only be set in the postgresql.conf file or on the server command line.

For example, if syncing the data directory takes 25 seconds and thereafter resetting unlogged rela-
tions takes 8 seconds, and if this setting has the default value of 10 seconds, then a messages will
be logged for syncing the data directory after it has been in progress for 10 seconds and again after
it has been in progress for 20 seconds, but nothing will be logged for resetting unlogged relations.

Table 19.2 explains the message severity levels used by PostgreSQL. If logging output is sent to syslog
or Windows' eventlog, the severity levels are translated as shown in the table.

Table 19.2. Message Severity Levels

Severity Usage syslog eventlog
DEBUG1 .. DEBUG5 Provides successively-more-detailed in-

formation for use by developers.
DEBUG INFORMATION

INFO Provides information implicitly request-
ed by the user, e.g., output from VACUUM
VERBOSE.

INFO INFORMATION

NOTICE Provides information that might be
helpful to users, e.g., notice of trunca-
tion of long identifiers.

NOTICE INFORMATION

WARNING Provides warnings of likely problems,
e.g., COMMIT outside a transaction block.

NOTICE WARNING

ERROR Reports an error that caused the cur-
rent command to abort.

WARNING ERROR

LOG Reports information of interest to ad-
ministrators, e.g., checkpoint activity.

INFO INFORMATION

FATAL Reports an error that caused the cur-
rent session to abort.

ERR ERROR

PANIC Reports an error that caused all data-
base sessions to abort.

CRIT ERROR

19.8.3. What to Log

Note
What you choose to log can have security implications; see Section 24.3.

application_name (string)

The application_name can be any string of less than NAMEDATALEN characters (64 characters in a
standard build). It is typically set by an application upon connection to the server. The name will be
displayed in the pg_stat_activity view and included in CSV log entries. It can also be included in
regular log entries via the log_line_prefix parameter. Only printable ASCII characters may be used
in the application_name value. Other characters are replaced with C-style hexadecimal escapes.

debug_print_parse (boolean)
debug_print_rewritten (boolean)
debug_print_plan (boolean)

These parameters enable various debugging output to be emitted. When set, they print the resulting
parse tree, the query rewriter output, or the execution plan for each executed query. These messages
are emitted at LOG message level, so by default they will appear in the server log but will not be

594

Server Configuration

sent to the client. You can change that by adjusting client_min_messages and/or log_min_messages.
These parameters are off by default.

debug_pretty_print (boolean)
When set, debug_pretty_print indents the messages produced by debug_print_parse, de-
bug_print_rewritten, or debug_print_plan. This results in more readable but much longer output
than the “compact” format used when it is off. It is on by default.

log_autovacuum_min_duration (integer)
Causes each action executed by autovacuum to be logged if it ran for at least the specified amount
of time. Setting this to zero logs all autovacuum actions. -1 disables logging autovacuum actions. If
this value is specified without units, it is taken as milliseconds. For example, if you set this to 250ms
then all automatic vacuums and analyzes that run 250ms or longer will be logged. In addition, when
this parameter is set to any value other than -1, a message will be logged if an autovacuum action is
skipped due to a conflicting lock or a concurrently dropped relation. The default is 10min. Enabling
this parameter can be helpful in tracking autovacuum activity. This parameter can only be set in the
postgresql.conf file or on the server command line; but the setting can be overridden for individual
tables by changing table storage parameters.

log_checkpoints (boolean)
Causes checkpoints and restartpoints to be logged in the server log. Some statistics are included
in the log messages, including the number of buffers written and the time spent writing them. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is on.

log_connections (string)
Causes aspects of each connection to the server to be logged. The default is the empty string, '',
which disables all connection logging. The following options may be specified alone or in a com-
ma-separated list:

Table 19.3. Log Connection Options

Name Description
receipt Logs receipt of a connection.
authentication Logs the original identity used by an authentication method to

identify a user. In most cases, the identity string matches the
PostgreSQL username, but some third-party authentication
methods may alter the original user identifier before the server
stores it. Failed authentication is always logged regardless of the
value of this setting.

authorization Logs successful completion of authorization. At this point the
connection has been established but the backend is not yet ful-
ly set up. The log message includes the authorized username as
well as the database name and application name, if applicable.

setup_durations Logs the time spent establishing the connection and setting up
the backend until the connection is ready to execute its first
query. The log message includes three durations: the total setup
duration (starting from the postmaster accepting the incoming
connection and ending when the connection is ready for query),
the time it took to fork the new backend, and the time it took to
authenticate the user.

all A convenience alias equivalent to specifying all options. If all is
specified in a list of other options, all connection aspects will be
logged.

Disconnection logging is separately controlled by log_disconnections.

595

Server Configuration

For the purposes of backwards compatibility, on, off, true, false, yes, no, 1, and 0 are still support-
ed. The positive values are equivalent to specifying the receipt, authentication, and authoriza-
tion options.

Only superusers and users with the appropriate SET privilege can change this parameter at session
start, and it cannot be changed at all within a session.

Note
Some client programs, like psql, attempt to connect twice while determining if a password is
required, so duplicate “connection received” messages do not necessarily indicate a problem.

log_disconnections (boolean)
Causes session terminations to be logged. The log output provides information similar to log_con-
nections, plus the duration of the session. Only superusers and users with the appropriate SET priv-
ilege can change this parameter at session start, and it cannot be changed at all within a session.
The default is off.

log_duration (boolean)
Causes the duration of every completed statement to be logged. The default is off. Only superusers
and users with the appropriate SET privilege can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note
The difference between enabling log_duration and setting log_min_duration_statement to ze-
ro is that exceeding log_min_duration_statement forces the text of the query to be logged,
but this option doesn't. Thus, if log_duration is on and log_min_duration_statement has
a positive value, all durations are logged but the query text is included only for statements
exceeding the threshold. This behavior can be useful for gathering statistics in high-load in-
stallations.

log_error_verbosity (enum)
Controls the amount of detail written in the server log for each message that is logged. Valid values
are TERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages. TERSE excludes
the logging of DETAIL, HINT, QUERY, and CONTEXT error information. VERBOSE output includes the
SQLSTATE error code (see also Appendix A) and the source code file name, function name, and line
number that generated the error. Only superusers and users with the appropriate SET privilege can
change this setting.

log_hostname (boolean)
By default, connection log messages only show the IP address of the connecting host. Turning this
parameter on causes logging of the host name as well. Note that depending on your host name
resolution setup this might impose a non-negligible performance penalty. This parameter can only
be set in the postgresql.conf file or on the server command line.

log_line_prefix (string)
This is a printf-style string that is output at the beginning of each log line. % characters begin “escape
sequences” that are replaced with status information as outlined below. Unrecognized escapes are
ignored. Other characters are copied straight to the log line. Some escapes are only recognized by
session processes, and will be treated as empty by background processes such as the main server
process. Status information may be aligned either left or right by specifying a numeric literal after

596

Server Configuration

the % and before the option. A negative value will cause the status information to be padded on the
right with spaces to give it a minimum width, whereas a positive value will pad on the left. Padding
can be useful to aid human readability in log files.

This parameter can only be set in the postgresql.conf file or on the server command line. The
default is '%m [%p] ' which logs a time stamp and the process ID.

Escape Effect Session only
%a Application name yes
%u User name yes
%d Database name yes
%r Remote host name or IP ad-

dress, and remote port
yes

%h Remote host name or IP ad-
dress

yes

%L Local address (the IP address
on the server that the client
connected to)

yes

%b Backend type no
%p Process ID no
%P Process ID of the parallel group

leader, if this process is a paral-
lel query worker

no

%t Time stamp without millisec-
onds

no

%m Time stamp with milliseconds no
%n Time stamp with milliseconds (

as a Unix epoch)
no

%i Command tag: type of session's
current command

yes

%e SQLSTATE error code no
%c Session ID: see below no
%l Number of the log line for each

session or process, starting at 1
no

%s Process start time stamp no
%v Virtual transaction ID (proc-

Number/localXID); see Sec-
tion 67.1

no

%x Transaction ID (0 if none is as-
signed); see Section 67.1

no

%q Produces no output, but tells
non-session processes to stop at
this point in the string; ignored
by session processes

no

%Q Query identifier of the current
query. Query identifiers are not
computed by default, so this
field will be zero unless com-
pute_query_id parameter is en-
abled or a third-party module

yes

597

Server Configuration

Escape Effect Session only
that computes query identifiers
is configured.

%% Literal % no

The backend type corresponds to the column backend_type in the view pg_stat_activity, but
additional types can appear in the log that don't show in that view.

The %c escape prints a quasi-unique session identifier, consisting of two 4-byte hexadecimal numbers
(without leading zeros) separated by a dot. The numbers are the process start time and the process
ID, so %c can also be used as a space saving way of printing those items. For example, to generate
the session identifier from pg_stat_activity, use this query:

SELECT to_hex(trunc(EXTRACT(EPOCH FROM backend_start))::integer) || '.' ||
 to_hex(pid)
FROM pg_stat_activity;

Tip
If you set a nonempty value for log_line_prefix, you should usually make its last character
be a space, to provide visual separation from the rest of the log line. A punctuation character
can be used too.

Tip
Syslog produces its own time stamp and process ID information, so you probably do not want
to include those escapes if you are logging to syslog.

Tip
The %q escape is useful when including information that is only available in session (backend)
context like user or database name. For example:

log_line_prefix = '%m [%p] %q%u@%d/%a '

Note
The %Q escape always reports a zero identifier for lines output by log_statement because log_s-
tatement generates output before an identifier can be calculated, including invalid statements
for which an identifier cannot be calculated.

log_lock_waits (boolean)
Controls whether a log message is produced when a session waits longer than deadlock_timeout to
acquire a lock. This is useful in determining if lock waits are causing poor performance. The default
is off. Only superusers and users with the appropriate SET privilege can change this setting.

log_lock_failures (boolean)
Controls whether a detailed log message is produced when a lock acquisition fails. This is useful for
analyzing the causes of lock failures. Currently, only lock failures due to SELECT NOWAIT is supported.
The default is off. Only superusers and users with the appropriate SET privilege can change this
setting.

598

Server Configuration

log_recovery_conflict_waits (boolean)
Controls whether a log message is produced when the startup process waits longer than dead-
lock_timeout for recovery conflicts. This is useful in determining if recovery conflicts prevent the
recovery from applying WAL.

The default is off. This parameter can only be set in the postgresql.conf file or on the server
command line.

log_parameter_max_length (integer)
If greater than zero, each bind parameter value logged with a non-error statement-logging message
is trimmed to this many bytes. Zero disables logging of bind parameters for non-error statement logs.
-1 (the default) allows bind parameters to be logged in full. If this value is specified without units, it is
taken as bytes. Only superusers and users with the appropriate SET privilege can change this setting.

This setting only affects log messages printed as a result of log_statement, log_duration, and related
settings. Non-zero values of this setting add some overhead, particularly if parameters are sent in
binary form, since then conversion to text is required.

log_parameter_max_length_on_error (integer)
If greater than zero, each bind parameter value reported in error messages is trimmed to this many
bytes. Zero (the default) disables including bind parameters in error messages. -1 allows bind para-
meters to be printed in full. If this value is specified without units, it is taken as bytes.

Non-zero values of this setting add overhead, as PostgreSQL will need to store textual representa-
tions of parameter values in memory at the start of each statement, whether or not an error even-
tually occurs. The overhead is greater when bind parameters are sent in binary form than when
they are sent as text, since the former case requires data conversion while the latter only requires
copying the string.

log_statement (enum)
Controls which SQL statements are logged. Valid values are none (off), ddl, mod, and all (all state-
ments). ddl logs all data definition statements, such as CREATE, ALTER, and DROP statements. mod logs
all ddl statements, plus data-modifying statements such as INSERT, UPDATE, DELETE, TRUNCATE, and
COPY FROM. PREPARE, EXECUTE, and EXPLAIN ANALYZE statements are also logged if their contained
command is of an appropriate type. For clients using extended query protocol, logging occurs when
an Execute message is received, and values of the Bind parameters are included (with any embedded
single-quote marks doubled).

The default is none. Only superusers and users with the appropriate SET privilege can change this
setting.

Note
Statements that contain simple syntax errors are not logged even by the log_statement =
all setting, because the log message is emitted only after basic parsing has been done to
determine the statement type. In the case of extended query protocol, this setting likewise does
not log statements that fail before the Execute phase (i.e., during parse analysis or planning).
Set log_min_error_statement to ERROR (or lower) to log such statements.

Logged statements might reveal sensitive data and even contain plaintext passwords.

log_replication_commands (boolean)
Causes each replication command and walsender process's replication slot acquisition/release to
be logged in the server log. See Section 54.4 for more information about replication command. The
default value is off. Only superusers and users with the appropriate SET privilege can change this
setting.

599

Server Configuration

log_temp_files (integer)
Controls logging of temporary file names and sizes. Temporary files can be created for sorts, hashes,
and temporary query results. If enabled by this setting, a log entry is emitted for each temporary
file, with the file size specified in bytes, when it is deleted. A value of zero logs all temporary file
information, while positive values log only files whose size is greater than or equal to the specified
amount of data. If this value is specified without units, it is taken as kilobytes. The default setting is
-1, which disables such logging. Only superusers and users with the appropriate SET privilege can
change this setting.

log_timezone (string)
Sets the time zone used for timestamps written in the server log. Unlike TimeZone, this value is
cluster-wide, so that all sessions will report timestamps consistently. The built-in default is GMT, but
that is typically overridden in postgresql.conf; initdb will install a setting there corresponding to
its system environment. See Section 8.5.3 for more information. This parameter can only be set in
the postgresql.conf file or on the server command line.

19.8.4. Using CSV-Format Log Output
Including csvlog in the log_destination list provides a convenient way to import log files into a data-
base table. This option emits log lines in comma-separated-values (CSV) format, with these columns:
time stamp with milliseconds, user name, database name, process ID, client host:port number, session
ID, per-session line number, command tag, session start time, virtual transaction ID, regular transaction
ID, error severity, SQLSTATE code, error message, error message detail, hint, internal query that led
to the error (if any), character count of the error position therein, error context, user query that led
to the error (if any and enabled by log_min_error_statement), character count of the error position
therein, location of the error in the PostgreSQL source code (if log_error_verbosity is set to verbose),
application name, backend type, process ID of parallel group leader, and query id. Here is a sample table
definition for storing CSV-format log output:
CREATE TABLE postgres_log
(
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,
 backend_type text,
 leader_pid integer,
 query_id bigint,
 PRIMARY KEY (session_id, session_line_num)

600

Server Configuration

);

To import a log file into this table, use the COPY FROM command:

COPY postgres_log FROM '/full/path/to/logfile.csv' WITH csv;

It is also possible to access the file as a foreign table, using the supplied file_fdw module.

There are a few things you need to do to simplify importing CSV log files:
1. Set log_filename and log_rotation_age to provide a consistent, predictable naming scheme for

your log files. This lets you predict what the file name will be and know when an individual log file
is complete and therefore ready to be imported.

2. Set log_rotation_size to 0 to disable size-based log rotation, as it makes the log file name difficult
to predict.

3. Set log_truncate_on_rotation to on so that old log data isn't mixed with the new in the same file.
4. The table definition above includes a primary key specification. This is useful to protect against ac-

cidentally importing the same information twice. The COPY command commits all of the data it im-
ports at one time, so any error will cause the entire import to fail. If you import a partial log file
and later import the file again when it is complete, the primary key violation will cause the import
to fail. Wait until the log is complete and closed before importing. This procedure will also protect
against accidentally importing a partial line that hasn't been completely written, which would also
cause COPY to fail.

19.8.5. Using JSON-Format Log Output
Including jsonlog in the log_destination list provides a convenient way to import log files into many
different programs. This option emits log lines in JSON format.

String fields with null values are excluded from output. Additional fields may be added in the future.
User applications that process jsonlog output should ignore unknown fields.

Each log line is serialized as a JSON object with the set of keys and their associated values shown in
Table 19.4.

Table 19.4. Keys and Values of JSON Log Entries

Key name Type Description
timestamp string Time stamp with milliseconds
user string User name
dbname string Database name
pid number Process ID
remote_host string Client host
remote_port number Client port
session_id string Session ID
line_num number Per-session line number
ps string Current ps display
session_start string Session start time
vxid string Virtual transaction ID
txid string Regular transaction ID
error_severity string Error severity
state_code string SQLSTATE code
message string Error message

601

Server Configuration

Key name Type Description
detail string Error message detail
hint string Error message hint
internal_query string Internal query that led to the er-

ror
internal_position number Cursor index into internal query
context string Error context
statement string Client-supplied query string
cursor_position number Cursor index into query string
func_name string Error location function name
file_name string File name of error location
file_line_num number File line number of the error lo-

cation
application_name string Client application name
backend_type string Type of backend
leader_pid number Process ID of leader for active

parallel workers
query_id number Query ID

19.8.6. Process Title
These settings control how process titles of server processes are modified. Process titles are typically
viewed using programs like ps or, on Windows, Process Explorer. See Section 27.1 for details.

cluster_name (string)
Sets a name that identifies this database cluster (instance) for various purposes. The cluster name
appears in the process title for all server processes in this cluster. Moreover, it is the default appli-
cation name for a standby connection (see synchronous_standby_names).

The name can be any string of less than NAMEDATALEN characters (64 characters in a standard build).
Only printable ASCII characters may be used in the cluster_name value. Other characters are re-
placed with C-style hexadecimal escapes. No name is shown if this parameter is set to the empty
string '' (which is the default). This parameter can only be set at server start.

update_process_title (boolean)
Enables updating of the process title every time a new SQL command is received by the server. This
setting defaults to on on most platforms, but it defaults to off on Windows due to that platform's
larger overhead for updating the process title. Only superusers and users with the appropriate SET
privilege can change this setting.

19.9. Run-time Statistics
19.9.1. Cumulative Query and Index Statistics

These parameters control the server-wide cumulative statistics system. When enabled, the data that is
collected can be accessed via the pg_stat and pg_statio family of system views. Refer to Chapter 27
for more information.

track_activities (boolean)
Enables the collection of information on the currently executing command of each session, along
with its identifier and the time when that command began execution. This parameter is on by default.

602

Server Configuration

Note that even when enabled, this information is only visible to superusers, roles with privileges of
the pg_read_all_stats role and the user owning the sessions being reported on (including sessions
belonging to a role they have the privileges of), so it should not represent a security risk. Only
superusers and users with the appropriate SET privilege can change this setting.

track_activity_query_size (integer)

Specifies the amount of memory reserved to store the text of the currently executing command for
each active session, for the pg_stat_activity.query field. If this value is specified without units, it
is taken as bytes. The default value is 1024 bytes. This parameter can only be set at server start.

track_counts (boolean)

Enables collection of statistics on database activity. This parameter is on by default, because the au-
tovacuum daemon needs the collected information. Only superusers and users with the appropriate
SET privilege can change this setting.

track_cost_delay_timing (boolean)

Enables timing of cost-based vacuum delay (see Section 19.10.2). This parameter is off by default, as
it will repeatedly query the operating system for the current time, which may cause significant over-
head on some platforms. You can use the pg_test_timing tool to measure the overhead of timing on
your system. Cost-based vacuum delay timing information is displayed in pg_stat_progress_vacuum,
pg_stat_progress_analyze, in the output of VACUUM and ANALYZE when the VERBOSE option is
used, and by autovacuum for auto-vacuums and auto-analyzes when log_autovacuum_min_duration
is set. Only superusers and users with the appropriate SET privilege can change this setting.

track_io_timing (boolean)

Enables timing of database I/O waits. This parameter is off by default, as it will repeatedly query
the operating system for the current time, which may cause significant overhead on some platforms.
You can use the pg_test_timing tool to measure the overhead of timing on your system. I/O timing
information is displayed in pg_stat_database, pg_stat_io (if object is not wal), in the output of
the pg_stat_get_backend_io() function (if object is not wal), in the output of EXPLAIN when the
BUFFERS option is used, in the output of VACUUM when the VERBOSE option is used, by autovacuum
for auto-vacuums and auto-analyzes, when log_autovacuum_min_duration is set and by pg_stat_s-
tatements. Only superusers and users with the appropriate SET privilege can change this setting.

track_wal_io_timing (boolean)

Enables timing of WAL I/O waits. This parameter is off by default, as it will repeatedly query the
operating system for the current time, which may cause significant overhead on some platforms. You
can use the pg_test_timing tool to measure the overhead of timing on your system. I/O timing infor-
mation is displayed in pg_stat_io for the object wal and in the output of the pg_stat_get_back-
end_io() function for the object wal. Only superusers and users with the appropriate SET privilege
can change this setting.

track_functions (enum)

Enables tracking of function call counts and time used. Specify pl to track only procedural-language
functions, all to also track SQL and C language functions. The default is none, which disables func-
tion statistics tracking. Only superusers and users with the appropriate SET privilege can change
this setting.

Note
SQL-language functions that are simple enough to be “inlined” into the calling query will not
be tracked, regardless of this setting.

603

Server Configuration

stats_fetch_consistency (enum)

Determines the behavior when cumulative statistics are accessed multiple times within a transac-
tion. When set to none, each access re-fetches counters from shared memory. When set to cache, the
first access to statistics for an object caches those statistics until the end of the transaction unless
pg_stat_clear_snapshot() is called. When set to snapshot, the first statistics access caches all sta-
tistics accessible in the current database, until the end of the transaction unless pg_stat_clear_s-
napshot() is called. Changing this parameter in a transaction discards the statistics snapshot. The
default is cache.

Note
none is most suitable for monitoring systems. If values are only accessed once, it is the most
efficient. cache ensures repeat accesses yield the same values, which is important for queries
involving e.g. self-joins. snapshot can be useful when interactively inspecting statistics, but
has higher overhead, particularly if many database objects exist.

19.9.2. Statistics Monitoring
compute_query_id (enum)

Enables in-core computation of a query identifier. Query identifiers can be displayed in the pg_s-
tat_activity view, using EXPLAIN, or emitted in the log if configured via the log_line_prefix parame-
ter. The pg_stat_statements extension also requires a query identifier to be computed. Note that an
external module can alternatively be used if the in-core query identifier computation method is not
acceptable. In this case, in-core computation must be always disabled. Valid values are off (always
disabled), on (always enabled), auto, which lets modules such as pg_stat_statements automatically
enable it, and regress which has the same effect as auto, except that the query identifier is not
shown in the EXPLAIN output in order to facilitate automated regression testing. The default is auto.

Note
To ensure that only one query identifier is calculated and displayed, extensions that calculate
query identifiers should throw an error if a query identifier has already been computed.

log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, output performance statistics of the respective module to the server log. This is a
crude profiling instrument, similar to the Unix getrusage() operating system facility. log_state-
ment_stats reports total statement statistics, while the others report per-module statistics. log_s-
tatement_stats cannot be enabled together with any of the per-module options. All of these options
are disabled by default. Only superusers and users with the appropriate SET privilege can change
these settings.

19.10. Vacuuming
These parameters control vacuuming behavior. For more information on the purpose and responsibilities
of vacuum, see Section 24.1.

19.10.1. Automatic Vacuuming
These settings control the behavior of the autovacuum feature. Refer to Section 24.1.6 for more infor-
mation. Note that many of these settings can be overridden on a per-table basis; see Storage Parameters.

604

Server Configuration

autovacuum (boolean)

Controls whether the server should run the autovacuum launcher daemon. This is on by default;
however, track_counts must also be enabled for autovacuum to work. This parameter can only be set
in the postgresql.conf file or on the server command line; however, autovacuuming can be disabled
for individual tables by changing table storage parameters.

Note that even when this parameter is disabled, the system will launch autovacuum processes if
necessary to prevent transaction ID wraparound. See Section 24.1.5 for more information.

autovacuum_worker_slots (integer)

Specifies the number of backend slots to reserve for autovacuum worker processes. The default is
typically 16 slots, but might be less if your kernel settings will not support it (as determined during
initdb). This parameter can only be set at server start.

When changing this value, consider also adjusting autovacuum_max_workers.

autovacuum_max_workers (integer)

Specifies the maximum number of autovacuum processes (other than the autovacuum launcher)
that may be running at any one time. The default is 3. This parameter can only be set in the post-
gresql.conf file or on the server command line.

Note that a setting for this value which is higher than autovacuum_worker_slots will have no effect,
since autovacuum workers are taken from the pool of slots established by that setting.

autovacuum_naptime (integer)

Specifies the minimum delay between autovacuum runs on any given database. In each round the
daemon examines the database and issues VACUUM and ANALYZE commands as needed for tables in
that database. If this value is specified without units, it is taken as seconds. The default is one minute
(1min). This parameter can only be set in the postgresql.conf file or on the server command line.

autovacuum_vacuum_threshold (integer)

Specifies the minimum number of updated or deleted tuples needed to trigger a VACUUM in any one
table. The default is 50 tuples. This parameter can only be set in the postgresql.conf file or on
the server command line; but the setting can be overridden for individual tables by changing table
storage parameters.

autovacuum_vacuum_insert_threshold (integer)

Specifies the number of inserted tuples needed to trigger a VACUUM in any one table. The default is
1000 tuples. If -1 is specified, autovacuum will not trigger a VACUUM operation on any tables based on
the number of inserts. This parameter can only be set in the postgresql.conf file or on the server
command line; but the setting can be overridden for individual tables by changing table storage
parameters.

autovacuum_analyze_threshold (integer)

Specifies the minimum number of inserted, updated or deleted tuples needed to trigger an ANALYZE
in any one table. The default is 50 tuples. This parameter can only be set in the postgresql.conf file
or on the server command line; but the setting can be overridden for individual tables by changing
table storage parameters.

autovacuum_vacuum_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_vacuum_threshold when deciding whether
to trigger a VACUUM. The default is 0.2 (20% of table size). This parameter can only be set in the
postgresql.conf file or on the server command line; but the setting can be overridden for individual
tables by changing table storage parameters.

605

Server Configuration

autovacuum_vacuum_insert_scale_factor (floating point)
Specifies a fraction of the unfrozen pages in the table to add to autovacuum_vacuum_insert_thresh-
old when deciding whether to trigger a VACUUM. The default is 0.2 (20% of unfrozen pages in table).
This parameter can only be set in the postgresql.conf file or on the server command line; but the
setting can be overridden for individual tables by changing table storage parameters.

autovacuum_analyze_scale_factor (floating point)
Specifies a fraction of the table size to add to autovacuum_analyze_threshold when deciding
whether to trigger an ANALYZE. The default is 0.1 (10% of table size). This parameter can only be
set in the postgresql.conf file or on the server command line; but the setting can be overridden for
individual tables by changing table storage parameters.

autovacuum_vacuum_max_threshold (integer)
Specifies the maximum number of updated or deleted tuples needed to trigger a VACUUM in any one
table, i.e., a limit on the value calculated with autovacuum_vacuum_threshold and autovacuum_vac-
uum_scale_factor. The default is 100,000,000 tuples. If -1 is specified, autovacuum will not enforce
a maximum number of updated or deleted tuples that will trigger a VACUUM operation. This parameter
can only be set in the postgresql.conf file or on the server command line; but the setting can be
overridden for individual tables by changing storage parameters.

autovacuum_freeze_max_age (integer)
Specifies the maximum age (in transactions) that a table's pg_class.relfrozenxid field can attain
before a VACUUM operation is forced to prevent transaction ID wraparound within the table. Note
that the system will launch autovacuum processes to prevent wraparound even when autovacuum
is otherwise disabled.

Vacuum also allows removal of old files from the pg_xact subdirectory, which is why the default is a
relatively low 200 million transactions. This parameter can only be set at server start, but the setting
can be reduced for individual tables by changing table storage parameters. For more information
see Section 24.1.5.

autovacuum_multixact_freeze_max_age (integer)
Specifies the maximum age (in multixacts) that a table's pg_class.relminmxid field can attain before
a VACUUM operation is forced to prevent multixact ID wraparound within the table. Note that the sys-
tem will launch autovacuum processes to prevent wraparound even when autovacuum is otherwise
disabled.

Vacuuming multixacts also allows removal of old files from the pg_multixact/members and pg_mul-
tixact/offsets subdirectories, which is why the default is a relatively low 400 million multixacts.
This parameter can only be set at server start, but the setting can be reduced for individual tables
by changing table storage parameters. For more information see Section 24.1.5.1.

autovacuum_vacuum_cost_delay (floating point)
Specifies the cost delay value that will be used in automatic VACUUM operations. If -1 is specified,
the regular vacuum_cost_delay value will be used. If this value is specified without units, it is tak-
en as milliseconds. The default value is 2 milliseconds. This parameter can only be set in the post-
gresql.conf file or on the server command line; but the setting can be overridden for individual
tables by changing table storage parameters.

autovacuum_vacuum_cost_limit (integer)
Specifies the cost limit value that will be used in automatic VACUUM operations. If -1 is specified (which
is the default), the regular vacuum_cost_limit value will be used. Note that the value is distributed
proportionally among the running autovacuum workers, if there is more than one, so that the sum
of the limits for each worker does not exceed the value of this variable. This parameter can only be
set in the postgresql.conf file or on the server command line; but the setting can be overridden for
individual tables by changing table storage parameters.

606

Server Configuration

19.10.2. Cost-based Vacuum Delay
During the execution of VACUUM and ANALYZE commands, the system maintains an internal counter
that keeps track of the estimated cost of the various I/O operations that are performed. When the accu-
mulated cost reaches a limit (specified by vacuum_cost_limit), the process performing the operation
will sleep for a short period of time, as specified by vacuum_cost_delay. Then it will reset the counter
and continue execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on
concurrent database activity. There are many situations where it is not important that maintenance
commands like VACUUM and ANALYZE finish quickly; however, it is usually very important that these com-
mands do not significantly interfere with the ability of the system to perform other database operations.
Cost-based vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default for manually issued VACUUM commands. To enable it, set the vacu-
um_cost_delay variable to a nonzero value.

vacuum_cost_delay (floating point)

The amount of time that the process will sleep when the cost limit has been exceeded. If this value
is specified without units, it is taken as milliseconds. The default value is 0, which disables the cost-
based vacuum delay feature. Positive values enable cost-based vacuuming.

When using cost-based vacuuming, appropriate values for vacuum_cost_delay are usually quite
small, perhaps less than 1 millisecond. While vacuum_cost_delay can be set to fractional-millisecond
values, such delays may not be measured accurately on older platforms. On such platforms, increas-
ing VACUUM's throttled resource consumption above what you get at 1ms will require changing the
other vacuum cost parameters. You should, nonetheless, keep vacuum_cost_delay as small as your
platform will consistently measure; large delays are not helpful.

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost
to lock the buffer pool, lookup the shared hash table and scan the content of the page. The default
value is 1.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort
to lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and
scan its content. The default value is 2.

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It represents
the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

This is the accumulated cost that will cause the vacuuming process to sleep for vacuum_cost_delay.
The default is 200.

Note
There are certain operations that hold critical locks and should therefore complete as quickly as
possible. Cost-based vacuum delays do not occur during such operations. Therefore it is possible
that the cost accumulates far higher than the specified limit. To avoid uselessly long delays in
such cases, the actual delay is calculated as vacuum_cost_delay * accumulated_balance / vacu-
um_cost_limit with a maximum of vacuum_cost_delay * 4.

607

Server Configuration

19.10.3. Default Behavior
vacuum_truncate (boolean)

Enables or disables vacuum to try to truncate off any empty pages at the end of the table. The
default value is true. If true, VACUUM and autovacuum do the truncation and the disk space for the
truncated pages is returned to the operating system. Note that the truncation requires an ACCESS
EXCLUSIVE lock on the table. The TRUNCATE parameter of VACUUM, if specified, overrides the value of
this parameter. The setting can also be overridden for individual tables by changing table storage
parameters.

19.10.4. Freezing
To maintain correctness even after transaction IDs wrap around, PostgreSQL marks rows that are suffi-
ciently old as frozen. These rows are visible to everyone; other transactions do not need to examine their
inserting XID to determine visibility. VACUUM is responsible for marking rows as frozen. The following
settings control VACUUM's freezing behavior and should be tuned based on the XID consumption rate of
the system and data access patterns of the dominant workloads. See Section 24.1.5 for more information
on transaction ID wraparound and tuning these parameters.

vacuum_freeze_table_age (integer)

VACUUM performs an aggressive scan if the table's pg_class.relfrozenxid field has reached the age
specified by this setting. An aggressive scan differs from a regular VACUUM in that it visits every
page that might contain unfrozen XIDs or MXIDs, not just those that might contain dead tuples. The
default is 150 million transactions. Although users can set this value anywhere from zero to two
billion, VACUUM will silently limit the effective value to 95% of autovacuum_freeze_max_age, so that
a periodic manual VACUUM has a chance to run before an anti-wraparound autovacuum is launched
for the table. For more information see Section 24.1.5.

vacuum_freeze_min_age (integer)

Specifies the cutoff age (in transactions) that VACUUM should use to decide whether to trigger freezing
of pages that have an older XID. The default is 50 million transactions. Although users can set this
value anywhere from zero to one billion, VACUUM will silently limit the effective value to half the value
of autovacuum_freeze_max_age, so that there is not an unreasonably short time between forced
autovacuums. For more information see Section 24.1.5.

vacuum_failsafe_age (integer)

Specifies the maximum age (in transactions) that a table's pg_class.relfrozenxid field can attain
before VACUUM takes extraordinary measures to avoid system-wide transaction ID wraparound failure.
This is VACUUM's strategy of last resort. The failsafe typically triggers when an autovacuum to prevent
transaction ID wraparound has already been running for some time, though it's possible for the
failsafe to trigger during any VACUUM.

When the failsafe is triggered, any cost-based delay that is in effect will no longer be applied, further
non-essential maintenance tasks (such as index vacuuming) are bypassed, and any Buffer Access
Strategy in use will be disabled resulting in VACUUM being free to make use of all of shared buffers.

The default is 1.6 billion transactions. Although users can set this value anywhere from zero
to 2.1 billion, VACUUM will silently adjust the effective value to no less than 105% of autovacu-
um_freeze_max_age.

vacuum_multixact_freeze_table_age (integer)

VACUUM performs an aggressive scan if the table's pg_class.relminmxid field has reached the age
specified by this setting. An aggressive scan differs from a regular VACUUM in that it visits every
page that might contain unfrozen XIDs or MXIDs, not just those that might contain dead tuples. The
default is 150 million multixacts. Although users can set this value anywhere from zero to two billion,
VACUUM will silently limit the effective value to 95% of autovacuum_multixact_freeze_max_age, so

608

Server Configuration

that a periodic manual VACUUM has a chance to run before an anti-wraparound is launched for the
table. For more information see Section 24.1.5.1.

vacuum_multixact_freeze_min_age (integer)

Specifies the cutoff age (in multixacts) that VACUUM should use to decide whether to trigger freezing
of pages with an older multixact ID. The default is 5 million multixacts. Although users can set this
value anywhere from zero to one billion, VACUUM will silently limit the effective value to half the value
of autovacuum_multixact_freeze_max_age, so that there is not an unreasonably short time between
forced autovacuums. For more information see Section 24.1.5.1.

vacuum_multixact_failsafe_age (integer)

Specifies the maximum age (in multixacts) that a table's pg_class.relminmxid field can attain before
VACUUM takes extraordinary measures to avoid system-wide multixact ID wraparound failure. This
is VACUUM's strategy of last resort. The failsafe typically triggers when an autovacuum to prevent
transaction ID wraparound has already been running for some time, though it's possible for the
failsafe to trigger during any VACUUM.

When the failsafe is triggered, any cost-based delay that is in effect will no longer be applied, and
further non-essential maintenance tasks (such as index vacuuming) are bypassed.

The default is 1.6 billion multixacts. Although users can set this value anywhere from zero to 2.1
billion, VACUUM will silently adjust the effective value to no less than 105% of autovacuum_multixac-
t_freeze_max_age.

vacuum_max_eager_freeze_failure_rate (floating point)

Specifies the maximum number of pages (as a fraction of total pages in the relation) that VACUUM
may scan and fail to set all-frozen in the visibility map before disabling eager scanning. A value of 0
disables eager scanning altogether. The default is 0.03 (3%).

Note that when eager scanning is enabled, only freeze failures count against the cap, not successful
freezing. Successful page freezes are capped internally at 20% of the all-visible but not all-frozen
pages in the relation. Capping successful page freezes helps amortize the overhead across multiple
normal vacuums and limits the potential downside of wasted eager freezes of pages that are modified
again before the next aggressive vacuum.

This parameter can only be set in the postgresql.conf file or on the server command line; but
the setting can be overridden for individual tables by changing the corresponding table storage
parameter. For more information on tuning vacuum's freezing behavior, see Section 24.1.5.

19.11. Client Connection Defaults
19.11.1. Statement Behavior

client_min_messages (enum)

Controls which message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2,
DEBUG1, LOG, NOTICE, WARNING, and ERROR. Each level includes all the levels that follow it. The later
the level, the fewer messages are sent. The default is NOTICE. Note that LOG has a different rank
here than in log_min_messages.

INFO level messages are always sent to the client.

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data type,
function, etc.) is referenced by a simple name with no schema specified. When there are objects of
identical names in different schemas, the one found first in the search path is used. An object that

609

Server Configuration

is not in any of the schemas in the search path can only be referenced by specifying its containing
schema with a qualified (dotted) name.

The value for search_path must be a comma-separated list of schema names. Any name that is not
an existing schema, or is a schema for which the user does not have USAGE permission, is silently
ignored.

If one of the list items is the special name $user, then the schema having the name returned by
CURRENT_USER is substituted, if there is such a schema and the user has USAGE permission for it. (If
not, $user is ignored.)

The system catalog schema, pg_catalog, is always searched, whether it is mentioned in the path or
not. If it is mentioned in the path then it will be searched in the specified order. If pg_catalog is not
in the path then it will be searched before searching any of the path items.

Likewise, the current session's temporary-table schema, pg_temp_nnn, is always searched if it exists.
It can be explicitly listed in the path by using the alias pg_temp. If it is not listed in the path then
it is searched first (even before pg_catalog). However, the temporary schema is only searched for
relation (table, view, sequence, etc.) and data type names. It is never searched for function or oper-
ator names.

When objects are created without specifying a particular target schema, they will be placed in the
first valid schema named in search_path. An error is reported if the search path is empty.

The default value for this parameter is "$user", public. This setting supports shared use of a data-
base (where no users have private schemas, and all share use of public), private per-user schemas,
and combinations of these. Other effects can be obtained by altering the default search path setting,
either globally or per-user.

For more information on schema handling, see Section 5.10. In particular, the default configuration
is suitable only when the database has a single user or a few mutually-trusting users.

The current effective value of the search path can be examined via the SQL function curren-
t_schemas (see Section 9.27). This is not quite the same as examining the value of search_path,
since current_schemas shows how the items appearing in search_path were resolved.

row_security (boolean)
This variable controls whether to raise an error in lieu of applying a row security policy. When set to
on, policies apply normally. When set to off, queries fail which would otherwise apply at least one
policy. The default is on. Change to off where limited row visibility could cause incorrect results; for
example, pg_dump makes that change by default. This variable has no effect on roles which bypass
every row security policy, to wit, superusers and roles with the BYPASSRLS attribute.

For more information on row security policies, see CREATE POLICY.

default_table_access_method (string)
This parameter specifies the default table access method to use when creating tables or materialized
views if the CREATE command does not explicitly specify an access method, or when SELECT ... INTO
is used, which does not allow specifying a table access method. The default is heap.

default_tablespace (string)
This variable specifies the default tablespace in which to create objects (tables and indexes) when a
CREATE command does not explicitly specify a tablespace.

The value is either the name of a tablespace, or an empty string to specify using the default tablespace
of the current database. If the value does not match the name of any existing tablespace, PostgreSQL
will automatically use the default tablespace of the current database. If a nondefault tablespace is
specified, the user must have CREATE privilege for it, or creation attempts will fail.

610

Server Configuration

This variable is not used for temporary tables; for them, temp_tablespaces is consulted instead.

This variable is also not used when creating databases. By default, a new database inherits its table-
space setting from the template database it is copied from.

If this parameter is set to a value other than the empty string when a partitioned table is created, the
partitioned table's tablespace will be set to that value, which will be used as the default tablespace
for partitions created in the future, even if default_tablespace has changed since then.

For more information on tablespaces, see Section 22.6.

default_toast_compression (enum)

This variable sets the default TOAST compression method for values of compressible columns. (This
can be overridden for individual columns by setting the COMPRESSION column option in CREATE TABLE
or ALTER TABLE.) The supported compression methods are pglz and (if PostgreSQL was compiled
with --with-lz4) lz4. The default is pglz.

temp_tablespaces (string)

This variable specifies tablespaces in which to create temporary objects (temp tables and indexes on
temp tables) when a CREATE command does not explicitly specify a tablespace. Temporary files for
purposes such as sorting large data sets are also created in these tablespaces.

The value is a list of names of tablespaces. When there is more than one name in the list, PostgreSQL
chooses a random member of the list each time a temporary object is to be created; except that
within a transaction, successively created temporary objects are placed in successive tablespaces
from the list. If the selected element of the list is an empty string, PostgreSQL will automatically use
the default tablespace of the current database instead.

When temp_tablespaces is set interactively, specifying a nonexistent tablespace is an error, as is
specifying a tablespace for which the user does not have CREATE privilege. However, when using
a previously set value, nonexistent tablespaces are ignored, as are tablespaces for which the user
lacks CREATE privilege. In particular, this rule applies when using a value set in postgresql.conf.

The default value is an empty string, which results in all temporary objects being created in the
default tablespace of the current database.

See also default_tablespace.

check_function_bodies (boolean)

This parameter is normally on. When set to off, it disables validation of the routine body string
during CREATE FUNCTION and CREATE PROCEDURE. Disabling validation avoids side effects of
the validation process, in particular preventing false positives due to problems such as forward ref-
erences. Set this parameter to off before loading functions on behalf of other users; pg_dump does
so automatically.

default_transaction_isolation (enum)

Each SQL transaction has an isolation level, which can be either “read uncommitted”, “read commit-
ted”, “repeatable read”, or “serializable”. This parameter controls the default isolation level of each
new transaction. The default is “read committed”.

Consult Chapter 13 and SET TRANSACTION for more information.

default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the default
read-only status of each new transaction. The default is off (read/write).

Consult SET TRANSACTION for more information.

611

Server Configuration

default_transaction_deferrable (boolean)
When running at the serializable isolation level, a deferrable read-only SQL transaction may be
delayed before it is allowed to proceed. However, once it begins executing it does not incur any of
the overhead required to ensure serializability; so serialization code will have no reason to force
it to abort because of concurrent updates, making this option suitable for long-running read-only
transactions.

This parameter controls the default deferrable status of each new transaction. It currently has no
effect on read-write transactions or those operating at isolation levels lower than serializable. The
default is off.

Consult SET TRANSACTION for more information.

transaction_isolation (enum)
This parameter reflects the current transaction's isolation level. At the beginning of each transaction,
it is set to the current value of default_transaction_isolation. Any subsequent attempt to change it is
equivalent to a SET TRANSACTION command.

transaction_read_only (boolean)
This parameter reflects the current transaction's read-only status. At the beginning of each trans-
action, it is set to the current value of default_transaction_read_only. Any subsequent attempt to
change it is equivalent to a SET TRANSACTION command.

transaction_deferrable (boolean)
This parameter reflects the current transaction's deferrability status. At the beginning of each trans-
action, it is set to the current value of default_transaction_deferrable. Any subsequent attempt to
change it is equivalent to a SET TRANSACTION command.

session_replication_role (enum)
Controls firing of replication-related triggers and rules for the current session. Possible values are
origin (the default), replica and local. Setting this parameter results in discarding any previously
cached query plans. Only superusers and users with the appropriate SET privilege can change this
setting.

The intended use of this setting is that logical replication systems set it to replica when they are
applying replicated changes. The effect of that will be that triggers and rules (that have not been
altered from their default configuration) will not fire on the replica. See the ALTER TABLE clauses
ENABLE TRIGGER and ENABLE RULE for more information.

PostgreSQL treats the settings origin and local the same internally. Third-party replication systems
may use these two values for their internal purposes, for example using local to designate a session
whose changes should not be replicated.

Since foreign keys are implemented as triggers, setting this parameter to replica also disables all
foreign key checks, which can leave data in an inconsistent state if improperly used.

statement_timeout (integer)
Abort any statement that takes more than the specified amount of time. If log_min_error_statement
is set to ERROR or lower, the statement that timed out will also be logged. If this value is specified
without units, it is taken as milliseconds. A value of zero (the default) disables the timeout.

The timeout is measured from the time a command arrives at the server until it is completed by the
server. If multiple SQL statements appear in a single simple-query message, the timeout is applied to
each statement separately. (PostgreSQL versions before 13 usually treated the timeout as applying
to the whole query string.) In extended query protocol, the timeout starts running when any query-
related message (Parse, Bind, Execute, Describe) arrives, and it is canceled by completion of an
Execute or Sync message.

612

Server Configuration

Setting statement_timeout in postgresql.conf is not recommended because it would affect all
sessions.

transaction_timeout (integer)

Terminate any session that spans longer than the specified amount of time in a transaction. The
limit applies both to explicit transactions (started with BEGIN) and to an implicitly started transaction
corresponding to a single statement. If this value is specified without units, it is taken as milliseconds.
A value of zero (the default) disables the timeout.

If transaction_timeout is shorter or equal to idle_in_transaction_session_timeout or state-
ment_timeout then the longer timeout is ignored.

Setting transaction_timeout in postgresql.conf is not recommended because it would affect all
sessions.

Note
Prepared transactions are not subject to this timeout.

lock_timeout (integer)

Abort any statement that waits longer than the specified amount of time while attempting to acquire
a lock on a table, index, row, or other database object. The time limit applies separately to each
lock acquisition attempt. The limit applies both to explicit locking requests (such as LOCK TABLE, or
SELECT FOR UPDATE without NOWAIT) and to implicitly-acquired locks. If this value is specified without
units, it is taken as milliseconds. A value of zero (the default) disables the timeout.

Unlike statement_timeout, this timeout can only occur while waiting for locks. Note that if state-
ment_timeout is nonzero, it is rather pointless to set lock_timeout to the same or larger value, since
the statement timeout would always trigger first. If log_min_error_statement is set to ERROR or
lower, the statement that timed out will be logged.

Setting lock_timeout in postgresql.conf is not recommended because it would affect all sessions.

idle_in_transaction_session_timeout (integer)

Terminate any session that has been idle (that is, waiting for a client query) within an open transac-
tion for longer than the specified amount of time. If this value is specified without units, it is taken
as milliseconds. A value of zero (the default) disables the timeout.

This option can be used to ensure that idle sessions do not hold locks for an unreasonable amount
of time. Even when no significant locks are held, an open transaction prevents vacuuming away
recently-dead tuples that may be visible only to this transaction; so remaining idle for a long time
can contribute to table bloat. See Section 24.1 for more details.

idle_session_timeout (integer)

Terminate any session that has been idle (that is, waiting for a client query), but not within an open
transaction, for longer than the specified amount of time. If this value is specified without units, it is
taken as milliseconds. A value of zero (the default) disables the timeout.

Unlike the case with an open transaction, an idle session without a transaction imposes no large
costs on the server, so there is less need to enable this timeout than idle_in_transaction_ses-
sion_timeout.

Be wary of enforcing this timeout on connections made through connection-pooling software or other
middleware, as such a layer may not react well to unexpected connection closure. It may be helpful
to enable this timeout only for interactive sessions, perhaps by applying it only to particular users.

613

Server Configuration

bytea_output (enum)
Sets the output format for values of type bytea. Valid values are hex (the default) and escape (the
traditional PostgreSQL format). See Section 8.4 for more information. The bytea type always accepts
both formats on input, regardless of this setting.

xmlbinary (enum)
Sets how binary values are to be encoded in XML. This applies for example when bytea values are
converted to XML by the functions xmlelement or xmlforest. Possible values are base64 and hex,
which are both defined in the XML Schema standard. The default is base64. For further information
about XML-related functions, see Section 9.15.

The actual choice here is mostly a matter of taste, constrained only by possible restrictions in client
applications. Both methods support all possible values, although the hex encoding will be somewhat
larger than the base64 encoding.

xmloption (enum)
Sets whether DOCUMENT or CONTENT is implicit when converting between XML and character string
values. See Section 8.13 for a description of this. Valid values are DOCUMENT and CONTENT. The default
is CONTENT.

According to the SQL standard, the command to set this option is
SET XML OPTION { DOCUMENT | CONTENT };

This syntax is also available in PostgreSQL.

gin_pending_list_limit (integer)
Sets the maximum size of a GIN index's pending list, which is used when fastupdate is enabled.
If the list grows larger than this maximum size, it is cleaned up by moving the entries in it to the
index's main GIN data structure in bulk. If this value is specified without units, it is taken as kilobytes.
The default is four megabytes (4MB). This setting can be overridden for individual GIN indexes by
changing index storage parameters. See Section 65.4.4.1 and Section 65.4.5 for more information.

createrole_self_grant (string)
If a user who has CREATEROLE but not SUPERUSER creates a role, and if this is set to a non-empty
value, the newly-created role will be granted to the creating user with the options specified. The
value must be set, inherit, or a comma-separated list of these. The default value is an empty string,
which disables the feature.

The purpose of this option is to allow a CREATEROLE user who is not a superuser to automatically
inherit, or automatically gain the ability to SET ROLE to, any created users. Since a CREATEROLE user
is always implicitly granted ADMIN OPTION on created roles, that user could always execute a GRANT
statement that would achieve the same effect as this setting. However, it can be convenient for
usability reasons if the grant happens automatically. A superuser automatically inherits the privileges
of every role and can always SET ROLE to any role, and this setting can be used to produce a similar
behavior for CREATEROLE users for users which they create.

event_triggers (boolean)
Allow temporarily disabling execution of event triggers in order to troubleshoot and repair faulty
event triggers. All event triggers will be disabled by setting it to false. Setting the value to true
allows all event triggers to fire, this is the default value. Only superusers and users with the appro-
priate SET privilege can change this setting.

restrict_nonsystem_relation_kind (string)
Set relation kinds for which access to non-system relations is prohibited. The value takes the form
of a comma-separated list of relation kinds. Currently, the supported relation kinds are view and
foreign-table.

614

Server Configuration

19.11.2. Locale and Formatting
DateStyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specification (ISO, Postgres, SQL, or German) and the input/output specification for
year/month/day ordering (DMY, MDY, or YMD). These can be set separately or together. The keywords
Euro and European are synonyms for DMY; the keywords US, NonEuro, and NonEuropean are synonyms
for MDY. See Section 8.5 for more information. The built-in default is ISO, MDY, but initdb will initialize
the configuration file with a setting that corresponds to the behavior of the chosen lc_time locale.

IntervalStyle (enum)

Sets the display format for interval values. The value sql_standard will produce output matching
SQL standard interval literals. The value postgres (which is the default) will produce output match-
ing PostgreSQL releases prior to 8.4 when the DateStyle parameter was set to ISO. The value post-
gres_verbose will produce output matching PostgreSQL releases prior to 8.4 when the DateStyle
parameter was set to non-ISO output. The value iso_8601 will produce output matching the time
interval “format with designators” defined in section 4.4.3.2 of ISO 8601.

The IntervalStyle parameter also affects the interpretation of ambiguous interval input. See Sec-
tion 8.5.4 for more information.

TimeZone (string)

Sets the time zone for displaying and interpreting time stamps. The built-in default is GMT, but that
is typically overridden in postgresql.conf; initdb will install a setting there corresponding to its
system environment. See Section 8.5.3 for more information.

timezone_abbreviations (string)

Sets the collection of additional time zone abbreviations that will be accepted by the server for
datetime input (beyond any abbreviations defined by the current TimeZone setting). The default is
'Default', which is a collection that works in most of the world; there are also 'Australia' and
'India', and other collections can be defined for a particular installation. See Section B.4 for more
information.

extra_float_digits (integer)

This parameter adjusts the number of digits used for textual output of floating-point values, including
float4, float8, and geometric data types.

If the value is 1 (the default) or above, float values are output in shortest-precise format; see Sec-
tion 8.1.3. The actual number of digits generated depends only on the value being output, not on the
value of this parameter. At most 17 digits are required for float8 values, and 9 for float4 values.
This format is both fast and precise, preserving the original binary float value exactly when correctly
read. For historical compatibility, values up to 3 are permitted.

If the value is zero or negative, then the output is rounded to a given decimal precision. The precision
used is the standard number of digits for the type (FLT_DIG or DBL_DIG as appropriate) reduced
according to the value of this parameter. (For example, specifying -1 will cause float4 values to be
output rounded to 5 significant digits, and float8 values rounded to 14 digits.) This format is slower
and does not preserve all the bits of the binary float value, but may be more human-readable.

Note
The meaning of this parameter, and its default value, changed in PostgreSQL 12; see Sec-
tion 8.1.3 for further discussion.

615

Server Configuration

client_encoding (string)

Sets the client-side encoding (character set). The default is to use the database encoding. The char-
acter sets supported by the PostgreSQL server are described in Section 23.3.1.

lc_messages (string)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 23.1 for more information. If this variable is set to the empty string (which is the default)
then the value is inherited from the execution environment of the server in a system-dependent way.

On some systems, this locale category does not exist. Setting this variable will still work, but there
will be no effect. Also, there is a chance that no translated messages for the desired language exist.
In that case you will continue to see the English messages.

Only superusers and users with the appropriate SET privilege can change this setting.

lc_monetary (string)

Sets the locale to use for formatting monetary amounts, for example with the to_char family of
functions. Acceptable values are system-dependent; see Section 23.1 for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

lc_numeric (string)

Sets the locale to use for formatting numbers, for example with the to_char family of functions.
Acceptable values are system-dependent; see Section 23.1 for more information. If this variable is set
to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

lc_time (string)

Sets the locale to use for formatting dates and times, for example with the to_char family of functions.
Acceptable values are system-dependent; see Section 23.1 for more information. If this variable is set
to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

icu_validation_level (enum)

When ICU locale validation problems are encountered, controls which message level is used to report
the problem. Valid values are DISABLED, DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE,
WARNING, ERROR, and LOG.

If set to DISABLED, does not report validation problems at all. Otherwise reports problems at the
given message level. The default is WARNING.

default_text_search_config (string)

Selects the text search configuration that is used by those variants of the text search functions that
do not have an explicit argument specifying the configuration. See Chapter 12 for further informa-
tion. The built-in default is pg_catalog.simple, but initdb will initialize the configuration file with a
setting that corresponds to the chosen lc_ctype locale, if a configuration matching that locale can
be identified.

19.11.3. Shared Library Preloading
Several settings are available for preloading shared libraries into the server, in order to load additional
functionality or achieve performance benefits. For example, a setting of '$libdir/mylib' would cause
mylib.so (or on some platforms, mylib.sl) to be preloaded from the installation's standard library di-
rectory. The differences between the settings are when they take effect and what privileges are required
to change them.

616

Server Configuration

PostgreSQL procedural language libraries can be preloaded in this way, typically by using the syntax
'$libdir/plXXX' where XXX is pgsql, perl, tcl, or python.

Only shared libraries specifically intended to be used with PostgreSQL can be loaded this way. Every
PostgreSQL-supported library has a “magic block” that is checked to guarantee compatibility. For this
reason, non-PostgreSQL libraries cannot be loaded in this way. You might be able to use operating-system
facilities such as LD_PRELOAD for that.

In general, refer to the documentation of a specific module for the recommended way to load that module.

local_preload_libraries (string)
This variable specifies one or more shared libraries that are to be preloaded at connection start. It
contains a comma-separated list of library names, where each name is interpreted as for the LOAD
command. Whitespace between entries is ignored; surround a library name with double quotes if
you need to include whitespace or commas in the name. The parameter value only takes effect at
the start of the connection. Subsequent changes have no effect. If a specified library is not found,
the connection attempt will fail.

This option can be set by any user. Because of that, the libraries that can be loaded are restricted to
those appearing in the plugins subdirectory of the installation's standard library directory. (It is the
database administrator's responsibility to ensure that only “safe” libraries are installed there.) En-
tries in local_preload_libraries can specify this directory explicitly, for example $libdir/plug-
ins/mylib, or just specify the library name — mylib would have the same effect as $libdir/plug-
ins/mylib.

The intent of this feature is to allow unprivileged users to load debugging or performance-measure-
ment libraries into specific sessions without requiring an explicit LOAD command. To that end, it
would be typical to set this parameter using the PGOPTIONS environment variable on the client or
by using ALTER ROLE SET.

However, unless a module is specifically designed to be used in this way by non-superusers, this is
usually not the right setting to use. Look at session_preload_libraries instead.

session_preload_libraries (string)
This variable specifies one or more shared libraries that are to be preloaded at connection start. It
contains a comma-separated list of library names, where each name is interpreted as for the LOAD
command. Whitespace between entries is ignored; surround a library name with double quotes if
you need to include whitespace or commas in the name. The parameter value only takes effect at
the start of the connection. Subsequent changes have no effect. If a specified library is not found,
the connection attempt will fail. Only superusers and users with the appropriate SET privilege can
change this setting.

The intent of this feature is to allow debugging or performance-measurement libraries to be loaded
into specific sessions without an explicit LOAD command being given. For example, auto_explain could
be enabled for all sessions under a given user name by setting this parameter with ALTER ROLE SET.
Also, this parameter can be changed without restarting the server (but changes only take effect when
a new session is started), so it is easier to add new modules this way, even if they should apply to
all sessions.

Unlike shared_preload_libraries, there is no large performance advantage to loading a library at
session start rather than when it is first used. There is some advantage, however, when connection
pooling is used.

shared_preload_libraries (string)
This variable specifies one or more shared libraries to be preloaded at server start. It contains a
comma-separated list of library names, where each name is interpreted as for the LOAD command.
Whitespace between entries is ignored; surround a library name with double quotes if you need
to include whitespace or commas in the name. This parameter can only be set at server start. If a
specified library is not found, the server will fail to start.

617

Server Configuration

Some libraries need to perform certain operations that can only take place at postmaster start, such
as allocating shared memory, reserving light-weight locks, or starting background workers. Those
libraries must be loaded at server start through this parameter. See the documentation of each
library for details.

Other libraries can also be preloaded. By preloading a shared library, the library startup time is
avoided when the library is first used. However, the time to start each new server process might
increase slightly, even if that process never uses the library. So this parameter is recommended on-
ly for libraries that will be used in most sessions. Also, changing this parameter requires a server
restart, so this is not the right setting to use for short-term debugging tasks, say. Use session_pre-
load_libraries for that instead.

Note
On Windows hosts, preloading a library at server start will not reduce the time required to
start each new server process; each server process will re-load all preload libraries. However,
shared_preload_libraries is still useful on Windows hosts for libraries that need to perform
operations at postmaster start time.

jit_provider (string)

This variable is the name of the JIT provider library to be used (see Section 30.4.2). The default is
llvmjit. This parameter can only be set at server start.

If set to a non-existent library, JIT will not be available, but no error will be raised. This allows JIT
support to be installed separately from the main PostgreSQL package.

19.11.4. Other Defaults
dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the file name specified in the CREATE
FUNCTION or LOAD command does not have a directory component (i.e., the name does not contain a
slash), the system will search this path for the required file.

The value for dynamic_library_path must be a list of absolute directory paths separated by colons
(or semi-colons on Windows). If a list element starts with the special string $libdir, the compiled-in
PostgreSQL package library directory is substituted for $libdir; this is where the modules provided
by the standard PostgreSQL distribution are installed. (Use pg_config --pkglibdir to find out the
name of this directory.) For example:

dynamic_library_path = '/usr/local/lib/postgresql:/home/my_project/lib:$libdir'

or, in a Windows environment:

dynamic_library_path = 'C:\tools\postgresql;H:\my_project\lib;$libdir'

The default value for this parameter is '$libdir'. If the value is set to an empty string, the automatic
path search is turned off.

This parameter can be changed at run time by superusers and users with the appropriate SET priv-
ilege, but a setting done that way will only persist until the end of the client connection, so this
method should be reserved for development purposes. The recommended way to set this parameter
is in the postgresql.conf configuration file.

extension_control_path (string)

A path to search for extensions, specifically extension control files (name.control). The remaining
extension script and secondary control files are then loaded from the same directory where the
primary control file was found. See Section 36.17.1 for details.

618

Server Configuration

The value for extension_control_path must be a list of absolute directory paths separated by colons
(or semi-colons on Windows). If a list element starts with the special string $system, the compiled-in
PostgreSQL extension directory is substituted for $system; this is where the extensions provided
by the standard PostgreSQL distribution are installed. (Use pg_config --sharedir to find out the
name of this directory.) For example:

extension_control_path = '/usr/local/share/postgresql:/home/my_project/share:
$system'

or, in a Windows environment:

extension_control_path = 'C:\tools\postgresql;H:\my_project\share;$system'

Note that the specified paths elements are expected to have a subdirectory extension which will
contain the .control and .sql files; the extension suffix is automatically appended to each path
element.

The default value for this parameter is '$system'. If the value is set to an empty string, the default
'$system' is also assumed.

If extensions with equal names are present in multiple directories in the configured path, only the
instance found first in the path will be used.

This parameter can be changed at run time by superusers and users with the appropriate SET priv-
ilege, but a setting done that way will only persist until the end of the client connection, so this
method should be reserved for development purposes. The recommended way to set this parameter
is in the postgresql.conf configuration file.

Note that if you set this parameter to be able to load extensions from nonstandard locations, you will
most likely also need to set dynamic_library_path to a correspondent location, for example,

extension_control_path = '/usr/local/share/postgresql:$system'
dynamic_library_path = '/usr/local/lib/postgresql:$libdir'

gin_fuzzy_search_limit (integer)

Soft upper limit of the size of the set returned by GIN index scans. For more information see Sec-
tion 65.4.5.

19.12. Lock Management
deadlock_timeout (integer)

This is the amount of time to wait on a lock before checking to see if there is a deadlock condition.
The check for deadlock is relatively expensive, so the server doesn't run it every time it waits for a
lock. We optimistically assume that deadlocks are not common in production applications and just
wait on the lock for a while before checking for a deadlock. Increasing this value reduces the amount
of time wasted in needless deadlock checks, but slows down reporting of real deadlock errors. If this
value is specified without units, it is taken as milliseconds. The default is one second (1s), which is
probably about the smallest value you would want in practice. On a heavily loaded server you might
want to raise it. Ideally the setting should exceed your typical transaction time, so as to improve the
odds that a lock will be released before the waiter decides to check for deadlock. Only superusers
and users with the appropriate SET privilege can change this setting.

When log_lock_waits is set, this parameter also determines the amount of time to wait before a log
message is issued about the lock wait. If you are trying to investigate locking delays you might want
to set a shorter than normal deadlock_timeout.

max_locks_per_transaction (integer)

The shared lock table has space for max_locks_per_transaction objects (e.g., tables) per server
process or prepared transaction; hence, no more than this many distinct objects can be locked at

619

Server Configuration

any one time. This parameter limits the average number of object locks used by each transaction;
individual transactions can lock more objects as long as the locks of all transactions fit in the lock
table. This is not the number of rows that can be locked; that value is unlimited. The default, 64, has
historically proven sufficient, but you might need to raise this value if you have queries that touch
many different tables in a single transaction, e.g., query of a parent table with many children. This
parameter can only be set at server start.

When running a standby server, you must set this parameter to have the same or higher value as on
the primary server. Otherwise, queries will not be allowed in the standby server.

max_pred_locks_per_transaction (integer)

The shared predicate lock table has space for max_pred_locks_per_transaction objects (e.g., ta-
bles) per server process or prepared transaction; hence, no more than this many distinct objects can
be locked at any one time. This parameter limits the average number of object locks used by each
transaction; individual transactions can lock more objects as long as the locks of all transactions fit in
the lock table. This is not the number of rows that can be locked; that value is unlimited. The default,
64, has historically proven sufficient, but you might need to raise this value if you have clients that
touch many different tables in a single serializable transaction. This parameter can only be set at
server start.

max_pred_locks_per_relation (integer)

This controls how many pages or tuples of a single relation can be predicate-locked before the lock
is promoted to covering the whole relation. Values greater than or equal to zero mean an absolute
limit, while negative values mean max_pred_locks_per_transaction divided by the absolute value of
this setting. The default is -2, which keeps the behavior from previous versions of PostgreSQL. This
parameter can only be set in the postgresql.conf file or on the server command line.

max_pred_locks_per_page (integer)

This controls how many rows on a single page can be predicate-locked before the lock is promoted
to covering the whole page. The default is 2. This parameter can only be set in the postgresql.conf
file or on the server command line.

19.13. Version and Platform Compatibility
19.13.1. Previous PostgreSQL Versions

array_nulls (boolean)

This controls whether the array input parser recognizes unquoted NULL as specifying a null array
element. By default, this is on, allowing array values containing null values to be entered. However,
PostgreSQL versions before 8.2 did not support null values in arrays, and therefore would treat NULL
as specifying a normal array element with the string value “NULL”. For backward compatibility with
applications that require the old behavior, this variable can be turned off.

Note that it is possible to create array values containing null values even when this variable is off.

backslash_quote (enum)

This controls whether a quote mark can be represented by \' in a string literal. The preferred,
SQL-standard way to represent a quote mark is by doubling it ('') but PostgreSQL has historically
also accepted \'. However, use of \' creates security risks because in some client character set
encodings, there are multibyte characters in which the last byte is numerically equivalent to ASCII
\. If client-side code does escaping incorrectly then an SQL-injection attack is possible. This risk can
be prevented by making the server reject queries in which a quote mark appears to be escaped by a
backslash. The allowed values of backslash_quote are on (allow \' always), off (reject always), and
safe_encoding (allow only if client encoding does not allow ASCII \ within a multibyte character).
safe_encoding is the default setting.

620

Server Configuration

Note that in a standard-conforming string literal, \ just means \ anyway. This parameter only affects
the handling of non-standard-conforming literals, including escape string syntax (E'...').

escape_string_warning (boolean)

When on, a warning is issued if a backslash (\) appears in an ordinary string literal ('...' syntax)
and standard_conforming_strings is off. The default is on.

Applications that wish to use backslash as escape should be modified to use escape string syntax
(E'...'), because the default behavior of ordinary strings is now to treat backslash as an ordinary
character, per SQL standard. This variable can be enabled to help locate code that needs to be
changed.

lo_compat_privileges (boolean)

In PostgreSQL releases prior to 9.0, large objects did not have access privileges and were, therefore,
always readable and writable by all users. Setting this variable to on disables the new privilege
checks, for compatibility with prior releases. The default is off. Only superusers and users with the
appropriate SET privilege can change this setting.

Setting this variable does not disable all security checks related to large objects — only those for
which the default behavior has changed in PostgreSQL 9.0.

quote_all_identifiers (boolean)

When the database generates SQL, force all identifiers to be quoted, even if they are not (cur-
rently) keywords. This will affect the output of EXPLAIN as well as the results of functions like
pg_get_viewdef. See also the --quote-all-identifiers option of pg_dump and pg_dumpall.

standard_conforming_strings (boolean)

This controls whether ordinary string literals ('...') treat backslashes literally, as specified in the
SQL standard. Beginning in PostgreSQL 9.1, the default is on (prior releases defaulted to off). Ap-
plications can check this parameter to determine how string literals will be processed. The presence
of this parameter can also be taken as an indication that the escape string syntax (E'...') is sup-
ported. Escape string syntax (Section 4.1.2.2) should be used if an application desires backslashes
to be treated as escape characters.

synchronize_seqscans (boolean)

This allows sequential scans of large tables to synchronize with each other, so that concurrent scans
read the same block at about the same time and hence share the I/O workload. When this is enabled,
a scan might start in the middle of the table and then “wrap around” the end to cover all rows, so as to
synchronize with the activity of scans already in progress. This can result in unpredictable changes
in the row ordering returned by queries that have no ORDER BY clause. Setting this parameter to
off ensures the pre-8.3 behavior in which a sequential scan always starts from the beginning of the
table. The default is on.

19.13.2. Platform and Client Compatibility
transform_null_equals (boolean)

When on, expressions of the form expr = NULL (or NULL = expr) are treated as expr IS NULL, that
is, they return true if expr evaluates to the null value, and false otherwise. The correct SQL-spec-
compliant behavior of expr = NULL is to always return null (unknown). Therefore this parameter
defaults to off.

However, filtered forms in Microsoft Access generate queries that appear to use expr = NULL to
test for null values, so if you use that interface to access the database you might want to turn this
option on. Since expressions of the form expr = NULL always return the null value (using the SQL
standard interpretation), they are not very useful and do not appear often in normal applications so

621

Server Configuration

this option does little harm in practice. But new users are frequently confused about the semantics
of expressions involving null values, so this option is off by default.

Note that this option only affects the exact form = NULL, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such as IN). Thus, this option is not a general fix for bad programming.

Refer to Section 9.2 for related information.

allow_alter_system (boolean)

When allow_alter_system is set to off, an error is returned if the ALTER SYSTEM command is exe-
cuted. This parameter can only be set in the postgresql.conf file or on the server command line.
The default value is on.

Note that this setting must not be regarded as a security feature. It only disables the ALTER SYSTEM
command. It does not prevent a superuser from changing the configuration using other SQL com-
mands. A superuser has many ways of executing shell commands at the operating system level, and
can therefore modify postgresql.auto.conf regardless of the value of this setting.

Turning this setting off is intended for environments where the configuration of PostgreSQL is man-
aged by some external tool. In such environments, a well-intentioned superuser might mistakenly
use ALTER SYSTEM to change the configuration instead of using the external tool. This might result
in unintended behavior, such as the external tool overwriting the change at some later point in time
when it updates the configuration. Setting this parameter to off can help avoid such mistakes.

This parameter only controls the use of ALTER SYSTEM. The settings stored in postgresql.auto.conf
take effect even if allow_alter_system is set to off.

19.14. Error Handling
exit_on_error (boolean)

If on, any error will terminate the current session. By default, this is set to off, so that only FATAL
errors will terminate the session.

restart_after_crash (boolean)

When set to on, which is the default, PostgreSQL will automatically reinitialize after a backend crash.
Leaving this value set to on is normally the best way to maximize the availability of the database.
However, in some circumstances, such as when PostgreSQL is being invoked by clusterware, it may
be useful to disable the restart so that the clusterware can gain control and take any actions it deems
appropriate.

This parameter can only be set in the postgresql.conf file or on the server command line.

data_sync_retry (boolean)

When set to off, which is the default, PostgreSQL will raise a PANIC-level error on failure to flush
modified data files to the file system. This causes the database server to crash. This parameter can
only be set at server start.

On some operating systems, the status of data in the kernel's page cache is unknown after a write-
back failure. In some cases it might have been entirely forgotten, making it unsafe to retry; the second
attempt may be reported as successful, when in fact the data has been lost. In these circumstances,
the only way to avoid data loss is to recover from the WAL after any failure is reported, preferably
after investigating the root cause of the failure and replacing any faulty hardware.

If set to on, PostgreSQL will instead report an error but continue to run so that the data flushing
operation can be retried in a later checkpoint. Only set it to on after investigating the operating
system's treatment of buffered data in case of write-back failure.

622

Server Configuration

recovery_init_sync_method (enum)
When set to fsync, which is the default, PostgreSQL will recursively open and synchronize all files in
the data directory before crash recovery begins. The search for files will follow symbolic links for the
WAL directory and each configured tablespace (but not any other symbolic links). This is intended
to make sure that all WAL and data files are durably stored on disk before replaying changes. This
applies whenever starting a database cluster that did not shut down cleanly, including copies created
with pg_basebackup.

On Linux, syncfs may be used instead, to ask the operating system to synchronize the file systems
that contain the data directory, the WAL files and each tablespace (but not any other file systems that
may be reachable through symbolic links). This may be a lot faster than the fsync setting, because
it doesn't need to open each file one by one. On the other hand, it may be slower if a file system is
shared by other applications that modify a lot of files, since those files will also be written to disk.
Furthermore, on versions of Linux before 5.8, I/O errors encountered while writing data to disk may
not be reported to PostgreSQL, and relevant error messages may appear only in kernel logs.

This parameter can only be set in the postgresql.conf file or on the server command line.

19.15. Preset Options
The following “parameters” are read-only. As such, they have been excluded from the sample post-
gresql.conf file. These options report various aspects of PostgreSQL behavior that might be of interest
to certain applications, particularly administrative front-ends. Most of them are determined when Post-
greSQL is compiled or when it is installed.

block_size (integer)
Reports the size of a disk block. It is determined by the value of BLCKSZ when building the server. The
default value is 8192 bytes. The meaning of some configuration variables (such as shared_buffers)
is influenced by block_size. See Section 19.4 for information.

data_checksums (boolean)
Reports whether data checksums are enabled for this cluster. See -k for more information.

data_directory_mode (integer)
On Unix systems this parameter reports the permissions the data directory (defined by data_direc-
tory) had at server startup. (On Microsoft Windows this parameter will always display 0700.) See the
initdb -g option for more information.

debug_assertions (boolean)
Reports whether PostgreSQL has been built with assertions enabled. That is the case if the macro
USE_ASSERT_CHECKING is defined when PostgreSQL is built (accomplished e.g., by the configure
option --enable-cassert). By default PostgreSQL is built without assertions.

huge_pages_status (enum)
Reports the state of huge pages in the current instance: on, off, or unknown (if displayed with post-
gres -C). This parameter is useful to determine whether allocation of huge pages was successful
under huge_pages=try. See huge_pages for more information.

integer_datetimes (boolean)
Reports whether PostgreSQL was built with support for 64-bit-integer dates and times. As of Post-
greSQL 10, this is always on.

in_hot_standby (boolean)
Reports whether the server is currently in hot standby mode. When this is on, all transactions are
forced to be read-only. Within a session, this can change only if the server is promoted to be primary.
See Section 26.4 for more information.

623

Server Configuration

max_function_args (integer)

Reports the maximum number of function arguments. It is determined by the value of FUNC_MAX_ARGS
when building the server. The default value is 100 arguments.

max_identifier_length (integer)

Reports the maximum identifier length. It is determined as one less than the value of NAMEDATALEN
when building the server. The default value of NAMEDATALEN is 64; therefore the default max_iden-
tifier_length is 63 bytes, which can be less than 63 characters when using multibyte encodings.

max_index_keys (integer)

Reports the maximum number of index keys. It is determined by the value of INDEX_MAX_KEYS when
building the server. The default value is 32 keys.

num_os_semaphores (integer)
Reports the number of semaphores that are needed for the server based on the configured num-
ber of allowed connections (max_connections), allowed autovacuum worker processes (autovacu-
um_max_workers), allowed WAL sender processes (max_wal_senders), allowed background process-
es (max_worker_processes), etc.

segment_size (integer)
Reports the number of blocks (pages) that can be stored within a file segment. It is determined by
the value of RELSEG_SIZE when building the server. The maximum size of a segment file in bytes is
equal to segment_size multiplied by block_size; by default this is 1GB.

server_encoding (string)
Reports the database encoding (character set). It is determined when the database is created. Ordi-
narily, clients need only be concerned with the value of client_encoding.

server_version (string)

Reports the version number of the server. It is determined by the value of PG_VERSION when building
the server.

server_version_num (integer)
Reports the version number of the server as an integer. It is determined by the value of
PG_VERSION_NUM when building the server.

shared_memory_size (integer)
Reports the size of the main shared memory area, rounded up to the nearest megabyte.

shared_memory_size_in_huge_pages (integer)
Reports the number of huge pages that are needed for the main shared memory area based on the
specified huge_page_size. If huge pages are not supported, this will be -1.

This setting is supported only on Linux. It is always set to -1 on other platforms. For more details
about using huge pages on Linux, see Section 18.4.5.

ssl_library (string)
Reports the name of the SSL library that this PostgreSQL server was built with (even if SSL is not
currently configured or in use on this instance), for example OpenSSL, or an empty string if none.

wal_block_size (integer)

Reports the size of a WAL disk block. It is determined by the value of XLOG_BLCKSZ when building
the server. The default value is 8192 bytes.

624

Server Configuration

wal_segment_size (integer)
Reports the size of write ahead log segments. The default value is 16MB. See Section 28.5 for more
information.

19.16. Customized Options
This feature was designed to allow parameters not normally known to PostgreSQL to be added by add-on
modules (such as procedural languages). This allows extension modules to be configured in the standard
ways.

Custom options have two-part names: an extension name, then a dot, then the parameter name proper,
much like qualified names in SQL. An example is plpgsql.variable_conflict.

Because custom options may need to be set in processes that have not loaded the relevant extension
module, PostgreSQL will accept a setting for any two-part parameter name. Such variables are treated
as placeholders and have no function until the module that defines them is loaded. When an extension
module is loaded, it will add its variable definitions and convert any placeholder values according to those
definitions. If there are any unrecognized placeholders that begin with its extension name, warnings are
issued and those placeholders are removed.

19.17. Developer Options
The following parameters are intended for developer testing, and should never be used on a production
database. However, some of them can be used to assist with the recovery of severely damaged databas-
es. As such, they have been excluded from the sample postgresql.conf file. Note that many of these
parameters require special source compilation flags to work at all.

allow_in_place_tablespaces (boolean)
Allows tablespaces to be created as directories inside pg_tblspc, when an empty location string is
provided to the CREATE TABLESPACE command. This is intended to allow testing replication scenarios
where primary and standby servers are running on the same machine. Such directories are likely
to confuse backup tools that expect to find only symbolic links in that location. Only superusers and
users with the appropriate SET privilege can change this setting.

allow_system_table_mods (boolean)
Allows modification of the structure of system tables as well as certain other risky actions on system
tables. This is otherwise not allowed even for superusers. Ill-advised use of this setting can cause
irretrievable data loss or seriously corrupt the database system. Only superusers and users with the
appropriate SET privilege can change this setting.

backtrace_functions (string)
This parameter contains a comma-separated list of C function names. If an error is raised and the
name of the internal C function where the error happens matches a value in the list, then a backtrace
is written to the server log together with the error message. This can be used to debug specific areas
of the source code.

Backtrace support is not available on all platforms, and the quality of the backtraces depends on
compilation options.

Only superusers and users with the appropriate SET privilege can change this setting.

debug_copy_parse_plan_trees (boolean)
Enabling this forces all parse and plan trees to be passed through copyObject(), to facilitate catching
errors and omissions in copyObject(). The default is off.

This parameter is only available when DEBUG_NODE_TESTS_ENABLED was defined at compile time
(which happens automatically when using the configure option --enable-cassert).

625

Server Configuration

debug_discard_caches (integer)
When set to 1, each system catalog cache entry is invalidated at the first possible opportunity,
whether or not anything that would render it invalid really occurred. Caching of system catalogs is
effectively disabled as a result, so the server will run extremely slowly. Higher values run the cache
invalidation recursively, which is even slower and only useful for testing the caching logic itself. The
default value of 0 selects normal catalog caching behavior.

This parameter can be very helpful when trying to trigger hard-to-reproduce bugs involving con-
current catalog changes, but it is otherwise rarely needed. See the source code files inval.c and
pg_config_manual.h for details.

This parameter is supported when DISCARD_CACHES_ENABLED was defined at compile time (which
happens automatically when using the configure option --enable-cassert). In production builds,
its value will always be 0 and attempts to set it to another value will raise an error.

debug_io_direct (string)
Ask the kernel to minimize caching effects for relation data and WAL files using O_DIRECT (most Unix-
like systems), F_NOCACHE (macOS) or FILE_FLAG_NO_BUFFERING (Windows).

May be set to an empty string (the default) to disable use of direct I/O, or a comma-separated list
of operations that should use direct I/O. The valid options are data for main data files, wal for WAL
files, and wal_init for WAL files when being initially allocated.

Some operating systems and file systems do not support direct I/O, so non-default settings may be
rejected at startup or cause errors.

Currently this feature reduces performance, and is intended for developer testing only.

debug_parallel_query (enum)
Allows the use of parallel queries for testing purposes even in cases where no performance benefit
is expected. The allowed values of debug_parallel_query are off (use parallel mode only when it
is expected to improve performance), on (force parallel query for all queries for which it is thought
to be safe), and regress (like on, but with additional behavior changes as explained below).

More specifically, setting this value to on will add a Gather node to the top of any query plan for
which this appears to be safe, so that the query runs inside of a parallel worker. Even when a parallel
worker is not available or cannot be used, operations such as starting a subtransaction that would
be prohibited in a parallel query context will be prohibited unless the planner believes that this will
cause the query to fail. If failures or unexpected results occur when this option is set, some functions
used by the query may need to be marked PARALLEL UNSAFE (or, possibly, PARALLEL RESTRICTED).

Setting this value to regress has all of the same effects as setting it to on plus some additional effects
that are intended to facilitate automated regression testing. Normally, messages from a parallel
worker include a context line indicating that, but a setting of regress suppresses this line so that the
output is the same as in non-parallel execution. Also, the Gather nodes added to plans by this setting
are hidden in EXPLAIN output so that the output matches what would be obtained if this setting were
turned off.

debug_raw_expression_coverage_test (boolean)
Enabling this forces all raw parse trees for DML statements to be scanned by raw_expres-
sion_tree_walker(), to facilitate catching errors and omissions in that function. The default is off.

This parameter is only available when DEBUG_NODE_TESTS_ENABLED was defined at compile time
(which happens automatically when using the configure option --enable-cassert).

debug_write_read_parse_plan_trees (boolean)
Enabling this forces all parse and plan trees to be passed through outfuncs.c/readfuncs.c, to fa-
cilitate catching errors and omissions in those modules. The default is off.

626

Server Configuration

This parameter is only available when DEBUG_NODE_TESTS_ENABLED was defined at compile time
(which happens automatically when using the configure option --enable-cassert).

ignore_system_indexes (boolean)
Ignore system indexes when reading system tables (but still update the indexes when modifying the
tables). This is useful when recovering from damaged system indexes. This parameter cannot be
changed after session start.

post_auth_delay (integer)
The amount of time to delay when a new server process is started, after it conducts the authentication
procedure. This is intended to give developers an opportunity to attach to the server process with a
debugger. If this value is specified without units, it is taken as seconds. A value of zero (the default)
disables the delay. This parameter cannot be changed after session start.

pre_auth_delay (integer)
The amount of time to delay just after a new server process is forked, before it conducts the authen-
tication procedure. This is intended to give developers an opportunity to attach to the server process
with a debugger to trace down misbehavior in authentication. If this value is specified without units,
it is taken as seconds. A value of zero (the default) disables the delay. This parameter can only be
set in the postgresql.conf file or on the server command line.

trace_notify (boolean)
Generates a great amount of debugging output for the LISTEN and NOTIFY commands. clien-
t_min_messages or log_min_messages must be DEBUG1 or lower to send this output to the client or
server logs, respectively.

trace_sort (boolean)
If on, emit information about resource usage during sort operations.

trace_locks (boolean)
If on, emit information about lock usage. Information dumped includes the type of lock operation,
the type of lock and the unique identifier of the object being locked or unlocked. Also included are bit
masks for the lock types already granted on this object as well as for the lock types awaited on this
object. For each lock type a count of the number of granted locks and waiting locks is also dumped
as well as the totals. An example of the log file output is shown here:
LOG: LockAcquire: new: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: GrantLock: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(2) req(1,0,0,0,0,0,0)=1 grant(1,0,0,0,0,0,0)=1
 wait(0) type(AccessShareLock)
LOG: UnGrantLock: updated: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: CleanUpLock: deleting: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(INVALID)

Details of the structure being dumped may be found in src/include/storage/lock.h.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_lwlocks (boolean)
If on, emit information about lightweight lock usage. Lightweight locks are intended primarily to
provide mutual exclusion of access to shared-memory data structures.

627

Server Configuration

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_userlocks (boolean)

If on, emit information about user lock usage. Output is the same as for trace_locks, only for ad-
visory locks.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_lock_oidmin (integer)

If set, do not trace locks for tables below this OID (used to avoid output on system tables).

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_lock_table (integer)

Unconditionally trace locks on this table (OID).

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

debug_deadlocks (boolean)

If set, dumps information about all current locks when a deadlock timeout occurs.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

log_btree_build_stats (boolean)

If set, logs system resource usage statistics (memory and CPU) on various B-tree operations.

This parameter is only available if the BTREE_BUILD_STATS macro was defined when PostgreSQL was
compiled.

wal_consistency_checking (string)

This parameter is intended to be used to check for bugs in the WAL redo routines. When enabled,
full-page images of any buffers modified in conjunction with the WAL record are added to the record.
If the record is subsequently replayed, the system will first apply each record and then test whether
the buffers modified by the record match the stored images. In certain cases (such as hint bits),
minor variations are acceptable, and will be ignored. Any unexpected differences will result in a fatal
error, terminating recovery.

The default value of this setting is the empty string, which disables the feature. It can be set to
all to check all records, or to a comma-separated list of resource managers to check only records
originating from those resource managers. Currently, the supported resource managers are heap,
heap2, btree, hash, gin, gist, sequence, spgist, brin, and generic. Extensions may define addi-
tional resource managers. Only superusers and users with the appropriate SET privilege can change
this setting.

wal_debug (boolean)

If on, emit WAL-related debugging output. This parameter is only available if the WAL_DEBUG macro
was defined when PostgreSQL was compiled.

ignore_checksum_failure (boolean)

Only has effect if -k are enabled.

628

Server Configuration

Detection of a checksum failure during a read normally causes PostgreSQL to report an error, abort-
ing the current transaction. Setting ignore_checksum_failure to on causes the system to ignore
the failure (but still report a warning), and continue processing. This behavior may cause crashes,
propagate or hide corruption, or other serious problems. However, it may allow you to get past the
error and retrieve undamaged tuples that might still be present in the table if the block header is
still sane. If the header is corrupt an error will be reported even if this option is enabled. The default
setting is off. Only superusers and users with the appropriate SET privilege can change this setting.

zero_damaged_pages (boolean)

Detection of a damaged page header normally causes PostgreSQL to report an error, aborting the
current transaction. Setting zero_damaged_pages to on causes the system to instead report a warn-
ing, zero out the damaged page in memory, and continue processing. This behavior will destroy data,
namely all the rows on the damaged page. However, it does allow you to get past the error and re-
trieve rows from any undamaged pages that might be present in the table. It is useful for recovering
data if corruption has occurred due to a hardware or software error. You should generally not set this
on until you have given up hope of recovering data from the damaged pages of a table. Zeroed-out
pages are not forced to disk so it is recommended to recreate the table or the index before turning
this parameter off again. The default setting is off. Only superusers and users with the appropriate
SET privilege can change this setting.

ignore_invalid_pages (boolean)

If set to off (the default), detection of WAL records having references to invalid pages during re-
covery causes PostgreSQL to raise a PANIC-level error, aborting the recovery. Setting ignore_in-
valid_pages to on causes the system to ignore invalid page references in WAL records (but still
report a warning), and continue the recovery. This behavior may cause crashes, data loss, propagate
or hide corruption, or other serious problems. However, it may allow you to get past the PANIC-level
error, to finish the recovery, and to cause the server to start up. The parameter can only be set at
server start. It only has effect during recovery or in standby mode.

jit_debugging_support (boolean)

If LLVM has the required functionality, register generated functions with GDB. This makes debugging
easier. The default setting is off. This parameter can only be set at server start.

jit_dump_bitcode (boolean)

Writes the generated LLVM IR out to the file system, inside data_directory. This is only useful for
working on the internals of the JIT implementation. The default setting is off. Only superusers and
users with the appropriate SET privilege can change this setting.

jit_expressions (boolean)

Determines whether expressions are JIT compiled, when JIT compilation is activated (see Sec-
tion 30.2). The default is on.

jit_profiling_support (boolean)

If LLVM has the required functionality, emit the data needed to allow perf to profile functions gen-
erated by JIT. This writes out files to ~/.debug/jit/; the user is responsible for performing cleanup
when desired. The default setting is off. This parameter can only be set at server start.

jit_tuple_deforming (boolean)

Determines whether tuple deforming is JIT compiled, when JIT compilation is activated (see Sec-
tion 30.2). The default is on.

remove_temp_files_after_crash (boolean)

When set to on, which is the default, PostgreSQL will automatically remove temporary files after a
backend crash. If disabled, the files will be retained and may be used for debugging, for example.

629

Server Configuration

Repeated crashes may however result in accumulation of useless files. This parameter can only be
set in the postgresql.conf file or on the server command line.

send_abort_for_crash (boolean)

By default, after a backend crash the postmaster will stop remaining child processes by sending them
SIGQUIT signals, which permits them to exit more-or-less gracefully. When this option is set to on,
SIGABRT is sent instead. That normally results in production of a core dump file for each such child
process. This can be handy for investigating the states of other processes after a crash. It can also
consume lots of disk space in the event of repeated crashes, so do not enable this on systems you are
not monitoring carefully. Beware that no support exists for cleaning up the core file(s) automatically.
This parameter can only be set in the postgresql.conf file or on the server command line.

send_abort_for_kill (boolean)

By default, after attempting to stop a child process with SIGQUIT, the postmaster will wait five sec-
onds and then send SIGKILL to force immediate termination. When this option is set to on, SIGABRT
is sent instead of SIGKILL. That normally results in production of a core dump file for each such
child process. This can be handy for investigating the states of “stuck” child processes. It can also
consume lots of disk space in the event of repeated crashes, so do not enable this on systems you are
not monitoring carefully. Beware that no support exists for cleaning up the core file(s) automatically.
This parameter can only be set in the postgresql.conf file or on the server command line.

debug_logical_replication_streaming (enum)

The allowed values are buffered and immediate. The default is buffered. This parameter is intended
to be used to test logical decoding and replication of large transactions. The effect of debug_logi-
cal_replication_streaming is different for the publisher and subscriber:

On the publisher side, debug_logical_replication_streaming allows streaming or serializing
changes immediately in logical decoding. When set to immediate, stream each change if the stream-
ing option of CREATE SUBSCRIPTION is enabled, otherwise, serialize each change. When set to
buffered, the decoding will stream or serialize changes when logical_decoding_work_mem is
reached.

On the subscriber side, if the streaming option is set to parallel, debug_logical_replica-
tion_streaming can be used to direct the leader apply worker to send changes to the shared mem-
ory queue or to serialize all changes to the file. When set to buffered, the leader sends changes
to parallel apply workers via a shared memory queue. When set to immediate, the leader serializes
all changes to files and notifies the parallel apply workers to read and apply them at the end of the
transaction.

19.18. Short Options
For convenience there are also single letter command-line option switches available for some parame-
ters. They are described in Table 19.5. Some of these options exist for historical reasons, and their pres-
ence as a single-letter option does not necessarily indicate an endorsement to use the option heavily.

Table 19.5. Short Option Key

Short Option Equivalent
-B x shared_buffers = x

-d x log_min_messages = DEBUG x

-e datestyle = euro

-fb, -fh, -fi, -fm, -fn, -fo, -fs,
 -ft

enable_bitmapscan = off , enable_hashjoin = off , enable_
indexscan = off, enable_mergejoin = off , enable_nestloop
= off, enable_indexonlyscan = off , enable_seqscan = off ,
 enable_tidscan = off

630

Server Configuration

Short Option Equivalent
-F fsync = off

-h x listen_addresses = x

-i listen_addresses = '*'

-k x unix_socket_directories = x

-l ssl = on

-N x max_connections = x

-O allow_system_table_mods = on

-p x port = x

-P ignore_system_indexes = on

-s log_statement_stats = on

-S x work_mem = x

-tpa, -tpl, -te log_parser_stats = on , log_planner_stats = on , log_ex-
ecutor_stats = on

-W x post_auth_delay = x

631

Chapter 20. Client Authentication
When a client application connects to the database server, it specifies which PostgreSQL database user
name it wants to connect as, much the same way one logs into a Unix computer as a particular user.
Within the SQL environment the active database user name determines access privileges to database
objects — see Chapter 21 for more information. Therefore, it is essential to restrict which database users
can connect.

Note
As explained in Chapter 21, PostgreSQL actually does privilege management in terms of “roles”.
In this chapter, we consistently use database user to mean “role with the LOGIN privilege”.

Authentication is the process by which the database server establishes the identity of the client, and
by extension determines whether the client application (or the user who runs the client application) is
permitted to connect with the database user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenticate
a particular client connection can be selected on the basis of (client) host address, database, and user.

PostgreSQL database user names are logically separate from user names of the operating system in
which the server runs. If all the users of a particular server also have accounts on the server's machine,
it makes sense to assign database user names that match their operating system user names. However,
a server that accepts remote connections might have many database users who have no local operating
system account, and in such cases there need be no connection between database user names and OS
user names.

20.1. The pg_hba.conf File
Client authentication is controlled by a configuration file, which traditionally is named pg_hba.conf and
is stored in the database cluster's data directory. (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized by initdb. It is possible to place the
authentication configuration file elsewhere, however; see the hba_file configuration parameter.

The pg_hba.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload,
calling the SQL function pg_reload_conf(), or using kill -HUP) to make it re-read the file.

Note
The preceding statement is not true on Microsoft Windows: there, any changes in the pg_hba.conf
file are immediately applied by subsequent new connections.

The system view pg_hba_file_rules can be helpful for pre-testing changes to the pg_hba.conf file, or
for diagnosing problems if loading of the file did not have the desired effects. Rows in the view with non-
null error fields indicate problems in the corresponding lines of the file.

The general format of the pg_hba.conf file is a set of records, one per line. Blank lines are ignored, as
is any text after the # comment character. A record can be continued onto the next line by ending the
line with a backslash. (Backslashes are not special except at the end of a line.) A record is made up of a
number of fields which are separated by spaces and/or tabs. Fields can contain white space if the field
value is double-quoted. Quoting one of the keywords in a database, user, or address field (e.g., all or
replication) makes the word lose its special meaning, and just match a database, user, or host with
that name. Backslash line continuation applies even within quoted text or comments.

Each authentication record specifies a connection type, a client IP address range (if relevant for the con-
nection type), a database name, a user name, and the authentication method to be used for connections

632

Client Authentication

matching these parameters. The first record with a matching connection type, client address, requested
database, and user name is used to perform authentication. There is no “fall-through” or “backup”: if
one record is chosen and the authentication fails, subsequent records are not considered. If no record
matches, access is denied.

Each record can be an include directive or an authentication record. Include directives specify files that
can be included, that contain additional records. The records will be inserted in place of the include
directives. Include directives only contain two fields: include, include_if_exists or include_dir di-
rective and the file or directory to be included. The file or directory can be a relative or absolute path,
and can be double-quoted. For the include_dir form, all files not starting with a . and ending with .conf
will be included. Multiple files within an include directory are processed in file name order (according
to C locale rules, i.e., numbers before letters, and uppercase letters before lowercase ones).

A record can have several formats:
local database user auth-method [auth-options]
host database user address auth-method [auth-options]
hostssl database user address auth-method [auth-options]
hostnossl database user address auth-method [auth-options]
hostgssenc database user address auth-method [auth-options]
hostnogssenc database user address auth-method [auth-options]
host database user IP-address IP-mask auth-method [auth-
options]
hostssl database user IP-address IP-mask auth-method [auth-
options]
hostnossl database user IP-address IP-mask auth-method [auth-
options]
hostgssenc database user IP-address IP-mask auth-method [auth-
options]
hostnogssenc database user IP-address IP-mask auth-method [auth-
options]
include file
include_if_exists file
include_dir directory

The meaning of the fields is as follows:
local

This record matches connection attempts using Unix-domain sockets. Without a record of this type,
Unix-domain socket connections are disallowed.

host

This record matches connection attempts made using TCP/IP. host records match SSL or non-SSL
connection attempts as well as GSSAPI encrypted or non-GSSAPI encrypted connection attempts.

Note
Remote TCP/IP connections will not be possible unless the server is started with an appropriate
value for the listen_addresses configuration parameter, since the default behavior is to listen
for TCP/IP connections only on the local loopback address localhost.

hostssl

This record matches connection attempts made using TCP/IP, but only when the connection is made
with SSL encryption.

To make use of this option the server must be built with SSL support. Furthermore, SSL must be en-
abled by setting the ssl configuration parameter (see Section 18.9 for more information). Otherwise,
the hostssl record is ignored except for logging a warning that it cannot match any connections.

633

Client Authentication

hostnossl

This record type has the opposite behavior of hostssl; it only matches connection attempts made
over TCP/IP that do not use SSL.

hostgssenc

This record matches connection attempts made using TCP/IP, but only when the connection is made
with GSSAPI encryption.

To make use of this option the server must be built with GSSAPI support. Otherwise, the hostgssenc
record is ignored except for logging a warning that it cannot match any connections.

hostnogssenc

This record type has the opposite behavior of hostgssenc; it only matches connection attempts made
over TCP/IP that do not use GSSAPI encryption.

database

Specifies which database name(s) this record matches. The value all specifies that it matches all
databases. The value sameuser specifies that the record matches if the requested database has the
same name as the requested user. The value samerole specifies that the requested user must be a
member of the role with the same name as the requested database. (samegroup is an obsolete but
still accepted spelling of samerole.) Superusers are not considered to be members of a role for the
purposes of samerole unless they are explicitly members of the role, directly or indirectly, and not just
by virtue of being a superuser. The value replication specifies that the record matches if a physical
replication connection is requested, however, it doesn't match with logical replication connections.
Note that physical replication connections do not specify any particular database whereas logical
replication connections do specify it. Otherwise, this is the name of a specific PostgreSQL database
or a regular expression. Multiple database names and/or regular expressions can be supplied by
separating them with commas.

If the database name starts with a slash (/), the remainder of the name is treated as a regular
expression. (See Section 9.7.3.1 for details of PostgreSQL's regular expression syntax.)

A separate file containing database names and/or regular expressions can be specified by preceding
the file name with @.

user

Specifies which database user name(s) this record matches. The value all specifies that it matches
all users. Otherwise, this is either the name of a specific database user, a regular expression (when
starting with a slash (/), or a group name preceded by +. (Recall that there is no real distinction
between users and groups in PostgreSQL; a + mark really means “match any of the roles that are
directly or indirectly members of this role”, while a name without a + mark matches only that specific
role.) For this purpose, a superuser is only considered to be a member of a role if they are explicitly
a member of the role, directly or indirectly, and not just by virtue of being a superuser. Multiple user
names and/or regular expressions can be supplied by separating them with commas.

If the user name starts with a slash (/), the remainder of the name is treated as a regular expression.
(See Section 9.7.3.1 for details of PostgreSQL's regular expression syntax.)

A separate file containing user names and/or regular expressions can be specified by preceding the
file name with @.

address

Specifies the client machine address(es) that this record matches. This field can contain either a host
name, an IP address range, or one of the special key words mentioned below.

An IP address range is specified using standard numeric notation for the range's starting address,
then a slash (/) and a CIDR mask length. The mask length indicates the number of high-order bits of

634

Client Authentication

the client IP address that must match. Bits to the right of this should be zero in the given IP address.
There must not be any white space between the IP address, the /, and the CIDR mask length.

Typical examples of an IPv4 address range specified this way are 172.20.143.89/32 for a single host,
or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for a larger one. An IPv6 address range
might look like ::1/128 for a single host (in this case the IPv6 loopback address) or fe80::7a31:c1f-
f:0000:0000/96 for a small network. 0.0.0.0/0 represents all IPv4 addresses, and ::0/0 represents
all IPv6 addresses. To specify a single host, use a mask length of 32 for IPv4 or 128 for IPv6. In a
network address, do not omit trailing zeroes.

An entry given in IPv4 format will match only IPv4 connections, and an entry given in IPv6 format
will match only IPv6 connections, even if the represented address is in the IPv4-in-IPv6 range.

You can also write all to match any IP address, samehost to match any of the server's own IP ad-
dresses, or samenet to match any address in any subnet that the server is directly connected to.

If a host name is specified (anything that is not an IP address range or a special key word is treated
as a host name), that name is compared with the result of a reverse name resolution of the client's IP
address (e.g., reverse DNS lookup, if DNS is used). Host name comparisons are case insensitive. If
there is a match, then a forward name resolution (e.g., forward DNS lookup) is performed on the host
name to check whether any of the addresses it resolves to are equal to the client's IP address. If both
directions match, then the entry is considered to match. (The host name that is used in pg_hba.conf
should be the one that address-to-name resolution of the client's IP address returns, otherwise the
line won't be matched. Some host name databases allow associating an IP address with multiple host
names, but the operating system will only return one host name when asked to resolve an IP address.)

A host name specification that starts with a dot (.) matches a suffix of the actual host name. So
.example.com would match foo.example.com (but not just example.com).

When host names are specified in pg_hba.conf, you should make sure that name resolution is rea-
sonably fast. It can be of advantage to set up a local name resolution cache such as nscd. Also, you
may wish to enable the configuration parameter log_hostname to see the client's host name instead
of the IP address in the log.

These fields do not apply to local records.

Note
Users sometimes wonder why host names are handled in this seemingly complicated way, with
two name resolutions including a reverse lookup of the client's IP address. This complicates
use of the feature in case the client's reverse DNS entry is not set up or yields some undesirable
host name. It is done primarily for efficiency: this way, a connection attempt requires at most
two resolver lookups, one reverse and one forward. If there is a resolver problem with some
address, it becomes only that client's problem. A hypothetical alternative implementation that
only did forward lookups would have to resolve every host name mentioned in pg_hba.conf
during every connection attempt. That could be quite slow if many names are listed. And if
there is a resolver problem with one of the host names, it becomes everyone's problem.

Also, a reverse lookup is necessary to implement the suffix matching feature, because the
actual client host name needs to be known in order to match it against the pattern.

Note that this behavior is consistent with other popular implementations of host name-based
access control, such as the Apache HTTP Server and TCP Wrappers.

IP-address
IP-mask

These two fields can be used as an alternative to the IP-address/mask-length notation. Instead
of specifying the mask length, the actual mask is specified in a separate column. For example,

635

Client Authentication

255.0.0.0 represents an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a CIDR mask
length of 32.

These fields do not apply to local records.

auth-method

Specifies the authentication method to use when a connection matches this record. The possible
choices are summarized here; details are in Section 20.3. All the options are lower case and treated
case sensitively, so even acronyms like ldap must be specified as lower case.
trust

Allow the connection unconditionally. This method allows anyone that can connect to the Post-
greSQL database server to login as any PostgreSQL user they wish, without the need for a pass-
word or any other authentication. See Section 20.4 for details.

reject

Reject the connection unconditionally. This is useful for “filtering out” certain hosts from a group,
for example a reject line could block a specific host from connecting, while a later line allows
the remaining hosts in a specific network to connect.

scram-sha-256

Perform SCRAM-SHA-256 authentication to verify the user's password. See Section 20.5 for de-
tails.

md5

Perform SCRAM-SHA-256 or MD5 authentication to verify the user's password. See Section 20.5
for details.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future re-
lease of PostgreSQL. Refer to Section 20.5 for details about migrating to another password
type.

password

Require the client to supply an unencrypted password for authentication. Since the password
is sent in clear text over the network, this should not be used on untrusted networks. See Sec-
tion 20.5 for details.

gss

Use GSSAPI to authenticate the user. This is only available for TCP/IP connections. See Sec-
tion 20.6 for details. It can be used in conjunction with GSSAPI encryption.

sspi

Use SSPI to authenticate the user. This is only available on Windows. See Section 20.7 for details.

ident

Obtain the operating system user name of the client by contacting the ident server on the client
and check if it matches the requested database user name. Ident authentication can only be used
on TCP/IP connections. When specified for local connections, peer authentication will be used
instead. See Section 20.8 for details.

peer

Obtain the client's operating system user name from the operating system and check if it matches
the requested database user name. This is only available for local connections. See Section 20.9
for details.

636

Client Authentication

ldap

Authenticate using an LDAP server. See Section 20.10 for details.

radius

Authenticate using a RADIUS server. See Section 20.11 for details.

cert

Authenticate using SSL client certificates. See Section 20.12 for details.

pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the operat-
ing system. See Section 20.13 for details.

bsd

Authenticate using the BSD Authentication service provided by the operating system. See Sec-
tion 20.14 for details.

oauth

Authorize and optionally authenticate using a third-party OAuth 2.0 identity provider. See Sec-
tion 20.15 for details.

auth-options

After the auth-method field, there can be field(s) of the form name=value that specify options for the
authentication method. Details about which options are available for which authentication methods
appear below.

In addition to the method-specific options listed below, there is a method-independent authentica-
tion option clientcert, which can be specified in any hostssl record. This option can be set to
verify-ca or verify-full. Both options require the client to present a valid (trusted) SSL certifi-
cate, while verify-full additionally enforces that the cn (Common Name) in the certificate matches
the username or an applicable mapping. This behavior is similar to the cert authentication method
(see Section 20.12) but enables pairing the verification of client certificates with any authentication
method that supports hostssl entries.

On any record using client certificate authentication (i.e. one using the cert authentication method
or one using the clientcert option), you can specify which part of the client certificate credentials
to match using the clientname option. This option can have one of two values. If you specify client-
name=CN, which is the default, the username is matched against the certificate's Common Name (CN).
If instead you specify clientname=DN the username is matched against the entire Distinguished
Name (DN) of the certificate. This option is probably best used in conjunction with a username map.
The comparison is done with the DN in RFC 2253 format. To see the DN of a client certificate in this
format, do

openssl x509 -in myclient.crt -noout -subject -nameopt RFC2253 | sed "s/^subject=//"

Care needs to be taken when using this option, especially when using regular expression matching
against the DN.

include

This line will be replaced by the contents of the given file.

include_if_exists

This line will be replaced by the content of the given file if the file exists. Otherwise, a message is
logged to indicate that the file has been skipped.

637

https://datatracker.ietf.org/doc/html/rfc2253

Client Authentication

include_dir

This line will be replaced by the contents of all the files found in the directory, if they don't start
with a . and end with .conf, processed in file name order (according to C locale rules, i.e., numbers
before letters, and uppercase letters before lowercase ones).

Files included by @ constructs are read as lists of names, which can be separated by either whitespace
or commas. Comments are introduced by #, just as in pg_hba.conf, and nested @ constructs are allowed.
Unless the file name following @ is an absolute path, it is taken to be relative to the directory containing
the referencing file.

Since the pg_hba.conf records are examined sequentially for each connection attempt, the order of the
records is significant. Typically, earlier records will have tight connection match parameters and weaker
authentication methods, while later records will have looser match parameters and stronger authentica-
tion methods. For example, one might wish to use trust authentication for local TCP/IP connections but
require a password for remote TCP/IP connections. In this case a record specifying trust authentication
for connections from 127.0.0.1 would appear before a record specifying password authentication for a
wider range of allowed client IP addresses.

Tip
To connect to a particular database, a user must not only pass the pg_hba.conf checks, but must
have the CONNECT privilege for the database. If you wish to restrict which users can connect to
which databases, it's usually easier to control this by granting/revoking CONNECT privilege than to
put the rules in pg_hba.conf entries.

Some examples of pg_hba.conf entries are shown in Example 20.1. See the next section for details on
the different authentication methods.

Example 20.1. Example pg_hba.conf Entries
Allow any user on the local system to connect to any database with
any database user name using Unix-domain sockets (the default for local
connections).
#
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

The same as the previous line, but using a separate netmask column
#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

The same over IPv6.
#
TYPE DATABASE USER ADDRESS METHOD
host all all ::1/128 trust

The same using a host name (would typically cover both IPv4 and IPv6).
#
TYPE DATABASE USER ADDRESS METHOD
host all all localhost trust

The same using a regular expression for DATABASE, that allows connection

638

Client Authentication

to any databases with a name beginning with "db" and finishing with a
number using two to four digits (like "db1234" or "db12").
#
TYPE DATABASE USER ADDRESS METHOD
host "/^db\d{2,4}$" all localhost trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "postgres" as the same user name that ident reports for
the connection (typically the operating system user name).
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.93.0/24 ident

Allow any user from host 192.168.12.10 to connect to database
"postgres" if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram-sha-256

Allow any user from hosts in the example.com domain to connect to
any database if the user's password is correctly supplied.
#
Require SCRAM authentication for most users, but make an exception
for user 'mike', who uses an older client that doesn't support SCRAM
authentication.
#
TYPE DATABASE USER ADDRESS METHOD
host all mike .example.com md5
host all all .example.com scram-sha-256

In the absence of preceding "host" lines, these three lines will
reject all connections from 192.168.54.1 (since that entry will be
matched first), but allow GSSAPI-encrypted connections from anywhere else
on the Internet. The zero mask causes no bits of the host IP address to
be considered, so it matches any host. Unencrypted GSSAPI connections
(which "fall through" to the third line since "hostgssenc" only matches
encrypted GSSAPI connections) are allowed, but only from 192.168.12.10.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.54.1/32 reject
hostgssenc all all 0.0.0.0/0 gss
host all all 192.168.12.10/32 gss

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh" and he requests to connect as PostgreSQL user "guest1", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guest1".
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.0.0/16 ident map=omicron

If these are the only four lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their database user name) except for users whose
name end with "helpdesk", administrators and members of role "support",
who can connect to all databases. The file $PGDATA/admins contains a
list of names of administrators. Passwords are required in all cases.

639

Client Authentication

#
TYPE DATABASE USER ADDRESS METHOD
local sameuser all md5
local all /^.*helpdesk$ md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names:
local db1,db2,@demodbs all md5

20.2. User Name Maps
When using an external authentication system such as Ident or GSSAPI, the name of the operating
system user that initiated the connection might not be the same as the database user (role) that is to be
used. In this case, a user name map can be applied to map the operating system user name to a database
user. To use user name mapping, specify map=map-name in the options field in pg_hba.conf. This option
is supported for all authentication methods that receive external user names. Since different mappings
might be needed for different connections, the name of the map to be used is specified in the map-name
parameter in pg_hba.conf to indicate which map to use for each individual connection.

User name maps are defined in the ident map file, which by default is named pg_ident.confand is stored
in the cluster's data directory. (It is possible to place the map file elsewhere, however; see the ident_file
configuration parameter.) The ident map file contains lines of the general forms:

map-name system-username database-username
include file
include_if_exists file
include_dir directory

Comments, whitespace and line continuations are handled in the same way as in pg_hba.conf. The map-
name is an arbitrary name that will be used to refer to this mapping in pg_hba.conf. The other two fields
specify an operating system user name and a matching database user name. The same map-name can be
used repeatedly to specify multiple user-mappings within a single map.

As for pg_hba.conf, the lines in this file can be include directives, following the same rules.

The pg_ident.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload,
calling the SQL function pg_reload_conf(), or using kill -HUP) to make it re-read the file.

The system view pg_ident_file_mappings can be helpful for pre-testing changes to the pg_ident.conf
file, or for diagnosing problems if loading of the file did not have the desired effects. Rows in the view
with non-null error fields indicate problems in the corresponding lines of the file.

There is no restriction regarding how many database users a given operating system user can corre-
spond to, nor vice versa. Thus, entries in a map should be thought of as meaning “this operating system
user is allowed to connect as this database user”, rather than implying that they are equivalent. The
connection will be allowed if there is any map entry that pairs the user name obtained from the external
authentication system with the database user name that the user has requested to connect as. The value
all can be used as the database-username to specify that if the system-username matches, then this
user is allowed to log in as any of the existing database users. Quoting all makes the keyword lose its
special meaning.

If the database-username begins with a + character, then the operating system user can login as any
user belonging to that role, similarly to how user names beginning with + are treated in pg_hba.conf.
Thus, a + mark means “match any of the roles that are directly or indirectly members of this role”, while

640

Client Authentication

a name without a + mark matches only that specific role. Quoting a username starting with a + makes
the + lose its special meaning.

If the system-username field starts with a slash (/), the remainder of the field is treated as a regular
expression. (See Section 9.7.3.1 for details of PostgreSQL's regular expression syntax.) The regular ex-
pression can include a single capture, or parenthesized subexpression. The portion of the system user
name that matched the capture can then be referenced in the database-username field as \1 (back-
slash-one). This allows the mapping of multiple user names in a single line, which is particularly useful
for simple syntax substitutions. For example, these entries

mymap /^(.*)@mydomain\.com$ \1
mymap /^(.*)@otherdomain\.com$ guest

will remove the domain part for users with system user names that end with @mydomain.com, and allow
any user whose system name ends with @otherdomain.com to log in as guest. Quoting a database-user-
name containing \1 does not make \1 lose its special meaning.

If the database-username field starts with a slash (/), the remainder of the field is treated as a regular
expression. When the database-username field is a regular expression, it is not possible to use \1 within
it to refer to a capture from the system-username field.

Tip
Keep in mind that by default, a regular expression can match just part of a string. It's usually
wise to use ^ and $, as shown in the above example, to force the match to be to the entire system
user name.

A pg_ident.conf file that could be used in conjunction with the pg_hba.conf file in Example 20.1 is
shown in Example 20.2. In this example, anyone logged in to a machine on the 192.168 network that
does not have the operating system user name bryanh, ann, or robert would not be granted access.
Unix user robert would only be allowed access when he tries to connect as PostgreSQL user bob, not
as robert or anyone else. ann would only be allowed to connect as ann. User bryanh would be allowed
to connect as either bryanh or as guest1.

Example 20.2. An Example pg_ident.conf File

MAPNAME SYSTEM-USERNAME PG-USERNAME

omicron bryanh bryanh
omicron ann ann
bob has user name robert on these machines
omicron robert bob
bryanh can also connect as guest1
omicron bryanh guest1

20.3. Authentication Methods
PostgreSQL provides various methods for authenticating users:

• Trust authentication, which simply trusts that users are who they say they are.

• Password authentication, which requires that users send a password.

• GSSAPI authentication, which relies on a GSSAPI-compatible security library. Typically this is used
to access an authentication server such as a Kerberos or Microsoft Active Directory server.

• SSPI authentication, which uses a Windows-specific protocol similar to GSSAPI.

• Ident authentication, which relies on an “Identification Protocol” (RFC 1413) service on the client's
machine. (On local Unix-socket connections, this is treated as peer authentication.)

641

https://datatracker.ietf.org/doc/html/rfc1413

Client Authentication

• Peer authentication, which relies on operating system facilities to identify the process at the other
end of a local connection. This is not supported for remote connections.

• LDAP authentication, which relies on an LDAP authentication server.

• RADIUS authentication, which relies on a RADIUS authentication server.

• Certificate authentication, which requires an SSL connection and authenticates users by checking
the SSL certificate they send.

• PAM authentication, which relies on a PAM (Pluggable Authentication Modules) library.

• BSD authentication, which relies on the BSD Authentication framework (currently available only on
OpenBSD).

• OAuth authorization/authentication, which relies on an external OAuth 2.0 identity provider.

Peer authentication is usually recommendable for local connections, though trust authentication might
be sufficient in some circumstances. Password authentication is the easiest choice for remote connec-
tions. All the other options require some kind of external security infrastructure (usually an authentica-
tion server or a certificate authority for issuing SSL certificates), or are platform-specific.

The following sections describe each of these authentication methods in more detail.

20.4. Trust Authentication
When trust authentication is specified, PostgreSQL assumes that anyone who can connect to the server
is authorized to access the database with whatever database user name they specify (even superuser
names). Of course, restrictions made in the database and user columns still apply. This method should
only be used when there is adequate operating-system-level protection on connections to the server.

trust authentication is appropriate and very convenient for local connections on a single-user work-
station. It is usually not appropriate by itself on a multiuser machine. However, you might be able to
use trust even on a multiuser machine, if you restrict access to the server's Unix-domain socket file
using file-system permissions. To do this, set the unix_socket_permissions (and possibly unix_sock-
et_group) configuration parameters as described in Section 19.3. Or you could set the unix_socket_di-
rectories configuration parameter to place the socket file in a suitably restricted directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are
not restricted by file-system permissions. Therefore, if you want to use file-system permissions for local
security, remove the host ... 127.0.0.1 ... line from pg_hba.conf, or change it to a non-trust
authentication method.

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine that
is allowed to connect to the server by the pg_hba.conf lines that specify trust. It is seldom reasonable
to use trust for any TCP/IP connections other than those from localhost (127.0.0.1).

20.5. Password Authentication
There are several password-based authentication methods. These methods operate similarly but differ
in how the users' passwords are stored on the server and how the password provided by a client is sent
across the connection.

scram-sha-256

The method scram-sha-256 performs SCRAM-SHA-256 authentication, as described in RFC 7677.
It is a challenge-response scheme that prevents password sniffing on untrusted connections and
supports storing passwords on the server in a cryptographically hashed form that is thought to be
secure.

This is the most secure of the currently provided methods, but it is not supported by older client
libraries.

642

https://datatracker.ietf.org/doc/html/rfc7677

Client Authentication

md5

The method md5 uses a custom less secure challenge-response mechanism. It prevents password
sniffing and avoids storing passwords on the server in plain text but provides no protection if an
attacker manages to steal the password hash from the server. Also, the MD5 hash algorithm is nowa-
days no longer considered secure against determined attacks.

To ease transition from the md5 method to the newer SCRAM method, if md5 is specified as a method
in pg_hba.conf but the user's password on the server is encrypted for SCRAM (see below), then
SCRAM-based authentication will automatically be chosen instead.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future release
of PostgreSQL. Refer to the text below for details about migrating to another password type.

password

The method password sends the password in clear-text and is therefore vulnerable to password “sniff-
ing” attacks. It should always be avoided if possible. If the connection is protected by SSL encryption
then password can be used safely, though. (Though SSL certificate authentication might be a better
choice if one is depending on using SSL).

PostgreSQL database passwords are separate from operating system user passwords. The password for
each database user is stored in the pg_authid system catalog. Passwords can be managed with the SQL
commands CREATE ROLE and ALTER ROLE, e.g., CREATE ROLE foo WITH LOGIN PASSWORD 'secret',
or the psql command \password. If no password has been set up for a user, the stored password is null
and password authentication will always fail for that user.

The availability of the different password-based authentication methods depends on how a user's pass-
word on the server is encrypted (or hashed, more accurately). This is controlled by the configuration
parameter password_encryption at the time the password is set. If a password was encrypted using the
scram-sha-256 setting, then it can be used for the authentication methods scram-sha-256 and pass-
word (but password transmission will be in plain text in the latter case). The authentication method
specification md5 will automatically switch to using the scram-sha-256 method in this case, as explained
above, so it will also work. If a password was encrypted using the md5 setting, then it can be used only
for the md5 and password authentication method specifications (again, with the password transmitted
in plain text in the latter case). (Previous PostgreSQL releases supported storing the password on the
server in plain text. This is no longer possible.) To check the currently stored password hashes, see the
system catalog pg_authid.

To upgrade an existing installation from md5 to scram-sha-256, after having ensured that all client li-
braries in use are new enough to support SCRAM, set password_encryption = 'scram-sha-256' in
postgresql.conf, make all users set new passwords, and change the authentication method specifica-
tions in pg_hba.conf to scram-sha-256.

20.6. GSSAPI Authentication
GSSAPI is an industry-standard protocol for secure authentication defined in RFC 2743. PostgreSQL
supports GSSAPI for authentication, communications encryption, or both. GSSAPI provides automatic
authentication (single sign-on) for systems that support it. The authentication itself is secure. If GSSAPI
encryption or SSL encryption is used, the data sent along the database connection will be encrypted;
otherwise, it will not.

GSSAPI support has to be enabled when PostgreSQL is built; see Chapter 17 for more information.

When GSSAPI uses Kerberos, it uses a standard service principal (authentication identity) name in the
format servicename/hostname@realm. The principal name used by a particular installation is not encod-
ed in the PostgreSQL server in any way; rather it is specified in the keytab file that the server reads to

643

https://datatracker.ietf.org/doc/html/rfc2743

Client Authentication

determine its identity. If multiple principals are listed in the keytab file, the server will accept any one
of them. The server's realm name is the preferred realm specified in the Kerberos configuration file(s)
accessible to the server.

When connecting, the client must know the principal name of the server it intends to connect to. The
servicename part of the principal is ordinarily postgres, but another value can be selected via libpq's
krbsrvname connection parameter. The hostname part is the fully qualified host name that libpq is told
to connect to. The realm name is the preferred realm specified in the Kerberos configuration file(s)
accessible to the client.

The client will also have a principal name for its own identity (and it must have a valid ticket for this
principal). To use GSSAPI for authentication, the client principal must be associated with a PostgreSQL
database user name. The pg_ident.conf configuration file can be used to map principals to user names;
for example, pgusername@realm could be mapped to just pgusername. Alternatively, you can use the full
username@realm principal as the role name in PostgreSQL without any mapping.

PostgreSQL also supports mapping client principals to user names by just stripping the realm from the
principal. This method is supported for backwards compatibility and is strongly discouraged as it is then
impossible to distinguish different users with the same user name but coming from different realms.
To enable this, set include_realm to 0. For simple single-realm installations, doing that combined with
setting the krb_realm parameter (which checks that the principal's realm matches exactly what is in
the krb_realm parameter) is still secure; but this is a less capable approach compared to specifying an
explicit mapping in pg_ident.conf.

The location of the server's keytab file is specified by the krb_server_keyfile configuration parameter.
For security reasons, it is recommended to use a separate keytab just for the PostgreSQL server rather
than allowing the server to read the system keytab file. Make sure that your server keytab file is readable
(and preferably only readable, not writable) by the PostgreSQL server account. (See also Section 18.1.)

The keytab file is generated using the Kerberos software; see the Kerberos documentation for details.
The following example shows doing this using the kadmin tool of MIT Kerberos:
kadmin% addprinc -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

The following authentication options are supported for the GSSAPI authentication method:
include_realm

If set to 0, the realm name from the authenticated user principal is stripped off before being passed
through the user name mapping (Section 20.2). This is discouraged and is primarily available for
backwards compatibility, as it is not secure in multi-realm environments unless krb_realm is also
used. It is recommended to leave include_realm set to the default (1) and to provide an explicit
mapping in pg_ident.conf to convert principal names to PostgreSQL user names.

map

Allows mapping from client principals to database user names. See Section 20.2 for details.
For a GSSAPI/Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, user-
name/hostbased@EXAMPLE.COM), the user name used for mapping is username@EXAMPLE.COM (or
username/hostbased@EXAMPLE.COM, respectively), unless include_realm has been set to 0, in which
case username (or username/hostbased) is what is seen as the system user name when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that
realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user
name mapping is done.

In addition to these settings, which can be different for different pg_hba.conf entries, there is the serv-
er-wide krb_caseins_users configuration parameter. If that is set to true, client principals are matched
to user map entries case-insensitively. krb_realm, if set, is also matched case-insensitively.

644

Client Authentication

20.7. SSPI Authentication
SSPI is a Windows technology for secure authentication with single sign-on. PostgreSQL will use SSPI in
negotiate mode, which will use Kerberos when possible and automatically fall back to NTLM in other
cases. SSPI and GSSAPI interoperate as clients and servers, e.g., an SSPI client can authenticate to an
GSSAPI server. It is recommended to use SSPI on Windows clients and servers and GSSAPI on non-
Windows platforms.

When using Kerberos authentication, SSPI works the same way GSSAPI does; see Section 20.6 for de-
tails.

The following configuration options are supported for SSPI:

include_realm

If set to 0, the realm name from the authenticated user principal is stripped off before being passed
through the user name mapping (Section 20.2). This is discouraged and is primarily available for
backwards compatibility, as it is not secure in multi-realm environments unless krb_realm is also
used. It is recommended to leave include_realm set to the default (1) and to provide an explicit
mapping in pg_ident.conf to convert principal names to PostgreSQL user names.

compat_realm

If set to 1, the domain's SAM-compatible name (also known as the NetBIOS name) is used for the
include_realm option. This is the default. If set to 0, the true realm name from the Kerberos user
principal name is used.

Do not disable this option unless your server runs under a domain account (this includes virtual
service accounts on a domain member system) and all clients authenticating through SSPI are also
using domain accounts, or authentication will fail.

upn_username

If this option is enabled along with compat_realm, the user name from the Kerberos UPN is used
for authentication. If it is disabled (the default), the SAM-compatible user name is used. By default,
these two names are identical for new user accounts.

Note that libpq uses the SAM-compatible name if no explicit user name is specified. If you use libpq
or a driver based on it, you should leave this option disabled or explicitly specify user name in the
connection string.

map

Allows for mapping between system and database user names. See Section 20.2 for details. For
an SSPI/Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, username/host-
based@EXAMPLE.COM), the user name used for mapping is username@EXAMPLE.COM (or user-
name/hostbased@EXAMPLE.COM, respectively), unless include_realm has been set to 0, in which case
username (or username/hostbased) is what is seen as the system user name when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that
realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user
name mapping is done.

20.8. Ident Authentication
The ident authentication method works by obtaining the client's operating system user name from an
ident server and using it as the allowed database user name (with an optional user name mapping). This
is only supported on TCP/IP connections.

645

Client Authentication

Note
When ident is specified for a local (non-TCP/IP) connection, peer authentication (see Section 20.9)
will be used instead.

The following configuration options are supported for ident:

map

Allows for mapping between system and database user names. See Section 20.2 for details.

The “Identification Protocol” is described in RFC 1413. Virtually every Unix-like operating system ships
with an ident server that listens on TCP port 113 by default. The basic functionality of an ident server is
to answer questions like “What user initiated the connection that goes out of your port X and connects
to my port Y?”. Since PostgreSQL knows both X and Y when a physical connection is established, it can
interrogate the ident server on the host of the connecting client and can theoretically determine the
operating system user for any given connection.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine is
untrusted or compromised, an attacker could run just about any program on port 113 and return any user
name they choose. This authentication method is therefore only appropriate for closed networks where
each client machine is under tight control and where the database and system administrators operate in
close contact. In other words, you must trust the machine running the ident server. Heed the warning:

The Identification Protocol is not intended as an authorization or access control protocol.

—RFC 1413

Some ident servers have a nonstandard option that causes the returned user name to be encrypted,
using a key that only the originating machine's administrator knows. This option must not be used when
using the ident server with PostgreSQL, since PostgreSQL does not have any way to decrypt the returned
string to determine the actual user name.

20.9. Peer Authentication
The peer authentication method works by obtaining the client's operating system user name from the
kernel and using it as the allowed database user name (with optional user name mapping). This method
is only supported on local connections.

The following configuration options are supported for peer:

map

Allows for mapping between system and database user names. See Section 20.2 for details.

Peer authentication is only available on operating systems providing the getpeereid() function, the
SO_PEERCRED socket parameter, or similar mechanisms. Currently that includes Linux, most flavors of
BSD including macOS, and Solaris.

20.10. LDAP Authentication
This authentication method operates similarly to password except that it uses LDAP as the password
verification method. LDAP is used only to validate the user name/password pairs. Therefore the user
must already exist in the database before LDAP can be used for authentication.

LDAP authentication can operate in two modes. In the first mode, which we will call the simple bind
mode, the server will bind to the distinguished name constructed as prefix username suffix. Typically,
the prefix parameter is used to specify cn=, or DOMAIN\ in an Active Directory environment. suffix is
used to specify the remaining part of the DN in a non-Active Directory environment.

646

https://datatracker.ietf.org/doc/html/rfc1413

Client Authentication

In the second mode, which we will call the search+bind mode, the server first binds to the LDAP directory
with a fixed user name and password, specified with ldapbinddn and ldapbindpasswd, and performs a
search for the user trying to log in to the database. If no user and password is configured, an anonymous
bind will be attempted to the directory. The search will be performed over the subtree at ldapbasedn,
and will try to do an exact match of the attribute specified in ldapsearchattribute. Once the user has
been found in this search, the server re-binds to the directory as this user, using the password specified
by the client, to verify that the login is correct. This mode is the same as that used by LDAP authentication
schemes in other software, such as Apache mod_authnz_ldap and pam_ldap. This method allows for
significantly more flexibility in where the user objects are located in the directory, but will cause two
additional requests to the LDAP server to be made.

The following configuration options are used in both modes:

ldapserver

Names or IP addresses of LDAP servers to connect to. Multiple servers may be specified, separated
by spaces.

ldapport

Port number on LDAP server to connect to. If no port is specified, the LDAP library's default port
setting will be used.

ldapscheme

Set to ldaps to use LDAPS. This is a non-standard way of using LDAP over SSL, supported by some
LDAP server implementations. See also the ldaptls option for an alternative.

ldaptls

Set to 1 to make the connection between PostgreSQL and the LDAP server use TLS encryption. This
uses the StartTLS operation per RFC 4513. See also the ldapscheme option for an alternative.

Note that using ldapscheme or ldaptls only encrypts the traffic between the PostgreSQL server and
the LDAP server. The connection between the PostgreSQL server and the PostgreSQL client will still be
unencrypted unless SSL is used there as well.

The following options are used in simple bind mode only:

ldapprefix

String to prepend to the user name when forming the DN to bind as, when doing simple bind au-
thentication.

ldapsuffix

String to append to the user name when forming the DN to bind as, when doing simple bind authen-
tication.

The following options are used in search+bind mode only:

ldapbasedn

Root DN to begin the search for the user in, when doing search+bind authentication.

ldapbinddn

DN of user to bind to the directory with to perform the search when doing search+bind authentica-
tion.

ldapbindpasswd

Password for user to bind to the directory with to perform the search when doing search+bind au-
thentication.

647

https://datatracker.ietf.org/doc/html/rfc4513

Client Authentication

ldapsearchattribute

Attribute to match against the user name in the search when doing search+bind authentication. If
no attribute is specified, the uid attribute will be used.

ldapsearchfilter

The search filter to use when doing search+bind authentication. Occurrences of $username will be
replaced with the user name. This allows for more flexible search filters than ldapsearchattribute.

The following option may be used as an alternative way to write some of the above LDAP options in a
more compact and standard form:

ldapurl

An RFC 4516 LDAP URL. The format is

ldap[s]://host[:port]/basedn[?[attribute][?[scope][?[filter]]]]

scope must be one of base, one, sub, typically the last. (The default is base, which is normally not
useful in this application.) attribute can nominate a single attribute, in which case it is used as
a value for ldapsearchattribute. If attribute is empty then filter can be used as a value for
ldapsearchfilter.

The URL scheme ldaps chooses the LDAPS method for making LDAP connections over SSL, equiva-
lent to using ldapscheme=ldaps. To use encrypted LDAP connections using the StartTLS operation,
use the normal URL scheme ldap and specify the ldaptls option in addition to ldapurl.

For non-anonymous binds, ldapbinddn and ldapbindpasswd must be specified as separate options.

LDAP URLs are currently only supported with OpenLDAP, not on Windows.

It is an error to mix configuration options for simple bind with options for search+bind. To use ldapurl
in simple bind mode, the URL must not contain a basedn or query elements.

When using search+bind mode, the search can be performed using a single attribute specified with
ldapsearchattribute, or using a custom search filter specified with ldapsearchfilter. Specifying
ldapsearchattribute=foo is equivalent to specifying ldapsearchfilter="(foo=$username)". If nei-
ther option is specified the default is ldapsearchattribute=uid.

If PostgreSQL was compiled with OpenLDAP as the LDAP client library, the ldapserver setting may be
omitted. In that case, a list of host names and ports is looked up via RFC 2782 DNS SRV records. The
name _ldap._tcp.DOMAIN is looked up, where DOMAIN is extracted from ldapbasedn.

Here is an example for a simple-bind LDAP configuration:

host ... ldap ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example,
 dc=net"

When a connection to the database server as database user someuser is requested, PostgreSQL will
attempt to bind to the LDAP server using the DN cn=someuser, dc=example, dc=net and the password
provided by the client. If that connection succeeds, the database access is granted.

Here is a different simple-bind configuration, which uses the LDAPS scheme and a custom port number,
written as a URL:

host ... ldap ldapurl="ldaps://ldap.example.net:49151" ldapprefix="cn=" ldapsuffix=",
 dc=example, dc=net"

This is slightly more compact than specifying ldapserver, ldapscheme, and ldapport separately.

Here is an example for a search+bind configuration:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net"
 ldapsearchattribute=uid

648

https://datatracker.ietf.org/doc/html/rfc4516
https://datatracker.ietf.org/doc/html/rfc2782

Client Authentication

When a connection to the database server as database user someuser is requested, PostgreSQL will
attempt to bind anonymously (since ldapbinddn was not specified) to the LDAP server, perform a search
for (uid=someuser) under the specified base DN. If an entry is found, it will then attempt to bind using
that found information and the password supplied by the client. If that second bind succeeds, the data-
base access is granted.

Here is the same search+bind configuration written as a URL:

host ... ldap ldapurl="ldap://ldap.example.net/dc=example,dc=net?uid?sub"

Some other software that supports authentication against LDAP uses the same URL format, so it will
be easier to share the configuration.

Here is an example for a search+bind configuration that uses ldapsearchfilter instead of
ldapsearchattribute to allow authentication by user ID or email address:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net"
 ldapsearchfilter="(|(uid=$username)(mail=$username))"

Here is an example for a search+bind configuration that uses DNS SRV discovery to find the host name(s)
and port(s) for the LDAP service for the domain name example.net:

host ... ldap ldapbasedn="dc=example,dc=net"

Tip
Since LDAP often uses commas and spaces to separate the different parts of a DN, it is often
necessary to use double-quoted parameter values when configuring LDAP options, as shown in
the examples.

20.11. RADIUS Authentication
This authentication method operates similarly to password except that it uses RADIUS as the password
verification method. RADIUS is used only to validate the user name/password pairs. Therefore the user
must already exist in the database before RADIUS can be used for authentication.

When using RADIUS authentication, an Access Request message will be sent to the configured RADIUS
server. This request will be of type Authenticate Only, and include parameters for user name, password
(encrypted) and NAS Identifier. The request will be encrypted using a secret shared with the server.
The RADIUS server will respond to this request with either Access Accept or Access Reject. There
is no support for RADIUS accounting.

Multiple RADIUS servers can be specified, in which case they will be tried sequentially. If a negative
response is received from a server, the authentication will fail. If no response is received, the next server
in the list will be tried. To specify multiple servers, separate the server names with commas and surround
the list with double quotes. If multiple servers are specified, the other RADIUS options can also be given
as comma-separated lists, to provide individual values for each server. They can also be specified as a
single value, in which case that value will apply to all servers.

The following configuration options are supported for RADIUS:

radiusservers

The DNS names or IP addresses of the RADIUS servers to connect to. This parameter is required.

radiussecrets

The shared secrets used when talking securely to the RADIUS servers. This must have exactly the
same value on the PostgreSQL and RADIUS servers. It is recommended that this be a string of at
least 16 characters. This parameter is required.

649

Client Authentication

Note
The encryption vector used will only be cryptographically strong if PostgreSQL is built with
support for OpenSSL. In other cases, the transmission to the RADIUS server should only be
considered obfuscated, not secured, and external security measures should be applied if nec-
essary.

radiusports

The port numbers to connect to on the RADIUS servers. If no port is specified, the default RADIUS
port (1812) will be used.

radiusidentifiers

The strings to be used as NAS Identifier in the RADIUS requests. This parameter can be used,
for example, to identify which database cluster the user is attempting to connect to, which can be
useful for policy matching on the RADIUS server. If no identifier is specified, the default postgresql
will be used.

If it is necessary to have a comma or whitespace in a RADIUS parameter value, that can be done by
putting double quotes around the value, but it is tedious because two layers of double-quoting are now
required. An example of putting whitespace into RADIUS secret strings is:
host ... radius radiusservers="server1,server2" radiussecrets="""secret one"",""secret
 two"""

20.12. Certificate Authentication
This authentication method uses SSL client certificates to perform authentication. It is therefore only
available for SSL connections; see Section 18.9.2 for SSL configuration instructions. When using this
authentication method, the server will require that the client provide a valid, trusted certificate. No
password prompt will be sent to the client. The cn (Common Name) attribute of the certificate will be
compared to the requested database user name, and if they match the login will be allowed. User name
mapping can be used to allow cn to be different from the database user name.

The following configuration options are supported for SSL certificate authentication:
map

Allows for mapping between system and database user names. See Section 20.2 for details.

It is redundant to use the clientcert option with cert authentication because cert authentication is
effectively trust authentication with clientcert=verify-full.

20.13. PAM Authentication
This authentication method operates similarly to password except that it uses PAM (Pluggable Authen-
tication Modules) as the authentication mechanism. The default PAM service name is postgresql. PAM
is used only to validate user name/password pairs and optionally the connected remote host name or IP
address. Therefore the user must already exist in the database before PAM can be used for authentica-
tion. For more information about PAM, please read the Linux-PAM Page.

The following configuration options are supported for PAM:
pamservice

PAM service name.

pam_use_hostname

Determines whether the remote IP address or the host name is provided to PAM modules through
the PAM_RHOST item. By default, the IP address is used. Set this option to 1 to use the resolved host

650

https://www.kernel.org/pub/linux/libs/pam/

Client Authentication

name instead. Host name resolution can lead to login delays. (Most PAM configurations don't use this
information, so it is only necessary to consider this setting if a PAM configuration was specifically
created to make use of it.)

Note
If PAM is set up to read /etc/shadow, authentication will fail because the PostgreSQL server is
started by a non-root user. However, this is not an issue when PAM is configured to use LDAP or
other authentication methods.

20.14. BSD Authentication
This authentication method operates similarly to password except that it uses BSD Authentication to
verify the password. BSD Authentication is used only to validate user name/password pairs. Therefore
the user's role must already exist in the database before BSD Authentication can be used for authenti-
cation. The BSD Authentication framework is currently only available on OpenBSD.

BSD Authentication in PostgreSQL uses the auth-postgresql login type and authenticates with the
postgresql login class if that's defined in login.conf. By default that login class does not exist, and
PostgreSQL will use the default login class.

Note
To use BSD Authentication, the PostgreSQL user account (that is, the operating system user run-
ning the server) must first be added to the auth group. The auth group exists by default on Open-
BSD systems.

20.15. OAuth Authorization/Authentication
OAuth 2.0 is an industry-standard framework, defined in RFC 6749, to enable third-party applications to
obtain limited access to a protected resource. OAuth client support has to be enabled when PostgreSQL
is built, see Chapter 17 for more information.

This documentation uses the following terminology when discussing the OAuth ecosystem:
Resource Owner (or End User)

The user or system who owns protected resources and can grant access to them. This documentation
also uses the term end user when the resource owner is a person. When you use psql to connect to
the database using OAuth, you are the resource owner/end user.

Client
The system which accesses the protected resources using access tokens. Applications using libpq,
such as psql, are the OAuth clients when connecting to a PostgreSQL cluster.

Resource Server
The system hosting the protected resources which are accessed by the client. The PostgreSQL cluster
being connected to is the resource server.

Provider
The organization, product vendor, or other entity which develops and/or administers the OAuth au-
thorization servers and clients for a given application. Different providers typically choose different
implementation details for their OAuth systems; a client of one provider is not generally guaranteed
to have access to the servers of another.

This use of the term "provider" is not standard, but it seems to be in wide use colloquially. (It should
not be confused with OpenID's similar term "Identity Provider". While the implementation of OAuth

651

https://datatracker.ietf.org/doc/html/rfc6749

Client Authentication

in PostgreSQL is intended to be interoperable and compatible with OpenID Connect/OIDC, it is not
itself an OIDC client and does not require its use.)

Authorization Server
The system which receives requests from, and issues access tokens to, the client after the authenti-
cated resource owner has given approval. PostgreSQL does not provide an authorization server; it
is the responsibility of the OAuth provider.

Issuer

An identifier for an authorization server, printed as an https:// URL, which provides a trusted
"namespace" for OAuth clients and applications. The issuer identifier allows a single authorization
server to talk to the clients of mutually untrusting entities, as long as they maintain separate issuers.

Note
For small deployments, there may not be a meaningful distinction between the "provider", "autho-
rization server", and "issuer". However, for more complicated setups, there may be a one-to-many
(or many-to-many) relationship: a provider may rent out multiple issuer identifiers to separate
tenants, then provide multiple authorization servers, possibly with different supported feature
sets, to interact with their clients.

PostgreSQL supports bearer tokens, defined in RFC 6750, which are a type of access token used with
OAuth 2.0 where the token is an opaque string. The format of the access token is implementation specific
and is chosen by each authorization server.

The following configuration options are supported for OAuth:

issuer

An HTTPS URL which is either the exact issuer identifier of the authorization server, as defined by
its discovery document, or a well-known URI that points directly to that discovery document. This
parameter is required.

When an OAuth client connects to the server, a URL for the discovery document will be constructed
using the issuer identifier. By default, this URL uses the conventions of OpenID Connect Discovery:
the path /.well-known/openid-configuration will be appended to the end of the issuer identifier.
Alternatively, if the issuer contains a /.well-known/ path segment, that URL will be provided to
the client as-is.

Warning
The OAuth client in libpq requires the server's issuer setting to exactly match the issuer iden-
tifier which is provided in the discovery document, which must in turn match the client's
oauth_issuer setting. No variations in case or formatting are permitted.

scope

A space-separated list of the OAuth scopes needed for the server to both authorize the client and
authenticate the user. Appropriate values are determined by the authorization server and the OAuth
validation module used (see Chapter 50 for more information on validators). This parameter is re-
quired.

validator

The library to use for validating bearer tokens. If given, the name must exactly match one of the
libraries listed in oauth_validator_libraries. This parameter is optional unless oauth_validator_li-
braries contains more than one library, in which case it is required.

652

https://datatracker.ietf.org/doc/html/rfc6750

Client Authentication

map

Allows for mapping between OAuth identity provider and database user names. See Section 20.2
for details. If a map is not specified, the user name associated with the token (as determined by the
OAuth validator) must exactly match the role name being requested. This parameter is optional.

delegate_ident_mapping

An advanced option which is not intended for common use.

When set to 1, standard user mapping with pg_ident.conf is skipped, and the OAuth validator takes
full responsibility for mapping end user identities to database roles. If the validator authorizes the
token, the server trusts that the user is allowed to connect under the requested role, and the con-
nection is allowed to proceed regardless of the authentication status of the user.

This parameter is incompatible with map.

Warning
delegate_ident_mapping provides additional flexibility in the design of the authentication sys-
tem, but it also requires careful implementation of the OAuth validator, which must determine
whether the provided token carries sufficient end-user privileges in addition to the standard
checks required of all validators. Use with caution.

20.16. Authentication Problems
Authentication failures and related problems generally manifest themselves through error messages like
the following:

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database
 "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to
talk to you. As the message suggests, the server refused the connection request because it found no
matching entry in its pg_hba.conf configuration file.

FATAL: password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not until you
pass the authorization method specified in the pg_hba.conf file. Check the password you are providing,
or check your Kerberos or ident software if the complaint mentions one of those authentication types.

FATAL: user "andym" does not exist

The indicated database user name was not found.

FATAL: database "testdb" does not exist

The database you are trying to connect to does not exist. Note that if you do not specify a database
name, it defaults to the database user name.

Tip
The server log might contain more information about an authentication failure than is reported to
the client. If you are confused about the reason for a failure, check the server log.

653

Chapter 21. Database Roles
PostgreSQL manages database access permissions using the concept of roles. A role can be thought of
as either a database user, or a group of database users, depending on how the role is set up. Roles can
own database objects (for example, tables and functions) and can assign privileges on those objects to
other roles to control who has access to which objects. Furthermore, it is possible to grant membership
in a role to another role, thus allowing the member role to use privileges assigned to another role.

The concept of roles subsumes the concepts of “users” and “groups”. In PostgreSQL versions before
8.1, users and groups were distinct kinds of entities, but now there are only roles. Any role can act as
a user, a group, or both.

This chapter describes how to create and manage roles. More information about the effects of role
privileges on various database objects can be found in Section 5.8.

21.1. Database Roles
Database roles are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database roles are global across
a database cluster installation (and not per individual database). To create a role use the CREATE ROLE
SQL command:

CREATE ROLE name;

name follows the rules for SQL identifiers: either unadorned without special characters, or double-quoted.
(In practice, you will usually want to add additional options, such as LOGIN, to the command. More details
appear below.) To remove an existing role, use the analogous DROP ROLE command:

DROP ROLE name;

For convenience, the programs createuser and dropuser are provided as wrappers around these SQL
commands that can be called from the shell command line:

createuser name
dropuser name

To determine the set of existing roles, examine the pg_roles system catalog, for example:

SELECT rolname FROM pg_roles;

or to see just those capable of logging in:

SELECT rolname FROM pg_roles WHERE rolcanlogin;

The psql program's \du meta-command is also useful for listing the existing roles.

In order to bootstrap the database system, a freshly initialized system always contains one predefined
login-capable role. This role is always a “superuser”, and it will have the same name as the operating
system user that initialized the database cluster with initdb unless a different name is specified. This
role is often named postgres. In order to create more roles you first have to connect as this initial role.

Every connection to the database server is made using the name of some particular role, and this role
determines the initial access privileges for commands issued in that connection. The role name to use
for a particular database connection is indicated by the client that is initiating the connection request
in an application-specific fashion. For example, the psql program uses the -U command line option to
indicate the role to connect as. Many applications assume the name of the current operating system
user by default (including createuser and psql). Therefore it is often convenient to maintain a naming
correspondence between roles and operating system users.

The set of database roles a given client connection can connect as is determined by the client authenti-
cation setup, as explained in Chapter 20. (Thus, a client is not limited to connect as the role matching
its operating system user, just as a person's login name need not match his or her real name.) Since the

654

Database Roles

role identity determines the set of privileges available to a connected client, it is important to carefully
configure privileges when setting up a multiuser environment.

21.2. Role Attributes
A database role can have a number of attributes that define its privileges and interact with the client
authentication system.
login privilege

Only roles that have the LOGIN attribute can be used as the initial role name for a database connection.
A role with the LOGIN attribute can be considered the same as a “database user”. To create a role
with login privilege, use either:

CREATE ROLE name LOGIN;
CREATE USER name;

(CREATE USER is equivalent to CREATE ROLE except that CREATE USER includes LOGIN by default, while
CREATE ROLE does not.)

superuser status
A database superuser bypasses all permission checks, except the right to log in. This is a dangerous
privilege and should not be used carelessly; it is best to do most of your work as a role that is not
a superuser. To create a new database superuser, use CREATE ROLE name SUPERUSER. You must do
this as a role that is already a superuser.

database creation
A role must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEDB.

role creation
A role must be explicitly given permission to create more roles (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEROLE. A role with
CREATEROLE privilege can alter and drop roles which have been granted to the CREATEROLE user with
the ADMIN option. Such a grant occurs automatically when a CREATEROLE user that is not a superuser
creates a new role, so that by default, a CREATEROLE user can alter and drop the roles which they
have created. Altering a role includes most changes that can be made using ALTER ROLE, including,
for example, changing passwords. It also includes modifications to a role that can be made using the
COMMENT and SECURITY LABEL commands.

However, CREATEROLE does not convey the ability to create SUPERUSER roles, nor does it convey any
power over SUPERUSER roles that already exist. Furthermore, CREATEROLE does not convey the power
to create REPLICATION users, nor the ability to grant or revoke the REPLICATION privilege, nor the
ability to modify the role properties of such users. However, it does allow ALTER ROLE ... SET and
ALTER ROLE ... RENAME to be used on REPLICATION roles, as well as the use of COMMENT ON ROLE,
SECURITY LABEL ON ROLE, and DROP ROLE. Finally, CREATEROLE does not confer the ability to grant
or revoke the BYPASSRLS privilege.

initiating replication
A role must explicitly be given permission to initiate streaming replication (except for superusers,
since those bypass all permission checks). A role used for streaming replication must have LOGIN
permission as well. To create such a role, use CREATE ROLE name REPLICATION LOGIN.

password
A password is only significant if the client authentication method requires the user to supply a pass-
word when connecting to the database. The password and md5 authentication methods make use of
passwords. Database passwords are separate from operating system passwords. Specify a password
upon role creation with CREATE ROLE name PASSWORD 'string'.

655

Database Roles

inheritance of privileges
A role inherits the privileges of roles it is a member of, by default. However, to create a role which
does not inherit privileges by default, use CREATE ROLE name NOINHERIT. Alternatively, inheritance
can be overridden for individual grants by using WITH INHERIT TRUE or WITH INHERIT FALSE.

bypassing row-level security
A role must be explicitly given permission to bypass every row-level security (RLS) policy (except
for superusers, since those bypass all permission checks). To create such a role, use CREATE ROLE
name BYPASSRLS as a superuser.

connection limit
Connection limit can specify how many concurrent connections a role can make. -1 (the default)
means no limit. Specify connection limit upon role creation with CREATE ROLE name CONNECTION
LIMIT 'integer'.

A role's attributes can be modified after creation with ALTER ROLE. See the reference pages for the
CREATE ROLE and ALTER ROLE commands for details.

A role can also have role-specific defaults for many of the run-time configuration settings described in
Chapter 19. For example, if for some reason you want to disable index scans (hint: not a good idea)
anytime you connect, you can use:
ALTER ROLE myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately). In subsequent connections by this role it will
appear as though SET enable_indexscan TO off had been executed just before the session started.
You can still alter this setting during the session; it will only be the default. To remove a role-specific
default setting, use ALTER ROLE rolename RESET varname. Note that role-specific defaults attached to
roles without LOGIN privilege are fairly useless, since they will never be invoked.

When a non-superuser creates a role using the CREATEROLE privilege, the created role is automatically
granted back to the creating user, just as if the bootstrap superuser had executed the command GRANT
created_user TO creating_user WITH ADMIN TRUE, SET FALSE, INHERIT FALSE. Since a CREATEROLE
user can only exercise special privileges with regard to an existing role if they have ADMIN OPTION on
it, this grant is just sufficient to allow a CREATEROLE user to administer the roles they created. However,
because it is created with INHERIT FALSE, SET FALSE, the CREATEROLE user doesn't inherit the privi-
leges of the created role, nor can it access the privileges of that role using SET ROLE. However, since
any user who has ADMIN OPTION on a role can grant membership in that role to any other user, the
CREATEROLE user can gain access to the created role by simply granting that role back to themselves
with the INHERIT and/or SET options. Thus, the fact that privileges are not inherited by default nor is
SET ROLE granted by default is a safeguard against accidents, not a security feature. Also note that,
because this automatic grant is granted by the bootstrap superuser, it cannot be removed or changed
by the CREATEROLE user; however, any superuser could revoke it, modify it, and/or issue additional such
grants to other CREATEROLE users. Whichever CREATEROLE users have ADMIN OPTION on a role at any
given time can administer it.

21.3. Role Membership
It is frequently convenient to group users together to ease management of privileges: that way, privileges
can be granted to, or revoked from, a group as a whole. In PostgreSQL this is done by creating a role
that represents the group, and then granting membership in the group role to individual user roles.

To set up a group role, first create the role:
CREATE ROLE name;

Typically a role being used as a group would not have the LOGIN attribute, though you can set it if you
wish.

Once the group role exists, you can add and remove members using the GRANT and REVOKE commands:

656

Database Roles

GRANT group_role TO role1, ... ;
REVOKE group_role FROM role1, ... ;

You can grant membership to other group roles, too (since there isn't really any distinction between
group roles and non-group roles). The database will not let you set up circular membership loops. Also,
it is not permitted to grant membership in a role to PUBLIC.

The members of a group role can use the privileges of the role in two ways. First, member roles that have
been granted membership with the SET option can do SET ROLE to temporarily “become” the group role.
In this state, the database session has access to the privileges of the group role rather than the original
login role, and any database objects created are considered owned by the group role, not the login role.
Second, member roles that have been granted membership with the INHERIT option automatically have
use of the privileges of those directly or indirectly a member of, though the chain stops at memberships
lacking the inherit option. As an example, suppose we have done:

CREATE ROLE joe LOGIN;
CREATE ROLE admin;
CREATE ROLE wheel;
CREATE ROLE island;
GRANT admin TO joe WITH INHERIT TRUE;
GRANT wheel TO admin WITH INHERIT FALSE;
GRANT island TO joe WITH INHERIT TRUE, SET FALSE;

Immediately after connecting as role joe, a database session will have use of privileges granted directly
to joe plus any privileges granted to admin and island, because joe “inherits” those privileges. How-
ever, privileges granted to wheel are not available, because even though joe is indirectly a member of
wheel, the membership is via admin which was granted using WITH INHERIT FALSE. After:

SET ROLE admin;

the session would have use of only those privileges granted to admin, and not those granted to joe or
island. After:

SET ROLE wheel;

the session would have use of only those privileges granted to wheel, and not those granted to either
joe or admin. The original privilege state can be restored with any of:

SET ROLE joe;
SET ROLE NONE;
RESET ROLE;

Note
The SET ROLE command always allows selecting any role that the original login role is directly or
indirectly a member of, provided that there is a chain of membership grants each of which has
SET TRUE (which is the default). Thus, in the above example, it is not necessary to become admin
before becoming wheel. On the other hand, it is not possible to become island at all; joe can only
access those privileges via inheritance.

Note
In the SQL standard, there is a clear distinction between users and roles, and users do not auto-
matically inherit privileges while roles do. This behavior can be obtained in PostgreSQL by giving
roles being used as SQL roles the INHERIT attribute, while giving roles being used as SQL users
the NOINHERIT attribute. However, PostgreSQL defaults to giving all roles the INHERIT attribute,
for backward compatibility with pre-8.1 releases in which users always had use of permissions
granted to groups they were members of.

657

Database Roles

The role attributes LOGIN, SUPERUSER, CREATEDB, and CREATEROLE can be thought of as special privileges,
but they are never inherited as ordinary privileges on database objects are. You must actually SET ROLE
to a specific role having one of these attributes in order to make use of the attribute. Continuing the
above example, we might choose to grant CREATEDB and CREATEROLE to the admin role. Then a session
connecting as role joe would not have these privileges immediately, only after doing SET ROLE admin.

To destroy a group role, use DROP ROLE:

DROP ROLE name;

Any memberships in the group role are automatically revoked (but the member roles are not otherwise
affected).

21.4. Dropping Roles
Because roles can own database objects and can hold privileges to access other objects, dropping a role
is often not just a matter of a quick DROP ROLE. Any objects owned by the role must first be dropped or
reassigned to other owners; and any permissions granted to the role must be revoked.

Ownership of objects can be transferred one at a time using ALTER commands, for example:

ALTER TABLE bobs_table OWNER TO alice;

Alternatively, the REASSIGN OWNED command can be used to reassign ownership of all objects owned by
the role-to-be-dropped to a single other role. Because REASSIGN OWNED cannot access objects in other
databases, it is necessary to run it in each database that contains objects owned by the role. (Note that
the first such REASSIGN OWNED will change the ownership of any shared-across-databases objects, that
is databases or tablespaces, that are owned by the role-to-be-dropped.)

Once any valuable objects have been transferred to new owners, any remaining objects owned by the
role-to-be-dropped can be dropped with the DROP OWNED command. Again, this command cannot access
objects in other databases, so it is necessary to run it in each database that contains objects owned by
the role. Also, DROP OWNED will not drop entire databases or tablespaces, so it is necessary to do that
manually if the role owns any databases or tablespaces that have not been transferred to new owners.

DROP OWNED also takes care of removing any privileges granted to the target role for objects that do not
belong to it. Because REASSIGN OWNED does not touch such objects, it's typically necessary to run both
REASSIGN OWNED and DROP OWNED (in that order!) to fully remove the dependencies of a role to be dropped.

In short then, the most general recipe for removing a role that has been used to own objects is:

REASSIGN OWNED BY doomed_role TO successor_role;
DROP OWNED BY doomed_role;
-- repeat the above commands in each database of the cluster
DROP ROLE doomed_role;

When not all owned objects are to be transferred to the same successor owner, it's best to handle the
exceptions manually and then perform the above steps to mop up.

If DROP ROLE is attempted while dependent objects still remain, it will issue messages identifying which
objects need to be reassigned or dropped.

21.5. Predefined Roles
PostgreSQL provides a set of predefined roles that provide access to certain, commonly needed, privi-
leged capabilities and information. Administrators (including roles that have the CREATEROLE privilege)
can GRANT these roles to users and/or other roles in their environment, providing those users with access
to the specified capabilities and information. For example:

GRANT pg_signal_backend TO admin_user;

658

Database Roles

Warning
Care should be taken when granting these roles to ensure they are only used where needed and
with the understanding that these roles grant access to privileged information.

The predefined roles are described below. Note that the specific permissions for each of the roles may
change in the future as additional capabilities are added. Administrators should monitor the release
notes for changes.

pg_checkpoint

pg_checkpoint allows executing the CHECKPOINT command.

pg_create_subscription

pg_create_subscription allows users with CREATE permission on the database to issue CREATE
SUBSCRIPTION.

pg_database_owner

pg_database_owner always has exactly one implicit member: the current database owner. It cannot
be granted membership in any role, and no role can be granted membership in pg_database_own-
er. However, like any other role, it can own objects and receive grants of access privileges. Conse-
quently, once pg_database_owner has rights within a template database, each owner of a database
instantiated from that template will possess those rights. Initially, this role owns the public schema,
so each database owner governs local use of that schema.

pg_maintain

pg_maintain allows executing VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX,
and LOCK TABLE on all relations, as if having MAINTAIN rights on those objects.

pg_monitor
pg_read_all_settings
pg_read_all_stats
pg_stat_scan_tables

These roles are intended to allow administrators to easily configure a role for the purpose of monitor-
ing the database server. They grant a set of common privileges allowing the role to read various use-
ful configuration settings, statistics, and other system information normally restricted to superusers.

pg_monitor allows reading/executing various monitoring views and functions. This role is a member
of pg_read_all_settings, pg_read_all_stats and pg_stat_scan_tables.

pg_read_all_settings allows reading all configuration variables, even those normally visible only
to superusers.

pg_read_all_stats allows reading all pg_stat_* views and use various statistics related extensions,
even those normally visible only to superusers.

pg_stat_scan_tables allows executing monitoring functions that may take ACCESS SHARE locks on
tables, potentially for a long time (e.g., pgrowlocks(text) in the pgrowlocks extension).

pg_read_all_data
pg_write_all_data

pg_read_all_data allows reading all data (tables, views, sequences), as if having SELECT rights on
those objects and USAGE rights on all schemas. This role does not bypass row-level security (RLS)
policies. If RLS is being used, an administrator may wish to set BYPASSRLS on roles which this role
is granted to.

659

Database Roles

pg_write_all_data allows writing all data (tables, views, sequences), as if having INSERT, UPDATE,
and DELETE rights on those objects and USAGE rights on all schemas. This role does not bypass row-
level security (RLS) policies. If RLS is being used, an administrator may wish to set BYPASSRLS on
roles which this role is granted to.

pg_read_server_files
pg_write_server_files
pg_execute_server_program

These roles are intended to allow administrators to have trusted, but non-superuser, roles which are
able to access files and run programs on the database server as the user the database runs as. They
bypass all database-level permission checks when accessing files directly and they could be used
to gain superuser-level access. Therefore, great care should be taken when granting these roles to
users.

pg_read_server_files allows reading files from any location the database can access on the server
using COPY and other file-access functions.

pg_write_server_files allows writing to files in any location the database can access on the server
using COPY and other file-access functions.

pg_execute_server_program allows executing programs on the database server as the user the data-
base runs as using COPY and other functions which allow executing a server-side program.

pg_signal_autovacuum_worker

pg_signal_autovacuum_worker allows signaling autovacuum workers to cancel the current table's
vacuum or terminate its session. See Section 9.28.2.

pg_signal_backend

pg_signal_backend allows signaling another backend to cancel a query or terminate its session.
Note that this role does not permit signaling backends owned by a superuser. See Section 9.28.2.

pg_use_reserved_connections

pg_use_reserved_connections allows use of connection slots reserved via reserved_connections.

21.6. Function Security
Functions, triggers and row-level security policies allow users to insert code into the backend server that
other users might execute unintentionally. Hence, these mechanisms permit users to “Trojan horse” oth-
ers with relative ease. The strongest protection is tight control over who can define objects. Where that
is infeasible, write queries referring only to objects having trusted owners. Remove from search_path
any schemas that permit untrusted users to create objects.

Functions run inside the backend server process with the operating system permissions of the database
server daemon. If the programming language used for the function allows unchecked memory accesses,
it is possible to change the server's internal data structures. Hence, among many other things, such
functions can circumvent any system access controls. Function languages that allow such access are
considered “untrusted”, and PostgreSQL allows only superusers to create functions written in those
languages.

660

Chapter 22. Managing Databases
Every instance of a running PostgreSQL server manages one or more databases. Databases are therefore
the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter describes
the properties of databases, and how to create, manage, and destroy them.

22.1. Overview
A small number of objects, like role, database, and tablespace names, are defined at the cluster level
and stored in the pg_global tablespace. Inside the cluster are multiple databases, which are isolated
from each other but can access cluster-level objects. Inside each database are multiple schemas, which
contain objects like tables and functions. So the full hierarchy is: cluster, database, schema, table (or
some other kind of object, such as a function).

When connecting to the database server, a client must specify the database name in its connection re-
quest. It is not possible to access more than one database per connection. However, clients can open
multiple connections to the same database, or different databases. Database-level security has two com-
ponents: access control (see Section 20.1), managed at the connection level, and authorization control
(see Section 5.8), managed via the grant system. Foreign data wrappers (see postgres_fdw) allow for
objects within one database to act as proxies for objects in other database or clusters. The older dblink
module (see dblink) provides a similar capability. By default, all users can connect to all databases using
all connection methods.

If one PostgreSQL server cluster is planned to contain unrelated projects or users that should be, for
the most part, unaware of each other, it is recommended to put them into separate databases and adjust
authorizations and access controls accordingly. If the projects or users are interrelated, and thus should
be able to use each other's resources, they should be put in the same database but probably into separate
schemas; this provides a modular structure with namespace isolation and authorization control. More
information about managing schemas is in Section 5.10.

While multiple databases can be created within a single cluster, it is advised to consider carefully
whether the benefits outweigh the risks and limitations. In particular, the impact that having a shared
WAL (see Chapter 28) has on backup and recovery options. While individual databases in the cluster
are isolated when considered from the user's perspective, they are closely bound from the database
administrator's point-of-view.

Databases are created with the CREATE DATABASE command (see Section 22.2) and destroyed with the
DROP DATABASE command (see Section 22.5). To determine the set of existing databases, examine the
pg_database system catalog, for example
SELECT datname FROM pg_database;

The psql program's \l meta-command and -l command-line option are also useful for listing the existing
databases.

Note
The SQL standard calls databases “catalogs”, but there is no difference in practice.

22.2. Creating a Database
In order to create a database, the PostgreSQL server must be up and running (see Section 18.3).

Databases are created with the SQL command CREATE DATABASE:
CREATE DATABASE name;

where name follows the usual rules for SQL identifiers. The current role automatically becomes the owner
of the new database. It is the privilege of the owner of a database to remove it later (which also removes
all the objects in it, even if they have a different owner).

661

Managing Databases

The creation of databases is a restricted operation. See Section 21.2 for how to grant permission.

Since you need to be connected to the database server in order to execute the CREATE DATABASE com-
mand, the question remains how the first database at any given site can be created. The first database
is always created by the initdb command when the data storage area is initialized. (See Section 18.2.)
This database is called postgres. So to create the first “ordinary” database you can connect to postgres.

Two additional databases, template1and template0, are also created during database cluster initializa-
tion. Whenever a new database is created within the cluster, template1 is essentially cloned. This means
that any changes you make in template1 are propagated to all subsequently created databases. Because
of this, avoid creating objects in template1 unless you want them propagated to every newly created
database. template0 is meant as a pristine copy of the original contents of template1. It can be cloned
instead of template1 when it is important to make a database without any such site-local additions.
More details appear in Section 22.3.

As a convenience, there is a program you can execute from the shell to create new databases, createdb.

createdb dbname

createdb does no magic. It connects to the postgres database and issues the CREATE DATABASE com-
mand, exactly as described above. The createdb reference page contains the invocation details. Note
that createdb without any arguments will create a database with the current user name.

Note
Chapter 20 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else, and have them become the owner of the
new database, so they can configure and manage it themselves. To achieve that, use one of the following
commands:

CREATE DATABASE dbname OWNER rolename;

from the SQL environment, or:

createdb -O rolename dbname

from the shell. Only the superuser is allowed to create a database for someone else (that is, for a role
you are not a member of).

22.3. Template Databases
CREATE DATABASE actually works by copying an existing database. By default, it copies the standard
system database named template1. Thus that database is the “template” from which new databases
are made. If you add objects to template1, these objects will be copied into subsequently created user
databases. This behavior allows site-local modifications to the standard set of objects in databases. For
example, if you install the procedural language PL/Perl in template1, it will automatically be available
in user databases without any extra action being taken when those databases are created.

However, CREATE DATABASE does not copy database-level GRANT permissions attached to the source
database. The new database has default database-level permissions.

There is a second standard system database named template0. This database contains the same data
as the initial contents of template1, that is, only the standard objects predefined by your version of
PostgreSQL. template0 should never be changed after the database cluster has been initialized. By
instructing CREATE DATABASE to copy template0 instead of template1, you can create a “pristine” user
database (one where no user-defined objects exist and where the system objects have not been altered)
that contains none of the site-local additions in template1. This is particularly handy when restoring a
pg_dump dump: the dump script should be restored in a pristine database to ensure that one recreates

662

Managing Databases

the correct contents of the dumped database, without conflicting with objects that might have been
added to template1 later on.

Another common reason for copying template0 instead of template1 is that new encoding and locale
settings can be specified when copying template0, whereas a copy of template1 must use the same
settings it does. This is because template1 might contain encoding-specific or locale-specific data, while
template0 is known not to.

To create a database by copying template0, use:
CREATE DATABASE dbname TEMPLATE template0;

from the SQL environment, or:
createdb -T template0 dbname

from the shell.

It is possible to create additional template databases, and indeed one can copy any database in a cluster
by specifying its name as the template for CREATE DATABASE. It is important to understand, however, that
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that
no other sessions can be connected to the source database while it is being copied. CREATE DATABASE
will fail if any other connection exists when it starts; during the copy operation, new connections to the
source database are prevented.

Two useful flags exist in pg_databasefor each database: the columns datistemplate and datallowconn.
datistemplate can be set to indicate that a database is intended as a template for CREATE DATABASE.
If this flag is set, the database can be cloned by any user with CREATEDB privileges; if it is not set, only
superusers and the owner of the database can clone it. If datallowconn is false, then no new connections
to that database will be allowed (but existing sessions are not terminated simply by setting the flag
false). The template0 database is normally marked datallowconn = false to prevent its modification.
Both template0 and template1 should always be marked with datistemplate = true.

Note
template1 and template0 do not have any special status beyond the fact that the name template1
is the default source database name for CREATE DATABASE. For example, one could drop template1
and recreate it from template0 without any ill effects. This course of action might be advisable
if one has carelessly added a bunch of junk in template1. (To delete template1, it must have
pg_database.datistemplate = false.)

The postgres database is also created when a database cluster is initialized. This database is
meant as a default database for users and applications to connect to. It is simply a copy of tem-
plate1 and can be dropped and recreated if necessary.

22.4. Database Configuration
Recall from Chapter 19 that the PostgreSQL server provides a large number of run-time configuration
variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you'd
ordinarily have to either disable it for all databases or make sure that every connecting client is careful
to issue SET geqo TO off. To make this setting the default within a particular database, you can execute
the command:
ALTER DATABASE mydb SET geqo TO off;

This will save the setting (but not set it immediately). In subsequent connections to this database it will
appear as though SET geqo TO off; had been executed just before the session started. Note that users
can still alter this setting during their sessions; it will only be the default. To undo any such setting, use
ALTER DATABASE dbname RESET varname.

663

Managing Databases

22.5. Destroying a Database
Databases are destroyed with the command DROP DATABASE:

DROP DATABASE name;

Only the owner of the database, or a superuser, can drop a database. Dropping a database removes all
objects that were contained within the database. The destruction of a database cannot be undone.

You cannot execute the DROP DATABASE command while connected to the victim database. You can,
however, be connected to any other database, including the template1 database. template1 would be
the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases, dropdb:

dropdb dbname

(Unlike createdb, it is not the default action to drop the database with the current user name.)

22.6. Tablespaces
Tablespaces in PostgreSQL allow database administrators to define locations in the file system where
the files representing database objects can be stored. Once created, a tablespace can be referred to by
name when creating database objects.

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This is
useful in at least two ways. First, if the partition or volume on which the cluster was initialized runs out
of space and cannot be extended, a tablespace can be created on a different partition and used until
the system can be reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects
to optimize performance. For example, an index which is very heavily used can be placed on a very fast,
highly available disk, such as an expensive solid state device. At the same time a table storing archived
data which is rarely used or not performance critical could be stored on a less expensive, slower disk
system.

Warning
Even though located outside the main PostgreSQL data directory, tablespaces are an integral part
of the database cluster and cannot be treated as an autonomous collection of data files. They are
dependent on metadata contained in the main data directory, and therefore cannot be attached
to a different database cluster or backed up individually. Similarly, if you lose a tablespace (file
deletion, disk failure, etc.), the database cluster might become unreadable or unable to start.
Placing a tablespace on a temporary file system like a RAM disk risks the reliability of the entire
cluster.

To define a tablespace, use the CREATE TABLESPACE command, for example::

CREATE TABLESPACE fastspace LOCATION '/ssd1/postgresql/data';

The location must be an existing, empty directory that is owned by the PostgreSQL operating system user.
All objects subsequently created within the tablespace will be stored in files underneath this directory.
The location must not be on removable or transient storage, as the cluster might fail to function if the
tablespace is missing or lost.

Note
There is usually not much point in making more than one tablespace per logical file system, since
you cannot control the location of individual files within a logical file system. However, PostgreSQL

664

Managing Databases

does not enforce any such limitation, and indeed it is not directly aware of the file system bound-
aries on your system. It just stores files in the directories you tell it to use.

Creation of the tablespace itself must be done as a database superuser, but after that you can allow
ordinary database users to use it. To do that, grant them the CREATE privilege on it.

Tables, indexes, and entire databases can be assigned to particular tablespaces. To do so, a user with the
CREATE privilege on a given tablespace must pass the tablespace name as a parameter to the relevant
command. For example, the following creates a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

Alternatively, use the default_tablespace parameter:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

When default_tablespace is set to anything but an empty string, it supplies an implicit TABLESPACE
clause for CREATE TABLE and CREATE INDEX commands that do not have an explicit one.

There is also a temp_tablespaces parameter, which determines the placement of temporary tables and
indexes, as well as temporary files that are used for purposes such as sorting large data sets. This can
be a list of tablespace names, rather than only one, so that the load associated with temporary objects
can be spread over multiple tablespaces. A random member of the list is picked each time a temporary
object is to be created.

The tablespace associated with a database is used to store the system catalogs of that database. Fur-
thermore, it is the default tablespace used for tables, indexes, and temporary files created within the
database, if no TABLESPACE clause is given and no other selection is specified by default_tablespace
or temp_tablespaces (as appropriate). If a database is created without specifying a tablespace for it, it
uses the same tablespace as the template database it is copied from.

Two tablespaces are automatically created when the database cluster is initialized. The pg_global ta-
blespace is used only for shared system catalogs. The pg_default tablespace is the default tablespace of
the template1 and template0 databases (and, therefore, will be the default tablespace for other data-
bases as well, unless overridden by a TABLESPACE clause in CREATE DATABASE).

Once created, a tablespace can be used from any database, provided the requesting user has sufficient
privilege. This means that a tablespace cannot be dropped until all objects in all databases using the
tablespace have been removed.

To remove an empty tablespace, use the DROP TABLESPACE command.

To determine the set of existing tablespaces, examine the pg_tablespace system catalog, for example

SELECT spcname, spcowner::regrole, pg_tablespace_location(oid) FROM pg_tablespace;

It is possible to find which databases use which tablespaces; see Table 9.76. The psql program's \db
meta-command is also useful for listing the existing tablespaces.

The directory $PGDATA/pg_tblspc contains symbolic links that point to each of the non-built-in table-
spaces defined in the cluster. Although not recommended, it is possible to adjust the tablespace layout
by hand by redefining these links. Under no circumstances perform this operation while the server is
running.

665

Chapter 23. Localization
This chapter describes the available localization features from the point of view of the administrator.
PostgreSQL supports two localization facilities:
• Using the locale features of the operating system to provide locale-specific collation order, num-

ber formatting, translated messages, and other aspects. This is covered in Section 23.1 and Sec-
tion 23.2.

• Providing a number of different character sets to support storing text in all kinds of languages, and
providing character set translation between client and server. This is covered in Section 23.3.

23.1. Locale Support
Locale support refers to an application respecting cultural preferences regarding alphabets, sorting,
number formatting, etc. PostgreSQL uses the standard ISO C and POSIX locale facilities provided by
the server operating system. For additional information refer to the documentation of your system.

23.1.1. Overview
Locale support is automatically initialized when a database cluster is created using initdb. initdb will
initialize the database cluster with the locale setting of its execution environment by default, so if your
system is already set to use the locale that you want in your database cluster then there is nothing else
you need to do. If you want to use a different locale (or you are not sure which locale your system is set
to), you can instruct initdb exactly which locale to use by specifying the --locale option. For example:
initdb --locale=sv_SE

This example for Unix systems sets the locale to Swedish (sv) as spoken in Sweden (SE). Other possibil-
ities might include en_US (U.S. English) and fr_CA (French Canadian). If more than one character set
can be used for a locale then the specifications can take the form language_territory.codeset. For
example, fr_BE.UTF-8 represents the French language (fr) as spoken in Belgium (BE), with a UTF-8
character set encoding.

What locales are available on your system under what names depends on what was provided by the
operating system vendor and what was installed. On most Unix systems, the command locale -a will
provide a list of available locales. Windows uses more verbose locale names, such as German_Germany
or Swedish_Sweden.1252, but the principles are the same.

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only certain aspects of the
localization rules:

LC_COLLATE String sort order
LC_CTYPE Character classification (What is a letter? Its upper-case equivalent?)
LC_MESSAGES Language of messages
LC_MONETARY Formatting of currency amounts
LC_NUMERIC Formatting of numbers
LC_TIME Formatting of dates and times

The category names translate into names of initdb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
use initdb --locale=fr_CA --lc-monetary=en_US.

If you want the system to behave as if it had no locale support, use the special locale name C, or equiv-
alently POSIX.

Some locale categories must have their values fixed when the database is created. You can use different
settings for different databases, but once a database is created, you cannot change them for that data-

666

Localization

base anymore. LC_COLLATE and LC_CTYPE are these categories. They affect the sort order of indexes,
so they must be kept fixed, or indexes on text columns would become corrupt. (But you can alleviate
this restriction using collations, as discussed in Section 23.2.) The default values for these categories
are determined when initdb is run, and those values are used when new databases are created, unless
specified otherwise in the CREATE DATABASE command.

The other locale categories can be changed whenever desired by setting the server configuration para-
meters that have the same name as the locale categories (see Section 19.11.2 for details). The values
that are chosen by initdb are actually only written into the configuration file postgresql.conf to serve
as defaults when the server is started. If you remove these assignments from postgresql.conf then the
server will inherit the settings from its execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the
server, not by the environment of any client. Therefore, be careful to configure the correct locale settings
before starting the server. A consequence of this is that if client and server are set up in different locales,
messages might appear in different languages depending on where they originated.

Note
When we speak of inheriting the locale from the execution environment, this means the following
on most operating systems: For a given locale category, say the collation, the following environ-
ment variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE (or the
variable corresponding to the respective category), LANG. If none of these environment variables
are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGE which over-
rides all other locale settings for the purpose of setting the language of messages. If in doubt,
please refer to the documentation of your operating system, in particular the documentation about
gettext.

To enable messages to be translated to the user's preferred language, NLS must have been selected at
build time (configure --enable-nls). All other locale support is built in automatically.

23.1.2. Behavior
The locale settings influence the following SQL features:
• Sort order in queries using ORDER BY or the standard comparison operators on textual data
• The upper, lower, and initcap functions
• Pattern matching operators (LIKE, SIMILAR TO, and POSIX-style regular expressions); locales affect

both case insensitive matching and the classification of characters by character-class regular ex-
pressions

• The to_char family of functions
• The ability to use indexes with LIKE clauses

The drawback of using locales other than C or POSIX in PostgreSQL is its performance impact. It slows
character handling and prevents ordinary indexes from being used by LIKE. For this reason use locales
only if you actually need them.

As a workaround to allow PostgreSQL to use indexes with LIKE clauses under a non-C locale, several
custom operator classes exist. These allow the creation of an index that performs a strict character-by-
character comparison, ignoring locale comparison rules. Refer to Section 11.10 for more information.
Another approach is to create indexes using the C collation, as discussed in Section 23.2.

23.1.3. Selecting Locales
Locales can be selected in different scopes depending on requirements. The above overview showed
how locales are specified using initdb to set the defaults for the entire cluster. The following list shows

667

Localization

where locales can be selected. Each item provides the defaults for the subsequent items, and each lower
item allows overriding the defaults on a finer granularity.

1. As explained above, the environment of the operating system provides the defaults for the locales of a
newly initialized database cluster. In many cases, this is enough: if the operating system is configured
for the desired language/territory, by default PostgreSQL will also behave according to that locale.

2. As shown above, command-line options for initdb specify the locale settings for a newly initialized
database cluster. Use this if the operating system does not have the locale configuration you want
for your database system.

3. A locale can be selected separately for each database. The SQL command CREATE DATABASE and its
command-line equivalent createdb have options for that. Use this for example if a database cluster
houses databases for multiple tenants with different requirements.

4. Locale settings can be made for individual table columns. This uses an SQL object called collation
and is explained in Section 23.2. Use this for example to sort data in different languages or customize
the sort order of a particular table.

5. Finally, locales can be selected for an individual query. Again, this uses SQL collation objects. This
could be used to change the sort order based on run-time choices or for ad-hoc experimentation.

23.1.4. Locale Providers
A locale provider specifies which library defines the locale behavior for collations and character classi-
fications.

The commands and tools that select the locale settings, as described above, each have an option to select
the locale provider. Here is an example to initialize a database cluster using the ICU provider:

initdb --locale-provider=icu --icu-locale=en

See the description of the respective commands and programs for details. Note that you can mix locale
providers at different granularities, for example use libc by default for the cluster but have one database
that uses the icu provider, and then have collation objects using either provider within those databases.

Regardless of the locale provider, the operating system is still used to provide some locale-aware behav-
ior, such as messages (see lc_messages).

The available locale providers are listed below:

builtin

The builtin provider uses built-in operations. Only the C, C.UTF-8, and PG_UNICODE_FAST locales
are supported for this provider.

The C locale behavior is identical to the C locale in the libc provider. When using this locale, the
behavior may depend on the database encoding.

The C.UTF-8 locale is available only for when the database encoding is UTF-8, and the behavior is
based on Unicode. The collation uses the code point values only. The regular expression character
classes are based on the "POSIX Compatible" semantics, and the case mapping is the "simple" variant.

The PG_UNICODE_FAST locale is available only when the database encoding is UTF-8, and the behavior
is based on Unicode. The collation uses the code point values only. The regular expression character
classes are based on the "Standard" semantics, and the case mapping is the "full" variant.

icu

The icu provider uses the external ICU library. PostgreSQL must have been configured with support.

ICU provides collation and character classification behavior that is independent of the operating
system and database encoding, which is preferable if you expect to transition to other platforms
without any change in results. LC_COLLATE and LC_CTYPE can be set independently of the ICU locale.

668

Localization

Note
For the ICU provider, results may depend on the version of the ICU library used, as it is updated
to reflect changes in natural language over time.

libc

The libc provider uses the operating system's C library. The collation and character classification
behavior is controlled by the settings LC_COLLATE and LC_CTYPE, so they cannot be set independently.

Note
The same locale name may have different behavior on different platforms when using the libc
provider.

23.1.5. ICU Locales
23.1.5.1. ICU Locale Names

The ICU format for the locale name is a Language Tag.

CREATE COLLATION mycollation1 (provider = icu, locale = 'ja-JP');
CREATE COLLATION mycollation2 (provider = icu, locale = 'fr');

23.1.5.2. Locale Canonicalization and Validation
When defining a new ICU collation object or database with ICU as the provider, the given locale name
is transformed ("canonicalized") into a language tag if not already in that form. For instance,

CREATE COLLATION mycollation3 (provider = icu, locale = 'en-US-u-kn-true');
NOTICE: using standard form "en-US-u-kn" for locale "en-US-u-kn-true"
CREATE COLLATION mycollation4 (provider = icu, locale = 'de_DE.utf8');
NOTICE: using standard form "de-DE" for locale "de_DE.utf8"

If you see this notice, ensure that the provider and locale are the expected result. For consistent results
when using the ICU provider, specify the canonical language tag instead of relying on the transformation.

A locale with no language name, or the special language name root, is transformed to have the language
und ("undefined").

ICU can transform most libc locale names, as well as some other formats, into language tags for easier
transition to ICU. If a libc locale name is used in ICU, it may not have precisely the same behavior as
in libc.

If there is a problem interpreting the locale name, or if the locale name represents a language or region
that ICU does not recognize, you will see the following warning:

CREATE COLLATION nonsense (provider = icu, locale = 'nonsense');
WARNING: ICU locale "nonsense" has unknown language "nonsense"
HINT: To disable ICU locale validation, set parameter icu_validation_level to
 DISABLED.
CREATE COLLATION

icu_validation_level controls how the message is reported. Unless set to ERROR, the collation will still be
created, but the behavior may not be what the user intended.

23.1.5.3. Language Tag
A language tag, defined in BCP 47, is a standardized identifier used to identify languages, regions, and
other information about a locale.

669

Localization

Basic language tags are simply language-region; or even just language. The language is a language
code (e.g. fr for French), and region is a region code (e.g. CA for Canada). Examples: ja-JP, de, or fr-CA.

Collation settings may be included in the language tag to customize collation behavior. ICU allows ex-
tensive customization, such as sensitivity (or insensitivity) to accents, case, and punctuation; treatment
of digits within text; and many other options to satisfy a variety of uses.

To include this additional collation information in a language tag, append -u, which indicates there are
additional collation settings, followed by one or more -key-value pairs. The key is the key for a collation
setting and value is a valid value for that setting. For boolean settings, the -key may be specified without
a corresponding -value, which implies a value of true.

For example, the language tag en-US-u-kn-ks-level2 means the locale with the English language in the
US region, with collation settings kn set to true and ks set to level2. Those settings mean the collation
will be case-insensitive and treat a sequence of digits as a single number:

CREATE COLLATION mycollation5 (provider = icu, deterministic = false, locale = 'en-US-
u-kn-ks-level2');
SELECT 'aB' = 'Ab' COLLATE mycollation5 as result;
 result

 t
(1 row)

SELECT 'N-45' < 'N-123' COLLATE mycollation5 as result;
 result

 t
(1 row)

See Section 23.2.3 for details and additional examples of using language tags with custom collation
information for the locale.

23.1.6. Problems
If locale support doesn't work according to the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you can
use the command locale -a if your operating system provides it.

Check that PostgreSQL is actually using the locale that you think it is. The LC_COLLATE and LC_CTYPE
settings are determined when a database is created, and cannot be changed except by creating a new
database. Other locale settings including LC_MESSAGES and LC_MONETARY are initially determined by the
environment the server is started in, but can be changed on-the-fly. You can check the active locale
settings using the SHOW command.

The directory src/test/locale in the source distribution contains a test suite for PostgreSQL's locale
support.

Client applications that handle server-side errors by parsing the text of the error message will obviously
have problems when the server's messages are in a different language. Authors of such applications are
advised to make use of the error code scheme instead.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that want
to see PostgreSQL speak their preferred language well. If messages in your language are currently not
available or not fully translated, your assistance would be appreciated. If you want to help, refer to
Chapter 56 or write to the developers' mailing list.

23.2. Collation Support

670

Localization

The collation feature allows specifying the sort order and character classification behavior of data per-
column, or even per-operation. This alleviates the restriction that the LC_COLLATE and LC_CTYPE settings
of a database cannot be changed after its creation.

23.2.1. Concepts
Conceptually, every expression of a collatable data type has a collation. (The built-in collatable data
types are text, varchar, and char. User-defined base types can also be marked collatable, and of course
a domain over a collatable data type is collatable.) If the expression is a column reference, the collation
of the expression is the defined collation of the column. If the expression is a constant, the collation
is the default collation of the data type of the constant. The collation of a more complex expression is
derived from the collations of its inputs, as described below.

The collation of an expression can be the “default” collation, which means the locale settings defined for
the database. It is also possible for an expression's collation to be indeterminate. In such cases, ordering
operations and other operations that need to know the collation will fail.

When the database system has to perform an ordering or a character classification, it uses the collation
of the input expression. This happens, for example, with ORDER BY clauses and function or operator
calls such as <. The collation to apply for an ORDER BY clause is simply the collation of the sort key. The
collation to apply for a function or operator call is derived from the arguments, as described below. In
addition to comparison operators, collations are taken into account by functions that convert between
lower and upper case letters, such as lower, upper, and initcap; by pattern matching operators; and
by to_char and related functions.

For a function or operator call, the collation that is derived by examining the argument collations is used
at run time for performing the specified operation. If the result of the function or operator call is of a
collatable data type, the collation is also used at parse time as the defined collation of the function or
operator expression, in case there is a surrounding expression that requires knowledge of its collation.

The collation derivation of an expression can be implicit or explicit. This distinction affects how collations
are combined when multiple different collations appear in an expression. An explicit collation derivation
occurs when a COLLATE clause is used; all other collation derivations are implicit. When multiple colla-
tions need to be combined, for example in a function call, the following rules are used:
1. If any input expression has an explicit collation derivation, then all explicitly derived collations among

the input expressions must be the same, otherwise an error is raised. If any explicitly derived collation
is present, that is the result of the collation combination.

2. Otherwise, all input expressions must have the same implicit collation derivation or the default colla-
tion. If any non-default collation is present, that is the result of the collation combination. Otherwise,
the result is the default collation.

3. If there are conflicting non-default implicit collations among the input expressions, then the combi-
nation is deemed to have indeterminate collation. This is not an error condition unless the particular
function being invoked requires knowledge of the collation it should apply. If it does, an error will
be raised at run-time.

For example, consider this table definition:
CREATE TABLE test1 (
 a text COLLATE "de_DE",
 b text COLLATE "es_ES",
 ...
);

Then in
SELECT a < 'foo' FROM test1;

the < comparison is performed according to de_DE rules, because the expression combines an implicitly
derived collation with the default collation. But in
SELECT a < ('foo' COLLATE "fr_FR") FROM test1;

671

Localization

the comparison is performed using fr_FR rules, because the explicit collation derivation overrides the
implicit one. Furthermore, given
SELECT a < b FROM test1;

the parser cannot determine which collation to apply, since the a and b columns have conflicting implicit
collations. Since the < operator does need to know which collation to use, this will result in an error. The
error can be resolved by attaching an explicit collation specifier to either input expression, thus:
SELECT a < b COLLATE "de_DE" FROM test1;

or equivalently
SELECT a COLLATE "de_DE" < b FROM test1;

On the other hand, the structurally similar case
SELECT a || b FROM test1;

does not result in an error, because the || operator does not care about collations: its result is the same
regardless of the collation.

The collation assigned to a function or operator's combined input expressions is also considered to apply
to the function or operator's result, if the function or operator delivers a result of a collatable data type.
So, in
SELECT * FROM test1 ORDER BY a || 'foo';

the ordering will be done according to de_DE rules. But this query:
SELECT * FROM test1 ORDER BY a || b;

results in an error, because even though the || operator doesn't need to know a collation, the ORDER BY
clause does. As before, the conflict can be resolved with an explicit collation specifier:
SELECT * FROM test1 ORDER BY a || b COLLATE "fr_FR";

23.2.2. Managing Collations
A collation is an SQL schema object that maps an SQL name to locales provided by libraries installed in
the operating system. A collation definition has a provider that specifies which library supplies the locale
data. One standard provider name is libc, which uses the locales provided by the operating system C
library. These are the locales used by most tools provided by the operating system. Another provider is
icu, which uses the external ICU library. ICU locales can only be used if support for ICU was configured
when PostgreSQL was built.

A collation object provided by libc maps to a combination of LC_COLLATE and LC_CTYPE settings, as
accepted by the setlocale() system library call. (As the name would suggest, the main purpose of a
collation is to set LC_COLLATE, which controls the sort order. But it is rarely necessary in practice to
have an LC_CTYPE setting that is different from LC_COLLATE, so it is more convenient to collect these
under one concept than to create another infrastructure for setting LC_CTYPE per expression.) Also, a
libc collation is tied to a character set encoding (see Section 23.3). The same collation name may exist
for different encodings.

A collation object provided by icu maps to a named collator provided by the ICU library. ICU does not
support separate “collate” and “ctype” settings, so they are always the same. Also, ICU collations are
independent of the encoding, so there is always only one ICU collation of a given name in a database.

23.2.2.1. Standard Collations
On all platforms, the following collations are supported:
unicode

This SQL standard collation sorts using the Unicode Collation Algorithm with the Default Unicode
Collation Element Table. It is available in all encodings. ICU support is required to use this collation,
and behavior may change if PostgreSQL is built with a different version of ICU. (This collation has
the same behavior as the ICU root locale; see und-x-icu (for “undefined”).)

672

Localization

ucs_basic

This SQL standard collation sorts using the Unicode code point values rather than natural language
order, and only the ASCII letters “A” through “Z” are treated as letters. The behavior is efficient and
stable across all versions. Only available for encoding UTF8. (This collation has the same behavior as
the libc locale specification C in UTF8 encoding.)

pg_unicode_fast

This collation sorts by Unicode code point values rather than natural language order. For the func-
tions lower, initcap, and upper it uses Unicode full case mapping. For pattern matching (including
regular expressions), it uses the Standard variant of Unicode Compatibility Properties. Behavior is
efficient and stable within a Postgres major version. It is only available for encoding UTF8.

pg_c_utf8

This collation sorts by Unicode code point values rather than natural language order. For the func-
tions lower, initcap, and upper, it uses Unicode simple case mapping. For pattern matching (includ-
ing regular expressions), it uses the POSIX Compatible variant of Unicode Compatibility Properties.
Behavior is efficient and stable within a PostgreSQL major version. This collation is only available
for encoding UTF8.

C (equivalent to POSIX)
The C and POSIX collations are based on “traditional C” behavior. They sort by byte values rather
than natural language order, and only the ASCII letters “A” through “Z” are treated as letters. The
behavior is efficient and stable across all versions for a given database encoding, but behavior may
vary between different database encodings.

default

The default collation selects the locale specified at database creation time.

Additional collations may be available depending on operating system support. The efficiency and sta-
bility of these additional collations depend on the collation provider, the provider version, and the locale.

23.2.2.2. Predefined Collations
If the operating system provides support for using multiple locales within a single program (newlocale
and related functions), or if support for ICU is configured, then when a database cluster is initialized,
initdb populates the system catalog pg_collation with collations based on all the locales it finds in
the operating system at the time.

To inspect the currently available locales, use the query SELECT * FROM pg_collation, or the command
\dOS+ in psql.

23.2.2.2.1. libc Collations

For example, the operating system might provide a locale named de_DE.utf8. initdb would then cre-
ate a collation named de_DE.utf8 for encoding UTF8 that has both LC_COLLATE and LC_CTYPE set to
de_DE.utf8. It will also create a collation with the .utf8 tag stripped off the name. So you could also
use the collation under the name de_DE, which is less cumbersome to write and makes the name less
encoding-dependent. Note that, nevertheless, the initial set of collation names is platform-dependent.

The default set of collations provided by libc map directly to the locales installed in the operating
system, which can be listed using the command locale -a. In case a libc collation is needed that
has different values for LC_COLLATE and LC_CTYPE, or if new locales are installed in the operating sys-
tem after the database system was initialized, then a new collation may be created using the CREATE
COLLATION command. New operating system locales can also be imported en masse using the pg_im-
port_system_collations() function.

Within any particular database, only collations that use that database's encoding are of interest. Other
entries in pg_collation are ignored. Thus, a stripped collation name such as de_DE can be considered

673

https://www.unicode.org/reports/tr18/#Compatibility_Properties
https://www.unicode.org/reports/tr18/#Compatibility_Properties

Localization

unique within a given database even though it would not be unique globally. Use of the stripped collation
names is recommended, since it will make one fewer thing you need to change if you decide to change
to another database encoding. Note however that the default, C, and POSIX collations can be used
regardless of the database encoding.

PostgreSQL considers distinct collation objects to be incompatible even when they have identical prop-
erties. Thus for example,
SELECT a COLLATE "C" < b COLLATE "POSIX" FROM test1;

will draw an error even though the C and POSIX collations have identical behaviors. Mixing stripped and
non-stripped collation names is therefore not recommended.

23.2.2.2.2. ICU Collations
With ICU, it is not sensible to enumerate all possible locale names. ICU uses a particular naming system
for locales, but there are many more ways to name a locale than there are actually distinct locales.
initdb uses the ICU APIs to extract a set of distinct locales to populate the initial set of collations.
Collations provided by ICU are created in the SQL environment with names in BCP 47 language tag
format, with a “private use” extension -x-icu appended, to distinguish them from libc locales.

Here are some example collations that might be created:
de-x-icu

German collation, default variant

de-AT-x-icu

German collation for Austria, default variant

(There are also, say, de-DE-x-icu or de-CH-x-icu, but as of this writing, they are equivalent to de-
x-icu.)

und-x-icu (for “undefined”)
ICU “root” collation. Use this to get a reasonable language-agnostic sort order.

Some (less frequently used) encodings are not supported by ICU. When the database encoding is one
of these, ICU collation entries in pg_collation are ignored. Attempting to use one will draw an error
along the lines of “collation "de-x-icu" for encoding "WIN874" does not exist”.

23.2.2.3. Creating New Collation Objects
If the standard and predefined collations are not sufficient, users can create their own collation objects
using the SQL command CREATE COLLATION.

The standard and predefined collations are in the schema pg_catalog, like all predefined objects. User-
defined collations should be created in user schemas. This also ensures that they are saved by pg_dump.

23.2.2.3.1. libc Collations
New libc collations can be created like this:
CREATE COLLATION german (provider = libc, locale = 'de_DE');

The exact values that are acceptable for the locale clause in this command depend on the operating
system. On Unix-like systems, the command locale -a will show a list.

Since the predefined libc collations already include all collations defined in the operating system when
the database instance is initialized, it is not often necessary to manually create new ones. Reasons might
be if a different naming system is desired (in which case see also Section 23.2.2.3.3) or if the operating
system has been upgraded to provide new locale definitions (in which case see also pg_import_sys-
tem_collations()).

23.2.2.3.2. ICU Collations
ICU collations can be created like:

674

Localization

CREATE COLLATION german (provider = icu, locale = 'de-DE');

ICU locales are specified as a BCP 47 Language Tag, but can also accept most libc-style locale names.
If possible, libc-style locale names are transformed into language tags.

New ICU collations can customize collation behavior extensively by including collation attributes in the
language tag. See Section 23.2.3 for details and examples.

23.2.2.3.3. Copying Collations

The command CREATE COLLATION can also be used to create a new collation from an existing collation,
which can be useful to be able to use operating-system-independent collation names in applications,
create compatibility names, or use an ICU-provided collation under a more readable name. For example:

CREATE COLLATION german FROM "de_DE";
CREATE COLLATION french FROM "fr-x-icu";

23.2.2.4. Nondeterministic Collations
A collation is either deterministic or nondeterministic. A deterministic collation uses deterministic com-
parisons, which means that it considers strings to be equal only if they consist of the same byte se-
quence. Nondeterministic comparison may determine strings to be equal even if they consist of different
bytes. Typical situations include case-insensitive comparison, accent-insensitive comparison, as well as
comparison of strings in different Unicode normal forms. It is up to the collation provider to actually
implement such insensitive comparisons; the deterministic flag only determines whether ties are to be
broken using bytewise comparison. See also Unicode Technical Standard 10 for more information on
the terminology.

To create a nondeterministic collation, specify the property deterministic = false to CREATE COL-
LATION, for example:

CREATE COLLATION ndcoll (provider = icu, locale = 'und', deterministic = false);

This example would use the standard Unicode collation in a nondeterministic way. In particular, this
would allow strings in different normal forms to be compared correctly. More interesting examples make
use of the ICU customization facilities explained above. For example:

CREATE COLLATION case_insensitive (provider = icu, locale = 'und-u-ks-level2',
 deterministic = false);
CREATE COLLATION ignore_accents (provider = icu, locale = 'und-u-ks-level1-kc-true',
 deterministic = false);

All standard and predefined collations are deterministic, all user-defined collations are deterministic by
default. While nondeterministic collations give a more “correct” behavior, especially when considering
the full power of Unicode and its many special cases, they also have some drawbacks. Foremost, their use
leads to a performance penalty. Note, in particular, that B-tree cannot use deduplication with indexes
that use a nondeterministic collation. Also, certain operations are not possible with nondeterministic
collations, such as some pattern matching operations. Therefore, they should be used only in cases where
they are specifically wanted.

Tip
To deal with text in different Unicode normalization forms, it is also an option to use the func-
tions/expressions normalize and is normalized to preprocess or check the strings, instead of
using nondeterministic collations. There are different trade-offs for each approach.

23.2.3. ICU Custom Collations
ICU allows extensive control over collation behavior by defining new collations with collation settings
as a part of the language tag. These settings can modify the collation order to suit a variety of needs.
For instance:

675

https://www.unicode.org/reports/tr10

Localization

-- ignore differences in accents and case
CREATE COLLATION ignore_accent_case (provider = icu, deterministic = false, locale =
 'und-u-ks-level1');
SELECT 'Å' = 'A' COLLATE ignore_accent_case; -- true
SELECT 'z' = 'Z' COLLATE ignore_accent_case; -- true

-- upper case letters sort before lower case.
CREATE COLLATION upper_first (provider = icu, locale = 'und-u-kf-upper');
SELECT 'B' < 'b' COLLATE upper_first; -- true

-- treat digits numerically and ignore punctuation
CREATE COLLATION num_ignore_punct (provider = icu, deterministic = false, locale =
 'und-u-ka-shifted-kn');
SELECT 'id-45' < 'id-123' COLLATE num_ignore_punct; -- true
SELECT 'w;x*y-z' = 'wxyz' COLLATE num_ignore_punct; -- true

Many of the available options are described in Section 23.2.3.2, or see Section 23.2.3.5 for more details.

23.2.3.1. ICU Comparison Levels
Comparison of two strings (collation) in ICU is determined by a multi-level process, where textual fea-
tures are grouped into "levels". Treatment of each level is controlled by the collation settings. Higher
levels correspond to finer textual features.

Table 23.1 shows which textual feature differences are considered significant when determining equality
at the given level. The Unicode character U+2063 is an invisible separator, and as seen in the table, is
ignored for at all levels of comparison less than identic.

Table 23.1. ICU Collation Levels

Level Description 'f' = 'f' 'ab'
= U&'a
\2063b'

'x-y' =
'x_y'

'g' = 'G' 'n' = 'ñ' 'y' = 'z'

level1 Base Charac-
ter

true true true true true false

level2 Accents true true true true false false

level3 Case/Variants true true true false false false

level4 Punctuationa
true true false false false false

identic All true false false false false false
aonly with ka-shifted; see Table 23.2

At every level, even with full normalization off, basic normalization is performed. For example, 'á' may be
composed of the code points U&'\0061\0301' or the single code point U&'\00E1', and those sequences
will be considered equal even at the identic level. To treat any difference in code point representation
as distinct, use a collation created with deterministic set to true.

23.2.3.1.1. Collation Level Examples

CREATE COLLATION level3 (provider = icu, deterministic = false, locale = 'und-u-ka-
shifted-ks-level3');
CREATE COLLATION level4 (provider = icu, deterministic = false, locale = 'und-u-ka-
shifted-ks-level4');
CREATE COLLATION identic (provider = icu, deterministic = false, locale = 'und-u-ka-
shifted-ks-identic');

-- invisible separator ignored at all levels except identic
SELECT 'ab' = U&'a\2063b' COLLATE level4; -- true
SELECT 'ab' = U&'a\2063b' COLLATE identic; -- false

676

Localization

-- punctuation ignored at level3 but not at level 4
SELECT 'x-y' = 'x_y' COLLATE level3; -- true
SELECT 'x-y' = 'x_y' COLLATE level4; -- false

23.2.3.2. Collation Settings for an ICU Locale
Table 23.2 shows the available collation settings, which can be used as part of a language tag to cus-
tomize a collation.

Table 23.2. ICU Collation Settings

Key Values Default Description
co emoji, phonebk,

 standard, ...
standard Collation type. See Section 23.2.3.5 for additional

options and details.
ka noignore, shifted noignore If set to shifted, causes some characters (e.g.

punctuation or space) to be ignored in compar-
ison. Key ks must be set to level3 or lower to
take effect. Set key kv to control which character
classes are ignored.

kb true, false false Backwards comparison for the level 2 differences.
For example, locale und-u-kb sorts 'àe' before
'aé'.

kc true, false false Separates case into a "level 2.5" that falls be-
tween accents and other level 3 features.

If set to true and ks is set to level1, will ignore
accents but take case into account.

kf upper, lower,
 false

false If set to upper, upper case sorts before lower
case. If set to lower, lower case sorts before up-
per case. If set to false, the sort depends on the
rules of the locale.

kn true, false false If set to true, numbers within a string are treat-
ed as a single numeric value rather than a se-
quence of digits. For example, 'id-45' sorts be-
fore 'id-123'.

kk true, false false Enable full normalization; may affect perfor-
mance. Basic normalization is performed even
when set to false. Locales for languages that re-
quire full normalization typically enable it by de-
fault.

Full normalization is important in some cas-
es, such as when multiple accents are applied
to a single character. For example, the code
point sequences U&'\0065\0323\0302' and
U&'\0065\0302\0323' represent an e with cir-
cumflex and dot-below accents applied in differ-
ent orders. With full normalization on, these code
point sequences are treated as equal; otherwise
they are unequal.

kr space, punct, sym-
bol, currency,
 digit, script-id

 Set to one or more of the valid values, or any
BCP 47 script-id, e.g. latn ("Latin") or grek (
"Greek"). Multiple values are separated by "-".

Redefines the ordering of classes of characters;
those characters belonging to a class earlier in

677

Localization

Key Values Default Description
the list sort before characters belonging to a
class later in the list. For instance, the value dig-
it-currency-space (as part of a language tag like
und-u-kr-digit-currency-space) sorts punctua-
tion before digits and spaces.

ks level1, level2,
 level3, level4,
 identic

level3 Sensitivity (or "strength") when determining
equality, with level1 the least sensitive to differ-
ences and identic the most sensitive to differ-
ences. See Table 23.1 for details.

kv space, punct, sym-
bol, currency

punct Classes of characters ignored during comparison
at level 3. Setting to a later value includes earlier
values; e.g. symbol also includes punct and space
in the characters to be ignored. Key ka must be
set to shifted and key ks must be set to level3
or lower to take effect.

Defaults may depend on locale. The above table is not meant to be complete. See Section 23.2.3.5 for
additional options and details.

Note
For many collation settings, you must create the collation with deterministic set to false for
the setting to have the desired effect (see Section 23.2.2.4). Additionally, some settings only take
effect when the key ka is set to shifted (see Table 23.2).

23.2.3.3. Collation Settings Examples
CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale = 'de-u-co-phonebk');

German collation with phone book collation type

CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale = 'und-u-co-emoji');

Root collation with Emoji collation type, per Unicode Technical Standard #51

CREATE COLLATION latinlast (provider = icu, locale = 'en-u-kr-grek-latn');

Sort Greek letters before Latin ones. (The default is Latin before Greek.)

CREATE COLLATION upperfirst (provider = icu, locale = 'en-u-kf-upper');

Sort upper-case letters before lower-case letters. (The default is lower-case letters first.)

CREATE COLLATION special (provider = icu, locale = 'en-u-kf-upper-kr-grek-latn');

Combines both of the above options.

23.2.3.4. ICU Tailoring Rules
If the options provided by the collation settings shown above are not sufficient, the order of collation
elements can be changed with tailoring rules, whose syntax is detailed at https://unicode-org.github.io/
icu/userguide/collation/customization/.

This small example creates a collation based on the root locale with a tailoring rule:

CREATE COLLATION custom (provider = icu, locale = 'und', rules = '&V << w <<< W');

678

https://unicode-org.github.io/icu/userguide/collation/customization/
https://unicode-org.github.io/icu/userguide/collation/customization/

Localization

With this rule, the letter “W” is sorted after “V”, but is treated as a secondary difference similar to an
accent. Rules like this are contained in the locale definitions of some languages. (Of course, if a locale
definition already contains the desired rules, then they don't need to be specified again explicitly.)

Here is a more complex example. The following statement sets up a collation named ebcdic with rules
to sort US-ASCII characters in the order of the EBCDIC encoding.

CREATE COLLATION ebcdic (provider = icu, locale = 'und',
rules = $$
& ' ' < '.' < '<' < '(' < '+' < \|
< '&' < '!' < '$' < '*' < ')' < ';'
< '-' < '/' < ',' < '%' < '_' < '>' < '?'
< '`' < ':' < '#' < '@' < \' < '=' < '"'
<*a-r < '~' <*s-z < '^' < '[' < ']'
< '{' <*A-I < '}' <*J-R < '\' <*S-Z <*0-9
$$);

SELECT c
FROM (VALUES ('a'), ('b'), ('A'), ('B'), ('1'), ('2'), ('!'), ('^')) AS x(c)
ORDER BY c COLLATE ebcdic;
 c

 !
 a
 b
 ^
 A
 B
 1
 2

23.2.3.5. External References for ICU
This section (Section 23.2.3) is only a brief overview of ICU behavior and language tags. Refer to the
following documents for technical details, additional options, and new behavior:

• Unicode Technical Standard #35

• BCP 47

• CLDR repository

• https://unicode-org.github.io/icu/userguide/locale/

• https://unicode-org.github.io/icu/userguide/collation/

23.3. Character Set Support
The character set support in PostgreSQL allows you to store text in a variety of character sets (also called
encodings), including single-byte character sets such as the ISO 8859 series and multiple-byte character
sets such as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets
can be used transparently by clients, but a few are not supported for use within the server (that is, as a
server-side encoding). The default character set is selected while initializing your PostgreSQL database
cluster using initdb. It can be overridden when you create a database, so you can have multiple data-
bases each with a different character set.

An important restriction, however, is that each database's character set must be compatible with the
database's LC_CTYPE (character classification) and LC_COLLATE (string sort order) locale settings. For
C or POSIX locale, any character set is allowed, but for other libc-provided locales there is only one
character set that will work correctly. (On Windows, however, UTF-8 encoding can be used with any

679

https://www.unicode.org/reports/tr35/tr35-collation.html
https://www.rfc-editor.org/info/bcp47
https://github.com/unicode-org/cldr/blob/master/common/bcp47/collation.xml
https://unicode-org.github.io/icu/userguide/locale/
https://unicode-org.github.io/icu/userguide/collation/

Localization

locale.) If you have ICU support configured, ICU-provided locales can be used with most but not all
server-side encodings.

23.3.1. Supported Character Sets
Table 23.3 shows the character sets available for use in PostgreSQL.

Table 23.3. PostgreSQL Character Sets

Name Description Language Server? ICU? Bytes/
Char

Aliases

BIG5 Big Five Traditional Chi-
nese

No No 1–2 WIN950, Win-
dows950

EUC_CN Extended UNIX
Code-CN

Simplified Chi-
nese

Yes Yes 1–3

EUC_JP Extended UNIX
Code-JP

Japanese Yes Yes 1–3

EUC_JIS_2004 Extended UNIX
Code-JP, JIS X
0213

Japanese Yes No 1–3

EUC_KR Extended UNIX
Code-KR

Korean Yes Yes 1–3

EUC_TW Extended UNIX
Code-TW

Traditional
Chinese, Tai-
wanese

Yes Yes 1–4

GB18030 National Stan-
dard

Chinese No No 1–4

GBK Extended Na-
tional Standard

Simplified Chi-
nese

No No 1–2 WIN936, Win-
dows936

ISO_8859_5 ISO 8859-5,
ECMA 113

Latin/Cyrillic Yes Yes 1

ISO_8859_6 ISO 8859-6,
ECMA 114

Latin/Arabic Yes Yes 1

ISO_8859_7 ISO 8859-7,
ECMA 118

Latin/Greek Yes Yes 1

ISO_8859_8 ISO 8859-8,
ECMA 121

Latin/Hebrew Yes Yes 1

JOHAB JOHAB Korean (
Hangul)

No No 1–3

KOI8R KOI8-R Cyrillic (Russ-
ian)

Yes Yes 1 KOI8

KOI8U KOI8-U Cyrillic (
Ukrainian)

Yes Yes 1

LATIN1 ISO 8859-1,
ECMA 94

Western Euro-
pean

Yes Yes 1 ISO88591

LATIN2 ISO 8859-2,
ECMA 94

Central Euro-
pean

Yes Yes 1 ISO88592

LATIN3 ISO 8859-3,
ECMA 94

South Euro-
pean

Yes Yes 1 ISO88593

LATIN4 ISO 8859-4,
ECMA 94

North Euro-
pean

Yes Yes 1 ISO88594

680

Localization

Name Description Language Server? ICU? Bytes/
Char

Aliases

LATIN5 ISO 8859-9,
ECMA 128

Turkish Yes Yes 1 ISO88599

LATIN6 ISO 8859-10,
ECMA 144

Nordic Yes Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with
Euro and ac-
cents

Yes Yes 1 ISO885915

LATIN10 ISO 8859-16,
 ASRO SR
14111

Romanian Yes No 1 ISO885916

MULE_INTERNAL Mule internal
code

Multilingual
Emacs

Yes No 1–4

SJIS Shift JIS Japanese No No 1–2 Mskanji,
 ShiftJIS,
 WIN932, Win-
dows932

SHIFT_JIS_2004 Shift JIS, JIS X
0213

Japanese No No 1–2

SQL_ASCII unspecified (
see text)

any Yes No 1

UHC Unified Hangul
Code

Korean No No 1–2 WIN949, Win-
dows949

UTF8 Unicode, 8-bit all Yes Yes 1–4 Unicode

WIN866 Windows
CP866

Cyrillic Yes Yes 1 ALT

WIN874 Windows
CP874

Thai Yes No 1

WIN1250 Windows
CP1250

Central Euro-
pean

Yes Yes 1

WIN1251 Windows
CP1251

Cyrillic Yes Yes 1 WIN

WIN1252 Windows
CP1252

Western Euro-
pean

Yes Yes 1

WIN1253 Windows
CP1253

Greek Yes Yes 1

WIN1254 Windows
CP1254

Turkish Yes Yes 1

WIN1255 Windows
CP1255

Hebrew Yes Yes 1

WIN1256 Windows
CP1256

Arabic Yes Yes 1

WIN1257 Windows
CP1257

Baltic Yes Yes 1

681

Localization

Name Description Language Server? ICU? Bytes/
Char

Aliases

WIN1258 Windows
CP1258

Vietnamese Yes Yes 1 ABC, TCVN,
 TCVN5712,
 VSCII

Not all client APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does
not support MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

The SQL_ASCII setting behaves considerably differently from the other settings. When the server char-
acter set is SQL_ASCII, the server interprets byte values 0–127 according to the ASCII standard, while
byte values 128–255 are taken as uninterpreted characters. No encoding conversion will be done when
the setting is SQL_ASCII. Thus, this setting is not so much a declaration that a specific encoding is in
use, as a declaration of ignorance about the encoding. In most cases, if you are working with any non-
ASCII data, it is unwise to use the SQL_ASCII setting because PostgreSQL will be unable to help you by
converting or validating non-ASCII characters.

23.3.2. Setting the Character Set
initdb defines the default character set (encoding) for a PostgreSQL cluster. For example,

initdb -E EUC_JP

sets the default character set to EUC_JP (Extended Unix Code for Japanese). You can use --encoding
instead of -E if you prefer longer option strings. If no -E or --encoding option is given, initdb attempts
to determine the appropriate encoding to use based on the specified or default locale.

You can specify a non-default encoding at database creation time, provided that the encoding is com-
patible with the selected locale:

createdb -E EUC_KR -T template0 --lc-collate=ko_KR.euckr --lc-ctype=ko_KR.euckr korean

This will create a database named korean that uses the character set EUC_KR, and locale ko_KR. Another
way to accomplish this is to use this SQL command:

CREATE DATABASE korean WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr'
 LC_CTYPE='ko_KR.euckr' TEMPLATE=template0;

Notice that the above commands specify copying the template0 database. When copying any other data-
base, the encoding and locale settings cannot be changed from those of the source database, because
that might result in corrupt data. For more information see Section 22.3.

The encoding for a database is stored in the system catalog pg_database. You can see it by using the
psql -l option or the \l command.

$ psql -l
 List of databases
 Name | Owner | Encoding | Collation | Ctype | Access
 Privileges
-----------+----------+-----------+-------------+-------------
+-------------------------------------
 clocaledb | hlinnaka | SQL_ASCII | C | C |
 englishdb | hlinnaka | UTF8 | en_GB.UTF8 | en_GB.UTF8 |
 japanese | hlinnaka | UTF8 | ja_JP.UTF8 | ja_JP.UTF8 |
 korean | hlinnaka | EUC_KR | ko_KR.euckr | ko_KR.euckr |
 postgres | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 |
 template0 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/
hlinnaka,hlinnaka=CTc/hlinnaka}
 template1 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/
hlinnaka,hlinnaka=CTc/hlinnaka}
(7 rows)

682

Localization

Important
On most modern operating systems, PostgreSQL can determine which character set is implied by
the LC_CTYPE setting, and it will enforce that only the matching database encoding is used. On
older systems it is your responsibility to ensure that you use the encoding expected by the locale
you have selected. A mistake in this area is likely to lead to strange behavior of locale-dependent
operations such as sorting.

PostgreSQL will allow superusers to create databases with SQL_ASCII encoding even when LC_C-
TYPE is not C or POSIX. As noted above, SQL_ASCII does not enforce that the data stored in the
database has any particular encoding, and so this choice poses risks of locale-dependent misbe-
havior. Using this combination of settings is deprecated and may someday be forbidden altogether.

23.3.3. Automatic Character Set Conversion Between Server and
Client

PostgreSQL supports automatic character set conversion between server and client for many combina-
tions of character sets (Section 23.3.4 shows which ones).

To enable automatic character set conversion, you have to tell PostgreSQL the character set (encoding)
you would like to use in the client. There are several ways to accomplish this:

• Using the \encoding command in psql. \encoding allows you to change client encoding on the fly.
For example, to change the encoding to SJIS, type:

\encoding SJIS

• libpq (Section 32.11) has functions to control the client encoding.

• Using SET client_encoding TO. Setting the client encoding can be done with this SQL command:

SET CLIENT_ENCODING TO 'value';

Also you can use the standard SQL syntax SET NAMES for this purpose:

SET NAMES 'value';

To query the current client encoding:

SHOW client_encoding;

To return to the default encoding:

RESET client_encoding;

• Using PGCLIENTENCODING. If the environment variable PGCLIENTENCODING is defined in the client's
environment, that client encoding is automatically selected when a connection to the server is
made. (This can subsequently be overridden using any of the other methods mentioned above.)

• Using the configuration variable client_encoding. If the client_encoding variable is set, that client
encoding is automatically selected when a connection to the server is made. (This can subsequently
be overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose EUC_JP for the server
and LATIN1 for the client, and some Japanese characters are returned that do not have a representation
in LATIN1 — an error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the
server's character set. (However, if the server's character set is not SQL_ASCII, the server will still check
that incoming data is valid for that encoding; so the net effect is as though the client character set were
the same as the server's.) Just as for the server, use of SQL_ASCII is unwise unless you are working
with all-ASCII data.

683

Localization

23.3.4. Available Character Set Conversions
PostgreSQL allows conversion between any two character sets for which a conversion function is listed
in the pg_conversion system catalog. PostgreSQL comes with some predefined conversions, as summa-
rized in Table 23.4 and shown in more detail in Table 23.5. You can create a new conversion using the
SQL command CREATE CONVERSION. (To be used for automatic client/server conversions, a conver-
sion must be marked as “default” for its character set pair.)

Table 23.4. Built-in Client/Server Character Set Conversions

Server Character Set Available Client Character Sets
BIG5 not supported as a server encoding
EUC_CN EUC_CN, MULE_INTERNAL , UTF8
EUC_JP EUC_JP, MULE_INTERNAL , SJIS, UTF8
EUC_JIS_2004 EUC_JIS_2004, SHIFT_JIS_2004 , UTF8
EUC_KR EUC_KR, MULE_INTERNAL , UTF8
EUC_TW EUC_TW, BIG5, MULE_INTERNAL , UTF8
GB18030 not supported as a server encoding
GBK not supported as a server encoding
ISO_8859_5 ISO_8859_5, KOI8R, MULE_INTERNAL , UTF8, WIN866, WIN1251
ISO_8859_6 ISO_8859_6, UTF8
ISO_8859_7 ISO_8859_7, UTF8
ISO_8859_8 ISO_8859_8, UTF8
JOHAB not supported as a server encoding
KOI8R KOI8R, ISO_8859_5 , MULE_INTERNAL , UTF8, WIN866, WIN1251
KOI8U KOI8U, UTF8
LATIN1 LATIN1, MULE_INTERNAL , UTF8
LATIN2 LATIN2, MULE_INTERNAL , UTF8, WIN1250
LATIN3 LATIN3, MULE_INTERNAL , UTF8
LATIN4 LATIN4, MULE_INTERNAL , UTF8
LATIN5 LATIN5, UTF8
LATIN6 LATIN6, UTF8
LATIN7 LATIN7, UTF8
LATIN8 LATIN8, UTF8
LATIN9 LATIN9, UTF8
LATIN10 LATIN10, UTF8
MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN , EUC_JP , EUC_KR , EUC_TW , ISO_8859_

5 , KOI8R, LATIN1 to LATIN4, SJIS, WIN866, WIN1250, WIN1251
SJIS not supported as a server encoding
SHIFT_JIS_2004 not supported as a server encoding
SQL_ASCII any (no conversion will be performed)
UHC not supported as a server encoding
UTF8 all supported encodings
WIN866 WIN866, ISO_8859_5 , KOI8R, MULE_INTERNAL , UTF8, WIN1251
WIN874 WIN874, UTF8

684

Localization

Server Character Set Available Client Character Sets
WIN1250 WIN1250, LATIN2, MULE_INTERNAL , UTF8
WIN1251 WIN1251, ISO_8859_5 , KOI8R, MULE_INTERNAL , UTF8, WIN866
WIN1252 WIN1252, UTF8
WIN1253 WIN1253, UTF8
WIN1254 WIN1254, UTF8
WIN1255 WIN1255, UTF8
WIN1256 WIN1256, UTF8
WIN1257 WIN1257, UTF8
WIN1258 WIN1258, UTF8

Table 23.5. All Built-in Character Set Conversions

Conversion Name a Source Encoding Destination Encoding
big5_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_INTERNAL

big5_to_utf8 BIG5 UTF8

euc_cn_to_mic EUC_CN MULE_INTERNAL

euc_cn_to_utf8 EUC_CN UTF8

euc_jp_to_mic EUC_JP MULE_INTERNAL

euc_jp_to_sjis EUC_JP SJIS

euc_jp_to_utf8 EUC_JP UTF8

euc_kr_to_mic EUC_KR MULE_INTERNAL

euc_kr_to_utf8 EUC_KR UTF8

euc_tw_to_big5 EUC_TW BIG5

euc_tw_to_mic EUC_TW MULE_INTERNAL

euc_tw_to_utf8 EUC_TW UTF8

gb18030_to_utf8 GB18030 UTF8

gbk_to_utf8 GBK UTF8

iso_8859_10_to_utf8 LATIN6 UTF8

iso_8859_13_to_utf8 LATIN7 UTF8

iso_8859_14_to_utf8 LATIN8 UTF8

iso_8859_15_to_utf8 LATIN9 UTF8

iso_8859_16_to_utf8 LATIN10 UTF8

iso_8859_1_to_mic LATIN1 MULE_INTERNAL

iso_8859_1_to_utf8 LATIN1 UTF8

iso_8859_2_to_mic LATIN2 MULE_INTERNAL

iso_8859_2_to_utf8 LATIN2 UTF8

iso_8859_2_to_windows_1250 LATIN2 WIN1250

iso_8859_3_to_mic LATIN3 MULE_INTERNAL

iso_8859_3_to_utf8 LATIN3 UTF8

iso_8859_4_to_mic LATIN4 MULE_INTERNAL

iso_8859_4_to_utf8 LATIN4 UTF8

685

Localization

Conversion Name a Source Encoding Destination Encoding
iso_8859_5_to_koi8_r ISO_8859_5 KOI8R

iso_8859_5_to_mic ISO_8859_5 MULE_INTERNAL

iso_8859_5_to_utf8 ISO_8859_5 UTF8

iso_8859_5_to_windows_1251 ISO_8859_5 WIN1251

iso_8859_5_to_windows_866 ISO_8859_5 WIN866

iso_8859_6_to_utf8 ISO_8859_6 UTF8

iso_8859_7_to_utf8 ISO_8859_7 UTF8

iso_8859_8_to_utf8 ISO_8859_8 UTF8

iso_8859_9_to_utf8 LATIN5 UTF8

johab_to_utf8 JOHAB UTF8

koi8_r_to_iso_8859_5 KOI8R ISO_8859_5

koi8_r_to_mic KOI8R MULE_INTERNAL

koi8_r_to_utf8 KOI8R UTF8

koi8_r_to_windows_1251 KOI8R WIN1251

koi8_r_to_windows_866 KOI8R WIN866

koi8_u_to_utf8 KOI8U UTF8

mic_to_big5 MULE_INTERNAL BIG5

mic_to_euc_cn MULE_INTERNAL EUC_CN

mic_to_euc_jp MULE_INTERNAL EUC_JP

mic_to_euc_kr MULE_INTERNAL EUC_KR

mic_to_euc_tw MULE_INTERNAL EUC_TW

mic_to_iso_8859_1 MULE_INTERNAL LATIN1

mic_to_iso_8859_2 MULE_INTERNAL LATIN2

mic_to_iso_8859_3 MULE_INTERNAL LATIN3

mic_to_iso_8859_4 MULE_INTERNAL LATIN4

mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5

mic_to_koi8_r MULE_INTERNAL KOI8R

mic_to_sjis MULE_INTERNAL SJIS

mic_to_windows_1250 MULE_INTERNAL WIN1250

mic_to_windows_1251 MULE_INTERNAL WIN1251

mic_to_windows_866 MULE_INTERNAL WIN866

sjis_to_euc_jp SJIS EUC_JP

sjis_to_mic SJIS MULE_INTERNAL

sjis_to_utf8 SJIS UTF8

windows_1258_to_utf8 WIN1258 UTF8

uhc_to_utf8 UHC UTF8

utf8_to_big5 UTF8 BIG5

utf8_to_euc_cn UTF8 EUC_CN

utf8_to_euc_jp UTF8 EUC_JP

utf8_to_euc_kr UTF8 EUC_KR

686

Localization

Conversion Name a Source Encoding Destination Encoding
utf8_to_euc_tw UTF8 EUC_TW

utf8_to_gb18030 UTF8 GB18030

utf8_to_gbk UTF8 GBK

utf8_to_iso_8859_1 UTF8 LATIN1

utf8_to_iso_8859_10 UTF8 LATIN6

utf8_to_iso_8859_13 UTF8 LATIN7

utf8_to_iso_8859_14 UTF8 LATIN8

utf8_to_iso_8859_15 UTF8 LATIN9

utf8_to_iso_8859_16 UTF8 LATIN10

utf8_to_iso_8859_2 UTF8 LATIN2

utf8_to_iso_8859_3 UTF8 LATIN3

utf8_to_iso_8859_4 UTF8 LATIN4

utf8_to_iso_8859_5 UTF8 ISO_8859_5

utf8_to_iso_8859_6 UTF8 ISO_8859_6

utf8_to_iso_8859_7 UTF8 ISO_8859_7

utf8_to_iso_8859_8 UTF8 ISO_8859_8

utf8_to_iso_8859_9 UTF8 LATIN5

utf8_to_johab UTF8 JOHAB

utf8_to_koi8_r UTF8 KOI8R

utf8_to_koi8_u UTF8 KOI8U

utf8_to_sjis UTF8 SJIS

utf8_to_windows_1258 UTF8 WIN1258

utf8_to_uhc UTF8 UHC

utf8_to_windows_1250 UTF8 WIN1250

utf8_to_windows_1251 UTF8 WIN1251

utf8_to_windows_1252 UTF8 WIN1252

utf8_to_windows_1253 UTF8 WIN1253

utf8_to_windows_1254 UTF8 WIN1254

utf8_to_windows_1255 UTF8 WIN1255

utf8_to_windows_1256 UTF8 WIN1256

utf8_to_windows_1257 UTF8 WIN1257

utf8_to_windows_866 UTF8 WIN866

utf8_to_windows_874 UTF8 WIN874

windows_1250_to_iso_8859_2 WIN1250 LATIN2

windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf8 WIN1250 UTF8

windows_1251_to_iso_8859_5 WIN1251 ISO_8859_5

windows_1251_to_koi8_r WIN1251 KOI8R

windows_1251_to_mic WIN1251 MULE_INTERNAL

windows_1251_to_utf8 WIN1251 UTF8

687

Localization

Conversion Name a Source Encoding Destination Encoding
windows_1251_to_windows_866 WIN1251 WIN866

windows_1252_to_utf8 WIN1252 UTF8

windows_1256_to_utf8 WIN1256 UTF8

windows_866_to_iso_8859_5 WIN866 ISO_8859_5

windows_866_to_koi8_r WIN866 KOI8R

windows_866_to_mic WIN866 MULE_INTERNAL

windows_866_to_utf8 WIN866 UTF8

windows_866_to_windows_1251 WIN866 WIN

windows_874_to_utf8 WIN874 UTF8

euc_jis_2004_to_utf8 EUC_JIS_2004 UTF8

utf8_to_euc_jis_2004 UTF8 EUC_JIS_2004

shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8

utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004

euc_jis_2004_to_shift_jis_2004 EUC_JIS_2004 SHIFT_JIS_2004

shift_jis_2004_to_euc_jis_2004 SHIFT_JIS_2004 EUC_JIS_2004
a The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric characters replaced by underscores,
followed by _to_, followed by the similarly processed destination encoding name. Therefore, these names sometimes deviate from the customary encoding names
shown in Table 23.3.

23.3.5. Further Reading
These are good sources to start learning about various kinds of encoding systems.
CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing

Contains detailed explanations of EUC_JP, EUC_CN, EUC_KR, EUC_TW.

https://www.unicode.org/
The web site of the Unicode Consortium.

RFC 3629
UTF-8 (8-bit UCS/Unicode Transformation Format) is defined here.

688

https://www.unicode.org/
https://datatracker.ietf.org/doc/html/rfc3629

Chapter 24. Routine Database Maintenance
Tasks

PostgreSQL, like any database software, requires that certain tasks be performed regularly to achieve
optimum performance. The tasks discussed here are required, but they are repetitive in nature and can
easily be automated using standard tools such as cron scripts or Windows' Task Scheduler. It is the
database administrator's responsibility to set up appropriate scripts, and to check that they execute
successfully.

One obvious maintenance task is the creation of backup copies of the data on a regular schedule. With-
out a recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly
dropping a critical table, etc.). The backup and recovery mechanisms available in PostgreSQL are dis-
cussed at length in Chapter 25.

The other main category of maintenance task is periodic “vacuuming” of the database. This activity is
discussed in Section 24.1. Closely related to this is updating the statistics that will be used by the query
planner, as discussed in Section 24.1.3.

Another task that might need periodic attention is log file management. This is discussed in Section 24.3.

check_postgres is available for monitoring database health and reporting unusual conditions.
check_postgres integrates with Nagios and MRTG, but can be run standalone too.

PostgreSQL is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience
with the system.

24.1. Routine Vacuuming
PostgreSQL databases require periodic maintenance known as vacuuming. For many installations, it
is sufficient to let vacuuming be performed by the autovacuum daemon, which is described in Sec-
tion 24.1.6. You might need to adjust the autovacuuming parameters described there to obtain best re-
sults for your situation. Some database administrators will want to supplement or replace the daemon's
activities with manually-managed VACUUM commands, which typically are executed according to a sched-
ule by cron or Task Scheduler scripts. To set up manually-managed vacuuming properly, it is essential to
understand the issues discussed in the next few subsections. Administrators who rely on autovacuuming
may still wish to skim this material to help them understand and adjust autovacuuming.

24.1.1. Vacuuming Basics
PostgreSQL's VACUUM command has to process each table on a regular basis for several reasons:

1. To recover or reuse disk space occupied by updated or deleted rows.

2. To update data statistics used by the PostgreSQL query planner.

3. To update the visibility map, which speeds up index-only scans.

4. To protect against loss of very old data due to transaction ID wraparound or multixact ID wraparound.

Each of these reasons dictates performing VACUUM operations of varying frequency and scope, as ex-
plained in the following subsections.

There are two variants of VACUUM: standard VACUUM and VACUUM FULL. VACUUM FULL can reclaim more disk
space but runs much more slowly. Also, the standard form of VACUUM can run in parallel with production
database operations. (Commands such as SELECT, INSERT, UPDATE, and DELETE will continue to function
normally, though you will not be able to modify the definition of a table with commands such as ALTER
TABLE while it is being vacuumed.) VACUUM FULL requires an ACCESS EXCLUSIVE lock on the table it is

689

https://bucardo.org/check_postgres/

Routine Database
Maintenance Tasks

working on, and therefore cannot be done in parallel with other use of the table. Generally, therefore,
administrators should strive to use standard VACUUM and avoid VACUUM FULL.

VACUUM creates a substantial amount of I/O traffic, which can cause poor performance for other active
sessions. There are configuration parameters that can be adjusted to reduce the performance impact of
background vacuuming — see Section 19.10.2.

24.1.2. Recovering Disk Space
In PostgreSQL, an UPDATE or DELETE of a row does not immediately remove the old version of the row.
This approach is necessary to gain the benefits of multiversion concurrency control (MVCC, see Chap-
ter 13): the row version must not be deleted while it is still potentially visible to other transactions. But
eventually, an outdated or deleted row version is no longer of interest to any transaction. The space
it occupies must then be reclaimed for reuse by new rows, to avoid unbounded growth of disk space
requirements. This is done by running VACUUM.

The standard form of VACUUM removes dead row versions in tables and indexes and marks the space
available for future reuse. However, it will not return the space to the operating system, except in the
special case where one or more pages at the end of a table become entirely free and an exclusive table
lock can be easily obtained. In contrast, VACUUM FULL actively compacts tables by writing a complete
new version of the table file with no dead space. This minimizes the size of the table, but can take a long
time. It also requires extra disk space for the new copy of the table, until the operation completes.

The usual goal of routine vacuuming is to do standard VACUUMs often enough to avoid needing VACUUM
FULL. The autovacuum daemon attempts to work this way, and in fact will never issue VACUUM FULL. In
this approach, the idea is not to keep tables at their minimum size, but to maintain steady-state usage
of disk space: each table occupies space equivalent to its minimum size plus however much space gets
used up between vacuum runs. Although VACUUM FULL can be used to shrink a table back to its minimum
size and return the disk space to the operating system, there is not much point in this if the table will
just grow again in the future. Thus, moderately-frequent standard VACUUM runs are a better approach
than infrequent VACUUM FULL runs for maintaining heavily-updated tables.

Some administrators prefer to schedule vacuuming themselves, for example doing all the work at night
when load is low. The difficulty with doing vacuuming according to a fixed schedule is that if a table
has an unexpected spike in update activity, it may get bloated to the point that VACUUM FULL is really
necessary to reclaim space. Using the autovacuum daemon alleviates this problem, since the daemon
schedules vacuuming dynamically in response to update activity. It is unwise to disable the daemon
completely unless you have an extremely predictable workload. One possible compromise is to set the
daemon's parameters so that it will only react to unusually heavy update activity, thus keeping things
from getting out of hand, while scheduled VACUUMs are expected to do the bulk of the work when the
load is typical.

For those not using autovacuum, a typical approach is to schedule a database-wide VACUUM once a day
during a low-usage period, supplemented by more frequent vacuuming of heavily-updated tables as
necessary. (Some installations with extremely high update rates vacuum their busiest tables as often as
once every few minutes.) If you have multiple databases in a cluster, don't forget to VACUUM each one;
the program vacuumdb might be helpful.

Tip
Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions as
a result of massive update or delete activity. If you have such a table and you need to reclaim the
excess disk space it occupies, you will need to use VACUUM FULL, or alternatively CLUSTER or one of
the table-rewriting variants of ALTER TABLE. These commands rewrite an entire new copy of the
table and build new indexes for it. All these options require an ACCESS EXCLUSIVE lock. Note that
they also temporarily use extra disk space approximately equal to the size of the table, since the
old copies of the table and indexes can't be released until the new ones are complete.

690

Routine Database
Maintenance Tasks

Tip
If you have a table whose entire contents are deleted on a periodic basis, consider doing it with
TRUNCATE rather than using DELETE followed by VACUUM. TRUNCATE removes the entire content of
the table immediately, without requiring a subsequent VACUUM or VACUUM FULL to reclaim the now-
unused disk space. The disadvantage is that strict MVCC semantics are violated.

24.1.3. Updating Planner Statistics
The PostgreSQL query planner relies on statistical information about the contents of tables in order to
generate good plans for queries. These statistics are gathered by the ANALYZE command, which can be
invoked by itself or as an optional step in VACUUM. It is important to have reasonably accurate statistics,
otherwise poor choices of plans might degrade database performance.

The autovacuum daemon, if enabled, will automatically issue ANALYZE commands whenever the content
of a table has changed sufficiently. However, administrators might prefer to rely on manually-scheduled
ANALYZE operations, particularly if it is known that update activity on a table will not affect the statistics
of “interesting” columns. The daemon schedules ANALYZE strictly as a function of the number of rows
inserted or updated; it has no knowledge of whether that will lead to meaningful statistical changes.

Tuples changed in partitions and inheritance children do not trigger analyze on the parent table. If the
parent table is empty or rarely changed, it may never be processed by autovacuum, and the statistics
for the inheritance tree as a whole won't be collected. It is necessary to run ANALYZE on the parent table
manually in order to keep the statistics up to date.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-updated
tables than for seldom-updated ones. But even for a heavily-updated table, there might be no need for
statistics updates if the statistical distribution of the data is not changing much. A simple rule of thumb
is to think about how much the minimum and maximum values of the columns in the table change. For
example, a timestamp column that contains the time of row update will have a constantly-increasing
maximum value as rows are added and updated; such a column will probably need more frequent sta-
tistics updates than, say, a column containing URLs for pages accessed on a website. The URL column
might receive changes just as often, but the statistical distribution of its values probably changes rela-
tively slowly.

It is possible to run ANALYZE on specific tables and even just specific columns of a table, so the flexibility
exists to update some statistics more frequently than others if your application requires it. In practice,
however, it is usually best to just analyze the entire database, because it is a fast operation. ANALYZE
uses a statistically random sampling of the rows of a table rather than reading every single row.

Tip
Although per-column tweaking of ANALYZE frequency might not be very productive, you might find
it worthwhile to do per-column adjustment of the level of detail of the statistics collected by ANA-
LYZE. Columns that are heavily used in WHERE clauses and have highly irregular data distributions
might require a finer-grain data histogram than other columns. See ALTER TABLE SET STATISTICS,
or change the database-wide default using the default_statistics_target configuration parameter.

Also, by default there is limited information available about the selectivity of functions. However,
if you create a statistics object or an expression index that uses a function call, useful statistics will
be gathered about the function, which can greatly improve query plans that use the expression
index.

Tip
The autovacuum daemon does not issue ANALYZE commands for foreign tables, since it has no
means of determining how often that might be useful. If your queries require statistics on foreign

691

Routine Database
Maintenance Tasks

tables for proper planning, it's a good idea to run manually-managed ANALYZE commands on those
tables on a suitable schedule.

Tip
The autovacuum daemon does not issue ANALYZE commands for partitioned tables. Inheritance
parents will only be analyzed if the parent itself is changed - changes to child tables do not trigger
autoanalyze on the parent table. If your queries require statistics on parent tables for proper
planning, it is necessary to periodically run a manual ANALYZE on those tables to keep the statistics
up to date.

24.1.4. Updating the Visibility Map
Vacuum maintains a visibility map for each table to keep track of which pages contain only tuples that
are known to be visible to all active transactions (and all future transactions, until the page is again
modified). This has two purposes. First, vacuum itself can skip such pages on the next run, since there
is nothing to clean up.

Second, it allows PostgreSQL to answer some queries using only the index, without reference to the
underlying table. Since PostgreSQL indexes don't contain tuple visibility information, a normal index
scan fetches the heap tuple for each matching index entry, to check whether it should be seen by the
current transaction. An index-only scan, on the other hand, checks the visibility map first. If it's known
that all tuples on the page are visible, the heap fetch can be skipped. This is most useful on large data
sets where the visibility map can prevent disk accesses. The visibility map is vastly smaller than the
heap, so it can easily be cached even when the heap is very large.

24.1.5. Preventing Transaction ID Wraparound Failures
PostgreSQL's MVCC transaction semantics depend on being able to compare transaction ID (XID) num-
bers: a row version with an insertion XID greater than the current transaction's XID is “in the future”
and should not be visible to the current transaction. But since transaction IDs have limited size (32
bits) a cluster that runs for a long time (more than 4 billion transactions) would suffer transaction ID
wraparound: the XID counter wraps around to zero, and all of a sudden transactions that were in the
past appear to be in the future — which means their output become invisible. In short, catastrophic data
loss. (Actually the data is still there, but that's cold comfort if you cannot get at it.) To avoid this, it is
necessary to vacuum every table in every database at least once every two billion transactions.

The reason that periodic vacuuming solves the problem is that VACUUM will mark rows as frozen, indicat-
ing that they were inserted by a transaction that committed sufficiently far in the past that the effects
of the inserting transaction are certain to be visible to all current and future transactions. Normal XIDs
are compared using modulo-232 arithmetic. This means that for every normal XID, there are two billion
XIDs that are “older” and two billion that are “newer”; another way to say it is that the normal XID space
is circular with no endpoint. Therefore, once a row version has been created with a particular normal
XID, the row version will appear to be “in the past” for the next two billion transactions, no matter which
normal XID we are talking about. If the row version still exists after more than two billion transactions,
it will suddenly appear to be in the future. To prevent this, PostgreSQL reserves a special XID, Frozen-
TransactionId, which does not follow the normal XID comparison rules and is always considered older
than every normal XID. Frozen row versions are treated as if the inserting XID were FrozenTransac-
tionId, so that they will appear to be “in the past” to all normal transactions regardless of wraparound
issues, and so such row versions will be valid until deleted, no matter how long that is.

Note
In PostgreSQL versions before 9.4, freezing was implemented by actually replacing a row's inser-
tion XID with FrozenTransactionId, which was visible in the row's xmin system column. Newer
versions just set a flag bit, preserving the row's original xmin for possible forensic use. However,

692

Routine Database
Maintenance Tasks

rows with xmin equal to FrozenTransactionId (2) may still be found in databases pg_upgrade'd
from pre-9.4 versions.

Also, system catalogs may contain rows with xmin equal to BootstrapTransactionId (1), indicat-
ing that they were inserted during the first phase of initdb. Like FrozenTransactionId, this spe-
cial XID is treated as older than every normal XID.

vacuum_freeze_min_age controls how old an XID value has to be before rows bearing that XID will be
frozen. Increasing this setting may avoid unnecessary work if the rows that would otherwise be frozen
will soon be modified again, but decreasing this setting increases the number of transactions that can
elapse before the table must be vacuumed again.

VACUUM uses the visibility map to determine which pages of a table must be scanned. Normally, it will
skip pages that don't have any dead row versions even if those pages might still have row versions with
old XID values. Therefore, normal VACUUMs won't always freeze every old row version in the table. When
that happens, VACUUM will eventually need to perform an aggressive vacuum, which will freeze all eligible
unfrozen XID and MXID values, including those from all-visible but not all-frozen pages.

If a table is building up a backlog of all-visible but not all-frozen pages, a normal vacuum may choose
to scan skippable pages in an effort to freeze them. Doing so decreases the number of pages the next
aggressive vacuum must scan. These are referred to as eagerly scanned pages. Eager scanning can be
tuned to attempt to freeze more all-visible pages by increasing vacuum_max_eager_freeze_failure_rate.
Even if eager scanning has kept the number of all-visible but not all-frozen pages to a minimum, most
tables still require periodic aggressive vacuuming. However, any pages successfully eager frozen may
be skipped during an aggressive vacuum, so eager freezing may minimize the overhead of aggressive
vacuums.

vacuum_freeze_table_age controls when a table is aggressively vacuumed. All all-visible but not all-
frozen pages are scanned if the number of transactions that have passed since the last such scan is
greater than vacuum_freeze_table_age minus vacuum_freeze_min_age. Setting vacuum_freeze_ta-
ble_age to 0 forces VACUUM to always use its aggressive strategy.

The maximum time that a table can go unvacuumed is two billion transactions minus the vacu-
um_freeze_min_age value at the time of the last aggressive vacuum. If it were to go unvacuumed for
longer than that, data loss could result. To ensure that this does not happen, autovacuum is invoked on
any table that might contain unfrozen rows with XIDs older than the age specified by the configuration
parameter autovacuum_freeze_max_age. (This will happen even if autovacuum is disabled.)

This implies that if a table is not otherwise vacuumed, autovacuum will be invoked on it approximately
once every autovacuum_freeze_max_age minus vacuum_freeze_min_age transactions. For tables that
are regularly vacuumed for space reclamation purposes, this is of little importance. However, for static
tables (including tables that receive inserts, but no updates or deletes), there is no need to vacuum for
space reclamation, so it can be useful to try to maximize the interval between forced autovacuums on
very large static tables. Obviously one can do this either by increasing autovacuum_freeze_max_age or
decreasing vacuum_freeze_min_age.

The effective maximum for vacuum_freeze_table_age is 0.95 * autovacuum_freeze_max_age; a setting
higher than that will be capped to the maximum. A value higher than autovacuum_freeze_max_age
wouldn't make sense because an anti-wraparound autovacuum would be triggered at that point any-
way, and the 0.95 multiplier leaves some breathing room to run a manual VACUUM before that happens.
As a rule of thumb, vacuum_freeze_table_age should be set to a value somewhat below autovacu-
um_freeze_max_age, leaving enough gap so that a regularly scheduled VACUUM or an autovacuum trig-
gered by normal delete and update activity is run in that window. Setting it too close could lead to an-
ti-wraparound autovacuums, even though the table was recently vacuumed to reclaim space, whereas
lower values lead to more frequent aggressive vacuuming.

The sole disadvantage of increasing autovacuum_freeze_max_age (and vacuum_freeze_table_age
along with it) is that the pg_xact and pg_commit_ts subdirectories of the database cluster will take more

693

Routine Database
Maintenance Tasks

space, because it must store the commit status and (if track_commit_timestamp is enabled) timestamp
of all transactions back to the autovacuum_freeze_max_age horizon. The commit status uses two bits
per transaction, so if autovacuum_freeze_max_age is set to its maximum allowed value of two billion,
pg_xact can be expected to grow to about half a gigabyte and pg_commit_ts to about 20GB. If this
is trivial compared to your total database size, setting autovacuum_freeze_max_age to its maximum al-
lowed value is recommended. Otherwise, set it depending on what you are willing to allow for pg_xact
and pg_commit_ts storage. (The default, 200 million transactions, translates to about 50MB of pg_xact
storage and about 2GB of pg_commit_ts storage.)

One disadvantage of decreasing vacuum_freeze_min_age is that it might cause VACUUM to do useless
work: freezing a row version is a waste of time if the row is modified soon thereafter (causing it to acquire
a new XID). So the setting should be large enough that rows are not frozen until they are unlikely to
change any more.

To track the age of the oldest unfrozen XIDs in a database, VACUUM stores XID statistics in the system
tables pg_class and pg_database. In particular, the relfrozenxid column of a table's pg_class row
contains the oldest remaining unfrozen XID at the end of the most recent VACUUM that successfully ad-
vanced relfrozenxid (typically the most recent aggressive VACUUM). Similarly, the datfrozenxid col-
umn of a database's pg_database row is a lower bound on the unfrozen XIDs appearing in that database
— it is just the minimum of the per-table relfrozenxid values within the database. A convenient way
to examine this information is to execute queries such as:

SELECT c.oid::regclass as table_name,
 greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');

SELECT datname, age(datfrozenxid) FROM pg_database;

The age column measures the number of transactions from the cutoff XID to the current transaction's
XID.

Tip
When the VACUUM command's VERBOSE parameter is specified, VACUUM prints various statistics
about the table. This includes information about how relfrozenxid and relminmxid advanced,
and the number of newly frozen pages. The same details appear in the server log when autovacu-
um logging (controlled by log_autovacuum_min_duration) reports on a VACUUM operation executed
by autovacuum.

While VACUUM scans mostly pages that have been modified since the last vacuum, it may also eagerly scan
some all-visible but not all-frozen pages in an attempt to freeze them, but the relfrozenxid will only
be advanced when every page of the table that might contain unfrozen XIDs is scanned. This happens
when relfrozenxid is more than vacuum_freeze_table_age transactions old, when VACUUM's FREEZE
option is used, or when all pages that are not already all-frozen happen to require vacuuming to remove
dead row versions. When VACUUM scans every page in the table that is not already all-frozen, it should set
age(relfrozenxid) to a value just a little more than the vacuum_freeze_min_age setting that was used
(more by the number of transactions started since the VACUUM started). VACUUM will set relfrozenxid
to the oldest XID that remains in the table, so it's possible that the final value will be much more re-
cent than strictly required. If no relfrozenxid-advancing VACUUM is issued on the table until autovac-
uum_freeze_max_age is reached, an autovacuum will soon be forced for the table.

If for some reason autovacuum fails to clear old XIDs from a table, the system will begin to emit warning
messages like this when the database's oldest XIDs reach forty million transactions from the wraparound
point:

WARNING: database "mydb" must be vacuumed within 39985967 transactions

694

Routine Database
Maintenance Tasks

HINT: To avoid XID assignment failures, execute a database-wide VACUUM in that
 database.

(A manual VACUUM should fix the problem, as suggested by the hint; but note that the VACUUM should be
performed by a superuser, else it will fail to process system catalogs, which prevent it from being able to
advance the database's datfrozenxid.) If these warnings are ignored, the system will refuse to assign
new XIDs once there are fewer than three million transactions left until wraparound:

ERROR: database is not accepting commands that assign new XIDs to avoid wraparound
 data loss in database "mydb"
HINT: Execute a database-wide VACUUM in that database.

In this condition any transactions already in progress can continue, but only read-only transactions can
be started. Operations that modify database records or truncate relations will fail. The VACUUM command
can still be run normally. Note that, contrary to what was sometimes recommended in earlier releases, it
is not necessary or desirable to stop the postmaster or enter single user-mode in order to restore normal
operation. Instead, follow these steps:

1. Resolve old prepared transactions. You can find these by checking pg_prepared_xacts for rows where
age(transactionid) is large. Such transactions should be committed or rolled back.

2. End long-running open transactions. You can find these by checking pg_stat_activity for rows where
age(backend_xid) or age(backend_xmin) is large. Such transactions should be committed or rolled
back, or the session can be terminated using pg_terminate_backend.

3. Drop any old replication slots. Use pg_stat_replication to find slots where age(xmin) or age(cata-
log_xmin) is large. In many cases, such slots were created for replication to servers that no longer
exist, or that have been down for a long time. If you drop a slot for a server that still exists and might
still try to connect to that slot, that replica may need to be rebuilt.

4. Execute VACUUM in the target database. A database-wide VACUUM is simplest; to reduce the time re-
quired, it as also possible to issue manual VACUUM commands on the tables where relminxid is oldest.
Do not use VACUUM FULL in this scenario, because it requires an XID and will therefore fail, except in
super-user mode, where it will instead consume an XID and thus increase the risk of transaction ID
wraparound. Do not use VACUUM FREEZE either, because it will do more than the minimum amount
of work required to restore normal operation.

5. Once normal operation is restored, ensure that autovacuum is properly configured in the target data-
base in order to avoid future problems.

Note
In earlier versions, it was sometimes necessary to stop the postmaster and VACUUM the database
in a single-user mode. In typical scenarios, this is no longer necessary, and should be avoided
whenever possible, since it involves taking the system down. It is also riskier, since it disables
transaction ID wraparound safeguards that are designed to prevent data loss. The only reason to
use single-user mode in this scenario is if you wish to TRUNCATE or DROP unneeded tables to avoid
needing to VACUUM them. The three-million-transaction safety margin exists to let the administrator
do this. See the postgres reference page for details about using single-user mode.

24.1.5.1. Multixacts and Wraparound
Multixact IDs are used to support row locking by multiple transactions. Since there is only limited space
in a tuple header to store lock information, that information is encoded as a “multiple transaction ID”,
or multixact ID for short, whenever there is more than one transaction concurrently locking a row.
Information about which transaction IDs are included in any particular multixact ID is stored separately
in the pg_multixact subdirectory, and only the multixact ID appears in the xmax field in the tuple header.
Like transaction IDs, multixact IDs are implemented as a 32-bit counter and corresponding storage,
all of which requires careful aging management, storage cleanup, and wraparound handling. There is
a separate storage area which holds the list of members in each multixact, which also uses a 32-bit

695

Routine Database
Maintenance Tasks

counter and which must also be managed. The system function pg_get_multixact_members() described
in Table 9.84 can be used to examine the transaction IDs associated with a multixact ID.

Whenever VACUUM scans any part of a table, it will replace any multixact ID it encounters which is old-
er than vacuum_multixact_freeze_min_age by a different value, which can be the zero value, a single
transaction ID, or a newer multixact ID. For each table, pg_class.relminmxid stores the oldest possi-
ble multixact ID still appearing in any tuple of that table. If this value is older than vacuum_multixac-
t_freeze_table_age, an aggressive vacuum is forced. As discussed in the previous section, an aggressive
vacuum means that only those pages which are known to be all-frozen will be skipped. mxid_age() can
be used on pg_class.relminmxid to find its age.

Aggressive VACUUMs, regardless of what causes them, are guaranteed to be able to advance the table's
relminmxid. Eventually, as all tables in all databases are scanned and their oldest multixact values are
advanced, on-disk storage for older multixacts can be removed.

As a safety device, an aggressive vacuum scan will occur for any table whose multixact-age is greater
than autovacuum_multixact_freeze_max_age. Also, if the storage occupied by multixacts members ex-
ceeds about 10GB, aggressive vacuum scans will occur more often for all tables, starting with those that
have the oldest multixact-age. Both of these kinds of aggressive scans will occur even if autovacuum is
nominally disabled. The members storage area can grow up to about 20GB before reaching wraparound.

Similar to the XID case, if autovacuum fails to clear old MXIDs from a table, the system will begin to
emit warning messages when the database's oldest MXIDs reach forty million transactions from the
wraparound point. And, just as in the XID case, if these warnings are ignored, the system will refuse to
generate new MXIDs once there are fewer than three million left until wraparound.

Normal operation when MXIDs are exhausted can be restored in much the same way as when XIDs are
exhausted. Follow the same steps in the previous section, but with the following differences:
1. Running transactions and prepared transactions can be ignored if there is no chance that they might

appear in a multixact.
2. MXID information is not directly visible in system views such as pg_stat_activity; however, looking

for old XIDs is still a good way of determining which transactions are causing MXID wraparound
problems.

3. XID exhaustion will block all write transactions, but MXID exhaustion will only block a subset of write
transactions, specifically those that involve row locks that require an MXID.

24.1.6. The Autovacuum Daemon
PostgreSQL has an optional but highly recommended feature called autovacuum, whose purpose is to
automate the execution of VACUUM and ANALYZE commands. When enabled, autovacuum checks for tables
that have had a large number of inserted, updated or deleted tuples. These checks use the statistics
collection facility; therefore, autovacuum cannot be used unless track_counts is set to true. In the default
configuration, autovacuuming is enabled and the related configuration parameters are appropriately set.

The “autovacuum daemon” actually consists of multiple processes. There is a persistent daemon process,
called the autovacuum launcher, which is in charge of starting autovacuum worker processes for all
databases. The launcher will distribute the work across time, attempting to start one worker within
each database every autovacuum_naptime seconds. (Therefore, if the installation has N databases, a new
worker will be launched every autovacuum_naptime/N seconds.) A maximum of autovacuum_max_work-
ers worker processes are allowed to run at the same time. If there are more than autovacuum_max_work-
ers databases to be processed, the next database will be processed as soon as the first worker finishes.
Each worker process will check each table within its database and execute VACUUM and/or ANALYZE as
needed. log_autovacuum_min_duration can be set to monitor autovacuum workers' activity.

If several large tables all become eligible for vacuuming in a short amount of time, all autovacuum
workers might become occupied with vacuuming those tables for a long period. This would result in
other tables and databases not being vacuumed until a worker becomes available. There is no limit on
how many workers might be in a single database, but workers do try to avoid repeating work that has

696

Routine Database
Maintenance Tasks

already been done by other workers. Note that the number of running workers does not count towards
max_connections or superuser_reserved_connections limits.

Tables whose relfrozenxid value is more than autovacuum_freeze_max_age transactions old are al-
ways vacuumed (this also applies to those tables whose freeze max age has been modified via storage
parameters; see below). Otherwise, if the number of tuples obsoleted since the last VACUUM exceeds the
“vacuum threshold”, the table is vacuumed. The vacuum threshold is defined as:

vacuum threshold = Minimum(vacuum max threshold, vacuum base threshold + vacuum scale
 factor * number of tuples)

where the vacuum max threshold is autovacuum_vacuum_max_threshold, the vacuum base threshold is
autovacuum_vacuum_threshold, the vacuum scale factor is autovacuum_vacuum_scale_factor, and the
number of tuples is pg_class.reltuples.

The table is also vacuumed if the number of tuples inserted since the last vacuum has exceeded the
defined insert threshold, which is defined as:

vacuum insert threshold = vacuum base insert threshold + vacuum insert scale factor *
 number of tuples

where the vacuum insert base threshold is autovacuum_vacuum_insert_threshold, and vacuum insert
scale factor is autovacuum_vacuum_insert_scale_factor. Such vacuums may allow portions of the table
to be marked as all visible and also allow tuples to be frozen, which can reduce the work required in
subsequent vacuums. For tables which receive INSERT operations but no or almost no UPDATE/DELETE
operations, it may be beneficial to lower the table's autovacuum_freeze_min_age as this may allow tu-
ples to be frozen by earlier vacuums. The number of obsolete tuples and the number of inserted tu-
ples are obtained from the cumulative statistics system; it is an eventually-consistent count updated by
each UPDATE, DELETE and INSERT operation. If the relfrozenxid value of the table is more than vac-
uum_freeze_table_age transactions old, an aggressive vacuum is performed to freeze old tuples and
advance relfrozenxid.

For analyze, a similar condition is used: the threshold, defined as:

analyze threshold = analyze base threshold + analyze scale factor * number of tuples

is compared to the total number of tuples inserted, updated, or deleted since the last ANALYZE.

Partitioned tables do not directly store tuples and consequently are not processed by autovacuum. (Au-
tovacuum does process table partitions just like other tables.) Unfortunately, this means that autovac-
uum does not run ANALYZE on partitioned tables, and this can cause suboptimal plans for queries that
reference partitioned table statistics. You can work around this problem by manually running ANALYZE
on partitioned tables when they are first populated, and again whenever the distribution of data in their
partitions changes significantly.

Temporary tables cannot be accessed by autovacuum. Therefore, appropriate vacuum and analyze op-
erations should be performed via session SQL commands.

The default thresholds and scale factors are taken from postgresql.conf, but it is possible to override
them (and many other autovacuum control parameters) on a per-table basis; see Storage Parameters
for more information. If a setting has been changed via a table's storage parameters, that value is used
when processing that table; otherwise the global settings are used. See Section 19.10.1 for more details
on the global settings.

When multiple workers are running, the autovacuum cost delay parameters (see Section 19.10.2) are
“balanced” among all the running workers, so that the total I/O impact on the system is the same regard-
less of the number of workers actually running. However, any workers processing tables whose per-table
autovacuum_vacuum_cost_delay or autovacuum_vacuum_cost_limit storage parameters have been set
are not considered in the balancing algorithm.

Autovacuum workers generally don't block other commands. If a process attempts to acquire a lock that
conflicts with the SHARE UPDATE EXCLUSIVE lock held by autovacuum, lock acquisition will interrupt

697

Routine Database
Maintenance Tasks

the autovacuum. For conflicting lock modes, see Table 13.2. However, if the autovacuum is running to
prevent transaction ID wraparound (i.e., the autovacuum query name in the pg_stat_activity view
ends with (to prevent wraparound)), the autovacuum is not automatically interrupted.

Warning
Regularly running commands that acquire locks conflicting with a SHARE UPDATE EXCLUSIVE lock
(e.g., ANALYZE) can effectively prevent autovacuums from ever completing.

24.2. Routine Reindexing
In some situations it is worthwhile to rebuild indexes periodically with the REINDEX command or a
series of individual rebuilding steps.

B-tree index pages that have become completely empty are reclaimed for re-use. However, there is still
a possibility of inefficient use of space: if all but a few index keys on a page have been deleted, the page
remains allocated. Therefore, a usage pattern in which most, but not all, keys in each range are eventu-
ally deleted will see poor use of space. For such usage patterns, periodic reindexing is recommended.

The potential for bloat in non-B-tree indexes has not been well researched. It is a good idea to periodically
monitor the index's physical size when using any non-B-tree index type.

Also, for B-tree indexes, a freshly-constructed index is slightly faster to access than one that has been
updated many times because logically adjacent pages are usually also physically adjacent in a newly
built index. (This consideration does not apply to non-B-tree indexes.) It might be worthwhile to reindex
periodically just to improve access speed.

REINDEX can be used safely and easily in all cases. This command requires an ACCESS EXCLUSIVE lock
by default, hence it is often preferable to execute it with its CONCURRENTLY option, which requires only
a SHARE UPDATE EXCLUSIVE lock.

24.3. Log File Maintenance
It is a good idea to save the database server's log output somewhere, rather than just discarding it via
/dev/null. The log output is invaluable when diagnosing problems.

Note
The server log can contain sensitive information and needs to be protected, no matter how or
where it is stored, or the destination to which it is routed. For example, some DDL statements
might contain plaintext passwords or other authentication details. Logged statements at the ERROR
level might show the SQL source code for applications and might also contain some parts of data
rows. Recording data, events and related information is the intended function of this facility, so
this is not a leakage or a bug. Please ensure the server logs are visible only to appropriately
authorized people.

Log output tends to be voluminous (especially at higher debug levels) so you won't want to save it
indefinitely. You need to rotate the log files so that new log files are started and old ones removed after
a reasonable period of time.

If you simply direct the stderr of postgres into a file, you will have log output, but the only way to truncate
the log file is to stop and restart the server. This might be acceptable if you are using PostgreSQL in a
development environment, but few production servers would find this behavior acceptable.

A better approach is to send the server's stderr output to some type of log rotation program. There is
a built-in log rotation facility, which you can use by setting the configuration parameter logging_col-

698

Routine Database
Maintenance Tasks

lector to true in postgresql.conf. The control parameters for this program are described in Sec-
tion 19.8.1. You can also use this approach to capture the log data in machine readable CSV (comma-sep-
arated values) format.

Alternatively, you might prefer to use an external log rotation program if you have one that you are
already using with other server software. For example, the rotatelogs tool included in the Apache dis-
tribution can be used with PostgreSQL. One way to do this is to pipe the server's stderr output to the
desired program. If you start the server with pg_ctl, then stderr is already redirected to stdout, so you
just need a pipe command, for example:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

You can combine these approaches by setting up logrotate to collect log files produced by PostgreSQL
built-in logging collector. In this case, the logging collector defines the names and location of the log
files, while logrotate periodically archives these files. When initiating log rotation, logrotate must ensure
that the application sends further output to the new file. This is commonly done with a postrotate
script that sends a SIGHUP signal to the application, which then reopens the log file. In PostgreSQL, you
can run pg_ctl with the logrotate option instead. When the server receives this command, the server
either switches to a new log file or reopens the existing file, depending on the logging configuration
(see Section 19.8.1).

Note
When using static log file names, the server might fail to reopen the log file if the max open file
limit is reached or a file table overflow occurs. In this case, log messages are sent to the old log
file until a successful log rotation. If logrotate is configured to compress the log file and delete it,
the server may lose the messages logged in this time frame. To avoid this issue, you can configure
the logging collector to dynamically assign log file names and use a prerotate script to ignore
open log files.

Another production-grade approach to managing log output is to send it to syslog and let syslog deal with
file rotation. To do this, set the configuration parameter log_destination to syslog (to log to syslog
only) in postgresql.conf. Then you can send a SIGHUP signal to the syslog daemon whenever you want
to force it to start writing a new log file. If you want to automate log rotation, the logrotate program can
be configured to work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it might
truncate or drop messages just when you need them the most. Also, on Linux, syslog will flush each
message to disk, yielding poor performance. (You can use a “-” at the start of the file name in the syslog
configuration file to disable syncing.)

Note that all the solutions described above take care of starting new log files at configurable intervals,
but they do not handle deletion of old, no-longer-useful log files. You will probably want to set up a batch
job to periodically delete old log files. Another possibility is to configure the rotation program so that
old log files are overwritten cyclically.

pgBadger is an external project that does sophisticated log file analysis. check_postgres provides Nagios
alerts when important messages appear in the log files, as well as detection of many other extraordinary
conditions.

699

https://pgbadger.darold.net/
https://bucardo.org/check_postgres/

Chapter 25. Backup and Restore
As with everything that contains valuable data, PostgreSQL databases should be backed up regularly.
While the procedure is essentially simple, it is important to have a clear understanding of the underlying
techniques and assumptions.

There are three fundamentally different approaches to backing up PostgreSQL data:

• SQL dump

• File system level backup

• Continuous archiving

Each has its own strengths and weaknesses; each is discussed in turn in the following sections.

25.1. SQL Dump
The idea behind this dump method is to generate a file with SQL commands that, when fed back to
the server, will recreate the database in the same state as it was at the time of the dump. PostgreSQL
provides the utility program pg_dump for this purpose. The basic usage of this command is:

pg_dump dbname > dumpfile

As you see, pg_dump writes its result to the standard output. We will see below how this can be useful.
While the above command creates a text file, pg_dump can create files in other formats that allow for
parallelism and more fine-grained control of object restoration.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that you
can perform this backup procedure from any remote host that has access to the database. But remember
that pg_dump does not operate with special permissions. In particular, it must have read access to all
tables that you want to back up, so in order to back up the entire database you almost always have to
run it as a database superuser. (If you do not have sufficient privileges to back up the entire database,
you can still back up portions of the database to which you do have access using options such as -n
schema or -t table.)

To specify which database server pg_dump should contact, use the command line options -h host and -p
port. The default host is the local host or whatever your PGHOST environment variable specifies. Similarly,
the default port is indicated by the PGPORT environment variable or, failing that, by the compiled-in
default. (Conveniently, the server will normally have the same compiled-in default.)

Like any other PostgreSQL client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either specify the -U
option or set the environment variable PGUSER. Remember that pg_dump connections are subject to the
normal client authentication mechanisms (which are described in Chapter 20).

An important advantage of pg_dump over the other backup methods described later is that pg_dump's
output can generally be re-loaded into newer versions of PostgreSQL, whereas file-level backups and
continuous archiving are both extremely server-version-specific. pg_dump is also the only method that
will work when transferring a database to a different machine architecture, such as going from a 32-
bit to a 64-bit server.

Dumps created by pg_dump are internally consistent, meaning, the dump represents a snapshot of the
database at the time pg_dump began running. pg_dump does not block other operations on the database
while it is working. (Exceptions are those operations that need to operate with an exclusive lock, such
as most forms of ALTER TABLE.)

25.1.1. Restoring the Dump
Text files created by pg_dump are intended to be read by the psql program using its default settings.
The general command form to restore a text dump is

700

Backup and Restore

psql -X dbname < dumpfile

where dumpfile is the file output by the pg_dump command. The database dbname will not be created by
this command, so you must create it yourself from template0 before executing psql (e.g., with createdb
-T template0 dbname). To ensure psql runs with its default settings, use the -X (--no-psqlrc) option.
psql supports options similar to pg_dump for specifying the database server to connect to and the user
name to use. See the psql reference page for more information.

Non-text file dumps should be restored using the pg_restore utility.

Before restoring an SQL dump, all the users who own objects or were granted permissions on objects in
the dumped database must already exist. If they do not, the restore will fail to recreate the objects with
the original ownership and/or permissions. (Sometimes this is what you want, but usually it is not.)

By default, the psql script will continue to execute after an SQL error is encountered. You might wish
to run psql with the ON_ERROR_STOP variable set to alter that behavior and have psql exit with an exit
status of 3 if an SQL error occurs:
psql -X --set ON_ERROR_STOP=on dbname < dumpfile

Either way, you will only have a partially restored database. Alternatively, you can specify that the whole
dump should be restored as a single transaction, so the restore is either fully completed or fully rolled
back. This mode can be specified by passing the -1 or --single-transaction command-line options to
psql. When using this mode, be aware that even a minor error can rollback a restore that has already
run for many hours. However, that might still be preferable to manually cleaning up a complex database
after a partially restored dump.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another, for example:
pg_dump -h host1 dbname | psql -X -h host2 dbname

Important
The dumps produced by pg_dump are relative to template0. This means that any languages, pro-
cedures, etc. added via template1 will also be dumped by pg_dump. As a result, when restoring,
if you are using a customized template1, you must create the empty database from template0,
as in the example above.

After restoring a backup, it is wise to run ANALYZE on each database so the query optimizer has useful
statistics; see Section 24.1.3 and Section 24.1.6 for more information. For more advice on how to load
large amounts of data into PostgreSQL efficiently, refer to Section 14.4.

25.1.2. Using pg_dumpall
pg_dump dumps only a single database at a time, and it does not dump information about roles or
tablespaces (because those are cluster-wide rather than per-database). To support convenient dumping
of the entire contents of a database cluster, the pg_dumpall program is provided. pg_dumpall backs
up each database in a given cluster, and also preserves cluster-wide data such as role and tablespace
definitions. The basic usage of this command is:
pg_dumpall > dumpfile

The resulting dump can be restored with psql:
psql -X -f dumpfile postgres

(Actually, you can specify any existing database name to start from, but if you are loading into an empty
cluster then postgres should usually be used.) It is always necessary to have database superuser access
when restoring a pg_dumpall dump, as that is required to restore the role and tablespace information.
If you use tablespaces, make sure that the tablespace paths in the dump are appropriate for the new
installation.

701

Backup and Restore

pg_dumpall works by emitting commands to re-create roles, tablespaces, and empty databases, then
invoking pg_dump for each database. This means that while each database will be internally consistent,
the snapshots of different databases are not synchronized.

Cluster-wide data can be dumped alone using the pg_dumpall --globals-only option. This is necessary
to fully backup the cluster if running the pg_dump command on individual databases.

25.1.3. Handling Large Databases
Some operating systems have maximum file size limits that cause problems when creating large pg_dump
output files. Fortunately, pg_dump can write to the standard output, so you can use standard Unix tools
to work around this potential problem. There are several possible methods:

Use compressed dumps. You can use your favorite compression program, for example gzip:
pg_dump dbname | gzip > filename.gz

Reload with:
gunzip -c filename.gz | psql dbname

or:
cat filename.gz | gunzip | psql dbname

Use split. The split command allows you to split the output into smaller files that are acceptable
in size to the underlying file system. For example, to make 2 gigabyte chunks:
pg_dump dbname | split -b 2G - filename

Reload with:
cat filename* | psql dbname

If using GNU split, it is possible to use it and gzip together:
pg_dump dbname | split -b 2G --filter='gzip > $FILE.gz'

It can be restored using zcat.

Use pg_dump's custom dump format. If PostgreSQL was built on a system with the zlib compres-
sion library installed, the custom dump format will compress data as it writes it to the output file. This
will produce dump file sizes similar to using gzip, but it has the added advantage that tables can be
restored selectively. The following command dumps a database using the custom dump format:
pg_dump -Fc dbname > filename

A custom-format dump is not a script for psql, but instead must be restored with pg_restore, for example:
pg_restore -d dbname filename

See the pg_dump and pg_restore reference pages for details.

For very large databases, you might need to combine split with one of the other two approaches.

Use pg_dump's parallel dump feature. To speed up the dump of a large database, you can use
pg_dump's parallel mode. This will dump multiple tables at the same time. You can control the degree of
parallelism with the -j parameter. Parallel dumps are only supported for the "directory" archive format.
pg_dump -j num -F d -f out.dir dbname

You can use pg_restore -j to restore a dump in parallel. This will work for any archive of either the
"custom" or the "directory" archive mode, whether or not it has been created with pg_dump -j.

25.2. File System Level Backup
An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in the
database; Section 18.2 explains where these files are located. You can use whatever method you prefer
for doing file system backups; for example:

702

Backup and Restore

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database server must be shut down in order to get a usable backup. Half-way measures such as
disallowing all connections will not work (in part because tar and similar tools do not take an atomic
snapshot of the state of the file system, but also because of internal buffering within the server).
Information about stopping the server can be found in Section 18.5. Needless to say, you also need
to shut down the server before restoring the data.

2. If you have dug into the details of the file system layout of the database, you might be tempted to
try to back up or restore only certain individual tables or databases from their respective files or
directories. This will not work because the information contained in these files is not usable without
the commit log files, pg_xact/*, which contain the commit status of all transactions. A table file
is only usable with this information. Of course it is also impossible to restore only a table and the
associated pg_xact data because that would render all other tables in the database cluster useless.
So file system backups only work for complete backup and restoration of an entire database cluster.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if the
file system supports that functionality (and you are willing to trust that it is implemented correctly). The
typical procedure is to make a “frozen snapshot” of the volume containing the database, then copy the
whole data directory (not just parts, see above) from the snapshot to a backup device, then release the
frozen snapshot. This will work even while the database server is running. However, a backup created
in this way saves the database files in a state as if the database server was not properly shut down;
therefore, when you start the database server on the backed-up data, it will think the previous server
instance crashed and will replay the WAL log. This is not a problem; just be aware of it (and be sure
to include the WAL files in your backup). You can perform a CHECKPOINT before taking the snapshot to
reduce recovery time.

If your database is spread across multiple file systems, there might not be any way to obtain exactly-si-
multaneous frozen snapshots of all the volumes. For example, if your data files and WAL log are on
different disks, or if tablespaces are on different file systems, it might not be possible to use snapshot
backup because the snapshots must be simultaneous. Read your file system documentation very care-
fully before trusting the consistent-snapshot technique in such situations.

If simultaneous snapshots are not possible, one option is to shut down the database server long enough
to establish all the frozen snapshots. Another option is to perform a continuous archiving base backup
(Section 25.3.2) because such backups are immune to file system changes during the backup. This re-
quires enabling continuous archiving just during the backup process; restore is done using continuous
archive recovery (Section 25.3.5).

Another option is to use rsync to perform a file system backup. This is done by first running rsync while
the database server is running, then shutting down the database server long enough to do an rsync --
checksum. (--checksum is necessary because rsync only has file modification-time granularity of one
second.) The second rsync will be quicker than the first, because it has relatively little data to transfer,
and the end result will be consistent because the server was down. This method allows a file system
backup to be performed with minimal downtime.

Note that a file system backup will typically be larger than an SQL dump. (pg_dump does not need to
dump the contents of indexes for example, just the commands to recreate them.) However, taking a file
system backup might be faster.

25.3. Continuous Archiving and Point-in-Time Recovery
(PITR)

At all times, PostgreSQL maintains a write ahead log (WAL) in the pg_wal/ subdirectory of the cluster's
data directory. The log records every change made to the database's data files. This log exists primarily
for crash-safety purposes: if the system crashes, the database can be restored to consistency by “replay-

703

Backup and Restore

ing” the log entries made since the last checkpoint. However, the existence of the log makes it possible to
use a third strategy for backing up databases: we can combine a file-system-level backup with backup of
the WAL files. If recovery is needed, we restore the file system backup and then replay from the backed-
up WAL files to bring the system to a current state. This approach is more complex to administer than
either of the previous approaches, but it has some significant benefits:

• We do not need a perfectly consistent file system backup as the starting point. Any internal incon-
sistency in the backup will be corrected by log replay (this is not significantly different from what
happens during crash recovery). So we do not need a file system snapshot capability, just tar or a
similar archiving tool.

• Since we can combine an indefinitely long sequence of WAL files for replay, continuous backup can
be achieved simply by continuing to archive the WAL files. This is particularly valuable for large
databases, where it might not be convenient to take a full backup frequently.

• It is not necessary to replay the WAL entries all the way to the end. We could stop the replay at any
point and have a consistent snapshot of the database as it was at that time. Thus, this technique
supports point-in-time recovery: it is possible to restore the database to its state at any time since
your base backup was taken.

• If we continuously feed the series of WAL files to another machine that has been loaded with the
same base backup file, we have a warm standby system: at any point we can bring up the second
machine and it will have a nearly-current copy of the database.

Note
pg_dump and pg_dumpall do not produce file-system-level backups and cannot be used as part of
a continuous-archiving solution. Such dumps are logical and do not contain enough information
to be used by WAL replay.

As with the plain file-system-backup technique, this method can only support restoration of an entire
database cluster, not a subset. Also, it requires a lot of archival storage: the base backup might be bulky,
and a busy system will generate many megabytes of WAL traffic that have to be archived. Still, it is the
preferred backup technique in many situations where high reliability is needed.

To recover successfully using continuous archiving (also called “online backup” by many database ven-
dors), you need a continuous sequence of archived WAL files that extends back at least as far as the start
time of your backup. So to get started, you should set up and test your procedure for archiving WAL
files before you take your first base backup. Accordingly, we first discuss the mechanics of archiving
WAL files.

25.3.1. Setting Up WAL Archiving
In an abstract sense, a running PostgreSQL system produces an indefinitely long sequence of WAL
records. The system physically divides this sequence into WAL segment files, which are normally 16MB
apiece (although the segment size can be altered during initdb). The segment files are given numeric
names that reflect their position in the abstract WAL sequence. When not using WAL archiving, the
system normally creates just a few segment files and then “recycles” them by renaming no-longer-needed
segment files to higher segment numbers. It's assumed that segment files whose contents precede the
last checkpoint are no longer of interest and can be recycled.

When archiving WAL data, we need to capture the contents of each segment file once it is filled, and
save that data somewhere before the segment file is recycled for reuse. Depending on the application
and the available hardware, there could be many different ways of “saving the data somewhere”: we
could copy the segment files to an NFS-mounted directory on another machine, write them onto a tape
drive (ensuring that you have a way of identifying the original name of each file), or batch them together
and burn them onto CDs, or something else entirely. To provide the database administrator with flex-
ibility, PostgreSQL tries not to make any assumptions about how the archiving will be done. Instead,
PostgreSQL lets the administrator specify a shell command or an archive library to be executed to copy

704

Backup and Restore

a completed segment file to wherever it needs to go. This could be as simple as a shell command that
uses cp, or it could invoke a complex C function — it's all up to you.

To enable WAL archiving, set the wal_level configuration parameter to replica or higher, archive_mode
to on, specify the shell command to use in the archive_command configuration parameter or specify the
library to use in the archive_library configuration parameter. In practice these settings will always be
placed in the postgresql.conf file.

In archive_command, %p is replaced by the path name of the file to archive, while %f is replaced by
only the file name. (The path name is relative to the current working directory, i.e., the cluster's data
directory.) Use %% if you need to embed an actual % character in the command. The simplest useful
command is something like:

archive_command = 'test ! -f /mnt/server/archivedir/%f && cp %p /mnt/server/archivedir/
%f' # Unix
archive_command = 'copy "%p" "C:\\server\\archivedir\\%f"' # Windows

which will copy archivable WAL segments to the directory /mnt/server/archivedir. (This is an exam-
ple, not a recommendation, and might not work on all platforms.) After the %p and %f parameters have
been replaced, the actual command executed might look like this:

test ! -f /mnt/server/archivedir/00000001000000A900000065 && cp
 pg_wal/00000001000000A900000065 /mnt/server/archivedir/00000001000000A900000065

A similar command will be generated for each new file to be archived.

The archive command will be executed under the ownership of the same user that the PostgreSQL
server is running as. Since the series of WAL files being archived contains effectively everything in your
database, you will want to be sure that the archived data is protected from prying eyes; for example,
archive into a directory that does not have group or world read access.

It is important that the archive command return zero exit status if and only if it succeeds. Upon getting
a zero result, PostgreSQL will assume that the file has been successfully archived, and will remove or
recycle it. However, a nonzero status tells PostgreSQL that the file was not archived; it will try again
periodically until it succeeds.

Another way to archive is to use a custom archive module as the archive_library. Since such modules
are written in C, creating your own may require considerably more effort than writing a shell command.
However, archive modules can be more performant than archiving via shell, and they will have access
to many useful server resources. For more information about archive modules, see Chapter 49.

When the archive command is terminated by a signal (other than SIGTERM that is used as part of a
server shutdown) or an error by the shell with an exit status greater than 125 (such as command not
found), or if the archive function emits an ERROR or FATAL, the archiver process aborts and gets restarted
by the postmaster. In such cases, the failure is not reported in pg_stat_archiver.

Archive commands and libraries should generally be designed to refuse to overwrite any pre-existing
archive file. This is an important safety feature to preserve the integrity of your archive in case of ad-
ministrator error (such as sending the output of two different servers to the same archive directory). It
is advisable to test your proposed archive library to ensure that it does not overwrite an existing file.

In rare cases, PostgreSQL may attempt to re-archive a WAL file that was previously archived. For exam-
ple, if the system crashes before the server makes a durable record of archival success, the server will
attempt to archive the file again after restarting (provided archiving is still enabled). When an archive
command or library encounters a pre-existing file, it should return a zero status or true, respectively,
if the WAL file has identical contents to the pre-existing archive and the pre-existing archive is fully
persisted to storage. If a pre-existing file contains different contents than the WAL file being archived,
the archive command or library must return a nonzero status or false, respectively.

The example command above for Unix avoids overwriting a pre-existing archive by including a separate
test step. On some Unix platforms, cp has switches such as -i that can be used to do the same thing

705

Backup and Restore

less verbosely, but you should not rely on these without verifying that the right exit status is returned.
(In particular, GNU cp will return status zero when -i is used and the target file already exists, which
is not the desired behavior.)

While designing your archiving setup, consider what will happen if the archive command or library fails
repeatedly because some aspect requires operator intervention or the archive runs out of space. For
example, this could occur if you write to tape without an autochanger; when the tape fills, nothing further
can be archived until the tape is swapped. You should ensure that any error condition or request to a
human operator is reported appropriately so that the situation can be resolved reasonably quickly. The
pg_wal/ directory will continue to fill with WAL segment files until the situation is resolved. (If the file
system containing pg_wal/ fills up, PostgreSQL will do a PANIC shutdown. No committed transactions
will be lost, but the database will remain offline until you free some space.)

The speed of the archive command or library is unimportant as long as it can keep up with the average
rate at which your server generates WAL data. Normal operation continues even if the archiving process
falls a little behind. If archiving falls significantly behind, this will increase the amount of data that would
be lost in the event of a disaster. It will also mean that the pg_wal/ directory will contain large numbers
of not-yet-archived segment files, which could eventually exceed available disk space. You are advised
to monitor the archiving process to ensure that it is working as you intend.

In writing your archive command or library, you should assume that the file names to be archived can
be up to 64 characters long and can contain any combination of ASCII letters, digits, and dots. It is not
necessary to preserve the original relative path (%p) but it is necessary to preserve the file name (%f).

Note that although WAL archiving will allow you to restore any modifications made to the data in your
PostgreSQL database, it will not restore changes made to configuration files (that is, postgresql.conf,
pg_hba.conf and pg_ident.conf), since those are edited manually rather than through SQL operations.
You might wish to keep the configuration files in a location that will be backed up by your regular file
system backup procedures. See Section 19.2 for how to relocate the configuration files.

The archive command or function is only invoked on completed WAL segments. Hence, if your server
generates only little WAL traffic (or has slack periods where it does so), there could be a long delay
between the completion of a transaction and its safe recording in archive storage. To put a limit on how
old unarchived data can be, you can set archive_timeout to force the server to switch to a new WAL
segment file at least that often. Note that archived files that are archived early due to a forced switch are
still the same length as completely full files. It is therefore unwise to set a very short archive_timeout
— it will bloat your archive storage. archive_timeout settings of a minute or so are usually reasonable.

Also, you can force a segment switch manually with pg_switch_wal if you want to ensure that a just-
finished transaction is archived as soon as possible. Other utility functions related to WAL management
are listed in Table 9.97.

When wal_level is minimal some SQL commands are optimized to avoid WAL logging, as described in
Section 14.4.7. If archiving or streaming replication were turned on during execution of one of these
statements, WAL would not contain enough information for archive recovery. (Crash recovery is unaf-
fected.) For this reason, wal_level can only be changed at server start. However, archive_command and
archive_library can be changed with a configuration file reload. If you are archiving via shell and wish
to temporarily stop archiving, one way to do it is to set archive_command to the empty string (''). This
will cause WAL files to accumulate in pg_wal/ until a working archive_command is re-established.

25.3.2. Making a Base Backup
The easiest way to perform a base backup is to use the pg_basebackup tool. It can create a base backup
either as regular files or as a tar archive. If more flexibility than pg_basebackup can provide is required,
you can also make a base backup using the low level API (see Section 25.3.4).

It is not necessary to be concerned about the amount of time it takes to make a base backup. However,
if you normally run the server with full_page_writes disabled, you might notice a drop in performance
while the backup runs since full_page_writes is effectively forced on during backup mode.

706

Backup and Restore

To make use of the backup, you will need to keep all the WAL segment files generated during and after
the file system backup. To aid you in doing this, the base backup process creates a backup history file that
is immediately stored into the WAL archive area. This file is named after the first WAL segment file that
you need for the file system backup. For example, if the starting WAL file is 0000000100001234000055CD
the backup history file will be named something like 0000000100001234000055CD.007C9330.backup.
(The second part of the file name stands for an exact position within the WAL file, and can ordinarily be
ignored.) Once you have safely archived the file system backup and the WAL segment files used during
the backup (as specified in the backup history file), all archived WAL segments with names numerically
less are no longer needed to recover the file system backup and can be deleted. However, you should
consider keeping several backup sets to be absolutely certain that you can recover your data.

The backup history file is just a small text file. It contains the label string you gave to pg_basebackup, as
well as the starting and ending times and WAL segments of the backup. If you used the label to identify
the associated dump file, then the archived history file is enough to tell you which dump file to restore.

Since you have to keep around all the archived WAL files back to your last base backup, the interval
between base backups should usually be chosen based on how much storage you want to expend on
archived WAL files. You should also consider how long you are prepared to spend recovering, if recovery
should be necessary — the system will have to replay all those WAL segments, and that could take awhile
if it has been a long time since the last base backup.

25.3.3. Making an Incremental Backup
You can use pg_basebackup to take an incremental backup by specifying the --incremental option. You
must supply, as an argument to --incremental, the backup manifest to an earlier backup from the same
server. In the resulting backup, non-relation files will be included in their entirety, but some relation files
may be replaced by smaller incremental files which contain only the blocks which have been changed
since the earlier backup and enough metadata to reconstruct the current version of the file.

To figure out which blocks need to be backed up, the server uses WAL summaries, which are stored
in the data directory, inside the directory pg_wal/summaries. If the required summary files are not
present, an attempt to take an incremental backup will fail. The summaries present in this directory
must cover all LSNs from the start LSN of the prior backup to the start LSN of the current backup.
Since the server looks for WAL summaries just after establishing the start LSN of the current backup,
the necessary summary files probably won't be instantly present on disk, but the server will wait for any
missing files to show up. This also helps if the WAL summarization process has fallen behind. However,
if the necessary files have already been removed, or if the WAL summarizer doesn't catch up quickly
enough, the incremental backup will fail.

When restoring an incremental backup, it will be necessary to have not only the incremental backup
itself but also all earlier backups that are required to supply the blocks omitted from the incremental
backup. See pg_combinebackup for further information about this requirement. Note that there are
restrictions on the use of pg_combinebackup when the checksum status of the cluster has been changed;
see pg_combinebackup limitations.

Note that all of the requirements for making use of a full backup also apply to an incremental backup. For
instance, you still need all of the WAL segment files generated during and after the file system backup,
and any relevant WAL history files. And you still need to create a recovery.signal (or standby.signal)
and perform recovery, as described in Section 25.3.5. The requirement to have earlier backups available
at restore time and to use pg_combinebackup is an additional requirement on top of everything else.
Keep in mind that PostgreSQL has no built-in mechanism to figure out which backups are still needed as
a basis for restoring later incremental backups. You must keep track of the relationships between your
full and incremental backups on your own, and be certain not to remove earlier backups if they might
be needed when restoring later incremental backups.

Incremental backups typically only make sense for relatively large databases where a significant portion
of the data does not change, or only changes slowly. For a small database, it's simpler to ignore the
existence of incremental backups and simply take full backups, which are simpler to manage. For a large
database all of which is heavily modified, incremental backups won't be much smaller than full backups.

707

Backup and Restore

An incremental backup is only possible if replay would begin from a later checkpoint than for the previous
backup upon which it depends. If you take the incremental backup on the primary, this condition is
always satisfied, because each backup triggers a new checkpoint. On a standby, replay begins from the
most recent restartpoint. Therefore, an incremental backup of a standby server can fail if there has been
very little activity since the previous backup, since no new restartpoint might have been created.

25.3.4. Making a Base Backup Using the Low Level API
Instead of taking a full or incremental base backup using pg_basebackup, you can take a base backup
using the low-level API. This procedure contains a few more steps than the pg_basebackup method, but
is relatively simple. It is very important that these steps are executed in sequence, and that the success
of a step is verified before proceeding to the next step.

Multiple backups are able to be run concurrently (both those started using this backup API and those
started using pg_basebackup).

1. Ensure that WAL archiving is enabled and working.
2. Connect to the server (it does not matter which database) as a user with rights to run pg_backup_s-

tart (superuser, or a user who has been granted EXECUTE on the function) and issue the command:
SELECT pg_backup_start(label => 'label', fast => false);

where label is any string you want to use to uniquely identify this backup operation. The connection
calling pg_backup_start must be maintained until the end of the backup, or the backup will be au-
tomatically aborted.

Online backups are always started at the beginning of a checkpoint. By default, pg_backup_start
will wait for the next regularly scheduled checkpoint to complete, which may take a long time (see
the configuration parameters checkpoint_timeout and checkpoint_completion_target). This is usually
preferable as it minimizes the impact on the running system. If you want to start the backup as soon
as possible, pass true as the second parameter to pg_backup_start and it will request an immediate
checkpoint, which will finish as fast as possible using as much I/O as possible.

3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio (not pg_dump
or pg_dumpall). It is neither necessary nor desirable to stop normal operation of the database while
you do this. See Section 25.3.4.1 for things to consider during this backup.

4. In the same connection as before, issue the command:
SELECT * FROM pg_backup_stop(wait_for_archive => true);

This terminates backup mode. On a primary, it also performs an automatic switch to the next WAL
segment. On a standby, it is not possible to automatically switch WAL segments, so you may wish
to run pg_switch_wal on the primary to perform a manual switch. The reason for the switch is to
arrange for the last WAL segment file written during the backup interval to be ready to archive.

pg_backup_stop will return one row with three values. The second of these fields should be written to
a file named backup_label in the root directory of the backup. The third field should be written to a
file named tablespace_map unless the field is empty. These files are vital to the backup working and
must be written byte for byte without modification, which may require opening the file in binary mode.

5. Once the WAL segment files active during the backup are archived, you are done. The file identi-
fied by pg_backup_stop's first return value is the last segment that is required to form a complete
set of backup files. On a primary, if archive_mode is enabled and the wait_for_archive parameter
is true, pg_backup_stop does not return until the last segment has been archived. On a standby,
archive_mode must be always in order for pg_backup_stop to wait. Archiving of these files happens
automatically since you have already configured archive_command or archive_library. In most cas-
es this happens quickly, but you are advised to monitor your archive system to ensure there are no
delays. If the archive process has fallen behind because of failures of the archive command or library,
it will keep retrying until the archive succeeds and the backup is complete. If you wish to place a time
limit on the execution of pg_backup_stop, set an appropriate statement_timeout value, but make
note that if pg_backup_stop terminates because of this your backup may not be valid.

708

Backup and Restore

If the backup process monitors and ensures that all WAL segment files required for the backup are
successfully archived then the wait_for_archive parameter (which defaults to true) can be set to
false to have pg_backup_stop return as soon as the stop backup record is written to the WAL. By
default, pg_backup_stop will wait until all WAL has been archived, which can take some time. This
option must be used with caution: if WAL archiving is not monitored correctly then the backup might
not include all of the WAL files and will therefore be incomplete and not able to be restored.

25.3.4.1. Backing Up the Data Directory
Some file system backup tools emit warnings or errors if the files they are trying to copy change while
the copy proceeds. When taking a base backup of an active database, this situation is normal and not
an error. However, you need to ensure that you can distinguish complaints of this sort from real errors.
For example, some versions of rsync return a separate exit code for “vanished source files”, and you
can write a driver script to accept this exit code as a non-error case. Also, some versions of GNU tar
return an error code indistinguishable from a fatal error if a file was truncated while tar was copying it.
Fortunately, GNU tar versions 1.16 and later exit with 1 if a file was changed during the backup, and 2 for
other errors. With GNU tar version 1.23 and later, you can use the warning options --warning=no-file-
changed --warning=no-file-removed to hide the related warning messages.

Be certain that your backup includes all of the files under the database cluster directory (e.g., /usr/
local/pgsql/data). If you are using tablespaces that do not reside underneath this directory, be careful
to include them as well (and be sure that your backup archives symbolic links as links, otherwise the
restore will corrupt your tablespaces).

You should, however, omit from the backup the files within the cluster's pg_wal/ subdirectory. This
slight adjustment is worthwhile because it reduces the risk of mistakes when restoring. This is easy to
arrange if pg_wal/ is a symbolic link pointing to someplace outside the cluster directory, which is a
common setup anyway for performance reasons. You might also want to exclude postmaster.pid and
postmaster.opts, which record information about the running postmaster, not about the postmaster
which will eventually use this backup. (These files can confuse pg_ctl.)

It is often a good idea to also omit from the backup the files within the cluster's pg_replslot/ directory,
so that replication slots that exist on the primary do not become part of the backup. Otherwise, the
subsequent use of the backup to create a standby may result in indefinite retention of WAL files on the
standby, and possibly bloat on the primary if hot standby feedback is enabled, because the clients that
are using those replication slots will still be connecting to and updating the slots on the primary, not the
standby. Even if the backup is only intended for use in creating a new primary, copying the replication
slots isn't expected to be particularly useful, since the contents of those slots will likely be badly out of
date by the time the new primary comes on line.

The contents of the directories pg_dynshmem/, pg_notify/, pg_serial/, pg_snapshots/, pg_stat_tmp/,
and pg_subtrans/ (but not the directories themselves) can be omitted from the backup as they will be
initialized on postmaster startup.

Any file or directory beginning with pgsql_tmp can be omitted from the backup. These files are removed
on postmaster start and the directories will be recreated as needed.

pg_internal.init files can be omitted from the backup whenever a file of that name is found. These
files contain relation cache data that is always rebuilt when recovering.

The backup label file includes the label string you gave to pg_backup_start, as well as the time at which
pg_backup_start was run, and the name of the starting WAL file. In case of confusion it is therefore
possible to look inside a backup file and determine exactly which backup session the dump file came
from. The tablespace map file includes the symbolic link names as they exist in the directory pg_tblspc/
and the full path of each symbolic link. These files are not merely for your information; their presence
and contents are critical to the proper operation of the system's recovery process.

It is also possible to make a backup while the server is stopped. In this case, you obviously cannot use
pg_backup_start or pg_backup_stop, and you will therefore be left to your own devices to keep track

709

Backup and Restore

of which backup is which and how far back the associated WAL files go. It is generally better to follow
the continuous archiving procedure above.

25.3.5. Recovering Using a Continuous Archive Backup
Okay, the worst has happened and you need to recover from your backup. Here is the procedure:
1. Stop the server, if it's running.
2. If you have the space to do so, copy the whole cluster data directory and any tablespaces to a tempo-

rary location in case you need them later. Note that this precaution will require that you have enough
free space on your system to hold two copies of your existing database. If you do not have enough
space, you should at least save the contents of the cluster's pg_wal subdirectory, as it might contain
WAL files which were not archived before the system went down.

3. Remove all existing files and subdirectories under the cluster data directory and under the root di-
rectories of any tablespaces you are using.

4. If you're restoring a full backup, you can restore the database files directly into the target directories.
Be sure that they are restored with the right ownership (the database system user, not root!) and
with the right permissions. If you are using tablespaces, you should verify that the symbolic links in
pg_tblspc/ were correctly restored.

5. If you're restoring an incremental backup, you'll need to restore the incremental backup and all earlier
backups upon which it directly or indirectly depends to the machine where you are performing the
restore. These backups will need to be placed in separate directories, not the target directories where
you want the running server to end up. Once this is done, use pg_combinebackup to pull data from
the full backup and all of the subsequent incremental backups and write out a synthetic full backup
to the target directories. As above, verify that permissions and tablespace links are correct.

6. Remove any files present in pg_wal/; these came from the file system backup and are therefore
probably obsolete rather than current. If you didn't archive pg_wal/ at all, then recreate it with proper
permissions, being careful to ensure that you re-establish it as a symbolic link if you had it set up
that way before.

7. If you have unarchived WAL segment files that you saved in step 2, copy them into pg_wal/. (It is
best to copy them, not move them, so you still have the unmodified files if a problem occurs and you
have to start over.)

8. Set recovery configuration settings in postgresql.conf (see Section 19.5.5) and create a file recov-
ery.signal in the cluster data directory. You might also want to temporarily modify pg_hba.conf to
prevent ordinary users from connecting until you are sure the recovery was successful.

9. Start the server. The server will go into recovery mode and proceed to read through the archived
WAL files it needs. Should the recovery be terminated because of an external error, the server can
simply be restarted and it will continue recovery. Upon completion of the recovery process, the server
will remove recovery.signal (to prevent accidentally re-entering recovery mode later) and then
commence normal database operations.

10.Inspect the contents of the database to ensure you have recovered to the desired state. If not, return
to step 1. If all is well, allow your users to connect by restoring pg_hba.conf to normal.

The key part of all this is to set up a recovery configuration that describes how you want to recover and
how far the recovery should run. The one thing that you absolutely must specify is the restore_command,
which tells PostgreSQL how to retrieve archived WAL file segments. Like the archive_command, this is
a shell command string. It can contain %f, which is replaced by the name of the desired WAL file, and
%p, which is replaced by the path name to copy the WAL file to. (The path name is relative to the current
working directory, i.e., the cluster's data directory.) Write %% if you need to embed an actual % character
in the command. The simplest useful command is something like:
restore_command = 'cp /mnt/server/archivedir/%f %p'

which will copy previously archived WAL segments from the directory /mnt/server/archivedir. Of
course, you can use something much more complicated, perhaps even a shell script that requests the
operator to mount an appropriate tape.

710

Backup and Restore

It is important that the command return nonzero exit status on failure. The command will be called
requesting files that are not present in the archive; it must return nonzero when so asked. This is not an
error condition. An exception is that if the command was terminated by a signal (other than SIGTERM,
which is used as part of a database server shutdown) or an error by the shell (such as command not
found), then recovery will abort and the server will not start up.

Not all of the requested files will be WAL segment files; you should also expect requests for files with
a suffix of .history. Also be aware that the base name of the %p path will be different from %f; do not
expect them to be interchangeable.

WAL segments that cannot be found in the archive will be sought in pg_wal/; this allows use of recent
un-archived segments. However, segments that are available from the archive will be used in preference
to files in pg_wal/.

Normally, recovery will proceed through all available WAL segments, thereby restoring the database to
the current point in time (or as close as possible given the available WAL segments). Therefore, a normal
recovery will end with a “file not found” message, the exact text of the error message depending upon
your choice of restore_command. You may also see an error message at the start of recovery for a file
named something like 00000001.history. This is also normal and does not indicate a problem in simple
recovery situations; see Section 25.3.6 for discussion.

If you want to recover to some previous point in time (say, right before the junior DBA dropped your main
transaction table), just specify the required stopping point. You can specify the stop point, known as the
“recovery target”, either by date/time, named restore point or by completion of a specific transaction
ID. As of this writing only the date/time and named restore point options are very usable, since there
are no tools to help you identify with any accuracy which transaction ID to use.

Note
The stop point must be after the ending time of the base backup, i.e., the end time of pg_back-
up_stop. You cannot use a base backup to recover to a time when that backup was in progress.
(To recover to such a time, you must go back to your previous base backup and roll forward from
there.)

If recovery finds corrupted WAL data, recovery will halt at that point and the server will not start. In such
a case the recovery process could be re-run from the beginning, specifying a “recovery target” before
the point of corruption so that recovery can complete normally. If recovery fails for an external reason,
such as a system crash or if the WAL archive has become inaccessible, then the recovery can simply be
restarted and it will restart almost from where it failed. Recovery restart works much like checkpointing
in normal operation: the server periodically forces all its state to disk, and then updates the pg_control
file to indicate that the already-processed WAL data need not be scanned again.

25.3.6. Timelines
The ability to restore the database to a previous point in time creates some complexities that are akin
to science-fiction stories about time travel and parallel universes. For example, in the original history of
the database, suppose you dropped a critical table at 5:15PM on Tuesday evening, but didn't realize your
mistake until Wednesday noon. Unfazed, you get out your backup, restore to the point-in-time 5:14PM
Tuesday evening, and are up and running. In this history of the database universe, you never dropped the
table. But suppose you later realize this wasn't such a great idea, and would like to return to sometime
Wednesday morning in the original history. You won't be able to if, while your database was up-and-
running, it overwrote some of the WAL segment files that led up to the time you now wish you could get
back to. Thus, to avoid this, you need to distinguish the series of WAL records generated after you've
done a point-in-time recovery from those that were generated in the original database history.

To deal with this problem, PostgreSQL has a notion of timelines. Whenever an archive recovery com-
pletes, a new timeline is created to identify the series of WAL records generated after that recovery. The
timeline ID number is part of WAL segment file names so a new timeline does not overwrite the WAL

711

Backup and Restore

data generated by previous timelines. For example, in the WAL file name 0000000100001234000055CD,
the leading 00000001 is the timeline ID in hexadecimal. (Note that in other contexts, such as server log
messages, timeline IDs are usually printed in decimal.)

It is in fact possible to archive many different timelines. While that might seem like a useless feature,
it's often a lifesaver. Consider the situation where you aren't quite sure what point-in-time to recover
to, and so have to do several point-in-time recoveries by trial and error until you find the best place to
branch off from the old history. Without timelines this process would soon generate an unmanageable
mess. With timelines, you can recover to any prior state, including states in timeline branches that you
abandoned earlier.

Every time a new timeline is created, PostgreSQL creates a “timeline history” file that shows which
timeline it branched off from and when. These history files are necessary to allow the system to pick the
right WAL segment files when recovering from an archive that contains multiple timelines. Therefore,
they are archived into the WAL archive area just like WAL segment files. The history files are just small
text files, so it's cheap and appropriate to keep them around indefinitely (unlike the segment files which
are large). You can, if you like, add comments to a history file to record your own notes about how and
why this particular timeline was created. Such comments will be especially valuable when you have a
thicket of different timelines as a result of experimentation.

The default behavior of recovery is to recover to the latest timeline found in the archive. If you wish to
recover to the timeline that was current when the base backup was taken or into a specific child timeline
(that is, you want to return to some state that was itself generated after a recovery attempt), you need to
specify current or the target timeline ID in recovery_target_timeline. You cannot recover into timelines
that branched off earlier than the base backup.

25.3.7. Tips and Examples
Some tips for configuring continuous archiving are given here.

25.3.7.1. Standalone Hot Backups
It is possible to use PostgreSQL's backup facilities to produce standalone hot backups. These are backups
that cannot be used for point-in-time recovery, yet are typically much faster to backup and restore than
pg_dump dumps. (They are also much larger than pg_dump dumps, so in some cases the speed advantage
might be negated.)

As with base backups, the easiest way to produce a standalone hot backup is to use the pg_basebackup
tool. If you include the -X parameter when calling it, all the write-ahead log required to use the backup
will be included in the backup automatically, and no special action is required to restore the backup.

25.3.7.2. Compressed Archive Logs
If archive storage size is a concern, you can use gzip to compress the archive files:

archive_command = 'gzip < %p > /mnt/server/archivedir/%f.gz'

You will then need to use gunzip during recovery:

restore_command = 'gunzip < /mnt/server/archivedir/%f.gz > %p'

25.3.7.3. archive_command Scripts
Many people choose to use scripts to define their archive_command, so that their postgresql.conf entry
looks very simple:

archive_command = 'local_backup_script.sh "%p" "%f"'

Using a separate script file is advisable any time you want to use more than a single command in the
archiving process. This allows all complexity to be managed within the script, which can be written in
a popular scripting language such as bash or perl.

Examples of requirements that might be solved within a script include:

712

Backup and Restore

• Copying data to secure off-site data storage
• Batching WAL files so that they are transferred every three hours, rather than one at a time
• Interfacing with other backup and recovery software
• Interfacing with monitoring software to report errors

Tip
When using an archive_command script, it's desirable to enable logging_collector. Any messages
written to stderr from the script will then appear in the database server log, allowing complex
configurations to be diagnosed easily if they fail.

25.3.8. Caveats
At this writing, there are several limitations of the continuous archiving technique. These will probably
be fixed in future releases:
• If a CREATE DATABASE command is executed while a base backup is being taken, and then the

template database that the CREATE DATABASE copied is modified while the base backup is still in
progress, it is possible that recovery will cause those modifications to be propagated into the cre-
ated database as well. This is of course undesirable. To avoid this risk, it is best not to modify any
template databases while taking a base backup.

• CREATE TABLESPACE commands are WAL-logged with the literal absolute path, and will therefore be
replayed as tablespace creations with the same absolute path. This might be undesirable if the WAL
is being replayed on a different machine. It can be dangerous even if the WAL is being replayed on
the same machine, but into a new data directory: the replay will still overwrite the contents of the
original tablespace. To avoid potential gotchas of this sort, the best practice is to take a new base
backup after creating or dropping tablespaces.

It should also be noted that the default WAL format is fairly bulky since it includes many disk page
snapshots. These page snapshots are designed to support crash recovery, since we might need to fix
partially-written disk pages. Depending on your system hardware and software, the risk of partial writes
might be small enough to ignore, in which case you can significantly reduce the total volume of archived
WAL files by turning off page snapshots using the full_page_writes parameter. (Read the notes and
warnings in Chapter 28 before you do so.) Turning off page snapshots does not prevent use of the WAL
for PITR operations. An area for future development is to compress archived WAL data by removing
unnecessary page copies even when full_page_writes is on. In the meantime, administrators might
wish to reduce the number of page snapshots included in WAL by increasing the checkpoint interval
parameters as much as feasible.

713

Chapter 26. High Availability, Load
Balancing, and Replication

Database servers can work together to allow a second server to take over quickly if the primary server
fails (high availability), or to allow several computers to serve the same data (load balancing). Ideally,
database servers could work together seamlessly. Web servers serving static web pages can be combined
quite easily by merely load-balancing web requests to multiple machines. In fact, read-only database
servers can be combined relatively easily too. Unfortunately, most database servers have a read/write
mix of requests, and read/write servers are much harder to combine. This is because though read-only
data needs to be placed on each server only once, a write to any server has to be propagated to all
servers so that future read requests to those servers return consistent results.

This synchronization problem is the fundamental difficulty for servers working together. Because there
is no single solution that eliminates the impact of the sync problem for all use cases, there are multiple
solutions. Each solution addresses this problem in a different way, and minimizes its impact for a specific
workload.

Some solutions deal with synchronization by allowing only one server to modify the data. Servers that
can modify data are called read/write, master or primary servers. Servers that track changes in the
primary are called standby or secondary servers. A standby server that cannot be connected to until it
is promoted to a primary server is called a warm standby server, and one that can accept connections
and serves read-only queries is called a hot standby server.

Some solutions are synchronous, meaning that a data-modifying transaction is not considered committed
until all servers have committed the transaction. This guarantees that a failover will not lose any data
and that all load-balanced servers will return consistent results no matter which server is queried. In
contrast, asynchronous solutions allow some delay between the time of a commit and its propagation to
the other servers, opening the possibility that some transactions might be lost in the switch to a backup
server, and that load balanced servers might return slightly stale results. Asynchronous communication
is used when synchronous would be too slow.

Solutions can also be categorized by their granularity. Some solutions can deal only with an entire
database server, while others allow control at the per-table or per-database level.

Performance must be considered in any choice. There is usually a trade-off between functionality and
performance. For example, a fully synchronous solution over a slow network might cut performance by
more than half, while an asynchronous one might have a minimal performance impact.

The remainder of this section outlines various failover, replication, and load balancing solutions.

26.1. Comparison of Different Solutions
Shared Disk Failover

Shared disk failover avoids synchronization overhead by having only one copy of the database. It uses
a single disk array that is shared by multiple servers. If the main database server fails, the standby
server is able to mount and start the database as though it were recovering from a database crash.
This allows rapid failover with no data loss.

Shared hardware functionality is common in network storage devices. Using a network file system
is also possible, though care must be taken that the file system has full POSIX behavior (see Sec-
tion 18.2.2.1). One significant limitation of this method is that if the shared disk array fails or be-
comes corrupt, the primary and standby servers are both nonfunctional. Another issue is that the
standby server should never access the shared storage while the primary server is running.

File System (Block Device) Replication
A modified version of shared hardware functionality is file system replication, where all changes to
a file system are mirrored to a file system residing on another computer. The only restriction is that

714

High Availability, Load Bal-
ancing, and Replication

the mirroring must be done in a way that ensures the standby server has a consistent copy of the file
system — specifically, writes to the standby must be done in the same order as those on the primary.
DRBD is a popular file system replication solution for Linux.

Write-Ahead Log Shipping
Warm and hot standby servers can be kept current by reading a stream of write-ahead log (WAL)
records. If the main server fails, the standby contains almost all of the data of the main server, and
can be quickly made the new primary database server. This can be synchronous or asynchronous
and can only be done for the entire database server.

A standby server can be implemented using file-based log shipping (Section 26.2) or streaming
replication (see Section 26.2.5), or a combination of both. For information on hot standby, see Sec-
tion 26.4.

Logical Replication
Logical replication allows a database server to send a stream of data modifications to another serv-
er. PostgreSQL logical replication constructs a stream of logical data modifications from the WAL.
Logical replication allows replication of data changes on a per-table basis. In addition, a server that
is publishing its own changes can also subscribe to changes from another server, allowing data to
flow in multiple directions. For more information on logical replication, see Chapter 29. Through the
logical decoding interface (Chapter 47), third-party extensions can also provide similar functionality.

Trigger-Based Primary-Standby Replication
A trigger-based replication setup typically funnels data modification queries to a designated primary
server. Operating on a per-table basis, the primary server sends data changes (typically) asynchro-
nously to the standby servers. Standby servers can answer queries while the primary is running,
and may allow some local data changes or write activity. This form of replication is often used for
offloading large analytical or data warehouse queries.

Slony-I is an example of this type of replication, with per-table granularity, and support for multiple
standby servers. Because it updates the standby server asynchronously (in batches), there is possible
data loss during fail over.

SQL-Based Replication Middleware
With SQL-based replication middleware, a program intercepts every SQL query and sends it to one
or all servers. Each server operates independently. Read-write queries must be sent to all servers, so
that every server receives any changes. But read-only queries can be sent to just one server, allowing
the read workload to be distributed among them.

If queries are simply broadcast unmodified, functions like random(), CURRENT_TIMESTAMP, and se-
quences can have different values on different servers. This is because each server operates indepen-
dently, and because SQL queries are broadcast rather than actual data changes. If this is unaccept-
able, either the middleware or the application must determine such values from a single source and
then use those values in write queries. Care must also be taken that all transactions either commit
or abort on all servers, perhaps using two-phase commit (PREPARE TRANSACTION and COMMIT
PREPARED). Pgpool-II and Continuent Tungsten are examples of this type of replication.

Asynchronous Multimaster Replication
For servers that are not regularly connected or have slow communication links, like laptops or remote
servers, keeping data consistent among servers is a challenge. Using asynchronous multimaster
replication, each server works independently, and periodically communicates with the other servers
to identify conflicting transactions. The conflicts can be resolved by users or conflict resolution rules.
Bucardo is an example of this type of replication.

Synchronous Multimaster Replication
In synchronous multimaster replication, each server can accept write requests, and modified data is
transmitted from the original server to every other server before each transaction commits. Heavy

715

High Availability, Load Bal-
ancing, and Replication

write activity can cause excessive locking and commit delays, leading to poor performance. Read
requests can be sent to any server. Some implementations use shared disk to reduce the communi-
cation overhead. Synchronous multimaster replication is best for mostly read workloads, though its
big advantage is that any server can accept write requests — there is no need to partition workloads
between primary and standby servers, and because the data changes are sent from one server to
another, there is no problem with non-deterministic functions like random().

PostgreSQL does not offer this type of replication, though PostgreSQL two-phase commit (PREPARE
TRANSACTION and COMMIT PREPARED) can be used to implement this in application code or
middleware.

Table 26.1 summarizes the capabilities of the various solutions listed above.

Table 26.1. High Availability, Load Balancing, and Replication Feature Matrix

Feature Shared
Disk

File Sys-
tem Re-
pl.

Write-
Ahead
Log
Shipping

Logical
Repl.

Trigger-
Based
Repl.

SQL Re-
pl. Mid-
dle-ware

Async.
MM Re-
pl.

Sync.
MM Re-
pl.

Popular ex-
amples

NAS DRBD built-in
stream-
ing repl.

built-in
logical

repl., pg-
logical

Londiste,
 Slony

pgpool-II Bucardo

Comm.
method

shared
disk

disk
blocks

WAL logical
decoding

table
rows

SQL table
rows

table
rows and
row locks

No special
hardware
required

 • • • • • • •

Allows
multiple
primary
servers

 • • • •

No over-
head on
primary

• • • •

No waiting
for multi-
ple servers

• with
sync off

with
sync off

• •

Primary
failure will
never lose
data

• • with
sync on

with
sync on

 • •

Replicas
accept
read-only
queries

 with hot
standby

• • • • •

Per-table
granularity

 • • • •

No conflict
resolution
necessary

• • • • • •

There are a few solutions that do not fit into the above categories:

716

High Availability, Load Bal-
ancing, and Replication

Data Partitioning

Data partitioning splits tables into data sets. Each set can be modified by only one server. For exam-
ple, data can be partitioned by offices, e.g., London and Paris, with a server in each office. If queries
combining London and Paris data are necessary, an application can query both servers, or prima-
ry/standby replication can be used to keep a read-only copy of the other office's data on each server.

Multiple-Server Parallel Query Execution

Many of the above solutions allow multiple servers to handle multiple queries, but none allow a
single query to use multiple servers to complete faster. This solution allows multiple servers to work
concurrently on a single query. It is usually accomplished by splitting the data among servers and
having each server execute its part of the query and return results to a central server where they
are combined and returned to the user. This can be implemented using the PL/Proxy tool set.

It should also be noted that because PostgreSQL is open source and easily extended, a number of com-
panies have taken PostgreSQL and created commercial closed-source solutions with unique failover,
replication, and load balancing capabilities. These are not discussed here.

26.2. Log-Shipping Standby Servers
Continuous archiving can be used to create a high availability (HA) cluster configuration with one or
more standby servers ready to take over operations if the primary server fails. This capability is widely
referred to as warm standby or log shipping.

The primary and standby server work together to provide this capability, though the servers are only
loosely coupled. The primary server operates in continuous archiving mode, while each standby server
operates in continuous recovery mode, reading the WAL files from the primary. No changes to the data-
base tables are required to enable this capability, so it offers low administration overhead compared
to some other replication solutions. This configuration also has relatively low performance impact on
the primary server.

Directly moving WAL records from one database server to another is typically described as log shipping.
PostgreSQL implements file-based log shipping by transferring WAL records one file (WAL segment)
at a time. WAL files (16MB) can be shipped easily and cheaply over any distance, whether it be to an
adjacent system, another system at the same site, or another system on the far side of the globe. The
bandwidth required for this technique varies according to the transaction rate of the primary server.
Record-based log shipping is more granular and streams WAL changes incrementally over a network
connection (see Section 26.2.5).

It should be noted that log shipping is asynchronous, i.e., the WAL records are shipped after transaction
commit. As a result, there is a window for data loss should the primary server suffer a catastrophic fail-
ure; transactions not yet shipped will be lost. The size of the data loss window in file-based log shipping
can be limited by use of the archive_timeout parameter, which can be set as low as a few seconds.
However such a low setting will substantially increase the bandwidth required for file shipping. Stream-
ing replication (see Section 26.2.5) allows a much smaller window of data loss.

Recovery performance is sufficiently good that the standby will typically be only moments away from
full availability once it has been activated. As a result, this is called a warm standby configuration which
offers high availability. Restoring a server from an archived base backup and rollforward will take con-
siderably longer, so that technique only offers a solution for disaster recovery, not high availability. A
standby server can also be used for read-only queries, in which case it is called a hot standby server.
See Section 26.4 for more information.

26.2.1. Planning
It is usually wise to create the primary and standby servers so that they are as similar as possible, at least
from the perspective of the database server. In particular, the path names associated with tablespaces
will be passed across unmodified, so both primary and standby servers must have the same mount paths

717

High Availability, Load Bal-
ancing, and Replication

for tablespaces if that feature is used. Keep in mind that if CREATE TABLESPACE is executed on the
primary, any new mount point needed for it must be created on the primary and all standby servers
before the command is executed. Hardware need not be exactly the same, but experience shows that
maintaining two identical systems is easier than maintaining two dissimilar ones over the lifetime of the
application and system. In any case the hardware architecture must be the same — shipping from, say,
a 32-bit to a 64-bit system will not work.

In general, log shipping between servers running different major PostgreSQL release levels is not pos-
sible. It is the policy of the PostgreSQL Global Development Group not to make changes to disk formats
during minor release upgrades, so it is likely that running different minor release levels on primary and
standby servers will work successfully. However, no formal support for that is offered and you are ad-
vised to keep primary and standby servers at the same release level as much as possible. When updating
to a new minor release, the safest policy is to update the standby servers first — a new minor release is
more likely to be able to read WAL files from a previous minor release than vice versa.

26.2.2. Standby Server Operation
A server enters standby mode if a standby.signal file exists in the data directory when the server is
started.

In standby mode, the server continuously applies WAL received from the primary server. The standby
server can read WAL from a WAL archive (see restore_command) or directly from the primary over a
TCP connection (streaming replication). The standby server will also attempt to restore any WAL found
in the standby cluster's pg_wal directory. That typically happens after a server restart, when the standby
replays again WAL that was streamed from the primary before the restart, but you can also manually
copy files to pg_wal at any time to have them replayed.

At startup, the standby begins by restoring all WAL available in the archive location, calling re-
store_command. Once it reaches the end of WAL available there and restore_command fails, it tries to
restore any WAL available in the pg_wal directory. If that fails, and streaming replication has been
configured, the standby tries to connect to the primary server and start streaming WAL from the last
valid record found in archive or pg_wal. If that fails or streaming replication is not configured, or if the
connection is later disconnected, the standby goes back to step 1 and tries to restore the file from the
archive again. This loop of retries from the archive, pg_wal, and via streaming replication goes on until
the server is stopped or is promoted.

Standby mode is exited and the server switches to normal operation when pg_ctl promote is run, or
pg_promote() is called. Before failover, any WAL immediately available in the archive or in pg_wal will
be restored, but no attempt is made to connect to the primary.

26.2.3. Preparing the Primary for Standby Servers
Set up continuous archiving on the primary to an archive directory accessible from the standby, as
described in Section 25.3. The archive location should be accessible from the standby even when the
primary is down, i.e., it should reside on the standby server itself or another trusted server, not on the
primary server.

If you want to use streaming replication, set up authentication on the primary server to allow replication
connections from the standby server(s); that is, create a role and provide a suitable entry or entries
in pg_hba.conf with the database field set to replication. Also ensure max_wal_senders is set to a
sufficiently large value in the configuration file of the primary server. If replication slots will be used,
ensure that max_replication_slots is set sufficiently high as well.

Take a base backup as described in Section 25.3.2 to bootstrap the standby server.

26.2.4. Setting Up a Standby Server
To set up the standby server, restore the base backup taken from primary server (see Section 25.3.5).
Create a file standby.signalin the standby's cluster data directory. Set restore_command to a simple

718

High Availability, Load Bal-
ancing, and Replication

command to copy files from the WAL archive. If you plan to have multiple standby servers for high
availability purposes, make sure that recovery_target_timeline is set to latest (the default), to make
the standby server follow the timeline change that occurs at failover to another standby.

Note
restore_command should return immediately if the file does not exist; the server will retry the
command again if necessary.

If you want to use streaming replication, fill in primary_conninfo with a libpq connection string, including
the host name (or IP address) and any additional details needed to connect to the primary server. If the
primary needs a password for authentication, the password needs to be specified in primary_conninfo
as well.

If you're setting up the standby server for high availability purposes, set up WAL archiving, connections
and authentication like the primary server, because the standby server will work as a primary server
after failover.

If you're using a WAL archive, its size can be minimized using the archive_cleanup_command parameter
to remove files that are no longer required by the standby server. The pg_archivecleanup utility is de-
signed specifically to be used with archive_cleanup_command in typical single-standby configurations,
see pg_archivecleanup. Note however, that if you're using the archive for backup purposes, you need
to retain files needed to recover from at least the latest base backup, even if they're no longer needed
by the standby.

A simple example of configuration is:
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass options=''-c
 wal_sender_timeout=5000'''
restore_command = 'cp /path/to/archive/%f %p'
archive_cleanup_command = 'pg_archivecleanup /path/to/archive %r'

You can have any number of standby servers, but if you use streaming replication, make sure you set
max_wal_senders high enough in the primary to allow them to be connected simultaneously.

26.2.5. Streaming Replication
Streaming replication allows a standby server to stay more up-to-date than is possible with file-based
log shipping. The standby connects to the primary, which streams WAL records to the standby as they're
generated, without waiting for the WAL file to be filled.

Streaming replication is asynchronous by default (see Section 26.2.8), in which case there is a small delay
between committing a transaction in the primary and the changes becoming visible in the standby. This
delay is however much smaller than with file-based log shipping, typically under one second assuming
the standby is powerful enough to keep up with the load. With streaming replication, archive_timeout
is not required to reduce the data loss window.

If you use streaming replication without file-based continuous archiving, the server might recycle old
WAL segments before the standby has received them. If this occurs, the standby will need to be reini-
tialized from a new base backup. You can avoid this by setting wal_keep_size to a value large enough to
ensure that WAL segments are not recycled too early, or by configuring a replication slot for the standby.
If you set up a WAL archive that's accessible from the standby, these solutions are not required, since
the standby can always use the archive to catch up provided it retains enough segments.

To use streaming replication, set up a file-based log-shipping standby server as described in Section 26.2.
The step that turns a file-based log-shipping standby into streaming replication standby is setting the
primary_conninfo setting to point to the primary server. Set listen_addresses and authentication op-
tions (see pg_hba.conf) on the primary so that the standby server can connect to the replication pseu-
do-database on the primary server (see Section 26.2.5.1).

719

High Availability, Load Bal-
ancing, and Replication

On systems that support the keepalive socket option, setting tcp_keepalives_idle, tcp_keepalives_interval
and tcp_keepalives_count helps the primary promptly notice a broken connection.

Set the maximum number of concurrent connections from the standby servers (see max_wal_senders
for details).

When the standby is started and primary_conninfo is set correctly, the standby will connect to the
primary after replaying all WAL files available in the archive. If the connection is established successfully,
you will see a walreceiver in the standby, and a corresponding walsender process in the primary.

26.2.5.1. Authentication
It is very important that the access privileges for replication be set up so that only trusted users can
read the WAL stream, because it is easy to extract privileged information from it. Standby servers must
authenticate to the primary as an account that has the REPLICATION privilege or a superuser. It is rec-
ommended to create a dedicated user account with REPLICATION and LOGIN privileges for replication.
While REPLICATION privilege gives very high permissions, it does not allow the user to modify any data
on the primary system, which the SUPERUSER privilege does.

Client authentication for replication is controlled by a pg_hba.conf record specifying replication in the
database field. For example, if the standby is running on host IP 192.168.1.100 and the account name
for replication is foo, the administrator can add the following line to the pg_hba.conf file on the primary:

Allow the user "foo" from host 192.168.1.100 to connect to the primary
as a replication standby if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host replication foo 192.168.1.100/32 md5

The host name and port number of the primary, connection user name, and password are specified
in the primary_conninfo. The password can also be set in the ~/.pgpass file on the standby (specify
replication in the database field). For example, if the primary is running on host IP 192.168.1.50,
port 5432, the account name for replication is foo, and the password is foopass, the administrator can
add the following line to the postgresql.conf file on the standby:

The standby connects to the primary that is running on host 192.168.1.50
and port 5432 as the user "foo" whose password is "foopass".
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'

26.2.5.2. Monitoring
An important health indicator of streaming replication is the amount of WAL records generated in the
primary, but not yet applied in the standby. You can calculate this lag by comparing the current WAL
write location on the primary with the last WAL location received by the standby. These locations can
be retrieved using pg_current_wal_lsn on the primary and pg_last_wal_receive_lsn on the standby,
respectively (see Table 9.97 and Table 9.98 for details). The last WAL receive location in the standby
is also displayed in the process status of the WAL receiver process, displayed using the ps command
(see Section 27.1 for details).

You can retrieve a list of WAL sender processes via the pg_stat_replication view. Large differences
between pg_current_wal_lsn and the view's sent_lsn field might indicate that the primary server is
under heavy load, while differences between sent_lsn and pg_last_wal_receive_lsn on the standby
might indicate network delay, or that the standby is under heavy load.

On a hot standby, the status of the WAL receiver process can be retrieved via the pg_stat_wal_receiver
view. A large difference between pg_last_wal_replay_lsn and the view's flushed_lsn indicates that
WAL is being received faster than it can be replayed.

26.2.6. Replication Slots

720

High Availability, Load Bal-
ancing, and Replication

Replication slots provide an automated way to ensure that the primary server does not remove WAL
segments until they have been received by all standbys, and that the primary does not remove rows
which could cause a recovery conflict even when the standby is disconnected.

In lieu of using replication slots, it is possible to prevent the removal of old WAL segments using
wal_keep_size, or by storing the segments in an archive using archive_command or archive_library. A
disadvantage of these methods is that they often result in retaining more WAL segments than required,
whereas replication slots retain only the number of segments known to be needed.

Similarly, hot_standby_feedback on its own, without also using a replication slot, provides protection
against relevant rows being removed by vacuum, but provides no protection during any time period
when the standby is not connected.

Caution
Beware that replication slots can cause the server to retain so many WAL segments that they fill
up the space allocated for pg_wal. max_slot_wal_keep_size can be used to limit the size of WAL
files retained by replication slots.

26.2.6.1. Querying and Manipulating Replication Slots
Each replication slot has a name, which can contain lower-case letters, numbers, and the underscore
character.

Existing replication slots and their state can be seen in the pg_replication_slots view.

Slots can be created and dropped either via the streaming replication protocol (see Section 54.4) or via
SQL functions (see Section 9.28.6).

26.2.6.2. Configuration Example
You can create a replication slot like this:
postgres=# SELECT * FROM pg_create_physical_replication_slot('node_a_slot');
 slot_name | lsn
-------------+-----
 node_a_slot |

postgres=# SELECT slot_name, slot_type, active FROM pg_replication_slots;
 slot_name | slot_type | active
-------------+-----------+--------
 node_a_slot | physical | f
(1 row)

To configure the standby to use this slot, primary_slot_name should be configured on the standby. Here
is a simple example:
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'
primary_slot_name = 'node_a_slot'

26.2.7. Cascading Replication
The cascading replication feature allows a standby server to accept replication connections and stream
WAL records to other standbys, acting as a relay. This can be used to reduce the number of direct
connections to the primary and also to minimize inter-site bandwidth overheads.

A standby acting as both a receiver and a sender is known as a cascading standby. Standbys that are
more directly connected to the primary are known as upstream servers, while those standby servers
further away are downstream servers. Cascading replication does not place limits on the number or
arrangement of downstream servers, though each standby connects to only one upstream server which
eventually links to a single primary server.

721

High Availability, Load Bal-
ancing, and Replication

A cascading standby sends not only WAL records received from the primary but also those restored from
the archive. So even if the replication connection in some upstream connection is terminated, streaming
replication continues downstream for as long as new WAL records are available.

Cascading replication is currently asynchronous. Synchronous replication (see Section 26.2.8) settings
have no effect on cascading replication at present.

Hot standby feedback propagates upstream, whatever the cascaded arrangement.

If an upstream standby server is promoted to become the new primary, downstream servers will continue
to stream from the new primary if recovery_target_timeline is set to 'latest' (the default).

To use cascading replication, set up the cascading standby so that it can accept replication connections
(that is, set max_wal_senders and hot_standby, and configure host-based authentication). You will also
need to set primary_conninfo in the downstream standby to point to the cascading standby.

26.2.8. Synchronous Replication
PostgreSQL streaming replication is asynchronous by default. If the primary server crashes then some
transactions that were committed may not have been replicated to the standby server, causing data loss.
The amount of data loss is proportional to the replication delay at the time of failover.

Synchronous replication offers the ability to confirm that all changes made by a transaction have been
transferred to one or more synchronous standby servers. This extends that standard level of durabili-
ty offered by a transaction commit. This level of protection is referred to as 2-safe replication in com-
puter science theory, and group-1-safe (group-safe and 1-safe) when synchronous_commit is set to re-
mote_write.

When requesting synchronous replication, each commit of a write transaction will wait until confirmation
is received that the commit has been written to the write-ahead log on disk of both the primary and
standby server. The only possibility that data can be lost is if both the primary and the standby suffer
crashes at the same time. This can provide a much higher level of durability, though only if the sysadmin
is cautious about the placement and management of the two servers. Waiting for confirmation increases
the user's confidence that the changes will not be lost in the event of server crashes but it also necessarily
increases the response time for the requesting transaction. The minimum wait time is the round-trip
time between primary and standby.

Read-only transactions and transaction rollbacks need not wait for replies from standby servers. Sub-
transaction commits do not wait for responses from standby servers, only top-level commits. Long run-
ning actions such as data loading or index building do not wait until the very final commit message. All
two-phase commit actions require commit waits, including both prepare and commit.

A synchronous standby can be a physical replication standby or a logical replication subscriber. It can
also be any other physical or logical WAL replication stream consumer that knows how to send the ap-
propriate feedback messages. Besides the built-in physical and logical replication systems, this includes
special programs such as pg_receivewal and pg_recvlogical as well as some third-party replication
systems and custom programs. Check the respective documentation for details on synchronous replica-
tion support.

26.2.8.1. Basic Configuration
Once streaming replication has been configured, configuring synchronous replication requires only one
additional configuration step: synchronous_standby_names must be set to a non-empty value. synchro-
nous_commit must also be set to on, but since this is the default value, typically no change is required.
(See Section 19.5.1 and Section 19.6.2.) This configuration will cause each commit to wait for confirma-
tion that the standby has written the commit record to durable storage. synchronous_commit can be set
by individual users, so it can be configured in the configuration file, for particular users or databases,
or dynamically by applications, in order to control the durability guarantee on a per-transaction basis.

After a commit record has been written to disk on the primary, the WAL record is then sent to the stand-
by. The standby sends reply messages each time a new batch of WAL data is written to disk, unless

722

High Availability, Load Bal-
ancing, and Replication

wal_receiver_status_interval is set to zero on the standby. In the case that synchronous_commit is
set to remote_apply, the standby sends reply messages when the commit record is replayed, making
the transaction visible. If the standby is chosen as a synchronous standby, according to the setting of
synchronous_standby_names on the primary, the reply messages from that standby will be considered
along with those from other synchronous standbys to decide when to release transactions waiting for
confirmation that the commit record has been received. These parameters allow the administrator to
specify which standby servers should be synchronous standbys. Note that the configuration of synchro-
nous replication is mainly on the primary. Named standbys must be directly connected to the primary;
the primary knows nothing about downstream standby servers using cascaded replication.

Setting synchronous_commit to remote_write will cause each commit to wait for confirmation that the
standby has received the commit record and written it out to its own operating system, but not for
the data to be flushed to disk on the standby. This setting provides a weaker guarantee of durability
than on does: the standby could lose the data in the event of an operating system crash, though not
a PostgreSQL crash. However, it's a useful setting in practice because it can decrease the response
time for the transaction. Data loss could only occur if both the primary and the standby crash and the
database of the primary gets corrupted at the same time.

Setting synchronous_commit to remote_apply will cause each commit to wait until the current synchro-
nous standbys report that they have replayed the transaction, making it visible to user queries. In simple
cases, this allows for load balancing with causal consistency.

Users will stop waiting if a fast shutdown is requested. However, as when using asynchronous replica-
tion, the server will not fully shutdown until all outstanding WAL records are transferred to the currently
connected standby servers.

26.2.8.2. Multiple Synchronous Standbys
Synchronous replication supports one or more synchronous standby servers; transactions will wait until
all the standby servers which are considered as synchronous confirm receipt of their data. The number
of synchronous standbys that transactions must wait for replies from is specified in synchronous_s-
tandby_names. This parameter also specifies a list of standby names and the method (FIRST and ANY) to
choose synchronous standbys from the listed ones.

The method FIRST specifies a priority-based synchronous replication and makes transaction commits
wait until their WAL records are replicated to the requested number of synchronous standbys chosen
based on their priorities. The standbys whose names appear earlier in the list are given higher priority
and will be considered as synchronous. Other standby servers appearing later in this list represent
potential synchronous standbys. If any of the current synchronous standbys disconnects for whatever
reason, it will be replaced immediately with the next-highest-priority standby.

An example of synchronous_standby_names for a priority-based multiple synchronous standbys is:

synchronous_standby_names = 'FIRST 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, the two standbys s1 and s2 will
be chosen as synchronous standbys because their names appear early in the list of standby names. s3
is a potential synchronous standby and will take over the role of synchronous standby when either of s1
or s2 fails. s4 is an asynchronous standby since its name is not in the list.

The method ANY specifies a quorum-based synchronous replication and makes transaction commits wait
until their WAL records are replicated to at least the requested number of synchronous standbys in the
list.

An example of synchronous_standby_names for a quorum-based multiple synchronous standbys is:

synchronous_standby_names = 'ANY 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, transaction commits will wait for
replies from at least any two standbys of s1, s2 and s3. s4 is an asynchronous standby since its name
is not in the list.

723

High Availability, Load Bal-
ancing, and Replication

The synchronous states of standby servers can be viewed using the pg_stat_replication view.

26.2.8.3. Planning for Performance
Synchronous replication usually requires carefully planned and placed standby servers to ensure appli-
cations perform acceptably. Waiting doesn't utilize system resources, but transaction locks continue to
be held until the transfer is confirmed. As a result, incautious use of synchronous replication will reduce
performance for database applications because of increased response times and higher contention.

PostgreSQL allows the application developer to specify the durability level required via replication. This
can be specified for the system overall, though it can also be specified for specific users or connections,
or even individual transactions.

For example, an application workload might consist of: 10% of changes are important customer details,
while 90% of changes are less important data that the business can more easily survive if it is lost, such
as chat messages between users.

With synchronous replication options specified at the application level (on the primary) we can offer
synchronous replication for the most important changes, without slowing down the bulk of the total
workload. Application level options are an important and practical tool for allowing the benefits of syn-
chronous replication for high performance applications.

You should consider that the network bandwidth must be higher than the rate of generation of WAL data.

26.2.8.4. Planning for High Availability
synchronous_standby_names specifies the number and names of synchronous standbys that transaction
commits made when synchronous_commit is set to on, remote_apply or remote_write will wait for re-
sponses from. Such transaction commits may never be completed if any one of the synchronous standbys
should crash.

The best solution for high availability is to ensure you keep as many synchronous standbys as requested.
This can be achieved by naming multiple potential synchronous standbys using synchronous_stand-
by_names.

In a priority-based synchronous replication, the standbys whose names appear earlier in the list will be
used as synchronous standbys. Standbys listed after these will take over the role of synchronous standby
if one of current ones should fail.

In a quorum-based synchronous replication, all the standbys appearing in the list will be used as candi-
dates for synchronous standbys. Even if one of them should fail, the other standbys will keep performing
the role of candidates of synchronous standby.

When a standby first attaches to the primary, it will not yet be properly synchronized. This is described
as catchup mode. Once the lag between standby and primary reaches zero for the first time we move to
real-time streaming state. The catch-up duration may be long immediately after the standby has been
created. If the standby is shut down, then the catch-up period will increase according to the length of
time the standby has been down. The standby is only able to become a synchronous standby once it has
reached streaming state. This state can be viewed using the pg_stat_replication view.

If primary restarts while commits are waiting for acknowledgment, those waiting transactions will be
marked fully committed once the primary database recovers. There is no way to be certain that all stand-
bys have received all outstanding WAL data at time of the crash of the primary. Some transactions may
not show as committed on the standby, even though they show as committed on the primary. The guar-
antee we offer is that the application will not receive explicit acknowledgment of the successful commit
of a transaction until the WAL data is known to be safely received by all the synchronous standbys.

If you really cannot keep as many synchronous standbys as requested then you should decrease the
number of synchronous standbys that transaction commits must wait for responses from in synchro-
nous_standby_names (or disable it) and reload the configuration file on the primary server.

724

High Availability, Load Bal-
ancing, and Replication

If the primary is isolated from remaining standby servers you should fail over to the best candidate of
those other remaining standby servers.

If you need to re-create a standby server while transactions are waiting, make sure that the functions
pg_backup_start() and pg_backup_stop() are run in a session with synchronous_commit = off, oth-
erwise those requests will wait forever for the standby to appear.

26.2.9. Continuous Archiving in Standby
When continuous WAL archiving is used in a standby, there are two different scenarios: the WAL archive
can be shared between the primary and the standby, or the standby can have its own WAL archive. When
the standby has its own WAL archive, set archive_mode to always, and the standby will call the archive
command for every WAL segment it receives, whether it's by restoring from the archive or by streaming
replication. The shared archive can be handled similarly, but the archive_command or archive_library
must test if the file being archived exists already, and if the existing file has identical contents. This
requires more care in the archive_command or archive_library, as it must be careful to not overwrite
an existing file with different contents, but return success if the exactly same file is archived twice. And
all that must be done free of race conditions, if two servers attempt to archive the same file at the same
time.

If archive_mode is set to on, the archiver is not enabled during recovery or standby mode. If the standby
server is promoted, it will start archiving after the promotion, but will not archive any WAL or timeline
history files that it did not generate itself. To get a complete series of WAL files in the archive, you must
ensure that all WAL is archived, before it reaches the standby. This is inherently true with file-based
log shipping, as the standby can only restore files that are found in the archive, but not if streaming
replication is enabled. When a server is not in recovery mode, there is no difference between on and
always modes.

26.3. Failover
If the primary server fails then the standby server should begin failover procedures.

If the standby server fails then no failover need take place. If the standby server can be restarted,
even some time later, then the recovery process can also be restarted immediately, taking advantage of
restartable recovery. If the standby server cannot be restarted, then a full new standby server instance
should be created.

If the primary server fails and the standby server becomes the new primary, and then the old primary
restarts, you must have a mechanism for informing the old primary that it is no longer the primary. This
is sometimes known as STONITH (Shoot The Other Node In The Head), which is necessary to avoid
situations where both systems think they are the primary, which will lead to confusion and ultimately
data loss.

Many failover systems use just two systems, the primary and the standby, connected by some kind of
heartbeat mechanism to continually verify the connectivity between the two and the viability of the
primary. It is also possible to use a third system (called a witness server) to prevent some cases of
inappropriate failover, but the additional complexity might not be worthwhile unless it is set up with
sufficient care and rigorous testing.

PostgreSQL does not provide the system software required to identify a failure on the primary and notify
the standby database server. Many such tools exist and are well integrated with the operating system
facilities required for successful failover, such as IP address migration.

Once failover to the standby occurs, there is only a single server in operation. This is known as a de-
generate state. The former standby is now the primary, but the former primary is down and might stay
down. To return to normal operation, a standby server must be recreated, either on the former prima-
ry system when it comes up, or on a third, possibly new, system. The pg_rewind utility can be used to
speed up this process on large clusters. Once complete, the primary and standby can be considered to
have switched roles. Some people choose to use a third server to provide backup for the new primary

725

High Availability, Load Bal-
ancing, and Replication

until the new standby server is recreated, though clearly this complicates the system configuration and
operational processes.

So, switching from primary to standby server can be fast but requires some time to re-prepare the
failover cluster. Regular switching from primary to standby is useful, since it allows regular downtime
on each system for maintenance. This also serves as a test of the failover mechanism to ensure that it
will really work when you need it. Written administration procedures are advised.

If you have opted for logical replication slot synchronization (see Section 47.2.3), then before switching
to the standby server, it is recommended to check if the logical slots synchronized on the standby server
are ready for failover. This can be done by following the steps described in Section 29.3.

To trigger failover of a log-shipping standby server, run pg_ctl promote or call pg_promote(). If you're
setting up reporting servers that are only used to offload read-only queries from the primary, not for
high availability purposes, you don't need to promote.

26.4. Hot Standby
Hot standby is the term used to describe the ability to connect to the server and run read-only queries
while the server is in archive recovery or standby mode. This is useful both for replication purposes and
for restoring a backup to a desired state with great precision. The term hot standby also refers to the
ability of the server to move from recovery through to normal operation while users continue running
queries and/or keep their connections open.

Running queries in hot standby mode is similar to normal query operation, though there are several
usage and administrative differences explained below.

26.4.1. User's Overview
When the hot_standby parameter is set to true on a standby server, it will begin accepting connections
once the recovery has brought the system to a consistent state and be ready for hot standby. All such
connections are strictly read-only; not even temporary tables may be written.

The data on the standby takes some time to arrive from the primary server so there will be a measurable
delay between primary and standby. Running the same query nearly simultaneously on both primary and
standby might therefore return differing results. We say that data on the standby is eventually consistent
with the primary. Once the commit record for a transaction is replayed on the standby, the changes
made by that transaction will be visible to any new snapshots taken on the standby. Snapshots may be
taken at the start of each query or at the start of each transaction, depending on the current transaction
isolation level. For more details, see Section 13.2.

Transactions started during hot standby may issue the following commands:
• Query access: SELECT, COPY TO
• Cursor commands: DECLARE, FETCH, CLOSE
• Settings: SHOW, SET, RESET
• Transaction management commands:

• BEGIN, END, ABORT, START TRANSACTION
• SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT
• EXCEPTION blocks and other internal subtransactions

• LOCK TABLE, though only when explicitly in one of these modes: ACCESS SHARE, ROW SHARE or ROW
EXCLUSIVE.

• Plans and resources: PREPARE, EXECUTE, DEALLOCATE, DISCARD
• Plugins and extensions: LOAD
• UNLISTEN

726

High Availability, Load Bal-
ancing, and Replication

Transactions started during hot standby will never be assigned a transaction ID and cannot write to the
system write-ahead log. Therefore, the following actions will produce error messages:
• Data Manipulation Language (DML): INSERT, UPDATE, DELETE, MERGE, COPY FROM, TRUNCATE. Note

that there are no allowed actions that result in a trigger being executed during recovery. This re-
striction applies even to temporary tables, because table rows cannot be read or written without as-
signing a transaction ID, which is currently not possible in a hot standby environment.

• Data Definition Language (DDL): CREATE, DROP, ALTER, COMMENT. This restriction applies even to
temporary tables, because carrying out these operations would require updating the system catalog
tables.

• SELECT ... FOR SHARE | UPDATE, because row locks cannot be taken without updating the under-
lying data files.

• Rules on SELECT statements that generate DML commands.
• LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.
• LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.
• Transaction management commands that explicitly set non-read-only state:

• BEGIN READ WRITE, START TRANSACTION READ WRITE
• SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE
• SET transaction_read_only = off

• Two-phase commit commands: PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED be-
cause even read-only transactions need to write WAL in the prepare phase (the first phase of two
phase commit).

• Sequence updates: nextval(), setval()
• LISTEN, NOTIFY

In normal operation, “read-only” transactions are allowed to use LISTEN and NOTIFY, so hot standby
sessions operate under slightly tighter restrictions than ordinary read-only sessions. It is possible that
some of these restrictions might be loosened in a future release.

During hot standby, the parameter transaction_read_only is always true and may not be changed. But
as long as no attempt is made to modify the database, connections during hot standby will act much
like any other database connection. If failover or switchover occurs, the database will switch to normal
processing mode. Sessions will remain connected while the server changes mode. Once hot standby
finishes, it will be possible to initiate read-write transactions (even from a session begun during hot
standby).

Users can determine whether hot standby is currently active for their session by issuing SHOW in_hot_s-
tandby. (In server versions before 14, the in_hot_standby parameter did not exist; a workable substitute
method for older servers is SHOW transaction_read_only.) In addition, a set of functions (Table 9.98)
allow users to access information about the standby server. These allow you to write programs that are
aware of the current state of the database. These can be used to monitor the progress of recovery, or to
allow you to write complex programs that restore the database to particular states.

26.4.2. Handling Query Conflicts
The primary and standby servers are in many ways loosely connected. Actions on the primary will have an
effect on the standby. As a result, there is potential for negative interactions or conflicts between them.
The easiest conflict to understand is performance: if a huge data load is taking place on the primary
then this will generate a similar stream of WAL records on the standby, so standby queries may contend
for system resources, such as I/O.

There are also additional types of conflict that can occur with hot standby. These conflicts are hard
conflicts in the sense that queries might need to be canceled and, in some cases, sessions disconnected
to resolve them. The user is provided with several ways to handle these conflicts. Conflict cases include:

727

High Availability, Load Bal-
ancing, and Replication

• Access Exclusive locks taken on the primary server, including both explicit LOCK commands and
various DDL actions, conflict with table accesses in standby queries.

• Dropping a tablespace on the primary conflicts with standby queries using that tablespace for tem-
porary work files.

• Dropping a database on the primary conflicts with sessions connected to that database on the
standby.

• Application of a vacuum cleanup record from WAL conflicts with standby transactions whose snap-
shots can still “see” any of the rows to be removed.

• Application of a vacuum cleanup record from WAL conflicts with queries accessing the target page
on the standby, whether or not the data to be removed is visible.

On the primary server, these cases simply result in waiting; and the user might choose to cancel either
of the conflicting actions. However, on the standby there is no choice: the WAL-logged action already
occurred on the primary so the standby must not fail to apply it. Furthermore, allowing WAL application
to wait indefinitely may be very undesirable, because the standby's state will become increasingly far
behind the primary's. Therefore, a mechanism is provided to forcibly cancel standby queries that conflict
with to-be-applied WAL records.

An example of the problem situation is an administrator on the primary server running DROP TABLE on a
table that is currently being queried on the standby server. Clearly the standby query cannot continue
if the DROP TABLE is applied on the standby. If this situation occurred on the primary, the DROP TABLE
would wait until the other query had finished. But when DROP TABLE is run on the primary, the primary
doesn't have information about what queries are running on the standby, so it will not wait for any such
standby queries. The WAL change records come through to the standby while the standby query is still
running, causing a conflict. The standby server must either delay application of the WAL records (and
everything after them, too) or else cancel the conflicting query so that the DROP TABLE can be applied.

When a conflicting query is short, it's typically desirable to allow it to complete by delaying WAL appli-
cation for a little bit; but a long delay in WAL application is usually not desirable. So the cancel mech-
anism has parameters, max_standby_archive_delay and max_standby_streaming_delay, that define the
maximum allowed delay in WAL application. Conflicting queries will be canceled once it has taken longer
than the relevant delay setting to apply any newly-received WAL data. There are two parameters so that
different delay values can be specified for the case of reading WAL data from an archive (i.e., initial
recovery from a base backup or “catching up” a standby server that has fallen far behind) versus reading
WAL data via streaming replication.

In a standby server that exists primarily for high availability, it's best to set the delay parameters rel-
atively short, so that the server cannot fall far behind the primary due to delays caused by standby
queries. However, if the standby server is meant for executing long-running queries, then a high or even
infinite delay value may be preferable. Keep in mind however that a long-running query could cause
other sessions on the standby server to not see recent changes on the primary, if it delays application
of WAL records.

Once the delay specified by max_standby_archive_delay or max_standby_streaming_delay has been
exceeded, conflicting queries will be canceled. This usually results just in a cancellation error, although
in the case of replaying a DROP DATABASE the entire conflicting session will be terminated. Also, if the
conflict is over a lock held by an idle transaction, the conflicting session is terminated (this behavior
might change in the future).

Canceled queries may be retried immediately (after beginning a new transaction, of course). Since query
cancellation depends on the nature of the WAL records being replayed, a query that was canceled may
well succeed if it is executed again.

Keep in mind that the delay parameters are compared to the elapsed time since the WAL data was
received by the standby server. Thus, the grace period allowed to any one query on the standby is never
more than the delay parameter, and could be considerably less if the standby has already fallen behind
as a result of waiting for previous queries to complete, or as a result of being unable to keep up with
a heavy update load.

728

High Availability, Load Bal-
ancing, and Replication

The most common reason for conflict between standby queries and WAL replay is “early cleanup”. Nor-
mally, PostgreSQL allows cleanup of old row versions when there are no transactions that need to see
them to ensure correct visibility of data according to MVCC rules. However, this rule can only be applied
for transactions executing on the primary. So it is possible that cleanup on the primary will remove row
versions that are still visible to a transaction on the standby.

Row version cleanup isn't the only potential cause of conflicts with standby queries. All index-only scans
(including those that run on standbys) must use an MVCC snapshot that “agrees” with the visibility
map. Conflicts are therefore required whenever VACUUM sets a page as all-visible in the visibility map
containing one or more rows not visible to all standby queries. So even running VACUUM against a table
with no updated or deleted rows requiring cleanup might lead to conflicts.

Users should be clear that tables that are regularly and heavily updated on the primary server will
quickly cause cancellation of longer running queries on the standby. In such cases the setting of a finite
value for max_standby_archive_delay or max_standby_streaming_delay can be considered similar to
setting statement_timeout.

Remedial possibilities exist if the number of standby-query cancellations is found to be unacceptable.
The first option is to set the parameter hot_standby_feedback, which prevents VACUUM from removing
recently-dead rows and so cleanup conflicts do not occur. If you do this, you should note that this will
delay cleanup of dead rows on the primary, which may result in undesirable table bloat. However, the
cleanup situation will be no worse than if the standby queries were running directly on the primary
server, and you are still getting the benefit of off-loading execution onto the standby. If standby servers
connect and disconnect frequently, you might want to make adjustments to handle the period when
hot_standby_feedback feedback is not being provided. For example, consider increasing max_stand-
by_archive_delay so that queries are not rapidly canceled by conflicts in WAL archive files during dis-
connected periods. You should also consider increasing max_standby_streaming_delay to avoid rapid
cancellations by newly-arrived streaming WAL entries after reconnection.

The number of query cancels and the reason for them can be viewed using the pg_stat_database_con-
flicts system view on the standby server. The pg_stat_database system view also contains summary
information.

Users can control whether a log message is produced when WAL replay is waiting longer than dead-
lock_timeout for conflicts. This is controlled by the log_recovery_conflict_waits parameter.

26.4.3. Administrator's Overview
If hot_standby is on in postgresql.conf (the default value) and there is a standby.signalfile present,
the server will run in hot standby mode. However, it may take some time for hot standby connections
to be allowed, because the server will not accept connections until it has completed sufficient recovery
to provide a consistent state against which queries can run. During this period, clients that attempt to
connect will be refused with an error message. To confirm the server has come up, either loop trying to
connect from the application, or look for these messages in the server logs:

LOG: entering standby mode

... then some time later ...

LOG: consistent recovery state reached
LOG: database system is ready to accept read-only connections

Consistency information is recorded once per checkpoint on the primary. It is not possible to enable hot
standby when reading WAL written during a period when wal_level was not set to replica or logical
on the primary. Even after reaching a consistent state, the recovery snapshot may not be ready for hot
standby if both of the following conditions are met, delaying accepting read-only connections. To enable
hot standby, long-lived write transactions with more than 64 subtransactions need to be closed on the
primary.

• A write transaction has more than 64 subtransactions

729

High Availability, Load Bal-
ancing, and Replication

• Very long-lived write transactions

If you are running file-based log shipping ("warm standby"), you might need to wait until the next WAL
file arrives, which could be as long as the archive_timeout setting on the primary.

The settings of some parameters determine the size of shared memory for tracking transaction IDs,
locks, and prepared transactions. These shared memory structures must be no smaller on a standby than
on the primary in order to ensure that the standby does not run out of shared memory during recovery.
For example, if the primary had used a prepared transaction but the standby had not allocated any
shared memory for tracking prepared transactions, then recovery could not continue until the standby's
configuration is changed. The parameters affected are:

• max_connections

• max_prepared_transactions

• max_locks_per_transaction

• max_wal_senders

• max_worker_processes

The easiest way to ensure this does not become a problem is to have these parameters set on the standbys
to values equal to or greater than on the primary. Therefore, if you want to increase these values, you
should do so on all standby servers first, before applying the changes to the primary server. Conversely,
if you want to decrease these values, you should do so on the primary server first, before applying the
changes to all standby servers. Keep in mind that when a standby is promoted, it becomes the new
reference for the required parameter settings for the standbys that follow it. Therefore, to avoid this
becoming a problem during a switchover or failover, it is recommended to keep these settings the same
on all standby servers.

The WAL tracks changes to these parameters on the primary. If a hot standby processes WAL that
indicates that the current value on the primary is higher than its own value, it will log a warning and
pause recovery, for example:

WARNING: hot standby is not possible because of insufficient parameter settings
DETAIL: max_connections = 80 is a lower setting than on the primary server, where its
 value was 100.
LOG: recovery has paused
DETAIL: If recovery is unpaused, the server will shut down.
HINT: You can then restart the server after making the necessary configuration
 changes.

At that point, the settings on the standby need to be updated and the instance restarted before recovery
can continue. If the standby is not a hot standby, then when it encounters the incompatible parameter
change, it will shut down immediately without pausing, since there is then no value in keeping it up.

It is important that the administrator select appropriate settings for max_standby_archive_delay and
max_standby_streaming_delay. The best choices vary depending on business priorities. For example if
the server is primarily tasked as a High Availability server, then you will want low delay settings, perhaps
even zero, though that is a very aggressive setting. If the standby server is tasked as an additional server
for decision support queries then it might be acceptable to set the maximum delay values to many hours,
or even -1 which means wait forever for queries to complete.

Transaction status "hint bits" written on the primary are not WAL-logged, so data on the standby will
likely re-write the hints again on the standby. Thus, the standby server will still perform disk writes even
though all users are read-only; no changes occur to the data values themselves. Users will still write
large sort temporary files and re-generate relcache info files, so no part of the database is truly read-
only during hot standby mode. Note also that writes to remote databases using dblink module, and other
operations outside the database using PL functions will still be possible, even though the transaction
is read-only locally.

The following types of administration commands are not accepted during recovery mode:

730

High Availability, Load Bal-
ancing, and Replication

• Data Definition Language (DDL): e.g., CREATE INDEX
• Privilege and Ownership: GRANT, REVOKE, REASSIGN
• Maintenance commands: ANALYZE, VACUUM, CLUSTER, REINDEX

Again, note that some of these commands are actually allowed during "read only" mode transactions
on the primary.

As a result, you cannot create additional indexes that exist solely on the standby, nor statistics that exist
solely on the standby. If these administration commands are needed, they should be executed on the
primary, and eventually those changes will propagate to the standby.

pg_cancel_backend() and pg_terminate_backend() will work on user backends, but not the startup
process, which performs recovery. pg_stat_activity does not show recovering transactions as active.
As a result, pg_prepared_xacts is always empty during recovery. If you wish to resolve in-doubt pre-
pared transactions, view pg_prepared_xacts on the primary and issue commands to resolve transac-
tions there or resolve them after the end of recovery.

pg_locks will show locks held by backends, as normal. pg_locks also shows a virtual transaction man-
aged by the startup process that owns all AccessExclusiveLocks held by transactions being replayed
by recovery. Note that the startup process does not acquire locks to make database changes, and thus
locks other than AccessExclusiveLocks do not show in pg_locks for the Startup process; they are just
presumed to exist.

The Nagios plugin check_pgsql will work, because the simple information it checks for exists. The
check_postgres monitoring script will also work, though some reported values could give different or
confusing results. For example, last vacuum time will not be maintained, since no vacuum occurs on the
standby. Vacuums running on the primary do still send their changes to the standby.

WAL file control commands will not work during recovery, e.g., pg_backup_start, pg_switch_wal etc.

Dynamically loadable modules work, including pg_stat_statements.

Advisory locks work normally in recovery, including deadlock detection. Note that advisory locks are
never WAL logged, so it is impossible for an advisory lock on either the primary or the standby to conflict
with WAL replay. Nor is it possible to acquire an advisory lock on the primary and have it initiate a
similar advisory lock on the standby. Advisory locks relate only to the server on which they are acquired.

Trigger-based replication systems such as Slony, Londiste and Bucardo won't run on the standby at all,
though they will run happily on the primary server as long as the changes are not sent to standby servers
to be applied. WAL replay is not trigger-based so you cannot relay from the standby to any system that
requires additional database writes or relies on the use of triggers.

New OIDs cannot be assigned, though some UUID generators may still work as long as they do not rely
on writing new status to the database.

Currently, temporary table creation is not allowed during read-only transactions, so in some cases ex-
isting scripts will not run correctly. This restriction might be relaxed in a later release. This is both an
SQL standard compliance issue and a technical issue.

DROP TABLESPACE can only succeed if the tablespace is empty. Some standby users may be actively using
the tablespace via their temp_tablespaces parameter. If there are temporary files in the tablespace,
all active queries are canceled to ensure that temporary files are removed, so the tablespace can be
removed and WAL replay can continue.

Running DROP DATABASE or ALTER DATABASE ... SET TABLESPACE on the primary will generate a WAL
entry that will cause all users connected to that database on the standby to be forcibly disconnected. This
action occurs immediately, whatever the setting of max_standby_streaming_delay. Note that ALTER
DATABASE ... RENAME does not disconnect users, which in most cases will go unnoticed, though might
in some cases cause a program confusion if it depends in some way upon database name.

731

High Availability, Load Bal-
ancing, and Replication

In normal (non-recovery) mode, if you issue DROP USER or DROP ROLE for a role with login capability while
that user is still connected then nothing happens to the connected user — they remain connected. The
user cannot reconnect however. This behavior applies in recovery also, so a DROP USER on the primary
does not disconnect that user on the standby.

The cumulative statistics system is active during recovery. All scans, reads, blocks, index usage, etc.,
will be recorded normally on the standby. However, WAL replay will not increment relation and database
specific counters. I.e. replay will not increment pg_stat_all_tables columns (like n_tup_ins), nor will
reads or writes performed by the startup process be tracked in the pg_statio_ views, nor will associated
pg_stat_database columns be incremented.

Autovacuum is not active during recovery. It will start normally at the end of recovery.

The checkpointer process and the background writer process are active during recovery. The check-
pointer process will perform restartpoints (similar to checkpoints on the primary) and the background
writer process will perform normal block cleaning activities. This can include updates of the hint bit in-
formation stored on the standby server. The CHECKPOINT command is accepted during recovery, though
it performs a restartpoint rather than a new checkpoint.

26.4.4. Hot Standby Parameter Reference
Various parameters have been mentioned above in Section 26.4.2 and Section 26.4.3.

On the primary, the wal_level parameter can be used. max_standby_archive_delay and max_stand-
by_streaming_delay have no effect if set on the primary.

On the standby, parameters hot_standby, max_standby_archive_delay and max_standby_streaming_de-
lay can be used.

26.4.5. Caveats
There are several limitations of hot standby. These can and probably will be fixed in future releases:
• Full knowledge of running transactions is required before snapshots can be taken. Transactions

that use large numbers of subtransactions (currently greater than 64) will delay the start of read-
only connections until the completion of the longest running write transaction. If this situation oc-
curs, explanatory messages will be sent to the server log.

• Valid starting points for standby queries are generated at each checkpoint on the primary. If the
standby is shut down while the primary is in a shutdown state, it might not be possible to re-enter
hot standby until the primary is started up, so that it generates further starting points in the WAL
logs. This situation isn't a problem in the most common situations where it might happen. Gener-
ally, if the primary is shut down and not available anymore, that's likely due to a serious failure
that requires the standby being converted to operate as the new primary anyway. And in situations
where the primary is being intentionally taken down, coordinating to make sure the standby be-
comes the new primary smoothly is also standard procedure.

• At the end of recovery, AccessExclusiveLocks held by prepared transactions will require twice
the normal number of lock table entries. If you plan on running either a large number of concur-
rent prepared transactions that normally take AccessExclusiveLocks, or you plan on having one
large transaction that takes many AccessExclusiveLocks, you are advised to select a larger value
of max_locks_per_transaction, perhaps as much as twice the value of the parameter on the pri-
mary server. You need not consider this at all if your setting of max_prepared_transactions is 0.

• The Serializable transaction isolation level is not yet available in hot standby. (See Section 13.2.3
and Section 13.4.1 for details.) An attempt to set a transaction to the serializable isolation level in
hot standby mode will generate an error.

732

Chapter 27. Monitoring Database Activity
A database administrator frequently wonders, “What is the system doing right now?” This chapter dis-
cusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this
chapter is devoted to describing PostgreSQL's cumulative statistics system, but one should not neglect
regular Unix monitoring programs such as ps, top, iostat, and vmstat. Also, once one has identified a
poorly-performing query, further investigation might be needed using PostgreSQL's EXPLAIN command.
Section 14.1 discusses EXPLAIN and other methods for understanding the behavior of an individual query.

27.1. Standard Unix Tools
On most Unix platforms, PostgreSQL modifies its command title as reported by ps, so that individual
server processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 15551 0.0 0.1 57536 7132 pts/0 S 18:02 0:00 postgres -i
postgres 15554 0.0 0.0 57536 1184 ? Ss 18:02 0:00 postgres: background
 writer
postgres 15555 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres:
 checkpointer
postgres 15556 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: walwriter
postgres 15557 0.0 0.0 58504 2244 ? Ss 18:02 0:00 postgres: autovacuum
 launcher
postgres 15582 0.0 0.0 58772 3080 ? Ss 18:04 0:00 postgres: joe runbug
 127.0.0.1 idle
postgres 15606 0.0 0.0 58772 3052 ? Ss 18:07 0:00 postgres: tgl
 regression [local] SELECT waiting
postgres 15610 0.0 0.0 58772 3056 ? Ss 18:07 0:00 postgres: tgl
 regression [local] idle in transaction

(The appropriate invocation of ps varies across different platforms, as do the details of what is shown.
This example is from a recent Linux system.) The first process listed here is the primary server process.
The command arguments shown for it are the same ones used when it was launched. The next four
processes are background worker processes automatically launched by the primary process. (The “au-
tovacuum launcher” process will not be present if you have set the system not to run autovacuum.) Each
of the remaining processes is a server process handling one client connection. Each such process sets
its command line display in the form

postgres: user database host activity

The user, database, and (client) host items remain the same for the life of the client connection, but
the activity indicator changes. The activity can be idle (i.e., waiting for a client command), idle in
transaction (waiting for client inside a BEGIN block), or a command type name such as SELECT. Also,
waiting is appended if the server process is presently waiting on a lock held by another session. In the
above example we can infer that process 15606 is waiting for process 15610 to complete its transaction
and thereby release some lock. (Process 15610 must be the blocker, because there is no other active
session. In more complicated cases it would be necessary to look into the pg_locks system view to
determine who is blocking whom.)

If cluster_name has been configured the cluster name will also be shown in ps output:

$ psql -c 'SHOW cluster_name'
 cluster_name

 server1
(1 row)

733

Monitoring Database Activity

$ ps aux|grep server1
postgres 27093 0.0 0.0 30096 2752 ? Ss 11:34 0:00 postgres: server1:
 background writer
...

If you have turned off update_process_title then the activity indicator is not updated; the process title
is set only once when a new process is launched. On some platforms this saves a measurable amount of
per-command overhead; on others it's insignificant.

Tip
Solaris requires special handling. You must use /usr/ucb/ps, rather than /bin/ps. You also must
use two w flags, not just one. In addition, your original invocation of the postgres command must
have a shorter ps status display than that provided by each server process. If you fail to do all
three things, the ps output for each server process will be the original postgres command line.

27.2. The Cumulative Statistics System
PostgreSQL's cumulative statistics system supports collection and reporting of information about serv-
er activity. Presently, accesses to tables and indexes in both disk-block and individual-row terms are
counted. The total number of rows in each table, and information about vacuum and analyze actions
for each table are also counted. If enabled, calls to user-defined functions and the total time spent in
each one are counted as well.

PostgreSQL also supports reporting dynamic information about exactly what is going on in the system
right now, such as the exact command currently being executed by other server processes, and which
other connections exist in the system. This facility is independent of the cumulative statistics system.

27.2.1. Statistics Collection Configuration
Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set
in postgresql.conf. (See Chapter 19 for details about setting configuration parameters.)

The parameter track_activities enables monitoring of the current command being executed by any server
process.

The parameter track_cost_delay_timing enables monitoring of cost-based vacuum delay.

The parameter track_counts controls whether cumulative statistics are collected about table and index
accesses.

The parameter track_functions enables tracking of usage of user-defined functions.

The parameter track_io_timing enables monitoring of block read, write, extend, and fsync times.

The parameter track_wal_io_timing enables monitoring of WAL read, write and fsync times.

Normally these parameters are set in postgresql.conf so that they apply to all server processes, but
it is possible to turn them on or off in individual sessions using the SET command. (To prevent ordinary
users from hiding their activity from the administrator, only superusers are allowed to change these
parameters with SET.)

Cumulative statistics are collected in shared memory. Every PostgreSQL process collects statistics lo-
cally, then updates the shared data at appropriate intervals. When a server, including a physical replica,
shuts down cleanly, a permanent copy of the statistics data is stored in the pg_stat subdirectory, so

734

Monitoring Database Activity

that statistics can be retained across server restarts. In contrast, when starting from an unclean shut-
down (e.g., after an immediate shutdown, a server crash, starting from a base backup, and point-in-time
recovery), all statistics counters are reset.

27.2.2. Viewing Statistics
Several predefined views, listed in Table 27.1, are available to show the current state of the system.
There are also several other views, listed in Table 27.2, available to show the accumulated statistics.
Alternatively, one can build custom views using the underlying cumulative statistics functions, as dis-
cussed in Section 27.2.26.

When using the cumulative statistics views and functions to monitor collected data, it is important to
realize that the information does not update instantaneously. Each individual server process flushes
out accumulated statistics to shared memory just before going idle, but not more frequently than once
per PGSTAT_MIN_INTERVAL milliseconds (1 second unless altered while building the server); so a query
or transaction still in progress does not affect the displayed totals and the displayed information lags
behind actual activity. However, current-query information collected by track_activities is always
up-to-date.

Another important point is that when a server process is asked to display any of the accumulated sta-
tistics, accessed values are cached until the end of its current transaction in the default configuration.
So the statistics will show static information as long as you continue the current transaction. Similarly,
information about the current queries of all sessions is collected when any such information is first re-
quested within a transaction, and the same information will be displayed throughout the transaction. This
is a feature, not a bug, because it allows you to perform several queries on the statistics and correlate
the results without worrying that the numbers are changing underneath you. When analyzing statistics
interactively, or with expensive queries, the time delta between accesses to individual statistics can lead
to significant skew in the cached statistics. To minimize skew, stats_fetch_consistency can be set to
snapshot, at the price of increased memory usage for caching not-needed statistics data. Conversely, if
it's known that statistics are only accessed once, caching accessed statistics is unnecessary and can be
avoided by setting stats_fetch_consistency to none. You can invoke pg_stat_clear_snapshot() to
discard the current transaction's statistics snapshot or cached values (if any). The next use of statistical
information will (when in snapshot mode) cause a new snapshot to be built or (when in cache mode)
accessed statistics to be cached.

A transaction can also see its own statistics (not yet flushed out to the shared memory statistics) in the
views pg_stat_xact_all_tables, pg_stat_xact_sys_tables, pg_stat_xact_user_tables, and pg_s-
tat_xact_user_functions. These numbers do not act as stated above; instead they update continuously
throughout the transaction.

Some of the information in the dynamic statistics views shown in Table 27.1 is security restricted. Ordi-
nary users can only see all the information about their own sessions (sessions belonging to a role that
they are a member of). In rows about other sessions, many columns will be null. Note, however, that
the existence of a session and its general properties such as its sessions user and database are visible
to all users. Superusers and roles with privileges of built-in role pg_read_all_stats can see all the
information about all sessions.

Table 27.1. Dynamic Statistics Views

View Name Description
pg_stat_activity One row per server process, showing informa-

tion related to the current activity of that process,
such as state and current query. See pg_stat_
activity for details.

pg_stat_replication One row per WAL sender process, showing statis-
tics about replication to that sender's connected
standby server. See pg_stat_replication for
details.

735

Monitoring Database Activity

View Name Description
pg_stat_wal_receiver Only one row, showing statistics about the WAL

receiver from that receiver's connected server.
See pg_stat_wal_receiver for details.

pg_stat_recovery_prefetch Only one row, showing statistics about blocks
prefetched during recovery. See pg_stat_re-
covery_prefetch for details.

pg_stat_subscription At least one row per subscription, showing infor-
mation about the subscription workers. See pg_
stat_subscription for details.

pg_stat_ssl One row per connection (regular and replication),
showing information about SSL used on this con-
nection. See pg_stat_ssl for details.

pg_stat_gssapi One row per connection (regular and replication),
showing information about GSSAPI authentication
and encryption used on this connection. See pg_
stat_gssapi for details.

pg_stat_progress_analyze One row for each backend (including autovacuum
worker processes) running ANALYZE, showing cur-
rent progress. See Section 27.4.1.

pg_stat_progress_create_index One row for each backend running CREATE INDEX
or REINDEX, showing current progress. See Sec-
tion 27.4.4.

pg_stat_progress_vacuum One row for each backend (including autovacuum
worker processes) running VACUUM, showing cur-
rent progress. See Section 27.4.5.

pg_stat_progress_cluster One row for each backend running CLUSTER or
VACUUM FULL, showing current progress. See Sec-
tion 27.4.2.

pg_stat_progress_basebackup One row for each WAL sender process stream-
ing a base backup, showing current progress. See
Section 27.4.6.

pg_stat_progress_copy One row for each backend running COPY, showing
current progress. See Section 27.4.3.

Table 27.2. Collected Statistics Views

View Name Description
pg_stat_archiver One row only, showing statistics about the WAL

archiver process's activity. See pg_stat_
archiver for details.

pg_stat_bgwriter One row only, showing statistics about the back-
ground writer process's activity. See pg_stat_
bgwriter for details.

pg_stat_checkpointer One row only, showing statistics about the check-
pointer process's activity. See pg_stat_check-
pointer for details.

pg_stat_database One row per database, showing database-wide
statistics. See pg_stat_database for details.

pg_stat_database_conflicts One row per database, showing database-wide
statistics about query cancels due to conflict with

736

Monitoring Database Activity

View Name Description
recovery on standby servers. See pg_stat_
database_conflicts for details.

pg_stat_io One row for each combination of backend type,
context, and target object containing cluster-wide
I/O statistics. See pg_stat_io for details.

pg_stat_replication_slots One row per replication slot, showing statis-
tics about the replication slot's usage. See pg_
stat_replication_slots for details.

pg_stat_slru One row per SLRU, showing statistics of opera-
tions. See pg_stat_slru for details.

pg_stat_subscription_stats One row per subscription, showing statistics
about errors and conflicts. See pg_stat_sub-
scription_stats for details.

pg_stat_wal One row only, showing statistics about WAL activ-
ity. See pg_stat_wal for details.

pg_stat_all_tables One row for each table in the current database,
showing statistics about accesses to that specific
table. See pg_stat_all_tables for details.

pg_stat_sys_tables Same as pg_stat_all_tables , except that on-
ly system tables are shown.

pg_stat_user_tables Same as pg_stat_all_tables , except that on-
ly user tables are shown.

pg_stat_xact_all_tables Similar to pg_stat_all_tables , but counts ac-
tions taken so far within the current transaction
(which are not yet included in pg_stat_all_
tables and related views). The columns for num-
bers of live and dead rows and vacuum and ana-
lyze actions are not present in this view.

pg_stat_xact_sys_tables Same as pg_stat_xact_all_tables , except
that only system tables are shown.

pg_stat_xact_user_tables Same as pg_stat_xact_all_tables , except
that only user tables are shown.

pg_stat_all_indexes One row for each index in the current database,
showing statistics about accesses to that specific
index. See pg_stat_all_indexes for details.

pg_stat_sys_indexes Same as pg_stat_all_indexes , except that
only indexes on system tables are shown.

pg_stat_user_indexes Same as pg_stat_all_indexes , except that
only indexes on user tables are shown.

pg_stat_user_functions One row for each tracked function, showing statis-
tics about executions of that function. See pg_
stat_user_functions for details.

pg_stat_xact_user_functions Similar to pg_stat_user_functions , but
counts only calls during the current transaction (
which are not yet included in pg_stat_user_
functions).

pg_statio_all_tables One row for each table in the current database,
showing statistics about I/O on that specific table.
See pg_statio_all_tables for details.

737

Monitoring Database Activity

View Name Description
pg_statio_sys_tables Same as pg_statio_all_tables , except that

only system tables are shown.
pg_statio_user_tables Same as pg_statio_all_tables , except that

only user tables are shown.
pg_statio_all_indexes One row for each index in the current database,

showing statistics about I/O on that specific index.
See pg_statio_all_indexes for details.

pg_statio_sys_indexes Same as pg_statio_all_indexes , except that
only indexes on system tables are shown.

pg_statio_user_indexes Same as pg_statio_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_sequences One row for each sequence in the current data-
base, showing statistics about I/O on that specific
sequence. See pg_statio_all_sequences for
details.

pg_statio_sys_sequences Same as pg_statio_all_sequences , except
that only system sequences are shown. (Present-
ly, no system sequences are defined, so this view
is always empty.)

pg_statio_user_sequences Same as pg_statio_all_sequences , except
that only user sequences are shown.

The per-index statistics are particularly useful to determine which indexes are being used and how
effective they are.

The pg_stat_io and pg_statio_ set of views are useful for determining the effectiveness of the buffer
cache. They can be used to calculate a cache hit ratio. Note that while PostgreSQL's I/O statistics capture
most instances in which the kernel was invoked in order to perform I/O, they do not differentiate between
data which had to be fetched from disk and that which already resided in the kernel page cache. Users
are advised to use the PostgreSQL statistics views in combination with operating system utilities for a
more complete picture of their database's I/O performance.

27.2.3. pg_stat_activity
The pg_stat_activity view will have one row per server process, showing information related to the
current activity of that process.

Table 27.3. pg_stat_activity View

Column Type
Description

datid oid
OID of the database this backend is connected to

datname name
Name of the database this backend is connected to

pid integer
Process ID of this backend

leader_pid integer
Process ID of the parallel group leader if this process is a parallel query worker, or process
ID of the leader apply worker if this process is a parallel apply worker. NULL indicates that
this process is a parallel group leader or leader apply worker, or does not participate in any
parallel operation.

usesysid oid

738

Monitoring Database Activity

Column Type
Description
OID of the user logged into this backend

usename name
Name of the user logged into this backend

application_name text
Name of the application that is connected to this backend

client_addr inet
IP address of the client connected to this backend. If this field is null, it indicates either that
the client is connected via a Unix socket on the server machine or that this is an internal
process such as autovacuum.

client_hostname text
Host name of the connected client, as reported by a reverse DNS lookup of client_addr .
This field will only be non-null for IP connections, and only when log_hostname is enabled.

client_port integer
TCP port number that the client is using for communication with this backend, or -1 if a Unix
socket is used. If this field is null, it indicates that this is an internal server process.

backend_start timestamp with time zone
Time when this process was started. For client backends, this is the time the client connected
to the server.

xact_start timestamp with time zone
Time when this process' current transaction was started, or null if no transaction is active. If
the current query is the first of its transaction, this column is equal to the query_start col-
umn.

query_start timestamp with time zone
Time when the currently active query was started, or if state is not active, when the last
query was started

state_change timestamp with time zone
Time when the state was last changed

wait_event_type text
The type of event for which the backend is waiting, if any; otherwise NULL. See Table 27.4.

wait_event text
Wait event name if backend is currently waiting, otherwise NULL. See Table 27.5 through Ta-
ble 27.13.

state text
Current overall state of this backend. Possible values are:
• starting: The backend is in initial startup. Client authentication is performed during this

phase.
• active: The backend is executing a query.
• idle: The backend is waiting for a new client command.
• idle in transaction: The backend is in a transaction, but is not currently executing a

query.
• idle in transaction (aborted) : This state is similar to idle in transaction, except

one of the statements in the transaction caused an error.
• fastpath function call: The backend is executing a fast-path function.
• disabled: This state is reported if track_activities is disabled in this backend.

backend_xid xid
Top-level transaction identifier of this backend, if any; see Section 67.1.

739

Monitoring Database Activity

Column Type
Description

backend_xmin xid
The current backend's xmin horizon.

query_id bigint
Identifier of this backend's most recent query. If state is active this field shows the identi-
fier of the currently executing query. In all other states, it shows the identifier of last query
that was executed. Query identifiers are not computed by default so this field will be null un-
less compute_query_id parameter is enabled or a third-party module that computes query
identifiers is configured.

query text
Text of this backend's most recent query. If state is active this field shows the currently ex-
ecuting query. In all other states, it shows the last query that was executed. By default the
query text is truncated at 1024 bytes; this value can be changed via the parameter track_ac-
tivity_query_size.

backend_type text
Type of current backend. Possible types are autovacuum launcher, autovacuum worker, log-
ical replication launcher, logical replication worker, parallel worker, background
writer, client backend, checkpointer, archiver, standalone backend, startup, walre-
ceiver, walsender, walwriter and walsummarizer. In addition, background workers regis-
tered by extensions may have additional types.

Note
The wait_event and state columns are independent. If a backend is in the active state, it may or
may not be waiting on some event. If the state is active and wait_event is non-null, it means that
a query is being executed, but is being blocked somewhere in the system. To keep the reporting
overhead low, the system does not attempt to synchronize different aspects of activity data for a
backend. As a result, ephemeral discrepancies may exist between the view's columns.

Table 27.4. Wait Event Types

Wait Event Type Description
Activity The server process is idle. This event type indi-

cates a process waiting for activity in its main pro-
cessing loop. wait_event will identify the specif-
ic wait point; see Table 27.5.

BufferPin The server process is waiting for exclusive access
to a data buffer. Buffer pin waits can be protract-
ed if another process holds an open cursor that
last read data from the buffer in question. See Ta-
ble 27.6.

Client The server process is waiting for activity on a
socket connected to a user application. Thus,
the server expects something to happen that
is independent of its internal processes. wait_
event will identify the specific wait point; see Ta-
ble 27.7.

Extension The server process is waiting for some condition
defined by an extension module. See Table 27.8.

InjectionPoint The server process is waiting for an injection
point to reach an outcome defined in a test. See

740

Monitoring Database Activity

Wait Event Type Description
Section 36.10.14 for more details. This type has
no predefined wait points.

IO The server process is waiting for an I/O operation
to complete. wait_event will identify the specific
wait point; see Table 27.9.

IPC The server process is waiting for some interaction
with another server process. wait_event will
identify the specific wait point; see Table 27.10.

Lock The server process is waiting for a heavyweight
lock. Heavyweight locks, also known as lock man-
ager locks or simply locks, primarily protect SQL-
visible objects such as tables. However, they are
also used to ensure mutual exclusion for certain
internal operations such as relation extension.
wait_event will identify the type of lock awaited;
see Table 27.11.

LWLock The server process is waiting for a lightweight
lock. Most such locks protect a particular da-
ta structure in shared memory. wait_event
will contain a name identifying the purpose of
the lightweight lock. (Some locks have specific
names; others are part of a group of locks each
with a similar purpose.) See Table 27.12.

Timeout The server process is waiting for a timeout to ex-
pire. wait_event will identify the specific wait
point; see Table 27.13.

Table 27.5. Wait Events of Type Activity

Activity Wait Event Description
ArchiverMain Waiting in main loop of archiver process.
AutovacuumMain Waiting in main loop of autovacuum launcher

process.
BgwriterHibernate Waiting in background writer process, hibernat-

ing.
BgwriterMain Waiting in main loop of background writer

process.
CheckpointerMain Waiting in main loop of checkpointer process.
CheckpointerShutdown Waiting for checkpointer process to be terminat-

ed.
IoWorkerMain Waiting in main loop of IO Worker process.
LogicalApplyMain Waiting in main loop of logical replication apply

process.
LogicalLauncherMain Waiting in main loop of logical replication launch-

er process.
LogicalParallelApplyMain Waiting in main loop of logical replication parallel

apply process.
RecoveryWalStream Waiting in main loop of startup process for WAL

to arrive, during streaming recovery.
ReplicationSlotsyncMain Waiting in main loop of slot sync worker.

741

Monitoring Database Activity

Activity Wait Event Description
ReplicationSlotsyncShutdown Waiting for slot sync worker to shut down.
SysloggerMain Waiting in main loop of syslogger process.
WalReceiverMain Waiting in main loop of WAL receiver process.
WalSenderMain Waiting in main loop of WAL sender process.
WalSummarizerWal Waiting in WAL summarizer for more WAL to be

generated.
WalWriterMain Waiting in main loop of WAL writer process.

Table 27.6. Wait Events of Type Bufferpin

BufferPin Wait Event Description
BufferPin Waiting to acquire an exclusive pin on a buffer.

Table 27.7. Wait Events of Type Client

Client Wait Event Description
ClientRead Waiting to read data from the client.
ClientWrite Waiting to write data to the client.
GssOpenServer Waiting to read data from the client while estab-

lishing a GSSAPI session.
LibpqwalreceiverConnect Waiting in WAL receiver to establish connection

to remote server.
LibpqwalreceiverReceive Waiting in WAL receiver to receive data from re-

mote server.
SslOpenServer Waiting for SSL while attempting connection.
WaitForStandbyConfirmation Waiting for WAL to be received and flushed by the

physical standby.
WalSenderWaitForWal Waiting for WAL to be flushed in WAL sender

process.
WalSenderWriteData Waiting for any activity when processing replies

from WAL receiver in WAL sender process.

Table 27.8. Wait Events of Type Extension

Extension Wait Event Description
Extension Waiting in an extension.

Table 27.9. Wait Events of Type Io

IO Wait Event Description
AioIoCompletion Waiting for another process to complete IO.
AioIoUringExecution Waiting for IO execution via io_uring.
AioIoUringSubmit Waiting for IO submission via io_uring.
BasebackupRead Waiting for base backup to read from a file.
BasebackupSync Waiting for data written by a base backup to

reach durable storage.
BasebackupWrite Waiting for base backup to write to a file.
BuffileRead Waiting for a read from a buffered file.
BuffileTruncate Waiting for a buffered file to be truncated.

742

Monitoring Database Activity

IO Wait Event Description
BuffileWrite Waiting for a write to a buffered file.
ControlFileRead Waiting for a read from the pg_control file.
ControlFileSync Waiting for the pg_control file to reach durable

storage.
ControlFileSyncUpdate Waiting for an update to the pg_control file to

reach durable storage.
ControlFileWrite Waiting for a write to the pg_control file.
ControlFileWriteUpdate Waiting for a write to update the pg_control

file.
CopyFileCopy Waiting for a file copy operation.
CopyFileRead Waiting for a read during a file copy operation.
CopyFileWrite Waiting for a write during a file copy operation.
DataFileExtend Waiting for a relation data file to be extended.
DataFileFlush Waiting for a relation data file to reach durable

storage.
DataFileImmediateSync Waiting for an immediate synchronization of a re-

lation data file to durable storage.
DataFilePrefetch Waiting for an asynchronous prefetch from a rela-

tion data file.
DataFileRead Waiting for a read from a relation data file.
DataFileSync Waiting for changes to a relation data file to reach

durable storage.
DataFileTruncate Waiting for a relation data file to be truncated.
DataFileWrite Waiting for a write to a relation data file.
DsmAllocate Waiting for a dynamic shared memory segment to

be allocated.
DsmFillZeroWrite Waiting to fill a dynamic shared memory backing

file with zeroes.
LockFileAddtodatadirRead Waiting for a read while adding a line to the data

directory lock file.
LockFileAddtodatadirSync Waiting for data to reach durable storage while

adding a line to the data directory lock file.
LockFileAddtodatadirWrite Waiting for a write while adding a line to the data

directory lock file.
LockFileCreateRead Waiting to read while creating the data directory

lock file.
LockFileCreateSync Waiting for data to reach durable storage while

creating the data directory lock file.
LockFileCreateWrite Waiting for a write while creating the data direc-

tory lock file.
LockFileRecheckdatadirRead Waiting for a read during recheck of the data di-

rectory lock file.
LogicalRewriteCheckpointSync Waiting for logical rewrite mappings to reach

durable storage during a checkpoint.

743

Monitoring Database Activity

IO Wait Event Description
LogicalRewriteMappingSync Waiting for mapping data to reach durable stor-

age during a logical rewrite.
LogicalRewriteMappingWrite Waiting for a write of mapping data during a logi-

cal rewrite.
LogicalRewriteSync Waiting for logical rewrite mappings to reach

durable storage.
LogicalRewriteTruncate Waiting for truncate of mapping data during a log-

ical rewrite.
LogicalRewriteWrite Waiting for a write of logical rewrite mappings.
RelationMapRead Waiting for a read of the relation map file.
RelationMapReplace Waiting for durable replacement of a relation map

file.
RelationMapWrite Waiting for a write to the relation map file.
ReorderBufferRead Waiting for a read during reorder buffer manage-

ment.
ReorderBufferWrite Waiting for a write during reorder buffer manage-

ment.
ReorderLogicalMappingRead Waiting for a read of a logical mapping during re-

order buffer management.
ReplicationSlotRead Waiting for a read from a replication slot control

file.
ReplicationSlotRestoreSync Waiting for a replication slot control file to reach

durable storage while restoring it to memory.
ReplicationSlotSync Waiting for a replication slot control file to reach

durable storage.
ReplicationSlotWrite Waiting for a write to a replication slot control

file.
SlruFlushSync Waiting for SLRU data to reach durable storage

during a checkpoint or database shutdown.
SlruRead Waiting for a read of an SLRU page.
SlruSync Waiting for SLRU data to reach durable storage

following a page write.
SlruWrite Waiting for a write of an SLRU page.
SnapbuildRead Waiting for a read of a serialized historical cata-

log snapshot.
SnapbuildSync Waiting for a serialized historical catalog snap-

shot to reach durable storage.
SnapbuildWrite Waiting for a write of a serialized historical cata-

log snapshot.
TimelineHistoryFileSync Waiting for a timeline history file received via

streaming replication to reach durable storage.
TimelineHistoryFileWrite Waiting for a write of a timeline history file re-

ceived via streaming replication.
TimelineHistoryRead Waiting for a read of a timeline history file.
TimelineHistorySync Waiting for a newly created timeline history file to

reach durable storage.

744

Monitoring Database Activity

IO Wait Event Description
TimelineHistoryWrite Waiting for a write of a newly created timeline

history file.
TwophaseFileRead Waiting for a read of a two phase state file.
TwophaseFileSync Waiting for a two phase state file to reach durable

storage.
TwophaseFileWrite Waiting for a write of a two phase state file.
VersionFileSync Waiting for the version file to reach durable stor-

age while creating a database.
VersionFileWrite Waiting for the version file to be written while

creating a database.
WalsenderTimelineHistoryRead Waiting for a read from a timeline history file dur-

ing a walsender timeline command.
WalBootstrapSync Waiting for WAL to reach durable storage during

bootstrapping.
WalBootstrapWrite Waiting for a write of a WAL page during boot-

strapping.
WalCopyRead Waiting for a read when creating a new WAL seg-

ment by copying an existing one.
WalCopySync Waiting for a new WAL segment created by copy-

ing an existing one to reach durable storage.
WalCopyWrite Waiting for a write when creating a new WAL seg-

ment by copying an existing one.
WalInitSync Waiting for a newly initialized WAL file to reach

durable storage.
WalInitWrite Waiting for a write while initializing a new WAL

file.
WalRead Waiting for a read from a WAL file.
WalSummaryRead Waiting for a read from a WAL summary file.
WalSummaryWrite Waiting for a write to a WAL summary file.
WalSync Waiting for a WAL file to reach durable storage.
WalSyncMethodAssign Waiting for data to reach durable storage while

assigning a new WAL sync method.
WalWrite Waiting for a write to a WAL file.

Table 27.10. Wait Events of Type Ipc

IPC Wait Event Description
AppendReady Waiting for subplan nodes of an Append plan node

to be ready.
ArchiveCleanupCommand Waiting for archive_cleanup_command to com-

plete.
ArchiveCommand Waiting for archive_command to complete.
BackendTermination Waiting for the termination of another backend.
BackupWaitWalArchive Waiting for WAL files required for a backup to be

successfully archived.
BgworkerShutdown Waiting for background worker to shut down.
BgworkerStartup Waiting for background worker to start up.

745

Monitoring Database Activity

IPC Wait Event Description
BtreePage Waiting for the page number needed to continue a

parallel B-tree scan to become available.
BufferIo Waiting for buffer I/O to complete.
CheckpointDelayComplete Waiting for a backend that blocks a checkpoint

from completing.
CheckpointDelayStart Waiting for a backend that blocks a checkpoint

from starting.
CheckpointDone Waiting for a checkpoint to complete.
CheckpointStart Waiting for a checkpoint to start.
ExecuteGather Waiting for activity from a child process while ex-

ecuting a Gather plan node.
HashBatchAllocate Waiting for an elected Parallel Hash participant to

allocate a hash table.
HashBatchElect Waiting to elect a Parallel Hash participant to al-

locate a hash table.
HashBatchLoad Waiting for other Parallel Hash participants to fin-

ish loading a hash table.
HashBuildAllocate Waiting for an elected Parallel Hash participant to

allocate the initial hash table.
HashBuildElect Waiting to elect a Parallel Hash participant to al-

locate the initial hash table.
HashBuildHashInner Waiting for other Parallel Hash participants to fin-

ish hashing the inner relation.
HashBuildHashOuter Waiting for other Parallel Hash participants to fin-

ish partitioning the outer relation.
HashGrowBatchesDecide Waiting to elect a Parallel Hash participant to de-

cide on future batch growth.
HashGrowBatchesElect Waiting to elect a Parallel Hash participant to al-

locate more batches.
HashGrowBatchesFinish Waiting for an elected Parallel Hash participant to

decide on future batch growth.
HashGrowBatchesReallocate Waiting for an elected Parallel Hash participant to

allocate more batches.
HashGrowBatchesRepartition Waiting for other Parallel Hash participants to fin-

ish repartitioning.
HashGrowBucketsElect Waiting to elect a Parallel Hash participant to al-

locate more buckets.
HashGrowBucketsReallocate Waiting for an elected Parallel Hash participant to

finish allocating more buckets.
HashGrowBucketsReinsert Waiting for other Parallel Hash participants to fin-

ish inserting tuples into new buckets.
LogicalApplySendData Waiting for a logical replication leader apply

process to send data to a parallel apply process.
LogicalParallelApplyStateChange Waiting for a logical replication parallel apply

process to change state.
LogicalSyncData Waiting for a logical replication remote server to

send data for initial table synchronization.

746

Monitoring Database Activity

IPC Wait Event Description
LogicalSyncStateChange Waiting for a logical replication remote server to

change state.
MessageQueueInternal Waiting for another process to be attached to a

shared message queue.
MessageQueuePutMessage Waiting to write a protocol message to a shared

message queue.
MessageQueueReceive Waiting to receive bytes from a shared message

queue.
MessageQueueSend Waiting to send bytes to a shared message queue.
MultixactCreation Waiting for a multixact creation to complete.
ParallelBitmapScan Waiting for parallel bitmap scan to become initial-

ized.
ParallelCreateIndexScan Waiting for parallel CREATE INDEX workers to fin-

ish heap scan.
ParallelFinish Waiting for parallel workers to finish computing.
ProcarrayGroupUpdate Waiting for the group leader to clear the transac-

tion ID at transaction end.
ProcSignalBarrier Waiting for a barrier event to be processed by all

backends.
Promote Waiting for standby promotion.
RecoveryConflictSnapshot Waiting for recovery conflict resolution for a vacu-

um cleanup.
RecoveryConflictTablespace Waiting for recovery conflict resolution for drop-

ping a tablespace.
RecoveryEndCommand Waiting for recovery_end_command to complete.
RecoveryPause Waiting for recovery to be resumed.
ReplicationOriginDrop Waiting for a replication origin to become inactive

so it can be dropped.
ReplicationSlotDrop Waiting for a replication slot to become inactive

so it can be dropped.
RestoreCommand Waiting for restore_command to complete.
SafeSnapshot Waiting to obtain a valid snapshot for a READ ONLY

DEFERRABLE transaction.
SyncRep Waiting for confirmation from a remote server

during synchronous replication.
WalReceiverExit Waiting for the WAL receiver to exit.
WalReceiverWaitStart Waiting for startup process to send initial data for

streaming replication.
WalSummaryReady Waiting for a new WAL summary to be generated.
XactGroupUpdate Waiting for the group leader to update transaction

status at transaction end.

Table 27.11. Wait Events of Type Lock

Lock Wait Event Description
advisory Waiting to acquire an advisory user lock.

747

Monitoring Database Activity

Lock Wait Event Description
applytransaction Waiting to acquire a lock on a remote transaction

being applied by a logical replication subscriber.
extend Waiting to extend a relation.
frozenid Waiting to update pg_database .datfrozenxid

and pg_database .datminmxid.
object Waiting to acquire a lock on a non-relation data-

base object.
page Waiting to acquire a lock on a page of a relation.
relation Waiting to acquire a lock on a relation.
spectoken Waiting to acquire a speculative insertion lock.
transactionid Waiting for a transaction to finish.
tuple Waiting to acquire a lock on a tuple.
userlock Waiting to acquire a user lock.
virtualxid Waiting to acquire a virtual transaction ID lock;

see Section 67.1.

Table 27.12. Wait Events of Type Lwlock

LWLock Wait Event Description
AddinShmemInit Waiting to manage an extension's space allocation

in shared memory.
AioUringCompletion Waiting for another process to complete IO via io_

uring.
AioWorkerSubmissionQueue Waiting to access AIO worker submission queue.
AutoFile Waiting to update the postgresql.auto.conf file.
Autovacuum Waiting to read or update the current state of au-

tovacuum workers.
AutovacuumSchedule Waiting to ensure that a table selected for auto-

vacuum still needs vacuuming.
BackgroundWorker Waiting to read or update background worker

state.
BtreeVacuum Waiting to read or update vacuum-related infor-

mation for a B-tree index.
BufferContent Waiting to access a data page in memory.
BufferMapping Waiting to associate a data block with a buffer in

the buffer pool.
CheckpointerComm Waiting to manage fsync requests.
CommitTs Waiting to read or update the last value set for a

transaction commit timestamp.
CommitTsBuffer Waiting for I/O on a commit timestamp SLRU

buffer.
CommitTsSLRU Waiting to access the commit timestamp SLRU

cache.
ControlFile Waiting to read or update the pg_control file or

create a new WAL file.
DSMRegistry Waiting to read or update the dynamic shared

memory registry.

748

Monitoring Database Activity

LWLock Wait Event Description
DSMRegistryDSA Waiting to access dynamic shared memory reg-

istry's dynamic shared memory allocator.
DSMRegistryHash Waiting to access dynamic shared memory reg-

istry's shared hash table.
DynamicSharedMemoryControl Waiting to read or update dynamic shared memo-

ry allocation information.
InjectionPoint Waiting to read or update information related to

injection points.
LockFastPath Waiting to read or update a process' fast-path lock

information.
LockManager Waiting to read or update information about

“heavyweight” locks.
LogicalRepLauncherDSA Waiting to access logical replication launcher's

dynamic shared memory allocator.
LogicalRepLauncherHash Waiting to access logical replication launcher's

shared hash table.
LogicalRepWorker Waiting to read or update the state of logical

replication workers.
MultiXactGen Waiting to read or update shared multixact state.
MultiXactMemberBuffer Waiting for I/O on a multixact member SLRU

buffer.
MultiXactMemberSLRU Waiting to access the multixact member SLRU

cache.
MultiXactOffsetBuffer Waiting for I/O on a multixact offset SLRU buffer.
MultiXactOffsetSLRU Waiting to access the multixact offset SLRU

cache.
MultiXactTruncation Waiting to read or truncate multixact information.
NotifyBuffer Waiting for I/O on a NOTIFY message SLRU buffer.
NotifyQueue Waiting to read or update NOTIFY messages.
NotifyQueueTail Waiting to update limit on NOTIFY message stor-

age.
NotifySLRU Waiting to access the NOTIFY message SLRU

cache.
OidGen Waiting to allocate a new OID.
ParallelAppend Waiting to choose the next subplan during Paral-

lel Append plan execution.
ParallelBtreeScan Waiting to synchronize workers during Parallel B-

tree scan plan execution.
ParallelHashJoin Waiting to synchronize workers during Parallel

Hash Join plan execution.
ParallelQueryDSA Waiting for parallel query dynamic shared memo-

ry allocation.
ParallelVacuumDSA Waiting for parallel vacuum dynamic shared mem-

ory allocation.
PerSessionDSA Waiting for parallel query dynamic shared memo-

ry allocation.

749

Monitoring Database Activity

LWLock Wait Event Description
PerSessionRecordType Waiting to access a parallel query's information

about composite types.
PerSessionRecordTypmod Waiting to access a parallel query's information

about type modifiers that identify anonymous
record types.

PerXactPredicateList Waiting to access the list of predicate locks held
by the current serializable transaction during a
parallel query.

PgStatsData Waiting for shared memory stats data access.
PgStatsDSA Waiting for stats dynamic shared memory alloca-

tor access.
PgStatsHash Waiting for stats shared memory hash table ac-

cess.
PredicateLockManager Waiting to access predicate lock information used

by serializable transactions.
ProcArray Waiting to access the shared per-process data

structures (typically, to get a snapshot or report a
session's transaction ID).

RelationMapping Waiting to read or update a pg_filenode.map
file (used to track the filenode assignments of cer-
tain system catalogs).

RelCacheInit Waiting to read or update a pg_internal.init
relation cache initialization file.

ReplicationOrigin Waiting to create, drop or use a replication origin.
ReplicationOriginState Waiting to read or update the progress of one

replication origin.
ReplicationSlotAllocation Waiting to allocate or free a replication slot.
ReplicationSlotControl Waiting to read or update replication slot state.
ReplicationSlotIO Waiting for I/O on a replication slot.
SerialBuffer Waiting for I/O on a serializable transaction con-

flict SLRU buffer.
SerialControl Waiting to read or update shared pg_serial

state.
SerializableFinishedList Waiting to access the list of finished serializable

transactions.
SerializablePredicateList Waiting to access the list of predicate locks held

by serializable transactions.
SerializableXactHash Waiting to read or update information about seri-

alizable transactions.
SerialSLRU Waiting to access the serializable transaction con-

flict SLRU cache.
SharedTidBitmap Waiting to access a shared TID bitmap during a

parallel bitmap index scan.
SharedTupleStore Waiting to access a shared tuple store during par-

allel query.
ShmemIndex Waiting to find or allocate space in shared memo-

ry.

750

Monitoring Database Activity

LWLock Wait Event Description
SInvalRead Waiting to retrieve messages from the shared cat-

alog invalidation queue.
SInvalWrite Waiting to add a message to the shared catalog

invalidation queue.
SubtransBuffer Waiting for I/O on a sub-transaction SLRU buffer.
SubtransSLRU Waiting to access the sub-transaction SLRU

cache.
SyncRep Waiting to read or update information about the

state of synchronous replication.
SyncScan Waiting to select the starting location of a syn-

chronized table scan.
TablespaceCreate Waiting to create or drop a tablespace.
TwoPhaseState Waiting to read or update the state of prepared

transactions.
WaitEventCustom Waiting to read or update custom wait events in-

formation.
WALBufMapping Waiting to replace a page in WAL buffers.
WALInsert Waiting to insert WAL data into a memory buffer.
WALSummarizer Waiting to read or update WAL summarization

state.
WALWrite Waiting for WAL buffers to be written to disk.
WrapLimitsVacuum Waiting to update limits on transaction id and

multixact consumption.
XactBuffer Waiting for I/O on a transaction status SLRU

buffer.
XactSLRU Waiting to access the transaction status SLRU

cache.
XactTruncation Waiting to execute pg_xact_status or update

the oldest transaction ID available to it.
XidGen Waiting to allocate a new transaction ID.

Table 27.13. Wait Events of Type Timeout

Timeout Wait Event Description
BaseBackupThrottle Waiting during base backup when throttling activ-

ity.
CheckpointWriteDelay Waiting between writes while performing a check-

point.
PgSleep Waiting due to a call to pg_sleep or a sibling

function.
RecoveryApplyDelay Waiting to apply WAL during recovery because of

a delay setting.
RecoveryRetrieveRetryInterval Waiting during recovery when WAL data is not

available from any source (pg_wal , archive or
stream).

RegisterSyncRequest Waiting while sending synchronization requests
to the checkpointer, because the request queue is
full.

751

Monitoring Database Activity

Timeout Wait Event Description
SpinDelay Waiting while acquiring a contended spinlock.
VacuumDelay Waiting in a cost-based vacuum delay point.
VacuumTruncate Waiting to acquire an exclusive lock to truncate

off any empty pages at the end of a table vacu-
umed.

WalSummarizerError Waiting after a WAL summarizer error.

Here are examples of how wait events can be viewed:

SELECT pid, wait_event_type, wait_event FROM pg_stat_activity WHERE wait_event is NOT
 NULL;
 pid | wait_event_type | wait_event
------+-----------------+------------
 2540 | Lock | relation
 6644 | LWLock | ProcArray
(2 rows)

SELECT a.pid, a.wait_event, w.description
 FROM pg_stat_activity a JOIN
 pg_wait_events w ON (a.wait_event_type = w.type AND
 a.wait_event = w.name)
 WHERE a.wait_event is NOT NULL and a.state = 'active';
-[RECORD 1]--
pid | 686674
wait_event | WALInitSync
description | Waiting for a newly initialized WAL file to reach durable storage

Note
Extensions can add Extension, InjectionPoint, and LWLock events to the lists shown in Ta-
ble 27.8 and Table 27.12. In some cases, the name of an LWLock assigned by an extension will
not be available in all server processes. It might be reported as just “extension” rather than the
extension-assigned name.

27.2.4. pg_stat_replication
The pg_stat_replication view will contain one row per WAL sender process, showing statistics about
replication to that sender's connected standby server. Only directly connected standbys are listed; no
information is available about downstream standby servers.

Table 27.14. pg_stat_replication View

Column Type
Description

pid integer
Process ID of a WAL sender process

usesysid oid
OID of the user logged into this WAL sender process

usename name
Name of the user logged into this WAL sender process

application_name text
Name of the application that is connected to this WAL sender

client_addr inet

752

Monitoring Database Activity

Column Type
Description
IP address of the client connected to this WAL sender. If this field is null, it indicates that the
client is connected via a Unix socket on the server machine.

client_hostname text
Host name of the connected client, as reported by a reverse DNS lookup of client_addr .
This field will only be non-null for IP connections, and only when log_hostname is enabled.

client_port integer
TCP port number that the client is using for communication with this WAL sender, or -1 if a
Unix socket is used

backend_start timestamp with time zone
Time when this process was started, i.e., when the client connected to this WAL sender

backend_xmin xid
This standby's xmin horizon reported by hot_standby_feedback.

state text
Current WAL sender state. Possible values are:
• startup: This WAL sender is starting up.
• catchup: This WAL sender's connected standby is catching up with the primary.
• streaming: This WAL sender is streaming changes after its connected standby server has

caught up with the primary.
• backup: This WAL sender is sending a backup.
• stopping: This WAL sender is stopping.

sent_lsn pg_lsn
Last write-ahead log location sent on this connection

write_lsn pg_lsn
Last write-ahead log location written to disk by this standby server

flush_lsn pg_lsn
Last write-ahead log location flushed to disk by this standby server

replay_lsn pg_lsn
Last write-ahead log location replayed into the database on this standby server

write_lag interval
Time elapsed between flushing recent WAL locally and receiving notification that this standby
server has written it (but not yet flushed it or applied it). This can be used to gauge the delay
that synchronous_commit level remote_write incurred while committing if this server was
configured as a synchronous standby.

flush_lag interval
Time elapsed between flushing recent WAL locally and receiving notification that this standby
server has written and flushed it (but not yet applied it). This can be used to gauge the delay
that synchronous_commit level on incurred while committing if this server was configured
as a synchronous standby.

replay_lag interval
Time elapsed between flushing recent WAL locally and receiving notification that this standby
server has written, flushed and applied it. This can be used to gauge the delay that synchro-
nous_commit level remote_apply incurred while committing if this server was configured
as a synchronous standby.

sync_priority integer
Priority of this standby server for being chosen as the synchronous standby in a priori-
ty-based synchronous replication. This has no effect in a quorum-based synchronous replica-
tion.

753

Monitoring Database Activity

Column Type
Description

sync_state text
Synchronous state of this standby server. Possible values are:
• async: This standby server is asynchronous.
• potential: This standby server is now asynchronous, but can potentially become synchro-

nous if one of current synchronous ones fails.
• sync: This standby server is synchronous.
• quorum: This standby server is considered as a candidate for quorum standbys.

reply_time timestamp with time zone
Send time of last reply message received from standby server

The lag times reported in the pg_stat_replication view are measurements of the time taken for recent
WAL to be written, flushed and replayed and for the sender to know about it. These times represent the
commit delay that was (or would have been) introduced by each synchronous commit level, if the remote
server was configured as a synchronous standby. For an asynchronous standby, the replay_lag column
approximates the delay before recent transactions became visible to queries. If the standby server has
entirely caught up with the sending server and there is no more WAL activity, the most recently measured
lag times will continue to be displayed for a short time and then show NULL.

Lag times work automatically for physical replication. Logical decoding plugins may optionally emit
tracking messages; if they do not, the tracking mechanism will simply display NULL lag.

Note
The reported lag times are not predictions of how long it will take for the standby to catch up with
the sending server assuming the current rate of replay. Such a system would show similar times
while new WAL is being generated, but would differ when the sender becomes idle. In particular,
when the standby has caught up completely, pg_stat_replication shows the time taken to write,
flush and replay the most recent reported WAL location rather than zero as some users might
expect. This is consistent with the goal of measuring synchronous commit and transaction visibility
delays for recent write transactions. To reduce confusion for users expecting a different model of
lag, the lag columns revert to NULL after a short time on a fully replayed idle system. Monitoring
systems should choose whether to represent this as missing data, zero or continue to display the
last known value.

27.2.5. pg_stat_replication_slots
The pg_stat_replication_slots view will contain one row per logical replication slot, showing statis-
tics about its usage.

Table 27.15. pg_stat_replication_slots View

Column Type
Description

slot_name text
A unique, cluster-wide identifier for the replication slot

spill_txns bigint
Number of transactions spilled to disk once the memory used by logical decoding to decode
changes from WAL has exceeded logical_decoding_work_mem . The counter gets incre-
mented for both top-level transactions and subtransactions.

spill_count bigint

754

Monitoring Database Activity

Column Type
Description
Number of times transactions were spilled to disk while decoding changes from WAL for this
slot. This counter is incremented each time a transaction is spilled, and the same transaction
may be spilled multiple times.

spill_bytes bigint
Amount of decoded transaction data spilled to disk while performing decoding of changes
from WAL for this slot. This and other spill counters can be used to gauge the I/O which oc-
curred during logical decoding and allow tuning logical_decoding_work_mem .

stream_txns bigint
Number of in-progress transactions streamed to the decoding output plugin after the memory
used by logical decoding to decode changes from WAL for this slot has exceeded logical_
decoding_work_mem . Streaming only works with top-level transactions (subtransactions
can't be streamed independently), so the counter is not incremented for subtransactions.

stream_count bigint
Number of times in-progress transactions were streamed to the decoding output plugin while
decoding changes from WAL for this slot. This counter is incremented each time a transaction
is streamed, and the same transaction may be streamed multiple times.

stream_bytes bigint
Amount of transaction data decoded for streaming in-progress transactions to the decoding
output plugin while decoding changes from WAL for this slot. This and other streaming coun-
ters for this slot can be used to tune logical_decoding_work_mem .

total_txns bigint
Number of decoded transactions sent to the decoding output plugin for this slot. This counts
top-level transactions only, and is not incremented for subtransactions. Note that this in-
cludes the transactions that are streamed and/or spilled.

total_bytes bigint
Amount of transaction data decoded for sending transactions to the decoding output plugin
while decoding changes from WAL for this slot. Note that this includes data that is streamed
and/or spilled.

stats_reset timestamp with time zone
Time at which these statistics were last reset

27.2.6. pg_stat_wal_receiver
The pg_stat_wal_receiver view will contain only one row, showing statistics about the WAL receiver
from that receiver's connected server.

Table 27.16. pg_stat_wal_receiver View

Column Type
Description

pid integer
Process ID of the WAL receiver process

status text
Activity status of the WAL receiver process

receive_start_lsn pg_lsn
First write-ahead log location used when WAL receiver is started

receive_start_tli integer
First timeline number used when WAL receiver is started

written_lsn pg_lsn
Last write-ahead log location already received and written to disk, but not flushed. This
should not be used for data integrity checks.

755

Monitoring Database Activity

Column Type
Description

flushed_lsn pg_lsn
Last write-ahead log location already received and flushed to disk, the initial value of this
field being the first log location used when WAL receiver is started

received_tli integer
Timeline number of last write-ahead log location received and flushed to disk, the initial val-
ue of this field being the timeline number of the first log location used when WAL receiver is
started

last_msg_send_time timestamp with time zone
Send time of last message received from origin WAL sender

last_msg_receipt_time timestamp with time zone
Receipt time of last message received from origin WAL sender

latest_end_lsn pg_lsn
Last write-ahead log location reported to origin WAL sender

latest_end_time timestamp with time zone
Time of last write-ahead log location reported to origin WAL sender

slot_name text
Replication slot name used by this WAL receiver

sender_host text
Host of the PostgreSQL instance this WAL receiver is connected to. This can be a host name,
an IP address, or a directory path if the connection is via Unix socket. (The path case can be
distinguished because it will always be an absolute path, beginning with /.)

sender_port integer
Port number of the PostgreSQL instance this WAL receiver is connected to.

conninfo text
Connection string used by this WAL receiver, with security-sensitive fields obfuscated.

27.2.7. pg_stat_recovery_prefetch
The pg_stat_recovery_prefetch view will contain only one row. The columns wal_distance,
block_distance and io_depth show current values, and the other columns show cumulative counters
that can be reset with the pg_stat_reset_shared function.

Table 27.17. pg_stat_recovery_prefetch View

Column Type
Description

stats_reset timestamp with time zone
Time at which these statistics were last reset

prefetch bigint
Number of blocks prefetched because they were not in the buffer pool

hit bigint
Number of blocks not prefetched because they were already in the buffer pool

skip_init bigint
Number of blocks not prefetched because they would be zero-initialized

skip_new bigint
Number of blocks not prefetched because they didn't exist yet

skip_fpw bigint
Number of blocks not prefetched because a full page image was included in the WAL

skip_rep bigint

756

Monitoring Database Activity

Column Type
Description
Number of blocks not prefetched because they were already recently prefetched

wal_distance int
How many bytes ahead the prefetcher is looking

block_distance int
How many blocks ahead the prefetcher is looking

io_depth int
How many prefetches have been initiated but are not yet known to have completed

27.2.8. pg_stat_subscription

Table 27.18. pg_stat_subscription View

Column Type
Description

subid oid
OID of the subscription

subname name
Name of the subscription

worker_type text
Type of the subscription worker process. Possible types are apply, parallel apply, and ta-
ble synchronization.

pid integer
Process ID of the subscription worker process

leader_pid integer
Process ID of the leader apply worker if this process is a parallel apply worker; NULL if this
process is a leader apply worker or a table synchronization worker

relid oid
OID of the relation that the worker is synchronizing; NULL for the leader apply worker and
parallel apply workers

received_lsn pg_lsn
Last write-ahead log location received, the initial value of this field being 0; NULL for parallel
apply workers

last_msg_send_time timestamp with time zone
Send time of last message received from origin WAL sender; NULL for parallel apply workers

last_msg_receipt_time timestamp with time zone
Receipt time of last message received from origin WAL sender; NULL for parallel apply work-
ers

latest_end_lsn pg_lsn
Last write-ahead log location reported to origin WAL sender; NULL for parallel apply workers

latest_end_time timestamp with time zone
Time of last write-ahead log location reported to origin WAL sender; NULL for parallel apply
workers

27.2.9. pg_stat_subscription_stats
The pg_stat_subscription_stats view will contain one row per subscription.

757

Monitoring Database Activity

Table 27.19. pg_stat_subscription_stats View

Column Type
Description

subid oid
OID of the subscription

subname name
Name of the subscription

apply_error_count bigint
Number of times an error occurred while applying changes. Note that any conflict resulting
in an apply error will be counted in both apply_error_count and the corresponding con-
flict count (e.g., confl_*).

sync_error_count bigint
Number of times an error occurred during the initial table synchronization

confl_insert_exists bigint
Number of times a row insertion violated a NOT DEFERRABLE unique constraint during the ap-
plication of changes. See insert_exists for details about this conflict.

confl_update_origin_differs bigint
Number of times an update was applied to a row that had been previously modified by anoth-
er source during the application of changes. See update_origin_differs for details about this
conflict.

confl_update_exists bigint
Number of times that an updated row value violated a NOT DEFERRABLE unique constraint dur-
ing the application of changes. See update_exists for details about this conflict.

confl_update_missing bigint
Number of times the tuple to be updated was not found during the application of changes.
See update_missing for details about this conflict.

confl_delete_origin_differs bigint
Number of times a delete operation was applied to row that had been previously modified by
another source during the application of changes. See delete_origin_differs for details about
this conflict.

confl_delete_missing bigint
Number of times the tuple to be deleted was not found during the application of changes. See
delete_missing for details about this conflict.

confl_multiple_unique_conflicts bigint
Number of times a row insertion or an updated row values violated multiple NOT DEFERRABLE
unique constraints during the application of changes. See multiple_unique_conflicts for de-
tails about this conflict.

stats_reset timestamp with time zone
Time at which these statistics were last reset

27.2.10. pg_stat_ssl
The pg_stat_ssl view will contain one row per backend or WAL sender process, showing statistics about
SSL usage on this connection. It can be joined to pg_stat_activity or pg_stat_replication on the
pid column to get more details about the connection.

Table 27.20. pg_stat_ssl View

Column Type
Description

pid integer
Process ID of a backend or WAL sender process

758

Monitoring Database Activity

Column Type
Description

ssl boolean
True if SSL is used on this connection

version text
Version of SSL in use, or NULL if SSL is not in use on this connection

cipher text
Name of SSL cipher in use, or NULL if SSL is not in use on this connection

bits integer
Number of bits in the encryption algorithm used, or NULL if SSL is not used on this connec-
tion

client_dn text
Distinguished Name (DN) field from the client certificate used, or NULL if no client certifi-
cate was supplied or if SSL is not in use on this connection. This field is truncated if the DN
field is longer than NAMEDATALEN (64 characters in a standard build).

client_serial numeric
Serial number of the client certificate, or NULL if no client certificate was supplied or if SSL
is not in use on this connection. The combination of certificate serial number and certificate
issuer uniquely identifies a certificate (unless the issuer erroneously reuses serial numbers).

issuer_dn text
DN of the issuer of the client certificate, or NULL if no client certificate was supplied or if
SSL is not in use on this connection. This field is truncated like client_dn .

27.2.11. pg_stat_gssapi
The pg_stat_gssapi view will contain one row per backend, showing information about GSSAPI usage
on this connection. It can be joined to pg_stat_activity or pg_stat_replication on the pid column
to get more details about the connection.

Table 27.21. pg_stat_gssapi View

Column Type
Description

pid integer
Process ID of a backend

gss_authenticated boolean
True if GSSAPI authentication was used for this connection

principal text
Principal used to authenticate this connection, or NULL if GSSAPI was not used to authen-
ticate this connection. This field is truncated if the principal is longer than NAMEDATALEN (64
characters in a standard build).

encrypted boolean
True if GSSAPI encryption is in use on this connection

credentials_delegated boolean
True if GSSAPI credentials were delegated on this connection.

27.2.12. pg_stat_archiver
The pg_stat_archiver view will always have a single row, containing data about the archiver process
of the cluster.

759

Monitoring Database Activity

Table 27.22. pg_stat_archiver View

Column Type
Description

archived_count bigint
Number of WAL files that have been successfully archived

last_archived_wal text
Name of the WAL file most recently successfully archived

last_archived_time timestamp with time zone
Time of the most recent successful archive operation

failed_count bigint
Number of failed attempts for archiving WAL files

last_failed_wal text
Name of the WAL file of the most recent failed archival operation

last_failed_time timestamp with time zone
Time of the most recent failed archival operation

stats_reset timestamp with time zone
Time at which these statistics were last reset

Normally, WAL files are archived in order, oldest to newest, but that is not guaranteed, and does not
hold under special circumstances like when promoting a standby or after crash recovery. Therefore it
is not safe to assume that all files older than last_archived_wal have also been successfully archived.

27.2.13. pg_stat_io
The pg_stat_io view will contain one row for each combination of backend type, target I/O object, and
I/O context, showing cluster-wide I/O statistics. Combinations which do not make sense are omitted.

Currently, I/O on relations (e.g. tables, indexes) and WAL activity are tracked. However, relation I/O
which bypasses shared buffers (e.g. when moving a table from one tablespace to another) is currently
not tracked.

Table 27.23. pg_stat_io View

Column Type
Description

backend_type text
Type of backend (e.g. background worker, autovacuum worker). See pg_stat_activity
for more information on backend_type s. Some backend_type s do not accumulate I/O oper-
ation statistics and will not be included in the view.

object text
Target object of an I/O operation. Possible values are:
• relation: Permanent relations.
• temp relation: Temporary relations.
• wal: Write Ahead Logs.

context text
The context of an I/O operation. Possible values are:

• normal: The default or standard context for a type of I/O operation. For example, by default, rela-
tion data is read into and written out from shared buffers. Thus, reads and writes of relation data
to and from shared buffers are tracked in context normal.

• init: I/O operations performed while creating the WAL segments are tracked in context init.

760

Monitoring Database Activity

Column Type
Description

• vacuum: I/O operations performed outside of shared buffers while vacuuming and analyzing perma-
nent relations. Temporary table vacuums use the same local buffer pool as other temporary table
I/O operations and are tracked in context normal.

• bulkread: Certain large read I/O operations done outside of shared buffers, for example, a sequen-
tial scan of a large table.

• bulkwrite: Certain large write I/O operations done outside of shared buffers, such as COPY.
reads bigint

Number of read operations.
read_bytes numeric

The total size of read operations in bytes.
read_time double precision

Time spent waiting for read operations in milliseconds (if track_io_timing is enabled and ob-
ject is not wal, or if track_wal_io_timing is enabled and object is wal, otherwise zero)

writes bigint
Number of write operations.

write_bytes numeric
The total size of write operations in bytes.

write_time double precision
Time spent waiting for write operations in milliseconds (if track_io_timing is enabled and ob-
ject is not wal, or if track_wal_io_timing is enabled and object is wal, otherwise zero)

writebacks bigint
Number of units of size BLCKSZ (typically 8kB) which the process requested the kernel write
out to permanent storage.

writeback_time double precision
Time spent waiting for writeback operations in milliseconds (if track_io_timing is enabled,
otherwise zero). This includes the time spent queueing write-out requests and, potentially,
the time spent to write out the dirty data.

extends bigint
Number of relation extend operations.

extend_bytes numeric
The total size of relation extend operations in bytes.

extend_time double precision
Time spent waiting for extend operations in milliseconds. (if track_io_timing is enabled and
object is not wal, or if track_wal_io_timing is enabled and object is wal, otherwise zero)

hits bigint
The number of times a desired block was found in a shared buffer.

evictions bigint
Number of times a block has been written out from a shared or local buffer in order to make
it available for another use.
In context normal, this counts the number of times a block was evicted from a buffer and
replaced with another block. In contexts bulkwrite, bulkread, and vacuum, this counts the
number of times a block was evicted from shared buffers in order to add the shared buffer to
a separate, size-limited ring buffer for use in a bulk I/O operation.

reuses bigint
The number of times an existing buffer in a size-limited ring buffer outside of shared buffers
was reused as part of an I/O operation in the bulkread, bulkwrite, or vacuum contexts.

fsyncs bigint

761

Monitoring Database Activity

Column Type
Description
Number of fsync calls. These are only tracked in context normal.

fsync_time double precision
Time spent waiting for fsync operations in milliseconds (if track_io_timing is enabled and ob-
ject is not wal, or if track_wal_io_timing is enabled and object is wal, otherwise zero)

stats_reset timestamp with time zone
Time at which these statistics were last reset.

Some backend types never perform I/O operations on some I/O objects and/or in some I/O contexts.
These rows are omitted from the view. For example, the checkpointer does not checkpoint temporary
tables, so there will be no rows for backend_type checkpointer and object temp relation.

In addition, some I/O operations will never be performed either by certain backend types or on certain
I/O objects and/or in certain I/O contexts. These cells will be NULL. For example, temporary tables are
not fsynced, so fsyncs will be NULL for object temp relation. Also, the background writer does not
perform reads, so reads will be NULL in rows for backend_type background writer.

For the object wal, fsyncs and fsync_time track the fsync activity of WAL files done in issue_xlog_f-
sync. writes and write_time track the write activity of WAL files done in XLogWrite. See Section 28.5
for more information.

pg_stat_io can be used to inform database tuning. For example:
• A high evictions count can indicate that shared buffers should be increased.
• Client backends rely on the checkpointer to ensure data is persisted to permanent storage. Large

numbers of fsyncs by client backends could indicate a misconfiguration of shared buffers or of
the checkpointer. More information on configuring the checkpointer can be found in Section 28.5.

• Normally, client backends should be able to rely on auxiliary processes like the checkpointer and
the background writer to write out dirty data as much as possible. Large numbers of writes by
client backends could indicate a misconfiguration of shared buffers or of the checkpointer. More in-
formation on configuring the checkpointer can be found in Section 28.5.

Note
Columns tracking I/O wait time will only be non-zero when track_io_timing is enabled. The user
should be careful when referencing these columns in combination with their corresponding I/O
operations in case track_io_timing was not enabled for the entire time since the last stats reset.

27.2.14. pg_stat_bgwriter
The pg_stat_bgwriter view will always have a single row, containing data about the background writer
of the cluster.

Table 27.24. pg_stat_bgwriter View

Column Type
Description

buffers_clean bigint
Number of buffers written by the background writer

maxwritten_clean bigint
Number of times the background writer stopped a cleaning scan because it had written too
many buffers

buffers_alloc bigint
Number of buffers allocated

stats_reset timestamp with time zone

762

Monitoring Database Activity

Column Type
Description
Time at which these statistics were last reset

27.2.15. pg_stat_checkpointer
The pg_stat_checkpointer view will always have a single row, containing data about the checkpointer
process of the cluster.

Table 27.25. pg_stat_checkpointer View

Column Type
Description

num_timed bigint
Number of scheduled checkpoints due to timeout

num_requested bigint
Number of requested checkpoints

num_done bigint
Number of checkpoints that have been performed

restartpoints_timed bigint
Number of scheduled restartpoints due to timeout or after a failed attempt to perform it

restartpoints_req bigint
Number of requested restartpoints

restartpoints_done bigint
Number of restartpoints that have been performed

write_time double precision
Total amount of time that has been spent in the portion of processing checkpoints and
restartpoints where files are written to disk, in milliseconds

sync_time double precision
Total amount of time that has been spent in the portion of processing checkpoints and
restartpoints where files are synchronized to disk, in milliseconds

buffers_written bigint
Number of shared buffers written during checkpoints and restartpoints

slru_written bigint
Number of SLRU buffers written during checkpoints and restartpoints

stats_reset timestamp with time zone
Time at which these statistics were last reset

Checkpoints may be skipped if the server has been idle since the last one. num_timed and num_requested
count both completed and skipped checkpoints, while num_done tracks only the completed ones. Simi-
larly, restartpoints may be skipped if the last replayed checkpoint record is already the last restartpoint.
restartpoints_timed and restartpoints_req count both completed and skipped restartpoints, while
restartpoints_done tracks only the completed ones.

27.2.16. pg_stat_wal
The pg_stat_wal view will always have a single row, containing data about WAL activity of the cluster.

Table 27.26. pg_stat_wal View

Column Type
Description

wal_records bigint
Total number of WAL records generated

wal_fpi bigint

763

Monitoring Database Activity

Column Type
Description
Total number of WAL full page images generated

wal_bytes numeric
Total amount of WAL generated in bytes

wal_buffers_full bigint
Number of times WAL data was written to disk because WAL buffers became full

stats_reset timestamp with time zone
Time at which these statistics were last reset

27.2.17. pg_stat_database
The pg_stat_database view will contain one row for each database in the cluster, plus one for shared
objects, showing database-wide statistics.

Table 27.27. pg_stat_database View

Column Type
Description

datid oid
OID of this database, or 0 for objects belonging to a shared relation

datname name
Name of this database, or NULL for shared objects.

numbackends integer
Number of backends currently connected to this database, or NULL for shared objects. This is
the only column in this view that returns a value reflecting current state; all other columns
return the accumulated values since the last reset.

xact_commit bigint
Number of transactions in this database that have been committed

xact_rollback bigint
Number of transactions in this database that have been rolled back

blks_read bigint
Number of disk blocks read in this database

blks_hit bigint
Number of times disk blocks were found already in the buffer cache, so that a read was not
necessary (this only includes hits in the PostgreSQL buffer cache, not the operating system's
file system cache)

tup_returned bigint
Number of live rows fetched by sequential scans and index entries returned by index scans in
this database

tup_fetched bigint
Number of live rows fetched by index scans in this database

tup_inserted bigint
Number of rows inserted by queries in this database

tup_updated bigint
Number of rows updated by queries in this database

tup_deleted bigint
Number of rows deleted by queries in this database

conflicts bigint
Number of queries canceled due to conflicts with recovery in this database. (Conflicts occur
only on standby servers; see pg_stat_database_conflicts for details.)

764

Monitoring Database Activity

Column Type
Description

temp_files bigint
Number of temporary files created by queries in this database. All temporary files are count-
ed, regardless of why the temporary file was created (e.g., sorting or hashing), and regardless
of the log_temp_files setting.

temp_bytes bigint
Total amount of data written to temporary files by queries in this database. All temporary
files are counted, regardless of why the temporary file was created, and regardless of the log_
temp_files setting.

deadlocks bigint
Number of deadlocks detected in this database

checksum_failures bigint
Number of data page checksum failures detected in this database (or on a shared object), or
NULL if data checksums are disabled.

checksum_last_failure timestamp with time zone
Time at which the last data page checksum failure was detected in this database (or on a
shared object), or NULL if data checksums are disabled.

blk_read_time double precision
Time spent reading data file blocks by backends in this database, in milliseconds (if track_io_
timing is enabled, otherwise zero)

blk_write_time double precision
Time spent writing data file blocks by backends in this database, in milliseconds (if track_io_
timing is enabled, otherwise zero)

session_time double precision
Time spent by database sessions in this database, in milliseconds (note that statistics are on-
ly updated when the state of a session changes, so if sessions have been idle for a long time,
this idle time won't be included)

active_time double precision
Time spent executing SQL statements in this database, in milliseconds (this corresponds to
the states active and fastpath function call in pg_stat_activity)

idle_in_transaction_time double precision
Time spent idling while in a transaction in this database, in milliseconds (this corresponds to
the states idle in transaction and idle in transaction (aborted) in pg_stat_ac-
tivity)

sessions bigint
Total number of sessions established to this database

sessions_abandoned bigint
Number of database sessions to this database that were terminated because connection to
the client was lost

sessions_fatal bigint
Number of database sessions to this database that were terminated by fatal errors

sessions_killed bigint
Number of database sessions to this database that were terminated by operator intervention

parallel_workers_to_launch bigint
Number of parallel workers planned to be launched by queries on this database

parallel_workers_launched bigint
Number of parallel workers launched by queries on this database

stats_reset timestamp with time zone
Time at which these statistics were last reset

765

Monitoring Database Activity

27.2.18. pg_stat_database_conflicts
The pg_stat_database_conflicts view will contain one row per database, showing database-wide sta-
tistics about query cancels occurring due to conflicts with recovery on standby servers. This view will
only contain information on standby servers, since conflicts do not occur on primary servers.

Table 27.28. pg_stat_database_conflicts View

Column Type
Description

datid oid
OID of a database

datname name
Name of this database

confl_tablespace bigint
Number of queries in this database that have been canceled due to dropped tablespaces

confl_lock bigint
Number of queries in this database that have been canceled due to lock timeouts

confl_snapshot bigint
Number of queries in this database that have been canceled due to old snapshots

confl_bufferpin bigint
Number of queries in this database that have been canceled due to pinned buffers

confl_deadlock bigint
Number of queries in this database that have been canceled due to deadlocks

confl_active_logicalslot bigint
Number of uses of logical slots in this database that have been canceled due to old snapshots
or too low a wal_level on the primary

27.2.19. pg_stat_all_tables
The pg_stat_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about accesses to that specific table. The pg_stat_user_tables and
pg_stat_sys_tables views contain the same information, but filtered to only show user and system
tables respectively.

Table 27.29. pg_stat_all_tables View

Column Type
Description

relid oid
OID of a table

schemaname name
Name of the schema that this table is in

relname name
Name of this table

seq_scan bigint
Number of sequential scans initiated on this table

last_seq_scan timestamp with time zone
The time of the last sequential scan on this table, based on the most recent transaction stop
time

seq_tup_read bigint
Number of live rows fetched by sequential scans

idx_scan bigint

766

Monitoring Database Activity

Column Type
Description
Number of index scans initiated on this table

last_idx_scan timestamp with time zone
The time of the last index scan on this table, based on the most recent transaction stop time

idx_tup_fetch bigint
Number of live rows fetched by index scans

n_tup_ins bigint
Total number of rows inserted

n_tup_upd bigint
Total number of rows updated. (This includes row updates counted in n_tup_hot_upd and
n_tup_newpage_upd , and remaining non-HOT updates.)

n_tup_del bigint
Total number of rows deleted

n_tup_hot_upd bigint
Number of rows HOT updated. These are updates where no successor versions are required
in indexes.

n_tup_newpage_upd bigint
Number of rows updated where the successor version goes onto a new heap page, leaving be-
hind an original version with a t_ctid field that points to a different heap page. These are
always non-HOT updates.

n_live_tup bigint
Estimated number of live rows

n_dead_tup bigint
Estimated number of dead rows

n_mod_since_analyze bigint
Estimated number of rows modified since this table was last analyzed

n_ins_since_vacuum bigint
Estimated number of rows inserted since this table was last vacuumed (not counting VACUUM
FULL)

last_vacuum timestamp with time zone
Last time at which this table was manually vacuumed (not counting VACUUM FULL)

last_autovacuum timestamp with time zone
Last time at which this table was vacuumed by the autovacuum daemon

last_analyze timestamp with time zone
Last time at which this table was manually analyzed

last_autoanalyze timestamp with time zone
Last time at which this table was analyzed by the autovacuum daemon

vacuum_count bigint
Number of times this table has been manually vacuumed (not counting VACUUM FULL)

autovacuum_count bigint
Number of times this table has been vacuumed by the autovacuum daemon

analyze_count bigint
Number of times this table has been manually analyzed

autoanalyze_count bigint
Number of times this table has been analyzed by the autovacuum daemon

total_vacuum_time double precision
Total time this table has been manually vacuumed, in milliseconds (not counting VACUUM
FULL). (This includes the time spent sleeping due to cost-based delays.)

767

Monitoring Database Activity

Column Type
Description

total_autovacuum_time double precision
Total time this table has been vacuumed by the autovacuum daemon, in milliseconds. (This in-
cludes the time spent sleeping due to cost-based delays.)

total_analyze_time double precision
Total time this table has been manually analyzed, in milliseconds. (This includes the time
spent sleeping due to cost-based delays.)

total_autoanalyze_time double precision
Total time this table has been analyzed by the autovacuum daemon, in milliseconds. (This in-
cludes the time spent sleeping due to cost-based delays.)

27.2.20. pg_stat_all_indexes
The pg_stat_all_indexes view will contain one row for each index in the current database, showing
statistics about accesses to that specific index. The pg_stat_user_indexes and pg_stat_sys_indexes
views contain the same information, but filtered to only show user and system indexes respectively.

Table 27.30. pg_stat_all_indexes View

Column Type
Description

relid oid
OID of the table for this index

indexrelid oid
OID of this index

schemaname name
Name of the schema this index is in

relname name
Name of the table for this index

indexrelname name
Name of this index

idx_scan bigint
Number of index scans initiated on this index

last_idx_scan timestamp with time zone
The time of the last scan on this index, based on the most recent transaction stop time

idx_tup_read bigint
Number of index entries returned by scans on this index

idx_tup_fetch bigint
Number of live table rows fetched by simple index scans using this index

Indexes can be used by simple index scans, “bitmap” index scans, and the optimizer. In a bitmap scan
the output of several indexes can be combined via AND or OR rules, so it is difficult to associate indi-
vidual heap row fetches with specific indexes when a bitmap scan is used. Therefore, a bitmap scan
increments the pg_stat_all_indexes.idx_tup_read count(s) for the index(es) it uses, and it increments
the pg_stat_all_tables.idx_tup_fetch count for the table, but it does not affect pg_stat_all_index-
es.idx_tup_fetch. The optimizer also accesses indexes to check for supplied constants whose values
are outside the recorded range of the optimizer statistics because the optimizer statistics might be stale.

Note
The idx_tup_read and idx_tup_fetch counts can be different even without any use of bitmap
scans, because idx_tup_read counts index entries retrieved from the index while idx_tup_fetch

768

Monitoring Database Activity

counts live rows fetched from the table. The latter will be less if any dead or not-yet-committed
rows are fetched using the index, or if any heap fetches are avoided by means of an index-only scan.

Note
Index scans may sometimes perform multiple index searches per execution. Each index search
increments pg_stat_all_indexes.idx_scan, so it's possible for the count of index scans to signif-
icantly exceed the total number of index scan executor node executions.

This can happen with queries that use certain SQL constructs to search for rows matching any
value out of a list or array of multiple scalar values (see Section 9.25). It can also happen to
queries with a column_name = value1 OR column_name = value2 ... construct, though only
when the optimizer transforms the construct into an equivalent multi-valued array representation.
Similarly, when B-tree index scans use the skip scan optimization, an index search is performed
each time the scan is repositioned to the next index leaf page that might have matching tuples
(see Section 11.3).

Tip
EXPLAIN ANALYZE outputs the total number of index searches performed by each index scan node.
See Section 14.1.2 for an example demonstrating how this works.

27.2.21. pg_statio_all_tables
The pg_statio_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about I/O on that specific table. The pg_statio_user_tables and
pg_statio_sys_tables views contain the same information, but filtered to only show user and system
tables respectively.

Table 27.31. pg_statio_all_tables View

Column Type
Description

relid oid
OID of a table

schemaname name
Name of the schema that this table is in

relname name
Name of this table

heap_blks_read bigint
Number of disk blocks read from this table

heap_blks_hit bigint
Number of buffer hits in this table

idx_blks_read bigint
Number of disk blocks read from all indexes on this table

idx_blks_hit bigint
Number of buffer hits in all indexes on this table

toast_blks_read bigint
Number of disk blocks read from this table's TOAST table (if any)

toast_blks_hit bigint
Number of buffer hits in this table's TOAST table (if any)

769

Monitoring Database Activity

Column Type
Description

tidx_blks_read bigint
Number of disk blocks read from this table's TOAST table indexes (if any)

tidx_blks_hit bigint
Number of buffer hits in this table's TOAST table indexes (if any)

27.2.22. pg_statio_all_indexes
The pg_statio_all_indexes view will contain one row for each index in the current database, showing
statistics about I/O on that specific index. The pg_statio_user_indexes and pg_statio_sys_indexes
views contain the same information, but filtered to only show user and system indexes respectively.

Table 27.32. pg_statio_all_indexes View

Column Type
Description

relid oid
OID of the table for this index

indexrelid oid
OID of this index

schemaname name
Name of the schema this index is in

relname name
Name of the table for this index

indexrelname name
Name of this index

idx_blks_read bigint
Number of disk blocks read from this index

idx_blks_hit bigint
Number of buffer hits in this index

27.2.23. pg_statio_all_sequences
The pg_statio_all_sequences view will contain one row for each sequence in the current database,
showing statistics about I/O on that specific sequence.

Table 27.33. pg_statio_all_sequences View

Column Type
Description

relid oid
OID of a sequence

schemaname name
Name of the schema this sequence is in

relname name
Name of this sequence

blks_read bigint
Number of disk blocks read from this sequence

blks_hit bigint
Number of buffer hits in this sequence

27.2.24. pg_stat_user_functions

770

Monitoring Database Activity

The pg_stat_user_functions view will contain one row for each tracked function, showing statistics
about executions of that function. The track_functions parameter controls exactly which functions are
tracked.

Table 27.34. pg_stat_user_functions View

Column Type
Description

funcid oid
OID of a function

schemaname name
Name of the schema this function is in

funcname name
Name of this function

calls bigint
Number of times this function has been called

total_time double precision
Total time spent in this function and all other functions called by it, in milliseconds

self_time double precision
Total time spent in this function itself, not including other functions called by it, in millisec-
onds

27.2.25. pg_stat_slru
PostgreSQL accesses certain on-disk information via SLRU (simple least-recently-used) caches. The pg_s-
tat_slru view will contain one row for each tracked SLRU cache, showing statistics about access to
cached pages.

For each SLRU cache that's part of the core server, there is a configuration parameter that controls its
size, with the suffix _buffers appended.

Table 27.35. pg_stat_slru View

Column Type
Description

name text
Name of the SLRU

blks_zeroed bigint
Number of blocks zeroed during initializations

blks_hit bigint
Number of times disk blocks were found already in the SLRU, so that a read was not neces-
sary (this only includes hits in the SLRU, not the operating system's file system cache)

blks_read bigint
Number of disk blocks read for this SLRU

blks_written bigint
Number of disk blocks written for this SLRU

blks_exists bigint
Number of blocks checked for existence for this SLRU

flushes bigint
Number of flushes of dirty data for this SLRU

truncates bigint
Number of truncates for this SLRU

stats_reset timestamp with time zone

771

Monitoring Database Activity

Column Type
Description
Time at which these statistics were last reset

27.2.26. Statistics Functions
Other ways of looking at the statistics can be set up by writing queries that use the same underlying
statistics access functions used by the standard views shown above. For details such as the functions'
names, consult the definitions of the standard views. (For example, in psql you could issue \d+ pg_s-
tat_activity.) The access functions for per-database statistics take a database OID as an argument to
identify which database to report on. The per-table and per-index functions take a table or index OID.
The functions for per-function statistics take a function OID. Note that only tables, indexes, and functions
in the current database can be seen with these functions.

Additional functions related to the cumulative statistics system are listed in Table 27.36.

Table 27.36. Additional Statistics Functions

Function
Description

pg_backend_pid () → integer
Returns the process ID of the server process attached to the current session.

pg_stat_get_backend_io (integer) → setof record
Returns I/O statistics about the backend with the specified process ID. The output fields are
exactly the same as the ones in the pg_stat_io view.
The function does not return I/O statistics for the checkpointer, the background writer, the
startup process and the autovacuum launcher as they are already visible in the pg_stat_io
view and there is only one of each.

pg_stat_get_activity (integer) → setof record
Returns a record of information about the backend with the specified process ID, or one
record for each active backend in the system if NULL is specified. The fields returned are a
subset of those in the pg_stat_activity view.

pg_stat_get_backend_wal (integer) → record
Returns WAL statistics about the backend with the specified process ID. The output fields are
exactly the same as the ones in the pg_stat_wal view.
The function does not return WAL statistics for the checkpointer, the background writer, the
startup process and the autovacuum launcher.

pg_stat_get_snapshot_timestamp () → timestamp with time zone
Returns the timestamp of the current statistics snapshot, or NULL if no statistics snapshot
has been taken. A snapshot is taken the first time cumulative statistics are accessed in a
transaction if stats_fetch_consistency is set to snapshot

pg_stat_get_xact_blocks_fetched (oid) → bigint
Returns the number of block read requests for table or index, in the current transaction. This
number minus pg_stat_get_xact_blocks_hit gives the number of kernel read()
calls; the number of actual physical reads is usually lower due to kernel-level buffering.

pg_stat_get_xact_blocks_hit (oid) → bigint
Returns the number of block read requests for table or index, in the current transaction,
found in cache (not triggering kernel read() calls).

pg_stat_clear_snapshot () → void
Discards the current statistics snapshot or cached information.

pg_stat_reset () → void
Resets all statistics counters for the current database to zero.

772

Monitoring Database Activity

Function
Description
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_shared ([target text DEFAULT NULL]) → void
Resets some cluster-wide statistics counters to zero, depending on the argument. target can
be:
• archiver: Reset all the counters shown in the pg_stat_archiver view.
• bgwriter: Reset all the counters shown in the pg_stat_bgwriter view.
• checkpointer: Reset all the counters shown in the pg_stat_checkpointer view.
• io: Reset all the counters shown in the pg_stat_io view.
• recovery_prefetch : Reset all the counters shown in the pg_stat_recovery_

prefetch view.
• slru: Reset all the counters shown in the pg_stat_slru view.
• wal: Reset all the counters shown in the pg_stat_wal view.
• NULL or not specified: All the counters from the views listed above are reset.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_single_table_counters (oid) → void
Resets statistics for a single table or index in the current database or shared across all data-
bases in the cluster to zero.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_backend_stats (integer) → void
Resets statistics for a single backend with the specified process ID to zero.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_single_function_counters (oid) → void
Resets statistics for a single function in the current database to zero.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_slru ([target text DEFAULT NULL]) → void
Resets statistics to zero for a single SLRU cache, or for all SLRUs in the cluster. If target
is NULL or is not specified, all the counters shown in the pg_stat_slru view for all SLRU
caches are reset. The argument can be one of commit_timestamp , multixact_member , mul-
tixact_offset , notify, serializable, subtransaction, or transaction to reset the coun-
ters for only that entry. If the argument is other (or indeed, any unrecognized name), then
the counters for all other SLRU caches, such as extension-defined caches, are reset.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_replication_slot (text) → void
Resets statistics of the replication slot defined by the argument. If the argument is NULL, re-
sets statistics for all the replication slots.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_subscription_stats (oid) → void
Resets statistics for a single subscription shown in the pg_stat_subscription_stats
view to zero. If the argument is NULL, reset statistics for all subscriptions.

773

Monitoring Database Activity

Function
Description
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

Warning
Using pg_stat_reset() also resets counters that autovacuum uses to determine when to trigger
a vacuum or an analyze. Resetting these counters can cause autovacuum to not perform necessary
work, which can cause problems such as table bloat or out-dated table statistics. A database-wide
ANALYZE is recommended after the statistics have been reset.

pg_stat_get_activity, the underlying function of the pg_stat_activity view, returns a set of records
containing all the available information about each backend process. Sometimes it may be more con-
venient to obtain just a subset of this information. In such cases, another set of per-backend statistics
access functions can be used; these are shown in Table 27.37. These access functions use the session's
backend ID number, which is a small integer (>= 0) that is distinct from the backend ID of any concur-
rent session, although a session's ID can be recycled as soon as it exits. The backend ID is used, among
other things, to identify the session's temporary schema if it has one. The function pg_stat_get_back-
end_idset provides a convenient way to list all the active backends' ID numbers for invoking these
functions. For example, to show the PIDs and current queries of all backends:
SELECT pg_stat_get_backend_pid(backendid) AS pid,
 pg_stat_get_backend_activity(backendid) AS query
FROM pg_stat_get_backend_idset() AS backendid;

Table 27.37. Per-Backend Statistics Functions

Function
Description

pg_stat_get_backend_activity (integer) → text
Returns the text of this backend's most recent query.

pg_stat_get_backend_activity_start (integer) → timestamp with time zone
Returns the time when the backend's most recent query was started.

pg_stat_get_backend_client_addr (integer) → inet
Returns the IP address of the client connected to this backend.

pg_stat_get_backend_client_port (integer) → integer
Returns the TCP port number that the client is using for communication.

pg_stat_get_backend_dbid (integer) → oid
Returns the OID of the database this backend is connected to.

pg_stat_get_backend_idset () → setof integer
Returns the set of currently active backend ID numbers.

pg_stat_get_backend_pid (integer) → integer
Returns the process ID of this backend.

pg_stat_get_backend_start (integer) → timestamp with time zone
Returns the time when this process was started.

pg_stat_get_backend_subxact (integer) → record
Returns a record of information about the subtransactions of the backend with the specified
ID. The fields returned are subxact_count , which is the number of subtransactions in the
backend's subtransaction cache, and subxact_overflow , which indicates whether the back-
end's subtransaction cache is overflowed or not.

pg_stat_get_backend_userid (integer) → oid

774

Monitoring Database Activity

Function
Description
Returns the OID of the user logged into this backend.

pg_stat_get_backend_wait_event (integer) → text
Returns the wait event name if this backend is currently waiting, otherwise NULL. See Ta-
ble 27.5 through Table 27.13.

pg_stat_get_backend_wait_event_type (integer) → text
Returns the wait event type name if this backend is currently waiting, otherwise NULL. See
Table 27.4 for details.

pg_stat_get_backend_xact_start (integer) → timestamp with time zone
Returns the time when the backend's current transaction was started.

27.3. Viewing Locks
Another useful tool for monitoring database activity is the pg_locks system table. It allows the database
administrator to view information about the outstanding locks in the lock manager. For example, this
capability can be used to:
• View all the locks currently outstanding, all the locks on relations in a particular database, all the

locks on a particular relation, or all the locks held by a particular PostgreSQL session.
• Determine the relation in the current database with the most ungranted locks (which might be a

source of contention among database clients).
• Determine the effect of lock contention on overall database performance, as well as the extent to

which contention varies with overall database traffic.
Details of the pg_locks view appear in Section 53.13. For more information on locking and managing
concurrency with PostgreSQL, refer to Chapter 13.

27.4. Progress Reporting
PostgreSQL has the ability to report the progress of certain commands during command execution.
Currently, the only commands which support progress reporting are ANALYZE, CLUSTER, CREATE INDEX,
VACUUM, COPY, and BASE_BACKUP (i.e., replication command that pg_basebackup issues to take a base
backup). This may be expanded in the future.

27.4.1. ANALYZE Progress Reporting
Whenever ANALYZE is running, the pg_stat_progress_analyze view will contain a row for each backend
that is currently running that command. The tables below describe the information that will be reported
and provide information about how to interpret it.

Table 27.38. pg_stat_progress_analyze View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table being analyzed.

phase text
Current processing phase. See Table 27.39.

775

Monitoring Database Activity

Column Type
Description

sample_blks_total bigint
Total number of heap blocks that will be sampled.

sample_blks_scanned bigint
Number of heap blocks scanned.

ext_stats_total bigint
Number of extended statistics.

ext_stats_computed bigint
Number of extended statistics computed. This counter only advances when the phase is com-
puting extended statistics.

child_tables_total bigint
Number of child tables.

child_tables_done bigint
Number of child tables scanned. This counter only advances when the phase is acquiring
inherited sample rows.

current_child_table_relid oid
OID of the child table currently being scanned. This field is only valid when the phase is ac-
quiring inherited sample rows.

delay_time double precision
Total time spent sleeping due to cost-based delay (see Section 19.10.2, in milliseconds (if
track_cost_delay_timing is enabled, otherwise zero).

Table 27.39. ANALYZE Phases

Phase Description
initializing The command is preparing to begin scanning the heap. This phase

is expected to be very brief.
acquiring sample rows The command is currently scanning the table given by relid to ob-

tain sample rows.
acquiring inherited sample
rows

The command is currently scanning child tables to obtain sample
rows. Columns child_tables_total , child_tables_done , and
current_child_table_relid contain the progress information
for this phase.

computing statistics The command is computing statistics from the sample rows ob-
tained during the table scan.

computing extended statis-
tics

The command is computing extended statistics from the sample
rows obtained during the table scan.

finalizing analyze The command is updating pg_class . When this phase is complet-
ed, ANALYZE will end.

Note
Note that when ANALYZE is run on a partitioned table without the ONLY keyword, all of its partitions
are also recursively analyzed. In that case, ANALYZE progress is reported first for the parent table,
whereby its inheritance statistics are collected, followed by that for each partition.

27.4.2. CLUSTER Progress Reporting
Whenever CLUSTER or VACUUM FULL is running, the pg_stat_progress_cluster view will contain a row
for each backend that is currently running either command. The tables below describe the information
that will be reported and provide information about how to interpret it.

776

Monitoring Database Activity

Table 27.40. pg_stat_progress_cluster View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table being clustered.

command text
The command that is running. Either CLUSTER or VACUUM FULL.

phase text
Current processing phase. See Table 27.41.

cluster_index_relid oid
If the table is being scanned using an index, this is the OID of the index being used; other-
wise, it is zero.

heap_tuples_scanned bigint
Number of heap tuples scanned. This counter only advances when the phase is seq scanning
heap, index scanning heap or writing new heap.

heap_tuples_written bigint
Number of heap tuples written. This counter only advances when the phase is seq scanning
heap, index scanning heap or writing new heap.

heap_blks_total bigint
Total number of heap blocks in the table. This number is reported as of the beginning of seq
scanning heap.

heap_blks_scanned bigint
Number of heap blocks scanned. This counter only advances when the phase is seq scanning
heap.

index_rebuild_count bigint
Number of indexes rebuilt. This counter only advances when the phase is rebuilding index.

Table 27.41. CLUSTER and VACUUM FULL Phases

Phase Description
initializing The command is preparing to begin scanning the heap. This phase

is expected to be very brief.
seq scanning heap The command is currently scanning the table using a sequential

scan.
index scanning heap CLUSTER is currently scanning the table using an index scan.
sorting tuples CLUSTER is currently sorting tuples.
writing new heap CLUSTER is currently writing the new heap.
swapping relation files The command is currently swapping newly-built files into place.
rebuilding index The command is currently rebuilding an index.
performing final cleanup The command is performing final cleanup. When this phase is com-

pleted, CLUSTER or VACUUM FULL will end.

27.4.3. COPY Progress Reporting

777

Monitoring Database Activity

Whenever COPY is running, the pg_stat_progress_copy view will contain one row for each backend that
is currently running a COPY command. The table below describes the information that will be reported
and provides information about how to interpret it.

Table 27.42. pg_stat_progress_copy View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table on which the COPY command is executed. It is set to 0 if copying from a
SELECT query.

command text
The command that is running: COPY FROM, or COPY TO.

type text
The I/O type that the data is read from or written to: FILE, PROGRAM, PIPE (for COPY FROM ST-
DIN and COPY TO STDOUT), or CALLBACK (used for example during the initial table synchroniza-
tion in logical replication).

bytes_processed bigint
Number of bytes already processed by COPY command.

bytes_total bigint
Size of source file for COPY FROM command in bytes. It is set to 0 if not available.

tuples_processed bigint
Number of tuples already processed by COPY command.

tuples_excluded bigint
Number of tuples not processed because they were excluded by the WHERE clause of the COPY
command.

tuples_skipped bigint
Number of tuples skipped because they contain malformed data. This counter only advances
when a value other than stop is specified to the ON_ERROR option.

27.4.4. CREATE INDEX Progress Reporting
Whenever CREATE INDEX or REINDEX is running, the pg_stat_progress_create_index view will contain
one row for each backend that is currently creating indexes. The tables below describe the information
that will be reported and provide information about how to interpret it.

Table 27.43. pg_stat_progress_create_index View

Column Type
Description

pid integer
Process ID of the backend creating indexes.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

778

Monitoring Database Activity

Column Type
Description

relid oid
OID of the table on which the index is being created.

index_relid oid
OID of the index being created or reindexed. During a non-concurrent CREATE INDEX, this is
0.

command text
Specific command type: CREATE INDEX, CREATE INDEX CONCURRENTLY, REINDEX, or REINDEX
CONCURRENTLY.

phase text
Current processing phase of index creation. See Table 27.44.

lockers_total bigint
Total number of lockers to wait for, when applicable.

lockers_done bigint
Number of lockers already waited for.

current_locker_pid bigint
Process ID of the locker currently being waited for.

blocks_total bigint
Total number of blocks to be processed in the current phase.

blocks_done bigint
Number of blocks already processed in the current phase.

tuples_total bigint
Total number of tuples to be processed in the current phase.

tuples_done bigint
Number of tuples already processed in the current phase.

partitions_total bigint
Total number of partitions on which the index is to be created or attached, including both di-
rect and indirect partitions. 0 during a REINDEX, or when the index is not partitioned.

partitions_done bigint
Number of partitions on which the index has already been created or attached, including both
direct and indirect partitions. 0 during a REINDEX, or when the index is not partitioned.

Table 27.44. CREATE INDEX Phases

Phase Description
initializing CREATE INDEX or REINDEX is preparing to create the index. This

phase is expected to be very brief.
waiting for writers before
build

CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is wait-
ing for transactions with write locks that can potentially see the ta-
ble to finish. This phase is skipped when not in concurrent mode.
Columns lockers_total , lockers_done and current_locker_
pid contain the progress information for this phase.

building index The index is being built by the access method-specific code. In this
phase, access methods that support progress reporting fill in their
own progress data, and the subphase is indicated in this column.
Typically, blocks_total and blocks_done will contain progress
data, as well as potentially tuples_total and tuples_done .

waiting for writers before
validation

CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting
for transactions with write locks that can potentially write into the
table to finish. This phase is skipped when not in concurrent mode.

779

Monitoring Database Activity

Phase Description
Columns lockers_total , lockers_done and current_locker_
pid contain the progress information for this phase.

index validation: scanning
index

CREATE INDEX CONCURRENTLY is scanning the index searching for
tuples that need to be validated. This phase is skipped when not in
concurrent mode. Columns blocks_total (set to the total size of
the index) and blocks_done contain the progress information for
this phase.

index validation: sorting
tuples

CREATE INDEX CONCURRENTLY is sorting the output of the index
scanning phase.

index validation: scanning
table

CREATE INDEX CONCURRENTLY is scanning the table to validate the
index tuples collected in the previous two phases. This phase is
skipped when not in concurrent mode. Columns blocks_total
(set to the total size of the table) and blocks_done contain the
progress information for this phase.

waiting for old snapshots CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting
for transactions that can potentially see the table to release their
snapshots. This phase is skipped when not in concurrent mode.
Columns lockers_total , lockers_done and current_locker_
pid contain the progress information for this phase.

waiting for readers before
marking dead

REINDEX CONCURRENTLY is waiting for transactions with read locks
on the table to finish, before marking the old index dead. This
phase is skipped when not in concurrent mode. Columns lock-
ers_total , lockers_done and current_locker_pid contain
the progress information for this phase.

waiting for readers before
dropping

REINDEX CONCURRENTLY is waiting for transactions with read locks
on the table to finish, before dropping the old index. This phase is
skipped when not in concurrent mode. Columns lockers_total ,
 lockers_done and current_locker_pid contain the progress
information for this phase.

27.4.5. VACUUM Progress Reporting
Whenever VACUUM is running, the pg_stat_progress_vacuum view will contain one row for each backend
(including autovacuum worker processes) that is currently vacuuming. The tables below describe the
information that will be reported and provide information about how to interpret it. Progress for VACUUM
FULL commands is reported via pg_stat_progress_cluster because both VACUUM FULL and CLUSTER
rewrite the table, while regular VACUUM only modifies it in place. See Section 27.4.2.

Table 27.45. pg_stat_progress_vacuum View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table being vacuumed.

phase text
Current processing phase of vacuum. See Table 27.46.

780

Monitoring Database Activity

Column Type
Description

heap_blks_total bigint
Total number of heap blocks in the table. This number is reported as of the beginning of the
scan; blocks added later will not be (and need not be) visited by this VACUUM.

heap_blks_scanned bigint
Number of heap blocks scanned. Because the visibility map is used to optimize scans, some
blocks will be skipped without inspection; skipped blocks are included in this total, so that
this number will eventually become equal to heap_blks_total when the vacuum is com-
plete. This counter only advances when the phase is scanning heap.

heap_blks_vacuumed bigint
Number of heap blocks vacuumed. Unless the table has no indexes, this counter only ad-
vances when the phase is vacuuming heap. Blocks that contain no dead tuples are skipped, so
the counter may sometimes skip forward in large increments.

index_vacuum_count bigint
Number of completed index vacuum cycles.

max_dead_tuple_bytes bigint
Amount of dead tuple data that we can store before needing to perform an index vacuum cy-
cle, based on maintenance_work_mem.

dead_tuple_bytes bigint
Amount of dead tuple data collected since the last index vacuum cycle.

num_dead_item_ids bigint
Number of dead item identifiers collected since the last index vacuum cycle.

indexes_total bigint
Total number of indexes that will be vacuumed or cleaned up. This number is reported at the
beginning of the vacuuming indexes phase or the cleaning up indexes phase.

indexes_processed bigint
Number of indexes processed. This counter only advances when the phase is vacuuming in-
dexes or cleaning up indexes.

delay_time double precision
Total time spent sleeping due to cost-based delay (see Section 19.10.2), in milliseconds (if
track_cost_delay_timing is enabled, otherwise zero). This includes the time that any associat-
ed parallel workers have slept. However, parallel workers report their sleep time no more fre-
quently than once per second, so the reported value may be slightly stale.

Table 27.46. VACUUM Phases

Phase Description
initializing VACUUM is preparing to begin scanning the heap. This phase is ex-

pected to be very brief.
scanning heap VACUUM is currently scanning the heap. It will prune and defrag-

ment each page if required, and possibly perform freezing activi-
ty. The heap_blks_scanned column can be used to monitor the
progress of the scan.

vacuuming indexes VACUUM is currently vacuuming the indexes. If a table has any in-
dexes, this will happen at least once per vacuum, after the heap
has been completely scanned. It may happen multiple times per
vacuum if maintenance_work_mem (or, in the case of autovacuum,
autovacuum_work_mem if set) is insufficient to store the number of
dead tuples found.

vacuuming heap VACUUM is currently vacuuming the heap. Vacuuming the heap is
distinct from scanning the heap, and occurs after each instance of

781

Monitoring Database Activity

Phase Description
vacuuming indexes. If heap_blks_scanned is less than heap_
blks_total , the system will return to scanning the heap after this
phase is completed; otherwise, it will begin cleaning up indexes af-
ter this phase is completed.

cleaning up indexes VACUUM is currently cleaning up indexes. This occurs after the heap
has been completely scanned and all vacuuming of the indexes and
the heap has been completed.

truncating heap VACUUM is currently truncating the heap so as to return empty
pages at the end of the relation to the operating system. This oc-
curs after cleaning up indexes.

performing final cleanup VACUUM is performing final cleanup. During this phase, VACUUM will
vacuum the free space map, update statistics in pg_class , and re-
port statistics to the cumulative statistics system. When this phase
is completed, VACUUM will end.

27.4.6. Base Backup Progress Reporting
Whenever an application like pg_basebackup is taking a base backup, the pg_stat_progress_base-
backup view will contain a row for each WAL sender process that is currently running the BASE_BACKUP
replication command and streaming the backup. The tables below describe the information that will be
reported and provide information about how to interpret it.

Table 27.47. pg_stat_progress_basebackup View

Column Type
Description

pid integer
Process ID of a WAL sender process.

phase text
Current processing phase. See Table 27.48.

backup_total bigint
Total amount of data that will be streamed. This is estimated and reported as of the beginning
of streaming database files phase. Note that this is only an approximation since the data-
base may change during streaming database files phase and WAL log may be included in
the backup later. This is always the same value as backup_streamed once the amount of da-
ta streamed exceeds the estimated total size. If the estimation is disabled in pg_basebackup (
i.e., --no-estimate-size option is specified), this is NULL.

backup_streamed bigint
Amount of data streamed. This counter only advances when the phase is streaming database
files or transferring wal files.

tablespaces_total bigint
Total number of tablespaces that will be streamed.

tablespaces_streamed bigint
Number of tablespaces streamed. This counter only advances when the phase is streaming
database files.

Table 27.48. Base Backup Phases

Phase Description
initializing The WAL sender process is preparing to begin the backup. This

phase is expected to be very brief.

782

Monitoring Database Activity

Phase Description
waiting for checkpoint to
finish

The WAL sender process is currently performing pg_backup_
start to prepare to take a base backup, and waiting for the start-
of-backup checkpoint to finish.

estimating backup size The WAL sender process is currently estimating the total amount of
database files that will be streamed as a base backup.

streaming database files The WAL sender process is currently streaming database files as a
base backup.

waiting for wal archiving to
finish

The WAL sender process is currently performing pg_backup_
stop to finish the backup, and waiting for all the WAL files required
for the base backup to be successfully archived. If either --wal-
method=none or --wal-method=stream is specified in pg_baseback-
up, the backup will end when this phase is completed.

transferring wal files The WAL sender process is currently transferring all WAL logs gen-
erated during the backup. This phase occurs after waiting for
wal archiving to finish phase if --wal-method=fetch is spec-
ified in pg_basebackup. The backup will end when this phase is
completed.

27.5. Dynamic Tracing
PostgreSQL provides facilities to support dynamic tracing of the database server. This allows an external
utility to be called at specific points in the code and thereby trace execution.

A number of probes or trace points are already inserted into the source code. These probes are intended
to be used by database developers and administrators. By default the probes are not compiled into
PostgreSQL; the user needs to explicitly tell the configure script to make the probes available.

Currently, the DTrace utility is supported, which, at the time of this writing, is available on Solaris, ma-
cOS, FreeBSD, NetBSD, and Oracle Linux. The SystemTap project for Linux provides a DTrace equiva-
lent and can also be used. Supporting other dynamic tracing utilities is theoretically possible by chang-
ing the definitions for the macros in src/include/utils/probes.h.

27.5.1. Compiling for Dynamic Tracing
By default, probes are not available, so you will need to explicitly tell the configure script to make the
probes available in PostgreSQL. To include DTrace support specify --enable-dtrace to configure. See
Section 17.3.3.6 for further information.

27.5.2. Built-in Probes
A number of standard probes are provided in the source code, as shown in Table 27.49; Table 27.50
shows the types used in the probes. More probes can certainly be added to enhance PostgreSQL's ob-
servability.

Table 27.49. Built-in DTrace Probes

Name Parameters Description
transaction-start (LocalTransactionId) Probe that fires at the start of a new

transaction. arg0 is the transaction
ID.

transaction-commit (LocalTransactionId) Probe that fires when a transaction
completes successfully. arg0 is the
transaction ID.

transaction-abort (LocalTransactionId) Probe that fires when a transaction
completes unsuccessfully. arg0 is the
transaction ID.

783

https://en.wikipedia.org/wiki/DTrace
https://sourceware.org/systemtap/

Monitoring Database Activity

Name Parameters Description
query-start (const char *) Probe that fires when the process-

ing of a query is started. arg0 is the
query string.

query-done (const char *) Probe that fires when the processing
of a query is complete. arg0 is the
query string.

query-parse-start (const char *) Probe that fires when the parsing of
a query is started. arg0 is the query
string.

query-parse-done (const char *) Probe that fires when the parsing
of a query is complete. arg0 is the
query string.

query-rewrite-start (const char *) Probe that fires when the rewrit-
ing of a query is started. arg0 is the
query string.

query-rewrite-done (const char *) Probe that fires when the rewriting
of a query is complete. arg0 is the
query string.

query-plan-start () Probe that fires when the planning of
a query is started.

query-plan-done () Probe that fires when the planning of
a query is complete.

query-execute-start () Probe that fires when the execution
of a query is started.

query-execute-done () Probe that fires when the execution
of a query is complete.

statement-status (const char *) Probe that fires anytime the server
process updates its pg_stat_ac-
tivity.status. arg0 is the new sta-
tus string.

checkpoint-start (int) Probe that fires when a checkpoint is
started. arg0 holds the bitwise flags
used to distinguish different check-
point types, such as shutdown, imme-
diate or force.

checkpoint-done (int, int, int, int, int) Probe that fires when a checkpoint
is complete. (The probes listed next
fire in sequence during checkpoint
processing.) arg0 is the number of
buffers written. arg1 is the total num-
ber of buffers. arg2, arg3 and arg4
contain the number of WAL files
added, removed and recycled respec-
tively.

clog-checkpoint-start (bool) Probe that fires when the CLOG por-
tion of a checkpoint is started. arg0
is true for normal checkpoint, false
for shutdown checkpoint.

clog-checkpoint-done (bool) Probe that fires when the CLOG por-
tion of a checkpoint is complete. arg0

784

Monitoring Database Activity

Name Parameters Description
has the same meaning as for clog-
checkpoint-start.

subtrans-check-
point-start

(bool) Probe that fires when the SUBTRANS
portion of a checkpoint is started.
arg0 is true for normal checkpoint,
false for shutdown checkpoint.

subtrans-check-
point-done

(bool) Probe that fires when the SUBTRANS
portion of a checkpoint is complete.
arg0 has the same meaning as for
subtrans-checkpoint-start.

multixact-check-
point-start

(bool) Probe that fires when the MultiXact
portion of a checkpoint is started.
arg0 is true for normal checkpoint,
false for shutdown checkpoint.

multixact-check-
point-done

(bool) Probe that fires when the MultiXact
portion of a checkpoint is complete.
arg0 has the same meaning as for
multixact-checkpoint-start.

buffer-check-
point-start

(int) Probe that fires when the buffer-writ-
ing portion of a checkpoint is start-
ed. arg0 holds the bitwise flags used
to distinguish different checkpoint
types, such as shutdown, immediate
or force.

buffer-sync-start (int, int) Probe that fires when we begin to
write dirty buffers during checkpoint
(after identifying which buffers must
be written). arg0 is the total number
of buffers. arg1 is the number that
are currently dirty and need to be
written.

buffer-sync-written (int) Probe that fires after each buffer is
written during checkpoint. arg0 is
the ID number of the buffer.

buffer-sync-done (int, int, int) Probe that fires when all dirty buffers
have been written. arg0 is the total
number of buffers. arg1 is the num-
ber of buffers actually written by the
checkpoint process. arg2 is the num-
ber that were expected to be writ-
ten (arg1 of buffer-sync-start);
any difference reflects other process-
es flushing buffers during the check-
point.

buffer-check-
point-sync-start

() Probe that fires after dirty buffers
have been written to the kernel, and
before starting to issue fsync re-
quests.

buffer-check-
point-done

() Probe that fires when syncing of
buffers to disk is complete.

twophase-check-
point-start

() Probe that fires when the two-phase
portion of a checkpoint is started.

785

Monitoring Database Activity

Name Parameters Description
twophase-check-
point-done

() Probe that fires when the two-phase
portion of a checkpoint is complete.

buffer-extend-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, un-
signed int)

Probe that fires when a relation ex-
tension starts. arg0 contains the
fork to be extended. arg1, arg2, and
arg3 contain the tablespace, data-
base, and relation OIDs identifying
the relation. arg4 is the ID of the
backend which created the tempo-
rary relation for a local buffer, or
INVALID_PROC_NUMBER (-1) for a
shared buffer. arg5 is the number of
blocks the caller would like to extend
by.

buffer-extend-done (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, un-
signed int, BlockNumber)

Probe that fires when a relation ex-
tension is complete. arg0 contains
the fork to be extended. arg1, arg2,
and arg3 contain the tablespace,
database, and relation OIDs identi-
fying the relation. arg4 is the ID of
the backend which created the tem-
porary relation for a local buffer, or
INVALID_PROC_NUMBER (-1) for a
shared buffer. arg5 is the number of
blocks the relation was extended by,
this can be less than the number in
the buffer-extend-start due to re-
source constraints. arg6 contains the
BlockNumber of the first new block.

buffer-read-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int)

Probe that fires when a buffer read
is started. arg0 and arg1 contain the
fork and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation. arg5 is
the ID of the backend which creat-
ed the temporary relation for a local
buffer, or INVALID_PROC_NUMBER (
-1) for a shared buffer.

buffer-read-done (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, bool)

Probe that fires when a buffer read
is complete. arg0 and arg1 contain
the fork and block numbers of the
page. arg2, arg3, and arg4 contain
the tablespace, database, and rela-
tion OIDs identifying the relation.
arg5 is the ID of the backend which
created the temporary relation for
a local buffer, or INVALID_PROC_
NUMBER (-1) for a shared buffer. arg6
is true if the buffer was found in the
pool, false if not.

buffer-flush-start (ForkNumber, BlockNumber,
Oid, Oid, Oid)

Probe that fires before issuing any
write request for a shared buffer.
arg0 and arg1 contain the fork and

786

Monitoring Database Activity

Name Parameters Description
block numbers of the page. arg2,
arg3, and arg4 contain the table-
space, database, and relation OIDs
identifying the relation.

buffer-flush-done (ForkNumber, BlockNumber,
Oid, Oid, Oid)

Probe that fires when a write request
is complete. (Note that this just re-
flects the time to pass the data to the
kernel; it's typically not actually been
written to disk yet.) The arguments
are the same as for buffer-flush-
start.

wal-buffer-write-
dirty-start

() Probe that fires when a server
process begins to write a dirty WAL
buffer because no more WAL buffer
space is available. (If this happens of-
ten, it implies that wal_buffers is too
small.)

wal-buffer-write-
dirty-done

() Probe that fires when a dirty WAL
buffer write is complete.

wal-insert (unsigned char, unsigned
char)

Probe that fires when a WAL record
is inserted. arg0 is the resource man-
ager (rmid) for the record. arg1 con-
tains the info flags.

wal-switch () Probe that fires when a WAL seg-
ment switch is requested.

smgr-md-read-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int)

Probe that fires when beginning to
read a block from a relation. arg0
and arg1 contain the fork and block
numbers of the page. arg2, arg3,
and arg4 contain the tablespace,
database, and relation OIDs identi-
fying the relation. arg5 is the ID of
the backend which created the tem-
porary relation for a local buffer, or
INVALID_PROC_NUMBER (-1) for a
shared buffer.

smgr-md-read-done (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, int,
int)

Probe that fires when a block read
is complete. arg0 and arg1 contain
the fork and block numbers of the
page. arg2, arg3, and arg4 contain
the tablespace, database, and rela-
tion OIDs identifying the relation.
arg5 is the ID of the backend which
created the temporary relation for a
local buffer, or INVALID_PROC_NUM-
BER (-1) for a shared buffer. arg6 is
the number of bytes actually read,
while arg7 is the number requested
(if these are different it indicates a
short read).

smgr-md-write-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int)

Probe that fires when beginning to
write a block to a relation. arg0 and
arg1 contain the fork and block num-

787

Monitoring Database Activity

Name Parameters Description
bers of the page. arg2, arg3, and
arg4 contain the tablespace, data-
base, and relation OIDs identifying
the relation. arg5 is the ID of the
backend which created the tempo-
rary relation for a local buffer, or
INVALID_PROC_NUMBER (-1) for a
shared buffer.

smgr-md-write-done (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, int,
int)

Probe that fires when a block write
is complete. arg0 and arg1 contain
the fork and block numbers of the
page. arg2, arg3, and arg4 contain
the tablespace, database, and rela-
tion OIDs identifying the relation.
arg5 is the ID of the backend which
created the temporary relation for a
local buffer, or INVALID_PROC_NUM-
BER (-1) for a shared buffer. arg6 is
the number of bytes actually written,
while arg7 is the number requested
(if these are different it indicates a
short write).

sort-start (int, bool, int, int,
bool, int)

Probe that fires when a sort opera-
tion is started. arg0 indicates heap,
index or datum sort. arg1 is true for
unique-value enforcement. arg2 is
the number of key columns. arg3
is the number of kilobytes of work
memory allowed. arg4 is true if ran-
dom access to the sort result is re-
quired. arg5 indicates serial when 0,
parallel worker when 1, or parallel
leader when 2.

sort-done (bool, long) Probe that fires when a sort is com-
plete. arg0 is true for external sort,
false for internal sort. arg1 is the
number of disk blocks used for an ex-
ternal sort, or kilobytes of memory
used for an internal sort.

lwlock-acquire (char *, LWLockMode) Probe that fires when an LWLock has
been acquired. arg0 is the LWLock's
tranche. arg1 is the requested lock
mode, either exclusive or shared.

lwlock-release (char *) Probe that fires when an LWLock
has been released (but note that any
released waiters have not yet been
awakened). arg0 is the LWLock's
tranche.

lwlock-wait-start (char *, LWLockMode) Probe that fires when an LWLock
was not immediately available and a
server process has begun to wait for
the lock to become available. arg0 is
the LWLock's tranche. arg1 is the re-

788

Monitoring Database Activity

Name Parameters Description
quested lock mode, either exclusive
or shared.

lwlock-wait-done (char *, LWLockMode) Probe that fires when a server
process has been released from its
wait for an LWLock (it does not ac-
tually have the lock yet). arg0 is the
LWLock's tranche. arg1 is the re-
quested lock mode, either exclusive
or shared.

lwlock-condacquire (char *, LWLockMode) Probe that fires when an LWLock
was successfully acquired when the
caller specified no waiting. arg0 is
the LWLock's tranche. arg1 is the re-
quested lock mode, either exclusive
or shared.

lwlock-condac-
quire-fail

(char *, LWLockMode) Probe that fires when an LWLock was
not successfully acquired when the
caller specified no waiting. arg0 is
the LWLock's tranche. arg1 is the re-
quested lock mode, either exclusive
or shared.

lock-wait-start (unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, LOCKMODE)

Probe that fires when a request for a
heavyweight lock (lmgr lock) has be-
gun to wait because the lock is not
available. arg0 through arg3 are the
tag fields identifying the object being
locked. arg4 indicates the type of ob-
ject being locked. arg5 indicates the
lock type being requested.

lock-wait-done (unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, LOCKMODE)

Probe that fires when a request for a
heavyweight lock (lmgr lock) has fin-
ished waiting (i.e., has acquired the
lock). The arguments are the same as
for lock-wait-start.

deadlock-found () Probe that fires when a deadlock is
found by the deadlock detector.

Table 27.50. Defined Types Used in Probe Parameters

Type Definition
LocalTransactionId unsigned int

LWLockMode int

LOCKMODE int

BlockNumber unsigned int

Oid unsigned int

ForkNumber int

bool unsigned char

27.5.3. Using Probes
The example below shows a DTrace script for analyzing transaction counts in the system, as an alterna-
tive to snapshotting pg_stat_database before and after a performance test:

789

Monitoring Database Activity

#!/usr/sbin/dtrace -qs

postgresql$1:::transaction-start
{
 @start["Start"] = count();
 self->ts = timestamp;
}

postgresql$1:::transaction-abort
{
 @abort["Abort"] = count();
}

postgresql$1:::transaction-commit
/self->ts/
{
 @commit["Commit"] = count();
 @time["Total time (ns)"] = sum(timestamp - self->ts);
 self->ts=0;
}

When executed, the example D script gives output such as:
./txn_count.d `pgrep -n postgres` or ./txn_count.d <PID>
^C

Start 71
Commit 70
Total time (ns) 2312105013

Note
SystemTap uses a different notation for trace scripts than DTrace does, even though the underlying
trace points are compatible. One point worth noting is that at this writing, SystemTap scripts must
reference probe names using double underscores in place of hyphens. This is expected to be fixed
in future SystemTap releases.

You should remember that DTrace scripts need to be carefully written and debugged, otherwise the
trace information collected might be meaningless. In most cases where problems are found it is the
instrumentation that is at fault, not the underlying system. When discussing information found using
dynamic tracing, be sure to enclose the script used to allow that too to be checked and discussed.

27.5.4. Defining New Probes
New probes can be defined within the code wherever the developer desires, though this will require a
recompilation. Below are the steps for inserting new probes:

1. Decide on probe names and data to be made available through the probes
2. Add the probe definitions to src/backend/utils/probes.d
3. Include pg_trace.h if it is not already present in the module(s) containing the probe points, and

insert TRACE_POSTGRESQL probe macros at the desired locations in the source code
4. Recompile and verify that the new probes are available
Example: Here is an example of how you would add a probe to trace all new transactions by trans-
action ID.

1. Decide that the probe will be named transaction-start and requires a parameter of type Local-
TransactionId

790

Monitoring Database Activity

2. Add the probe definition to src/backend/utils/probes.d:
probe transaction__start(LocalTransactionId);

Note the use of the double underline in the probe name. In a DTrace script using the probe, the
double underline needs to be replaced with a hyphen, so transaction-start is the name to docu-
ment for users.

3. At compile time, transaction__start is converted to a macro called TRACE_POSTGRESQL_TRANSAC-
TION_START (notice the underscores are single here), which is available by including pg_trace.h.
Add the macro call to the appropriate location in the source code. In this case, it looks like the
following:
TRACE_POSTGRESQL_TRANSACTION_START(vxid.localTransactionId);

4. After recompiling and running the new binary, check that your newly added probe is available by
executing the following DTrace command. You should see similar output:
dtrace -ln transaction-start
 ID PROVIDER MODULE FUNCTION NAME
18705 postgresql49878 postgres StartTransactionCommand transaction-start
18755 postgresql49877 postgres StartTransactionCommand transaction-start
18805 postgresql49876 postgres StartTransactionCommand transaction-start
18855 postgresql49875 postgres StartTransactionCommand transaction-start
18986 postgresql49873 postgres StartTransactionCommand transaction-start

There are a few things to be careful about when adding trace macros to the C code:
• You should take care that the data types specified for a probe's parameters match the data types of

the variables used in the macro. Otherwise, you will get compilation errors.
• On most platforms, if PostgreSQL is built with --enable-dtrace, the arguments to a trace macro

will be evaluated whenever control passes through the macro, even if no tracing is being done. This
is usually not worth worrying about if you are just reporting the values of a few local variables. But
beware of putting expensive function calls into the arguments. If you need to do that, consider pro-
tecting the macro with a check to see if the trace is actually enabled:
if (TRACE_POSTGRESQL_TRANSACTION_START_ENABLED())
 TRACE_POSTGRESQL_TRANSACTION_START(some_function(...));

Each trace macro has a corresponding ENABLED macro.

27.6. Monitoring Disk Usage
This section discusses how to monitor the disk usage of a PostgreSQL database system.

27.6.1. Determining Disk Usage
Each table has a primary heap disk file where most of the data is stored. If the table has any columns
with potentially-wide values, there also might be a TOAST file associated with the table, which is used
to store values too wide to fit comfortably in the main table (see Section 66.2). There will be one valid
index on the TOAST table, if present. There also might be indexes associated with the base table. Each
table and index is stored in a separate disk file — possibly more than one file, if the file would exceed
one gigabyte. Naming conventions for these files are described in Section 66.1.

You can monitor disk space in three ways: using the SQL functions listed in Table 9.102, using the
oid2name module, or using manual inspection of the system catalogs. The SQL functions are the easiest
to use and are generally recommended. The remainder of this section shows how to do it by inspection
of the system catalogs.

Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage
of any table:
SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = 'customer';

791

Monitoring Database Activity

 pg_relation_filepath | relpages
----------------------+----------
 base/16384/16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remember, relpages is only updated by VACUUM, ANALYZE, and a few
DDL commands such as CREATE INDEX.) The file path name is of interest if you want to examine the
table's disk file directly.

To show the space used by TOAST tables, use a query like the following:

SELECT relname, relpages
FROM pg_class,
 (SELECT reltoastrelid
 FROM pg_class
 WHERE relname = 'customer') AS ss
WHERE oid = ss.reltoastrelid OR
 oid = (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = ss.reltoastrelid)
ORDER BY relname;

 relname | relpages
----------------------+----------
 pg_toast_16806 | 0
 pg_toast_16806_index | 1

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = 'customer' AND
 c.oid = i.indrelid AND
 c2.oid = i.indexrelid
ORDER BY c2.relname;

 relname | relpages
-------------------+----------
 customer_id_index | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

 relname | relpages
----------------------+----------
 bigtable | 3290
 customer | 3144

27.6.2. Disk Full Failure
The most important disk monitoring task of a database administrator is to make sure the disk doesn't
become full. A filled data disk will not result in data corruption, but it might prevent useful activity from
occurring. If the disk holding the WAL files grows full, database server panic and consequent shutdown
might occur.

If you cannot free up additional space on the disk by deleting other things, you can move some of the
database files to other file systems by making use of tablespaces. See Section 22.6 for more information
about that.

792

Monitoring Database Activity

Tip
Some file systems perform badly when they are almost full, so do not wait until the disk is com-
pletely full to take action.

If your system supports per-user disk quotas, then the database will naturally be subject to whatever
quota is placed on the user the server runs as. Exceeding the quota will have the same bad effects as
running out of disk space entirely.

793

Chapter 28. Reliability and the Write-Ahead
Log

This chapter explains how to control the reliability of PostgreSQL, including details about the Write-
Ahead Log.

28.1. Reliability
Reliability is an important property of any serious database system, and PostgreSQL does everything
possible to guarantee reliable operation. One aspect of reliable operation is that all data recorded by
a committed transaction should be stored in a nonvolatile area that is safe from power loss, operating
system failure, and hardware failure (except failure of the nonvolatile area itself, of course). Successfully
writing the data to the computer's permanent storage (disk drive or equivalent) ordinarily meets this
requirement. In fact, even if a computer is fatally damaged, if the disk drives survive they can be moved
to another computer with similar hardware and all committed transactions will remain intact.

While forcing data to the disk platters periodically might seem like a simple operation, it is not. Because
disk drives are dramatically slower than main memory and CPUs, several layers of caching exist between
the computer's main memory and the disk platters. First, there is the operating system's buffer cache,
which caches frequently requested disk blocks and combines disk writes. Fortunately, all operating
systems give applications a way to force writes from the buffer cache to disk, and PostgreSQL uses those
features. (See the wal_sync_method parameter to adjust how this is done.)

Next, there might be a cache in the disk drive controller; this is particularly common on RAID controller
cards. Some of these caches are write-through, meaning writes are sent to the drive as soon as they
arrive. Others are write-back, meaning data is sent to the drive at some later time. Such caches can be
a reliability hazard because the memory in the disk controller cache is volatile, and will lose its contents
in a power failure. Better controller cards have battery-backup units (BBUs), meaning the card has a
battery that maintains power to the cache in case of system power loss. After power is restored the data
will be written to the disk drives.

And finally, most disk drives have caches. Some are write-through while some are write-back, and the
same concerns about data loss exist for write-back drive caches as for disk controller caches. Con-
sumer-grade IDE and SATA drives are particularly likely to have write-back caches that will not survive
a power failure. Many solid-state drives (SSD) also have volatile write-back caches.

These caches can typically be disabled; however, the method for doing this varies by operating system
and drive type:

• On Linux, IDE and SATA drives can be queried using hdparm -I; write caching is enabled if there
is a * next to Write cache. hdparm -W 0 can be used to turn off write caching. SCSI drives can be
queried using sdparm. Use sdparm --get=WCE to check whether the write cache is enabled and sd-
parm --clear=WCE to disable it.

• On FreeBSD, IDE drives can be queried using camcontrol identify and write caching turned off
using hw.ata.wc=0 in /boot/loader.conf; SCSI drives can be queried using camcontrol identi-
fy, and the write cache both queried and changed using sdparm when available.

• On Solaris, the disk write cache is controlled by format -e. (The Solaris ZFS file system is safe
with disk write-cache enabled because it issues its own disk cache flush commands.)

• On Windows, if wal_sync_method is open_datasync (the default), write caching can be disabled by
unchecking My Computer\Open\disk drive\Properties\Hardware\Properties\Policies\En-
able write caching on the disk. Alternatively, set wal_sync_method to fdatasync (NTFS only)
or fsync, which prevent write caching.

• On macOS, write caching can be prevented by setting wal_sync_method to fsync_writethrough.
Recent SATA drives (those following ATAPI-6 or later) offer a drive cache flush command (FLUSH CACHE
EXT), while SCSI drives have long supported a similar command SYNCHRONIZE CACHE. These commands

794

http://sg.danny.cz/sg/sdparm.html

Reliability and the Write-Ahead Log

are not directly accessible to PostgreSQL, but some file systems (e.g., ZFS, ext4) can use them to flush
data to the platters on write-back-enabled drives. Unfortunately, such file systems behave suboptimally
when combined with battery-backup unit (BBU) disk controllers. In such setups, the synchronize com-
mand forces all data from the controller cache to the disks, eliminating much of the benefit of the BBU.
You can run the pg_test_fsync program to see if you are affected. If you are affected, the performance
benefits of the BBU can be regained by turning off write barriers in the file system or reconfiguring
the disk controller, if that is an option. If write barriers are turned off, make sure the battery remains
functional; a faulty battery can potentially lead to data loss. Hopefully file system and disk controller
designers will eventually address this suboptimal behavior.

When the operating system sends a write request to the storage hardware, there is little it can do to
make sure the data has arrived at a truly non-volatile storage area. Rather, it is the administrator's
responsibility to make certain that all storage components ensure integrity for both data and file-system
metadata. Avoid disk controllers that have non-battery-backed write caches. At the drive level, disable
write-back caching if the drive cannot guarantee the data will be written before shutdown. If you use
SSDs, be aware that many of these do not honor cache flush commands by default. You can test for
reliable I/O subsystem behavior using diskchecker.pl.

Another risk of data loss is posed by the disk platter write operations themselves. Disk platters are
divided into sectors, commonly 512 bytes each. Every physical read or write operation processes a
whole sector. When a write request arrives at the drive, it might be for some multiple of 512 bytes
(PostgreSQL typically writes 8192 bytes, or 16 sectors, at a time), and the process of writing could fail
due to power loss at any time, meaning some of the 512-byte sectors were written while others were
not. To guard against such failures, PostgreSQL periodically writes full page images to permanent WAL
storage before modifying the actual page on disk. By doing this, during crash recovery PostgreSQL can
restore partially-written pages from WAL. If you have file-system software that prevents partial page
writes (e.g., ZFS), you can turn off this page imaging by turning off the full_page_writes parameter.
Battery-Backed Unit (BBU) disk controllers do not prevent partial page writes unless they guarantee
that data is written to the BBU as full (8kB) pages.

PostgreSQL also protects against some kinds of data corruption on storage devices that may occur
because of hardware errors or media failure over time, such as reading/writing garbage data.

• Each individual record in a WAL file is protected by a CRC-32C (32-bit) check that allows us to tell
if record contents are correct. The CRC value is set when we write each WAL record and checked
during crash recovery, archive recovery and replication.

• Data pages are checksummed by default, and full page images recorded in WAL records are always
checksum protected.

• Internal data structures such as pg_xact, pg_subtrans, pg_multixact, pg_serial, pg_notify,
pg_stat, pg_snapshots are not directly checksummed, nor are pages protected by full page writes.
However, where such data structures are persistent, WAL records are written that allow recent
changes to be accurately rebuilt at crash recovery and those WAL records are protected as dis-
cussed above.

• Individual state files in pg_twophase are protected by CRC-32C.

• Temporary data files used in larger SQL queries for sorts, materializations and intermediate results
are not currently checksummed, nor will WAL records be written for changes to those files.

PostgreSQL does not protect against correctable memory errors and it is assumed you will operate using
RAM that uses industry standard Error Correcting Codes (ECC) or better protection.

28.2. Data Checksums
By default, data pages are protected by checksums, but this can optionally be disabled for a cluster.
When enabled, each data page includes a checksum that is updated when the page is written and verified
each time the page is read. Only data pages are protected by checksums; internal data structures and
temporary files are not.

795

https://brad.livejournal.com/2116715.html

Reliability and the Write-Ahead Log

Checksums can be disabled when the cluster is initialized using initdb. They can also be enabled or
disabled at a later time as an offline operation. Data checksums are enabled or disabled at the full cluster
level, and cannot be specified individually for databases or tables.

The current state of checksums in the cluster can be verified by viewing the value of the read-only
configuration variable data_checksums by issuing the command SHOW data_checksums.

When attempting to recover from page corruptions, it may be necessary to bypass the checksum pro-
tection. To do this, temporarily set the configuration parameter ignore_checksum_failure.

28.2.1. Off-line Enabling of Checksums
The pg_checksums application can be used to enable or disable data checksums, as well as verify check-
sums, on an offline cluster.

28.3. Write-Ahead Logging (WAL)
Write-Ahead Logging (WAL) is a standard method for ensuring data integrity. A detailed description can
be found in most (if not all) books about transaction processing. Briefly, WAL's central concept is that
changes to data files (where tables and indexes reside) must be written only after those changes have
been logged, that is, after WAL records describing the changes have been flushed to permanent storage.
If we follow this procedure, we do not need to flush data pages to disk on every transaction commit,
because we know that in the event of a crash we will be able to recover the database using the log: any
changes that have not been applied to the data pages can be redone from the WAL records. (This is roll-
forward recovery, also known as REDO.)

Tip
Because WAL restores database file contents after a crash, journaled file systems are not neces-
sary for reliable storage of the data files or WAL files. In fact, journaling overhead can reduce
performance, especially if journaling causes file system data to be flushed to disk. Fortunately,
data flushing during journaling can often be disabled with a file system mount option, e.g., da-
ta=writeback on a Linux ext3 file system. Journaled file systems do improve boot speed after a
crash.

Using WAL results in a significantly reduced number of disk writes, because only the WAL file needs
to be flushed to disk to guarantee that a transaction is committed, rather than every data file changed
by the transaction. The WAL file is written sequentially, and so the cost of syncing the WAL is much
less than the cost of flushing the data pages. This is especially true for servers handling many small
transactions touching different parts of the data store. Furthermore, when the server is processing many
small concurrent transactions, one fsync of the WAL file may suffice to commit many transactions.

WAL also makes it possible to support on-line backup and point-in-time recovery, as described in Sec-
tion 25.3. By archiving the WAL data we can support reverting to any time instant covered by the avail-
able WAL data: we simply install a prior physical backup of the database, and replay the WAL just as
far as the desired time. What's more, the physical backup doesn't have to be an instantaneous snapshot
of the database state — if it is made over some period of time, then replaying the WAL for that period
will fix any internal inconsistencies.

28.4. Asynchronous Commit
Asynchronous commit is an option that allows transactions to complete more quickly, at the cost that
the most recent transactions may be lost if the database should crash. In many applications this is an
acceptable trade-off.

As described in the previous section, transaction commit is normally synchronous: the server waits for
the transaction's WAL records to be flushed to permanent storage before returning a success indication

796

Reliability and the Write-Ahead Log

to the client. The client is therefore guaranteed that a transaction reported to be committed will be
preserved, even in the event of a server crash immediately after. However, for short transactions this
delay is a major component of the total transaction time. Selecting asynchronous commit mode means
that the server returns success as soon as the transaction is logically completed, before the WAL records
it generated have actually made their way to disk. This can provide a significant boost in throughput
for small transactions.

Asynchronous commit introduces the risk of data loss. There is a short time window between the report
of transaction completion to the client and the time that the transaction is truly committed (that is, it
is guaranteed not to be lost if the server crashes). Thus asynchronous commit should not be used if the
client will take external actions relying on the assumption that the transaction will be remembered. As
an example, a bank would certainly not use asynchronous commit for a transaction recording an ATM's
dispensing of cash. But in many scenarios, such as event logging, there is no need for a strong guarantee
of this kind.

The risk that is taken by using asynchronous commit is of data loss, not data corruption. If the database
should crash, it will recover by replaying WAL up to the last record that was flushed. The database will
therefore be restored to a self-consistent state, but any transactions that were not yet flushed to disk
will not be reflected in that state. The net effect is therefore loss of the last few transactions. Because
the transactions are replayed in commit order, no inconsistency can be introduced — for example, if
transaction B made changes relying on the effects of a previous transaction A, it is not possible for A's
effects to be lost while B's effects are preserved.

The user can select the commit mode of each transaction, so that it is possible to have both synchronous
and asynchronous commit transactions running concurrently. This allows flexible trade-offs between
performance and certainty of transaction durability. The commit mode is controlled by the user-settable
parameter synchronous_commit, which can be changed in any of the ways that a configuration parameter
can be set. The mode used for any one transaction depends on the value of synchronous_commit when
transaction commit begins.

Certain utility commands, for instance DROP TABLE, are forced to commit synchronously regardless
of the setting of synchronous_commit. This is to ensure consistency between the server's file system
and the logical state of the database. The commands supporting two-phase commit, such as PREPARE
TRANSACTION, are also always synchronous.

If the database crashes during the risk window between an asynchronous commit and the writing of
the transaction's WAL records, then changes made during that transaction will be lost. The duration
of the risk window is limited because a background process (the “WAL writer”) flushes unwritten WAL
records to disk every wal_writer_delay milliseconds. The actual maximum duration of the risk window
is three times wal_writer_delay because the WAL writer is designed to favor writing whole pages at
a time during busy periods.

Caution
An immediate-mode shutdown is equivalent to a server crash, and will therefore cause loss of any
unflushed asynchronous commits.

Asynchronous commit provides behavior different from setting fsync = off. fsync is a server-wide setting
that will alter the behavior of all transactions. It disables all logic within PostgreSQL that attempts to
synchronize writes to different portions of the database, and therefore a system crash (that is, a hard-
ware or operating system crash, not a failure of PostgreSQL itself) could result in arbitrarily bad corrup-
tion of the database state. In many scenarios, asynchronous commit provides most of the performance
improvement that could be obtained by turning off fsync, but without the risk of data corruption.

commit_delay also sounds very similar to asynchronous commit, but it is actually a synchronous commit
method (in fact, commit_delay is ignored during an asynchronous commit). commit_delay causes a delay
just before a transaction flushes WAL to disk, in the hope that a single flush executed by one such

797

Reliability and the Write-Ahead Log

transaction can also serve other transactions committing at about the same time. The setting can be
thought of as a way of increasing the time window in which transactions can join a group about to
participate in a single flush, to amortize the cost of the flush among multiple transactions.

28.5. WAL Configuration
There are several WAL-related configuration parameters that affect database performance. This section
explains their use. Consult Chapter 19 for general information about setting server configuration para-
meters.

Checkpointsare points in the sequence of transactions at which it is guaranteed that the heap and index
data files have been updated with all information written before that checkpoint. At checkpoint time,
all dirty data pages are flushed to disk and a special checkpoint record is written to the WAL file. (The
change records were previously flushed to the WAL files.) In the event of a crash, the crash recovery
procedure looks at the latest checkpoint record to determine the point in the WAL (known as the redo
record) from which it should start the REDO operation. Any changes made to data files before that
point are guaranteed to be already on disk. Hence, after a checkpoint, WAL segments preceding the one
containing the redo record are no longer needed and can be recycled or removed. (When WAL archiving
is being done, the WAL segments must be archived before being recycled or removed.)

The checkpoint requirement of flushing all dirty data pages to disk can cause a significant I/O load. For
this reason, checkpoint activity is throttled so that I/O begins at checkpoint start and completes before
the next checkpoint is due to start; this minimizes performance degradation during checkpoints.

The server's checkpointer process automatically performs a checkpoint every so often. A checkpoint is
begun every checkpoint_timeout seconds, or if max_wal_size is about to be exceeded, whichever comes
first. The default settings are 5 minutes and 1 GB, respectively. If no WAL has been written since the
previous checkpoint, new checkpoints will be skipped even if checkpoint_timeout has passed. (If WAL
archiving is being used and you want to put a lower limit on how often files are archived in order to
bound potential data loss, you should adjust the archive_timeout parameter rather than the checkpoint
parameters.) It is also possible to force a checkpoint by using the SQL command CHECKPOINT.

Reducing checkpoint_timeout and/or max_wal_size causes checkpoints to occur more often. This al-
lows faster after-crash recovery, since less work will need to be redone. However, one must balance
this against the increased cost of flushing dirty data pages more often. If full_page_writes is set (as is
the default), there is another factor to consider. To ensure data page consistency, the first modification
of a data page after each checkpoint results in logging the entire page content. In that case, a smaller
checkpoint interval increases the volume of output to the WAL, partially negating the goal of using a
smaller interval, and in any case causing more disk I/O.

Checkpoints are fairly expensive, first because they require writing out all currently dirty buffers, and
second because they result in extra subsequent WAL traffic as discussed above. It is therefore wise to
set the checkpointing parameters high enough so that checkpoints don't happen too often. As a sim-
ple sanity check on your checkpointing parameters, you can set the checkpoint_warning parameter. If
checkpoints happen closer together than checkpoint_warning seconds, a message will be output to the
server log recommending increasing max_wal_size. Occasional appearance of such a message is not
cause for alarm, but if it appears often then the checkpoint control parameters should be increased.
Bulk operations such as large COPY transfers might cause a number of such warnings to appear if you
have not set max_wal_size high enough.

To avoid flooding the I/O system with a burst of page writes, writing dirty buffers during a checkpoint
is spread over a period of time. That period is controlled by checkpoint_completion_target, which is
given as a fraction of the checkpoint interval (configured by using checkpoint_timeout). The I/O rate
is adjusted so that the checkpoint finishes when the given fraction of checkpoint_timeout seconds
have elapsed, or before max_wal_size is exceeded, whichever is sooner. With the default value of 0.9,
PostgreSQL can be expected to complete each checkpoint a bit before the next scheduled checkpoint
(at around 90% of the last checkpoint's duration). This spreads out the I/O as much as possible so that
the checkpoint I/O load is consistent throughout the checkpoint interval. The disadvantage of this is
that prolonging checkpoints affects recovery time, because more WAL segments will need to be kept

798

Reliability and the Write-Ahead Log

around for possible use in recovery. A user concerned about the amount of time required to recover
might wish to reduce checkpoint_timeout so that checkpoints occur more frequently but still spread
the I/O across the checkpoint interval. Alternatively, checkpoint_completion_target could be reduced,
but this would result in times of more intense I/O (during the checkpoint) and times of less I/O (after
the checkpoint completed but before the next scheduled checkpoint) and therefore is not recommended.
Although checkpoint_completion_target could be set as high as 1.0, it is typically recommended to
set it to no higher than 0.9 (the default) since checkpoints include some other activities besides writing
dirty buffers. A setting of 1.0 is quite likely to result in checkpoints not being completed on time, which
would result in performance loss due to unexpected variation in the number of WAL segments needed.

On Linux and POSIX platforms checkpoint_flush_after allows you to force OS pages written by the check-
point to be flushed to disk after a configurable number of bytes. Otherwise, these pages may be kept
in the OS's page cache, inducing a stall when fsync is issued at the end of a checkpoint. This setting
will often help to reduce transaction latency, but it also can have an adverse effect on performance;
particularly for workloads that are bigger than shared_buffers, but smaller than the OS's page cache.

The number of WAL segment files in pg_wal directory depends on min_wal_size, max_wal_size and the
amount of WAL generated in previous checkpoint cycles. When old WAL segment files are no longer
needed, they are removed or recycled (that is, renamed to become future segments in the numbered
sequence). If, due to a short-term peak of WAL output rate, max_wal_size is exceeded, the unneeded
segment files will be removed until the system gets back under this limit. Below that limit, the system
recycles enough WAL files to cover the estimated need until the next checkpoint, and removes the rest.
The estimate is based on a moving average of the number of WAL files used in previous checkpoint
cycles. The moving average is increased immediately if the actual usage exceeds the estimate, so it
accommodates peak usage rather than average usage to some extent. min_wal_size puts a minimum
on the amount of WAL files recycled for future usage; that much WAL is always recycled for future use,
even if the system is idle and the WAL usage estimate suggests that little WAL is needed.

Independently of max_wal_size, the most recent wal_keep_size megabytes of WAL files plus one addi-
tional WAL file are kept at all times. Also, if WAL archiving is used, old segments cannot be removed or
recycled until they are archived. If WAL archiving cannot keep up with the pace that WAL is generated,
or if archive_command or archive_library fails repeatedly, old WAL files will accumulate in pg_wal
until the situation is resolved. A slow or failed standby server that uses a replication slot will have the
same effect (see Section 26.2.6). Similarly, if WAL summarization is enabled, old segments are kept
until they are summarized.

In archive recovery or standby mode, the server periodically performs restartpoints, which are similar
to checkpoints in normal operation: the server forces all its state to disk, updates the pg_control file to
indicate that the already-processed WAL data need not be scanned again, and then recycles any old WAL
segment files in the pg_wal directory. Restartpoints can't be performed more frequently than check-
points on the primary because restartpoints can only be performed at checkpoint records. A restartpoint
can be demanded by a schedule or by an external request. The restartpoints_timed counter in the
pg_stat_checkpointer view counts the first ones while the restartpoints_req the second. A restart-
point is triggered by schedule when a checkpoint record is reached if at least checkpoint_timeout sec-
onds have passed since the last performed restartpoint or when the previous attempt to perform the
restartpoint has failed. In the last case, the next restartpoint will be scheduled in 15 seconds. A restart-
point is triggered by request due to similar reasons like checkpoint but mostly if WAL size is about to
exceed max_wal_size However, because of limitations on when a restartpoint can be performed, max_w-
al_size is often exceeded during recovery, by up to one checkpoint cycle's worth of WAL. (max_wal_size
is never a hard limit anyway, so you should always leave plenty of headroom to avoid running out of disk
space.) The restartpoints_done counter in the pg_stat_checkpointer view counts the restartpoints
that have really been performed.

In some cases, when the WAL size on the primary increases quickly, for instance during massive INSERT,
the restartpoints_req counter on the standby may demonstrate a peak growth. This occurs because
requests to create a new restartpoint due to increased WAL consumption cannot be performed because
the safe checkpoint record since the last restartpoint has not yet been replayed on the standby. This
behavior is normal and does not lead to an increase in system resource consumption. Only the restart-

799

Reliability and the Write-Ahead Log

points_done counter among the restartpoint-related ones indicates that noticeable system resources
have been spent.

There are two commonly used internal WAL functions: XLogInsertRecord and XLogFlush.
XLogInsertRecord is used to place a new record into the WAL buffers in shared memory. If there is
no space for the new record, XLogInsertRecord will have to write (move to kernel cache) a few filled
WAL buffers. This is undesirable because XLogInsertRecord is used on every database low level mod-
ification (for example, row insertion) at a time when an exclusive lock is held on affected data pages,
so the operation needs to be as fast as possible. What is worse, writing WAL buffers might also force
the creation of a new WAL segment, which takes even more time. Normally, WAL buffers should be
written and flushed by an XLogFlush request, which is made, for the most part, at transaction commit
time to ensure that transaction records are flushed to permanent storage. On systems with high WAL
output, XLogFlush requests might not occur often enough to prevent XLogInsertRecord from having to
do writes. On such systems one should increase the number of WAL buffers by modifying the wal_buffers
parameter. When full_page_writes is set and the system is very busy, setting wal_buffers higher will
help smooth response times during the period immediately following each checkpoint.

The commit_delay parameter defines for how many microseconds a group commit leader process will
sleep after acquiring a lock within XLogFlush, while group commit followers queue up behind the leader.
This delay allows other server processes to add their commit records to the WAL buffers so that all of
them will be flushed by the leader's eventual sync operation. No sleep will occur if fsync is not enabled,
or if fewer than commit_siblings other sessions are currently in active transactions; this avoids sleeping
when it's unlikely that any other session will commit soon. Note that on some platforms, the resolution
of a sleep request is ten milliseconds, so that any nonzero commit_delay setting between 1 and 10000
microseconds would have the same effect. Note also that on some platforms, sleep operations may take
slightly longer than requested by the parameter.

Since the purpose of commit_delay is to allow the cost of each flush operation to be amortized across
concurrently committing transactions (potentially at the expense of transaction latency), it is neces-
sary to quantify that cost before the setting can be chosen intelligently. The higher that cost is, the
more effective commit_delay is expected to be in increasing transaction throughput, up to a point. The
pg_test_fsync program can be used to measure the average time in microseconds that a single WAL flush
operation takes. A value of half of the average time the program reports it takes to flush after a single
8kB write operation is often the most effective setting for commit_delay, so this value is recommended
as the starting point to use when optimizing for a particular workload. While tuning commit_delay is
particularly useful when the WAL is stored on high-latency rotating disks, benefits can be significant
even on storage media with very fast sync times, such as solid-state drives or RAID arrays with a bat-
tery-backed write cache; but this should definitely be tested against a representative workload. Higher
values of commit_siblings should be used in such cases, whereas smaller commit_siblings values are
often helpful on higher latency media. Note that it is quite possible that a setting of commit_delay that
is too high can increase transaction latency by so much that total transaction throughput suffers.

When commit_delay is set to zero (the default), it is still possible for a form of group commit to occur,
but each group will consist only of sessions that reach the point where they need to flush their com-
mit records during the window in which the previous flush operation (if any) is occurring. At higher
client counts a “gangway effect” tends to occur, so that the effects of group commit become significant
even when commit_delay is zero, and thus explicitly setting commit_delay tends to help less. Setting
commit_delay can only help when (1) there are some concurrently committing transactions, and (2)
throughput is limited to some degree by commit rate; but with high rotational latency this setting can
be effective in increasing transaction throughput with as few as two clients (that is, a single committing
client with one sibling transaction).

The wal_sync_method parameter determines how PostgreSQL will ask the kernel to force WAL up-
dates out to disk. All the options should be the same in terms of reliability, with the exception of
fsync_writethrough, which can sometimes force a flush of the disk cache even when other options do
not do so. However, it's quite platform-specific which one will be the fastest. You can test the speeds of
different options using the pg_test_fsync program. Note that this parameter is irrelevant if fsync has
been turned off.

800

Reliability and the Write-Ahead Log

Enabling the wal_debug configuration parameter (provided that PostgreSQL has been compiled with
support for it) will result in each XLogInsertRecord and XLogFlush WAL call being logged to the server
log. This option might be replaced by a more general mechanism in the future.

There are two internal functions to write WAL data to disk: XLogWrite and issue_xlog_fsync. When
track_wal_io_timing is enabled, the total amounts of time XLogWrite writes and issue_xlog_fsync syncs
WAL data to disk are counted as write_time and fsync_time in pg_stat_io for the object wal, respec-
tively. XLogWrite is normally called by XLogInsertRecord (when there is no space for the new record in
WAL buffers), XLogFlush and the WAL writer, to write WAL buffers to disk and call issue_xlog_fsync.
issue_xlog_fsync is normally called by XLogWrite to sync WAL files to disk. If wal_sync_method is
either open_datasync or open_sync, a write operation in XLogWrite guarantees to sync written WAL
data to disk and issue_xlog_fsync does nothing. If wal_sync_method is either fdatasync, fsync, or
fsync_writethrough, the write operation moves WAL buffers to kernel cache and issue_xlog_fsync
syncs them to disk. Regardless of the setting of track_wal_io_timing, the number of times XLogWrite
writes and issue_xlog_fsync syncs WAL data to disk are also counted as writes and fsyncs in pg_s-
tat_io for the object wal, respectively.

The recovery_prefetch parameter can be used to reduce I/O wait times during recovery by instructing
the kernel to initiate reads of disk blocks that will soon be needed but are not currently in PostgreSQL's
buffer pool. The maintenance_io_concurrency and wal_decode_buffer_size settings limit prefetching con-
currency and distance, respectively. By default, it is set to try, which enables the feature on systems
that support issuing read-ahead advice.

28.6. WAL Internals
WAL is automatically enabled; no action is required from the administrator except ensuring that the disk-
space requirements for the WAL files are met, and that any necessary tuning is done (see Section 28.5).

WAL records are appended to the WAL files as each new record is written. The insert position is described
by a Log Sequence Number (LSN) that is a byte offset into the WAL, increasing monotonically with each
new record. LSN values are returned as the datatype pg_lsn. Values can be compared to calculate the
volume of WAL data that separates them, so they are used to measure the progress of replication and
recovery.

WAL files are stored in the directory pg_wal under the data directory, as a set of segment files, normally
each 16 MB in size (but the size can be changed by altering the --wal-segsize initdb option). Each seg-
ment is divided into pages, normally 8 kB each (this size can be changed via the --with-wal-blocksize
configure option). The WAL record headers are described in access/xlogrecord.h; the record content
is dependent on the type of event that is being logged. Segment files are given ever-increasing numbers
as names, starting at 000000010000000000000001. The numbers do not wrap, but it will take a very, very
long time to exhaust the available stock of numbers.

It is advantageous if the WAL is located on a different disk from the main database files. This can be
achieved by moving the pg_wal directory to another location (while the server is shut down, of course)
and creating a symbolic link from the original location in the main data directory to the new location.

The aim of WAL is to ensure that the log is written before database records are altered, but this can
be subverted by disk drives that falsely report a successful write to the kernel, when in fact they have
only cached the data and not yet stored it on the disk. A power failure in such a situation might lead
to irrecoverable data corruption. Administrators should try to ensure that disks holding PostgreSQL's
WAL files do not make such false reports. (See Section 28.1.)

After a checkpoint has been made and the WAL flushed, the checkpoint's position is saved in the file
pg_control. Therefore, at the start of recovery, the server first reads pg_control and then the check-
point record; then it performs the REDO operation by scanning forward from the WAL location indicated
in the checkpoint record. Because the entire content of data pages is saved in the WAL on the first page
modification after a checkpoint (assuming full_page_writes is not disabled), all pages changed since the
checkpoint will be restored to a consistent state.

801

Reliability and the Write-Ahead Log

To deal with the case where pg_control is corrupt, we should support the possibility of scanning existing
WAL segments in reverse order — newest to oldest — in order to find the latest checkpoint. This has
not been implemented yet. pg_control is small enough (less than one disk page) that it is not subject to
partial-write problems, and as of this writing there have been no reports of database failures due solely
to the inability to read pg_control itself. So while it is theoretically a weak spot, pg_control does not
seem to be a problem in practice.

802

Chapter 29. Logical Replication
Logical replication is a method of replicating data objects and their changes, based upon their replication
identity (usually a primary key). We use the term logical in contrast to physical replication, which uses
exact block addresses and byte-by-byte replication. PostgreSQL supports both mechanisms concurrent-
ly, see Chapter 26. Logical replication allows fine-grained control over both data replication and security.

Logical replication uses a publish and subscribe model with one or more subscribers subscribing to one
or more publications on a publisher node. Subscribers pull data from the publications they subscribe to
and may subsequently re-publish data to allow cascading replication or more complex configurations.

When logical replication of a table typically starts, PostgreSQL takes a snapshot of the table's data
on the publisher database and copies it to the subscriber. Once complete, changes on the publisher
since the initial copy are sent continually to the subscriber. The subscriber applies the data in the same
order as the publisher so that transactional consistency is guaranteed for publications within a single
subscription. This method of data replication is sometimes referred to as transactional replication.

The typical use-cases for logical replication are:

• Sending incremental changes in a single database or a subset of a database to subscribers as they
occur.

• Firing triggers for individual changes as they arrive on the subscriber.

• Consolidating multiple databases into a single one (for example for analytical purposes).

• Replicating between different major versions of PostgreSQL.

• Replicating between PostgreSQL instances on different platforms (for example Linux to Windows)

• Giving access to replicated data to different groups of users.

• Sharing a subset of the database between multiple databases.

The subscriber database behaves in the same way as any other PostgreSQL instance and can be used
as a publisher for other databases by defining its own publications. When the subscriber is treated as
read-only by application, there will be no conflicts from a single subscription. On the other hand, if there
are other writes done either by an application or by other subscribers to the same set of tables, conflicts
can arise.

29.1. Publication
A publication can be defined on any physical replication primary. The node where a publication is defined
is referred to as publisher. A publication is a set of changes generated from a table or a group of tables,
and might also be described as a change set or replication set. Each publication exists in only one
database.

Publications are different from schemas and do not affect how the table is accessed. Each table can be
added to multiple publications if needed. Publications may currently only contain tables and all tables
in schema. Objects must be added explicitly, except when a publication is created for ALL TABLES.

Publications can choose to limit the changes they produce to any combination of INSERT, UPDATE, DELETE,
and TRUNCATE, similar to how triggers are fired by particular event types. By default, all operation types
are replicated. These publication specifications apply only for DML operations; they do not affect the
initial data synchronization copy. (Row filters have no effect for TRUNCATE. See Section 29.4).

Every publication can have multiple subscribers.

A publication is created using the CREATE PUBLICATION command and may later be altered or dropped
using corresponding commands.

803

Logical Replication

The individual tables can be added and removed dynamically using ALTER PUBLICATION. Both the ADD
TABLE and DROP TABLE operations are transactional, so the table will start or stop replicating at the
correct snapshot once the transaction has committed.

29.1.1. Replica Identity
A published table must have a replica identity configured in order to be able to replicate UPDATE and
DELETE operations, so that appropriate rows to update or delete can be identified on the subscriber side.

By default, this is the primary key, if there is one. Another unique index (with certain additional require-
ments) can also be set to be the replica identity. If the table does not have any suitable key, then it can
be set to replica identity FULL, which means the entire row becomes the key. When replica identity FULL
is specified, indexes can be used on the subscriber side for searching the rows. Candidate indexes must
be btree or hash, non-partial, and the leftmost index field must be a column (not an expression) that
references the published table column. These restrictions on the non-unique index properties adhere to
some of the restrictions that are enforced for primary keys. If there are no such suitable indexes, the
search on the subscriber side can be very inefficient, therefore replica identity FULL should only be used
as a fallback if no other solution is possible.

If a replica identity other than FULL is set on the publisher side, a replica identity comprising the same
or fewer columns must also be set on the subscriber side.

Tables with a replica identity defined as NOTHING, DEFAULT without a primary key, or USING INDEX with a
dropped index, cannot support UPDATE or DELETE operations when included in a publication replicating
these actions. Attempting such operations will result in an error on the publisher.

INSERT operations can proceed regardless of any replica identity.

See ALTER TABLE...REPLICA IDENTITY for details on how to set the replica identity.

29.2. Subscription
A subscription is the downstream side of logical replication. The node where a subscription is defined
is referred to as the subscriber. A subscription defines the connection to another database and set of
publications (one or more) to which it wants to subscribe.

The subscriber database behaves in the same way as any other PostgreSQL instance and can be used
as a publisher for other databases by defining its own publications.

A subscriber node may have multiple subscriptions if desired. It is possible to define multiple subscrip-
tions between a single publisher-subscriber pair, in which case care must be taken to ensure that the
subscribed publication objects don't overlap.

Each subscription will receive changes via one replication slot (see Section 26.2.6). Additional replication
slots may be required for the initial data synchronization of pre-existing table data and those will be
dropped at the end of data synchronization.

A logical replication subscription can be a standby for synchronous replication (see Section 26.2.8). The
standby name is by default the subscription name. An alternative name can be specified as applica-
tion_name in the connection information of the subscription.

Subscriptions are dumped by pg_dump if the current user is a superuser. Otherwise a warning is written
and subscriptions are skipped, because non-superusers cannot read all subscription information from
the pg_subscription catalog.

The subscription is added using CREATE SUBSCRIPTION and can be stopped/resumed at any time using
the ALTER SUBSCRIPTION command and removed using DROP SUBSCRIPTION.

When a subscription is dropped and recreated, the synchronization information is lost. This means that
the data has to be resynchronized afterwards.

804

Logical Replication

The schema definitions are not replicated, and the published tables must exist on the subscriber. Only
regular tables may be the target of replication. For example, you can't replicate to a view.

The tables are matched between the publisher and the subscriber using the fully qualified table name.
Replication to differently-named tables on the subscriber is not supported.

Columns of a table are also matched by name. The order of columns in the subscriber table does not
need to match that of the publisher. The data types of the columns do not need to match, as long as the
text representation of the data can be converted to the target type. For example, you can replicate from
a column of type integer to a column of type bigint. The target table can also have additional columns
not provided by the published table. Any such columns will be filled with the default value as specified in
the definition of the target table. However, logical replication in binary format is more restrictive. See
the binary option of CREATE SUBSCRIPTION for details.

29.2.1. Replication Slot Management
As mentioned earlier, each (active) subscription receives changes from a replication slot on the remote
(publishing) side.

Additional table synchronization slots are normally transient, created internally to perform initial table
synchronization and dropped automatically when they are no longer needed. These table synchronization
slots have generated names: “pg_%u_sync_%u_%llu” (parameters: Subscription oid, Table relid, system
identifier sysid)

Normally, the remote replication slot is created automatically when the subscription is created using
CREATE SUBSCRIPTION and it is dropped automatically when the subscription is dropped using DROP
SUBSCRIPTION. In some situations, however, it can be useful or necessary to manipulate the subscription
and the underlying replication slot separately. Here are some scenarios:
• When creating a subscription, the replication slot already exists. In that case, the subscription can

be created using the create_slot = false option to associate with the existing slot.
• When creating a subscription, the remote host is not reachable or in an unclear state. In that case,

the subscription can be created using the connect = false option. The remote host will then not
be contacted at all. This is what pg_dump uses. The remote replication slot will then have to be cre-
ated manually before the subscription can be activated.

• When dropping a subscription, the replication slot should be kept. This could be useful when the
subscriber database is being moved to a different host and will be activated from there. In that
case, disassociate the slot from the subscription using ALTER SUBSCRIPTION before attempting to
drop the subscription.

• When dropping a subscription, the remote host is not reachable. In that case, disassociate the slot
from the subscription using ALTER SUBSCRIPTION before attempting to drop the subscription. If the
remote database instance no longer exists, no further action is then necessary. If, however, the re-
mote database instance is just unreachable, the replication slot (and any still remaining table syn-
chronization slots) should then be dropped manually; otherwise it/they would continue to reserve
WAL and might eventually cause the disk to fill up. Such cases should be carefully investigated.

29.2.2. Examples: Set Up Logical Replication
Create some test tables on the publisher.

/* pub # */ CREATE TABLE t1(a int, b text, PRIMARY KEY(a));
/* pub # */ CREATE TABLE t2(c int, d text, PRIMARY KEY(c));
/* pub # */ CREATE TABLE t3(e int, f text, PRIMARY KEY(e));

Create the same tables on the subscriber.

/* sub # */ CREATE TABLE t1(a int, b text, PRIMARY KEY(a));
/* sub # */ CREATE TABLE t2(c int, d text, PRIMARY KEY(c));
/* sub # */ CREATE TABLE t3(e int, f text, PRIMARY KEY(e));

805

Logical Replication

Insert data to the tables at the publisher side.
/* pub # */ INSERT INTO t1 VALUES (1, 'one'), (2, 'two'), (3, 'three');
/* pub # */ INSERT INTO t2 VALUES (1, 'A'), (2, 'B'), (3, 'C');
/* pub # */ INSERT INTO t3 VALUES (1, 'i'), (2, 'ii'), (3, 'iii');

Create publications for the tables. The publications pub2 and pub3a disallow some publish operations.
The publication pub3b has a row filter (see Section 29.4).
/* pub # */ CREATE PUBLICATION pub1 FOR TABLE t1;
/* pub # */ CREATE PUBLICATION pub2 FOR TABLE t2 WITH (publish = 'truncate');
/* pub # */ CREATE PUBLICATION pub3a FOR TABLE t3 WITH (publish = 'truncate');
/* pub # */ CREATE PUBLICATION pub3b FOR TABLE t3 WHERE (e > 5);

Create subscriptions for the publications. The subscription sub3 subscribes to both pub3a and pub3b.
All subscriptions will copy initial data by default.
/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=sub1'
/* sub - */ PUBLICATION pub1;
/* sub # */ CREATE SUBSCRIPTION sub2
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=sub2'
/* sub - */ PUBLICATION pub2;
/* sub # */ CREATE SUBSCRIPTION sub3
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=sub3'
/* sub - */ PUBLICATION pub3a, pub3b;

Observe that initial table data is copied, regardless of the publish operation of the publication.
/* sub # */ SELECT * FROM t1;
 a | b
---+-------
 1 | one
 2 | two
 3 | three
(3 rows)

/* sub # */ SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
(3 rows)

Furthermore, because the initial data copy ignores the publish operation, and because publication
pub3a has no row filter, it means the copied table t3 contains all rows even when they do not match
the row filter of publication pub3b.
/* sub # */ SELECT * FROM t3;
 e | f
---+-----
 1 | i
 2 | ii
 3 | iii
(3 rows)

Insert more data to the tables at the publisher side.
/* pub # */ INSERT INTO t1 VALUES (4, 'four'), (5, 'five'), (6, 'six');
/* pub # */ INSERT INTO t2 VALUES (4, 'D'), (5, 'E'), (6, 'F');
/* pub # */ INSERT INTO t3 VALUES (4, 'iv'), (5, 'v'), (6, 'vi');

806

Logical Replication

Now the publisher side data looks like:

/* pub # */ SELECT * FROM t1;
 a | b
---+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
 6 | six
(6 rows)

/* pub # */ SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
 4 | D
 5 | E
 6 | F
(6 rows)

/* pub # */ SELECT * FROM t3;
 e | f
---+-----
 1 | i
 2 | ii
 3 | iii
 4 | iv
 5 | v
 6 | vi
(6 rows)

Observe that during normal replication the appropriate publish operations are used. This means pub-
lications pub2 and pub3a will not replicate the INSERT. Also, publication pub3b will only replicate data
that matches the row filter of pub3b. Now the subscriber side data looks like:

/* sub # */ SELECT * FROM t1;
 a | b
---+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
 6 | six
(6 rows)

/* sub # */ SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
(3 rows)

/* sub # */ SELECT * FROM t3;

807

Logical Replication

 e | f
---+-----
 1 | i
 2 | ii
 3 | iii
 6 | vi
(4 rows)

29.2.3. Examples: Deferred Replication Slot Creation
There are some cases (e.g. Section 29.2.1) where, if the remote replication slot was not created auto-
matically, the user must create it manually before the subscription can be activated. The steps to create
the slot and activate the subscription are shown in the following examples. These examples specify the
standard logical decoding output plugin (pgoutput), which is what the built-in logical replication uses.

First, create a publication for the examples to use.

/* pub # */ CREATE PUBLICATION pub1 FOR ALL TABLES;

Example 1: Where the subscription says connect = false

• Create the subscription.

/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub'
/* sub - */ PUBLICATION pub1
/* sub - */ WITH (connect=false);
WARNING: subscription was created, but is not connected
HINT: To initiate replication, you must manually create the replication slot,
 enable the subscription, and refresh the subscription.

• On the publisher, manually create a slot. Because the name was not specified during CREATE
SUBSCRIPTION, the name of the slot to create is same as the subscription name, e.g. "sub1".

/* pub # */ SELECT * FROM pg_create_logical_replication_slot('sub1', 'pgoutput');
 slot_name | lsn
-----------+-----------
 sub1 | 0/19404D0
(1 row)

• On the subscriber, complete the activation of the subscription. After this the tables of pub1 will
start replicating.

/* sub # */ ALTER SUBSCRIPTION sub1 ENABLE;
/* sub # */ ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;

Example 2: Where the subscription says connect = false, but also specifies the slot_name option.

• Create the subscription.

/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub'
/* sub - */ PUBLICATION pub1
/* sub - */ WITH (connect=false, slot_name='myslot');
WARNING: subscription was created, but is not connected
HINT: To initiate replication, you must manually create the replication slot,
 enable the subscription, and refresh the subscription.

• On the publisher, manually create a slot using the same name that was specified during CREATE
SUBSCRIPTION, e.g. "myslot".

/* pub # */ SELECT * FROM pg_create_logical_replication_slot('myslot', 'pgoutput');
 slot_name | lsn

808

Logical Replication

-----------+-----------
 myslot | 0/19059A0
(1 row)

• On the subscriber, the remaining subscription activation steps are the same as before.

/* sub # */ ALTER SUBSCRIPTION sub1 ENABLE;
/* sub # */ ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;

Example 3: Where the subscription specifies slot_name = NONE
• Create the subscription. When slot_name = NONE then enabled = false, and create_slot =

false are also needed.

/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub'
/* sub - */ PUBLICATION pub1
/* sub - */ WITH (slot_name=NONE, enabled=false, create_slot=false);

• On the publisher, manually create a slot using any name, e.g. "myslot".

/* pub # */ SELECT * FROM pg_create_logical_replication_slot('myslot', 'pgoutput');
 slot_name | lsn
-----------+-----------
 myslot | 0/1905930
(1 row)

• On the subscriber, associate the subscription with the slot name just created.

/* sub # */ ALTER SUBSCRIPTION sub1 SET (slot_name='myslot');

• The remaining subscription activation steps are same as before.

/* sub # */ ALTER SUBSCRIPTION sub1 ENABLE;
/* sub # */ ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;

29.3. Logical Replication Failover
To allow subscriber nodes to continue replicating data from the publisher node even when the publisher
node goes down, there must be a physical standby corresponding to the publisher node. The logical slots
on the primary server corresponding to the subscriptions can be synchronized to the standby server by
specifying failover = true when creating subscriptions. See Section 47.2.3 for details. Enabling the
failover parameter ensures a seamless transition of those subscriptions after the standby is promoted.
They can continue subscribing to publications on the new primary server.

Because the slot synchronization logic copies asynchronously, it is necessary to confirm that replica-
tion slots have been synced to the standby server before the failover happens. To ensure a successful
failover, the standby server must be ahead of the subscriber. This can be achieved by configuring syn-
chronized_standby_slots.

To confirm that the standby server is indeed ready for failover for a given subscriber, follow these steps
to verify that all the logical replication slots required by that subscriber have been synchronized to the
standby server:

1. On the subscriber node, use the following SQL to identify which replication slots should be synced to
the standby that we plan to promote. This query will return the relevant replication slots associated
with the failover-enabled subscriptions.

/* sub # */ SELECT
 array_agg(quote_literal(s.subslotname)) AS slots
 FROM pg_subscription s
 WHERE s.subfailover AND
 s.subslotname IS NOT NULL;
 slots

809

Logical Replication

 {'sub1','sub2','sub3'}
(1 row)

2. On the subscriber node, use the following SQL to identify which table synchronization slots should
be synced to the standby that we plan to promote. This query needs to be run on each database that
includes the failover-enabled subscription(s). Note that the table sync slot should be synced to the
standby server only if the table copy is finished (See Section 52.55). We don't need to ensure that
the table sync slots are synced in other scenarios as they will either be dropped or re-created on
the new primary server in those cases.

/* sub # */ SELECT
 array_agg(quote_literal(slot_name)) AS slots
 FROM
 (
 SELECT CONCAT('pg_', srsubid, '_sync_', srrelid, '_',
 ctl.system_identifier) AS slot_name
 FROM pg_control_system() ctl, pg_subscription_rel r, pg_subscription
 s
 WHERE r.srsubstate = 'f' AND s.oid = r.srsubid AND s.subfailover
);
 slots

 {'pg_16394_sync_16385_7394666715149055164'}
(1 row)

3. Check that the logical replication slots identified above exist on the standby server and are ready
for failover.

/* standby # */ SELECT slot_name, (synced AND NOT temporary AND invalidation_reason
 IS NULL) AS failover_ready
 FROM pg_replication_slots
 WHERE slot_name IN
 ('sub1','sub2','sub3',
 'pg_16394_sync_16385_7394666715149055164');
 slot_name | failover_ready
--+----------------
 sub1 | t
 sub2 | t
 sub3 | t
 pg_16394_sync_16385_7394666715149055164 | t
(4 rows)

If all the slots are present on the standby server and the result (failover_ready) of the above SQL query
is true, then existing subscriptions can continue subscribing to publications on the new primary server.

The first two steps in the above procedure are meant for a PostgreSQL subscriber. It is recommended
to run these steps on each subscriber node, that will be served by the designated standby after failover,
to obtain the complete list of replication slots. This list can then be verified in Step 3 to ensure failover
readiness. Non-PostgreSQL subscribers, on the other hand, may use their own methods to identify the
replication slots used by their respective subscriptions.

In some cases, such as during a planned failover, it is necessary to confirm that all subscribers, whether
PostgreSQL or non-PostgreSQL, will be able to continue replication after failover to a given standby
server. In such cases, use the following SQL, instead of performing the first two steps above, to identify
which replication slots on the primary need to be synced to the standby that is intended for promotion.
This query returns the relevant replication slots associated with all the failover-enabled subscriptions.

/* primary # */ SELECT array_agg(quote_literal(r.slot_name)) AS slots
 FROM pg_replication_slots r
 WHERE r.failover AND NOT r.temporary;

810

Logical Replication

 slots

 {'sub1','sub2','sub3', 'pg_16394_sync_16385_7394666715149055164'}
(1 row)

29.4. Row Filters
By default, all data from all published tables will be replicated to the appropriate subscribers. The repli-
cated data can be reduced by using a row filter. A user might choose to use row filters for behavioral,
security or performance reasons. If a published table sets a row filter, a row is replicated only if its data
satisfies the row filter expression. This allows a set of tables to be partially replicated. The row filter is
defined per table. Use a WHERE clause after the table name for each published table that requires data
to be filtered out. The WHERE clause must be enclosed by parentheses. See CREATE PUBLICATION for
details.

29.4.1. Row Filter Rules
Row filters are applied before publishing the changes. If the row filter evaluates to false or NULL then
the row is not replicated. The WHERE clause expression is evaluated with the same role used for the
replication connection (i.e. the role specified in the CONNECTION clause of the CREATE SUBSCRIPTION).
Row filters have no effect for TRUNCATE command.

29.4.2. Expression Restrictions
The WHERE clause allows only simple expressions. It cannot contain user-defined functions, operators,
types, and collations, system column references or non-immutable built-in functions.

If a publication publishes UPDATE or DELETE operations, the row filter WHERE clause must contain only
columns that are covered by the replica identity (see REPLICA IDENTITY). If a publication publishes only
INSERT operations, the row filter WHERE clause can use any column.

29.4.3. UPDATE Transformations
Whenever an UPDATE is processed, the row filter expression is evaluated for both the old and new row
(i.e. using the data before and after the update). If both evaluations are true, it replicates the UPDATE
change. If both evaluations are false, it doesn't replicate the change. If only one of the old/new rows
matches the row filter expression, the UPDATE is transformed to INSERT or DELETE, to avoid any data
inconsistency. The row on the subscriber should reflect what is defined by the row filter expression on
the publisher.

If the old row satisfies the row filter expression (it was sent to the subscriber) but the new row doesn't,
then, from a data consistency perspective the old row should be removed from the subscriber. So the
UPDATE is transformed into a DELETE.

If the old row doesn't satisfy the row filter expression (it wasn't sent to the subscriber) but the new row
does, then, from a data consistency perspective the new row should be added to the subscriber. So the
UPDATE is transformed into an INSERT.

Table 29.1 summarizes the applied transformations.

Table 29.1. UPDATE Transformation Summary

Old row New row Transformation
no match no match don't replicate
no match match INSERT

match no match DELETE

match match UPDATE

811

Logical Replication

29.4.4. Partitioned Tables
If the publication contains a partitioned table, the publication parameter publish_via_partition_root
determines which row filter is used. If publish_via_partition_root is true, the root partitioned table's
row filter is used. Otherwise, if publish_via_partition_root is false (default), each partition's row
filter is used.

29.4.5. Initial Data Synchronization
If the subscription requires copying pre-existing table data and a publication contains WHERE clauses,
only data that satisfies the row filter expressions is copied to the subscriber.

If the subscription has several publications in which a table has been published with different WHERE
clauses, rows that satisfy any of the expressions will be copied. See Section 29.4.6 for details.

Warning
Because initial data synchronization does not take into account the publish parameter when copy-
ing existing table data, some rows may be copied that would not be replicated using DML. Refer
to Section 29.9.1, and see Section 29.2.2 for examples.

Note
If the subscriber is in a release prior to 15, copy pre-existing data doesn't use row filters even if
they are defined in the publication. This is because old releases can only copy the entire table data.

29.4.6. Combining Multiple Row Filters
If the subscription has several publications in which the same table has been published with different row
filters (for the same publish operation), those expressions get ORed together, so that rows satisfying
any of the expressions will be replicated. This means all the other row filters for the same table become
redundant if:
• One of the publications has no row filter.
• One of the publications was created using FOR ALL TABLES. This clause does not allow row filters.
• One of the publications was created using FOR TABLES IN SCHEMA and the table belongs to the re-

ferred schema. This clause does not allow row filters.

29.4.7. Examples
Create some tables to be used in the following examples.

/* pub # */ CREATE TABLE t1(a int, b int, c text, PRIMARY KEY(a,c));
/* pub # */ CREATE TABLE t2(d int, e int, f int, PRIMARY KEY(d));
/* pub # */ CREATE TABLE t3(g int, h int, i int, PRIMARY KEY(g));

Create some publications. Publication p1 has one table (t1) and that table has a row filter. Publication
p2 has two tables. Table t1 has no row filter, and table t2 has a row filter. Publication p3 has two tables,
and both of them have a row filter.

/* pub # */ CREATE PUBLICATION p1 FOR TABLE t1 WHERE (a > 5 AND c = 'NSW');
/* pub # */ CREATE PUBLICATION p2 FOR TABLE t1, t2 WHERE (e = 99);
/* pub # */ CREATE PUBLICATION p3 FOR TABLE t2 WHERE (d = 10), t3 WHERE (g = 10);

psql can be used to show the row filter expressions (if defined) for each publication.

/* pub # */ \dRp+

812

Logical Replication

 Publication p1
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Generated columns |
 Via root
----------+------------+---------+---------+---------+-----------+-------------------
+----------
 postgres | f | t | t | t | t | none |
 f
Tables:
 "public.t1" WHERE ((a > 5) AND (c = 'NSW'::text))

 Publication p2
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Generated columns |
 Via root
----------+------------+---------+---------+---------+-----------+-------------------
+----------
 postgres | f | t | t | t | t | none |
 f
Tables:
 "public.t1"
 "public.t2" WHERE (e = 99)

 Publication p3
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Generated columns |
 Via root
----------+------------+---------+---------+---------+-----------+-------------------
+----------
 postgres | f | t | t | t | t | none |
 f
Tables:
 "public.t2" WHERE (d = 10)
 "public.t3" WHERE (g = 10)

psql can be used to show the row filter expressions (if defined) for each table. See that table t1 is
a member of two publications, but has a row filter only in p1. See that table t2 is a member of two
publications, and has a different row filter in each of them.
/* pub # */ \d t1
 Table "public.t1"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 a | integer | | not null |
 b | integer | | |
 c | text | | not null |
Indexes:
 "t1_pkey" PRIMARY KEY, btree (a, c)
Publications:
 "p1" WHERE ((a > 5) AND (c = 'NSW'::text))
 "p2"

/* pub # */ \d t2
 Table "public.t2"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 d | integer | | not null |
 e | integer | | |
 f | integer | | |
Indexes:
 "t2_pkey" PRIMARY KEY, btree (d)
Publications:

813

Logical Replication

 "p2" WHERE (e = 99)
 "p3" WHERE (d = 10)

/* pub # */ \d t3
 Table "public.t3"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 g | integer | | not null |
 h | integer | | |
 i | integer | | |
Indexes:
 "t3_pkey" PRIMARY KEY, btree (g)
Publications:
 "p3" WHERE (g = 10)

On the subscriber node, create a table t1 with the same definition as the one on the publisher, and also
create the subscription s1 that subscribes to the publication p1.
/* sub # */ CREATE TABLE t1(a int, b int, c text, PRIMARY KEY(a,c));
/* sub # */ CREATE SUBSCRIPTION s1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=s1'
/* sub - */ PUBLICATION p1;

Insert some rows. Only the rows satisfying the t1 WHERE clause of publication p1 are replicated.
/* pub # */ INSERT INTO t1 VALUES (2, 102, 'NSW');
/* pub # */ INSERT INTO t1 VALUES (3, 103, 'QLD');
/* pub # */ INSERT INTO t1 VALUES (4, 104, 'VIC');
/* pub # */ INSERT INTO t1 VALUES (5, 105, 'ACT');
/* pub # */ INSERT INTO t1 VALUES (6, 106, 'NSW');
/* pub # */ INSERT INTO t1 VALUES (7, 107, 'NT');
/* pub # */ INSERT INTO t1 VALUES (8, 108, 'QLD');
/* pub # */ INSERT INTO t1 VALUES (9, 109, 'NSW');

/* pub # */ SELECT * FROM t1;
 a | b | c
---+-----+-----
 2 | 102 | NSW
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 6 | 106 | NSW
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
(8 rows)

/* sub # */ SELECT * FROM t1;
 a | b | c
---+-----+-----
 6 | 106 | NSW
 9 | 109 | NSW
(2 rows)

Update some data, where the old and new row values both satisfy the t1 WHERE clause of publication
p1. The UPDATE replicates the change as normal.
/* pub # */ UPDATE t1 SET b = 999 WHERE a = 6;

/* pub # */ SELECT * FROM t1;
 a | b | c

814

Logical Replication

---+-----+-----
 2 | 102 | NSW
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
 6 | 999 | NSW
(8 rows)

/* sub # */ SELECT * FROM t1;
 a | b | c
---+-----+-----
 9 | 109 | NSW
 6 | 999 | NSW
(2 rows)

Update some data, where the old row values did not satisfy the t1 WHERE clause of publication p1, but
the new row values do satisfy it. The UPDATE is transformed into an INSERT and the change is replicated.
See the new row on the subscriber.

/* pub # */ UPDATE t1 SET a = 555 WHERE a = 2;

/* pub # */ SELECT * FROM t1;
 a | b | c
-----+-----+-----
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
 6 | 999 | NSW
 555 | 102 | NSW
(8 rows)

/* sub # */ SELECT * FROM t1;
 a | b | c
-----+-----+-----
 9 | 109 | NSW
 6 | 999 | NSW
 555 | 102 | NSW
(3 rows)

Update some data, where the old row values satisfied the t1 WHERE clause of publication p1, but the
new row values do not satisfy it. The UPDATE is transformed into a DELETE and the change is replicated.
See that the row is removed from the subscriber.

/* pub # */ UPDATE t1 SET c = 'VIC' WHERE a = 9;

/* pub # */ SELECT * FROM t1;
 a | b | c
-----+-----+-----
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 6 | 999 | NSW

815

Logical Replication

 555 | 102 | NSW
 9 | 109 | VIC
(8 rows)

/* sub # */ SELECT * FROM t1;
 a | b | c
-----+-----+-----
 6 | 999 | NSW
 555 | 102 | NSW
(2 rows)

The following examples show how the publication parameter publish_via_partition_root determines
whether the row filter of the parent or child table will be used in the case of partitioned tables.

Create a partitioned table on the publisher.
/* pub # */ CREATE TABLE parent(a int PRIMARY KEY) PARTITION BY RANGE(a);
/* pub # */ CREATE TABLE child PARTITION OF parent DEFAULT;

Create the same tables on the subscriber.
/* sub # */ CREATE TABLE parent(a int PRIMARY KEY) PARTITION BY RANGE(a);
/* sub # */ CREATE TABLE child PARTITION OF parent DEFAULT;

Create a publication p4, and then subscribe to it. The publication parameter publish_via_parti-
tion_root is set as true. There are row filters defined on both the partitioned table (parent), and on
the partition (child).
/* pub # */ CREATE PUBLICATION p4 FOR TABLE parent WHERE (a < 5), child WHERE (a >= 5)
/* pub - */ WITH (publish_via_partition_root=true);

/* sub # */ CREATE SUBSCRIPTION s4
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=s4'
/* sub - */ PUBLICATION p4;

Insert some values directly into the parent and child tables. They replicate using the row filter of parent
(because publish_via_partition_root is true).
/* pub # */ INSERT INTO parent VALUES (2), (4), (6);
/* pub # */ INSERT INTO child VALUES (3), (5), (7);

/* pub # */ SELECT * FROM parent ORDER BY a;
 a

 2
 3
 4
 5
 6
 7
(6 rows)

/* sub # */ SELECT * FROM parent ORDER BY a;
 a

 2
 3
 4
(3 rows)

Repeat the same test, but with a different value for publish_via_partition_root. The publication pa-
rameter publish_via_partition_root is set as false. A row filter is defined on the partition (child).
/* pub # */ DROP PUBLICATION p4;

816

Logical Replication

/* pub # */ CREATE PUBLICATION p4 FOR TABLE parent, child WHERE (a >= 5)
/* pub - */ WITH (publish_via_partition_root=false);

/* sub # */ ALTER SUBSCRIPTION s4 REFRESH PUBLICATION;

Do the inserts on the publisher same as before. They replicate using the row filter of child (because
publish_via_partition_root is false).

/* pub # */ TRUNCATE parent;
/* pub # */ INSERT INTO parent VALUES (2), (4), (6);
/* pub # */ INSERT INTO child VALUES (3), (5), (7);

/* pub # */ SELECT * FROM parent ORDER BY a;
 a

 2
 3
 4
 5
 6
 7
(6 rows)

/* sub # */ SELECT * FROM child ORDER BY a;
 a

 5
 6
 7
(3 rows)

29.5. Column Lists
Each publication can optionally specify which columns of each table are replicated to subscribers. The
table on the subscriber side must have at least all the columns that are published. If no column list is
specified, then all columns on the publisher are replicated. See CREATE PUBLICATION for details on
the syntax.

The choice of columns can be based on behavioral or performance reasons. However, do not rely on this
feature for security: a malicious subscriber is able to obtain data from columns that are not specifically
published. If security is a consideration, protections can be applied at the publisher side.

If no column list is specified, any columns added to the table later are automatically replicated. This
means that having a column list which names all columns is not the same as having no column list at all.

A column list can contain only simple column references. The order of columns in the list is not preserved.

Generated columns can also be specified in a column list. This allows generated columns to be published,
regardless of the publication parameter publish_generated_columns. See Section 29.6 for details.

Specifying a column list when the publication also publishes FOR TABLES IN SCHEMA is not supported.

For partitioned tables, the publication parameter publish_via_partition_root determines which col-
umn list is used. If publish_via_partition_root is true, the root partitioned table's column list is used.
Otherwise, if publish_via_partition_root is false (the default), each partition's column list is used.

If a publication publishes UPDATE or DELETE operations, any column list must include the table's replica
identity columns (see REPLICA IDENTITY). If a publication publishes only INSERT operations, then the
column list may omit replica identity columns.

Column lists have no effect for the TRUNCATE command.

817

Logical Replication

During initial data synchronization, only the published columns are copied. However, if the subscriber is
from a release prior to 15, then all the columns in the table are copied during initial data synchronization,
ignoring any column lists. If the subscriber is from a release prior to 18, then initial table synchronization
won't copy generated columns even if they are defined in the publisher.

Warning: Combining Column Lists from Multiple Publications
There's currently no support for subscriptions comprising several publications where the same
table has been published with different column lists. CREATE SUBSCRIPTION disallows creating
such subscriptions, but it is still possible to get into that situation by adding or altering column
lists on the publication side after a subscription has been created.

This means changing the column lists of tables on publications that are already subscribed could
lead to errors being thrown on the subscriber side.

If a subscription is affected by this problem, the only way to resume replication is to adjust one
of the column lists on the publication side so that they all match; and then either recreate the
subscription, or use ALTER SUBSCRIPTION ... DROP PUBLICATION to remove one of the offending
publications and add it again.

29.5.1. Examples
Create a table t1 to be used in the following example.
/* pub # */ CREATE TABLE t1(id int, a text, b text, c text, d text, e text, PRIMARY
 KEY(id));

Create a publication p1. A column list is defined for table t1 to reduce the number of columns that will
be replicated. Notice that the order of column names in the column list does not matter.
/* pub # */ CREATE PUBLICATION p1 FOR TABLE t1 (id, b, a, d);

psql can be used to show the column lists (if defined) for each publication.
/* pub # */ \dRp+
 Publication p1
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Generated columns |
 Via root
----------+------------+---------+---------+---------+-----------+-------------------
+----------
 postgres | f | t | t | t | t | none |
 f
Tables:
 "public.t1" (id, a, b, d)

psql can be used to show the column lists (if defined) for each table.
/* pub # */ \d t1
 Table "public.t1"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id | integer | | not null |
 a | text | | |
 b | text | | |
 c | text | | |
 d | text | | |
 e | text | | |
Indexes:
 "t1_pkey" PRIMARY KEY, btree (id)
Publications:

818

Logical Replication

 "p1" (id, a, b, d)

On the subscriber node, create a table t1 which now only needs a subset of the columns that were on
the publisher table t1, and also create the subscription s1 that subscribes to the publication p1.
/* sub # */ CREATE TABLE t1(id int, b text, a text, d text, PRIMARY KEY(id));
/* sub # */ CREATE SUBSCRIPTION s1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=s1'
/* sub - */ PUBLICATION p1;

On the publisher node, insert some rows to table t1.
/* pub # */ INSERT INTO t1 VALUES(1, 'a-1', 'b-1', 'c-1', 'd-1', 'e-1');
/* pub # */ INSERT INTO t1 VALUES(2, 'a-2', 'b-2', 'c-2', 'd-2', 'e-2');
/* pub # */ INSERT INTO t1 VALUES(3, 'a-3', 'b-3', 'c-3', 'd-3', 'e-3');
/* pub # */ SELECT * FROM t1 ORDER BY id;
 id | a | b | c | d | e
----+-----+-----+-----+-----+-----
 1 | a-1 | b-1 | c-1 | d-1 | e-1
 2 | a-2 | b-2 | c-2 | d-2 | e-2
 3 | a-3 | b-3 | c-3 | d-3 | e-3
(3 rows)

Only data from the column list of publication p1 is replicated.
/* sub # */ SELECT * FROM t1 ORDER BY id;
 id | b | a | d
----+-----+-----+-----
 1 | b-1 | a-1 | d-1
 2 | b-2 | a-2 | d-2
 3 | b-3 | a-3 | d-3
(3 rows)

29.6. Generated Column Replication
Typically, a table at the subscriber will be defined the same as the publisher table, so if the publisher
table has a GENERATED column then the subscriber table will have a matching generated column. In this
case, it is always the subscriber table generated column value that is used.

For example, note below that subscriber table generated column value comes from the subscriber col-
umn's calculation.
/* pub # */ CREATE TABLE tab_gen_to_gen (a int, b int GENERATED ALWAYS AS (a + 1)
 STORED);
/* pub # */ INSERT INTO tab_gen_to_gen VALUES (1),(2),(3);
/* pub # */ CREATE PUBLICATION pub1 FOR TABLE tab_gen_to_gen;
/* pub # */ SELECT * FROM tab_gen_to_gen;
 a | b
---+---
 1 | 2
 2 | 3
 3 | 4
(3 rows)

/* sub # */ CREATE TABLE tab_gen_to_gen (a int, b int GENERATED ALWAYS AS (a * 100)
 STORED);
/* sub # */ CREATE SUBSCRIPTION sub1 CONNECTION 'dbname=test_pub' PUBLICATION pub1;
/* sub # */ SELECT * from tab_gen_to_gen;
 a | b
---+----
 1 | 100

819

Logical Replication

 2 | 200
 3 | 300
(3 rows)

In fact, prior to version 18.0, logical replication does not publish GENERATED columns at all.

But, replicating a generated column to a regular column can sometimes be desirable.

Tip
This feature may be useful when replicating data to a non-PostgreSQL database via output plugin,
especially if the target database does not support generated columns.

Generated columns are not published by default, but users can opt to publish stored generated columns
just like regular ones.

There are two ways to do this:
• Set the PUBLICATION parameter publish_generated_columns to stored. This instructs Post-

greSQL logical replication to publish current and future stored generated columns of the publica-
tion's tables.

• Specify a table column list to explicitly nominate which stored generated columns will be published.

Note
When determining which table columns will be published, a column list takes precedence,
overriding the effect of the publish_generated_columns parameter.

The following table summarizes behavior when there are generated columns involved in the logical
replication. Results are shown for when publishing generated columns is not enabled, and for when it
is enabled.

Table 29.2. Replication Result Summary

Publish generated
columns?

Publisher table col-
umn

Subscriber table col-
umn

Result

No GENERATED GENERATED Publisher table column
is not replicated. Use
the subscriber table
generated column value.

No GENERATED regular Publisher table column
is not replicated. Use
the subscriber table reg-
ular column default val-
ue.

No GENERATED --missing-- Publisher table column
is not replicated. Noth-
ing happens.

Yes GENERATED GENERATED ERROR. Not supported.
Yes GENERATED regular Publisher table column

value is replicated to the
subscriber table column.

Yes GENERATED --missing-- ERROR. The column
is reported as missing

820

Logical Replication

Publish generated
columns?

Publisher table col-
umn

Subscriber table col-
umn

Result

from the subscriber ta-
ble.

Warning
There's currently no support for subscriptions comprising several publications where the same
table has been published with different column lists. See Section 29.5.

This same situation can occur if one publication is publishing generated columns, while another
publication in the same subscription is not publishing generated columns for the same table.

Note
If the subscriber is from a release prior to 18, then initial table synchronization won't copy gener-
ated columns even if they are defined in the publisher.

29.7. Conflicts
Logical replication behaves similarly to normal DML operations in that the data will be updated even if
it was changed locally on the subscriber node. If incoming data violates any constraints the replication
will stop. This is referred to as a conflict. When replicating UPDATE or DELETE operations, missing data is
also considered as a conflict, but does not result in an error and such operations will simply be skipped.

Additional logging is triggered, and the conflict statistics are collected (displayed in the pg_stat_sub-
scription_stats view) in the following conflict cases:
insert_exists

Inserting a row that violates a NOT DEFERRABLE unique constraint. Note that to log the origin and
commit timestamp details of the conflicting key, track_commit_timestamp should be enabled on the
subscriber. In this case, an error will be raised until the conflict is resolved manually.

update_origin_differs

Updating a row that was previously modified by another origin. Note that this conflict can only
be detected when track_commit_timestamp is enabled on the subscriber. Currently, the update is
always applied regardless of the origin of the local row.

update_exists

The updated value of a row violates a NOT DEFERRABLE unique constraint. Note that to log the origin
and commit timestamp details of the conflicting key, track_commit_timestamp should be enabled on
the subscriber. In this case, an error will be raised until the conflict is resolved manually. Note that
when updating a partitioned table, if the updated row value satisfies another partition constraint
resulting in the row being inserted into a new partition, the insert_exists conflict may arise if the
new row violates a NOT DEFERRABLE unique constraint.

update_missing

The row to be updated was not found. The update will simply be skipped in this scenario.

delete_origin_differs

Deleting a row that was previously modified by another origin. Note that this conflict can only be
detected when track_commit_timestamp is enabled on the subscriber. Currently, the delete is always
applied regardless of the origin of the local row.

821

Logical Replication

delete_missing

The row to be deleted was not found. The delete will simply be skipped in this scenario.

multiple_unique_conflicts

Inserting or updating a row violates multiple NOT DEFERRABLE unique constraints. Note that to log
the origin and commit timestamp details of conflicting keys, ensure that track_commit_timestamp is
enabled on the subscriber. In this case, an error will be raised until the conflict is resolved manually.

Note that there are other conflict scenarios, such as exclusion constraint violations. Currently, we do
not provide additional details for them in the log.

The log format for logical replication conflicts is as follows:

LOG: conflict detected on relation "schemaname.tablename": conflict=conflict_type
DETAIL: detailed_explanation.
{detail_values [; ...]}.

where detail_values is one of:

 Key (column_name [, ...])=(column_value [, ...])
 existing local row [(column_name [, ...])=](column_value [, ...])
 remote row [(column_name [, ...])=](column_value [, ...])
 replica identity {(column_name [, ...])=(column_value [, ...]) | full [(column_name
 [, ...])=](column_value [, ...])}

The log provides the following information:

LOG

• schemaname.tablename identifies the local relation involved in the conflict.
• conflict_type is the type of conflict that occurred (e.g., insert_exists, update_exists).

DETAIL

• detailed_explanation includes the origin, transaction ID, and commit timestamp of the trans-
action that modified the existing local row, if available.

• The Key section includes the key values of the local row that violated a unique constraint for in-
sert_exists, update_exists or multiple_unique_conflicts conflicts.

• The existing local row section includes the local row if its origin differs from the remote row
for update_origin_differs or delete_origin_differs conflicts, or if the key value conflicts
with the remote row for insert_exists, update_exists or multiple_unique_conflicts con-
flicts.

• The remote row section includes the new row from the remote insert or update operation that
caused the conflict. Note that for an update operation, the column value of the new row will be
null if the value is unchanged and toasted.

• The replica identity section includes the replica identity key values that were used to search
for the existing local row to be updated or deleted. This may include the full row value if the lo-
cal relation is marked with REPLICA IDENTITY FULL.

• column_name is the column name. For existing local row, remote row, and replica iden-
tity full cases, column names are logged only if the user lacks the privilege to access all
columns of the table. If column names are present, they appear in the same order as the corre-
sponding column values.

• column_value is the column value. The large column values are truncated to 64 bytes.
• Note that in case of multiple_unique_conflicts conflict, multiple detailed_explanation and

detail_values lines will be generated, each detailing the conflict information associated with
distinct unique constraints.

822

Logical Replication

Logical replication operations are performed with the privileges of the role which owns the subscription.
Permissions failures on target tables will cause replication conflicts, as will enabled row-level security
on target tables that the subscription owner is subject to, without regard to whether any policy would
ordinarily reject the INSERT, UPDATE, DELETE or TRUNCATE which is being replicated. This restriction on
row-level security may be lifted in a future version of PostgreSQL.

A conflict that produces an error will stop the replication; it must be resolved manually by the user.
Details about the conflict can be found in the subscriber's server log.

The resolution can be done either by changing data or permissions on the subscriber so that it does not
conflict with the incoming change or by skipping the transaction that conflicts with the existing data.
When a conflict produces an error, the replication won't proceed, and the logical replication worker will
emit the following kind of message to the subscriber's server log:
ERROR: conflict detected on relation "public.test": conflict=insert_exists
DETAIL: Key already exists in unique index "t_pkey", which was modified locally in
 transaction 740 at 2024-06-26 10:47:04.727375+08.
Key (c)=(1); existing local row (1, 'local'); remote row (1, 'remote').
CONTEXT: processing remote data for replication origin "pg_16395" during "INSERT" for
 replication target relation "public.test" in transaction 725 finished at 0/14C0378

The LSN of the transaction that contains the change violating the constraint and the replication origin
name can be found from the server log (LSN 0/14C0378 and replication origin pg_16395 in the above
case). The transaction that produced the conflict can be skipped by using ALTER SUBSCRIPTION ... SKIP
with the finish LSN (i.e., LSN 0/14C0378). The finish LSN could be an LSN at which the transaction is
committed or prepared on the publisher. Alternatively, the transaction can also be skipped by calling the
pg_replication_origin_advance() function. Before using this function, the subscription needs to be
disabled temporarily either by ALTER SUBSCRIPTION ... DISABLE or, the subscription can be used with
the disable_on_error option. Then, you can use pg_replication_origin_advance() function with the
node_name (i.e., pg_16395) and the next LSN of the finish LSN (i.e., 0/14C0379). The current position
of origins can be seen in the pg_replication_origin_status system view. Please note that skipping
the whole transaction includes skipping changes that might not violate any constraint. This can easily
make the subscriber inconsistent. The additional details regarding conflicting rows, such as their origin
and commit timestamp can be seen in the DETAIL line of the log. But note that this information is only
available when track_commit_timestamp is enabled on the subscriber. Users can use this information
to decide whether to retain the local change or adopt the remote alteration. For instance, the DETAIL
line in the above log indicates that the existing row was modified locally. Users can manually perform
a remote-change-win.

When the streaming mode is parallel, the finish LSN of failed transactions may not be logged. In that
case, it may be necessary to change the streaming mode to on or off and cause the same conflicts again
so the finish LSN of the failed transaction will be written to the server log. For the usage of finish LSN,
please refer to ALTER SUBSCRIPTION ... SKIP.

29.8. Restrictions
Logical replication currently has the following restrictions or missing functionality. These might be ad-
dressed in future releases.

• The database schema and DDL commands are not replicated. The initial schema can be copied by
hand using pg_dump --schema-only. Subsequent schema changes would need to be kept in sync
manually. (Note, however, that there is no need for the schemas to be absolutely the same on both
sides.) Logical replication is robust when schema definitions change in a live database: When the
schema is changed on the publisher and replicated data starts arriving at the subscriber but does
not fit into the table schema, replication will error until the schema is updated. In many cases, in-
termittent errors can be avoided by applying additive schema changes to the subscriber first.

• Sequence data is not replicated. The data in serial or identity columns backed by sequences will of
course be replicated as part of the table, but the sequence itself would still show the start value on
the subscriber. If the subscriber is used as a read-only database, then this should typically not be

823

Logical Replication

a problem. If, however, some kind of switchover or failover to the subscriber database is intended,
then the sequences would need to be updated to the latest values, either by copying the current da-
ta from the publisher (perhaps using pg_dump) or by determining a sufficiently high value from the
tables themselves.

• Replication of TRUNCATE commands is supported, but some care must be taken when truncating
groups of tables connected by foreign keys. When replicating a truncate action, the subscriber will
truncate the same group of tables that was truncated on the publisher, either explicitly specified or
implicitly collected via CASCADE, minus tables that are not part of the subscription. This will work
correctly if all affected tables are part of the same subscription. But if some tables to be truncated
on the subscriber have foreign-key links to tables that are not part of the same (or any) subscrip-
tion, then the application of the truncate action on the subscriber will fail.

• Large objects (see Chapter 33) are not replicated. There is no workaround for that, other than stor-
ing data in normal tables.

• Replication is only supported by tables, including partitioned tables. Attempts to replicate other
types of relations, such as views, materialized views, or foreign tables, will result in an error.

• When replicating between partitioned tables, the actual replication originates, by default, from the
leaf partitions on the publisher, so partitions on the publisher must also exist on the subscriber as
valid target tables. (They could either be leaf partitions themselves, or they could be further sub-
partitioned, or they could even be independent tables.) Publications can also specify that changes
are to be replicated using the identity and schema of the partitioned root table instead of that of
the individual leaf partitions in which the changes actually originate (see publish_via_parti-
tion_root parameter of CREATE PUBLICATION).

• When using REPLICA IDENTITY FULL on published tables, it is important to note that the UP-
DATE and DELETE operations cannot be applied to subscribers if the tables include attributes with
datatypes (such as point or box) that do not have a default operator class for B-tree or Hash. How-
ever, this limitation can be overcome by ensuring that the table has a primary key or replica identi-
ty defined for it.

29.9. Architecture
Logical replication is built with an architecture similar to physical streaming replication (see Sec-
tion 26.2.5). It is implemented by walsender and apply processes. The walsender process starts logical
decoding (described in Chapter 47) of the WAL and loads the standard logical decoding output plugin
(pgoutput). The plugin transforms the changes read from WAL to the logical replication protocol (see
Section 54.5) and filters the data according to the publication specification. The data is then continu-
ously transferred using the streaming replication protocol to the apply worker, which maps the data to
local tables and applies the individual changes as they are received, in correct transactional order.

The apply process on the subscriber database always runs with session_replication_role set to
replica. This means that, by default, triggers and rules will not fire on a subscriber. Users can optionally
choose to enable triggers and rules on a table using the ALTER TABLE command and the ENABLE TRIGGER
and ENABLE RULE clauses.

The logical replication apply process currently only fires row triggers, not statement triggers. The ini-
tial table synchronization, however, is implemented like a COPY command and thus fires both row and
statement triggers for INSERT.

29.9.1. Initial Snapshot
The initial data in existing subscribed tables are snapshotted and copied in parallel instances of a spe-
cial kind of apply process. These special apply processes are dedicated table synchronization workers,
spawned for each table to be synchronized. Each table synchronization process will create its own repli-
cation slot and copy the existing data. As soon as the copy is finished the table contents will become
visible to other backends. Once existing data is copied, the worker enters synchronization mode, which
ensures that the table is brought up to a synchronized state with the main apply process by streaming
any changes that happened during the initial data copy using standard logical replication. During this

824

Logical Replication

synchronization phase, the changes are applied and committed in the same order as they happened on
the publisher. Once synchronization is done, control of the replication of the table is given back to the
main apply process where replication continues as normal.

Note
The publication publish parameter only affects what DML operations will be replicated. The initial
data synchronization does not take this parameter into account when copying the existing table
data.

Note
If a table synchronization worker fails during copy, the apply worker detects the failure and
respawns the table synchronization worker to continue the synchronization process. This behav-
iour ensures that transient errors do not permanently disrupt the replication setup. See also
wal_retrieve_retry_interval.

29.10. Monitoring
Because logical replication is based on a similar architecture as physical streaming replication, the
monitoring on a publication node is similar to monitoring of a physical replication primary (see Sec-
tion 26.2.5.2).

The monitoring information about subscription is visible in pg_stat_subscription. This view contains
one row for every subscription worker. A subscription can have zero or more active subscription workers
depending on its state.

Normally, there is a single apply process running for an enabled subscription. A disabled subscription or
a crashed subscription will have zero rows in this view. If the initial data synchronization of any table is in
progress, there will be additional workers for the tables being synchronized. Moreover, if the streaming
transaction is applied in parallel, there may be additional parallel apply workers.

29.11. Security
The role used for the replication connection must have the REPLICATION attribute (or be a superuser). If
the role lacks SUPERUSER and BYPASSRLS, publisher row security policies can execute. If the role does not
trust all table owners, include options=-crow_security=off in the connection string; if a table owner
then adds a row security policy, that setting will cause replication to halt rather than execute the policy.
Access for the role must be configured in pg_hba.conf and it must have the LOGIN attribute.

In order to be able to copy the initial table data, the role used for the replication connection must have
the SELECT privilege on a published table (or be a superuser).

To create a publication, the user must have the CREATE privilege in the database.

To add tables to a publication, the user must have ownership rights on the table. To add all tables in
schema to a publication, the user must be a superuser. To create a publication that publishes all tables
or all tables in schema automatically, the user must be a superuser.

There are currently no privileges on publications. Any subscription (that is able to connect) can access
any publication. Thus, if you intend to hide some information from particular subscribers, such as by
using row filters or column lists, or by not adding the whole table to the publication, be aware that other
publications in the same database could expose the same information. Publication privileges might be
added to PostgreSQL in the future to allow for finer-grained access control.

To create a subscription, the user must have the privileges of the pg_create_subscription role, as well
as CREATE privileges on the database.

825

Logical Replication

The subscription apply process will, at a session level, run with the privileges of the subscription owner.
However, when performing an insert, update, delete, or truncate operation on a particular table, it will
switch roles to the table owner and perform the operation with the table owner's privileges. This means
that the subscription owner needs to be able to SET ROLE to each role that owns a replicated table.

If the subscription has been configured with run_as_owner = true, then no user switching will occur.
Instead, all operations will be performed with the permissions of the subscription owner. In this case,
the subscription owner only needs privileges to SELECT, INSERT, UPDATE, and DELETE from the target
table, and does not need privileges to SET ROLE to the table owner. However, this also means that any
user who owns a table into which replication is happening can execute arbitrary code with the privileges
of the subscription owner. For example, they could do this by simply attaching a trigger to one of the
tables which they own. Because it is usually undesirable to allow one role to freely assume the privileges
of another, this option should be avoided unless user security within the database is of no concern.

On the publisher, privileges are only checked once at the start of a replication connection and are not
re-checked as each change record is read.

On the subscriber, the subscription owner's privileges are re-checked for each transaction when applied.
If a worker is in the process of applying a transaction when the ownership of the subscription is changed
by a concurrent transaction, the application of the current transaction will continue under the old own-
er's privileges.

29.12. Configuration Settings
Logical replication requires several configuration options to be set. These options are relevant only on
one side of the replication.

29.12.1. Publishers
wal_level must be set to logical.

max_replication_slots must be set to at least the number of subscriptions expected to connect, plus
some reserve for table synchronization.

Logical replication slots are also affected by idle_replication_slot_timeout.

max_wal_senders should be set to at least the same as max_replication_slots, plus the number of
physical replicas that are connected at the same time.

Logical replication walsender is also affected by wal_sender_timeout.

29.12.2. Subscribers
max_active_replication_origins must be set to at least the number of subscriptions that will be added
to the subscriber, plus some reserve for table synchronization.

max_logical_replication_workers must be set to at least the number of subscriptions (for leader apply
workers), plus some reserve for the table synchronization workers and parallel apply workers.

max_worker_processes may need to be adjusted to accommodate for replication workers, at least
(max_logical_replication_workers + 1). Note, some extensions and parallel queries also take worker
slots from max_worker_processes.

max_sync_workers_per_subscription controls the amount of parallelism of the initial data copy during
the subscription initialization or when new tables are added.

max_parallel_apply_workers_per_subscription controls the amount of parallelism for streaming of
in-progress transactions with subscription parameter streaming = parallel.

Logical replication workers are also affected by wal_receiver_timeout, wal_receiver_status_inter-
val and wal_retrieve_retry_interval.

826

Logical Replication

29.13. Upgrade
Migration of logical replication clusters is possible only when all the members of the old logical replica-
tion clusters are version 17.0 or later.

29.13.1. Prepare for Publisher Upgrades
pg_upgrade attempts to migrate logical slots. This helps avoid the need for manually defining the same
logical slots on the new publisher. Migration of logical slots is only supported when the old cluster is
version 17.0 or later. Logical slots on clusters before version 17.0 will silently be ignored.

Before you start upgrading the publisher cluster, ensure that the subscription is temporarily disabled,
by executing ALTER SUBSCRIPTION ... DISABLE. Re-enable the subscription after the upgrade.

There are some prerequisites for pg_upgrade to be able to upgrade the logical slots. If these are not
met an error will be reported.

• The new cluster must have wal_level as logical.
• The new cluster must have max_replication_slots configured to a value greater than or equal to

the number of slots present in the old cluster.
• The output plugins referenced by the slots on the old cluster must be installed in the new Post-

greSQL executable directory.
• The old cluster has replicated all the transactions and logical decoding messages to subscribers.
• All slots on the old cluster must be usable, i.e., there are no slots whose pg_replication_slots.con-

flicting is not true.
• The new cluster must not have permanent logical slots, i.e., there must be no slots where pg_repli-

cation_slots.temporary is false.

29.13.2. Prepare for Subscriber Upgrades
Setup the subscriber configurations in the new subscriber. pg_upgrade attempts to migrate subscrip-
tion dependencies which includes the subscription's table information present in pg_subscription_rel
system catalog and also the subscription's replication origin. This allows logical replication on the new
subscriber to continue from where the old subscriber was up to. Migration of subscription dependencies
is only supported when the old cluster is version 17.0 or later. Subscription dependencies on clusters
before version 17.0 will silently be ignored.

There are some prerequisites for pg_upgrade to be able to upgrade the subscriptions. If these are not
met an error will be reported.

• All the subscription tables in the old subscriber should be in state i (initialize) or r (ready). This
can be verified by checking pg_subscription_rel.srsubstate.

• The replication origin entry corresponding to each of the subscriptions should exist in the old clus-
ter. This can be found by checking pg_subscription and pg_replication_origin system tables.

• The new cluster must have max_active_replication_origins configured to a value greater than
or equal to the number of subscriptions present in the old cluster.

29.13.3. Upgrading Logical Replication Clusters
While upgrading a subscriber, write operations can be performed in the publisher. These changes will
be replicated to the subscriber once the subscriber upgrade is completed.

Note
The logical replication restrictions apply to logical replication cluster upgrades also. See Sec-
tion 29.8 for details.

827

Logical Replication

The prerequisites of publisher upgrade apply to logical replication cluster upgrades also. See
Section 29.13.1 for details.

The prerequisites of subscriber upgrade apply to logical replication cluster upgrades also. See
Section 29.13.2 for details.

Warning
Upgrading logical replication cluster requires multiple steps to be performed on various nodes.
Because not all operations are transactional, the user is advised to take backups as described in
Section 25.3.2.

The steps to upgrade the following logical replication clusters are detailed below:

• Follow the steps specified in Section 29.13.3.1 to upgrade a two-node logical replication cluster.

• Follow the steps specified in Section 29.13.3.2 to upgrade a cascaded logical replication cluster.

• Follow the steps specified in Section 29.13.3.3 to upgrade a two-node circular logical replication
cluster.

29.13.3.1. Steps to Upgrade a Two-node Logical Replication Cluster
Let's say publisher is in node1 and subscriber is in node2. The subscriber node2 has a subscription
sub1_node1_node2 which is subscribing the changes from node1.

1. Disable all the subscriptions on node2 that are subscribing the changes from node1 by using ALTER
SUBSCRIPTION ... DISABLE, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 DISABLE;

2. Stop the publisher server in node1, e.g.:

pg_ctl -D /opt/PostgreSQL/data1 stop

3. Initialize data1_upgraded instance by using the required newer version.

4. Upgrade the publisher node1's server to the required newer version, e.g.:

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data1"
 --new-datadir "/opt/PostgreSQL/postgres/18/data1_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

5. Start the upgraded publisher server in node1, e.g.:

pg_ctl -D /opt/PostgreSQL/data1_upgraded start -l logfile

6. Stop the subscriber server in node2, e.g.:

pg_ctl -D /opt/PostgreSQL/data2 stop

7. Initialize data2_upgraded instance by using the required newer version.

8. Upgrade the subscriber node2's server to the required new version, e.g.:

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data2"
 --new-datadir "/opt/PostgreSQL/postgres/18/data2_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

9. Start the upgraded subscriber server in node2, e.g.:

828

Logical Replication

pg_ctl -D /opt/PostgreSQL/data2_upgraded start -l logfile

10. On node2, create any tables that were created in the upgraded publisher node1 server between Step
1 and now, e.g.:

/* node2 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name
 varchar(40));

11. Enable all the subscriptions on node2 that are subscribing the changes from node1 by using ALTER
SUBSCRIPTION ... ENABLE, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 ENABLE;

12. Refresh the node2 subscription's publications using ALTER SUBSCRIPTION ... REFRESH PUBLI-
CATION, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 REFRESH PUBLICATION;

Note
In the steps described above, the publisher is upgraded first, followed by the subscriber. Alterna-
tively, the user can use similar steps to upgrade the subscriber first, followed by the publisher.

29.13.3.2. Steps to Upgrade a Cascaded Logical Replication Cluster
Let's say we have a cascaded logical replication setup node1->node2->node3. Here node2 is subscribing
the changes from node1 and node3 is subscribing the changes from node2. The node2 has a subscription
sub1_node1_node2 which is subscribing the changes from node1. The node3 has a subscription sub1_n-
ode2_node3 which is subscribing the changes from node2.

1. Disable all the subscriptions on node2 that are subscribing the changes from node1 by using ALTER
SUBSCRIPTION ... DISABLE, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 DISABLE;

2. Stop the server in node1, e.g.:

pg_ctl -D /opt/PostgreSQL/data1 stop

3. Initialize data1_upgraded instance by using the required newer version.

4. Upgrade the node1's server to the required newer version, e.g.:

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data1"
 --new-datadir "/opt/PostgreSQL/postgres/18/data1_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

5. Start the upgraded server in node1, e.g.:

pg_ctl -D /opt/PostgreSQL/data1_upgraded start -l logfile

6. Disable all the subscriptions on node3 that are subscribing the changes from node2 by using ALTER
SUBSCRIPTION ... DISABLE, e.g.:

/* node3 # */ ALTER SUBSCRIPTION sub1_node2_node3 DISABLE;

7. Stop the server in node2, e.g.:

pg_ctl -D /opt/PostgreSQL/data2 stop

8. Initialize data2_upgraded instance by using the required newer version.

9. Upgrade the node2's server to the required new version, e.g.:

829

Logical Replication

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data2"
 --new-datadir "/opt/PostgreSQL/postgres/18/data2_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

10. Start the upgraded server in node2, e.g.:

pg_ctl -D /opt/PostgreSQL/data2_upgraded start -l logfile

11. On node2, create any tables that were created in the upgraded publisher node1 server between Step
1 and now, e.g.:

/* node2 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name
 varchar(40));

12. Enable all the subscriptions on node2 that are subscribing the changes from node1 by using ALTER
SUBSCRIPTION ... ENABLE, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 ENABLE;

13. Refresh the node2 subscription's publications using ALTER SUBSCRIPTION ... REFRESH PUBLI-
CATION, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 REFRESH PUBLICATION;

14. Stop the server in node3, e.g.:

pg_ctl -D /opt/PostgreSQL/data3 stop

15. Initialize data3_upgraded instance by using the required newer version.
16. Upgrade the node3's server to the required new version, e.g.:

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data3"
 --new-datadir "/opt/PostgreSQL/postgres/18/data3_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

17. Start the upgraded server in node3, e.g.:

pg_ctl -D /opt/PostgreSQL/data3_upgraded start -l logfile

18. On node3, create any tables that were created in the upgraded node2 between Step 6 and now, e.g.:

/* node3 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name
 varchar(40));

19. Enable all the subscriptions on node3 that are subscribing the changes from node2 by using ALTER
SUBSCRIPTION ... ENABLE, e.g.:

/* node3 # */ ALTER SUBSCRIPTION sub1_node2_node3 ENABLE;

20. Refresh the node3 subscription's publications using ALTER SUBSCRIPTION ... REFRESH PUBLI-
CATION, e.g.:

/* node3 # */ ALTER SUBSCRIPTION sub1_node2_node3 REFRESH PUBLICATION;

29.13.3.3. Steps to Upgrade a Two-node Circular Logical Replication Cluster
Let's say we have a circular logical replication setup node1->node2 and node2->node1. Here node2 is
subscribing the changes from node1 and node1 is subscribing the changes from node2. The node1 has
a subscription sub1_node2_node1 which is subscribing the changes from node2. The node2 has a sub-
scription sub1_node1_node2 which is subscribing the changes from node1.

1. Disable all the subscriptions on node2 that are subscribing the changes from node1 by using ALTER
SUBSCRIPTION ... DISABLE, e.g.:

830

Logical Replication

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 DISABLE;

2. Stop the server in node1, e.g.:

pg_ctl -D /opt/PostgreSQL/data1 stop

3. Initialize data1_upgraded instance by using the required newer version.

4. Upgrade the node1's server to the required newer version, e.g.:

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data1"
 --new-datadir "/opt/PostgreSQL/postgres/18/data1_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

5. Start the upgraded server in node1, e.g.:

pg_ctl -D /opt/PostgreSQL/data1_upgraded start -l logfile

6. Enable all the subscriptions on node2 that are subscribing the changes from node1 by using ALTER
SUBSCRIPTION ... ENABLE, e.g.:

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 ENABLE;

7. On node1, create any tables that were created in node2 between Step 1 and now, e.g.:

/* node1 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name
 varchar(40));

8. Refresh the node1 subscription's publications to copy initial table data from node2 using ALTER
SUBSCRIPTION ... REFRESH PUBLICATION, e.g.:

/* node1 # */ ALTER SUBSCRIPTION sub1_node2_node1 REFRESH PUBLICATION;

9. Disable all the subscriptions on node1 that are subscribing the changes from node2 by using ALTER
SUBSCRIPTION ... DISABLE, e.g.:

/* node1 # */ ALTER SUBSCRIPTION sub1_node2_node1 DISABLE;

10. Stop the server in node2, e.g.:

pg_ctl -D /opt/PostgreSQL/data2 stop

11. Initialize data2_upgraded instance by using the required newer version.

12. Upgrade the node2's server to the required new version, e.g.:

pg_upgrade
 --old-datadir "/opt/PostgreSQL/postgres/17/data2"
 --new-datadir "/opt/PostgreSQL/postgres/18/data2_upgraded"
 --old-bindir "/opt/PostgreSQL/postgres/17/bin"
 --new-bindir "/opt/PostgreSQL/postgres/18/bin"

13. Start the upgraded server in node2, e.g.:

pg_ctl -D /opt/PostgreSQL/data2_upgraded start -l logfile

14. Enable all the subscriptions on node1 that are subscribing the changes from node2 by using ALTER
SUBSCRIPTION ... ENABLE, e.g.:

/* node1 # */ ALTER SUBSCRIPTION sub1_node2_node1 ENABLE;

15. On node2, create any tables that were created in the upgraded node1 between Step 9 and now, e.g.:

/* node2 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name
 varchar(40));

16. Refresh the node2 subscription's publications to copy initial table data from node1 using ALTER
SUBSCRIPTION ... REFRESH PUBLICATION, e.g.:

831

Logical Replication

/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 REFRESH PUBLICATION;

29.14. Quick Setup
First set the configuration options in postgresql.conf:

wal_level = logical

The other required settings have default values that are sufficient for a basic setup.

pg_hba.conf needs to be adjusted to allow replication (the values here depend on your actual network
configuration and user you want to use for connecting):

host all repuser 0.0.0.0/0 md5

Then on the publisher database:

CREATE PUBLICATION mypub FOR TABLE users, departments;

And on the subscriber database:

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=foo host=bar user=repuser' PUBLICATION
 mypub;

The above will start the replication process, which synchronizes the initial table contents of the tables
users and departments and then starts replicating incremental changes to those tables.

832

Chapter 30. Just-in-Time Compilation (JIT)
This chapter explains what just-in-time compilation is, and how it can be configured in PostgreSQL.

30.1. What Is JIT compilation?
Just-in-Time (JIT) compilation is the process of turning some form of interpreted program evaluation into
a native program, and doing so at run time. For example, instead of using general-purpose code that
can evaluate arbitrary SQL expressions to evaluate a particular SQL predicate like WHERE a.col = 3,
it is possible to generate a function that is specific to that expression and can be natively executed by
the CPU, yielding a speedup.

PostgreSQL has builtin support to perform JIT compilation using LLVM when PostgreSQL is built with
--with-llvm.

See src/backend/jit/README for further details.

30.1.1. JIT Accelerated Operations
Currently PostgreSQL's JIT implementation has support for accelerating expression evaluation and tuple
deforming. Several other operations could be accelerated in the future.

Expression evaluation is used to evaluate WHERE clauses, target lists, aggregates and projections. It can
be accelerated by generating code specific to each case.

Tuple deforming is the process of transforming an on-disk tuple (see Section 66.6.1) into its in-memory
representation. It can be accelerated by creating a function specific to the table layout and the number
of columns to be extracted.

30.1.2. Inlining
PostgreSQL is very extensible and allows new data types, functions, operators and other database objects
to be defined; see Chapter 36. In fact the built-in objects are implemented using nearly the same mech-
anisms. This extensibility implies some overhead, for example due to function calls (see Section 36.3).
To reduce that overhead, JIT compilation can inline the bodies of small functions into the expressions
using them. That allows a significant percentage of the overhead to be optimized away.

30.1.3. Optimization
LLVM has support for optimizing generated code. Some of the optimizations are cheap enough to be
performed whenever JIT is used, while others are only beneficial for longer-running queries. See https://
llvm.org/docs/Passes.html#transform-passes for more details about optimizations.

30.2. When to JIT?
JIT compilation is beneficial primarily for long-running CPU-bound queries. Frequently these will be
analytical queries. For short queries the added overhead of performing JIT compilation will often be
higher than the time it can save.

To determine whether JIT compilation should be used, the total estimated cost of a query (see Chap-
ter 69 and Section 19.7.2) is used. The estimated cost of the query will be compared with the setting of
jit_above_cost. If the cost is higher, JIT compilation will be performed. Two further decisions are then
needed. Firstly, if the estimated cost is more than the setting of jit_inline_above_cost, short functions
and operators used in the query will be inlined. Secondly, if the estimated cost is more than the setting
of jit_optimize_above_cost, expensive optimizations are applied to improve the generated code. Each of
these options increases the JIT compilation overhead, but can reduce query execution time considerably.

These cost-based decisions will be made at plan time, not execution time. This means that when pre-
pared statements are in use, and a generic plan is used (see PREPARE), the values of the configuration
parameters in effect at prepare time control the decisions, not the settings at execution time.

833

https://llvm.org/
https://llvm.org/docs/Passes.html#transform-passes
https://llvm.org/docs/Passes.html#transform-passes

Just-in-Time Compilation (JIT)

Note
If jit is set to off, or if no JIT implementation is available (for example because the server was
compiled without --with-llvm), JIT will not be performed, even if it would be beneficial based on
the above criteria. Setting jit to off has effects at both plan and execution time.

EXPLAIN can be used to see whether JIT is used or not. As an example, here is a query that is not using
JIT:

=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN

--
 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual time=0.303..0.303 rows=1.00
 loops=1)
 Buffers: shared hit=14
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4) (actual
 time=0.017..0.111 rows=356.00 loops=1)
 Buffers: shared hit=14
 Planning Time: 0.116 ms
 Execution Time: 0.365 ms

Given the cost of the plan, it is entirely reasonable that no JIT was used; the cost of JIT would have been
bigger than the potential savings. Adjusting the cost limits will lead to JIT use:

=# SET jit_above_cost = 10;
SET
=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN

--
 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual time=6.049..6.049 rows=1.00
 loops=1)
 Buffers: shared hit=14
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4) (actual
 time=0.019..0.052 rows=356.00 loops=1)
 Buffers: shared hit=14
 Planning Time: 0.133 ms
 JIT:
 Functions: 3
 Options: Inlining false, Optimization false, Expressions true, Deforming true
 Timing: Generation 1.259 ms (Deform 0.000 ms), Inlining 0.000 ms, Optimization 0.797
 ms, Emission 5.048 ms, Total 7.104 ms
 Execution Time: 7.416 ms

As visible here, JIT was used, but inlining and expensive optimization were not. If jit_inline_above_cost
or jit_optimize_above_cost were also lowered, that would change.

30.3. Configuration
The configuration variable jit determines whether JIT compilation is enabled or disabled. If it is enabled,
the configuration variables jit_above_cost, jit_inline_above_cost, and jit_optimize_above_cost determine
whether JIT compilation is performed for a query, and how much effort is spent doing so.

jit_provider determines which JIT implementation is used. It is rarely required to be changed. See Sec-
tion 30.4.2.

For development and debugging purposes a few additional configuration parameters exist, as described
in Section 19.17.

834

Just-in-Time Compilation (JIT)

30.4. Extensibility
30.4.1. Inlining Support for Extensions

PostgreSQL's JIT implementation can inline the bodies of functions of types C and internal, as well as
operators based on such functions. To do so for functions in extensions, the definitions of those functions
need to be made available. When using PGXS to build an extension against a server that has been
compiled with LLVM JIT support, the relevant files will be built and installed automatically.

The relevant files have to be installed into $pkglibdir/bitcode/$extension/ and a summary of them in-
to $pkglibdir/bitcode/$extension.index.bc, where $pkglibdir is the directory returned by pg_con-
fig --pkglibdir and $extension is the base name of the extension's shared library.

Note
For functions built into PostgreSQL itself, the bitcode is installed into $pkglibdir/bitcode/post-
gres.

30.4.2. Pluggable JIT Providers
PostgreSQL provides a JIT implementation based on LLVM. The interface to the JIT provider is pluggable
and the provider can be changed without recompiling (although currently, the build process only pro-
vides inlining support data for LLVM). The active provider is chosen via the setting jit_provider.

30.4.2.1. JIT Provider Interface
A JIT provider is loaded by dynamically loading the named shared library. The normal library search path
is used to locate the library. To provide the required JIT provider callbacks and to indicate that the library
is actually a JIT provider, it needs to provide a C function named _PG_jit_provider_init. This function
is passed a struct that needs to be filled with the callback function pointers for individual actions:

struct JitProviderCallbacks
{
 JitProviderResetAfterErrorCB reset_after_error;
 JitProviderReleaseContextCB release_context;
 JitProviderCompileExprCB compile_expr;
};

extern void _PG_jit_provider_init(JitProviderCallbacks *cb);

835

Chapter 31. Regression Tests
The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL. They
test standard SQL operations as well as the extended capabilities of PostgreSQL.

31.1. Running the Tests
The regression tests can be run against an already installed and running server, or using a temporary
installation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for running
the tests. The sequential method runs each test script alone, while the parallel method starts up multiple
server processes to run groups of tests in parallel. Parallel testing adds confidence that interprocess
communication and locking are working correctly. Some tests may run sequentially even in the “parallel”
mode in case this is required by the test.

31.1.1. Running the Tests Against a Temporary Installation
To run the parallel regression tests after building but before installation, type:

make check

in the top-level directory. (Or you can change to src/test/regress and run the command there.) Tests
which are run in parallel are prefixed with “+”, and tests which run sequentially are prefixed with “-”.
At the end you should see something like:

All 213 tests passed.

or otherwise a note about which tests failed. See Section 31.2 below before assuming that a “failure”
represents a serious problem.

Because this test method runs a temporary server, it will not work if you did the build as the root user,
since the server will not start as root. Recommended procedure is not to do the build as root, or else to
perform testing after completing the installation.

If you have configured PostgreSQL to install into a location where an older PostgreSQL installation al-
ready exists, and you perform make check before installing the new version, you might find that the tests
fail because the new programs try to use the already-installed shared libraries. (Typical symptoms are
complaints about undefined symbols.) If you wish to run the tests before overwriting the old installation,
you'll need to build with configure --disable-rpath. It is not recommended that you use this option
for the final installation, however.

The parallel regression test starts quite a few processes under your user ID. Presently, the maximum
concurrency is twenty parallel test scripts, which means forty processes: there's a server process and a
psql process for each test script. So if your system enforces a per-user limit on the number of processes,
make sure this limit is at least fifty or so, else you might get random-seeming failures in the parallel test.
If you are not in a position to raise the limit, you can cut down the degree of parallelism by setting the
MAX_CONNECTIONS parameter. For example:

make MAX_CONNECTIONS=10 check

runs no more than ten tests concurrently.

31.1.2. Running the Tests Against an Existing Installation
To run the tests after installation (see Chapter 17), initialize a data directory and start the server as
explained in Chapter 18, then type:

make installcheck

or for a parallel test:

make installcheck-parallel

836

Regression Tests

The tests will expect to contact the server at the local host and the default port number, unless directed
otherwise by PGHOST and PGPORT environment variables. The tests will be run in a database named
regression; any existing database by this name will be dropped.

The tests will also transiently create some cluster-wide objects, such as roles, tablespaces, and subscrip-
tions. These objects will have names beginning with regress_. Beware of using installcheck mode
with an installation that has any actual global objects named that way.

31.1.3. Additional Test Suites
The make check and make installcheck commands run only the “core” regression tests, which test
built-in functionality of the PostgreSQL server. The source distribution contains many additional test
suites, most of them having to do with add-on functionality such as optional procedural languages.

To run all test suites applicable to the modules that have been selected to be built, including the core
tests, type one of these commands at the top of the build tree:
make check-world
make installcheck-world

These commands run the tests using temporary servers or an already-installed server, respectively,
just as previously explained for make check and make installcheck. Other considerations are the
same as previously explained for each method. Note that make check-world builds a separate instance
(temporary data directory) for each tested module, so it requires more time and disk space than make
installcheck-world.

On a modern machine with multiple CPU cores and no tight operating-system limits, you can make things
go substantially faster with parallelism. The recipe that most PostgreSQL developers actually use for
running all tests is something like
make check-world -j8 >/dev/null

with a -j limit near to or a bit more than the number of available cores. Discarding stdout eliminates
chatter that's not interesting when you just want to verify success. (In case of failure, the stderr messages
are usually enough to determine where to look closer.)

Alternatively, you can run individual test suites by typing make check or make installcheck in the ap-
propriate subdirectory of the build tree. Keep in mind that make installcheck assumes you've installed
the relevant module(s), not only the core server.

The additional tests that can be invoked this way include:

• Regression tests for optional procedural languages. These are located under src/pl.
• Regression tests for contrib modules, located under contrib. Not all contrib modules have tests.
• Regression tests for the interface libraries, located in src/interfaces/libpq/test and src/in-

terfaces/ecpg/test.
• Tests for core-supported authentication methods, located in src/test/authentication. (See below

for additional authentication-related tests.)
• Tests stressing behavior of concurrent sessions, located in src/test/isolation.
• Tests for crash recovery and physical replication, located in src/test/recovery.
• Tests for logical replication, located in src/test/subscription.
• Tests of client programs, located under src/bin.
When using installcheck mode, these tests will create and destroy test databases whose names include
regression, for example pl_regression or contrib_regression. Beware of using installcheck mode
with an installation that has any non-test databases named that way.

Some of these auxiliary test suites use the TAP infrastructure explained in Section 31.4. The TAP-based
tests are run only when PostgreSQL was configured with the option --enable-tap-tests. This is rec-
ommended for development, but can be omitted if there is no suitable Perl installation.

837

Regression Tests

Some test suites are not run by default, either because they are not secure to run on a multiuser system,
because they require special software or because they are resource intensive. You can decide which
test suites to run additionally by setting the make or environment variable PG_TEST_EXTRA to a white-
space-separated list, for example:
make check-world PG_TEST_EXTRA='kerberos ldap ssl load_balance libpq_encryption'

The following values are currently supported:
kerberos

Runs the test suite under src/test/kerberos. This requires an MIT Kerberos installation and opens
TCP/IP listen sockets.

ldap

Runs the test suite under src/test/ldap. This requires an OpenLDAP installation and opens TCP/
IP listen sockets.

libpq_encryption

Runs the test src/interfaces/libpq/t/005_negotiate_encryption.pl. This opens TCP/IP listen
sockets. If PG_TEST_EXTRA also includes kerberos, additional tests that require an MIT Kerberos
installation are enabled.

load_balance

Runs the test src/interfaces/libpq/t/004_load_balance_dns.pl. This requires editing the sys-
tem hosts file and opens TCP/IP listen sockets.

oauth

Runs the test suite under src/test/modules/oauth_validator. This opens TCP/IP listen sockets for
a test server running HTTPS.

regress_dump_restore

Runs an additional test suite in src/bin/pg_upgrade/t/002_pg_upgrade.pl which cycles the regres-
sion database through pg_dump/ pg_restore. Not enabled by default because it is resource intensive.

sepgsql

Runs the test suite under contrib/sepgsql. This requires an SELinux environment that is set up in
a specific way; see Section F.40.3.

ssl

Runs the test suite under src/test/ssl. This opens TCP/IP listen sockets.

wal_consistency_checking

Uses wal_consistency_checking=all while running certain tests under src/test/recovery. Not
enabled by default because it is resource intensive.

xid_wraparound

Runs the test suite under src/test/modules/xid_wraparound. Not enabled by default because it is
resource intensive.

Tests for features that are not supported by the current build configuration are not run even if they are
mentioned in PG_TEST_EXTRA.

In addition, there are tests in src/test/modules which will be run by make check-world but not by
make installcheck-world. This is because they install non-production extensions or have other side-
effects that are considered undesirable for a production installation. You can use make install and
make installcheck in one of those subdirectories if you wish, but it's not recommended to do so with
a non-test server.

838

Regression Tests

31.1.4. Locale and Encoding
By default, tests using a temporary installation use the locale defined in the current environment and
the corresponding database encoding as determined by initdb. It can be useful to test different locales
by setting the appropriate environment variables, for example:
make check LANG=C
make check LC_COLLATE=en_US.utf8 LC_CTYPE=fr_CA.utf8

For implementation reasons, setting LC_ALL does not work for this purpose; all the other locale-related
environment variables do work.

When testing against an existing installation, the locale is determined by the existing database cluster
and cannot be set separately for the test run.

You can also choose the database encoding explicitly by setting the variable ENCODING, for example:
make check LANG=C ENCODING=EUC_JP

Setting the database encoding this way typically only makes sense if the locale is C; otherwise the
encoding is chosen automatically from the locale, and specifying an encoding that does not match the
locale will result in an error.

The database encoding can be set for tests against either a temporary or an existing installation, though
in the latter case it must be compatible with the installation's locale.

31.1.5. Custom Server Settings
There are several ways to use custom server settings when running a test suite. This can be useful to
enable additional logging, adjust resource limits, or enable extra run-time checks such as debug_dis-
card_caches. But note that not all tests can be expected to pass cleanly with arbitrary settings.

Extra options can be passed to the various initdb commands that are run internally during test setup
using the environment variable PG_TEST_INITDB_EXTRA_OPTS. For example, to run a test with checksums
enabled and a custom WAL segment size and work_mem setting, use:
make check PG_TEST_INITDB_EXTRA_OPTS='-k --wal-segsize=4 -c work_mem=50MB'

For the core regression test suite and other tests driven by pg_regress, custom run-time server settings
can also be set in the PGOPTIONS environment variable (for settings that allow this), for example:
make check PGOPTIONS="-c debug_parallel_query=regress -c work_mem=50MB"

(This makes use of functionality provided by libpq; see options for details.)

When running against a temporary installation, custom settings can also be set by supplying a pre-
written postgresql.conf:
echo 'log_checkpoints = on' > test_postgresql.conf
echo 'work_mem = 50MB' >> test_postgresql.conf
make check EXTRA_REGRESS_OPTS="--temp-config=test_postgresql.conf"

31.1.6. Extra Tests
The core regression test suite contains a few test files that are not run by default, because they might be
platform-dependent or take a very long time to run. You can run these or other extra test files by setting
the variable EXTRA_TESTS. For example, to run the numeric_big test:
make check EXTRA_TESTS=numeric_big

31.2. Test Evaluation
Some properly installed and fully functional PostgreSQL installations can “fail” some of these regression
tests due to platform-specific artifacts such as varying floating-point representation and message word-
ing. The tests are currently evaluated using a simple diff comparison against the outputs generated on

839

Regression Tests

a reference system, so the results are sensitive to small system differences. When a test is reported as
“failed”, always examine the differences between expected and actual results; you might find that the
differences are not significant. Nonetheless, we still strive to maintain accurate reference files across
all supported platforms, so it can be expected that all tests pass.

The actual outputs of the regression tests are in files in the src/test/regress/results directory. The
test script uses diff to compare each output file against the reference outputs stored in the src/test/
regress/expected directory. Any differences are saved for your inspection in src/test/regress/re-
gression.diffs. (When running a test suite other than the core tests, these files of course appear in
the relevant subdirectory, not src/test/regress.)

If you don't like the diff options that are used by default, set the environment variable PG_REGRESS_DIF-
F_OPTS, for instance PG_REGRESS_DIFF_OPTS='-c'. (Or you can run diff yourself, if you prefer.)

If for some reason a particular platform generates a “failure” for a given test, but inspection of the output
convinces you that the result is valid, you can add a new comparison file to silence the failure report in
future test runs. See Section 31.3 for details.

31.2.1. Error Message Differences
Some of the regression tests involve intentional invalid input values. Error messages can come from
either the PostgreSQL code or from the host platform system routines. In the latter case, the messages
can vary between platforms, but should reflect similar information. These differences in messages will
result in a “failed” regression test that can be validated by inspection.

31.2.2. Locale Differences
If you run the tests against a server that was initialized with a collation-order locale other than C, then
there might be differences due to sort order and subsequent failures. The regression test suite is set
up to handle this problem by providing alternate result files that together are known to handle a large
number of locales.

To run the tests in a different locale when using the temporary-installation method, pass the appropriate
locale-related environment variables on the make command line, for example:
make check LANG=de_DE.utf8

(The regression test driver unsets LC_ALL, so it does not work to choose the locale using that variable.) To
use no locale, either unset all locale-related environment variables (or set them to C) or use the following
special invocation:
make check NO_LOCALE=1

When running the tests against an existing installation, the locale setup is determined by the existing
installation. To change it, initialize the database cluster with a different locale by passing the appropriate
options to initdb.

In general, it is advisable to try to run the regression tests in the locale setup that is wanted for production
use, as this will exercise the locale- and encoding-related code portions that will actually be used in
production. Depending on the operating system environment, you might get failures, but then you will
at least know what locale-specific behaviors to expect when running real applications.

31.2.3. Date and Time Differences
Most of the date and time results are dependent on the time zone environment. The reference files are
generated for time zone America/Los_Angeles, and there will be apparent failures if the tests are not
run with that time zone setting. The regression test driver sets environment variable PGTZ to Ameri-
ca/Los_Angeles, which normally ensures proper results.

31.2.4. Floating-Point Differences
Some of the tests involve computing 64-bit floating-point numbers (double precision) from table
columns. Differences in results involving mathematical functions of double precision columns have

840

Regression Tests

been observed. The float8 and geometry tests are particularly prone to small differences across plat-
forms, or even with different compiler optimization settings. Human eyeball comparison is needed to
determine the real significance of these differences which are usually 10 places to the right of the dec-
imal point.

Some systems display minus zero as -0, while others just show 0.

Some systems signal errors from pow() and exp() differently from the mechanism expected by the
current PostgreSQL code.

31.2.5. Row Ordering Differences
You might see differences in which the same rows are output in a different order than what appears in
the expected file. In most cases this is not, strictly speaking, a bug. Most of the regression test scripts
are not so pedantic as to use an ORDER BY for every single SELECT, and so their result row orderings are
not well-defined according to the SQL specification. In practice, since we are looking at the same queries
being executed on the same data by the same software, we usually get the same result ordering on all
platforms, so the lack of ORDER BY is not a problem. Some queries do exhibit cross-platform ordering
differences, however. When testing against an already-installed server, ordering differences can also be
caused by non-C locale settings or non-default parameter settings, such as custom values of work_mem
or the planner cost parameters.

Therefore, if you see an ordering difference, it's not something to worry about, unless the query does
have an ORDER BY that your result is violating. However, please report it anyway, so that we can add an
ORDER BY to that particular query to eliminate the bogus “failure” in future releases.

You might wonder why we don't order all the regression test queries explicitly to get rid of this issue
once and for all. The reason is that that would make the regression tests less useful, not more, since
they'd tend to exercise query plan types that produce ordered results to the exclusion of those that don't.

31.2.6. Insufficient Stack Depth
If the errors test results in a server crash at the select infinite_recurse() command, it means
that the platform's limit on process stack size is smaller than the max_stack_depth parameter indicates.
This can be fixed by running the server under a higher stack size limit (4MB is recommended with the
default value of max_stack_depth). If you are unable to do that, an alternative is to reduce the value
of max_stack_depth.

On platforms supporting getrlimit(), the server should automatically choose a safe value of max_s-
tack_depth; so unless you've manually overridden this setting, a failure of this kind is a reportable bug.

31.2.7. The “random” Test
The random test script is intended to produce random results. In very rare cases, this causes that re-
gression test to fail. Typing:
diff results/random.out expected/random.out

should produce only one or a few lines of differences. You need not worry unless the random test fails
repeatedly.

31.2.8. Configuration Parameters
When running the tests against an existing installation, some non-default parameter settings could cause
the tests to fail. For example, changing parameters such as enable_seqscan or enable_indexscan could
cause plan changes that would affect the results of tests that use EXPLAIN.

31.3. Variant Comparison Files
Since some of the tests inherently produce environment-dependent results, we have provided ways to
specify alternate “expected” result files. Each regression test can have several comparison files showing

841

Regression Tests

possible results on different platforms. There are two independent mechanisms for determining which
comparison file is used for each test.

The first mechanism allows comparison files to be selected for specific platforms. There is a mapping file,
src/test/regress/resultmap, that defines which comparison file to use for each platform. To eliminate
bogus test “failures” for a particular platform, you first choose or make a variant result file, and then
add a line to the resultmap file.

Each line in the mapping file is of the form

testname:output:platformpattern=comparisonfilename

The test name is just the name of the particular regression test module. The output value indicates
which output file to check. For the standard regression tests, this is always out. The value corresponds
to the file extension of the output file. The platform pattern is a pattern in the style of the Unix tool expr
(that is, a regular expression with an implicit ^ anchor at the start). It is matched against the platform
name as printed by config.guess. The comparison file name is the base name of the substitute result
comparison file.

For example: some systems lack a working strtof function, for which our workaround causes round-
ing errors in the float4 regression test. Therefore, we provide a variant comparison file, float4-mis-
rounded-input.out, which includes the results to be expected on these systems. To silence the bogus
“failure” message on Cygwin platforms, resultmap includes:

float4:out:.*-.*-cygwin.*=float4-misrounded-input.out

which will trigger on any machine where the output of config.guess matches .*-.*-cygwin.*. Other
lines in resultmap select the variant comparison file for other platforms where it's appropriate.

The second selection mechanism for variant comparison files is much more automatic: it simply uses the
“best match” among several supplied comparison files. The regression test driver script considers both
the standard comparison file for a test, testname.out, and variant files named testname_digit.out
(where the digit is any single digit 0-9). If any such file is an exact match, the test is considered to pass;
otherwise, the one that generates the shortest diff is used to create the failure report. (If resultmap in-
cludes an entry for the particular test, then the base testname is the substitute name given in resultmap.)

For example, for the char test, the comparison file char.out contains results that are expected in the C
and POSIX locales, while the file char_1.out contains results sorted as they appear in many other locales.

The best-match mechanism was devised to cope with locale-dependent results, but it can be used in any
situation where the test results cannot be predicted easily from the platform name alone. A limitation
of this mechanism is that the test driver cannot tell which variant is actually “correct” for the current
environment; it will just pick the variant that seems to work best. Therefore it is safest to use this
mechanism only for variant results that you are willing to consider equally valid in all contexts.

31.4. TAP Tests
Various tests, particularly the client program tests under src/bin, use the Perl TAP tools and are run
using the Perl testing program prove. You can pass command-line options to prove by setting the make
variable PROVE_FLAGS, for example:

make -C src/bin check PROVE_FLAGS='--timer'

See the manual page of prove for more information.

The make variable PROVE_TESTS can be used to define a whitespace-separated list of paths relative to the
Makefile invoking prove to run the specified subset of tests instead of the default t/*.pl. For example:

make check PROVE_TESTS='t/001_test1.pl t/003_test3.pl'

The TAP tests require the Perl module IPC::Run. This module is available from CPAN or an operating
system package. They also require PostgreSQL to be configured with the option --enable-tap-tests.

842

https://metacpan.org/dist/IPC-Run

Regression Tests

Generically speaking, the TAP tests will test the executables in a previously-installed installation tree if
you say make installcheck, or will build a new local installation tree from current sources if you say
make check. In either case they will initialize a local instance (data directory) and transiently run a server
in it. Some of these tests run more than one server. Thus, these tests can be fairly resource-intensive.

It's important to realize that the TAP tests will start test server(s) even when you say make installcheck;
this is unlike the traditional non-TAP testing infrastructure, which expects to use an already-running
test server in that case. Some PostgreSQL subdirectories contain both traditional-style and TAP-style
tests, meaning that make installcheck will produce a mix of results from temporary servers and the
already-running test server.

31.4.1. Environment Variables
Data directories are named according to the test filename, and will be retained if a test fails. If the
environment variable PG_TEST_NOCLEAN is set, data directories will be retained regardless of test status.
For example, retaining the data directory regardless of test results when running the pg_dump tests:
PG_TEST_NOCLEAN=1 make -C src/bin/pg_dump check

This environment variable also prevents the test's temporary directories from being removed.

Many operations in the test suites use a 180-second timeout, which on slow hosts may lead to load-
induced timeouts. Setting the environment variable PG_TEST_TIMEOUT_DEFAULT to a higher number will
change the default to avoid this.

31.5. Test Coverage Examination
The PostgreSQL source code can be compiled with coverage testing instrumentation, so that it becomes
possible to examine which parts of the code are covered by the regression tests or any other test suite
that is run with the code. This is currently supported when compiling with GCC, and it requires the gcov
and lcov packages.

31.5.1. Coverage with Autoconf and Make
A typical workflow looks like this:
./configure --enable-coverage ... OTHER OPTIONS ...
make
make check # or other test suite
make coverage-html

Then point your HTML browser to coverage/index.html.

If you don't have lcov or prefer text output over an HTML report, you can run
make coverage

instead of make coverage-html, which will produce .gcov output files for each source file relevant to
the test. (make coverage and make coverage-html will overwrite each other's files, so mixing them
might be confusing.)

You can run several different tests before making the coverage report; the execution counts will accu-
mulate. If you want to reset the execution counts between test runs, run:
make coverage-clean

You can run the make coverage-html or make coverage command in a subdirectory if you want a
coverage report for only a portion of the code tree.

Use make distclean to clean up when done.

31.5.2. Coverage with Meson
A typical workflow looks like this:

843

Regression Tests

meson setup -Db_coverage=true ... OTHER OPTIONS ... builddir/
meson compile -C builddir/
meson test -C builddir/
cd builddir/
ninja coverage-html

Then point your HTML browser to ./meson-logs/coveragereport/index.html.

You can run several different tests before making the coverage report; the execution counts will accu-
mulate.

844

Part IV. Client Interfaces
This part describes the client programming interfaces distributed with PostgreSQL. Each of these chapters
can be read independently. There are many external programming interfaces for client programs that are
distributed separately. They contain their own documentation (Appendix H lists some of the more popular
ones). Readers of this part should be familiar with using SQL to manipulate and query the database (see
Part II) and of course with the programming language of their choice.

Chapter 32. libpq — C Library
libpq is the C application programmer's interface to PostgreSQL. libpq is a set of library functions that
allow client programs to pass queries to the PostgreSQL backend server and to receive the results of
these queries.

libpq is also the underlying engine for several other PostgreSQL application interfaces, including those
written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq's behavior will be important to you
if you use one of those packages. In particular, Section 32.15, Section 32.16 and Section 32.19 describe
behavior that is visible to the user of any application that uses libpq.

Some short programs are included at the end of this chapter (Section 32.23) to show how to write
programs that use libpq. There are also several complete examples of libpq applications in the directory
src/test/examples in the source code distribution.

Client programs that use libpq must include the header file libpq-fe.hand must link with the libpq
library.

32.1. Database Connection Control Functions
The following functions deal with making a connection to a PostgreSQL backend server. An application
program can have several backend connections open at one time. (One reason to do that is to access
more than one database.) Each connection is represented by a PGconnobject, which is obtained from
the function PQconnectdb, PQconnectdbParams, or PQsetdbLogin. Note that these functions will always
return a non-null object pointer, unless perhaps there is too little memory even to allocate the PGconn
object. The PQstatus function should be called to check the return value for a successful connection
before queries are sent via the connection object.

Warning
If untrusted users have access to a database that has not adopted a secure schema usage pat-
tern, begin each session by removing publicly-writable schemas from search_path. One can set
parameter key word options to value -csearch_path=. Alternately, one can issue PQexec(conn,
"SELECT pg_catalog.set_config('search_path', '', false)") after connecting. This consid-
eration is not specific to libpq; it applies to every interface for executing arbitrary SQL commands.

Warning
On Unix, forking a process with open libpq connections can lead to unpredictable results because
the parent and child processes share the same sockets and operating system resources. For this
reason, such usage is not recommended, though doing an exec from the child process to load a
new executable is safe.

PQconnectdbParams

Makes a new connection to the database server.

PGconn *PQconnectdbParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

This function opens a new database connection using the parameters taken from two NULL-terminated
arrays. The first, keywords, is defined as an array of strings, each one being a key word. The second,
values, gives the value for each key word. Unlike PQsetdbLogin below, the parameter set can be
extended without changing the function signature, so use of this function (or its nonblocking analogs
PQconnectStartParams and PQconnectPoll) is preferred for new application programming.

846

libpq — C Library

The currently recognized parameter key words are listed in Section 32.1.2.

The passed arrays can be empty to use all default parameters, or can contain one or more parameter
settings. They must be matched in length. Processing will stop at the first NULL entry in the keywords
array. Also, if the values entry associated with a non-NULL keywords entry is NULL or an empty string,
that entry is ignored and processing continues with the next pair of array entries.

When expand_dbname is non-zero, the value for the first dbname key word is checked to see if it is a
connection string. If so, it is “expanded” into the individual connection parameters extracted from
the string. The value is considered to be a connection string, rather than just a database name, if it
contains an equal sign (=) or it begins with a URI scheme designator. (More details on connection
string formats appear in Section 32.1.1.) Only the first occurrence of dbname is treated in this way;
any subsequent dbname parameter is processed as a plain database name.

In general the parameter arrays are processed from start to end. If any key word is repeated, the
last value (that is not NULL or empty) is used. This rule applies in particular when a key word found in
a connection string conflicts with one appearing in the keywords array. Thus, the programmer may
determine whether array entries can override or be overridden by values taken from a connection
string. Array entries appearing before an expanded dbname entry can be overridden by fields of the
connection string, and in turn those fields are overridden by array entries appearing after dbname
(but, again, only if those entries supply non-empty values).

After processing all the array entries and any expanded connection string, any connection parame-
ters that remain unset are filled with default values. If an unset parameter's corresponding environ-
ment variable (see Section 32.15) is set, its value is used. If the environment variable is not set either,
then the parameter's built-in default value is used.

PQconnectdb

Makes a new connection to the database server.
PGconn *PQconnectdb(const char *conninfo);

This function opens a new database connection using the parameters taken from the string conninfo.

The passed string can be empty to use all default parameters, or it can contain one or more parameter
settings separated by whitespace, or it can contain a URI. See Section 32.1.1 for details.

PQsetdbLogin

Makes a new connection to the database server.
PGconn *PQsetdbLogin(const char *pghost,
 const char *pgport,
 const char *pgoptions,
 const char *pgtty,
 const char *dbName,
 const char *login,
 const char *pwd);

This is the predecessor of PQconnectdb with a fixed set of parameters. It has the same functionality
except that the missing parameters will always take on default values. Write NULL or an empty string
for any one of the fixed parameters that is to be defaulted.

If the dbName contains an = sign or has a valid connection URI prefix, it is taken as a conninfo string
in exactly the same way as if it had been passed to PQconnectdb, and the remaining parameters are
then applied as specified for PQconnectdbParams.

pgtty is no longer used and any value passed will be ignored.

PQsetdb

Makes a new connection to the database server.

847

libpq — C Library

PGconn *PQsetdb(char *pghost,
 char *pgport,
 char *pgoptions,
 char *pgtty,
 char *dbName);

This is a macro that calls PQsetdbLogin with null pointers for the login and pwd parameters. It is
provided for backward compatibility with very old programs.

PQconnectStartParams
PQconnectStart
PQconnectPoll

Make a connection to the database server in a nonblocking manner.
PGconn *PQconnectStartParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);

These three functions are used to open a connection to a database server such that your applica-
tion's thread of execution is not blocked on remote I/O whilst doing so. The point of this approach is
that the waits for I/O to complete can occur in the application's main loop, rather than down inside
PQconnectdbParams or PQconnectdb, and so the application can manage this operation in parallel
with other activities.

With PQconnectStartParams, the database connection is made using the parameters taken from the
keywords and values arrays, and controlled by expand_dbname, as described above for PQconnect-
dbParams.

With PQconnectStart, the database connection is made using the parameters taken from the string
conninfo as described above for PQconnectdb.

Neither PQconnectStartParams nor PQconnectStart nor PQconnectPoll will block, so long as a
number of restrictions are met:
• The hostaddr parameter must be used appropriately to prevent DNS queries from being made.

See the documentation of this parameter in Section 32.1.2 for details.
• If you call PQtrace, ensure that the stream object into which you trace will not block.
• You must ensure that the socket is in the appropriate state before calling PQconnectPoll, as de-

scribed below.

To begin a nonblocking connection request, call PQconnectStart or PQconnectStartParams. If the
result is null, then libpq has been unable to allocate a new PGconn structure. Otherwise, a valid
PGconn pointer is returned (though not yet representing a valid connection to the database). Next
call PQstatus(conn). If the result is CONNECTION_BAD, the connection attempt has already failed,
typically because of invalid connection parameters.

If PQconnectStart or PQconnectStartParams succeeds, the next stage is to poll libpq so that it can
proceed with the connection sequence. Use PQsocket(conn) to obtain the descriptor of the socket
underlying the database connection. (Caution: do not assume that the socket remains the same across
PQconnectPoll calls.) Loop thus: If PQconnectPoll(conn) last returned PGRES_POLLING_READING,
wait until the socket is ready to read (as indicated by select(), poll(), or similar system func-
tion). Note that PQsocketPoll can help reduce boilerplate by abstracting the setup of select(2) or
poll(2) if it is available on your system. Then call PQconnectPoll(conn) again. Conversely, if PQcon-
nectPoll(conn) last returned PGRES_POLLING_WRITING, wait until the socket is ready to write, then
call PQconnectPoll(conn) again. On the first iteration, i.e., if you have yet to call PQconnectPoll, be-

848

libpq — C Library

have as if it last returned PGRES_POLLING_WRITING. Continue this loop until PQconnectPoll(conn) re-
turns PGRES_POLLING_FAILED, indicating the connection procedure has failed, or PGRES_POLLING_OK,
indicating the connection has been successfully made.

At any time during connection, the status of the connection can be checked by calling PQstatus.
If this call returns CONNECTION_BAD, then the connection procedure has failed; if the call returns
CONNECTION_OK, then the connection is ready. Both of these states are equally detectable from the
return value of PQconnectPoll, described above. Other states might also occur during (and only
during) an asynchronous connection procedure. These indicate the current stage of the connection
procedure and might be useful to provide feedback to the user for example. These statuses are:
CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

CONNECTION_AUTH_OK

Received authentication; waiting for backend start-up to finish.

CONNECTION_SSL_STARTUP

Negotiating SSL encryption.

CONNECTION_GSS_STARTUP

Negotiating GSS encryption.

CONNECTION_CHECK_WRITABLE

Checking if connection is able to handle write transactions.

CONNECTION_CHECK_STANDBY

Checking if connection is to a server in standby mode.

CONNECTION_CONSUME

Consuming any remaining response messages on connection.

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these occurring in a particular order, or at all, or on the status always being
one of these documented values. An application might do something like this:
switch(PQstatus(conn))
{
 case CONNECTION_STARTED:
 feedback = "Connecting...";
 break;

 case CONNECTION_MADE:
 feedback = "Connected to server...";
 break;
.
.
.
 default:
 feedback = "Connecting...";
}

849

libpq — C Library

The connect_timeout connection parameter is ignored when using PQconnectPoll; it is the appli-
cation's responsibility to decide whether an excessive amount of time has elapsed. Otherwise, PQ-
connectStart followed by a PQconnectPoll loop is equivalent to PQconnectdb.

Note that when PQconnectStart or PQconnectStartParams returns a non-null pointer, you must
call PQfinish when you are finished with it, in order to dispose of the structure and any associated
memory blocks. This must be done even if the connection attempt fails or is abandoned.

PQsocketPoll

Poll a connection's underlying socket descriptor retrieved with PQsocket. The primary use of this
function is iterating through the connection sequence described in the documentation of PQconnec-
tStartParams.
typedef int64_t pg_usec_time_t;

int PQsocketPoll(int sock, int forRead, int forWrite,
 pg_usec_time_t end_time);

This function performs polling of a file descriptor, optionally with a timeout. If forRead is nonzero,
the function will terminate when the socket is ready for reading. If forWrite is nonzero, the function
will terminate when the socket is ready for writing.

The timeout is specified by end_time, which is the time to stop waiting expressed as a number of
microseconds since the Unix epoch (that is, time_t times 1 million). Timeout is infinite if end_time
is -1. Timeout is immediate (no blocking) if end_time is 0 (or indeed, any time before now). Timeout
values can be calculated conveniently by adding the desired number of microseconds to the result
of PQgetCurrentTimeUSec. Note that the underlying system calls may have less than microsecond
precision, so that the actual delay may be imprecise.

The function returns a value greater than 0 if the specified condition is met, 0 if a timeout occurred,
or -1 if an error occurred. The error can be retrieved by checking the errno(3) value. In the event
both forRead and forWrite are zero, the function immediately returns a timeout indication.

PQsocketPoll is implemented using either poll(2) or select(2), depending on platform. See POL-
LIN and POLLOUT from poll(2), or readfds and writefds from select(2), for more information.

PQconndefaults

Returns the default connection options.
PQconninfoOption *PQconndefaults(void);

typedef struct
{
 char *keyword; /* The keyword of the option */
 char *envvar; /* Fallback environment variable name */
 char *compiled; /* Fallback compiled in default value */
 char *val; /* Option's current value, or NULL */
 char *label; /* Label for field in connect dialog */
 char *dispchar; /* Indicates how to display this field
 in a connect dialog. Values are:
 "" Display entered value as is
 "*" Password field - hide value
 "D" Debug option - don't show by default */
 int dispsize; /* Field size in characters for dialog */
} PQconninfoOption;

Returns a connection options array. This can be used to determine all possible PQconnectdb options
and their current default values. The return value points to an array of PQconninfoOption structures,
which ends with an entry having a null keyword pointer. The null pointer is returned if memory

850

libpq — C Library

could not be allocated. Note that the current default values (val fields) will depend on environment
variables and other context. A missing or invalid service file will be silently ignored. Callers must
treat the connection options data as read-only.

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, a small
amount of memory is leaked for each call to PQconndefaults.

PQconninfo

Returns the connection options used by a live connection.

PQconninfoOption *PQconninfo(PGconn *conn);

Returns a connection options array. This can be used to determine all possible PQconnectdb options
and the values that were used to connect to the server. The return value points to an array of PQ-
conninfoOption structures, which ends with an entry having a null keyword pointer. All notes above
for PQconndefaults also apply to the result of PQconninfo.

PQconninfoParse

Returns parsed connection options from the provided connection string.

PQconninfoOption *PQconninfoParse(const char *conninfo, char **errmsg);

Parses a connection string and returns the resulting options as an array; or returns NULL if there is a
problem with the connection string. This function can be used to extract the PQconnectdb options in
the provided connection string. The return value points to an array of PQconninfoOption structures,
which ends with an entry having a null keyword pointer.

All legal options will be present in the result array, but the PQconninfoOption for any option not
present in the connection string will have val set to NULL; default values are not inserted.

If errmsg is not NULL, then *errmsg is set to NULL on success, else to a malloc'd error string explaining
the problem. (It is also possible for *errmsg to be set to NULL and the function to return NULL; this
indicates an out-of-memory condition.)

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, some
memory is leaked for each call to PQconninfoParse. Conversely, if an error occurs and errmsg is not
NULL, be sure to free the error string using PQfreemem.

PQfinish

Closes the connection to the server. Also frees memory used by the PGconn object.

void PQfinish(PGconn *conn);

Note that even if the server connection attempt fails (as indicated by PQstatus), the application
should call PQfinish to free the memory used by the PGconn object. The PGconn pointer must not be
used again after PQfinish has been called.

PQreset

Resets the communication channel to the server.

void PQreset(PGconn *conn);

This function will close the connection to the server and attempt to establish a new connection,
using all the same parameters previously used. This might be useful for error recovery if a working
connection is lost.

PQresetStart
PQresetPoll

Reset the communication channel to the server, in a nonblocking manner.

851

libpq — C Library

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the server and attempt to establish a new connection,
using all the same parameters previously used. This can be useful for error recovery if a working
connection is lost. They differ from PQreset (above) in that they act in a nonblocking manner. These
functions suffer from the same restrictions as PQconnectStartParams, PQconnectStart and PQcon-
nectPoll.

To initiate a connection reset, call PQresetStart. If it returns 0, the reset has failed. If it returns 1,
poll the reset using PQresetPoll in exactly the same way as you would create the connection using
PQconnectPoll.

PQpingParams

PQpingParams reports the status of the server. It accepts connection parameters identical to those
of PQconnectdbParams, described above. It is not necessary to supply correct user name, password,
or database name values to obtain the server status; however, if incorrect values are provided, the
server will log a failed connection attempt.

PGPing PQpingParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

The function returns one of the following values:

PQPING_OK

The server is running and appears to be accepting connections.

PQPING_REJECT

The server is running but is in a state that disallows connections (startup, shutdown, or crash
recovery).

PQPING_NO_RESPONSE

The server could not be contacted. This might indicate that the server is not running, or that there
is something wrong with the given connection parameters (for example, wrong port number),
or that there is a network connectivity problem (for example, a firewall blocking the connection
request).

PQPING_NO_ATTEMPT

No attempt was made to contact the server, because the supplied parameters were obviously
incorrect or there was some client-side problem (for example, out of memory).

PQping

PQping reports the status of the server. It accepts connection parameters identical to those of PQ-
connectdb, described above. It is not necessary to supply correct user name, password, or database
name values to obtain the server status; however, if incorrect values are provided, the server will
log a failed connection attempt.

PGPing PQping(const char *conninfo);

The return values are the same as for PQpingParams.

PQsetSSLKeyPassHook_OpenSSL

PQsetSSLKeyPassHook_OpenSSL lets an application override libpq's default handling of encrypted
client certificate key files using sslpassword or interactive prompting.

852

libpq — C Library

void PQsetSSLKeyPassHook_OpenSSL(PQsslKeyPassHook_OpenSSL_type hook);

The application passes a pointer to a callback function with signature:

int callback_fn(char *buf, int size, PGconn *conn);

which libpq will then call instead of its default PQdefaultSSLKeyPassHook_OpenSSL handler. The
callback should determine the password for the key and copy it to result-buffer buf of size size. The
string in buf must be null-terminated. The callback must return the length of the password stored in
buf excluding the null terminator. On failure, the callback should set buf[0] = '\0' and return 0.
See PQdefaultSSLKeyPassHook_OpenSSL in libpq's source code for an example.

If the user specified an explicit key location, its path will be in conn->sslkey when the callback is
invoked. This will be empty if the default key path is being used. For keys that are engine specifiers,
it is up to engine implementations whether they use the OpenSSL password callback or define their
own handling.

The app callback may choose to delegate unhandled cases to PQdefaultSSLKeyPassHook_OpenSSL,
or call it first and try something else if it returns 0, or completely override it.

The callback must not escape normal flow control with exceptions, longjmp(...), etc. It must return
normally.

PQgetSSLKeyPassHook_OpenSSL

PQgetSSLKeyPassHook_OpenSSL returns the current client certificate key password hook, or NULL if
none has been set.

PQsslKeyPassHook_OpenSSL_type PQgetSSLKeyPassHook_OpenSSL(void);

32.1.1. Connection Strings
Several libpq functions parse a user-specified string to obtain connection parameters. There are two
accepted formats for these strings: plain keyword/value strings and URIs. URIs generally follow RFC
3986, except that multi-host connection strings are allowed as further described below.

32.1.1.1. Keyword/Value Connection Strings
In the keyword/value format, each parameter setting is in the form keyword = value, with space(s)
between settings. Spaces around a setting's equal sign are optional. To write an empty value, or a value
containing spaces, surround it with single quotes, for example keyword = 'a value'. Single quotes and
backslashes within a value must be escaped with a backslash, i.e., \' and \\.

Example:

host=localhost port=5432 dbname=mydb connect_timeout=10

The recognized parameter key words are listed in Section 32.1.2.

32.1.1.2. Connection URIs
The general form for a connection URI is:

postgresql://[userspec@][hostspec][/dbname][?paramspec]

where userspec is:

user[:password]

and hostspec is:

[host][:port][,...]

853

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

libpq — C Library

and paramspec is:

name=value[&...]

The URI scheme designator can be either postgresql:// or postgres://. Each of the remaining URI
parts is optional. The following examples illustrate valid URI syntax:

postgresql://
postgresql://localhost
postgresql://localhost:5433
postgresql://localhost/mydb
postgresql://user@localhost
postgresql://user:secret@localhost
postgresql://other@localhost/otherdb?connect_timeout=10&application_name=myapp
postgresql://host1:123,host2:456/somedb?target_session_attrs=any&application_name=myapp

Values that would normally appear in the hierarchical part of the URI can alternatively be given as
named parameters. For example:

postgresql:///mydb?host=localhost&port=5433

All named parameters must match key words listed in Section 32.1.2, except that for compatibility with
JDBC connection URIs, instances of ssl=true are translated into sslmode=require.

The connection URI needs to be encoded with percent-encoding if it includes symbols with special mean-
ing in any of its parts. Here is an example where the equal sign (=) is replaced with %3D and the space
character with %20:

postgresql://user@localhost:5433/mydb?options=-c%20synchronous_commit%3Doff

The host part may be either a host name or an IP address. To specify an IPv6 address, enclose it in
square brackets:

postgresql://[2001:db8::1234]/database

The host part is interpreted as described for the parameter host. In particular, a Unix-domain socket
connection is chosen if the host part is either empty or looks like an absolute path name, otherwise a TCP/
IP connection is initiated. Note, however, that the slash is a reserved character in the hierarchical part
of the URI. So, to specify a non-standard Unix-domain socket directory, either omit the host part of the
URI and specify the host as a named parameter, or percent-encode the path in the host part of the URI:

postgresql:///dbname?host=/var/lib/postgresql
postgresql://%2Fvar%2Flib%2Fpostgresql/dbname

It is possible to specify multiple host components, each with an optional port component, in a single
URI. A URI of the form postgresql://host1:port1,host2:port2,host3:port3/ is equivalent to a con-
nection string of the form host=host1,host2,host3 port=port1,port2,port3. As further described
below, each host will be tried in turn until a connection is successfully established.

32.1.1.3. Specifying Multiple Hosts
It is possible to specify multiple hosts to connect to, so that they are tried in the given order. In the
Keyword/Value format, the host, hostaddr, and port options accept comma-separated lists of values.
The same number of elements must be given in each option that is specified, such that e.g., the first
hostaddr corresponds to the first host name, the second hostaddr corresponds to the second host name,
and so forth. As an exception, if only one port is specified, it applies to all the hosts.

In the connection URI format, you can list multiple host:port pairs separated by commas in the host
component of the URI.

In either format, a single host name can translate to multiple network addresses. A common example of
this is a host that has both an IPv4 and an IPv6 address.

854

https://datatracker.ietf.org/doc/html/rfc3986#section-2.1

libpq — C Library

When multiple hosts are specified, or when a single host name is translated to multiple addresses, all
the hosts and addresses will be tried in order, until one succeeds. If none of the hosts can be reached,
the connection fails. If a connection is established successfully, but authentication fails, the remaining
hosts in the list are not tried.

If a password file is used, you can have different passwords for different hosts. All the other connection
options are the same for every host in the list; it is not possible to e.g., specify different usernames for
different hosts.

32.1.2. Parameter Key Words
The currently recognized parameter key words are:

host

Name of host to connect to. If a host name looks like an absolute path name, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored. (On Unix, an absolute path name begins with a slash. On Windows, paths
starting with drive letters are also recognized.) If the host name starts with @, it is taken as a Unix-
domain socket in the abstract namespace (currently supported on Linux and Windows). The default
behavior when host is not specified, or is empty, is to connect to a Unix-domain socket in /tmp (or
whatever socket directory was specified when PostgreSQL was built). On Windows, the default is
to connect to localhost.

A comma-separated list of host names is also accepted, in which case each host name in the list
is tried in order; an empty item in the list selects the default behavior as explained above. See Sec-
tion 32.1.1.3 for details.

hostaddr

Numeric IP address of host to connect to. This should be in the standard IPv4 address format, e.g.,
172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP communi-
cation is always used when a nonempty string is specified for this parameter. If this parameter is
not specified, the value of host will be looked up to find the corresponding IP address — or, if host
specifies an IP address, that value will be used directly.

Using hostaddr allows the application to avoid a host name look-up, which might be important in
applications with time constraints. However, a host name is required for GSSAPI or SSPI authenti-
cation methods, as well as for verify-full SSL certificate verification. The following rules are used:

• If host is specified without hostaddr, a host name lookup occurs. (When using PQconnectPoll,
the lookup occurs when PQconnectPoll first considers this host name, and it may cause PQcon-
nectPoll to block for a significant amount of time.)

• If hostaddr is specified without host, the value for hostaddr gives the server network address.
The connection attempt will fail if the authentication method requires a host name.

• If both host and hostaddr are specified, the value for hostaddr gives the server network ad-
dress. The value for host is ignored unless the authentication method requires it, in which case
it will be used as the host name.

Note that authentication is likely to fail if host is not the name of the server at network address
hostaddr. Also, when both host and hostaddr are specified, host is used to identify the connection
in a password file (see Section 32.16).

A comma-separated list of hostaddr values is also accepted, in which case each host in the list is
tried in order. An empty item in the list causes the corresponding host name to be used, or the default
host name if that is empty as well. See Section 32.1.1.3 for details.

Without either a host name or host address, libpq will connect using a local Unix-domain socket; or
on Windows, it will attempt to connect to localhost.

855

libpq — C Library

port

Port number to connect to at the server host, or socket file name extension for Unix-domain connec-
tions. If multiple hosts were given in the host or hostaddr parameters, this parameter may specify
a comma-separated list of ports of the same length as the host list, or it may specify a single port
number to be used for all hosts. An empty string, or an empty item in a comma-separated list, spec-
ifies the default port number established when PostgreSQL was built.

dbname

The database name. Defaults to be the same as the user name. In certain contexts, the value is
checked for extended formats; see Section 32.1.1 for more details on those.

user

PostgreSQL user name to connect as. Defaults to be the same as the operating system name of the
user running the application.

password

Password to be used if the server demands password authentication.

passfile

Specifies the name of the file used to store passwords (see Section 32.16). Defaults to ~/.pgpass, or
%APPDATA%\postgresql\pgpass.conf on Microsoft Windows. (No error is reported if this file does
not exist.)

require_auth

Specifies the authentication method that the client requires from the server. If the server does not
use the required method to authenticate the client, or if the authentication handshake is not fully
completed by the server, the connection will fail. A comma-separated list of methods may also be
provided, of which the server must use exactly one in order for the connection to succeed. By default,
any authentication method is accepted, and the server is free to skip authentication altogether.

Methods may be negated with the addition of a ! prefix, in which case the server must not attempt
the listed method; any other method is accepted, and the server is free not to authenticate the client
at all. If a comma-separated list is provided, the server may not attempt any of the listed negated
methods. Negated and non-negated forms may not be combined in the same setting.

As a final special case, the none method requires the server not to use an authentication challenge.
(It may also be negated, to require some form of authentication.)

The following methods may be specified:
password

The server must request plaintext password authentication.

md5

The server must request MD5 hashed password authentication.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future re-
lease of PostgreSQL. Refer to Section 20.5 for details about migrating to another password
type.

gss

The server must either request a Kerberos handshake via GSSAPI or establish a GSS-encrypted
channel (see also gssencmode).

856

libpq — C Library

sspi

The server must request Windows SSPI authentication.

scram-sha-256

The server must successfully complete a SCRAM-SHA-256 authentication exchange with the
client.

oauth

The server must request an OAuth bearer token from the client.

none

The server must not prompt the client for an authentication exchange. (This does not prohibit
client certificate authentication via TLS, nor GSS authentication via its encrypted transport.)

channel_binding

This option controls the client's use of channel binding. A setting of require means that the con-
nection must employ channel binding, prefer means that the client will choose channel binding if
available, and disable prevents the use of channel binding. The default is prefer if PostgreSQL is
compiled with SSL support; otherwise the default is disable.

Channel binding is a method for the server to authenticate itself to the client. It is only supported
over SSL connections with PostgreSQL 11 or later servers using the SCRAM authentication method.

connect_timeout

Maximum time to wait while connecting, in seconds (write as a decimal integer, e.g., 10). Zero,
negative, or not specified means wait indefinitely. This timeout applies separately to each host name
or IP address. For example, if you specify two hosts and connect_timeout is 5, each host will time
out if no connection is made within 5 seconds, so the total time spent waiting for a connection might
be up to 10 seconds.

client_encoding

This sets the client_encoding configuration parameter for this connection. In addition to the values
accepted by the corresponding server option, you can use auto to determine the right encoding from
the current locale in the client (LC_CTYPE environment variable on Unix systems).

options

Specifies command-line options to send to the server at connection start. For example, setting this
to -c geqo=off or --geqo=off sets the session's value of the geqo parameter to off. Spaces within
this string are considered to separate command-line arguments, unless escaped with a backslash (\);
write \\ to represent a literal backslash. For a detailed discussion of the available options, consult
Chapter 19.

application_name

Specifies a value for the application_name configuration parameter.

fallback_application_name

Specifies a fallback value for the application_name configuration parameter. This value will be used
if no value has been given for application_name via a connection parameter or the PGAPPNAME en-
vironment variable. Specifying a fallback name is useful in generic utility programs that wish to set
a default application name but allow it to be overridden by the user.

keepalives

Controls whether client-side TCP keepalives are used. The default value is 1, meaning on, but you can
change this to 0, meaning off, if keepalives are not wanted. This parameter is ignored for connections
made via a Unix-domain socket.

857

libpq — C Library

keepalives_idle

Controls the number of seconds of inactivity after which TCP should send a keepalive message to the
server. A value of zero uses the system default. This parameter is ignored for connections made via a
Unix-domain socket, or if keepalives are disabled. It is only supported on systems where TCP_KEEP-
IDLE or an equivalent socket option is available, and on Windows; on other systems, it has no effect.

keepalives_interval

Controls the number of seconds after which a TCP keepalive message that is not acknowledged by
the server should be retransmitted. A value of zero uses the system default. This parameter is ignored
for connections made via a Unix-domain socket, or if keepalives are disabled. It is only supported
on systems where TCP_KEEPINTVL or an equivalent socket option is available, and on Windows; on
other systems, it has no effect.

keepalives_count

Controls the number of TCP keepalives that can be lost before the client's connection to the server is
considered dead. A value of zero uses the system default. This parameter is ignored for connections
made via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where
TCP_KEEPCNT or an equivalent socket option is available; on other systems, it has no effect.

tcp_user_timeout

Controls the number of milliseconds that transmitted data may remain unacknowledged before a
connection is forcibly closed. A value of zero uses the system default. This parameter is ignored for
connections made via a Unix-domain socket. It is only supported on systems where TCP_USER_TIME-
OUT is available; on other systems, it has no effect.

replication

This option determines whether the connection should use the replication protocol instead of the
normal protocol. This is what PostgreSQL replication connections as well as tools such as pg_base-
backup use internally, but it can also be used by third-party applications. For a description of the
replication protocol, consult Section 54.4.

The following values, which are case-insensitive, are supported:
true, on, yes, 1

The connection goes into physical replication mode.

database

The connection goes into logical replication mode, connecting to the database specified in the
dbname parameter.

false, off, no, 0
The connection is a regular one, which is the default behavior.

In physical or logical replication mode, only the simple query protocol can be used.

gssencmode

This option determines whether or with what priority a secure GSS TCP/IP connection will be nego-
tiated with the server. There are three modes:
disable

only try a non-GSSAPI-encrypted connection

prefer (default)
if there are GSSAPI credentials present (i.e., in a credentials cache), first try a GSSAPI-encrypted
connection; if that fails or there are no credentials, try a non-GSSAPI-encrypted connection. This
is the default when PostgreSQL has been compiled with GSSAPI support.

858

libpq — C Library

require

only try a GSSAPI-encrypted connection

gssencmode is ignored for Unix domain socket communication. If PostgreSQL is compiled without
GSSAPI support, using the require option will cause an error, while prefer will be accepted but
libpq will not actually attempt a GSSAPI-encrypted connection.

sslmode

This option determines whether or with what priority a secure SSL TCP/IP connection will be nego-
tiated with the server. There are six modes:

disable

only try a non-SSL connection

allow

first try a non-SSL connection; if that fails, try an SSL connection

prefer (default)
first try an SSL connection; if that fails, try a non-SSL connection

require

only try an SSL connection. If a root CA file is present, verify the certificate in the same way as
if verify-ca was specified

verify-ca

only try an SSL connection, and verify that the server certificate is issued by a trusted certificate
authority (CA)

verify-full

only try an SSL connection, verify that the server certificate is issued by a trusted CA and that
the requested server host name matches that in the certificate

See Section 32.19 for a detailed description of how these options work.

sslmode is ignored for Unix domain socket communication. If PostgreSQL is compiled without SSL
support, using options require, verify-ca, or verify-full will cause an error, while options allow
and prefer will be accepted but libpq will not actually attempt an SSL connection.

Note that if GSSAPI encryption is possible, that will be used in preference to SSL encryption, re-
gardless of the value of sslmode. To force use of SSL encryption in an environment that has working
GSSAPI infrastructure (such as a Kerberos server), also set gssencmode to disable.

requiressl

This option is deprecated in favor of the sslmode setting.

If set to 1, an SSL connection to the server is required (this is equivalent to sslmode require). libpq
will then refuse to connect if the server does not accept an SSL connection. If set to 0 (default), libpq
will negotiate the connection type with the server (equivalent to sslmode prefer). This option is only
available if PostgreSQL is compiled with SSL support.

sslnegotiation

This option controls how SSL encryption is negotiated with the server, if SSL is used. In the de-
fault postgres mode, the client first asks the server if SSL is supported. In direct mode, the client
starts the standard SSL handshake directly after establishing the TCP/IP connection. Traditional
PostgreSQL protocol negotiation is the most flexible with different server configurations. If the serv-

859

libpq — C Library

er is known to support direct SSL connections then the latter requires one fewer round trip reducing
connection latency and also allows the use of protocol agnostic SSL network tools. The direct SSL
option was introduced in PostgreSQL version 17.

postgres

perform PostgreSQL protocol negotiation. This is the default if the option is not provided.

direct

start SSL handshake directly after establishing the TCP/IP connection. This is only allowed with
sslmode=require or higher, because the weaker settings could lead to unintended fallback to
plaintext authentication when the server does not support direct SSL handshake.

sslcompression

If set to 1, data sent over SSL connections will be compressed. If set to 0, compression will be
disabled. The default is 0. This parameter is ignored if a connection without SSL is made.

SSL compression is nowadays considered insecure and its use is no longer recommended. OpenSSL
1.1.0 disabled compression by default, and many operating system distributions disabled it in prior
versions as well, so setting this parameter to on will not have any effect if the server does not accept
compression. PostgreSQL 14 disabled compression completely in the backend.

If security is not a primary concern, compression can improve throughput if the network is the bot-
tleneck. Disabling compression can improve response time and throughput if CPU performance is
the limiting factor.

sslcert

This parameter specifies the file name of the client SSL certificate, replacing the default ~/.post-
gresql/postgresql.crt. This parameter is ignored if an SSL connection is not made.

sslkey

This parameter specifies the location for the secret key used for the client certificate. It can either
specify a file name that will be used instead of the default ~/.postgresql/postgresql.key, or it
can specify a key obtained from an external “engine” (engines are OpenSSL loadable modules). An
external engine specification should consist of a colon-separated engine name and an engine-specific
key identifier. This parameter is ignored if an SSL connection is not made.

sslkeylogfile

This parameter specifies the location where libpq will log keys used in this SSL context. This is useful
for debugging PostgreSQL protocol interactions or client connections using network inspection tools
like Wireshark. This parameter is ignored if an SSL connection is not made, or if LibreSSL is used
(LibreSSL does not support key logging). Keys are logged using the NSS format.

Warning
Key logging will expose potentially sensitive information in the keylog file. Keylog files should
be handled with the same care as sslkey files.

sslpassword

This parameter specifies the password for the secret key specified in sslkey, allowing client certifi-
cate private keys to be stored in encrypted form on disk even when interactive passphrase input is
not practical.

Specifying this parameter with any non-empty value suppresses the Enter PEM pass phrase: prompt
that OpenSSL will emit by default when an encrypted client certificate key is provided to libpq.

860

libpq — C Library

If the key is not encrypted this parameter is ignored. The parameter has no effect on keys specified
by OpenSSL engines unless the engine uses the OpenSSL password callback mechanism for prompts.

There is no environment variable equivalent to this option, and no facility for looking it up in .pgpass.
It can be used in a service file connection definition. Users with more sophisticated uses should
consider using OpenSSL engines and tools like PKCS#11 or USB crypto offload devices.

sslcertmode

This option determines whether a client certificate may be sent to the server, and whether the server
is required to request one. There are three modes:

disable

A client certificate is never sent, even if one is available (default location or provided via sslcert).

allow (default)

A certificate may be sent, if the server requests one and the client has one to send.

require

The server must request a certificate. The connection will fail if the client does not send a cer-
tificate and the server successfully authenticates the client anyway.

Note
sslcertmode=require doesn't add any additional security, since there is no guarantee that
the server is validating the certificate correctly; PostgreSQL servers generally request TLS
certificates from clients whether they validate them or not. The option may be useful when
troubleshooting more complicated TLS setups.

sslrootcert

This parameter specifies the name of a file containing SSL certificate authority (CA) certificate(s).
If the file exists, the server's certificate will be verified to be signed by one of these authorities. The
default is ~/.postgresql/root.crt.

The special value system may be specified instead, in which case the trusted CA roots from the
SSL implementation will be loaded. The exact locations of these root certificates differ by SSL im-
plementation and platform. For OpenSSL in particular, the locations may be further modified by the
SSL_CERT_DIR and SSL_CERT_FILE environment variables.

Note
When using sslrootcert=system, the default sslmode is changed to verify-full, and any
weaker setting will result in an error. In most cases it is trivial for anyone to obtain a certificate
trusted by the system for a hostname they control, rendering verify-ca and all weaker modes
useless.

The magic system value will take precedence over a local certificate file with the same
name. If for some reason you find yourself in this situation, use an alternative path like ssl-
rootcert=./system instead.

sslcrl

This parameter specifies the file name of the SSL server certificate revocation list (CRL). Certificates
listed in this file, if it exists, will be rejected while attempting to authenticate the server's certificate.
If neither sslcrl nor sslcrldir is set, this setting is taken as ~/.postgresql/root.crl.

861

libpq — C Library

sslcrldir

This parameter specifies the directory name of the SSL server certificate revocation list (CRL). Cer-
tificates listed in the files in this directory, if it exists, will be rejected while attempting to authenti-
cate the server's certificate.

The directory needs to be prepared with the OpenSSL command openssl rehash or c_rehash. See
its documentation for details.

Both sslcrl and sslcrldir can be specified together.

sslsni

If set to 1 (default), libpq sets the TLS extension “Server Name Indication” (SNI) on SSL-enabled
connections. By setting this parameter to 0, this is turned off.

The Server Name Indication can be used by SSL-aware proxies to route connections without having to
decrypt the SSL stream. (Note that unless the proxy is aware of the PostgreSQL protocol handshake
this would require setting sslnegotiation to direct.) However, SNI makes the destination host
name appear in cleartext in the network traffic, so it might be undesirable in some cases.

requirepeer

This parameter specifies the operating-system user name of the server, for example re-
quirepeer=postgres. When making a Unix-domain socket connection, if this parameter is set, the
client checks at the beginning of the connection that the server process is running under the speci-
fied user name; if it is not, the connection is aborted with an error. This parameter can be used to
provide server authentication similar to that available with SSL certificates on TCP/IP connections.
(Note that if the Unix-domain socket is in /tmp or another publicly writable location, any user could
start a server listening there. Use this parameter to ensure that you are connected to a server run by
a trusted user.) This option is only supported on platforms for which the peer authentication method
is implemented; see Section 20.9.

ssl_min_protocol_version

This parameter specifies the minimum SSL/TLS protocol version to allow for the connection. Valid
values are TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. The supported protocols depend on the version of
OpenSSL used, older versions not supporting the most modern protocol versions. If not specified,
the default is TLSv1.2, which satisfies industry best practices as of this writing.

ssl_max_protocol_version

This parameter specifies the maximum SSL/TLS protocol version to allow for the connection. Valid
values are TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. The supported protocols depend on the version
of OpenSSL used, older versions not supporting the most modern protocol versions. If not set, this
parameter is ignored and the connection will use the maximum bound defined by the backend, if set.
Setting the maximum protocol version is mainly useful for testing or if some component has issues
working with a newer protocol.

min_protocol_version

Specifies the minimum protocol version to allow for the connection. The default is to allow any version
of the PostgreSQL protocol supported by libpq, which currently means 3.0. If the server does not
support at least this protocol version the connection will be closed.

The current supported values are 3.0, 3.2, and latest. The latest value is equivalent to the latest
protocol version supported by the libpq version being used, which is currently 3.2.

max_protocol_version

Specifies the protocol version to request from the server. The default is to use version 3.0 of the
PostgreSQL protocol, unless the connection string specifies a feature that relies on a higher protocol
version, in which case the latest version supported by libpq is used. If the server does not support

862

libpq — C Library

the protocol version requested by the client, the connection is automatically downgraded to a lower
minor protocol version that the server supports. After the connection attempt has completed you can
use PQprotocolVersion to find out which exact protocol version was negotiated.

The current supported values are 3.0, 3.2, and latest. The latest value is equivalent to the latest
protocol version supported by the libpq version being used, which is currently 3.2.

krbsrvname

Kerberos service name to use when authenticating with GSSAPI. This must match the service name
specified in the server configuration for Kerberos authentication to succeed. (See also Section 20.6.)
The default value is normally postgres, but that can be changed when building PostgreSQL via the
--with-krb-srvnam option of configure. In most environments, this parameter never needs to be
changed. Some Kerberos implementations might require a different service name, such as Microsoft
Active Directory which requires the service name to be in upper case (POSTGRES).

gsslib

GSS library to use for GSSAPI authentication. Currently this is disregarded except on Windows builds
that include both GSSAPI and SSPI support. In that case, set this to gssapi to cause libpq to use the
GSSAPI library for authentication instead of the default SSPI.

gssdelegation

Forward (delegate) GSS credentials to the server. The default is 0 which means credentials will not
be forwarded to the server. Set this to 1 to have credentials forwarded when possible.

scram_client_key

The base64-encoded SCRAM client key. This can be used by foreign-data wrappers or similar mid-
dleware to enable pass-through SCRAM authentication. See Section F.38.1.10 for one such imple-
mentation. It is not meant to be specified directly by users or client applications.

scram_server_key

The base64-encoded SCRAM server key. This can be used by foreign-data wrappers or similar mid-
dleware to enable pass-through SCRAM authentication. See Section F.38.1.10 for one such imple-
mentation. It is not meant to be specified directly by users or client applications.

service

Service name to use for additional parameters. It specifies a service name in pg_service.conf that
holds additional connection parameters. This allows applications to specify only a service name so
connection parameters can be centrally maintained. See Section 32.17.

target_session_attrs

This option determines whether the session must have certain properties to be acceptable. It's typi-
cally used in combination with multiple host names to select the first acceptable alternative among
several hosts. There are six modes:
any (default)

any successful connection is acceptable

read-write

session must accept read-write transactions by default (that is, the server must not be in hot
standby mode and the default_transaction_read_only parameter must be off)

read-only

session must not accept read-write transactions by default (the converse)

primary

server must not be in hot standby mode

863

libpq — C Library

standby

server must be in hot standby mode

prefer-standby

first try to find a standby server, but if none of the listed hosts is a standby server, try again in
any mode

load_balance_hosts

Controls the order in which the client tries to connect to the available hosts and addresses. Once
a connection attempt is successful no other hosts and addresses will be tried. This parameter is
typically used in combination with multiple host names or a DNS record that returns multiple IPs. This
parameter can be used in combination with target_session_attrs to, for example, load balance over
standby servers only. Once successfully connected, subsequent queries on the returned connection
will all be sent to the same server. There are currently two modes:

disable (default)
No load balancing across hosts is performed. Hosts are tried in the order in which they are
provided and addresses are tried in the order they are received from DNS or a hosts file.

random

Hosts and addresses are tried in random order. This value is mostly useful when opening multiple
connections at the same time, possibly from different machines. This way connections can be
load balanced across multiple PostgreSQL servers.

While random load balancing, due to its random nature, will almost never result in a completely
uniform distribution, it statistically gets quite close. One important aspect here is that this algo-
rithm uses two levels of random choices: First the hosts will be resolved in random order. Then
secondly, before resolving the next host, all resolved addresses for the current host will be tried
in random order. This behaviour can skew the amount of connections each node gets greatly in
certain cases, for instance when some hosts resolve to more addresses than others. But such a
skew can also be used on purpose, e.g. to increase the number of connections a larger server
gets by providing its hostname multiple times in the host string.

When using this value it's recommended to also configure a reasonable value for connect_timeout.
Because then, if one of the nodes that are used for load balancing is not responding, a new node
will be tried.

oauth_issuer

The HTTPS URL of a trusted issuer to contact if the server requests an OAuth token for the connec-
tion. This parameter is required for all OAuth connections; it should exactly match the issuer setting
in the server's HBA configuration.

As part of the standard authentication handshake, libpq will ask the server for a discovery document:
a URL providing a set of OAuth configuration parameters. The server must provide a URL that is
directly constructed from the components of the oauth_issuer, and this value must exactly match
the issuer identifier that is declared in the discovery document itself, or the connection will fail. This
is required to prevent a class of "mix-up attacks" on OAuth clients.

You may also explicitly set oauth_issuer to the /.well-known/ URI used for OAuth discovery. In
this case, if the server asks for a different URL, the connection will fail, but a custom OAuth flow
may be able to speed up the standard handshake by using previously cached tokens. (In this case,
it is recommended that oauth_scope be set as well, since the client will not have a chance to ask
the server for a correct scope setting, and the default scopes for a token may not be sufficient to
connect.) libpq currently supports the following well-known endpoints:
• /.well-known/openid-configuration
• /.well-known/oauth-authorization-server

864

https://mailarchive.ietf.org/arch/msg/oauth/JIVxFBGsJBVtm7ljwJhPUm3Fr-w/

libpq — C Library

Warning
Issuers are highly privileged during the OAuth connection handshake. As a rule of thumb, if
you would not trust the operator of a URL to handle access to your servers, or to impersonate
you directly, that URL should not be trusted as an oauth_issuer.

oauth_client_id

An OAuth 2.0 client identifier, as issued by the authorization server. If the PostgreSQL server re-
quests an OAuth token for the connection (and if no custom OAuth hook is installed to provide one),
then this parameter must be set; otherwise, the connection will fail.

oauth_client_secret

The client password, if any, to use when contacting the OAuth authorization server. Whether this
parameter is required or not is determined by the OAuth provider; "public" clients generally do not
use a secret, whereas "confidential" clients generally do.

oauth_scope

The scope of the access request sent to the authorization server, specified as a (possibly empty)
space-separated list of OAuth scope identifiers. This parameter is optional and intended for advanced
usage.

Usually the client will obtain appropriate scope settings from the PostgreSQL server. If this parame-
ter is used, the server's requested scope list will be ignored. This can prevent a less-trusted server
from requesting inappropriate access scopes from the end user. However, if the client's scope setting
does not contain the server's required scopes, the server is likely to reject the issued token, and the
connection will fail.

The meaning of an empty scope list is provider-dependent. An OAuth authorization server may choose
to issue a token with "default scope", whatever that happens to be, or it may reject the token request
entirely.

32.2. Connection Status Functions
These functions can be used to interrogate the status of an existing database connection object.

Tip
libpq application programmers should be careful to maintain the PGconn abstraction. Use the
accessor functions described below to get at the contents of PGconn. Reference to internal PGconn
fields using libpq-int.h is not recommended because they are subject to change in the future.

The following functions return parameter values established at connection. These values are fixed for
the life of the connection. If a multi-host connection string is used, the values of PQhost, PQport, and
PQpass can change if a new connection is established using the same PGconn object. Other values are
fixed for the lifetime of the PGconn object.

PQdb

Returns the database name of the connection.

char *PQdb(const PGconn *conn);

PQuser

Returns the user name of the connection.

char *PQuser(const PGconn *conn);

865

libpq — C Library

PQpass

Returns the password of the connection.
char *PQpass(const PGconn *conn);

PQpass will return either the password specified in the connection parameters, or if there was none
and the password was obtained from the password file, it will return that. In the latter case, if multiple
hosts were specified in the connection parameters, it is not possible to rely on the result of PQpass
until the connection is established. The status of the connection can be checked using the function
PQstatus.

PQhost

Returns the server host name of the active connection. This can be a host name, an IP address, or
a directory path if the connection is via Unix socket. (The path case can be distinguished because it
will always be an absolute path, beginning with /.)
char *PQhost(const PGconn *conn);

If the connection parameters specified both host and hostaddr, then PQhost will return the host
information. If only hostaddr was specified, then that is returned. If multiple hosts were specified in
the connection parameters, PQhost returns the host actually connected to.

PQhost returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
host information (perhaps if the connection has not been fully established or there was an error),
it returns an empty string.

If multiple hosts were specified in the connection parameters, it is not possible to rely on the result
of PQhost until the connection is established. The status of the connection can be checked using the
function PQstatus.

PQhostaddr

Returns the server IP address of the active connection. This can be the address that a host name
resolved to, or an IP address provided through the hostaddr parameter.
char *PQhostaddr(const PGconn *conn);

PQhostaddr returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
host information (perhaps if the connection has not been fully established or there was an error),
it returns an empty string.

PQport

Returns the port of the active connection.
char *PQport(const PGconn *conn);

If multiple ports were specified in the connection parameters, PQport returns the port actually con-
nected to.

PQport returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
port information (perhaps if the connection has not been fully established or there was an error),
it returns an empty string.

If multiple ports were specified in the connection parameters, it is not possible to rely on the result
of PQport until the connection is established. The status of the connection can be checked using the
function PQstatus.

PQtty

This function no longer does anything, but it remains for backwards compatibility. The function
always return an empty string, or NULL if the conn argument is NULL.
char *PQtty(const PGconn *conn);

866

libpq — C Library

PQoptions

Returns the command-line options passed in the connection request.
char *PQoptions(const PGconn *conn);

The following functions return status data that can change as operations are executed on the PGconn
object.
PQstatus

Returns the status of the connection.
ConnStatusType PQstatus(const PGconn *conn);

The status can be one of a number of values. However, only two of these are seen outside of an
asynchronous connection procedure: CONNECTION_OK and CONNECTION_BAD. A good connection to the
database has the status CONNECTION_OK. A failed connection attempt is signaled by status CONNEC-
TION_BAD. Ordinarily, an OK status will remain so until PQfinish, but a communications failure might
result in the status changing to CONNECTION_BAD prematurely. In that case the application could try
to recover by calling PQreset.

See the entry for PQconnectStartParams, PQconnectStart and PQconnectPoll with regards to other
status codes that might be returned.

PQtransactionStatus

Returns the current in-transaction status of the server.
PGTransactionStatusType PQtransactionStatus(const PGconn *conn);

The status can be PQTRANS_IDLE (currently idle), PQTRANS_ACTIVE (a command is in progress), PQ-
TRANS_INTRANS (idle, in a valid transaction block), or PQTRANS_INERROR (idle, in a failed transaction
block). PQTRANS_UNKNOWN is reported if the connection is bad. PQTRANS_ACTIVE is reported only when
a query has been sent to the server and not yet completed.

PQparameterStatus

Looks up a current parameter setting of the server.
const char *PQparameterStatus(const PGconn *conn, const char *paramName);

Certain parameter values are reported by the server automatically at connection startup or whenever
their values change. PQparameterStatus can be used to interrogate these settings. It returns the
current value of a parameter if known, or NULL if the parameter is not known.

Parameters reported as of the current release include:
application_name scram_iterations
client_encoding search_path
DateStyle server_encoding
default_transaction_read_only server_version
in_hot_standby session_authorization
integer_datetimes standard_conforming_strings
IntervalStyle TimeZone
is_superuser

(default_transaction_read_only and in_hot_standby were not reported by releases before 14;
scram_iterations was not reported by releases before 16; search_path was not reported by releas-
es before 18.) Note that server_version, server_encoding and integer_datetimes cannot change
after startup.

If no value for standard_conforming_strings is reported, applications can assume it is off, that
is, backslashes are treated as escapes in string literals. Also, the presence of this parameter can be
taken as an indication that the escape string syntax (E'...') is accepted.

867

libpq — C Library

Although the returned pointer is declared const, it in fact points to mutable storage associated with
the PGconn structure. It is unwise to assume the pointer will remain valid across queries.

PQfullProtocolVersion

Interrogates the frontend/backend protocol being used.
int PQfullProtocolVersion(const PGconn *conn);

Applications might wish to use this function to determine whether certain features are supported.
The result is formed by multiplying the server's major version number by 10000 and adding the
minor version number. For example, version 3.2 would be returned as 30002, and version 4.0 would
be returned as 40000. Zero is returned if the connection is bad. The 3.0 protocol is supported by
PostgreSQL server versions 7.4 and above.

The protocol version will not change after connection startup is complete, but it could theoretically
change during a connection reset.

PQprotocolVersion

Interrogates the frontend/backend protocol major version.
int PQprotocolVersion(const PGconn *conn);

Unlike PQfullProtocolVersion, this returns only the major protocol version in use, but it is sup-
ported by a wider range of libpq releases back to version 7.4. Currently, the possible values are 3
(3.0 protocol), or zero (connection bad). Prior to release version 14.0, libpq could additionally return
2 (2.0 protocol).

PQserverVersion

Returns an integer representing the server version.
int PQserverVersion(const PGconn *conn);

Applications might use this function to determine the version of the database server they are con-
nected to. The result is formed by multiplying the server's major version number by 10000 and adding
the minor version number. For example, version 10.1 will be returned as 100001, and version 11.0
will be returned as 110000. Zero is returned if the connection is bad.

Prior to major version 10, PostgreSQL used three-part version numbers in which the first two parts
together represented the major version. For those versions, PQserverVersion uses two digits for
each part; for example version 9.1.5 will be returned as 90105, and version 9.2.0 will be returned
as 90200.

Therefore, for purposes of determining feature compatibility, applications should divide the result
of PQserverVersion by 100 not 10000 to determine a logical major version number. In all release
series, only the last two digits differ between minor releases (bug-fix releases).

PQerrorMessage

Returns the error message most recently generated by an operation on the connection.
char *PQerrorMessage(const PGconn *conn);

Nearly all libpq functions will set a message for PQerrorMessage if they fail. Note that by libpq
convention, a nonempty PQerrorMessage result can consist of multiple lines, and will include a
trailing newline. The caller should not free the result directly. It will be freed when the associated
PGconn handle is passed to PQfinish. The result string should not be expected to remain the same
across operations on the PGconn structure.

PQsocket

Obtains the file descriptor number of the connection socket to the server. A valid descriptor will be
greater than or equal to 0; a result of -1 indicates that no server connection is currently open. (This
will not change during normal operation, but could change during connection setup or reset.)

868

libpq — C Library

int PQsocket(const PGconn *conn);

PQbackendPID

Returns the process ID (PID) of the backend process handling this connection.

int PQbackendPID(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages (which
include the PID of the notifying backend process). Note that the PID belongs to a process executing
on the database server host, not the local host!

PQconnectionNeedsPassword

Returns true (1) if the connection authentication method required a password, but none was avail-
able. Returns false (0) if not.

int PQconnectionNeedsPassword(const PGconn *conn);

This function can be applied after a failed connection attempt to decide whether to prompt the user
for a password.

PQconnectionUsedPassword

Returns true (1) if the connection authentication method used a password. Returns false (0) if not.

int PQconnectionUsedPassword(const PGconn *conn);

This function can be applied after either a failed or successful connection attempt to detect whether
the server demanded a password.

PQconnectionUsedGSSAPI

Returns true (1) if the connection authentication method used GSSAPI. Returns false (0) if not.

int PQconnectionUsedGSSAPI(const PGconn *conn);

This function can be applied to detect whether the connection was authenticated with GSSAPI.

The following functions return information related to SSL. This information usually doesn't change after
a connection is established.

PQsslInUse

Returns true (1) if the connection uses SSL, false (0) if not.

int PQsslInUse(const PGconn *conn);

PQsslAttribute

Returns SSL-related information about the connection.

const char *PQsslAttribute(const PGconn *conn, const char *attribute_name);

The list of available attributes varies depending on the SSL library being used and the type of con-
nection. Returns NULL if the connection does not use SSL or the specified attribute name is not
defined for the library in use.

The following attributes are commonly available:

library

Name of the SSL implementation in use. (Currently, only "OpenSSL" is implemented)

protocol

SSL/TLS version in use. Common values are "TLSv1", "TLSv1.1" and "TLSv1.2", but an imple-
mentation may return other strings if some other protocol is used.

869

libpq — C Library

key_bits

Number of key bits used by the encryption algorithm.

cipher

A short name of the ciphersuite used, e.g., "DHE-RSA-DES-CBC3-SHA". The names are specific to
each SSL implementation.

compression

Returns "on" if SSL compression is in use, else it returns "off".

alpn

Application protocol selected by the TLS Application-Layer Protocol Negotiation (ALPN) exten-
sion. The only protocol supported by libpq is postgresql, so this is mainly useful for checking
whether the server supported ALPN or not. Empty string if ALPN was not used.

As a special case, the library attribute may be queried without a connection by passing NULL as
the conn argument. The result will be the default SSL library name, or NULL if libpq was compiled
without any SSL support. (Prior to PostgreSQL version 15, passing NULL as the conn argument
always resulted in NULL. Client programs needing to differentiate between the newer and older
implementations of this case may check the LIBPQ_HAS_SSL_LIBRARY_DETECTION feature macro.)

PQsslAttributeNames

Returns an array of SSL attribute names that can be used in PQsslAttribute(). The array is termi-
nated by a NULL pointer.

const char * const * PQsslAttributeNames(const PGconn *conn);

If conn is NULL, the attributes available for the default SSL library are returned, or an empty list
if libpq was compiled without any SSL support. If conn is not NULL, the attributes available for the
SSL library in use for the connection are returned, or an empty list if the connection is not encrypted.

PQsslStruct

Returns a pointer to an SSL-implementation-specific object describing the connection. Returns NULL
if the connection is not encrypted or the requested type of object is not available from the connection's
SSL implementation.

void *PQsslStruct(const PGconn *conn, const char *struct_name);

The struct(s) available depend on the SSL implementation in use. For OpenSSL, there is one struct,
available under the name OpenSSL, and it returns a pointer to OpenSSL's SSL struct. To use this
function, code along the following lines could be used:

#include <libpq-fe.h>
#include <openssl/ssl.h>

...

 SSL *ssl;

 dbconn = PQconnectdb(...);
 ...

 ssl = PQsslStruct(dbconn, "OpenSSL");
 if (ssl)
 {
 /* use OpenSSL functions to access ssl */

870

libpq — C Library

 }

This structure can be used to verify encryption levels, check server certificates, and more. Refer to
the OpenSSL documentation for information about this structure.

PQgetssl

Returns the SSL structure used in the connection, or NULL if SSL is not in use.

void *PQgetssl(const PGconn *conn);

This function is equivalent to PQsslStruct(conn, "OpenSSL"). It should not be used in new appli-
cations, because the returned struct is specific to OpenSSL and will not be available if another SSL
implementation is used. To check if a connection uses SSL, call PQsslInUse instead, and for more
details about the connection, use PQsslAttribute.

32.3. Command Execution Functions
Once a connection to a database server has been successfully established, the functions described here
are used to perform SQL queries and commands.

32.3.1. Main Functions
PQexec

Submits a command to the server and waits for the result.

PGresult *PQexec(PGconn *conn, const char *command);

Returns a PGresult pointer or possibly a null pointer. A non-null pointer will generally be returned
except in out-of-memory conditions or serious errors such as inability to send the command to the
server. The PQresultStatus function should be called to check the return value for any errors (in-
cluding the value of a null pointer, in which case it will return PGRES_FATAL_ERROR). Use PQer-
rorMessage to get more information about such errors.

The command string can include multiple SQL commands (separated by semicolons). Multiple queries
sent in a single PQexec call are processed in a single transaction, unless there are explicit BEGIN/COMMIT
commands included in the query string to divide it into multiple transactions. (See Section 54.2.2.1
for more details about how the server handles multi-query strings.) Note however that the returned
PGresult structure describes only the result of the last command executed from the string. Should one
of the commands fail, processing of the string stops with it and the returned PGresult describes the
error condition.

PQexecParams

Submits a command to the server and waits for the result, with the ability to pass parameters sepa-
rately from the SQL command text.

PGresult *PQexecParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

PQexecParams is like PQexec, but offers additional functionality: parameter values can be specified
separately from the command string proper, and query results can be requested in either text or
binary format.

The function arguments are:

871

libpq — C Library

conn

The connection object to send the command through.

command

The SQL command string to be executed. If parameters are used, they are referred to in the
command string as $1, $2, etc.

nParams

The number of parameters supplied; it is the length of the arrays paramTypes[], paramValues[],
paramLengths[], and paramFormats[]. (The array pointers can be NULL when nParams is zero.)

paramTypes[]

Specifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is NULL,
or any particular element in the array is zero, the server infers a data type for the parameter
symbol in the same way it would do for an untyped literal string.

paramValues[]

Specifies the actual values of the parameters. A null pointer in this array means the corresponding
parameter is null; otherwise the pointer points to a zero-terminated text string (for text format)
or binary data in the format expected by the server (for binary format).

paramLengths[]

Specifies the actual data lengths of binary-format parameters. It is ignored for null parameters
and text-format parameters. The array pointer can be null when there are no binary parameters.

paramFormats[]

Specifies whether parameters are text (put a zero in the array entry for the corresponding pa-
rameter) or binary (put a one in the array entry for the corresponding parameter). If the array
pointer is null then all parameters are presumed to be text strings.

Values passed in binary format require knowledge of the internal representation expected by the
backend. For example, integers must be passed in network byte order. Passing numeric values
requires knowledge of the server storage format, as implemented in src/backend/utils/adt/
numeric.c::numeric_send() and src/backend/utils/adt/numeric.c::numeric_recv().

resultFormat

Specify zero to obtain results in text format, or one to obtain results in binary format. (There is
not currently a provision to obtain different result columns in different formats, although that is
possible in the underlying protocol.)

The primary advantage of PQexecParams over PQexec is that parameter values can be separated from
the command string, thus avoiding the need for tedious and error-prone quoting and escaping.

Unlike PQexec, PQexecParams allows at most one SQL command in the given string. (There can be semi-
colons in it, but not more than one nonempty command.) This is a limitation of the underlying protocol,
but has some usefulness as an extra defense against SQL-injection attacks.

Tip
Specifying parameter types via OIDs is tedious, particularly if you prefer not to hard-wire particu-
lar OID values into your program. However, you can avoid doing so even in cases where the server
by itself cannot determine the type of the parameter, or chooses a different type than you want.
In the SQL command text, attach an explicit cast to the parameter symbol to show what data type
you will send. For example:
SELECT * FROM mytable WHERE x = $1::bigint;

872

libpq — C Library

This forces parameter $1 to be treated as bigint, whereas by default it would be assigned the
same type as x. Forcing the parameter type decision, either this way or by specifying a numeric
type OID, is strongly recommended when sending parameter values in binary format, because
binary format has less redundancy than text format and so there is less chance that the server
will detect a type mismatch mistake for you.

PQprepare

Submits a request to create a prepared statement with the given parameters, and waits for comple-
tion.
PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

PQprepare creates a prepared statement for later execution with PQexecPrepared. This feature al-
lows commands to be executed repeatedly without being parsed and planned each time; see PRE-
PARE for details.

The function creates a prepared statement named stmtName from the query string, which must con-
tain a single SQL command. stmtName can be "" to create an unnamed statement, in which case any
pre-existing unnamed statement is automatically replaced; otherwise it is an error if the statement
name is already defined in the current session. If any parameters are used, they are referred to in
the query as $1, $2, etc. nParams is the number of parameters for which types are pre-specified in
the array paramTypes[]. (The array pointer can be NULL when nParams is zero.) paramTypes[] spec-
ifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is NULL, or any
particular element in the array is zero, the server assigns a data type to the parameter symbol in
the same way it would do for an untyped literal string. Also, the query can use parameter symbols
with numbers higher than nParams; data types will be inferred for these symbols as well. (See PQde-
scribePrepared for a means to find out what data types were inferred.)

As with PQexec, the result is normally a PGresult object whose contents indicate server-side success
or failure. A null result indicates out-of-memory or inability to send the command at all. Use PQer-
rorMessage to get more information about such errors.

Prepared statements for use with PQexecPrepared can also be created by executing SQL PREPARE
statements.

PQexecPrepared

Sends a request to execute a prepared statement with given parameters, and waits for the result.
PGresult *PQexecPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

PQexecPrepared is like PQexecParams, but the command to be executed is specified by naming a
previously-prepared statement, instead of giving a query string. This feature allows commands that
will be used repeatedly to be parsed and planned just once, rather than each time they are executed.
The statement must have been prepared previously in the current session.

The parameters are identical to PQexecParams, except that the name of a prepared statement is given
instead of a query string, and the paramTypes[] parameter is not present (it is not needed since the
prepared statement's parameter types were determined when it was created).

873

libpq — C Library

PQdescribePrepared

Submits a request to obtain information about the specified prepared statement, and waits for com-
pletion.

PGresult *PQdescribePrepared(PGconn *conn, const char *stmtName);

PQdescribePrepared allows an application to obtain information about a previously prepared state-
ment.

stmtName can be "" or NULL to reference the unnamed statement, otherwise it must be the name of
an existing prepared statement. On success, a PGresult with status PGRES_COMMAND_OK is returned.
The functions PQnparams and PQparamtype can be applied to this PGresult to obtain information
about the parameters of the prepared statement, and the functions PQnfields, PQfname, PQftype,
etc. provide information about the result columns (if any) of the statement.

PQdescribePortal

Submits a request to obtain information about the specified portal, and waits for completion.

PGresult *PQdescribePortal(PGconn *conn, const char *portalName);

PQdescribePortal allows an application to obtain information about a previously created portal.
(libpq does not provide any direct access to portals, but you can use this function to inspect the
properties of a cursor created with a DECLARE CURSOR SQL command.)

portalName can be "" or NULL to reference the unnamed portal, otherwise it must be the name of
an existing portal. On success, a PGresult with status PGRES_COMMAND_OK is returned. The functions
PQnfields, PQfname, PQftype, etc. can be applied to the PGresult to obtain information about the
result columns (if any) of the portal.

PQclosePrepared

Submits a request to close the specified prepared statement, and waits for completion.

PGresult *PQclosePrepared(PGconn *conn, const char *stmtName);

PQclosePrepared allows an application to close a previously prepared statement. Closing a statement
releases all of its associated resources on the server and allows its name to be reused.

stmtName can be "" or NULL to reference the unnamed statement. It is fine if no statement exists
with this name, in that case the operation is a no-op. On success, a PGresult with status PGRES_COM-
MAND_OK is returned.

PQclosePortal

Submits a request to close the specified portal, and waits for completion.

PGresult *PQclosePortal(PGconn *conn, const char *portalName);

PQclosePortal allows an application to trigger a close of a previously created portal. Closing a portal
releases all of its associated resources on the server and allows its name to be reused. (libpq does
not provide any direct access to portals, but you can use this function to close a cursor created with
a DECLARE CURSOR SQL command.)

portalName can be "" or NULL to reference the unnamed portal. It is fine if no portal exists with this
name, in that case the operation is a no-op. On success, a PGresult with status PGRES_COMMAND_OK
is returned.

The PGresultstructure encapsulates the result returned by the server. libpq application programmers
should be careful to maintain the PGresult abstraction. Use the accessor functions below to get at the
contents of PGresult. Avoid directly referencing the fields of the PGresult structure because they are
subject to change in the future.

874

libpq — C Library

PQresultStatus

Returns the result status of the command.
ExecStatusType PQresultStatus(const PGresult *res);

PQresultStatus can return one of the following values:
PGRES_EMPTY_QUERY

The string sent to the server was empty.

PGRES_COMMAND_OK

Successful completion of a command returning no data.

PGRES_TUPLES_OK

Successful completion of a command returning data (such as a SELECT or SHOW).

PGRES_COPY_OUT

Copy Out (from server) data transfer started.

PGRES_COPY_IN

Copy In (to server) data transfer started.

PGRES_BAD_RESPONSE

The server's response was not understood.

PGRES_NONFATAL_ERROR

A nonfatal error (a notice or warning) occurred.

PGRES_FATAL_ERROR

A fatal error occurred.

PGRES_COPY_BOTH

Copy In/Out (to and from server) data transfer started. This feature is currently used only for
streaming replication, so this status should not occur in ordinary applications.

PGRES_SINGLE_TUPLE

The PGresult contains a single result tuple from the current command. This status occurs only
when single-row mode has been selected for the query (see Section 32.6).

PGRES_TUPLES_CHUNK

The PGresult contains several result tuples from the current command. This status occurs only
when chunked mode has been selected for the query (see Section 32.6). The number of tuples
will not exceed the limit passed to PQsetChunkedRowsMode.

PGRES_PIPELINE_SYNC

The PGresult represents a synchronization point in pipeline mode, requested by either
PQpipelineSync or PQsendPipelineSync. This status occurs only when pipeline mode has been
selected.

PGRES_PIPELINE_ABORTED

The PGresult represents a pipeline that has received an error from the server. PQgetResult must
be called repeatedly, and each time it will return this status code until the end of the current
pipeline, at which point it will return PGRES_PIPELINE_SYNC and normal processing can resume.

If the result status is PGRES_TUPLES_OK, PGRES_SINGLE_TUPLE, or PGRES_TUPLES_CHUNK, then the
functions described below can be used to retrieve the rows returned by the query. Note that a SELECT

875

libpq — C Library

command that happens to retrieve zero rows still shows PGRES_TUPLES_OK. PGRES_COMMAND_OK is
for commands that can never return rows (INSERT or UPDATE without a RETURNING clause, etc.). A
response of PGRES_EMPTY_QUERY might indicate a bug in the client software.

A result of status PGRES_NONFATAL_ERROR will never be returned directly by PQexec or other query ex-
ecution functions; results of this kind are instead passed to the notice processor (see Section 32.13).

PQresStatus

Converts the enumerated type returned by PQresultStatus into a string constant describing the
status code. The caller should not free the result.
char *PQresStatus(ExecStatusType status);

PQresultErrorMessage

Returns the error message associated with the command, or an empty string if there was no error.
char *PQresultErrorMessage(const PGresult *res);

If there was an error, the returned string will include a trailing newline. The caller should not free
the result directly. It will be freed when the associated PGresult handle is passed to PQclear.

Immediately following a PQexec or PQgetResult call, PQerrorMessage (on the connection) will
return the same string as PQresultErrorMessage (on the result). However, a PGresult will retain its
error message until destroyed, whereas the connection's error message will change when subsequent
operations are done. Use PQresultErrorMessage when you want to know the status associated with
a particular PGresult; use PQerrorMessage when you want to know the status from the latest
operation on the connection.

PQresultVerboseErrorMessage

Returns a reformatted version of the error message associated with a PGresult object.
char *PQresultVerboseErrorMessage(const PGresult *res,
 PGVerbosity verbosity,
 PGContextVisibility show_context);

In some situations a client might wish to obtain a more detailed version of a previously-reported
error. PQresultVerboseErrorMessage addresses this need by computing the message that would
have been produced by PQresultErrorMessage if the specified verbosity settings had been in effect
for the connection when the given PGresult was generated. If the PGresult is not an error result,
“PGresult is not an error result” is reported instead. The returned string includes a trailing newline.

Unlike most other functions for extracting data from a PGresult, the result of this function is a freshly
allocated string. The caller must free it using PQfreemem() when the string is no longer needed.

A NULL return is possible if there is insufficient memory.

PQresultErrorField

Returns an individual field of an error report.
char *PQresultErrorField(const PGresult *res, int fieldcode);

fieldcode is an error field identifier; see the symbols listed below. NULL is returned if the PGresult
is not an error or warning result, or does not include the specified field. Field values will normally
not include a trailing newline. The caller should not free the result directly. It will be freed when the
associated PGresult handle is passed to PQclear.

The following field codes are available:
PG_DIAG_SEVERITY

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these.
Always present.

876

libpq — C Library

PG_DIAG_SEVERITY_NONLOCALIZED

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message). This is identical to the PG_DIAG_SEVERITY
field except that the contents are never localized. This is present only in reports generated by
PostgreSQL versions 9.6 and later.

PG_DIAG_SQLSTATE

The SQLSTATE code for the error. The SQLSTATE code identifies the type of error that has
occurred; it can be used by front-end applications to perform specific operations (such as error
handling) in response to a particular database error. For a list of the possible SQLSTATE codes,
see Appendix A. This field is not localizable, and is always present.

PG_DIAG_MESSAGE_PRIMARY

The primary human-readable error message (typically one line). Always present.

PG_DIAG_MESSAGE_DETAIL

Detail: an optional secondary error message carrying more detail about the problem. Might run
to multiple lines.

PG_DIAG_MESSAGE_HINT

Hint: an optional suggestion what to do about the problem. This is intended to differ from detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

PG_DIAG_STATEMENT_POSITION

A string containing a decimal integer indicating an error cursor position as an index into the
original statement string. The first character has index 1, and positions are measured in charac-
ters not bytes.

PG_DIAG_INTERNAL_POSITION

This is defined the same as the PG_DIAG_STATEMENT_POSITION field, but it is used when the cursor
position refers to an internally generated command rather than the one submitted by the client.
The PG_DIAG_INTERNAL_QUERY field will always appear when this field appears.

PG_DIAG_INTERNAL_QUERY

The text of a failed internally-generated command. This could be, for example, an SQL query
issued by a PL/pgSQL function.

PG_DIAG_CONTEXT

An indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is
one entry per line, most recent first.

PG_DIAG_SCHEMA_NAME

If the error was associated with a specific database object, the name of the schema containing
that object, if any.

PG_DIAG_TABLE_NAME

If the error was associated with a specific table, the name of the table. (Refer to the schema name
field for the name of the table's schema.)

PG_DIAG_COLUMN_NAME

If the error was associated with a specific table column, the name of the column. (Refer to the
schema and table name fields to identify the table.)

877

libpq — C Library

PG_DIAG_DATATYPE_NAME

If the error was associated with a specific data type, the name of the data type. (Refer to the
schema name field for the name of the data type's schema.)

PG_DIAG_CONSTRAINT_NAME

If the error was associated with a specific constraint, the name of the constraint. Refer to fields
listed above for the associated table or domain. (For this purpose, indexes are treated as con-
straints, even if they weren't created with constraint syntax.)

PG_DIAG_SOURCE_FILE

The file name of the source-code location where the error was reported.

PG_DIAG_SOURCE_LINE

The line number of the source-code location where the error was reported.

PG_DIAG_SOURCE_FUNCTION

The name of the source-code function reporting the error.

Note
The fields for schema name, table name, column name, data type name, and constraint name
are supplied only for a limited number of error types; see Appendix A. Do not assume that the
presence of any of these fields guarantees the presence of another field. Core error sources
observe the interrelationships noted above, but user-defined functions may use these fields in
other ways. In the same vein, do not assume that these fields denote contemporary objects in
the current database.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be
treated as paragraph breaks, not line breaks.

Errors generated internally by libpq will have severity and primary message, but typically no other
fields.

Note that error fields are only available from PGresult objects, not PGconn objects; there is no PQer-
rorField function.

PQclear

Frees the storage associated with a PGresult. Every command result should be freed via PQclear
when it is no longer needed.
void PQclear(PGresult *res);

If the argument is a NULL pointer, no operation is performed.

You can keep a PGresult object around for as long as you need it; it does not go away when you issue
a new command, nor even if you close the connection. To get rid of it, you must call PQclear. Failure
to do this will result in memory leaks in your application.

32.3.2. Retrieving Query Result Information
These functions are used to extract information from a PGresult object that represents a success-
ful query result (that is, one that has status PGRES_TUPLES_OK, PGRES_SINGLE_TUPLE, or PGRES_TU-
PLES_CHUNK). They can also be used to extract information from a successful Describe operation: a De-
scribe's result has all the same column information that actual execution of the query would provide,
but it has zero rows. For objects with other status values, these functions will act as though the result
has zero rows and zero columns.

878

libpq — C Library

PQntuples

Returns the number of rows (tuples) in the query result. (Note that PGresult objects are limited to
no more than INT_MAX rows, so an int result is sufficient.)
int PQntuples(const PGresult *res);

PQnfields

Returns the number of columns (fields) in each row of the query result.
int PQnfields(const PGresult *res);

PQfname

Returns the column name associated with the given column number. Column numbers start at 0.
The caller should not free the result directly. It will be freed when the associated PGresult handle
is passed to PQclear.
char *PQfname(const PGresult *res,
 int column_number);

NULL is returned if the column number is out of range.

PQfnumber

Returns the column number associated with the given column name.
int PQfnumber(const PGresult *res,
 const char *column_name);

-1 is returned if the given name does not match any column.

The given name is treated like an identifier in an SQL command, that is, it is downcased unless
double-quoted. For example, given a query result generated from the SQL command:
SELECT 1 AS FOO, 2 AS "BAR";

we would have the results:
PQfname(res, 0) foo
PQfname(res, 1) BAR
PQfnumber(res, "FOO") 0
PQfnumber(res, "foo") 0
PQfnumber(res, "BAR") -1
PQfnumber(res, "\"BAR\"") 1

PQftable

Returns the OID of the table from which the given column was fetched. Column numbers start at 0.
Oid PQftable(const PGresult *res,
 int column_number);

InvalidOid is returned if the column number is out of range, or if the specified column is not a
simple reference to a table column. You can query the system table pg_class to determine exactly
which table is referenced.

The type Oid and the constant InvalidOid will be defined when you include the libpq header file.
They will both be some integer type.

PQftablecol

Returns the column number (within its table) of the column making up the specified query result
column. Query-result column numbers start at 0, but table columns have nonzero numbers.
int PQftablecol(const PGresult *res,
 int column_number);

879

libpq — C Library

Zero is returned if the column number is out of range, or if the specified column is not a simple
reference to a table column.

PQfformat

Returns the format code indicating the format of the given column. Column numbers start at 0.
int PQfformat(const PGresult *res,
 int column_number);

Format code zero indicates textual data representation, while format code one indicates binary rep-
resentation. (Other codes are reserved for future definition.)

PQftype

Returns the data type associated with the given column number. The integer returned is the internal
OID number of the type. Column numbers start at 0.
Oid PQftype(const PGresult *res,
 int column_number);

You can query the system table pg_type to obtain the names and properties of the various data types.
The OIDs of the built-in data types are defined in the file catalog/pg_type_d.h in the PostgreSQL
installation's include directory.

PQfmod

Returns the type modifier of the column associated with the given column number. Column numbers
start at 0.
int PQfmod(const PGresult *res,
 int column_number);

The interpretation of modifier values is type-specific; they typically indicate precision or size limits.
The value -1 is used to indicate “no information available”. Most data types do not use modifiers, in
which case the value is always -1.

PQfsize

Returns the size in bytes of the column associated with the given column number. Column numbers
start at 0.
int PQfsize(const PGresult *res,
 int column_number);

PQfsize returns the space allocated for this column in a database row, in other words the size of the
server's internal representation of the data type. (Accordingly, it is not really very useful to clients.)
A negative value indicates the data type is variable-length.

PQbinaryTuples

Returns 1 if the PGresult contains binary data and 0 if it contains text data.
int PQbinaryTuples(const PGresult *res);

This function is deprecated (except for its use in connection with COPY), because it is possible for
a single PGresult to contain text data in some columns and binary data in others. PQfformat is
preferred. PQbinaryTuples returns 1 only if all columns of the result are binary (format 1).

PQgetvalue

Returns a single field value of one row of a PGresult. Row and column numbers start at 0. The caller
should not free the result directly. It will be freed when the associated PGresult handle is passed
to PQclear.
char *PQgetvalue(const PGresult *res,
 int row_number,

880

libpq — C Library

 int column_number);

For data in text format, the value returned by PQgetvalue is a null-terminated character string rep-
resentation of the field value. For data in binary format, the value is in the binary representation
determined by the data type's typsend and typreceive functions. (The value is actually followed
by a zero byte in this case too, but that is not ordinarily useful, since the value is likely to contain
embedded nulls.)

An empty string is returned if the field value is null. See PQgetisnull to distinguish null values from
empty-string values.

The pointer returned by PQgetvalue points to storage that is part of the PGresult structure. One
should not modify the data it points to, and one must explicitly copy the data into other storage if it
is to be used past the lifetime of the PGresult structure itself.

PQgetisnull

Tests a field for a null value. Row and column numbers start at 0.
int PQgetisnull(const PGresult *res,
 int row_number,
 int column_number);

This function returns 1 if the field is null and 0 if it contains a non-null value. (Note that PQgetvalue
will return an empty string, not a null pointer, for a null field.)

PQgetlength

Returns the actual length of a field value in bytes. Row and column numbers start at 0.
int PQgetlength(const PGresult *res,
 int row_number,
 int column_number);

This is the actual data length for the particular data value, that is, the size of the object pointed to
by PQgetvalue. For text data format this is the same as strlen(). For binary format this is essential
information. Note that one should not rely on PQfsize to obtain the actual data length.

PQnparams

Returns the number of parameters of a prepared statement.
int PQnparams(const PGresult *res);

This function is only useful when inspecting the result of PQdescribePrepared. For other types of
results it will return zero.

PQparamtype

Returns the data type of the indicated statement parameter. Parameter numbers start at 0.
Oid PQparamtype(const PGresult *res, int param_number);

This function is only useful when inspecting the result of PQdescribePrepared. For other types of
results it will return zero.

PQprint

Prints out all the rows and, optionally, the column names to the specified output stream.
void PQprint(FILE *fout, /* output stream */
 const PGresult *res,
 const PQprintOpt *po);
typedef struct
{
 pqbool header; /* print output field headings and row count */

881

libpq — C Library

 pqbool align; /* fill align the fields */
 pqbool standard; /* old brain dead format */
 pqbool html3; /* output HTML tables */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if needed */
 char *fieldSep; /* field separator */
 char *tableOpt; /* attributes for HTML table element */
 char *caption; /* HTML table caption */
 char **fieldName; /* null-terminated array of replacement field names */
} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case. Note
that it assumes all the data is in text format.

32.3.3. Retrieving Other Result Information
These functions are used to extract other information from PGresult objects.

PQcmdStatus

Returns the command status tag from the SQL command that generated the PGresult.
char *PQcmdStatus(PGresult *res);

Commonly this is just the name of the command, but it might include additional data such as the
number of rows processed. The caller should not free the result directly. It will be freed when the
associated PGresult handle is passed to PQclear.

PQcmdTuples

Returns the number of rows affected by the SQL command.
char *PQcmdTuples(PGresult *res);

This function returns a string containing the number of rows affected by the SQL statement that gen-
erated the PGresult. This function can only be used following the execution of a SELECT, CREATE TA-
BLE AS, INSERT, UPDATE, DELETE, MERGE, MOVE, FETCH, or COPY statement, or an EXECUTE of a prepared
query that contains an INSERT, UPDATE, DELETE, or MERGE statement. If the command that generated
the PGresult was anything else, PQcmdTuples returns an empty string. The caller should not free
the return value directly. It will be freed when the associated PGresult handle is passed to PQclear.

PQoidValue

Returns the OID of the inserted row, if the SQL command was an INSERT that inserted exactly one row
into a table that has OIDs, or a EXECUTE of a prepared query containing a suitable INSERT statement.
Otherwise, this function returns InvalidOid. This function will also return InvalidOid if the table
affected by the INSERT statement does not contain OIDs.
Oid PQoidValue(const PGresult *res);

PQoidStatus

This function is deprecated in favor of PQoidValue and is not thread-safe. It returns a string with the
OID of the inserted row, while PQoidValue returns the OID value.
char *PQoidStatus(const PGresult *res);

32.3.4. Escaping Strings for Inclusion in SQL Commands
PQescapeLiteral

char *PQescapeLiteral(PGconn *conn, const char *str, size_t length);

PQescapeLiteral escapes a string for use within an SQL command. This is useful when inserting da-
ta values as literal constants in SQL commands. Certain characters (such as quotes and backslashes)

882

libpq — C Library

must be escaped to prevent them from being interpreted specially by the SQL parser. PQescapeLit-
eral performs this operation.

PQescapeLiteral returns an escaped version of the str parameter in memory allocated with mal-
loc(). This memory should be freed using PQfreemem() when the result is no longer needed. A ter-
minating zero byte is not required, and should not be counted in length. (If a terminating zero byte
is found before length bytes are processed, PQescapeLiteral stops at the zero; the behavior is thus
rather like strncpy.) The return string has all special characters replaced so that they can be prop-
erly processed by the PostgreSQL string literal parser. A terminating zero byte is also added. The
single quotes that must surround PostgreSQL string literals are included in the result string.

On error, PQescapeLiteral returns NULL and a suitable message is stored in the conn object.

Tip
It is especially important to do proper escaping when handling strings that were received
from an untrustworthy source. Otherwise there is a security risk: you are vulnerable to “SQL
injection” attacks wherein unwanted SQL commands are fed to your database.

Note that it is neither necessary nor correct to do escaping when a data value is passed as a separate
parameter in PQexecParams or its sibling routines.

PQescapeIdentifier

char *PQescapeIdentifier(PGconn *conn, const char *str, size_t length);

PQescapeIdentifier escapes a string for use as an SQL identifier, such as a table, column, or func-
tion name. This is useful when a user-supplied identifier might contain special characters that would
otherwise not be interpreted as part of the identifier by the SQL parser, or when the identifier might
contain upper case characters whose case should be preserved.

PQescapeIdentifier returns a version of the str parameter escaped as an SQL identifier in mem-
ory allocated with malloc(). This memory must be freed using PQfreemem() when the result is no
longer needed. A terminating zero byte is not required, and should not be counted in length. (If a
terminating zero byte is found before length bytes are processed, PQescapeIdentifier stops at the
zero; the behavior is thus rather like strncpy.) The return string has all special characters replaced
so that it will be properly processed as an SQL identifier. A terminating zero byte is also added. The
return string will also be surrounded by double quotes.

On error, PQescapeIdentifier returns NULL and a suitable message is stored in the conn object.

Tip
As with string literals, to prevent SQL injection attacks, SQL identifiers must be escaped when
they are received from an untrustworthy source.

PQescapeStringConn

size_t PQescapeStringConn(PGconn *conn,
 char *to, const char *from, size_t length,
 int *error);

PQescapeStringConn escapes string literals, much like PQescapeLiteral. Unlike PQescapeLiteral,
the caller is responsible for providing an appropriately sized buffer. Furthermore, PQescapeString-
Conn does not generate the single quotes that must surround PostgreSQL string literals; they should
be provided in the SQL command that the result is inserted into. The parameter from points to the
first character of the string that is to be escaped, and the length parameter gives the number of

883

libpq — C Library

bytes in this string. A terminating zero byte is not required, and should not be counted in length. (If
a terminating zero byte is found before length bytes are processed, PQescapeStringConn stops at
the zero; the behavior is thus rather like strncpy.) to shall point to a buffer that is able to hold at
least one more byte than twice the value of length, otherwise the behavior is undefined. Behavior
is likewise undefined if the to and from strings overlap.

If the error parameter is not NULL, then *error is set to zero on success, nonzero on error. Presently
the only possible error conditions involve invalid multibyte encoding in the source string. The output
string is still generated on error, but it can be expected that the server will reject it as malformed.
On error, a suitable message is stored in the conn object, whether or not error is NULL.

PQescapeStringConn returns the number of bytes written to to, not including the terminating zero
byte.

PQescapeString

PQescapeString is an older, deprecated version of PQescapeStringConn.
size_t PQescapeString (char *to, const char *from, size_t length);

The only difference from PQescapeStringConn is that PQescapeString does not take PGconn or error
parameters. Because of this, it cannot adjust its behavior depending on the connection properties
(such as character encoding) and therefore it might give the wrong results. Also, it has no way to
report error conditions.

PQescapeString can be used safely in client programs that work with only one PostgreSQL connec-
tion at a time (in this case it can find out what it needs to know “behind the scenes”). In other contexts
it is a security hazard and should be avoided in favor of PQescapeStringConn.

PQescapeByteaConn

Escapes binary data for use within an SQL command with the type bytea. As with PQescapeString-
Conn, this is only used when inserting data directly into an SQL command string.
unsigned char *PQescapeByteaConn(PGconn *conn,
 const unsigned char *from,
 size_t from_length,
 size_t *to_length);

Certain byte values must be escaped when used as part of a bytea literal in an SQL statement.
PQescapeByteaConn escapes bytes using either hex encoding or backslash escaping. See Section 8.4
for more information.

The from parameter points to the first byte of the string that is to be escaped, and the from_length
parameter gives the number of bytes in this binary string. (A terminating zero byte is neither neces-
sary nor counted.) The to_length parameter points to a variable that will hold the resultant escaped
string length. This result string length includes the terminating zero byte of the result.

PQescapeByteaConn returns an escaped version of the from parameter binary string in memory allo-
cated with malloc(). This memory should be freed using PQfreemem() when the result is no longer
needed. The return string has all special characters replaced so that they can be properly processed
by the PostgreSQL string literal parser, and the bytea input function. A terminating zero byte is also
added. The single quotes that must surround PostgreSQL string literals are not part of the result
string.

On error, a null pointer is returned, and a suitable error message is stored in the conn object. Cur-
rently, the only possible error is insufficient memory for the result string.

PQescapeBytea

PQescapeBytea is an older, deprecated version of PQescapeByteaConn.
unsigned char *PQescapeBytea(const unsigned char *from,

884

libpq — C Library

 size_t from_length,
 size_t *to_length);

The only difference from PQescapeByteaConn is that PQescapeBytea does not take a PGconn para-
meter. Because of this, PQescapeBytea can only be used safely in client programs that use a single
PostgreSQL connection at a time (in this case it can find out what it needs to know “behind the
scenes”). It might give the wrong results if used in programs that use multiple database connections
(use PQescapeByteaConn in such cases).

PQunescapeBytea

Converts a string representation of binary data into binary data — the reverse of PQescapeBytea.
This is needed when retrieving bytea data in text format, but not when retrieving it in binary format.
unsigned char *PQunescapeBytea(const unsigned char *from, size_t *to_length);

The from parameter points to a string such as might be returned by PQgetvalue when applied to a
bytea column. PQunescapeBytea converts this string representation into its binary representation.
It returns a pointer to a buffer allocated with malloc(), or NULL on error, and puts the size of the
buffer in to_length. The result must be freed using PQfreemem when it is no longer needed.

This conversion is not exactly the inverse of PQescapeBytea, because the string is not expected to
be “escaped” when received from PQgetvalue. In particular this means there is no need for string
quoting considerations, and so no need for a PGconn parameter.

32.4. Asynchronous Command Processing
The PQexec function is adequate for submitting commands in normal, synchronous applications. It has
a few deficiencies, however, that can be of importance to some users:
• PQexec waits for the command to be completed. The application might have other work to do (such

as maintaining a user interface), in which case it won't want to block waiting for the response.
• Since the execution of the client application is suspended while it waits for the result, it is hard for

the application to decide that it would like to try to cancel the ongoing command. (It can be done
from a signal handler, but not otherwise.)

• PQexec can return only one PGresult structure. If the submitted command string contains multiple
SQL commands, all but the last PGresult are discarded by PQexec.

• PQexec always collects the command's entire result, buffering it in a single PGresult. While this
simplifies error-handling logic for the application, it can be impractical for results containing many
rows.

Applications that do not like these limitations can instead use the underlying functions that PQex-
ec is built from: PQsendQuery and PQgetResult. There are also PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, PQsendDescribePortal, PQsendClosePrepared, and
PQsendClosePortal, which can be used with PQgetResult to duplicate the functionality of PQexec-
Params, PQprepare, PQexecPrepared, PQdescribePrepared, PQdescribePortal, PQclosePrepared, and
PQclosePortal respectively.
PQsendQuery

Submits a command to the server without waiting for the result(s). 1 is returned if the command was
successfully dispatched and 0 if not (in which case, use PQerrorMessage to get more information
about the failure).
int PQsendQuery(PGconn *conn, const char *command);

After successfully calling PQsendQuery, call PQgetResult one or more times to obtain the results.
PQsendQuery cannot be called again (on the same connection) until PQgetResult has returned a null
pointer, indicating that the command is done.

In pipeline mode, this function is disallowed.

885

libpq — C Library

PQsendQueryParams

Submits a command and separate parameters to the server without waiting for the result(s).

int PQsendQueryParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

This is equivalent to PQsendQuery except that query parameters can be specified separately from the
query string. The function's parameters are handled identically to PQexecParams. Like PQexecParams,
it allows only one command in the query string.

PQsendPrepare

Sends a request to create a prepared statement with the given parameters, without waiting for
completion.

int PQsendPrepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

This is an asynchronous version of PQprepare: it returns 1 if it was able to dispatch the request,
and 0 if not. After a successful call, call PQgetResult to determine whether the server successfully
created the prepared statement. The function's parameters are handled identically to PQprepare.

PQsendQueryPrepared

Sends a request to execute a prepared statement with given parameters, without waiting for the
result(s).

int PQsendQueryPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

This is similar to PQsendQueryParams, but the command to be executed is specified by naming a pre-
viously-prepared statement, instead of giving a query string. The function's parameters are handled
identically to PQexecPrepared.

PQsendDescribePrepared

Submits a request to obtain information about the specified prepared statement, without waiting
for completion.

int PQsendDescribePrepared(PGconn *conn, const char *stmtName);

This is an asynchronous version of PQdescribePrepared: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's
parameters are handled identically to PQdescribePrepared.

PQsendDescribePortal

Submits a request to obtain information about the specified portal, without waiting for completion.

int PQsendDescribePortal(PGconn *conn, const char *portalName);

886

libpq — C Library

This is an asynchronous version of PQdescribePortal: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's
parameters are handled identically to PQdescribePortal.

PQsendClosePrepared

Submits a request to close the specified prepared statement, without waiting for completion.
int PQsendClosePrepared(PGconn *conn, const char *stmtName);

This is an asynchronous version of PQclosePrepared: it returns 1 if it was able to dispatch the request,
and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's parameters
are handled identically to PQclosePrepared.

PQsendClosePortal

Submits a request to close specified portal, without waiting for completion.
int PQsendClosePortal(PGconn *conn, const char *portalName);

This is an asynchronous version of PQclosePortal: it returns 1 if it was able to dispatch the request,
and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's parameters
are handled identically to PQclosePortal.

PQgetResult

Waits for the next result from a prior PQsendQuery, PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, PQsendDescribePortal, PQsendClosePrepared,
PQsendClosePortal, PQsendPipelineSync, or PQpipelineSync call, and returns it. A null pointer is
returned when the command is complete and there will be no more results.
PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns a null pointer, indicating that the command is
done. (If called when no command is active, PQgetResult will just return a null pointer at once.) Each
non-null result from PQgetResult should be processed using the same PGresult accessor functions
previously described. Don't forget to free each result object with PQclear when done with it. Note
that PQgetResult will block only if a command is active and the necessary response data has not
yet been read by PQconsumeInput .

In pipeline mode, PQgetResult will return normally unless an error occurs; for any subsequent query
sent after the one that caused the error until (and excluding) the next synchronization point, a special
result of type PGRES_PIPELINE_ABORTED will be returned, and a null pointer will be returned after it.
When the pipeline synchronization point is reached, a result of type PGRES_PIPELINE_SYNC will be
returned. The result of the next query after the synchronization point follows immediately (that is,
no null pointer is returned after the synchronization point).

Note
Even when PQresultStatus indicates a fatal error, PQgetResult should be called until it re-
turns a null pointer, to allow libpq to process the error information completely.

Using PQsendQuery and PQgetResult solves one of PQexec's problems: If a command string contains
multiple SQL commands, the results of those commands can be obtained individually. (This allows a
simple form of overlapped processing, by the way: the client can be handling the results of one command
while the server is still working on later queries in the same command string.)

Another frequently-desired feature that can be obtained with PQsendQuery and PQgetResult is retrieving
large query results a limited number of rows at a time. This is discussed in Section 32.6.

By itself, calling PQgetResult will still cause the client to block until the server completes the next SQL
command. This can be avoided by proper use of two more functions:

887

libpq — C Library

PQconsumeInput

If input is available from the server, consume it.
int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating “no error”, but returns 0 if there was some kind
of trouble (in which case PQerrorMessage can be consulted). Note that the result does not say
whether any input data was actually collected. After calling PQconsumeInput , the application can
check PQisBusy and/or PQnotifies to see if their state has changed.

PQconsumeInput can be called even if the application is not prepared to deal with a result or no-
tification just yet. The function will read available data and save it in a buffer, thereby causing a
select() read-ready indication to go away. The application can thus use PQconsumeInput to clear
the select() condition immediately, and then examine the results at leisure.

PQisBusy

Returns 1 if a command is busy, that is, PQgetResult would block waiting for input. A 0 return
indicates that PQgetResult can be called with assurance of not blocking.
int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the server; therefore PQconsumeInput must be
invoked first, or the busy state will never end.

A typical application using these functions will have a main loop that uses select() or poll() to wait for
all the conditions that it must respond to. One of the conditions will be input available from the server,
which in terms of select() means readable data on the file descriptor identified by PQsocket. When
the main loop detects input ready, it should call PQconsumeInput to read the input. It can then call
PQisBusy, followed by PQgetResult if PQisBusy returns false (0). It can also call PQnotifies to detect
NOTIFY messages (see Section 32.9).

A client that uses PQsendQuery/PQgetResult can also attempt to cancel a command that is still being
processed by the server; see Section 32.7. But regardless of the return value of PQcancelBlocking, the
application must continue with the normal result-reading sequence using PQgetResult. A successful
cancellation will simply cause the command to terminate sooner than it would have otherwise.

By using the functions described above, it is possible to avoid blocking while waiting for input from the
database server. However, it is still possible that the application will block waiting to send output to the
server. This is relatively uncommon but can happen if very long SQL commands or data values are sent.
(It is much more probable if the application sends data via COPY IN, however.) To prevent this possibility
and achieve completely nonblocking database operation, the following additional functions can be used.
PQsetnonblocking

Sets the nonblocking status of the connection.
int PQsetnonblocking(PGconn *conn, int arg);

Sets the state of the connection to nonblocking if arg is 1, or blocking if arg is 0. Returns 0 if OK,
-1 if error.

In the nonblocking state, successful calls to PQsendQuery, PQputline, PQputnbytes, PQputCopyData,
and PQendcopy will not block; their changes are stored in the local output buffer until they are flushed.
Unsuccessful calls will return an error and must be retried.

Note that PQexec does not honor nonblocking mode; if it is called, it will act in blocking fashion
anyway.

PQisnonblocking

Returns the blocking status of the database connection.
int PQisnonblocking(const PGconn *conn);

888

libpq — C Library

Returns 1 if the connection is set to nonblocking mode and 0 if blocking.

PQflush

Attempts to flush any queued output data to the server. Returns 0 if successful (or if the send queue
is empty), -1 if it failed for some reason, or 1 if it was unable to send all the data in the send queue
yet (this case can only occur if the connection is nonblocking).
int PQflush(PGconn *conn);

After sending any command or data on a nonblocking connection, call PQflush. If it returns 1, wait for the
socket to become read- or write-ready. If it becomes write-ready, call PQflush again. If it becomes read-
ready, call PQconsumeInput , then call PQflush again. Repeat until PQflush returns 0. (It is necessary to
check for read-ready and drain the input with PQconsumeInput , because the server can block trying to
send us data, e.g., NOTICE messages, and won't read our data until we read its.) Once PQflush returns
0, wait for the socket to be read-ready and then read the response as described above.

32.5. Pipeline Mode
libpq pipeline mode allows applications to send a query without having to read the result of the previously
sent query. Taking advantage of the pipeline mode, a client will wait less for the server, since multiple
queries/results can be sent/received in a single network transaction.

While pipeline mode provides a significant performance boost, writing clients using the pipeline mode
is more complex because it involves managing a queue of pending queries and finding which result
corresponds to which query in the queue.

Pipeline mode also generally consumes more memory on both the client and server, though careful and
aggressive management of the send/receive queue can mitigate this. This applies whether or not the
connection is in blocking or non-blocking mode.

While libpq's pipeline API was introduced in PostgreSQL 14, it is a client-side feature which doesn't
require special server support and works on any server that supports the v3 extended query protocol.
For more information see Section 54.2.4.

32.5.1. Using Pipeline Mode
To issue pipelines, the application must switch the connection into pipeline mode, which is done with
PQenterPipelineMode. PQpipelineStatus can be used to test whether pipeline mode is active. In
pipeline mode, only asynchronous operations that utilize the extended query protocol are permitted,
command strings containing multiple SQL commands are disallowed, and so is COPY. Using synchronous
command execution functions such as PQfn, PQexec, PQexecParams, PQprepare, PQexecPrepared, PQde-
scribePrepared, PQdescribePortal, PQclosePrepared, PQclosePortal, is an error condition. PQsend-
Query is also disallowed, because it uses the simple query protocol. Once all dispatched commands have
had their results processed, and the end pipeline result has been consumed, the application may return
to non-pipelined mode with PQexitPipelineMode.

Note
It is best to use pipeline mode with libpq in non-blocking mode. If used in blocking mode it is
possible for a client/server deadlock to occur. 1

32.5.1.1. Issuing Queries
After entering pipeline mode, the application dispatches requests using PQsendQueryParams or its pre-
pared-query sibling PQsendQueryPrepared. These requests are queued on the client-side until flushed

1 The client will block trying to send queries to the server, but the server will block trying to send results to the client from queries it has already processed. This
only occurs when the client sends enough queries to fill both its output buffer and the server's receive buffer before it switches to processing input from the server,
but it's hard to predict exactly when that will happen.

889

libpq — C Library

to the server; this occurs when PQpipelineSync is used to establish a synchronization point in the
pipeline, or when PQflush is called. The functions PQsendPrepare, PQsendDescribePrepared, PQsend-
DescribePortal, PQsendClosePrepared, and PQsendClosePortal also work in pipeline mode. Result
processing is described below.

The server executes statements, and returns results, in the order the client sends them. The serv-
er will begin executing the commands in the pipeline immediately, not waiting for the end of the
pipeline. Note that results are buffered on the server side; the server flushes that buffer when a syn-
chronization point is established with either PQpipelineSync or PQsendPipelineSync, or when PQsend-
FlushRequest is called. If any statement encounters an error, the server aborts the current transaction
and does not execute any subsequent command in the queue until the next synchronization point; a
PGRES_PIPELINE_ABORTED result is produced for each such command. (This remains true even if the
commands in the pipeline would rollback the transaction.) Query processing resumes after the synchro-
nization point.

It's fine for one operation to depend on the results of a prior one; for example, one query may define
a table that the next query in the same pipeline uses. Similarly, an application may create a named
prepared statement and execute it with later statements in the same pipeline.

32.5.1.2. Processing Results
To process the result of one query in a pipeline, the application calls PQgetResult repeatedly and handles
each result until PQgetResult returns null. The result from the next query in the pipeline may then be
retrieved using PQgetResult again and the cycle repeated. The application handles individual statement
results as normal. When the results of all the queries in the pipeline have been returned, PQgetResult
returns a result containing the status value PGRES_PIPELINE_SYNC

The client may choose to defer result processing until the complete pipeline has been sent, or interleave
that with sending further queries in the pipeline; see Section 32.5.1.4.

PQgetResult behaves the same as for normal asynchronous processing except that it may contain the
new PGresult types PGRES_PIPELINE_SYNC and PGRES_PIPELINE_ABORTED. PGRES_PIPELINE_SYNC is re-
ported exactly once for each PQpipelineSync or PQsendPipelineSync at the corresponding point in the
pipeline. PGRES_PIPELINE_ABORTED is emitted in place of a normal query result for the first error and all
subsequent results until the next PGRES_PIPELINE_SYNC; see Section 32.5.1.3.

PQisBusy, PQconsumeInput, etc operate as normal when processing pipeline results. In particular, a call
to PQisBusy in the middle of a pipeline returns 0 if the results for all the queries issued so far have
been consumed.

libpq does not provide any information to the application about the query currently being processed
(except that PQgetResult returns null to indicate that we start returning the results of next query).
The application must keep track of the order in which it sent queries, to associate them with their
corresponding results. Applications will typically use a state machine or a FIFO queue for this.

32.5.1.3. Error Handling
From the client's perspective, after PQresultStatus returns PGRES_FATAL_ERROR, the pipeline is flagged
as aborted. PQresultStatus will report a PGRES_PIPELINE_ABORTED result for each remaining queued
operation in an aborted pipeline. The result for PQpipelineSync or PQsendPipelineSync is reported
as PGRES_PIPELINE_SYNC to signal the end of the aborted pipeline and resumption of normal result
processing.

The client must process results with PQgetResult during error recovery.

If the pipeline used an implicit transaction, then operations that have already executed are rolled back
and operations that were queued to follow the failed operation are skipped entirely. The same behavior
holds if the pipeline starts and commits a single explicit transaction (i.e. the first statement is BEGIN
and the last is COMMIT) except that the session remains in an aborted transaction state at the end of the
pipeline. If a pipeline contains multiple explicit transactions, all transactions that committed prior to the

890

libpq — C Library

error remain committed, the currently in-progress transaction is aborted, and all subsequent operations
are skipped completely, including subsequent transactions. If a pipeline synchronization point occurs
with an explicit transaction block in aborted state, the next pipeline will become aborted immediately
unless the next command puts the transaction in normal mode with ROLLBACK.

Note
The client must not assume that work is committed when it sends a COMMIT — only when the cor-
responding result is received to confirm the commit is complete. Because errors arrive asynchro-
nously, the application needs to be able to restart from the last received committed change and
resend work done after that point if something goes wrong.

32.5.1.4. Interleaving Result Processing and Query Dispatch
To avoid deadlocks on large pipelines the client should be structured around a non-blocking event loop
using operating system facilities such as select, poll, WaitForMultipleObjectEx, etc.

The client application should generally maintain a queue of work remaining to be dispatched and a queue
of work that has been dispatched but not yet had its results processed. When the socket is writable
it should dispatch more work. When the socket is readable it should read results and process them,
matching them up to the next entry in its corresponding results queue. Based on available memory,
results from the socket should be read frequently: there's no need to wait until the pipeline end to
read the results. Pipelines should be scoped to logical units of work, usually (but not necessarily) one
transaction per pipeline. There's no need to exit pipeline mode and re-enter it between pipelines, or to
wait for one pipeline to finish before sending the next.

An example using select() and a simple state machine to track sent and received work is in src/test/
modules/libpq_pipeline/libpq_pipeline.c in the PostgreSQL source distribution.

32.5.2. Functions Associated with Pipeline Mode
PQpipelineStatus

Returns the current pipeline mode status of the libpq connection.

PGpipelineStatus PQpipelineStatus(const PGconn *conn);

PQpipelineStatus can return one of the following values:

PQ_PIPELINE_ON

The libpq connection is in pipeline mode.

PQ_PIPELINE_OFF

The libpq connection is not in pipeline mode.

PQ_PIPELINE_ABORTED

The libpq connection is in pipeline mode and an error occurred while processing the
current pipeline. The aborted flag is cleared when PQgetResult returns a result of type
PGRES_PIPELINE_SYNC.

PQenterPipelineMode

Causes a connection to enter pipeline mode if it is currently idle or already in pipeline mode.

int PQenterPipelineMode(PGconn *conn);

Returns 1 for success. Returns 0 and has no effect if the connection is not currently idle, i.e., it has a
result ready, or it is waiting for more input from the server, etc. This function does not actually send
anything to the server, it just changes the libpq connection state.

891

libpq — C Library

PQexitPipelineMode

Causes a connection to exit pipeline mode if it is currently in pipeline mode with an empty queue
and no pending results.

int PQexitPipelineMode(PGconn *conn);

Returns 1 for success. Returns 1 and takes no action if not in pipeline mode. If the current statement
isn't finished processing, or PQgetResult has not been called to collect results from all previously
sent query, returns 0 (in which case, use PQerrorMessage to get more information about the failure).

PQpipelineSync

Marks a synchronization point in a pipeline by sending a sync message and flushing the send
buffer. This serves as the delimiter of an implicit transaction and an error recovery point; see Sec-
tion 32.5.1.3.

int PQpipelineSync(PGconn *conn);

Returns 1 for success. Returns 0 if the connection is not in pipeline mode or sending a sync message
failed.

PQsendPipelineSync

Marks a synchronization point in a pipeline by sending a sync message without flushing the send
buffer. This serves as the delimiter of an implicit transaction and an error recovery point; see Sec-
tion 32.5.1.3.

int PQsendPipelineSync(PGconn *conn);

Returns 1 for success. Returns 0 if the connection is not in pipeline mode or sending a sync mes-
sage failed. Note that the message is not itself flushed to the server automatically; use PQflush if
necessary.

PQsendFlushRequest

Sends a request for the server to flush its output buffer.

int PQsendFlushRequest(PGconn *conn);

Returns 1 for success. Returns 0 on any failure.

The server flushes its output buffer automatically as a result of PQpipelineSync being called, or on
any request when not in pipeline mode; this function is useful to cause the server to flush its output
buffer in pipeline mode without establishing a synchronization point. Note that the request is not
itself flushed to the server automatically; use PQflush if necessary.

32.5.3. When to Use Pipeline Mode
Much like asynchronous query mode, there is no meaningful performance overhead when using pipeline
mode. It increases client application complexity, and extra caution is required to prevent client/server
deadlocks, but pipeline mode can offer considerable performance improvements, in exchange for in-
creased memory usage from leaving state around longer.

Pipeline mode is most useful when the server is distant, i.e., network latency (“ping time”) is high, and
also when many small operations are being performed in rapid succession. There is usually less benefit in
using pipelined commands when each query takes many multiples of the client/server round-trip time to
execute. A 100-statement operation run on a server 300 ms round-trip-time away would take 30 seconds
in network latency alone without pipelining; with pipelining it may spend as little as 0.3 s waiting for
results from the server.

Use pipelined commands when your application does lots of small INSERT, UPDATE and DELETE operations
that can't easily be transformed into operations on sets, or into a COPY operation.

892

libpq — C Library

Pipeline mode is not useful when information from one operation is required by the client to produce
the next operation. In such cases, the client would have to introduce a synchronization point and wait
for a full client/server round-trip to get the results it needs. However, it's often possible to adjust the
client design to exchange the required information server-side. Read-modify-write cycles are especially
good candidates; for example:
BEGIN;
SELECT x FROM mytable WHERE id = 42 FOR UPDATE;
-- result: x=2
-- client adds 1 to x:
UPDATE mytable SET x = 3 WHERE id = 42;
COMMIT;

could be much more efficiently done with:
UPDATE mytable SET x = x + 1 WHERE id = 42;

Pipelining is less useful, and more complex, when a single pipeline contains multiple transactions (see
Section 32.5.1.3).

32.6. Retrieving Query Results in Chunks
Ordinarily, libpq collects an SQL command's entire result and returns it to the application as a single
PGresult. This can be unworkable for commands that return a large number of rows. For such cases, ap-
plications can use PQsendQuery and PQgetResult in single-row mode or chunked mode. In these modes,
result row(s) are returned to the application as they are received from the server, one at a time for
single-row mode or in groups for chunked mode.

To enter one of these modes, call PQsetSingleRowMode or PQsetChunkedRowsMode immediately after
a successful call of PQsendQuery (or a sibling function). This mode selection is effective only for the
currently executing query. Then call PQgetResult repeatedly, until it returns null, as documented in
Section 32.4. If the query returns any rows, they are returned as one or more PGresult objects, which
look like normal query results except for having status code PGRES_SINGLE_TUPLE for single-row mode
or PGRES_TUPLES_CHUNK for chunked mode, instead of PGRES_TUPLES_OK. There is exactly one result row
in each PGRES_SINGLE_TUPLE object, while a PGRES_TUPLES_CHUNK object contains at least one row but
not more than the specified number of rows per chunk. After the last row, or immediately if the query
returns zero rows, a zero-row object with status PGRES_TUPLES_OK is returned; this is the signal that
no more rows will arrive. (But note that it is still necessary to continue calling PQgetResult until it
returns null.) All of these PGresult objects will contain the same row description data (column names,
types, etc.) that an ordinary PGresult object for the query would have. Each object should be freed with
PQclear as usual.

When using pipeline mode, single-row or chunked mode needs to be activated for each query in the
pipeline before retrieving results for that query with PQgetResult. See Section 32.5 for more informa-
tion.

PQsetSingleRowMode

Select single-row mode for the currently-executing query.
int PQsetSingleRowMode(PGconn *conn);

This function can only be called immediately after PQsendQuery or one of its sibling functions, before
any other operation on the connection such as PQconsumeInput or PQgetResult. If called at the
correct time, the function activates single-row mode for the current query and returns 1. Otherwise
the mode stays unchanged and the function returns 0. In any case, the mode reverts to normal after
completion of the current query.

PQsetChunkedRowsMode

Select chunked mode for the currently-executing query.
int PQsetChunkedRowsMode(PGconn *conn, int chunkSize);

893

libpq — C Library

This function is similar to PQsetSingleRowMode, except that it specifies retrieval of up to chunkSize
rows per PGresult, not necessarily just one row. This function can only be called immediately after
PQsendQuery or one of its sibling functions, before any other operation on the connection such as
PQconsumeInput or PQgetResult. If called at the correct time, the function activates chunked mode
for the current query and returns 1. Otherwise the mode stays unchanged and the function returns
0. In any case, the mode reverts to normal after completion of the current query.

Caution
While processing a query, the server may return some rows and then encounter an error, causing
the query to be aborted. Ordinarily, libpq discards any such rows and reports only the error. But
in single-row or chunked mode, some rows may have already been returned to the application.
Hence, the application will see some PGRES_SINGLE_TUPLE or PGRES_TUPLES_CHUNK PGresult ob-
jects followed by a PGRES_FATAL_ERROR object. For proper transactional behavior, the application
must be designed to discard or undo whatever has been done with the previously-processed rows,
if the query ultimately fails.

32.7. Canceling Queries in Progress
32.7.1. Functions for Sending Cancel Requests

PQcancelCreate

Prepares a connection over which a cancel request can be sent.
PGcancelConn *PQcancelCreate(PGconn *conn);

PQcancelCreate creates a PGcancelConnobject, but it won't instantly start sending a cancel request
over this connection. A cancel request can be sent over this connection in a blocking manner using
PQcancelBlocking and in a non-blocking manner using PQcancelStart. The return value can be
passed to PQcancelStatus to check if the PGcancelConn object was created successfully. The PG-
cancelConn object is an opaque structure that is not meant to be accessed directly by the application.
This PGcancelConn object can be used to cancel the query that's running on the original connection
in a thread-safe way.

Many connection parameters of the original client will be reused when setting up the connection for
the cancel request. Importantly, if the original connection requires encryption of the connection and/
or verification of the target host (using sslmode or gssencmode), then the connection for the cancel
request is made with these same requirements. Any connection options that are only used during
authentication or after authentication of the client are ignored though, because cancellation requests
do not require authentication and the connection is closed right after the cancellation request is
submitted.

Note that when PQcancelCreate returns a non-null pointer, you must call PQcancelFinish when you
are finished with it, in order to dispose of the structure and any associated memory blocks. This must
be done even if the cancel request failed or was abandoned.

PQcancelBlocking

Requests that the server abandons processing of the current command in a blocking manner.
int PQcancelBlocking(PGcancelConn *cancelConn);

The request is made over the given PGcancelConn, which needs to be created with PQcancelCreate.
The return value of PQcancelBlocking is 1 if the cancel request was successfully dispatched and 0
if not. If it was unsuccessful, the error message can be retrieved using PQcancelErrorMessage .

Successful dispatch of the cancellation is no guarantee that the request will have any effect, however.
If the cancellation is effective, the command being canceled will terminate early and return an error

894

libpq — C Library

result. If the cancellation fails (say, because the server was already done processing the command),
then there will be no visible result at all.

PQcancelStart
PQcancelPoll

Requests that the server abandons processing of the current command in a non-blocking manner.

int PQcancelStart(PGcancelConn *cancelConn);

PostgresPollingStatusType PQcancelPoll(PGcancelConn *cancelConn);

The request is made over the given PGcancelConn, which needs to be created with PQcancelCreate.
The return value of PQcancelStart is 1 if the cancellation request could be started and 0 if not. If it
was unsuccessful, the error message can be retrieved using PQcancelErrorMessage .

If PQcancelStart succeeds, the next stage is to poll libpq so that it can proceed with the can-
cel connection sequence. Use PQcancelSocket to obtain the descriptor of the socket underlying
the database connection. (Caution: do not assume that the socket remains the same across PQ-
cancelPoll calls.) Loop thus: If PQcancelPoll(cancelConn) last returned PGRES_POLLING_READING,
wait until the socket is ready to read (as indicated by select(), poll(), or similar system func-
tion). Then call PQcancelPoll(cancelConn) again. Conversely, if PQcancelPoll(cancelConn) last
returned PGRES_POLLING_WRITING, wait until the socket is ready to write, then call PQcancelPol-
l(cancelConn) again. On the first iteration, i.e., if you have yet to call PQcancelPoll(cancelCon-
n), behave as if it last returned PGRES_POLLING_WRITING. Continue this loop until PQcancelPol-
l(cancelConn) returns PGRES_POLLING_FAILED, indicating the connection procedure has failed, or
PGRES_POLLING_OK, indicating cancel request was successfully dispatched.

Successful dispatch of the cancellation is no guarantee that the request will have any effect, however.
If the cancellation is effective, the command being canceled will terminate early and return an error
result. If the cancellation fails (say, because the server was already done processing the command),
then there will be no visible result at all.

At any time during connection, the status of the connection can be checked by calling PQcancelS-
tatus. If this call returns CONNECTION_BAD, then the cancel procedure has failed; if the call returns
CONNECTION_OK, then cancel request was successfully dispatched. Both of these states are equally
detectable from the return value of PQcancelPoll, described above. Other states might also occur
during (and only during) an asynchronous connection procedure. These indicate the current stage
of the connection procedure and might be useful to provide feedback to the user for example. These
statuses are:

CONNECTION_ALLOCATED

Waiting for a call to PQcancelStart or PQcancelBlocking, to actually open the socket. This is
the connection state right after calling PQcancelCreate or PQcancelReset. No connection to
the server has been initiated yet at this point. To actually start sending the cancel request use
PQcancelStart or PQcancelBlocking.

CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

CONNECTION_SSL_STARTUP

Negotiating SSL encryption.

895

libpq — C Library

CONNECTION_GSS_STARTUP

Negotiating GSS encryption.

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these occurring in a particular order, or at all, or on the status always being
one of these documented values. An application might do something like this:

switch(PQcancelStatus(conn))
{
 case CONNECTION_STARTED:
 feedback = "Connecting...";
 break;

 case CONNECTION_MADE:
 feedback = "Connected to server...";
 break;
.
.
.
 default:
 feedback = "Connecting...";
}

The connect_timeout connection parameter is ignored when using PQcancelPoll; it is the appli-
cation's responsibility to decide whether an excessive amount of time has elapsed. Otherwise, PQ-
cancelStart followed by a PQcancelPoll loop is equivalent to PQcancelBlocking.

PQcancelStatus

Returns the status of the cancel connection.

ConnStatusType PQcancelStatus(const PGcancelConn *cancelConn);

The status can be one of a number of values. However, only three of these are seen outside of an
asynchronous cancel procedure: CONNECTION_ALLOCATED, CONNECTION_OK and CONNECTION_BAD. The
initial state of a PGcancelConn that's successfully created using PQcancelCreate is CONNECTION_AL-
LOCATED. A cancel request that was successfully dispatched has the status CONNECTION_OK. A failed
cancel attempt is signaled by status CONNECTION_BAD. An OK status will remain so until PQcancelFin-
ish or PQcancelReset is called.

See the entry for PQcancelStart with regards to other status codes that might be returned.

Successful dispatch of the cancellation is no guarantee that the request will have any effect, however.
If the cancellation is effective, the command being canceled will terminate early and return an error
result. If the cancellation fails (say, because the server was already done processing the command),
then there will be no visible result at all.

PQcancelSocket

Obtains the file descriptor number of the cancel connection socket to the server.

int PQcancelSocket(const PGcancelConn *cancelConn);

A valid descriptor will be greater than or equal to 0; a result of -1 indicates that no server connection
is currently open. This might change as a result of calling any of the functions in this section on the
PGcancelConn (except for PQcancelErrorMessage and PQcancelSocket itself).

PQcancelErrorMessage

Returns the error message most recently generated by an operation on the cancel connection.

char *PQcancelErrorMessage(const PGcancelConn *cancelconn);

896

libpq — C Library

Nearly all libpq functions that take a PGcancelConn will set a message for PQcancelErrorMessage
if they fail. Note that by libpq convention, a nonempty PQcancelErrorMessage result can consist
of multiple lines, and will include a trailing newline. The caller should not free the result directly.
It will be freed when the associated PGcancelConn handle is passed to PQcancelFinish. The result
string should not be expected to remain the same across operations on the PGcancelConn structure.

PQcancelFinish

Closes the cancel connection (if it did not finish sending the cancel request yet). Also frees memory
used by the PGcancelConn object.

void PQcancelFinish(PGcancelConn *cancelConn);

Note that even if the cancel attempt fails (as indicated by PQcancelStatus), the application should
call PQcancelFinish to free the memory used by the PGcancelConn object. The PGcancelConn pointer
must not be used again after PQcancelFinish has been called.

PQcancelReset

Resets the PGcancelConn so it can be reused for a new cancel connection.

void PQcancelReset(PGcancelConn *cancelConn);

If the PGcancelConn is currently used to send a cancel request, then this connection is closed. It will
then prepare the PGcancelConn object such that it can be used to send a new cancel request.

This can be used to create one PGcancelConn for a PGconn and reuse it multiple times throughout
the lifetime of the original PGconn.

32.7.2. Obsolete Functions for Sending Cancel Requests
These functions represent older methods of sending cancel requests. Although they still work, they are
deprecated due to not sending the cancel requests in an encrypted manner, even when the original
connection specified sslmode or gssencmode to require encryption. Thus these older methods are heavily
discouraged from being used in new code, and it is recommended to change existing code to use the
new functions instead.

PQgetCancel

Creates a data structure containing the information needed to cancel a command using PQcancel.

PGcancel *PQgetCancel(PGconn *conn);

PQgetCancel creates a PGcancelobject given a PGconn connection object. It will return NULL if the
given conn is NULL or an invalid connection. The PGcancel object is an opaque structure that is not
meant to be accessed directly by the application; it can only be passed to PQcancel or PQfreeCancel.

PQfreeCancel

Frees a data structure created by PQgetCancel.

void PQfreeCancel(PGcancel *cancel);

PQfreeCancel frees a data object previously created by PQgetCancel.

PQcancel

PQcancel is a deprecated and insecure variant of PQcancelBlocking, but one that can be used safely
from within a signal handler.

int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);

PQcancel only exists because of backwards compatibility reasons. PQcancelBlocking should be used
instead. The only benefit that PQcancel has is that it can be safely invoked from a signal handler, if

897

libpq — C Library

the errbuf is a local variable in the signal handler. However, this is generally not considered a big
enough benefit to be worth the security issues that this function has.

The PGcancel object is read-only as far as PQcancel is concerned, so it can also be invoked from a
thread that is separate from the one manipulating the PGconn object.

The return value of PQcancel is 1 if the cancel request was successfully dispatched and 0 if not. If not,
errbuf is filled with an explanatory error message. errbuf must be a char array of size errbufsize
(the recommended size is 256 bytes).

PQrequestCancel

PQrequestCancel is a deprecated and insecure variant of PQcancelBlocking.

int PQrequestCancel(PGconn *conn);

PQrequestCancel only exists because of backwards compatibility reasons. PQcancelBlocking should
be used instead. There is no benefit to using PQrequestCancel over PQcancelBlocking.

Requests that the server abandon processing of the current command. It operates directly on the
PGconn object, and in case of failure stores the error message in the PGconn object (whence it can
be retrieved by PQerrorMessage). Although the functionality is the same, this approach is not safe
within multiple-thread programs or signal handlers, since it is possible that overwriting the PGconn's
error message will mess up the operation currently in progress on the connection.

32.8. The Fast-Path Interface
PostgreSQL provides a fast-path interface to send simple function calls to the server.

Tip
This interface is somewhat obsolete, as one can achieve similar performance and greater function-
ality by setting up a prepared statement to define the function call. Then, executing the statement
with binary transmission of parameters and results substitutes for a fast-path function call.

The function PQfnrequests execution of a server function via the fast-path interface:

PGresult *PQfn(PGconn *conn,
 int fnid,
 int *result_buf,
 int *result_len,
 int result_is_int,
 const PQArgBlock *args,
 int nargs);

typedef struct
{
 int len;
 int isint;
 union
 {
 int *ptr;
 int integer;
 } u;
} PQArgBlock;

The fnid argument is the OID of the function to be executed. args and nargs define the parameters to
be passed to the function; they must match the declared function argument list. When the isint field
of a parameter structure is true, the u.integer value is sent to the server as an integer of the indicated

898

libpq — C Library

length (this must be 2 or 4 bytes); proper byte-swapping occurs. When isint is false, the indicated
number of bytes at *u.ptr are sent with no processing; the data must be in the format expected by the
server for binary transmission of the function's argument data type. (The declaration of u.ptr as being
of type int * is historical; it would be better to consider it void *.) result_buf points to the buffer in
which to place the function's return value. The caller must have allocated sufficient space to store the
return value. (There is no check!) The actual result length in bytes will be returned in the integer pointed
to by result_len. If a 2- or 4-byte integer result is expected, set result_is_int to 1, otherwise set it to
0. Setting result_is_int to 1 causes libpq to byte-swap the value if necessary, so that it is delivered as
a proper int value for the client machine; note that a 4-byte integer is delivered into *result_buf for
either allowed result size. When result_is_int is 0, the binary-format byte string sent by the server is
returned unmodified. (In this case it's better to consider result_buf as being of type void *.)

PQfn always returns a valid PGresult pointer, with status PGRES_COMMAND_OK for success or PGRES_FA-
TAL_ERROR if some problem was encountered. The result status should be checked before the result is
used. The caller is responsible for freeing the PGresult with PQclear when it is no longer needed.

To pass a NULL argument to the function, set the len field of that parameter structure to -1; the isint
and u fields are then irrelevant.

If the function returns NULL, *result_len is set to -1, and *result_buf is not modified.

Note that it is not possible to handle set-valued results when using this interface. Also, the function must
be a plain function, not an aggregate, window function, or procedure.

32.9. Asynchronous Notification
PostgreSQL offers asynchronous notification via the LISTEN and NOTIFY commands. A client session reg-
isters its interest in a particular notification channel with the LISTEN command (and can stop listening
with the UNLISTEN command). All sessions listening on a particular channel will be notified asynchro-
nously when a NOTIFY command with that channel name is executed by any session. A “payload” string
can be passed to communicate additional data to the listeners.

libpq applications submit LISTEN, UNLISTEN, and NOTIFY commands as ordinary SQL commands. The
arrival of NOTIFY messages can subsequently be detected by calling PQnotifies.

The function PQnotifies returns the next notification from a list of unhandled notification messages
received from the server. It returns a null pointer if there are no pending notifications. Once a notification
is returned from PQnotifies, it is considered handled and will be removed from the list of notifications.

PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify
{
 char *relname; /* notification channel name */
 int be_pid; /* process ID of notifying server process */
 char *extra; /* notification payload string */
} PGnotify;

After processing a PGnotify object returned by PQnotifies, be sure to free it with PQfreemem. It is suf-
ficient to free the PGnotify pointer; the relname and extra fields do not represent separate allocations.
(The names of these fields are historical; in particular, channel names need not have anything to do
with relation names.)

Example 32.2 gives a sample program that illustrates the use of asynchronous notification.

PQnotifies does not actually read data from the server; it just returns messages previously absorbed
by another libpq function. In ancient releases of libpq, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit commands, even empty ones, and then check PQnotifies after each
PQexec. While this still works, it is deprecated as a waste of processing power.

899

libpq — C Library

A better way to check for NOTIFY messages when you have no useful commands to execute is to call PQ-
consumeInput , then check PQnotifies. You can use select() to wait for data to arrive from the server,
thereby using no CPU power unless there is something to do. (See PQsocket to obtain the file descriptor
number to use with select().) Note that this will work OK whether you submit commands with PQsend-
Query/PQgetResult or simply use PQexec. You should, however, remember to check PQnotifies after
each PQgetResult or PQexec, to see if any notifications came in during the processing of the command.

32.10. Functions Associated with the COPY Command
The COPY command in PostgreSQL has options to read from or write to the network connection used by
libpq. The functions described in this section allow applications to take advantage of this capability by
supplying or consuming copied data.

The overall process is that the application first issues the SQL COPY command via PQexec or one of the
equivalent functions. The response to this (if there is no error in the command) will be a PGresult object
bearing a status code of PGRES_COPY_OUT or PGRES_COPY_IN (depending on the specified copy direction).
The application should then use the functions of this section to receive or transmit data rows. When
the data transfer is complete, another PGresult object is returned to indicate success or failure of the
transfer. Its status will be PGRES_COMMAND_OK for success or PGRES_FATAL_ERROR if some problem was
encountered. At this point further SQL commands can be issued via PQexec. (It is not possible to execute
other SQL commands using the same connection while the COPY operation is in progress.)

If a COPY command is issued via PQexec in a string that could contain additional commands, the appli-
cation must continue fetching results via PQgetResult after completing the COPY sequence. Only when
PQgetResult returns NULL is it certain that the PQexec command string is done and it is safe to issue
more commands.

The functions of this section should be executed only after obtaining a result status of PGRES_COPY_OUT
or PGRES_COPY_IN from PQexec or PQgetResult.

A PGresult object bearing one of these status values carries some additional data about the COPY oper-
ation that is starting. This additional data is available using functions that are also used in connection
with query results:
PQnfields

Returns the number of columns (fields) to be copied.

PQbinaryTuples

0 indicates the overall copy format is textual (rows separated by newlines, columns separated by sep-
arator characters, etc.). 1 indicates the overall copy format is binary. See COPY for more information.

PQfformat

Returns the format code (0 for text, 1 for binary) associated with each column of the copy operation.
The per-column format codes will always be zero when the overall copy format is textual, but the
binary format can support both text and binary columns. (However, as of the current implementation
of COPY, only binary columns appear in a binary copy; so the per-column formats always match the
overall format at present.)

32.10.1. Functions for Sending COPY Data
These functions are used to send data during COPY FROM STDIN. They will fail if called when the con-
nection is not in COPY_IN state.

PQputCopyData

Sends data to the server during COPY_IN state.
int PQputCopyData(PGconn *conn,
 const char *buffer,

900

libpq — C Library

 int nbytes);

Transmits the COPY data in the specified buffer, of length nbytes, to the server. The result is 1
if the data was queued, zero if it was not queued because of full buffers (this will only happen in
nonblocking mode), or -1 if an error occurred. (Use PQerrorMessage to retrieve details if the return
value is -1. If the value is zero, wait for write-ready and try again.)

The application can divide the COPY data stream into buffer loads of any convenient size. Buffer-load
boundaries have no semantic significance when sending. The contents of the data stream must match
the data format expected by the COPY command; see COPY for details.

PQputCopyEnd

Sends end-of-data indication to the server during COPY_IN state.
int PQputCopyEnd(PGconn *conn,
 const char *errormsg);

Ends the COPY_IN operation successfully if errormsg is NULL. If errormsg is not NULL then the COPY
is forced to fail, with the string pointed to by errormsg used as the error message. (One should not
assume that this exact error message will come back from the server, however, as the server might
have already failed the COPY for its own reasons.)

The result is 1 if the termination message was sent; or in nonblocking mode, this may only indicate
that the termination message was successfully queued. (In nonblocking mode, to be certain that
the data has been sent, you should next wait for write-ready and call PQflush, repeating until it
returns zero.) Zero indicates that the function could not queue the termination message because of
full buffers; this will only happen in nonblocking mode. (In this case, wait for write-ready and try
the PQputCopyEnd call again.) If a hard error occurs, -1 is returned; you can use PQerrorMessage
to retrieve details.

After successfully calling PQputCopyEnd, call PQgetResult to obtain the final result status of the
COPY command. One can wait for this result to be available in the usual way. Then return to normal
operation.

32.10.2. Functions for Receiving COPY Data
These functions are used to receive data during COPY TO STDOUT. They will fail if called when the
connection is not in COPY_OUT state.

PQgetCopyData

Receives data from the server during COPY_OUT state.
int PQgetCopyData(PGconn *conn,
 char **buffer,
 int async);

Attempts to obtain another row of data from the server during a COPY. Data is always returned one
data row at a time; if only a partial row is available, it is not returned. Successful return of a data row
involves allocating a chunk of memory to hold the data. The buffer parameter must be non-NULL.
*buffer is set to point to the allocated memory, or to NULL in cases where no buffer is returned. A
non-NULL result buffer should be freed using PQfreemem when no longer needed.

When a row is successfully returned, the return value is the number of data bytes in the row (this will
always be greater than zero). The returned string is always null-terminated, though this is probably
only useful for textual COPY. A result of zero indicates that the COPY is still in progress, but no row is
yet available (this is only possible when async is true). A result of -1 indicates that the COPY is done.
A result of -2 indicates that an error occurred (consult PQerrorMessage for the reason).

When async is true (not zero), PQgetCopyData will not block waiting for input; it will return zero
if the COPY is still in progress but no complete row is available. (In this case wait for read-ready

901

libpq — C Library

and then call PQconsumeInput before calling PQgetCopyData again.) When async is false (zero),
PQgetCopyData will block until data is available or the operation completes.

After PQgetCopyData returns -1, call PQgetResult to obtain the final result status of the COPY com-
mand. One can wait for this result to be available in the usual way. Then return to normal operation.

32.10.3. Obsolete Functions for COPY
These functions represent older methods of handling COPY. Although they still work, they are deprecated
due to poor error handling, inconvenient methods of detecting end-of-data, and lack of support for binary
or nonblocking transfers.

PQgetline

Reads a newline-terminated line of characters (transmitted by the server) into a buffer string of size
length.
int PQgetline(PGconn *conn,
 char *buffer,
 int length);

This function copies up to length-1 characters into the buffer and converts the terminating newline
into a zero byte. PQgetline returns EOF at the end of input, 0 if the entire line has been read, and 1
if the buffer is full but the terminating newline has not yet been read.

Note that the application must check to see if a new line consists of the two characters \., which in-
dicates that the server has finished sending the results of the COPY command. If the application might
receive lines that are more than length-1 characters long, care is needed to be sure it recognizes the
\. line correctly (and does not, for example, mistake the end of a long data line for a terminator line).

PQgetlineAsync

Reads a row of COPY data (transmitted by the server) into a buffer without blocking.
int PQgetlineAsync(PGconn *conn,
 char *buffer,
 int bufsize);

This function is similar to PQgetline, but it can be used by applications that must read COPY data asyn-
chronously, that is, without blocking. Having issued the COPY command and gotten a PGRES_COPY_OUT
response, the application should call PQconsumeInput and PQgetlineAsync until the end-of-data
signal is detected.

Unlike PQgetline, this function takes responsibility for detecting end-of-data.

On each call, PQgetlineAsync will return data if a complete data row is available in libpq's input
buffer. Otherwise, no data is returned until the rest of the row arrives. The function returns -1 if
the end-of-copy-data marker has been recognized, or 0 if no data is available, or a positive number
giving the number of bytes of data returned. If -1 is returned, the caller must next call PQendcopy,
and then return to normal processing.

The data returned will not extend beyond a data-row boundary. If possible a whole row will be re-
turned at one time. But if the buffer offered by the caller is too small to hold a row sent by the server,
then a partial data row will be returned. With textual data this can be detected by testing whether the
last returned byte is \n or not. (In a binary COPY, actual parsing of the COPY data format will be needed
to make the equivalent determination.) The returned string is not null-terminated. (If you want to
add a terminating null, be sure to pass a bufsize one smaller than the room actually available.)

PQputline

Sends a null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.
int PQputline(PGconn *conn,

902

libpq — C Library

 const char *string);

The COPY data stream sent by a series of calls to PQputline has the same format as that returned by
PQgetlineAsync, except that applications are not obliged to send exactly one data row per PQputline
call; it is okay to send a partial line or multiple lines per call.

Note
Before PostgreSQL protocol 3.0, it was necessary for the application to explicitly send the two
characters \. as a final line to indicate to the server that it had finished sending COPY data.
While this still works, it is deprecated and the special meaning of \. can be expected to be
removed in a future release. (It already will misbehave in CSV mode.) It is sufficient to call
PQendcopy after having sent the actual data.

PQputnbytes

Sends a non-null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputnbytes(PGconn *conn,
 const char *buffer,
 int nbytes);

This is exactly like PQputline, except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly. Use this procedure when sending binary data.

PQendcopy

Synchronizes with the server.

int PQendcopy(PGconn *conn);

This function waits until the server has finished the copying. It should either be issued when the last
string has been sent to the server using PQputline or when the last string has been received from
the server using PQgetline. It must be issued or the server will get “out of sync” with the client.
Upon return from this function, the server is ready to receive the next SQL command. The return
value is 0 on successful completion, nonzero otherwise. (Use PQerrorMessage to retrieve details
if the return value is nonzero.)

When using PQgetResult, the application should respond to a PGRES_COPY_OUT result by executing
PQgetline repeatedly, followed by PQendcopy after the terminator line is seen. It should then return
to the PQgetResult loop until PQgetResult returns a null pointer. Similarly a PGRES_COPY_IN result
is processed by a series of PQputline calls followed by PQendcopy, then return to the PQgetResult
loop. This arrangement will ensure that a COPY command embedded in a series of SQL commands
will be executed correctly.

Older applications are likely to submit a COPY via PQexec and assume that the transaction is done after
PQendcopy. This will work correctly only if the COPY is the only SQL command in the command string.

32.11. Control Functions
These functions control miscellaneous details of libpq's behavior.

PQclientEncoding

Returns the client encoding.

int PQclientEncoding(const PGconn *conn);

Note that it returns the encoding ID, not a symbolic string such as EUC_JP. If unsuccessful, it returns
-1. To convert an encoding ID to an encoding name, you can use:

char *pg_encoding_to_char(int encoding_id);

903

libpq — C Library

PQsetClientEncoding

Sets the client encoding.
int PQsetClientEncoding(PGconn *conn, const char *encoding);

conn is a connection to the server, and encoding is the encoding you want to use. If the function
successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this connection
can be determined by using PQclientEncoding.

PQsetErrorVerbosity

Determines the verbosity of messages returned by PQerrorMessage and PQresultErrorMessage.
typedef enum
{
 PQERRORS_TERSE,
 PQERRORS_DEFAULT,
 PQERRORS_VERBOSE,
 PQERRORS_SQLSTATE
} PGVerbosity;

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity verbosity);

PQsetErrorVerbosity sets the verbosity mode, returning the connection's previous setting. In
TERSE mode, returned messages include severity, primary text, and position only; this will normally
fit on a single line. The DEFAULT mode produces messages that include the above plus any detail,
hint, or context fields (these might span multiple lines). The VERBOSE mode includes all available
fields. The SQLSTATE mode includes only the error severity and the SQLSTATE error code, if one is
available (if not, the output is like TERSE mode).

Changing the verbosity setting does not affect the messages available from already-existing PGresult
objects, only subsequently-created ones. (But see PQresultVerboseErrorMessage if you want to print
a previous error with a different verbosity.)

PQsetErrorContextVisibility

Determines the handling of CONTEXT fields in messages returned by PQerrorMessage and PQresul-
tErrorMessage.
typedef enum
{
 PQSHOW_CONTEXT_NEVER,
 PQSHOW_CONTEXT_ERRORS,
 PQSHOW_CONTEXT_ALWAYS
} PGContextVisibility;

PGContextVisibility PQsetErrorContextVisibility(PGconn *conn, PGContextVisibility
 show_context);

PQsetErrorContextVisibility sets the context display mode, returning the connection's previous
setting. This mode controls whether the CONTEXT field is included in messages. The NEVER mode
never includes CONTEXT, while ALWAYS always includes it if available. In ERRORS mode (the default),
CONTEXT fields are included only in error messages, not in notices and warnings. (However, if the
verbosity setting is TERSE or SQLSTATE, CONTEXT fields are omitted regardless of the context display
mode.)

Changing this mode does not affect the messages available from already-existing PGresult objects,
only subsequently-created ones. (But see PQresultVerboseErrorMessage if you want to print a pre-
vious error with a different display mode.)

PQtrace

Enables tracing of the client/server communication to a debugging file stream.

904

libpq — C Library

void PQtrace(PGconn *conn, FILE *stream);

Each line consists of: an optional timestamp, a direction indicator (F for messages from client to
server or B for messages from server to client), message length, message type, and message contents.
Non-message contents fields (timestamp, direction, length and message type) are separated by a
tab. Message contents are separated by a space. Protocol strings are enclosed in double quotes,
while strings used as data values are enclosed in single quotes. Non-printable chars are printed as
hexadecimal escapes. Further message-type-specific detail can be found in Section 54.7.

Note
On Windows, if the libpq library and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE point-
ers differ. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic flags
should be the same for the library and all applications using that library.

PQsetTraceFlags

Controls the tracing behavior of client/server communication.
void PQsetTraceFlags(PGconn *conn, int flags);

flags contains flag bits describing the operating mode of tracing. If flags contains PQTRACE_SUP-
PRESS_TIMESTAMPS, then the timestamp is not included when printing each message. If flags con-
tains PQTRACE_REGRESS_MODE, then some fields are redacted when printing each message, such as
object OIDs, to make the output more convenient to use in testing frameworks. This function must
be called after calling PQtrace.

PQuntrace

Disables tracing started by PQtrace.
void PQuntrace(PGconn *conn);

32.12. Miscellaneous Functions
As always, there are some functions that just don't fit anywhere.

PQfreemem

Frees memory allocated by libpq.
void PQfreemem(void *ptr);

Frees memory allocated by libpq, particularly PQescapeByteaConn, PQescapeBytea, PQunescape-
Bytea, and PQnotifies. It is particularly important that this function, rather than free(), be used
on Microsoft Windows. This is because allocating memory in a DLL and releasing it in the application
works only if multithreaded/single-threaded, release/debug, and static/dynamic flags are the same
for the DLL and the application. On non-Microsoft Windows platforms, this function is the same as
the standard library function free().

PQconninfoFree

Frees the data structures allocated by PQconndefaults or PQconninfoParse.
void PQconninfoFree(PQconninfoOption *connOptions);

If the argument is a NULL pointer, no operation is performed.

A simple PQfreemem will not do for this, since the array contains references to subsidiary strings.

PQencryptPasswordConn

Prepares the encrypted form of a PostgreSQL password.

905

libpq — C Library

char *PQencryptPasswordConn(PGconn *conn, const char *passwd, const char *user,
 const char *algorithm);

This function is intended to be used by client applications that wish to send commands like ALTER
USER joe PASSWORD 'pwd'. It is good practice not to send the original cleartext password in such a
command, because it might be exposed in command logs, activity displays, and so on. Instead, use
this function to convert the password to encrypted form before it is sent.

The passwd and user arguments are the cleartext password, and the SQL name of the user it is for.
algorithm specifies the encryption algorithm to use to encrypt the password. Currently supported
algorithms are md5 and scram-sha-256 (on and off are also accepted as aliases for md5, for compati-
bility with older server versions). Note that support for scram-sha-256 was introduced in PostgreSQL
version 10, and will not work correctly with older server versions. If algorithm is NULL, this function
will query the server for the current value of the password_encryption setting. That can block, and
will fail if the current transaction is aborted, or if the connection is busy executing another query. If
you wish to use the default algorithm for the server but want to avoid blocking, query password_en-
cryption yourself before calling PQencryptPasswordConn, and pass that value as the algorithm.

The return value is a string allocated by malloc. The caller can assume the string doesn't contain any
special characters that would require escaping. Use PQfreemem to free the result when done with it.
On error, returns NULL, and a suitable message is stored in the connection object.

PQchangePassword

Changes a PostgreSQL password.

PGresult *PQchangePassword(PGconn *conn, const char *user, const char *passwd);

This function uses PQencryptPasswordConn to build and execute the command ALTER USER ...
PASSWORD '...', thereby changing the user's password. It exists for the same reason as PQencrypt-
PasswordConn, but is more convenient as it both builds and runs the command for you. PQencrypt-
PasswordConn is passed a NULL for the algorithm argument, hence encryption is done according to
the server's password_encryption setting.

The user and passwd arguments are the SQL name of the target user, and the new cleartext password.

Returns a PGresult pointer representing the result of the ALTER USER command, or a null pointer
if the routine failed before issuing any command. The PQresultStatus function should be called to
check the return value for any errors (including the value of a null pointer, in which case it will return
PGRES_FATAL_ERROR). Use PQerrorMessage to get more information about such errors.

PQencryptPassword

Prepares the md5-encrypted form of a PostgreSQL password.

char *PQencryptPassword(const char *passwd, const char *user);

PQencryptPassword is an older, deprecated version of PQencryptPasswordConn. The difference is
that PQencryptPassword does not require a connection object, and md5 is always used as the encryp-
tion algorithm.

PQmakeEmptyPGresult

Constructs an empty PGresult object with the given status.

PGresult *PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq's internal function to allocate and initialize an empty PGresult object. This function
returns NULL if memory could not be allocated. It is exported because some applications find it useful
to generate result objects (particularly objects with error status) themselves. If conn is not null and
status indicates an error, the current error message of the specified connection is copied into the
PGresult. Also, if conn is not null, any event procedures registered in the connection are copied
into the PGresult. (They do not get PGEVT_RESULTCREATE calls, but see PQfireResultCreateEvents.)

906

libpq — C Library

Note that PQclear should eventually be called on the object, just as with a PGresult returned by
libpq itself.

PQfireResultCreateEvents

Fires a PGEVT_RESULTCREATE event (see Section 32.14) for each event procedure registered in the
PGresult object. Returns non-zero for success, zero if any event procedure fails.

int PQfireResultCreateEvents(PGconn *conn, PGresult *res);

The conn argument is passed through to event procedures but not used directly. It can be NULL if
the event procedures won't use it.

Event procedures that have already received a PGEVT_RESULTCREATE or PGEVT_RESULTCOPY event for
this object are not fired again.

The main reason that this function is separate from PQmakeEmptyPGresult is that it is often appro-
priate to create a PGresult and fill it with data before invoking the event procedures.

PQcopyResult

Makes a copy of a PGresult object. The copy is not linked to the source result in any way and PQclear
must be called when the copy is no longer needed. If the function fails, NULL is returned.

PGresult *PQcopyResult(const PGresult *src, int flags);

This is not intended to make an exact copy. The returned result is always put into PGRES_TUPLES_OK
status, and does not copy any error message in the source. (It does copy the command status string,
however.) The flags argument determines what else is copied. It is a bitwise OR of several flags.
PG_COPYRES_ATTRS specifies copying the source result's attributes (column definitions). PG_COPY-
RES_TUPLES specifies copying the source result's tuples. (This implies copying the attributes, too.)
PG_COPYRES_NOTICEHOOKS specifies copying the source result's notify hooks. PG_COPYRES_EVENTS
specifies copying the source result's events. (But any instance data associated with the source is not
copied.) The event procedures receive PGEVT_RESULTCOPY events.

PQsetResultAttrs

Sets the attributes of a PGresult object.

int PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs);

The provided attDescs are copied into the result. If the attDescs pointer is NULL or numAttributes
is less than one, the request is ignored and the function succeeds. If res already contains attributes,
the function will fail. If the function fails, the return value is zero. If the function succeeds, the return
value is non-zero.

PQsetvalue

Sets a tuple field value of a PGresult object.

int PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len);

The function will automatically grow the result's internal tuples array as needed. However, the
tup_num argument must be less than or equal to PQntuples, meaning this function can only grow
the tuples array one tuple at a time. But any field of any existing tuple can be modified in any order.
If a value at field_num already exists, it will be overwritten. If len is -1 or value is NULL, the field
value will be set to an SQL null value. The value is copied into the result's private storage, thus is no
longer needed after the function returns. If the function fails, the return value is zero. If the function
succeeds, the return value is non-zero.

PQresultAlloc

Allocate subsidiary storage for a PGresult object.

907

libpq — C Library

void *PQresultAlloc(PGresult *res, size_t nBytes);

Any memory allocated with this function will be freed when res is cleared. If the function fails, the
return value is NULL. The result is guaranteed to be adequately aligned for any type of data, just
as for malloc.

PQresultMemorySize

Retrieves the number of bytes allocated for a PGresult object.
size_t PQresultMemorySize(const PGresult *res);

This value is the sum of all malloc requests associated with the PGresult object, that is, all the mem-
ory that will be freed by PQclear. This information can be useful for managing memory consumption.

PQlibVersion

Return the version of libpq that is being used.
int PQlibVersion(void);

The result of this function can be used to determine, at run time, whether specific functionality is
available in the currently loaded version of libpq. The function can be used, for example, to determine
which connection options are available in PQconnectdb.

The result is formed by multiplying the library's major version number by 10000 and adding the
minor version number. For example, version 10.1 will be returned as 100001, and version 11.0 will
be returned as 110000.

Prior to major version 10, PostgreSQL used three-part version numbers in which the first two parts
together represented the major version. For those versions, PQlibVersion uses two digits for each
part; for example version 9.1.5 will be returned as 90105, and version 9.2.0 will be returned as 90200.

Therefore, for purposes of determining feature compatibility, applications should divide the result of
PQlibVersion by 100 not 10000 to determine a logical major version number. In all release series,
only the last two digits differ between minor releases (bug-fix releases).

Note
This function appeared in PostgreSQL version 9.1, so it cannot be used to detect required
functionality in earlier versions, since calling it will create a link dependency on version 9.1
or later.

PQgetCurrentTimeUSec

Retrieves the current time, expressed as the number of microseconds since the Unix epoch (that is,
time_t times 1 million).
pg_usec_time_t PQgetCurrentTimeUSec(void);

This is primarily useful for calculating timeout values to use with PQsocketPoll.

32.13. Notice Processing
Notice and warning messages generated by the server are not returned by the query execution functions,
since they do not imply failure of the query. Instead they are passed to a notice handling function,
and execution continues normally after the handler returns. The default notice handling function prints
the message on stderr, but the application can override this behavior by supplying its own handling
function.

For historical reasons, there are two levels of notice handling, called the notice receiver and notice
processor. The default behavior is for the notice receiver to format the notice and pass a string to the

908

libpq — C Library

notice processor for printing. However, an application that chooses to provide its own notice receiver
will typically ignore the notice processor layer and just do all the work in the notice receiver.

The function PQsetNoticeReceiver sets or examines the current notice receiver for a connection object.
Similarly, PQsetNoticeProcessor sets or examines the current notice processor.

typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,
 PQnoticeReceiver proc,
 void *arg);

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,
 PQnoticeProcessor proc,
 void *arg);

Each of these functions returns the previous notice receiver or processor function pointer, and sets the
new value. If you supply a null function pointer, no action is taken, but the current pointer is returned.

When a notice or warning message is received from the server, or generated internally by libpq, the
notice receiver function is called. It is passed the message in the form of a PGRES_NONFATAL_ERROR
PGresult. (This allows the receiver to extract individual fields using PQresultErrorField, or obtain a
complete preformatted message using PQresultErrorMessage or PQresultVerboseErrorMessage.) The
same void pointer passed to PQsetNoticeReceiver is also passed. (This pointer can be used to access
application-specific state if needed.)

The default notice receiver simply extracts the message (using PQresultErrorMessage) and passes it
to the notice processor.

The notice processor is responsible for handling a notice or warning message given in text form. It is
passed the string text of the message (including a trailing newline), plus a void pointer that is the same
one passed to PQsetNoticeProcessor. (This pointer can be used to access application-specific state if
needed.)

The default notice processor is simply:

static void
defaultNoticeProcessor(void *arg, const char *message)
{
 fprintf(stderr, "%s", message);
}

Once you have set a notice receiver or processor, you should expect that that function could be called
as long as either the PGconn object or PGresult objects made from it exist. At creation of a PGresult,
the PGconn's current notice handling pointers are copied into the PGresult for possible use by functions
like PQgetvalue.

32.14. Event System
libpq's event system is designed to notify registered event handlers about interesting libpq events, such
as the creation or destruction of PGconn and PGresult objects. A principal use case is that this allows
applications to associate their own data with a PGconn or PGresult and ensure that that data is freed
at an appropriate time.

Each registered event handler is associated with two pieces of data, known to libpq only as opaque void
* pointers. There is a pass-through pointer that is provided by the application when the event handler

909

libpq — C Library

is registered with a PGconn. The pass-through pointer never changes for the life of the PGconn and all
PGresults generated from it; so if used, it must point to long-lived data. In addition there is an instance
data pointer, which starts out NULL in every PGconn and PGresult. This pointer can be manipulated us-
ing the PQinstanceData, PQsetInstanceData, PQresultInstanceData and PQresultSetInstanceData
functions. Note that unlike the pass-through pointer, instance data of a PGconn is not automatically in-
herited by PGresults created from it. libpq does not know what pass-through and instance data pointers
point to (if anything) and will never attempt to free them — that is the responsibility of the event handler.

32.14.1. Event Types
The enum PGEventId names the types of events handled by the event system. All its values have names
beginning with PGEVT. For each event type, there is a corresponding event info structure that carries
the parameters passed to the event handlers. The event types are:

PGEVT_REGISTER

The register event occurs when PQregisterEventProc is called. It is the ideal time to initialize any
instanceData an event procedure may need. Only one register event will be fired per event handler
per connection. If the event procedure fails (returns zero), the registration is canceled.
typedef struct
{
 PGconn *conn;
} PGEventRegister;

When a PGEVT_REGISTER event is received, the evtInfo pointer should be cast to a PGEventRegister
*. This structure contains a PGconn that should be in the CONNECTION_OK status; guaranteed if one
calls PQregisterEventProc right after obtaining a good PGconn. When returning a failure code, all
cleanup must be performed as no PGEVT_CONNDESTROY event will be sent.

PGEVT_CONNRESET

The connection reset event is fired on completion of PQreset or PQresetPoll. In both cases, the
event is only fired if the reset was successful. The return value of the event procedure is ignored in
PostgreSQL v15 and later. With earlier versions, however, it's important to return success (nonzero)
or the connection will be aborted.
typedef struct
{
 PGconn *conn;
} PGEventConnReset;

When a PGEVT_CONNRESET event is received, the evtInfo pointer should be cast to a PGEventCon-
nReset *. Although the contained PGconn was just reset, all event data remains unchanged. This
event should be used to reset/reload/requery any associated instanceData. Note that even if the
event procedure fails to process PGEVT_CONNRESET, it will still receive a PGEVT_CONNDESTROY event
when the connection is closed.

PGEVT_CONNDESTROY

The connection destroy event is fired in response to PQfinish. It is the event procedure's responsi-
bility to properly clean up its event data as libpq has no ability to manage this memory. Failure to
clean up will lead to memory leaks.
typedef struct
{
 PGconn *conn;
} PGEventConnDestroy;

When a PGEVT_CONNDESTROY event is received, the evtInfo pointer should be cast to a PGEventCon-
nDestroy *. This event is fired prior to PQfinish performing any other cleanup. The return value of
the event procedure is ignored since there is no way of indicating a failure from PQfinish. Also, an
event procedure failure should not abort the process of cleaning up unwanted memory.

910

libpq — C Library

PGEVT_RESULTCREATE

The result creation event is fired in response to any query execution function that generates a result,
including PQgetResult. This event will only be fired after the result has been created successfully.

typedef struct
{
 PGconn *conn;
 PGresult *result;
} PGEventResultCreate;

When a PGEVT_RESULTCREATE event is received, the evtInfo pointer should be cast to a PGEventRe-
sultCreate *. The conn is the connection used to generate the result. This is the ideal place to
initialize any instanceData that needs to be associated with the result. If an event procedure fails
(returns zero), that event procedure will be ignored for the remaining lifetime of the result; that
is, it will not receive PGEVT_RESULTCOPY or PGEVT_RESULTDESTROY events for this result or results
copied from it.

PGEVT_RESULTCOPY

The result copy event is fired in response to PQcopyResult. This event will only be fired after the
copy is complete. Only event procedures that have successfully handled the PGEVT_RESULTCREATE or
PGEVT_RESULTCOPY event for the source result will receive PGEVT_RESULTCOPY events.

typedef struct
{
 const PGresult *src;
 PGresult *dest;
} PGEventResultCopy;

When a PGEVT_RESULTCOPY event is received, the evtInfo pointer should be cast to a PGEventRe-
sultCopy *. The src result is what was copied while the dest result is the copy destination. This
event can be used to provide a deep copy of instanceData, since PQcopyResult cannot do that. If an
event procedure fails (returns zero), that event procedure will be ignored for the remaining lifetime
of the new result; that is, it will not receive PGEVT_RESULTCOPY or PGEVT_RESULTDESTROY events for
that result or results copied from it.

PGEVT_RESULTDESTROY

The result destroy event is fired in response to a PQclear. It is the event procedure's responsibility
to properly clean up its event data as libpq has no ability to manage this memory. Failure to clean
up will lead to memory leaks.

typedef struct
{
 PGresult *result;
} PGEventResultDestroy;

When a PGEVT_RESULTDESTROY event is received, the evtInfo pointer should be cast to a PGEven-
tResultDestroy *. This event is fired prior to PQclear performing any other cleanup. The return
value of the event procedure is ignored since there is no way of indicating a failure from PQclear.
Also, an event procedure failure should not abort the process of cleaning up unwanted memory.

32.14.2. Event Callback Procedure
PGEventProc

PGEventProc is a typedef for a pointer to an event procedure, that is, the user callback function that
receives events from libpq. The signature of an event procedure must be

int eventproc(PGEventId evtId, void *evtInfo, void *passThrough)

The evtId parameter indicates which PGEVT event occurred. The evtInfo pointer must be cast to
the appropriate structure type to obtain further information about the event. The passThrough pa-

911

libpq — C Library

rameter is the pointer provided to PQregisterEventProc when the event procedure was registered.
The function should return a non-zero value if it succeeds and zero if it fails.

A particular event procedure can be registered only once in any PGconn. This is because the address
of the procedure is used as a lookup key to identify the associated instance data.

Caution
On Windows, functions can have two different addresses: one visible from outside a DLL and
another visible from inside the DLL. One should be careful that only one of these addresses
is used with libpq's event-procedure functions, else confusion will result. The simplest rule
for writing code that will work is to ensure that event procedures are declared static. If the
procedure's address must be available outside its own source file, expose a separate function
to return the address.

32.14.3. Event Support Functions
PQregisterEventProc

Registers an event callback procedure with libpq.
int PQregisterEventProc(PGconn *conn, PGEventProc proc,
 const char *name, void *passThrough);

An event procedure must be registered once on each PGconn you want to receive events about. There
is no limit, other than memory, on the number of event procedures that can be registered with a
connection. The function returns a non-zero value if it succeeds and zero if it fails.

The proc argument will be called when a libpq event is fired. Its memory address is also used to
lookup instanceData. The name argument is used to refer to the event procedure in error messages.
This value cannot be NULL or a zero-length string. The name string is copied into the PGconn, so what
is passed need not be long-lived. The passThrough pointer is passed to the proc whenever an event
occurs. This argument can be NULL.

PQsetInstanceData

Sets the connection conn's instanceData for procedure proc to data. This returns non-zero for suc-
cess and zero for failure. (Failure is only possible if proc has not been properly registered in conn.)
int PQsetInstanceData(PGconn *conn, PGEventProc proc, void *data);

PQinstanceData

Returns the connection conn's instanceData associated with procedure proc, or NULL if there is none.
void *PQinstanceData(const PGconn *conn, PGEventProc proc);

PQresultSetInstanceData

Sets the result's instanceData for proc to data. This returns non-zero for success and zero for failure.
(Failure is only possible if proc has not been properly registered in the result.)
int PQresultSetInstanceData(PGresult *res, PGEventProc proc, void *data);

Beware that any storage represented by data will not be accounted for by PQresultMemorySize,
unless it is allocated using PQresultAlloc. (Doing so is recommendable because it eliminates the
need to free such storage explicitly when the result is destroyed.)

PQresultInstanceData

Returns the result's instanceData associated with proc, or NULL if there is none.
void *PQresultInstanceData(const PGresult *res, PGEventProc proc);

912

libpq — C Library

32.14.4. Event Example
Here is a skeleton example of managing private data associated with libpq connections and results.

/* required header for libpq events (note: includes libpq-fe.h) */
#include <libpq-events.h>

/* The instanceData */
typedef struct
{
 int n;
 char *str;
} mydata;

/* PGEventProc */
static int myEventProc(PGEventId evtId, void *evtInfo, void *passThrough);

int
main(void)
{
 mydata *data;
 PGresult *res;
 PGconn *conn =
 PQconnectdb("dbname=postgres options=-csearch_path=");

 if (PQstatus(conn) != CONNECTION_OK)
 {
 /* PQerrorMessage's result includes a trailing newline */
 fprintf(stderr, "%s", PQerrorMessage(conn));
 PQfinish(conn);
 return 1;
 }

 /* called once on any connection that should receive events.
 * Sends a PGEVT_REGISTER to myEventProc.
 */
 if (!PQregisterEventProc(conn, myEventProc, "mydata_proc", NULL))
 {
 fprintf(stderr, "Cannot register PGEventProc\n");
 PQfinish(conn);
 return 1;
 }

 /* conn instanceData is available */
 data = PQinstanceData(conn, myEventProc);

 /* Sends a PGEVT_RESULTCREATE to myEventProc */
 res = PQexec(conn, "SELECT 1 + 1");

 /* result instanceData is available */
 data = PQresultInstanceData(res, myEventProc);

 /* If PG_COPYRES_EVENTS is used, sends a PGEVT_RESULTCOPY to myEventProc */
 res_copy = PQcopyResult(res, PG_COPYRES_TUPLES | PG_COPYRES_EVENTS);

 /* result instanceData is available if PG_COPYRES_EVENTS was
 * used during the PQcopyResult call.

913

libpq — C Library

 */
 data = PQresultInstanceData(res_copy, myEventProc);

 /* Both clears send a PGEVT_RESULTDESTROY to myEventProc */
 PQclear(res);
 PQclear(res_copy);

 /* Sends a PGEVT_CONNDESTROY to myEventProc */
 PQfinish(conn);

 return 0;
}

static int
myEventProc(PGEventId evtId, void *evtInfo, void *passThrough)
{
 switch (evtId)
 {
 case PGEVT_REGISTER:
 {
 PGEventRegister *e = (PGEventRegister *)evtInfo;
 mydata *data = get_mydata(e->conn);

 /* associate app specific data with connection */
 PQsetInstanceData(e->conn, myEventProc, data);
 break;
 }

 case PGEVT_CONNRESET:
 {
 PGEventConnReset *e = (PGEventConnReset *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 if (data)
 memset(data, 0, sizeof(mydata));
 break;
 }

 case PGEVT_CONNDESTROY:
 {
 PGEventConnDestroy *e = (PGEventConnDestroy *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 /* free instance data because the conn is being destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 case PGEVT_RESULTCREATE:
 {
 PGEventResultCreate *e = (PGEventResultCreate *)evtInfo;
 mydata *conn_data = PQinstanceData(e->conn, myEventProc);
 mydata *res_data = dup_mydata(conn_data);

 /* associate app specific data with result (copy it from conn) */
 PQresultSetInstanceData(e->result, myEventProc, res_data);
 break;

914

libpq — C Library

 }

 case PGEVT_RESULTCOPY:
 {
 PGEventResultCopy *e = (PGEventResultCopy *)evtInfo;
 mydata *src_data = PQresultInstanceData(e->src, myEventProc);
 mydata *dest_data = dup_mydata(src_data);

 /* associate app specific data with result (copy it from a result) */
 PQresultSetInstanceData(e->dest, myEventProc, dest_data);
 break;
 }

 case PGEVT_RESULTDESTROY:
 {
 PGEventResultDestroy *e = (PGEventResultDestroy *)evtInfo;
 mydata *data = PQresultInstanceData(e->result, myEventProc);

 /* free instance data because the result is being destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 /* unknown event ID, just return true. */
 default:
 break;
 }

 return true; /* event processing succeeded */
}

32.15. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used by PQconnectdb, PQsetdbLogin and PQsetdb if no value is directly specified by the calling
code. These are useful to avoid hard-coding database connection information into simple client applica-
tions, for example.
• PGHOST behaves the same as the host connection parameter.
• PGSSLNEGOTIATION behaves the same as the sslnegotiation connection parameter.
• PGHOSTADDR behaves the same as the hostaddr connection parameter. This can be set instead of or

in addition to PGHOST to avoid DNS lookup overhead.
• PGPORT behaves the same as the port connection parameter.
• PGDATABASE behaves the same as the dbname connection parameter.
• PGUSER behaves the same as the user connection parameter.
• PGPASSWORD behaves the same as the password connection parameter. Use of this environment

variable is not recommended for security reasons, as some operating systems allow non-root
users to see process environment variables via ps; instead consider using a password file (see Sec-
tion 32.16).

• PGPASSFILE behaves the same as the passfile connection parameter.
• PGREQUIREAUTH behaves the same as the require_auth connection parameter.
• PGCHANNELBINDING behaves the same as the channel_binding connection parameter.

915

libpq — C Library

• PGSERVICE behaves the same as the service connection parameter.
• PGSERVICEFILE specifies the name of the per-user connection service file (see Section 32.17). De-

faults to ~/.pg_service.conf, or %APPDATA%\postgresql\.pg_service.conf on Microsoft Win-
dows.

• PGOPTIONS behaves the same as the options connection parameter.
• PGAPPNAME behaves the same as the application_name connection parameter.
• PGSSLMODE behaves the same as the sslmode connection parameter.
• PGREQUIRESSL behaves the same as the requiressl connection parameter. This environment variable

is deprecated in favor of the PGSSLMODE variable; setting both variables suppresses the effect of this
one.

• PGSSLCOMPRESSION behaves the same as the sslcompression connection parameter.
• PGSSLCERT behaves the same as the sslcert connection parameter.
• PGSSLKEY behaves the same as the sslkey connection parameter.
• PGSSLCERTMODE behaves the same as the sslcertmode connection parameter.
• PGSSLROOTCERT behaves the same as the sslrootcert connection parameter.
• PGSSLCRL behaves the same as the sslcrl connection parameter.
• PGSSLCRLDIR behaves the same as the sslcrldir connection parameter.
• PGSSLSNI behaves the same as the sslsni connection parameter.
• PGREQUIREPEER behaves the same as the requirepeer connection parameter.
• PGSSLMINPROTOCOLVERSION behaves the same as the ssl_min_protocol_version connection parame-

ter.
• PGSSLMAXPROTOCOLVERSION behaves the same as the ssl_max_protocol_version connection parame-

ter.
• PGGSSENCMODE behaves the same as the gssencmode connection parameter.
• PGKRBSRVNAME behaves the same as the krbsrvname connection parameter.
• PGGSSLIB behaves the same as the gsslib connection parameter.
• PGGSSDELEGATION behaves the same as the gssdelegation connection parameter.
• PGCONNECT_TIMEOUT behaves the same as the connect_timeout connection parameter.
• PGCLIENTENCODING behaves the same as the client_encoding connection parameter.
• PGTARGETSESSIONATTRS behaves the same as the target_session_attrs connection parameter.
• PGLOADBALANCEHOSTS behaves the same as the load_balance_hosts connection parameter.
• PGMINPROTOCOLVERSION behaves the same as the min_protocol_version connection parameter.
• PGMAXPROTOCOLVERSION behaves the same as the max_protocol_version connection parameter.

The following environment variables can be used to specify default behavior for each PostgreSQL ses-
sion. (See also the ALTER ROLE and ALTER DATABASE commands for ways to set default behavior on
a per-user or per-database basis.)
• PGDATESTYLE sets the default style of date/time representation. (Equivalent to SET datestyle

TO)
• PGTZ sets the default time zone. (Equivalent to SET timezone TO)
• PGGEQO sets the default mode for the genetic query optimizer. (Equivalent to SET geqo TO)
Refer to the SQL command SET for information on correct values for these environment variables.

The following environment variables determine internal behavior of libpq; they override compiled-in
defaults.

916

libpq — C Library

• PGSYSCONFDIR sets the directory containing the pg_service.conf file and in a future version possi-
bly other system-wide configuration files.

• PGLOCALEDIR sets the directory containing the locale files for message localization.

32.16. The Password File
The file .pgpass in a user's home directory can contain passwords to be used if the connection requires
a password (and no password has been specified otherwise). On Unix systems, the directory can be
specified by the HOME environment variable, or if undefined, the home directory of the effective user. On
Microsoft Windows the file is named %APPDATA%\postgresql\pgpass.conf (where %APPDATA% refers to
the Application Data subdirectory in the user's profile). Alternatively, the password file to use can be
specified using the connection parameter passfile or the environment variable PGPASSFILE.

This file should contain lines of the following format:
hostname:port:database:username:password

(You can add a reminder comment to the file by copying the line above and preceding it with #.) Each
of the first four fields can be a literal value, or *, which matches anything. The password field from the
first line that matches the current connection parameters will be used. (Therefore, put more-specific
entries first when you are using wildcards.) If an entry needs to contain : or \, escape this character
with \. The host name field is matched to the host connection parameter if that is specified, otherwise
to the hostaddr parameter if that is specified; if neither are given then the host name localhost is
searched for. The host name localhost is also searched for when the connection is a Unix-domain socket
connection and the host parameter matches libpq's default socket directory path. In a standby server, a
database field of replication matches streaming replication connections made to the primary server.
The database field is of limited usefulness otherwise, because users have the same password for all
databases in the same cluster.

On Unix systems, the permissions on a password file must disallow any access to world or group; achieve
this by a command such as chmod 0600 ~/.pgpass. If the permissions are less strict than this, the file
will be ignored. On Microsoft Windows, it is assumed that the file is stored in a directory that is secure,
so no special permissions check is made.

32.17. The Connection Service File
The connection service file allows libpq connection parameters to be associated with a single service
name. That service name can then be specified using the service key word in a libpq connection string,
and the associated settings will be used. This allows connection parameters to be modified without
requiring a recompile of the libpq-using application. The service name can also be specified using the
PGSERVICE environment variable.

Service names can be defined in either a per-user service file or a system-wide file. If the same service
name exists in both the user and the system file, the user file takes precedence. By default, the per-
user service file is named ~/.pg_service.conf. On Microsoft Windows, it is named %APPDATA%\post-
gresql\.pg_service.conf (where %APPDATA% refers to the Application Data subdirectory in the user's
profile). A different file name can be specified by setting the environment variable PGSERVICEFILE. The
system-wide file is named pg_service.conf. By default it is sought in the etc directory of the PostgreSQL
installation (use pg_config --sysconfdir to identify this directory precisely). Another directory, but
not a different file name, can be specified by setting the environment variable PGSYSCONFDIR.

Either service file uses an “INI file” format where the section name is the service name and the parame-
ters are connection parameters; see Section 32.1.2 for a list. For example:
comment
[mydb]
host=somehost
port=5433
user=admin

An example file is provided in the PostgreSQL installation at share/pg_service.conf.sample.

917

libpq — C Library

Connection parameters obtained from a service file are combined with parameters obtained from other
sources. A service file setting overrides the corresponding environment variable, and in turn can be
overridden by a value given directly in the connection string. For example, using the above service file,
a connection string service=mydb port=5434 will use host somehost, port 5434, user admin, and other
parameters as set by environment variables or built-in defaults.

32.18. LDAP Lookup of Connection Parameters
If libpq has been compiled with LDAP support (option --with-ldap for configure) it is possible to
retrieve connection options like host or dbname via LDAP from a central server. The advantage is that if
the connection parameters for a database change, the connection information doesn't have to be updated
on all client machines.

LDAP connection parameter lookup uses the connection service file pg_service.conf (see Sec-
tion 32.17). A line in a pg_service.conf stanza that starts with ldap:// will be recognized as an LDAP
URL and an LDAP query will be performed. The result must be a list of keyword = value pairs which
will be used to set connection options. The URL must conform to RFC 1959 and be of the form
ldap://[hostname[:port]]/search_base?attribute?search_scope?filter

where hostname defaults to localhost and port defaults to 389.

Processing of pg_service.conf is terminated after a successful LDAP lookup, but is continued if the
LDAP server cannot be contacted. This is to provide a fallback with further LDAP URL lines that point
to different LDAP servers, classical keyword = value pairs, or default connection options. If you would
rather get an error message in this case, add a syntactically incorrect line after the LDAP URL.

A sample LDAP entry that has been created with the LDIF file
version:1
dn:cn=mydatabase,dc=mycompany,dc=com
changetype:add
objectclass:top
objectclass:device
cn:mydatabase
description:host=dbserver.mycompany.com
description:port=5439
description:dbname=mydb
description:user=mydb_user
description:sslmode=require

might be queried with the following LDAP URL:
ldap://ldap.mycompany.com/dc=mycompany,dc=com?description?one?(cn=mydatabase)

You can also mix regular service file entries with LDAP lookups. A complete example for a stanza in
pg_service.conf would be:
only host and port are stored in LDAP, specify dbname and user explicitly
[customerdb]
dbname=customer
user=appuser
ldap://ldap.acme.com/cn=dbserver,cn=hosts?pgconnectinfo?base?(objectclass=*)

32.19. SSL Support
PostgreSQL has native support for using SSL connections to encrypt client/server communications using
TLS protocols for increased security. See Section 18.9 for details about the server-side SSL functionality.

libpq reads the system-wide OpenSSL configuration file. By default, this file is named openssl.cnf and
is located in the directory reported by openssl version -d. This default can be overridden by setting
environment variable OPENSSL_CONF to the name of the desired configuration file.

918

https://datatracker.ietf.org/doc/html/rfc1959

libpq — C Library

32.19.1. Client Verification of Server Certificates
By default, PostgreSQL will not perform any verification of the server certificate. This means that it is
possible to spoof the server identity (for example by modifying a DNS record or by taking over the server
IP address) without the client knowing. In order to prevent spoofing, the client must be able to verify
the server's identity via a chain of trust. A chain of trust is established by placing a root (self-signed)
certificate authority (CA) certificate on one computer and a leaf certificate signed by the root certificate
on another computer. It is also possible to use an “intermediate” certificate which is signed by the root
certificate and signs leaf certificates.

To allow the client to verify the identity of the server, place a root certificate on the client and a leaf
certificate signed by the root certificate on the server. To allow the server to verify the identity of the
client, place a root certificate on the server and a leaf certificate signed by the root certificate on the
client. One or more intermediate certificates (usually stored with the leaf certificate) can also be used
to link the leaf certificate to the root certificate.

Once a chain of trust has been established, there are two ways for the client to validate the leaf certificate
sent by the server. If the parameter sslmode is set to verify-ca, libpq will verify that the server is
trustworthy by checking the certificate chain up to the root certificate stored on the client. If sslmode
is set to verify-full, libpq will also verify that the server host name matches the name stored in the
server certificate. The SSL connection will fail if the server certificate cannot be verified. verify-full
is recommended in most security-sensitive environments.

In verify-full mode, the host name is matched against the certificate's Subject Alternative Name
attribute(s) (SAN), or against the Common Name attribute if no SAN of type dNSName is present. If the
certificate's name attribute starts with an asterisk (*), the asterisk will be treated as a wildcard, which
will match all characters except a dot (.). This means the certificate will not match subdomains. If the
connection is made using an IP address instead of a host name, the IP address will be matched (without
doing any DNS lookups) against SANs of type iPAddress or dNSName. If no iPAddress SAN is present
and no matching dNSName SAN is present, the host IP address is matched against the Common Name
attribute.

Note
For backward compatibility with earlier versions of PostgreSQL, the host IP address is verified
in a manner different from RFC 6125. The host IP address is always matched against dNSName
SANs as well as iPAddress SANs, and can be matched against the Common Name attribute if no
relevant SANs exist.

To allow server certificate verification, one or more root certificates must be placed in the file ~/.post-
gresql/root.crt in the user's home directory. (On Microsoft Windows the file is named %APPDATA%
\postgresql\root.crt.) Intermediate certificates should also be added to the file if they are needed to
link the certificate chain sent by the server to the root certificates stored on the client.

Certificate Revocation List (CRL) entries are also checked if the file ~/.postgresql/root.crl exists
(%APPDATA%\postgresql\root.crl on Microsoft Windows).

The location of the root certificate file and the CRL can be changed by setting the connection parameters
sslrootcert and sslcrl or the environment variables PGSSLROOTCERT and PGSSLCRL. sslcrldir or the
environment variable PGSSLCRLDIR can also be used to specify a directory containing CRL files.

Note
For backwards compatibility with earlier versions of PostgreSQL, if a root CA file exists, the be-
havior of sslmode=require will be the same as that of verify-ca, meaning the server certificate
is validated against the CA. Relying on this behavior is discouraged, and applications that need
certificate validation should always use verify-ca or verify-full.

919

https://datatracker.ietf.org/doc/html/rfc6125

libpq — C Library

32.19.2. Client Certificates
If the server attempts to verify the identity of the client by requesting the client's leaf certificate, libpq
will send the certificate(s) stored in file ~/.postgresql/postgresql.crt in the user's home directory.
The certificates must chain to the root certificate trusted by the server. A matching private key file
~/.postgresql/postgresql.key must also be present. On Microsoft Windows these files are named
%APPDATA%\postgresql\postgresql.crt and %APPDATA%\postgresql\postgresql.key. The location of
the certificate and key files can be overridden by the connection parameters sslcert and sslkey, or by
the environment variables PGSSLCERT and PGSSLKEY.

On Unix systems, the permissions on the private key file must disallow any access to world or group;
achieve this by a command such as chmod 0600 ~/.postgresql/postgresql.key. Alternatively, the file
can be owned by root and have group read access (that is, 0640 permissions). That setup is intended
for installations where certificate and key files are managed by the operating system. The user of libpq
should then be made a member of the group that has access to those certificate and key files. (On
Microsoft Windows, there is no file permissions check, since the %APPDATA%\postgresql directory is
presumed secure.)

The first certificate in postgresql.crt must be the client's certificate because it must match the client's
private key. “Intermediate” certificates can be optionally appended to the file — doing so avoids requiring
storage of intermediate certificates on the server (ssl_ca_file).

The certificate and key may be in PEM or ASN.1 DER format.

The key may be stored in cleartext or encrypted with a passphrase using any algorithm supported
by OpenSSL, like AES-128. If the key is stored encrypted, then the passphrase may be provided in
the sslpassword connection option. If an encrypted key is supplied and the sslpassword option is ab-
sent or blank, a password will be prompted for interactively by OpenSSL with a Enter PEM pass
phrase: prompt if a TTY is available. Applications can override the client certificate prompt and the han-
dling of the sslpassword parameter by supplying their own key password callback; see PQsetSSLKey-
PassHook_OpenSSL.

For instructions on creating certificates, see Section 18.9.5.

32.19.3. Protection Provided in Different Modes
The different values for the sslmode parameter provide different levels of protection. SSL can provide
protection against three types of attacks:
Eavesdropping

If a third party can examine the network traffic between the client and the server, it can read both
connection information (including the user name and password) and the data that is passed. SSL
uses encryption to prevent this.

Man-in-the-middle (MITM)
If a third party can modify the data while passing between the client and server, it can pretend to
be the server and therefore see and modify data even if it is encrypted. The third party can then
forward the connection information and data to the original server, making it impossible to detect
this attack. Common vectors to do this include DNS poisoning and address hijacking, whereby the
client is directed to a different server than intended. There are also several other attack methods that
can accomplish this. SSL uses certificate verification to prevent this, by authenticating the server
to the client.

Impersonation
If a third party can pretend to be an authorized client, it can simply access data it should not have
access to. Typically this can happen through insecure password management. SSL uses client cer-
tificates to prevent this, by making sure that only holders of valid certificates can access the server.

For a connection to be known SSL-secured, SSL usage must be configured on both the client and the
server before the connection is made. If it is only configured on the server, the client may end up sending

920

libpq — C Library

sensitive information (e.g., passwords) before it knows that the server requires high security. In libpq,
secure connections can be ensured by setting the sslmode parameter to verify-full or verify-ca, and
providing the system with a root certificate to verify against. This is analogous to using an https URL
for encrypted web browsing.

Once the server has been authenticated, the client can pass sensitive data. This means that up until this
point, the client does not need to know if certificates will be used for authentication, making it safe to
specify that only in the server configuration.

All SSL options carry overhead in the form of encryption and key-exchange, so there is a trade-off that
has to be made between performance and security. Table 32.1 illustrates the risks the different sslmode
values protect against, and what statement they make about security and overhead.

Table 32.1. SSL Mode Descriptions

sslmode Eavesdropping
protection

MITM protection Statement

disable No No I don't care about security, and I don't
want to pay the overhead of encryption.

allow Maybe No I don't care about security, but I will
pay the overhead of encryption if the
server insists on it.

prefer Maybe No I don't care about encryption, but I wish
to pay the overhead of encryption if the
server supports it.

require Yes No I want my data to be encrypted, and I
accept the overhead. I trust that the
network will make sure I always con-
nect to the server I want.

verify-ca Yes Depends on CA pol-
icy

I want my data encrypted, and I accept
the overhead. I want to be sure that I
connect to a server that I trust.

verify-full Yes Yes I want my data encrypted, and I accept
the overhead. I want to be sure that I
connect to a server I trust, and that it's
the one I specify.

The difference between verify-ca and verify-full depends on the policy of the root CA. If a public CA
is used, verify-ca allows connections to a server that somebody else may have registered with the CA.
In this case, verify-full should always be used. If a local CA is used, or even a self-signed certificate,
using verify-ca often provides enough protection.

The default value for sslmode is prefer. As is shown in the table, this makes no sense from a security
point of view, and it only promises performance overhead if possible. It is only provided as the default
for backward compatibility, and is not recommended in secure deployments.

32.19.4. SSL Client File Usage
Table 32.2 summarizes the files that are relevant to the SSL setup on the client.

Table 32.2. Libpq/Client SSL File Usage

File Contents Effect
~/.postgresql/postgresql.crt client certificate sent to server
~/.postgresql/postgresql.key client private key proves client certificate sent by

owner; does not indicate certifi-
cate owner is trustworthy

921

libpq — C Library

File Contents Effect
~/.postgresql/root.crt trusted certificate authorities checks that server certificate is

signed by a trusted certificate
authority

~/.postgresql/root.crl certificates revoked by certifi-
cate authorities

server certificate must not be on
this list

32.19.5. SSL Library Initialization
Applications which need to be compatible with older versions of PostgreSQL, using OpenSSL version
1.0.2 or older, need to initialize the SSL library before using it. Applications which initialize libssl
and/or libcrypto libraries should call PQinitOpenSSL to tell libpq that the libssl and/or libcrypto
libraries have been initialized by your application, so that libpq will not also initialize those libraries.
However, this is unnecessary when using OpenSSL version 1.1.0 or later, as duplicate initializations are
no longer problematic.

Refer to the documentation for the version of PostgreSQL that you are targeting for details on their use.

PQinitOpenSSL

Allows applications to select which security libraries to initialize.
void PQinitOpenSSL(int do_ssl, int do_crypto);

This function is deprecated and only present for backwards compatibility, it does nothing.

PQinitSSL

Allows applications to select which security libraries to initialize.
void PQinitSSL(int do_ssl);

This function is equivalent to PQinitOpenSSL(do_ssl, do_ssl). This function is deprecated and only
present for backwards compatibility, it does nothing.

PQinitSSL and PQinitOpenSSL are maintained for backwards compatibility, but are no longer re-
quired since PostgreSQL 18. PQinitSSL has been present since PostgreSQL 8.0, while PQini-
tOpenSSL was added in PostgreSQL 8.4, so PQinitSSL might be preferable for applications that need
to work with older versions of libpq.

32.20. OAuth Support
libpq implements support for the OAuth v2 Device Authorization client flow, documented in RFC 8628,
as an optional module. See the installation documentation for information on how to enable support for
Device Authorization as a builtin flow.

When support is enabled and the optional module installed, libpq will use the builtin flow by default if the
server requests a bearer token during authentication. This flow can be utilized even if the system running
the client application does not have a usable web browser, for example when running a client via SSH.

The builtin flow will, by default, print a URL to visit and a user code to enter there:
$ psql 'dbname=postgres oauth_issuer=https://example.com oauth_client_id=...'
Visit https://example.com/device and enter the code: ABCD-EFGH

(This prompt may be customized.) The user will then log into their OAuth provider, which will ask whether
to allow libpq and the server to perform actions on their behalf. It is always a good idea to carefully review
the URL and permissions displayed, to ensure they match expectations, before continuing. Permissions
should not be given to untrusted third parties.

Client applications may implement their own flows to customize interaction and integration with appli-
cations. See Section 32.20.1 for more information on how add a custom flow to libpq.

922

https://datatracker.ietf.org/doc/html/rfc8628

libpq — C Library

For an OAuth client flow to be usable, the connection string must at minimum contain oauth_issuer and
oauth_client_id. (These settings are determined by your organization's OAuth provider.) The builtin flow
additionally requires the OAuth authorization server to publish a device authorization endpoint.

Note
The builtin Device Authorization flow is not currently supported on Windows. Custom client flows
may still be implemented.

32.20.1. Authdata Hooks
The behavior of the OAuth flow may be modified or replaced by a client using the following hook API:
PQsetAuthDataHook

Sets the PGauthDataHook, overriding libpq's handling of one or more aspects of its OAuth client flow.
void PQsetAuthDataHook(PQauthDataHook_type hook);

If hook is NULL, the default handler will be reinstalled. Otherwise, the application passes a pointer
to a callback function with the signature:
int hook_fn(PGauthData type, PGconn *conn, void *data);

which libpq will call when an action is required of the application. type describes the request being
made, conn is the connection handle being authenticated, and data points to request-specific meta-
data. The contents of this pointer are determined by type; see Section 32.20.1.1 for the supported
list.

Hooks can be chained together to allow cooperative and/or fallback behavior. In general, a hook
implementation should examine the incoming type (and, potentially, the request metadata and/or the
settings for the particular conn in use) to decide whether or not to handle a specific piece of authdata.
If not, it should delegate to the previous hook in the chain (retrievable via PQgetAuthDataHook).

Success is indicated by returning an integer greater than zero. Returning a negative integer signals
an error condition and abandons the connection attempt. (A zero value is reserved for the default
implementation.)

PQgetAuthDataHook

Retrieves the current value of PGauthDataHook.
PQauthDataHook_type PQgetAuthDataHook(void);

At initialization time (before the first call to PQsetAuthDataHook), this function will return PQde-
faultAuthDataHook.

32.20.1.1. Hook Types
The following PGauthData types and their corresponding data structures are defined:
PQAUTHDATA_PROMPT_OAUTH_DEVICE

Replaces the default user prompt during the builtin device authorization client flow. data points to
an instance of PGpromptOAuthDevice:
typedef struct _PGpromptOAuthDevice
{
 const char *verification_uri; /* verification URI to visit */
 const char *user_code; /* user code to enter */
 const char *verification_uri_complete; /* optional combination of URI and
 * code, or NULL */
 int expires_in; /* seconds until user code expires */
} PGpromptOAuthDevice;

The OAuth Device Authorization flow which can be included in libpq requires the end user to visit
a URL with a browser, then enter a code which permits libpq to connect to the server on their

923

libpq — C Library

behalf. The default prompt simply prints the verification_uri and user_code on standard error.
Replacement implementations may display this information using any preferred method, for example
with a GUI.

This callback is only invoked during the builtin device authorization flow. If the application installs
a custom OAuth flow, or libpq was not built with support for the builtin flow, this authdata type will
not be used.

If a non-NULL verification_uri_complete is provided, it may optionally be used for non-textual
verification (for example, by displaying a QR code). The URL and user code should still be displayed
to the end user in this case, because the code will be manually confirmed by the provider, and the
URL lets users continue even if they can't use the non-textual method. For more information, see
section 3.3.1 in RFC 8628.

PQAUTHDATA_OAUTH_BEARER_TOKEN
Adds a custom implementation of a flow, replacing the builtin flow if it is installed. The hook should
either directly return a Bearer token for the current user/issuer/scope combination, if one is available
without blocking, or else set up an asynchronous callback to retrieve one.

data points to an instance of PGoauthBearerRequest, which should be filled in by the implementation:
typedef struct PGoauthBearerRequest
{
 /* Hook inputs (constant across all calls) */
 const char *openid_configuration; /* OIDC discovery URL */
 const char *scope; /* required scope(s), or NULL */

 /* Hook outputs */

 /* Callback implementing a custom asynchronous OAuth flow. */
 PostgresPollingStatusType (*async) (PGconn *conn,
 struct PGoauthBearerRequest *request,
 SOCKTYPE *altsock);

 /* Callback to clean up custom allocations. */
 void (*cleanup) (PGconn *conn, struct PGoauthBearerRequest *request);

 char *token; /* acquired Bearer token */
 void *user; /* hook-defined allocated data */
} PGoauthBearerRequest;

Two pieces of information are provided to the hook by libpq: openid_configuration contains the
URL of an OAuth discovery document describing the authorization server's supported flows, and
scope contains a (possibly empty) space-separated list of OAuth scopes which are required to access
the server. Either or both may be NULL to indicate that the information was not discoverable. (In this
case, implementations may be able to establish the requirements using some other preconfigured
knowledge, or they may choose to fail.)

The final output of the hook is token, which must point to a valid Bearer token for use on the con-
nection. (This token should be issued by the oauth_issuer and hold the requested scopes, or the con-
nection will be rejected by the server's validator module.) The allocated token string must remain
valid until libpq is finished connecting; the hook should set a cleanup callback which will be called
when libpq no longer requires it.

If an implementation cannot immediately produce a token during the initial call to the hook, it
should set the async callback to handle nonblocking communication with the authorization server.
2 This will be called to begin the flow immediately upon return from the hook. When the callback

2 Performing blocking operations during the PQAUTHDATA_OAUTH_BEARER_TOKEN hook callback will interfere with nonblocking connection APIs such as PQconnectPoll
and prevent concurrent connections from making progress. Applications which only ever use the synchronous connection primitives, such as PQconnectdb, may
synchronously retrieve a token during the hook instead of implementing the async callback, but they will necessarily be limited to one connection at a time.

924

https://datatracker.ietf.org/doc/html/rfc8628#section-3.3.1

libpq — C Library

cannot make further progress without blocking, it should return either PGRES_POLLING_READING or
PGRES_POLLING_WRITING after setting *pgsocket to the file descriptor that will be marked ready to
read/write when progress can be made again. (This descriptor is then provided to the top-level polling
loop via PQsocket().) Return PGRES_POLLING_OK after setting token when the flow is complete, or
PGRES_POLLING_FAILED to indicate failure.

Implementations may wish to store additional data for bookkeeping across calls to the async and
cleanup callbacks. The user pointer is provided for this purpose; libpq will not touch its contents
and the application may use it at its convenience. (Remember to free any allocations during token
cleanup.)

32.20.2. Debugging and Developer Settings
A "dangerous debugging mode" may be enabled by setting the environment variable PGOAUTHDE-
BUG=UNSAFE. This functionality is provided for ease of local development and testing only. It does several
things that you will not want a production system to do:
• permits the use of unencrypted HTTP during the OAuth provider exchange
• allows the system's trusted CA list to be completely replaced using the PGOAUTHCAFILE environment

variable
• prints HTTP traffic (containing several critical secrets) to standard error during the OAuth flow
• permits the use of zero-second retry intervals, which can cause the client to busy-loop and point-

lessly consume CPU

Warning
Do not share the output of the OAuth flow traffic with third parties. It contains secrets that can
be used to attack your clients and servers.

32.21. Behavior in Threaded Programs
As of version 17, libpq is always reentrant and thread-safe. However, one restriction is that no two
threads attempt to manipulate the same PGconn object at the same time. In particular, you cannot issue
concurrent commands from different threads through the same connection object. (If you need to run
concurrent commands, use multiple connections.)

PGresult objects are normally read-only after creation, and so can be passed around freely between
threads. However, if you use any of the PGresult-modifying functions described in Section 32.12 or
Section 32.14, it's up to you to avoid concurrent operations on the same PGresult, too.

In earlier versions, libpq could be compiled with or without thread support, depending on compiler
options. This function allows the querying of libpq's thread-safe status:

PQisthreadsafe

Returns the thread safety status of the libpq library.
int PQisthreadsafe();

Returns 1 if the libpq is thread-safe and 0 if it is not. Always returns 1 on version 17 and above.

The deprecated functions PQrequestCancel and PQoidStatus are not thread-safe and should not be
used in multithread programs. PQrequestCancel can be replaced by PQcancelBlocking. PQoidStatus
can be replaced by PQoidValue.

If you are using Kerberos inside your application (in addition to inside libpq), you will need to do locking
around Kerberos calls because Kerberos functions are not thread-safe. See function PQregisterThread-
Lock in the libpq source code for a way to do cooperative locking between libpq and your application.

Similarly, if you are using Curl inside your application, and you do not already initialize libcurl global-
ly before starting new threads, you will need to cooperatively lock (again via PQregisterThreadLock)

925

https://curl.se/libcurl/c/curl_global_init.html
https://curl.se/libcurl/c/curl_global_init.html

libpq — C Library

around any code that may initialize libcurl. This restriction is lifted for more recent versions of Curl that
are built to support thread-safe initialization; those builds can be identified by the advertisement of a
threadsafe feature in their version metadata.

32.22. Building libpq Programs
To build (i.e., compile and link) a program using libpq you need to do all of the following things:

• Include the libpq-fe.h header file:

#include <libpq-fe.h>

If you failed to do that then you will normally get error messages from your compiler similar to:

foo.c: In function `main':
foo.c:34: `PGconn' undeclared (first use in this function)
foo.c:35: `PGresult' undeclared (first use in this function)
foo.c:54: `CONNECTION_BAD' undeclared (first use in this function)
foo.c:68: `PGRES_COMMAND_OK' undeclared (first use in this function)
foo.c:95: `PGRES_TUPLES_OK' undeclared (first use in this function)

• Point your compiler to the directory where the PostgreSQL header files were installed, by supplying
the -Idirectory option to your compiler. (In some cases the compiler will look into the directory
in question by default, so you can omit this option.) For instance, your compile command line could
look like:

cc -c -I/usr/local/pgsql/include testprog.c

If you are using makefiles then add the option to the CPPFLAGS variable:

CPPFLAGS += -I/usr/local/pgsql/include

If there is any chance that your program might be compiled by other users then you should not
hardcode the directory location like that. Instead, you can run the utility pg_configto find out
where the header files are on the local system:

$ pg_config --includedir
/usr/local/include

If you have pkg-configinstalled, you can run instead:

$ pkg-config --cflags libpq
-I/usr/local/include

Note that this will already include the -I in front of the path.

Failure to specify the correct option to the compiler will result in an error message such as:

testlibpq.c:8:22: libpq-fe.h: No such file or directory

• When linking the final program, specify the option -lpq so that the libpq library gets pulled in, as
well as the option -Ldirectory to point the compiler to the directory where the libpq library re-
sides. (Again, the compiler will search some directories by default.) For maximum portability, put
the -L option before the -lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

You can find out the library directory using pg_config as well:

$ pg_config --libdir
/usr/local/pgsql/lib

Or again use pkg-config:

$ pkg-config --libs libpq
-L/usr/local/pgsql/lib -lpq

926

libpq — C Library

Note again that this prints the full options, not only the path.

Error messages that point to problems in this area could look like the following:
testlibpq.o: In function `main':
testlibpq.o(.text+0x60): undefined reference to `PQsetdbLogin'
testlibpq.o(.text+0x71): undefined reference to `PQstatus'
testlibpq.o(.text+0xa4): undefined reference to `PQerrorMessage'

This means you forgot -lpq.
/usr/bin/ld: cannot find -lpq

This means you forgot the -L option or did not specify the right directory.

32.23. Example Programs
These examples and others can be found in the directory src/test/examples in the source code distri-
bution.

Example 32.1. libpq Example Program 1

/*
 * src/test/examples/testlibpq.c
 *
 *
 * testlibpq.c
 *
 * Test the C version of libpq, the PostgreSQL frontend library.
 */
#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,
 j;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

927

libpq — C Library

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Our test case here involves using a cursor, for which we must be inside
 * a transaction block. We could do the whole thing with a single
 * PQexec() of "select * from pg_database", but that's too trivial to make
 * a good example.
 */

 /* Start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * Fetch rows from pg_database, the system catalog of databases
 */
 res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in myportal");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)

928

libpq — C Library

 {
 fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* first, print out the attribute names */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* next, print out the rows */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }

 PQclear(res);

 /* close the portal ... we don't bother to check for errors ... */
 res = PQexec(conn, "CLOSE myportal");
 PQclear(res);

 /* end the transaction */
 res = PQexec(conn, "END");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 32.2. libpq Example Program 2

/*
 * src/test/examples/testlibpq2.c
 *
 *
 * testlibpq2.c
 * Test of the asynchronous notification interface
 *
 * Start this program, then from psql in another window do
 * NOTIFY TBL2;
 * Repeat four times to get this program to exit.
 *
 * Or, if you want to get fancy, try this:
 * populate a database with the following commands
 * (provided in src/test/examples/testlibpq2.sql):
 *
 * CREATE SCHEMA TESTLIBPQ2;
 * SET search_path = TESTLIBPQ2;
 * CREATE TABLE TBL1 (i int4);
 * CREATE TABLE TBL2 (i int4);

929

libpq — C Library

 * CREATE RULE r1 AS ON INSERT TO TBL1 DO
 * (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);
 *
 * Start this program, then from psql do this four times:
 *
 * INSERT INTO TESTLIBPQ2.TBL1 VALUES (10);
 */

#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 PGnotify *notify;
 int nnotifies;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */

930

libpq — C Library

 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Issue LISTEN command to enable notifications from the rule's NOTIFY.
 */
 res = PQexec(conn, "LISTEN TBL2");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "LISTEN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /* Quit after four notifies are received. */
 nnotifies = 0;
 while (nnotifies < 4)
 {
 /*
 * Sleep until something happens on the connection. We use select(2)
 * to wait for input, but you could also use poll() or similar
 * facilities.
 */
 int sock;
 fd_set input_mask;

 sock = PQsocket(conn);

 if (sock < 0)
 break; /* shouldn't happen */

 FD_ZERO(&input_mask);
 FD_SET(sock, &input_mask);

 if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
 {
 fprintf(stderr, "select() failed: %s\n", strerror(errno));
 exit_nicely(conn);
 }

 /* Now check for input */
 PQconsumeInput(conn);
 while ((notify = PQnotifies(conn)) != NULL)
 {
 fprintf(stderr,

931

libpq — C Library

 "ASYNC NOTIFY of '%s' received from backend PID %d\n",
 notify->relname, notify->be_pid);
 PQfreemem(notify);
 nnotifies++;
 PQconsumeInput(conn);
 }
 }

 fprintf(stderr, "Done.\n");

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 32.3. libpq Example Program 3

/*
 * src/test/examples/testlibpq3.c
 *
 *
 * testlibpq3.c
 * Test out-of-line parameters and binary I/O.
 *
 * Before running this, populate a database with the following commands
 * (provided in src/test/examples/testlibpq3.sql):
 *
 * CREATE SCHEMA testlibpq3;
 * SET search_path = testlibpq3;
 * SET standard_conforming_strings = ON;
 * CREATE TABLE test1 (i int4, t text, b bytea);
 * INSERT INTO test1 values (1, 'joe''s place', '\000\001\002\003\004');
 * INSERT INTO test1 values (2, 'ho there', '\004\003\002\001\000');
 *
 * The expected output is:
 *
 * tuple 0: got
 * i = (4 bytes) 1
 * t = (11 bytes) 'joe's place'
 * b = (5 bytes) \000\001\002\003\004
 *
 * tuple 0: got
 * i = (4 bytes) 2
 * t = (8 bytes) 'ho there'
 * b = (5 bytes) \004\003\002\001\000
 */

#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>

932

libpq — C Library

#include "libpq-fe.h"

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

/*
 * This function prints a query result that is a binary-format fetch from
 * a table defined as in the comment above. We split it out because the
 * main() function uses it twice.
 */
static void
show_binary_results(PGresult *res)
{
 int i,
 j;
 int i_fnum,
 t_fnum,
 b_fnum;

 /* Use PQfnumber to avoid assumptions about field order in result */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");
 b_fnum = PQfnumber(res, "b");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 char *bptr;
 int blen;
 int ival;

 /* Get the field values (we ignore possibility they are null!) */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);
 bptr = PQgetvalue(res, i, b_fnum);

 /*
 * The binary representation of INT4 is in network byte order, which
 * we'd better coerce to the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is, well, text, and since libpq
 * was nice enough to append a zero byte to it, it'll work just fine
 * as a C string.
 *
 * The binary representation of BYTEA is a bunch of bytes, which could

933

libpq — C Library

 * include embedded nulls so we have to pay attention to field length.
 */
 blen = PQgetlength(res, i, b_fnum);

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf(" b = (%d bytes) ", blen);
 for (j = 0; j < blen; j++)
 printf("\\%03o", bptr[j]);
 printf("\n\n");
 }
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn, "SET search_path = testlibpq3");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*

934

libpq — C Library

 * The point of this program is to illustrate use of PQexecParams() with
 * out-of-line parameters, as well as binary transmission of data.
 *
 * This first example transmits the parameters as text, but receives the
 * results in binary format. By using out-of-line parameters we can avoid
 * a lot of tedious mucking about with quoting and escaping, even though
 * the data is text. Notice how we don't have to do anything special with
 * the quote mark in the parameter value.
 */

 /* Here is our out-of-line parameter value */
 paramValues[0] = "joe's place";

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE t = $1",
 1, /* one param */
 NULL, /* let the backend deduce param type */
 paramValues,
 NULL, /* don't need param lengths since text */
 NULL, /* default to all text params */
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /*
 * In this second example we transmit an integer parameter in binary form,
 * and again retrieve the results in binary form.
 *
 * Although we tell PQexecParams we are letting the backend deduce
 * parameter type, we really force the decision by casting the parameter
 * symbol in the query text. This is a good safety measure when sending
 * binary parameters.
 */

 /* Convert integer value "2" to network byte order */
 binaryIntVal = htonl((uint32_t) 2);

 /* Set up parameter arrays for PQexecParams */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* binary */

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE i = $1::int4",
 1, /* one param */
 NULL, /* let the backend deduce param type */
 paramValues,
 paramLengths,
 paramFormats,

935

libpq — C Library

 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

936

Chapter 33. Large Objects
PostgreSQL has a large object facility, which provides stream-style access to user data that is stored in
a special large-object structure. Streaming access is useful when working with data values that are too
large to manipulate conveniently as a whole.

This chapter describes the implementation and the programming and query language interfaces to Post-
greSQL large object data. We use the libpq C library for the examples in this chapter, but most program-
ming interfaces native to PostgreSQL support equivalent functionality. Other interfaces might use the
large object interface internally to provide generic support for large values. This is not described here.

33.1. Introduction
All large objects are stored in a single system table named pg_largeobject. Each large object also has
an entry in the system table pg_largeobject_metadata. Large objects can be created, modified, and
deleted using a read/write API that is similar to standard operations on files.

PostgreSQL also supports a storage system called “TOAST”, which automatically stores values larger
than a single database page into a secondary storage area per table. This makes the large object facility
partially obsolete. One remaining advantage of the large object facility is that it allows values up to 4
TB in size, whereas TOASTed fields can be at most 1 GB. Also, reading and updating portions of a large
object can be done efficiently, while most operations on a TOASTed field will read or write the whole
value as a unit.

33.2. Implementation Features
The large object implementation breaks large objects up into “chunks” and stores the chunks in rows in
the database. A B-tree index guarantees fast searches for the correct chunk number when doing random
access reads and writes.

The chunks stored for a large object do not have to be contiguous. For example, if an application opens a
new large object, seeks to offset 1000000, and writes a few bytes there, this does not result in allocation
of 1000000 bytes worth of storage; only of chunks covering the range of data bytes actually written. A
read operation will, however, read out zeroes for any unallocated locations preceding the last existing
chunk. This corresponds to the common behavior of “sparsely allocated” files in Unix file systems.

As of PostgreSQL 9.0, large objects have an owner and a set of access permissions, which can be man-
aged using GRANT and REVOKE. SELECT privileges are required to read a large object, and UPDATE
privileges are required to write or truncate it. Only the large object's owner (or a database superuser)
can delete, comment on, or change the owner of a large object. To adjust this behavior for compatibility
with prior releases, see the lo_compat_privileges run-time parameter.

33.3. Client Interfaces
This section describes the facilities that PostgreSQL's libpq client interface library provides for accessing
large objects. The PostgreSQL large object interface is modeled after the Unix file-system interface, with
analogues of open, read, write, lseek, etc.

All large object manipulation using these functions must take place within an SQL transaction block,
since large object file descriptors are only valid for the duration of a transaction. Write operations,
including lo_open with the INV_WRITE mode, are not allowed in a read-only transaction.

If an error occurs while executing any one of these functions, the function will return an otherwise-im-
possible value, typically 0 or -1. A message describing the error is stored in the connection object and
can be retrieved with PQerrorMessage .

Client applications that use these functions should include the header file libpq/libpq-fs.h and link
with the libpq library.

Client applications cannot use these functions while a libpq connection is in pipeline mode.

937

Large Objects

33.3.1. Creating a Large Object
The function
Oid lo_create(PGconn *conn, Oid lobjId);

creates a new large object. The OID to be assigned can be specified by lobjId; if so, failure occurs if
that OID is already in use for some large object. If lobjId is InvalidOid (zero) then lo_create assigns
an unused OID. The return value is the OID that was assigned to the new large object, or InvalidOid
(zero) on failure.

An example:
inv_oid = lo_create(conn, desired_oid);

The older function
Oid lo_creat(PGconn *conn, int mode);

also creates a new large object, always assigning an unused OID. The return value is the OID that was
assigned to the new large object, or InvalidOid (zero) on failure.

In PostgreSQL releases 8.1 and later, the mode is ignored, so that lo_creat is exactly equivalent to
lo_create with a zero second argument. However, there is little reason to use lo_creat unless you
need to work with servers older than 8.1. To work with such an old server, you must use lo_creat not
lo_create, and you must set mode to one of INV_READ, INV_WRITE, or INV_READ | INV_WRITE. (These
symbolic constants are defined in the header file libpq/libpq-fs.h.)

An example:
inv_oid = lo_creat(conn, INV_READ|INV_WRITE);

33.3.2. Importing a Large Object
To import an operating system file as a large object, call
Oid lo_import(PGconn *conn, const char *filename);

filename specifies the operating system name of the file to be imported as a large object. The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure. Note that
the file is read by the client interface library, not by the server; so it must exist in the client file system
and be readable by the client application.

The function
Oid lo_import_with_oid(PGconn *conn, const char *filename, Oid lobjId);

also imports a new large object. The OID to be assigned can be specified by lobjId; if so, failure occurs if
that OID is already in use for some large object. If lobjId is InvalidOid (zero) then lo_import_with_oid
assigns an unused OID (this is the same behavior as lo_import). The return value is the OID that was
assigned to the new large object, or InvalidOid (zero) on failure.

lo_import_with_oid is new as of PostgreSQL 8.4 and uses lo_create internally which is new in 8.1; if
this function is run against 8.0 or before, it will fail and return InvalidOid.

33.3.3. Exporting a Large Object
To export a large object into an operating system file, call
int lo_export(PGconn *conn, Oid lobjId, const char *filename);

The lobjId argument specifies the OID of the large object to export and the filename argument specifies
the operating system name of the file. Note that the file is written by the client interface library, not by
the server. Returns 1 on success, -1 on failure.

33.3.4. Opening an Existing Large Object
To open an existing large object for reading or writing, call
int lo_open(PGconn *conn, Oid lobjId, int mode);

938

Large Objects

The lobjId argument specifies the OID of the large object to open. The mode bits control whether the
object is opened for reading (INV_READ), writing (INV_WRITE), or both. (These symbolic constants are
defined in the header file libpq/libpq-fs.h.) lo_open returns a (non-negative) large object descriptor
for later use in lo_read, lo_write, lo_lseek, lo_lseek64, lo_tell, lo_tell64, lo_truncate, lo_trun-
cate64, and lo_close. The descriptor is only valid for the duration of the current transaction. On failure,
-1 is returned.

The server currently does not distinguish between modes INV_WRITE and INV_READ | INV_WRITE: you
are allowed to read from the descriptor in either case. However there is a significant difference between
these modes and INV_READ alone: with INV_READ you cannot write on the descriptor, and the data read
from it will reflect the contents of the large object at the time of the transaction snapshot that was active
when lo_open was executed, regardless of later writes by this or other transactions. Reading from a
descriptor opened with INV_WRITE returns data that reflects all writes of other committed transactions
as well as writes of the current transaction. This is similar to the behavior of REPEATABLE READ versus
READ COMMITTED transaction modes for ordinary SQL SELECT commands.

lo_open will fail if SELECT privilege is not available for the large object, or if INV_WRITE is specified and
UPDATE privilege is not available. (Prior to PostgreSQL 11, these privilege checks were instead performed
at the first actual read or write call using the descriptor.) These privilege checks can be disabled with
the lo_compat_privileges run-time parameter.

An example:
inv_fd = lo_open(conn, inv_oid, INV_READ|INV_WRITE);

33.3.5. Writing Data to a Large Object
The function
int lo_write(PGconn *conn, int fd, const char *buf, size_t len);

writes len bytes from buf (which must be of size len) to large object descriptor fd. The fd argument
must have been returned by a previous lo_open. The number of bytes actually written is returned (in
the current implementation, this will always equal len unless there is an error). In the event of an error,
the return value is -1.

Although the len parameter is declared as size_t, this function will reject length values larger than
INT_MAX. In practice, it's best to transfer data in chunks of at most a few megabytes anyway.

33.3.6. Reading Data from a Large Object
The function
int lo_read(PGconn *conn, int fd, char *buf, size_t len);

reads up to len bytes from large object descriptor fd into buf (which must be of size len). The fd
argument must have been returned by a previous lo_open. The number of bytes actually read is returned;
this will be less than len if the end of the large object is reached first. In the event of an error, the
return value is -1.

Although the len parameter is declared as size_t, this function will reject length values larger than
INT_MAX. In practice, it's best to transfer data in chunks of at most a few megabytes anyway.

33.3.7. Seeking in a Large Object
To change the current read or write location associated with a large object descriptor, call
int lo_lseek(PGconn *conn, int fd, int offset, int whence);

This function moves the current location pointer for the large object descriptor identified by fd to the
new location specified by offset. The valid values for whence are SEEK_SET (seek from object start),
SEEK_CUR (seek from current position), and SEEK_END (seek from object end). The return value is the
new location pointer, or -1 on error.

When dealing with large objects that might exceed 2GB in size, instead use

939

Large Objects

int64_t lo_lseek64(PGconn *conn, int fd, int64_t offset, int whence);

This function has the same behavior as lo_lseek, but it can accept an offset larger than 2GB and/
or deliver a result larger than 2GB. Note that lo_lseek will fail if the new location pointer would be
greater than 2GB.

lo_lseek64 is new as of PostgreSQL 9.3. If this function is run against an older server version, it will
fail and return -1.

33.3.8. Obtaining the Seek Position of a Large Object
To obtain the current read or write location of a large object descriptor, call
int lo_tell(PGconn *conn, int fd);

If there is an error, the return value is -1.

When dealing with large objects that might exceed 2GB in size, instead use
int64_t lo_tell64(PGconn *conn, int fd);

This function has the same behavior as lo_tell, but it can deliver a result larger than 2GB. Note that
lo_tell will fail if the current read/write location is greater than 2GB.

lo_tell64 is new as of PostgreSQL 9.3. If this function is run against an older server version, it will
fail and return -1.

33.3.9. Truncating a Large Object
To truncate a large object to a given length, call
int lo_truncate(PGconn *conn, int fd, size_t len);

This function truncates the large object descriptor fd to length len. The fd argument must have been
returned by a previous lo_open. If len is greater than the large object's current length, the large object
is extended to the specified length with null bytes ('\0'). On success, lo_truncate returns zero. On error,
the return value is -1.

The read/write location associated with the descriptor fd is not changed.

Although the len parameter is declared as size_t, lo_truncate will reject length values larger than
INT_MAX.

When dealing with large objects that might exceed 2GB in size, instead use
int lo_truncate64(PGconn *conn, int fd, int64_t len);

This function has the same behavior as lo_truncate, but it can accept a len value exceeding 2GB.

lo_truncate is new as of PostgreSQL 8.3; if this function is run against an older server version, it will
fail and return -1.

lo_truncate64 is new as of PostgreSQL 9.3; if this function is run against an older server version, it
will fail and return -1.

33.3.10. Closing a Large Object Descriptor
A large object descriptor can be closed by calling
int lo_close(PGconn *conn, int fd);

where fd is a large object descriptor returned by lo_open. On success, lo_close returns zero. On error,
the return value is -1.

Any large object descriptors that remain open at the end of a transaction will be closed automatically.

33.3.11. Removing a Large Object
To remove a large object from the database, call

940

Large Objects

int lo_unlink(PGconn *conn, Oid lobjId);

The lobjId argument specifies the OID of the large object to remove. Returns 1 if successful, -1 on
failure.

33.4. Server-Side Functions
Server-side functions tailored for manipulating large objects from SQL are listed in Table 33.1.

Table 33.1. SQL-Oriented Large Object Functions

Function
Description
Example(s)

lo_from_bytea (loid oid, data bytea) → oid
Creates a large object and stores data in it. If loid is zero then the system will choose a free
OID, otherwise that OID is used (with an error if some large object already has that OID). On
success, the large object's OID is returned.
lo_from_bytea(0, '\xffffff00') → 24528

lo_put (loid oid, offset bigint, data bytea) → void
Writes data starting at the given offset within the large object; the large object is enlarged if
necessary.
lo_put(24528, 1, '\xaa') →

lo_get (loid oid [, offset bigint, length integer]) → bytea
Extracts the large object's contents, or a substring thereof.
lo_get(24528, 0, 3) → \xffaaff

There are additional server-side functions corresponding to each of the client-side functions described
earlier; indeed, for the most part the client-side functions are simply interfaces to the equivalent serv-
er-side functions. The ones just as convenient to call via SQL commands are lo_creat, lo_create,
lo_unlink, lo_import, and lo_export. Here are examples of their use:
CREATE TABLE image (
 name text,
 raster oid
);

SELECT lo_creat(-1); -- returns OID of new, empty large object

SELECT lo_create(43213); -- attempts to create large object with OID 43213

SELECT lo_unlink(173454); -- deletes large object with OID 173454

INSERT INTO image (name, raster)
 VALUES ('beautiful image', lo_import('/etc/motd'));

INSERT INTO image (name, raster) -- same as above, but specify OID to use
 VALUES ('beautiful image', lo_import('/etc/motd', 68583));

SELECT lo_export(image.raster, '/tmp/motd') FROM image
 WHERE name = 'beautiful image';

The server-side lo_import and lo_export functions behave considerably differently from their client-
side analogs. These two functions read and write files in the server's file system, using the permissions
of the database's owning user. Therefore, by default their use is restricted to superusers. In contrast,
the client-side import and export functions read and write files in the client's file system, using the
permissions of the client program. The client-side functions do not require any database privileges,
except the privilege to read or write the large object in question.

941

Large Objects

Caution
It is possible to GRANT use of the server-side lo_import and lo_export functions to non-supe-
rusers, but careful consideration of the security implications is required. A malicious user of such
privileges could easily parlay them into becoming superuser (for example by rewriting server con-
figuration files), or could attack the rest of the server's file system without bothering to obtain
database superuser privileges as such. Access to roles having such privilege must therefore be
guarded just as carefully as access to superuser roles. Nonetheless, if use of server-side lo_import
or lo_export is needed for some routine task, it's safer to use a role with such privileges than one
with full superuser privileges, as that helps to reduce the risk of damage from accidental errors.

The functionality of lo_read and lo_write is also available via server-side calls, but the names of the
server-side functions differ from the client side interfaces in that they do not contain underscores. You
must call these functions as loread and lowrite.

33.5. Example Program
Example 33.1 is a sample program which shows how the large object interface in libpq can be used.
Parts of the program are commented out but are left in the source for the reader's benefit. This program
can also be found in src/test/examples/testlo.c in the source distribution.

Example 33.1. Large Objects with libpq Example Program
/*---
 *
 * testlo.c
 * test using large objects with libpq
 *
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 * src/test/examples/testlo.c
 *
 *---
 */
#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
 * importFile -
 * import file "in_filename" into database as large object "lobjOid"
 *
 */
static Oid
importFile(PGconn *conn, char *filename)
{

942

Large Objects

 Oid lobjId;
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the file to be read in
 */
 fd = open(filename, O_RDONLY, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"\n", filename);
 }

 /*
 * create the large object
 */
 lobjId = lo_creat(conn, INV_READ | INV_WRITE);
 if (lobjId == 0)
 fprintf(stderr, "cannot create large object");

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);

 /*
 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
 {
 tmp = lo_write(conn, lobj_fd, buf, nbytes);
 if (tmp < nbytes)
 fprintf(stderr, "error while reading \"%s\"", filename);
 }

 close(fd);
 lo_close(conn, lobj_fd);

 return lobjId;
}

static void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nread;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 nread = 0;
 while (len - nread > 0)

943

Large Objects

 {
 nbytes = lo_read(conn, lobj_fd, buf, len - nread);
 buf[nbytes] = '\0';
 fprintf(stderr, ">>> %s", buf);
 nread += nbytes;
 if (nbytes <= 0)
 break; /* no more data? */
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

static void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nwritten;
 int i;

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 for (i = 0; i < len; i++)
 buf[i] = 'X';
 buf[i] = '\0';

 nwritten = 0;
 while (len - nwritten > 0)
 {
 nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
 nwritten += nbytes;
 if (nbytes <= 0)
 {
 fprintf(stderr, "\nWRITE FAILED!\n");
 break;
 }
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

/*
 * exportFile -
 * export large object "lobjOid" to file "out_filename"
 *
 */
static void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{

944

Large Objects

 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the large object
 */
 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 /*
 * open the file to be written to
 */
 fd = open(filename, O_CREAT | O_WRONLY | O_TRUNC, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"",
 filename);
 }

 /*
 * read in from the inversion file and write to the Unix file
 */
 while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
 {
 tmp = write(fd, buf, nbytes);
 if (tmp < nbytes)
 {
 fprintf(stderr, "error while writing \"%s\"",
 filename);
 }
 }

 lo_close(conn, lobj_fd);
 close(fd);
}

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 char *in_filename,
 *out_filename;
 char *database;
 Oid lobjOid;
 PGconn *conn;
 PGresult *res;

 if (argc != 4)

945

Large Objects

 {
 fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
 argv[0]);
 exit(1);
 }

 database = argv[1];
 in_filename = argv[2];
 out_filename = argv[3];

 /*
 * set up the connection
 */
 conn = PQsetdb(NULL, NULL, NULL, NULL, database);

 /* check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "begin");
 PQclear(res);
 printf("importing file \"%s\" ...\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */
 lobjOid = lo_import(conn, in_filename);
 if (lobjOid == 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 else
 {
 printf("\tas large object %u.\n", lobjOid);

 printf("picking out bytes 1000-2000 of the large object\n");
 pickout(conn, lobjOid, 1000, 1000);

 printf("overwriting bytes 1000-2000 of the large object with X's\n");
 overwrite(conn, lobjOid, 1000, 1000);

 printf("exporting large object to file \"%s\" ...\n", out_filename);
/* exportFile(conn, lobjOid, out_filename); */
 if (lo_export(conn, lobjOid, out_filename) < 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 }

 res = PQexec(conn, "end");
 PQclear(res);

946

Large Objects

 PQfinish(conn);
 return 0;
}

947

Chapter 34. ECPG — Embedded SQL in C
This chapter describes the embedded SQL package for PostgreSQL. It was written by Linus Tolke (<li-
nus@epact.se>) and Michael Meskes (<meskes@postgresql.org>). Originally it was written to work
with C. It also works with C++, but it does not recognize all C++ constructs yet.

This documentation is quite incomplete. But since this interface is standardized, additional information
can be found in many resources about SQL.

34.1. The Concept
An embedded SQL program consists of code written in an ordinary programming language, in this case C,
mixed with SQL commands in specially marked sections. To build the program, the source code (*.pgc) is
first passed through the embedded SQL preprocessor, which converts it to an ordinary C program (*.c),
and afterwards it can be processed by a C compiler. (For details about the compiling and linking see
Section 34.10.) Converted ECPG applications call functions in the libpq library through the embedded
SQL library (ecpglib), and communicate with the PostgreSQL server using the normal frontend-backend
protocol.

Embedded SQL has advantages over other methods for handling SQL commands from C code. First, it
takes care of the tedious passing of information to and from variables in your C program. Second, the
SQL code in the program is checked at build time for syntactical correctness. Third, embedded SQL in C
is specified in the SQL standard and supported by many other SQL database systems. The PostgreSQL
implementation is designed to match this standard as much as possible, and it is usually possible to port
embedded SQL programs written for other SQL databases to PostgreSQL with relative ease.

As already stated, programs written for the embedded SQL interface are normal C programs with special
code inserted to perform database-related actions. This special code always has the form:
EXEC SQL ...;

These statements syntactically take the place of a C statement. Depending on the particular statement,
they can appear at the global level or within a function.

Embedded SQL statements follow the case-sensitivity rules of normal SQL code, and not those of C.
Also they allow nested C-style comments as per the SQL standard. The C part of the program, however,
follows the C standard of not accepting nested comments. Embedded SQL statements likewise use SQL
rules, not C rules, for parsing quoted strings and identifiers. (See Section 4.1.2.1 and Section 4.1.1
respectively. Note that ECPG assumes that standard_conforming_strings is on.) Of course, the C part
of the program follows C quoting rules.

The following sections explain all the embedded SQL statements.

34.2. Managing Database Connections
This section describes how to open, close, and switch database connections.

34.2.1. Connecting to the Database Server
One connects to a database using the following statement:
EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

The target can be specified in the following ways:
• dbname[@hostname][:port]

• tcp:postgresql://hostname[:port][/dbname][?options]

• unix:postgresql://localhost[:port][/dbname][?options]

• an SQL string literal containing one of the above forms
• a reference to a character variable containing one of the above forms (see examples)

948

ECPG — Embedded SQL in C

• DEFAULT

The connection target DEFAULT initiates a connection to the default database under the default user
name. No separate user name or connection name can be specified in that case.

If you specify the connection target directly (that is, not as a string literal or variable reference), then
the components of the target are passed through normal SQL parsing; this means that, for example,
the hostname must look like one or more SQL identifiers separated by dots, and those identifiers will be
case-folded unless double-quoted. Values of any options must be SQL identifiers, integers, or variable
references. Of course, you can put nearly anything into an SQL identifier by double-quoting it. In prac-
tice, it is probably less error-prone to use a (single-quoted) string literal or a variable reference than to
write the connection target directly.

There are also different ways to specify the user name:
• username

• username/password

• username IDENTIFIED BY password

• username USING password

As above, the parameters username and password can be an SQL identifier, an SQL string literal, or a
reference to a character variable.

If the connection target includes any options, those consist of keyword=value specifications separated
by ampersands (&). The allowed key words are the same ones recognized by libpq (see Section 32.1.2).
Spaces are ignored before any keyword or value, though not within or after one. Note that there is no
way to write & within a value.

Notice that when specifying a socket connection (with the unix: prefix), the host name must be exactly
localhost. To select a non-default socket directory, write the directory's pathname as the value of a
host option in the options part of the target.

The connection-name is used to handle multiple connections in one program. It can be omitted if a pro-
gram uses only one connection. The most recently opened connection becomes the current connection,
which is used by default when an SQL statement is to be executed (see later in this chapter).

Here are some examples of CONNECT statements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO tcp:postgresql://sql.mydomain.com/mydb AS myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
const char *passwd = "secret";
EXEC SQL END DECLARE SECTION;
 ...
EXEC SQL CONNECT TO :target USER :user USING :passwd;
/* or EXEC SQL CONNECT TO :target USER :user/:passwd; */

The last example makes use of the feature referred to above as character variable references. You will
see in later sections how C variables can be used in SQL statements when you prefix them with a colon.

Be advised that the format of the connection target is not specified in the SQL standard. So if you want
to develop portable applications, you might want to use something based on the last example above to
encapsulate the connection target string somewhere.

If untrusted users have access to a database that has not adopted a secure schema usage pattern, begin
each session by removing publicly-writable schemas from search_path. For example, add options=-c

949

ECPG — Embedded SQL in C

search_path= to options, or issue EXEC SQL SELECT pg_catalog.set_config('search_path', '',
false); after connecting. This consideration is not specific to ECPG; it applies to every interface for
executing arbitrary SQL commands.

34.2.2. Choosing a Connection
SQL statements in embedded SQL programs are by default executed on the current connection, that is,
the most recently opened one. If an application needs to manage multiple connections, then there are
three ways to handle this.

The first option is to explicitly choose a connection for each SQL statement, for example:

EXEC SQL AT connection-name SELECT ...;

This option is particularly suitable if the application needs to use several connections in mixed order.

If your application uses multiple threads of execution, they cannot share a connection concurrently. You
must either explicitly control access to the connection (using mutexes) or use a connection for each
thread.

The second option is to execute a statement to switch the current connection. That statement is:

EXEC SQL SET CONNECTION connection-name;

This option is particularly convenient if many statements are to be executed on the same connection.

Here is an example program managing multiple database connections:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
EXEC SQL END DECLARE SECTION;

int
main()
{
 EXEC SQL CONNECT TO testdb1 AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb2 AS con2 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb3 AS con3 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 /* This query would be executed in the last opened database "testdb3". */
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb3)\n", dbname);

 /* Using "AT" to run a query in "testdb2" */
 EXEC SQL AT con2 SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb2)\n", dbname);

 /* Switch the current connection to "testdb1". */
 EXEC SQL SET CONNECTION con1;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb1)\n", dbname);

 EXEC SQL DISCONNECT ALL;
 return 0;
}

950

ECPG — Embedded SQL in C

This example would produce this output:

current=testdb3 (should be testdb3)
current=testdb2 (should be testdb2)
current=testdb1 (should be testdb1)

The third option is to declare an SQL identifier linked to the connection, for example:

EXEC SQL AT connection-name DECLARE statement-name STATEMENT;
EXEC SQL PREPARE statement-name FROM :dyn-string;

Once you link an SQL identifier to a connection, you execute dynamic SQL without an AT clause. Note
that this option behaves like preprocessor directives, therefore the link is enabled only in the file.

Here is an example program using this option:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
char dbname[128];
char *dyn_sql = "SELECT current_database()";
EXEC SQL END DECLARE SECTION;

int main(){
 EXEC SQL CONNECT TO postgres AS con1;
 EXEC SQL CONNECT TO testdb AS con2;
 EXEC SQL AT con1 DECLARE stmt STATEMENT;
 EXEC SQL PREPARE stmt FROM :dyn_sql;
 EXEC SQL EXECUTE stmt INTO :dbname;
 printf("%s\n", dbname);

 EXEC SQL DISCONNECT ALL;
 return 0;
}

This example would produce this output, even if the default connection is testdb:

postgres

34.2.3. Closing a Connection
To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection];

The connection can be specified in the following ways:
• connection-name

• CURRENT

• ALL

If no connection name is specified, the current connection is closed.

It is good style that an application always explicitly disconnect from every connection it opened.

34.3. Running SQL Commands
Any SQL command can be run from within an embedded SQL application. Below are some examples
of how to do that.

34.3.1. Executing SQL Statements
Creating a table:

951

ECPG — Embedded SQL in C

EXEC SQL CREATE TABLE foo (number integer, ascii char(16));
EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;

Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, 'doodad');
EXEC SQL COMMIT;

Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
 SET ascii = 'foobar'
 WHERE number = 9999;
EXEC SQL COMMIT;

SELECT statements that return a single result row can also be executed using EXEC SQL directly. To handle
result sets with multiple rows, an application has to use a cursor; see Section 34.3.2 below. (As a special
case, an application can fetch multiple rows at once into an array host variable; see Section 34.4.4.3.1.)

Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = 'doodad';

Also, a configuration parameter can be retrieved with the SHOW command:

EXEC SQL SHOW search_path INTO :var;

The tokens of the form :something are host variables, that is, they refer to variables in the C program.
They are explained in Section 34.4.

34.3.2. Using Cursors
To retrieve a result set holding multiple rows, an application has to declare a cursor and fetch each row
from the cursor. The steps to use a cursor are the following: declare a cursor, open it, fetch a row from
the cursor, repeat, and finally close it.

Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
 SELECT number, ascii FROM foo
 ORDER BY ascii;
EXEC SQL OPEN foo_bar;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

For more details about declaring a cursor, see DECLARE; for more details about fetching rows from a
cursor, see FETCH.

Note
The ECPG DECLARE command does not actually cause a statement to be sent to the PostgreSQL
backend. The cursor is opened in the backend (using the backend's DECLARE command) at the
point when the OPEN command is executed.

952

ECPG — Embedded SQL in C

34.3.3. Managing Transactions
In the default mode, statements are committed only when EXEC SQL COMMIT is issued. The embedded
SQL interface also supports autocommit of transactions (similar to psql's default behavior) via the -t
command-line option to ecpg (see ecpg) or via the EXEC SQL SET AUTOCOMMIT TO ON statement. In
autocommit mode, each command is automatically committed unless it is inside an explicit transaction
block. This mode can be explicitly turned off using EXEC SQL SET AUTOCOMMIT TO OFF.

The following transaction management commands are available:

EXEC SQL COMMIT

Commit an in-progress transaction.

EXEC SQL ROLLBACK

Roll back an in-progress transaction.

EXEC SQL PREPARE TRANSACTION transaction_id

Prepare the current transaction for two-phase commit.

EXEC SQL COMMIT PREPARED transaction_id

Commit a transaction that is in prepared state.

EXEC SQL ROLLBACK PREPARED transaction_id

Roll back a transaction that is in prepared state.

EXEC SQL SET AUTOCOMMIT TO ON

Enable autocommit mode.

EXEC SQL SET AUTOCOMMIT TO OFF

Disable autocommit mode. This is the default.

34.3.4. Prepared Statements
When the values to be passed to an SQL statement are not known at compile time, or the same statement
is going to be used many times, then prepared statements can be useful.

The statement is prepared using the command PREPARE. For the values that are not known yet, use the
placeholder “?”:

EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database WHERE oid = ?";

If a statement returns a single row, the application can call EXECUTE after PREPARE to execute the state-
ment, supplying the actual values for the placeholders with a USING clause:

EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1;

If a statement returns multiple rows, the application can use a cursor declared based on the prepared
statement. To bind input parameters, the cursor must be opened with a USING clause:

EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE oid > ?";
EXEC SQL DECLARE foo_bar CURSOR FOR stmt1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

EXEC SQL OPEN foo_bar USING 100;
...
while (1)

953

ECPG — Embedded SQL in C

{
 EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname;
 ...
}
EXEC SQL CLOSE foo_bar;

When you don't need the prepared statement anymore, you should deallocate it:
EXEC SQL DEALLOCATE PREPARE name;

For more details about PREPARE, see PREPARE. Also see Section 34.5 for more details about using place-
holders and input parameters.

34.4. Using Host Variables
In Section 34.3 you saw how you can execute SQL statements from an embedded SQL program. Some
of those statements only used fixed values and did not provide a way to insert user-supplied values into
statements or have the program process the values returned by the query. Those kinds of statements
are not really useful in real applications. This section explains in detail how you can pass data between
your C program and the embedded SQL statements using a simple mechanism called host variables. In
an embedded SQL program we consider the SQL statements to be guests in the C program code which
is the host language. Therefore the variables of the C program are called host variables.

Another way to exchange values between PostgreSQL backends and ECPG applications is the use of
SQL descriptors, described in Section 34.7.

34.4.1. Overview
Passing data between the C program and the SQL statements is particularly simple in embedded SQL.
Instead of having the program paste the data into the statement, which entails various complications,
such as properly quoting the value, you can simply write the name of a C variable into the SQL statement,
prefixed by a colon. For example:
EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);

This statement refers to two C variables named v1 and v2 and also uses a regular SQL string literal, to
illustrate that you are not restricted to use one kind of data or the other.

This style of inserting C variables in SQL statements works anywhere a value expression is expected
in an SQL statement.

34.4.2. Declare Sections
To pass data from the program to the database, for example as parameters in a query, or to pass data
from the database back to the program, the C variables that are intended to contain this data need to
be declared in specially marked sections, so the embedded SQL preprocessor is made aware of them.

This section starts with:
EXEC SQL BEGIN DECLARE SECTION;

and ends with:
EXEC SQL END DECLARE SECTION;

Between those lines, there must be normal C variable declarations, such as:
int x = 4;
char foo[16], bar[16];

As you can see, you can optionally assign an initial value to the variable. The variable's scope is deter-
mined by the location of its declaring section within the program. You can also declare variables with
the following syntax which implicitly creates a declare section:
EXEC SQL int i = 4;

954

ECPG — Embedded SQL in C

You can have as many declare sections in a program as you like.

The declarations are also echoed to the output file as normal C variables, so there's no need to declare
them again. Variables that are not intended to be used in SQL commands can be declared normally
outside these special sections.

The definition of a structure or union also must be listed inside a DECLARE section. Otherwise the pre-
processor cannot handle these types since it does not know the definition.

34.4.3. Retrieving Query Results
Now you should be able to pass data generated by your program into an SQL command. But how do
you retrieve the results of a query? For that purpose, embedded SQL provides special variants of the
usual commands SELECT and FETCH. These commands have a special INTO clause that specifies which
host variables the retrieved values are to be stored in. SELECT is used for a query that returns only single
row, and FETCH is used for a query that returns multiple rows, using a cursor.

Here is an example:
/*
 * assume this table:
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;

So the INTO clause appears between the select list and the FROM clause. The number of elements in the
select list and the list after INTO (also called the target list) must be equal.

Here is an example using the command FETCH:
EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
 ...
 EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
 ...
} while (...);

Here the INTO clause appears after all the normal clauses.

34.4.4. Type Mapping
When ECPG applications exchange values between the PostgreSQL server and the C application, such
as when retrieving query results from the server or executing SQL statements with input parameters,

955

ECPG — Embedded SQL in C

the values need to be converted between PostgreSQL data types and host language variable types (C
language data types, concretely). One of the main points of ECPG is that it takes care of this automatically
in most cases.

In this respect, there are two kinds of data types: Some simple PostgreSQL data types, such as integer
and text, can be read and written by the application directly. Other PostgreSQL data types, such as
timestamp and numeric can only be accessed through special library functions; see Section 34.4.4.2.

Table 34.1 shows which PostgreSQL data types correspond to which C data types. When you wish to send
or receive a value of a given PostgreSQL data type, you should declare a C variable of the corresponding
C data type in the declare section.

Table 34.1. Mapping Between PostgreSQL Data Types and C Variable Types

PostgreSQL data type Host variable type
smallint short

integer int

bigint long long int

decimal decimal
a

numeric numeric
a

real float

double precision double

smallserial short

serial int

bigserial long long int

oid unsigned int

character(n), varchar(n), text char[n+1], VARCHAR[n+1]
name char[NAMEDATALEN]

timestamp timestamp
a

interval interval
a

date date
a

boolean bool
b

bytea char *, bytea[n]
aThis type can only be accessed through special library functions; see Section 34.4.4.2.
bdeclared in ecpglib.h if not native

34.4.4.1. Handling Character Strings
To handle SQL character string data types, such as varchar and text, there are two possible ways to
declare the host variables.

One way is using char[], an array of char, which is the most common way to handle character data in C.

EXEC SQL BEGIN DECLARE SECTION;
 char str[50];
EXEC SQL END DECLARE SECTION;

Note that you have to take care of the length yourself. If you use this host variable as the target variable
of a query which returns a string with more than 49 characters, a buffer overflow occurs.

The other way is using the VARCHAR type, which is a special type provided by ECPG. The definition on an
array of type VARCHAR is converted into a named struct for every variable. A declaration like:

VARCHAR var[180];

956

ECPG — Embedded SQL in C

is converted into:

struct varchar_var { int len; char arr[180]; } var;

The member arr hosts the string including a terminating zero byte. Thus, to store a string in a VARCHAR
host variable, the host variable has to be declared with the length including the zero byte terminator.
The member len holds the length of the string stored in the arr without the terminating zero byte. When
a host variable is used as input for a query, if strlen(arr) and len are different, the shorter one is used.

VARCHAR can be written in upper or lower case, but not in mixed case.

char and VARCHAR host variables can also hold values of other SQL types, which will be stored in their
string forms.

34.4.4.2. Accessing Special Data Types
ECPG contains some special types that help you to interact easily with some special data types from the
PostgreSQL server. In particular, it has implemented support for the numeric, decimal, date, timestamp,
and interval types. These data types cannot usefully be mapped to primitive host variable types (such
as int, long long int, or char[]), because they have a complex internal structure. Applications deal
with these types by declaring host variables in special types and accessing them using functions in the
pgtypes library. The pgtypes library, described in detail in Section 34.6 contains basic functions to deal
with those types, such that you do not need to send a query to the SQL server just for adding an interval
to a time stamp for example.

The follow subsections describe these special data types. For more details about pgtypes library func-
tions, see Section 34.6.

34.4.4.2.1. timestamp, date

Here is a pattern for handling timestamp variables in the ECPG host application.

First, the program has to include the header file for the timestamp type:

#include <pgtypes_timestamp.h>

Next, declare a host variable as type timestamp in the declare section:

EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;

And after reading a value into the host variable, process it using pgtypes library functions. In following
example, the timestamp value is converted into text (ASCII) form with the PGTYPEStimestamp_to_asc()
function:

EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));

This example will show some result like following:

ts = 2010-06-27 18:03:56.949343

In addition, the DATE type can be handled in the same way. The program has to include pgtypes_date.h,
declare a host variable as the date type and convert a DATE value into a text form using PGTYPES-
date_to_asc() function. For more details about the pgtypes library functions, see Section 34.6.

34.4.4.2.2. interval

The handling of the interval type is also similar to the timestamp and date types. It is required, how-
ever, to allocate memory for an interval type value explicitly. In other words, the memory space for
the variable has to be allocated in the heap memory, not in the stack memory.

957

ECPG — Embedded SQL in C

Here is an example program:

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_interval.h>

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 interval *in;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 in = PGTYPESinterval_new();
 EXEC SQL SELECT '1 min'::interval INTO :in;
 printf("interval = %s\n", PGTYPESinterval_to_asc(in));
 PGTYPESinterval_free(in);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

34.4.4.2.3. numeric, decimal

The handling of the numeric and decimal types is similar to the interval type: It requires defining a
pointer, allocating some memory space on the heap, and accessing the variable using the pgtypes library
functions. For more details about the pgtypes library functions, see Section 34.6.

No functions are provided specifically for the decimal type. An application has to convert it to a numeric
variable using a pgtypes library function to do further processing.

Here is an example program handling numeric and decimal type variables.

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_numeric.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 numeric *num;
 numeric *num2;
 decimal *dec;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 num = PGTYPESnumeric_new();
 dec = PGTYPESdecimal_new();

 EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

958

ECPG — Embedded SQL in C

 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

 /* Convert decimal to numeric to show a decimal value. */
 num2 = PGTYPESnumeric_new();
 PGTYPESnumeric_from_decimal(dec, num2);

 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

 PGTYPESnumeric_free(num2);
 PGTYPESdecimal_free(dec);
 PGTYPESnumeric_free(num);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

34.4.4.2.4. bytea

The handling of the bytea type is similar to that of VARCHAR. The definition on an array of type bytea is
converted into a named struct for every variable. A declaration like:

bytea var[180];

is converted into:

struct bytea_var { int len; char arr[180]; } var;

The member arr hosts binary format data. It can also handle '\0' as part of data, unlike VARCHAR. The
data is converted from/to hex format and sent/received by ecpglib.

Note
bytea variable can be used only when bytea_output is set to hex.

34.4.4.3. Host Variables with Nonprimitive Types
As a host variable you can also use arrays, typedefs, structs, and pointers.

34.4.4.3.1. Arrays

There are two use cases for arrays as host variables. The first is a way to store some text string in char[]
or VARCHAR[], as explained in Section 34.4.4.1. The second use case is to retrieve multiple rows from a
query result without using a cursor. Without an array, to process a query result consisting of multiple
rows, it is required to use a cursor and the FETCH command. But with array host variables, multiple rows
can be received at once. The length of the array has to be defined to be able to accommodate all rows,
otherwise a buffer overflow will likely occur.

Following example scans the pg_database system table and shows all OIDs and names of the available
databases:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 int dbid[8];
 char dbname[8][16];

959

ECPG — Embedded SQL in C

 int i;
EXEC SQL END DECLARE SECTION;

 memset(dbname, 0, sizeof(char)* 16 * 8);
 memset(dbid, 0, sizeof(int) * 8);

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 /* Retrieve multiple rows into arrays at once. */
 EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

 for (i = 0; i < 8; i++)
 printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

This example shows following result. (The exact values depend on local circumstances.)

oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=

34.4.4.3.2. Structures

A structure whose member names match the column names of a query result, can be used to retrieve
multiple columns at once. The structure enables handling multiple column values in a single host vari-
able.

The following example retrieves OIDs, names, and sizes of the available databases from the pg_database
system table and using the pg_database_size() function. In this example, a structure variable dbinfo_t
with members whose names match each column in the SELECT result is used to retrieve one result row
without putting multiple host variables in the FETCH statement.

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 long long int size;
 } dbinfo_t;

 dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size
 FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

960

ECPG — Embedded SQL in C

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname,
 dbval.size);
 }

 EXEC SQL CLOSE cur1;

This example shows following result. (The exact values depend on local circumstances.)
oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012

Structure host variables “absorb” as many columns as the structure as fields. Additional columns can be
assigned to other host variables. For example, the above program could also be restructured like this,
with the size variable outside the structure:
EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 } dbinfo_t;

 dbinfo_t dbval;
 long long int size;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size
 FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);
 }

 EXEC SQL CLOSE cur1;

34.4.4.3.3. Typedefs

Use the typedef keyword to map new types to already existing types.
EXEC SQL BEGIN DECLARE SECTION;
 typedef char mychartype[40];

961

ECPG — Embedded SQL in C

 typedef long serial_t;
EXEC SQL END DECLARE SECTION;

Note that you could also use:
EXEC SQL TYPE serial_t IS long;

This declaration does not need to be part of a declare section; that is, you can also write typedefs as
normal C statements.

Any word you declare as a typedef cannot be used as an SQL keyword in EXEC SQL commands later in
the same program. For example, this won't work:
EXEC SQL BEGIN DECLARE SECTION;
 typedef int start;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL START TRANSACTION;

ECPG will report a syntax error for START TRANSACTION, because it no longer recognizes START as an SQL
keyword, only as a typedef. (If you have such a conflict, and renaming the typedef seems impractical,
you could write the SQL command using dynamic SQL.)

Note
In PostgreSQL releases before v16, use of SQL keywords as typedef names was likely to result
in syntax errors associated with use of the typedef itself, rather than use of the name as an SQL
keyword. The new behavior is less likely to cause problems when an existing ECPG application is
recompiled in a new PostgreSQL release with new keywords.

34.4.4.3.4. Pointers

You can declare pointers to the most common types. Note however that you cannot use pointers as target
variables of queries without auto-allocation. See Section 34.7 for more information on auto-allocation.

EXEC SQL BEGIN DECLARE SECTION;
 int *intp;
 char **charp;
EXEC SQL END DECLARE SECTION;

34.4.5. Handling Nonprimitive SQL Data Types
This section contains information on how to handle nonscalar and user-defined SQL-level data types in
ECPG applications. Note that this is distinct from the handling of host variables of nonprimitive types,
described in the previous section.

34.4.5.1. Arrays
Multi-dimensional SQL-level arrays are not directly supported in ECPG. One-dimensional SQL-level ar-
rays can be mapped into C array host variables and vice-versa. However, when creating a statement
ecpg does not know the types of the columns, so that it cannot check if a C array is input into a corre-
sponding SQL-level array. When processing the output of an SQL statement, ecpg has the necessary
information and thus checks if both are arrays.

If a query accesses elements of an array separately, then this avoids the use of arrays in ECPG. Then,
a host variable with a type that can be mapped to the element type should be used. For example, if a
column type is array of integer, a host variable of type int can be used. Also if the element type is
varchar or text, a host variable of type char[] or VARCHAR[] can be used.

Here is an example. Assume the following table:
CREATE TABLE t3 (

962

ECPG — Embedded SQL in C

 ii integer[]
);

testdb=> SELECT * FROM t3;
 ii

 {1,2,3,4,5}
(1 row)

The following example program retrieves the 4th element of the array and stores it into a host variable
of type int:

EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii ;
 printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;

This example shows the following result:

ii=4

To map multiple array elements to the multiple elements in an array type host variables each element of
array column and each element of the host variable array have to be managed separately, for example:

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
 ...
}

Note again that

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

963

ECPG — Embedded SQL in C

while (1)
{
 /* WRONG */
 EXEC SQL FETCH FROM cur1 INTO :ii_a;
 ...
}

would not work correctly in this case, because you cannot map an array type column to an array host
variable directly.

Another workaround is to store arrays in their external string representation in host variables of type
char[] or VARCHAR[]. For more details about this representation, see Section 8.15.2. Note that this
means that the array cannot be accessed naturally as an array in the host program (without further
processing that parses the text representation).

34.4.5.2. Composite Types
Composite types are not directly supported in ECPG, but an easy workaround is possible. The available
workarounds are similar to the ones described for arrays above: Either access each attribute separately
or use the external string representation.

For the following examples, assume the following type and table:
CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ((256, 'PostgreSQL'));

The most obvious solution is to access each attribute separately. The following program retrieves data
from the example table by selecting each attribute of the type comp_t separately:
EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Fetch each element of the composite type column into host variables. */
 EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

 printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;

To enhance this example, the host variables to store values in the FETCH command can be gathered into
one structure. For more details about the host variable in the structure form, see Section 34.4.4.3.2.
To switch to the structure, the example can be modified as below. The two host variables, intval and
textval, become members of the comp_t structure, and the structure is specified on the FETCH command.
EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
 int intval;
 varchar textval[33];

964

ECPG — Embedded SQL in C

} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;

Although a structure is used in the FETCH command, the attribute names in the SELECT clause are spec-
ified one by one. This can be enhanced by using a * to ask for all attributes of the composite type value.
...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...

This way, composite types can be mapped into structures almost seamlessly, even though ECPG does
not understand the composite type itself.

Finally, it is also possible to store composite type values in their external string representation in host
variables of type char[] or VARCHAR[]. But that way, it is not easily possible to access the fields of the
value from the host program.

34.4.5.3. User-Defined Base Types
New user-defined base types are not directly supported by ECPG. You can use the external string rep-
resentation and host variables of type char[] or VARCHAR[], and this solution is indeed appropriate and
sufficient for many types.

Here is an example using the data type complex from the example in Section 36.13. The external
string representation of that type is (%f,%f), which is defined in the functions complex_in() and com-
plex_out() functions in Section 36.13. The following example inserts the complex type values (1,1)
and (3,3) into the columns a and b, and select them from the table after that.
EXEC SQL BEGIN DECLARE SECTION;
 varchar a[64];
 varchar b[64];
EXEC SQL END DECLARE SECTION;

965

ECPG — Embedded SQL in C

 EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
 EXEC SQL OPEN cur1;

 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH FROM cur1 INTO :a, :b;
 printf("a=%s, b=%s\n", a.arr, b.arr);
 }

 EXEC SQL CLOSE cur1;

This example shows following result:
a=(1,1), b=(3,3)

Another workaround is avoiding the direct use of the user-defined types in ECPG and instead create a
function or cast that converts between the user-defined type and a primitive type that ECPG can handle.
Note, however, that type casts, especially implicit ones, should be introduced into the type system very
carefully.

For example,
CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;

After this definition, the following
EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b),
 create_complex(:c, :d));

has the same effect as
EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');

34.4.6. Indicators
The examples above do not handle null values. In fact, the retrieval examples will raise an error if they
fetch a null value from the database. To be able to pass null values to the database or retrieve null values
from the database, you need to append a second host variable specification to each host variable that
contains data. This second host variable is called the indicator and contains a flag that tells whether
the datum is null, in which case the value of the real host variable is ignored. Here is an example that
handles the retrieval of null values correctly:
EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

966

ECPG — Embedded SQL in C

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;

The indicator variable val_ind will be zero if the value was not null, and it will be negative if the value
was null. (See Section 34.16 to enable Oracle-specific behavior.)

The indicator has another function: if the indicator value is positive, it means that the value is not null,
but it was truncated when it was stored in the host variable.

If the argument -r no_indicator is passed to the preprocessor ecpg, it works in “no-indicator” mode.
In no-indicator mode, if no indicator variable is specified, null values are signaled (on input and output)
for character string types as empty string and for integer types as the lowest possible value for type
(for example, INT_MIN for int).

34.5. Dynamic SQL
In many cases, the particular SQL statements that an application has to execute are known at the time
the application is written. In some cases, however, the SQL statements are composed at run time or
provided by an external source. In these cases you cannot embed the SQL statements directly into the
C source code, but there is a facility that allows you to call arbitrary SQL statements that you provide
in a string variable.

34.5.1. Executing Statements without a Result Set
The simplest way to execute an arbitrary SQL statement is to use the command EXECUTE IMMEDIATE.
For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;

EXECUTE IMMEDIATE can be used for SQL statements that do not return a result set (e.g., DDL, INSERT,
UPDATE, DELETE). You cannot execute statements that retrieve data (e.g., SELECT) this way. The next
section describes how to do that.

34.5.2. Executing a Statement with Input Parameters
A more powerful way to execute arbitrary SQL statements is to prepare them once and execute the
prepared statement as often as you like. It is also possible to prepare a generalized version of a statement
and then execute specific versions of it by substituting parameters. When preparing the statement, write
question marks where you want to substitute parameters later. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt USING 42, 'foobar';

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

34.5.3. Executing a Statement with a Result Set
To execute an SQL statement with a single result row, EXECUTE can be used. To save the result, add an
INTO clause.

967

ECPG — Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;
VARCHAR v3[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt INTO :v1, :v2, :v3 USING 37;

An EXECUTE command can have an INTO clause, a USING clause, both, or neither.

If a query is expected to return more than one result row, a cursor should be used, as in the following
example. (See Section 34.3.2 for more details about the cursor.)
EXEC SQL BEGIN DECLARE SECTION;
char dbaname[128];
char datname[128];
char *stmt = "SELECT u.usename as dbaname, d.datname "
 " FROM pg_database d, pg_user u "
 " WHERE d.datdba = u.usesysid";
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

EXEC SQL PREPARE stmt1 FROM :stmt;

EXEC SQL DECLARE cursor1 CURSOR FOR stmt1;
EXEC SQL OPEN cursor1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH cursor1 INTO :dbaname,:datname;
 printf("dbaname=%s, datname=%s\n", dbaname, datname);
}

EXEC SQL CLOSE cursor1;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;

34.6. pgtypes Library
The pgtypes library maps PostgreSQL database types to C equivalents that can be used in C programs.
It also offers functions to do basic calculations with those types within C, i.e., without the help of the
PostgreSQL server. See the following example:
EXEC SQL BEGIN DECLARE SECTION;
 date date1;
 timestamp ts1, tsout;
 interval iv1;
 char *out;
EXEC SQL END DECLARE SECTION;

PGTYPESdate_today(&date1);
EXEC SQL SELECT started, duration INTO :ts1, :iv1 FROM datetbl WHERE d=:date1;

968

ECPG — Embedded SQL in C

PGTYPEStimestamp_add_interval(&ts1, &iv1, &tsout);
out = PGTYPEStimestamp_to_asc(&tsout);
printf("Started + duration: %s\n", out);
PGTYPESchar_free(out);

34.6.1. Character Strings
Some functions such as PGTYPESnumeric_to_asc return a pointer to a freshly allocated character string.
These results should be freed with PGTYPESchar_free instead of free. (This is important only on Win-
dows, where memory allocation and release sometimes need to be done by the same library.)

34.6.2. The numeric Type
The numeric type offers to do calculations with arbitrary precision. See Section 8.1 for the equivalent
type in the PostgreSQL server. Because of the arbitrary precision this variable needs to be able to expand
and shrink dynamically. That's why you can only create numeric variables on the heap, by means of
the PGTYPESnumeric_new and PGTYPESnumeric_free functions. The decimal type, which is similar but
limited in precision, can be created on the stack as well as on the heap.

The following functions can be used to work with the numeric type:

PGTYPESnumeric_new

Request a pointer to a newly allocated numeric variable.

numeric *PGTYPESnumeric_new(void);

PGTYPESnumeric_free

Free a numeric type, release all of its memory.

void PGTYPESnumeric_free(numeric *var);

PGTYPESnumeric_from_asc

Parse a numeric type from its string notation.

numeric *PGTYPESnumeric_from_asc(char *str, char **endptr);

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4. If the value could be parsed
successfully, a valid pointer is returned, else the NULL pointer. At the moment ECPG always parses
the complete string and so it currently does not support to store the address of the first invalid
character in *endptr. You can safely set endptr to NULL.

PGTYPESnumeric_to_asc

Returns a pointer to a string allocated by malloc that contains the string representation of the nu-
meric type num.

char *PGTYPESnumeric_to_asc(numeric *num, int dscale);

The numeric value will be printed with dscale decimal digits, with rounding applied if necessary.
The result must be freed with PGTYPESchar_free().

PGTYPESnumeric_add

Add two numeric variables into a third one.

int PGTYPESnumeric_add(numeric *var1, numeric *var2, numeric *result);

The function adds the variables var1 and var2 into the result variable result. The function returns
0 on success and -1 in case of error.

PGTYPESnumeric_sub

Subtract two numeric variables and return the result in a third one.

969

ECPG — Embedded SQL in C

int PGTYPESnumeric_sub(numeric *var1, numeric *var2, numeric *result);

The function subtracts the variable var2 from the variable var1. The result of the operation is stored
in the variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_mul

Multiply two numeric variables and return the result in a third one.

int PGTYPESnumeric_mul(numeric *var1, numeric *var2, numeric *result);

The function multiplies the variables var1 and var2. The result of the operation is stored in the
variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_div

Divide two numeric variables and return the result in a third one.

int PGTYPESnumeric_div(numeric *var1, numeric *var2, numeric *result);

The function divides the variables var1 by var2. The result of the operation is stored in the variable
result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_cmp

Compare two numeric variables.

int PGTYPESnumeric_cmp(numeric *var1, numeric *var2)

This function compares two numeric variables. In case of error, INT_MAX is returned. On success, the
function returns one of three possible results:

• 1, if var1 is bigger than var2

• -1, if var1 is smaller than var2

• 0, if var1 and var2 are equal

PGTYPESnumeric_from_int

Convert an int variable to a numeric variable.

int PGTYPESnumeric_from_int(signed int int_val, numeric *var);

This function accepts a variable of type signed int and stores it in the numeric variable var. Upon
success, 0 is returned and -1 in case of a failure.

PGTYPESnumeric_from_long

Convert a long int variable to a numeric variable.

int PGTYPESnumeric_from_long(signed long int long_val, numeric *var);

This function accepts a variable of type signed long int and stores it in the numeric variable var.
Upon success, 0 is returned and -1 in case of a failure.

PGTYPESnumeric_copy

Copy over one numeric variable into another one.

int PGTYPESnumeric_copy(numeric *src, numeric *dst);

This function copies over the value of the variable that src points to into the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_from_double

Convert a variable of type double to a numeric.

int PGTYPESnumeric_from_double(double d, numeric *dst);

970

ECPG — Embedded SQL in C

This function accepts a variable of type double and stores the result in the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_to_double

Convert a variable of type numeric to double.

int PGTYPESnumeric_to_double(numeric *nv, double *dp)

The function converts the numeric value from the variable that nv points to into the double variable
that dp points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_int

Convert a variable of type numeric to int.

int PGTYPESnumeric_to_int(numeric *nv, int *ip);

The function converts the numeric value from the variable that nv points to into the integer variable
that ip points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_long

Convert a variable of type numeric to long.

int PGTYPESnumeric_to_long(numeric *nv, long *lp);

The function converts the numeric value from the variable that nv points to into the long integer
variable that lp points to. It returns 0 on success and -1 if an error occurs, including overflow and
underflow. On overflow, the global variable errno will be set to PGTYPES_NUM_OVERFLOW and on un-
derflow errno will be set to PGTYPES_NUM_UNDERFLOW.

PGTYPESnumeric_to_decimal

Convert a variable of type numeric to decimal.

int PGTYPESnumeric_to_decimal(numeric *src, decimal *dst);

The function converts the numeric value from the variable that src points to into the decimal variable
that dst points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_from_decimal

Convert a variable of type decimal to numeric.

int PGTYPESnumeric_from_decimal(decimal *src, numeric *dst);

The function converts the decimal value from the variable that src points to into the numeric vari-
able that dst points to. It returns 0 on success and -1 if an error occurs. Since the decimal type is
implemented as a limited version of the numeric type, overflow cannot occur with this conversion.

34.6.3. The date Type
The date type in C enables your programs to deal with data of the SQL type date. See Section 8.5 for
the equivalent type in the PostgreSQL server.

The following functions can be used to work with the date type:

PGTYPESdate_from_timestamp

Extract the date part from a timestamp.

date PGTYPESdate_from_timestamp(timestamp dt);

971

ECPG — Embedded SQL in C

The function receives a timestamp as its only argument and returns the extracted date part from
this timestamp.

PGTYPESdate_from_asc

Parse a date from its textual representation.
date PGTYPESdate_from_asc(char *str, char **endptr);

The function receives a C char* string str and a pointer to a C char* string endptr. At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

Note that the function always assumes MDY-formatted dates and there is currently no variable to
change that within ECPG.

Table 34.2 shows the allowed input formats.

Table 34.2. Valid Input Formats for PGTYPESdate_from_asc

Input Result
January 8, 1999 January 8, 1999

1999-01-08 January 8, 1999

1/8/1999 January 8, 1999

1/18/1999 January 18, 1999

01/02/03 February 1, 2003

1999-Jan-08 January 8, 1999

Jan-08-1999 January 8, 1999

08-Jan-1999 January 8, 1999

99-Jan-08 January 8, 1999

08-Jan-99 January 8, 1999

08-Jan-06 January 8, 2006

Jan-08-99 January 8, 1999

19990108 ISO 8601; January 8, 1999

990108 ISO 8601; January 8, 1999

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

PGTYPESdate_to_asc

Return the textual representation of a date variable.
char *PGTYPESdate_to_asc(date dDate);

The function receives the date dDate as its only parameter. It will output the date in the form
1999-01-18, i.e., in the YYYY-MM-DD format. The result must be freed with PGTYPESchar_free().

PGTYPESdate_julmdy

Extract the values for the day, the month and the year from a variable of type date.
void PGTYPESdate_julmdy(date d, int *mdy);

The function receives the date d and a pointer to an array of 3 integer values mdy. The variable name
indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1] will
be set to the value of the day and mdy[2] will contain the year.

972

ECPG — Embedded SQL in C

PGTYPESdate_mdyjul

Create a date value from an array of 3 integers that specify the day, the month and the year of the
date.

void PGTYPESdate_mdyjul(int *mdy, date *jdate);

The function receives the array of the 3 integers (mdy) as its first argument and as its second argument
a pointer to a variable of type date that should hold the result of the operation.

PGTYPESdate_dayofweek

Return a number representing the day of the week for a date value.

int PGTYPESdate_dayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.

• 0 - Sunday

• 1 - Monday

• 2 - Tuesday

• 3 - Wednesday

• 4 - Thursday

• 5 - Friday

• 6 - Saturday

PGTYPESdate_today

Get the current date.

void PGTYPESdate_today(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

PGTYPESdate_fmt_asc

Convert a variable of type date to its textual representation using a format mask.

int PGTYPESdate_fmt_asc(date dDate, char *fmtstring, char *outbuf);

The function receives the date to convert (dDate), the format mask (fmtstring) and the string that
will hold the textual representation of the date (outbuf).

On success, 0 is returned and a negative value if an error occurred.

The following literals are the field specifiers you can use:

• dd - The number of the day of the month.

• mm - The number of the month of the year.

• yy - The number of the year as a two digit number.

• yyyy - The number of the year as a four digit number.

• ddd - The name of the day (abbreviated).

• mmm - The name of the month (abbreviated).

All other characters are copied 1:1 to the output string.

Table 34.3 indicates a few possible formats. This will give you an idea of how to use this function.
All output lines are based on the same date: November 23, 1959.

973

ECPG — Embedded SQL in C

Table 34.3. Valid Input Formats for PGTYPESdate_fmt_asc

Format Result
mmddyy 112359

ddmmyy 231159

yymmdd 591123

yy/mm/dd 59/11/23

yy mm dd 59 11 23

yy.mm.dd 59.11.23

.mm.yyyy.dd. .11.1959.23.

mmm. dd, yyyy Nov. 23, 1959

mmm dd yyyy Nov 23 1959

yyyy dd mm 1959 23 11

ddd, mmm. dd, yyyy Mon, Nov. 23, 1959

(ddd) mmm. dd, yyyy (Mon) Nov. 23, 1959

PGTYPESdate_defmt_asc

Use a format mask to convert a C char* string to a value of type date.

int PGTYPESdate_defmt_asc(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

Table 34.4 indicates a few possible formats. This will give you an idea of how to use this function.

Table 34.4. Valid Input Formats for rdefmtdate

Format String Result
ddmmyy 21-2-54 1954-02-21

ddmmyy 2-12-54 1954-12-02

ddmmyy 20111954 1954-11-20

ddmmyy 130464 1964-04-13

mmm.dd.yyyy MAR-12-1967 1967-03-12

yy/mm/dd 1954, February 3rd 1954-02-03

mmm.dd.yyyy 041269 1969-04-12

yy/mm/dd In the year 2525, in the
month of July, mankind
will be alive on the 28th
day

2525-07-28

dd-mm-yy I said on the 28th of July
in the year 2525

2525-07-28

mmm.dd.yyyy 9/14/58 1958-09-14

yy/mm/dd 47/03/29 1947-03-29

mmm.dd.yyyy oct 28 1975 1975-10-28

974

ECPG — Embedded SQL in C

Format String Result
mmddyy Nov 14th, 1985 1985-11-14

34.6.4. The timestamp Type
The timestamp type in C enables your programs to deal with data of the SQL type timestamp. See
Section 8.5 for the equivalent type in the PostgreSQL server.

The following functions can be used to work with the timestamp type:
PGTYPEStimestamp_from_asc

Parse a timestamp from its textual representation into a timestamp variable.
timestamp PGTYPEStimestamp_from_asc(char *str, char **endptr);

The function receives the string to parse (str) and a pointer to a C char* (endptr). At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

The function returns the parsed timestamp on success. On error, PGTYPESInvalidTimestamp is re-
turned and errno is set to PGTYPES_TS_BAD_TIMESTAMP. See PGTYPESInvalidTimestamp for impor-
tant notes on this value.

In general, the input string can contain any combination of an allowed date specification, a white-
space character and an allowed time specification. Note that time zones are not supported by ECPG.
It can parse them but does not apply any calculation as the PostgreSQL server does for example.
Timezone specifiers are silently discarded.

Table 34.5 contains a few examples for input strings.

Table 34.5. Valid Input Formats for PGTYPEStimestamp_from_asc

Input Result
1999-01-08 04:05:06 1999-01-08 04:05:06

January 8 04:05:06 1999 PST 1999-01-08 04:05:06

1999-Jan-08 04:05:06.789-8 1999-01-08 04:05:06.789 (time zone spec-
ifier ignored)

J2451187 04:05-08:00 1999-01-08 04:05:00 (time zone specifier
ignored)

PGTYPEStimestamp_to_asc

Converts a date to a C char* string.
char *PGTYPEStimestamp_to_asc(timestamp tstamp);

The function receives the timestamp tstamp as its only argument and returns an allocated string
that contains the textual representation of the timestamp. The result must be freed with PGTYPE-
Schar_free().

PGTYPEStimestamp_current

Retrieve the current timestamp.
void PGTYPEStimestamp_current(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points
to.

PGTYPEStimestamp_fmt_asc

Convert a timestamp variable to a C char* using a format mask.

975

ECPG — Embedded SQL in C

int PGTYPEStimestamp_fmt_asc(timestamp *ts, char *output, int str_len, char
 *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

You can use the following format specifiers for the format mask. The format specifiers are the same
ones that are used in the strftime function in libc. Any non-format specifier will be copied into the
output buffer.

• %A - is replaced by national representation of the full weekday name.

• %a - is replaced by national representation of the abbreviated weekday name.

• %B - is replaced by national representation of the full month name.

• %b - is replaced by national representation of the abbreviated month name.

• %C - is replaced by (year / 100) as decimal number; single digits are preceded by a zero.

• %c - is replaced by national representation of time and date.

• %D - is equivalent to %m/%d/%y.

• %d - is replaced by the day of the month as a decimal number (01–31).

• %E* %O* - POSIX locale extensions. The sequences %Ec %EC %Ex %EX %Ey %EY %Od %Oe %OH %OI %Om
%OM %OS %Ou %OU %OV %Ow %OW %Oy are supposed to provide alternative representations.

Additionally %OB implemented to represent alternative months names (used standalone, without
day mentioned).

• %e - is replaced by the day of month as a decimal number (1–31); single digits are preceded by a
blank.

• %F - is equivalent to %Y-%m-%d.

• %G - is replaced by a year as a decimal number with century. This year is the one that contains
the greater part of the week (Monday as the first day of the week).

• %g - is replaced by the same year as in %G, but as a decimal number without century (00–99).

• %H - is replaced by the hour (24-hour clock) as a decimal number (00–23).

• %h - the same as %b.

• %I - is replaced by the hour (12-hour clock) as a decimal number (01–12).

• %j - is replaced by the day of the year as a decimal number (001–366).

• %k - is replaced by the hour (24-hour clock) as a decimal number (0–23); single digits are pre-
ceded by a blank.

• %l - is replaced by the hour (12-hour clock) as a decimal number (1–12); single digits are pre-
ceded by a blank.

• %M - is replaced by the minute as a decimal number (00–59).

• %m - is replaced by the month as a decimal number (01–12).

• %n - is replaced by a newline.

• %O* - the same as %E*.

• %p - is replaced by national representation of either “ante meridiem” or “post meridiem” as ap-
propriate.

976

ECPG — Embedded SQL in C

• %R - is equivalent to %H:%M.

• %r - is equivalent to %I:%M:%S %p.

• %S - is replaced by the second as a decimal number (00–60).

• %s - is replaced by the number of seconds since the Epoch, UTC.

• %T - is equivalent to %H:%M:%S

• %t - is replaced by a tab.

• %U - is replaced by the week number of the year (Sunday as the first day of the week) as a deci-
mal number (00–53).

• %u - is replaced by the weekday (Monday as the first day of the week) as a decimal number (1–
7).

• %V - is replaced by the week number of the year (Monday as the first day of the week) as a dec-
imal number (01–53). If the week containing January 1 has four or more days in the new year,
then it is week 1; otherwise it is the last week of the previous year, and the next week is week 1.

• %v - is equivalent to %e-%b-%Y.

• %W - is replaced by the week number of the year (Monday as the first day of the week) as a deci-
mal number (00–53).

• %w - is replaced by the weekday (Sunday as the first day of the week) as a decimal number (0–6).

• %X - is replaced by national representation of the time.

• %x - is replaced by national representation of the date.

• %Y - is replaced by the year with century as a decimal number.

• %y - is replaced by the year without century as a decimal number (00–99).

• %Z - is replaced by the time zone name.

• %z - is replaced by the time zone offset from UTC; a leading plus sign stands for east of UTC, a
minus sign for west of UTC, hours and minutes follow with two digits each and no delimiter be-
tween them (common form for RFC 822 date headers).

• %+ - is replaced by national representation of the date and time.

• %-* - GNU libc extension. Do not do any padding when performing numerical outputs.

• $_* - GNU libc extension. Explicitly specify space for padding.

• %0* - GNU libc extension. Explicitly specify zero for padding.

• %% - is replaced by %.

PGTYPEStimestamp_sub

Subtract one timestamp from another one and save the result in a variable of type interval.

int PGTYPEStimestamp_sub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_defmt_asc

Parse a timestamp value from its textual representation using a formatting mask.

int PGTYPEStimestamp_defmt_asc(char *str, char *fmt, timestamp *d);

977

https://datatracker.ietf.org/doc/html/rfc822

ECPG — Embedded SQL in C

The function receives the textual representation of a timestamp in the variable str as well as the
formatting mask to use in the variable fmt. The result will be stored in the variable that d points to.

If the formatting mask fmt is NULL, the function will fall back to the default formatting mask which
is %Y-%m-%d %H:%M:%S.

This is the reverse function to PGTYPEStimestamp_fmt_asc. See the documentation there in order to
find out about the possible formatting mask entries.

PGTYPEStimestamp_add_interval

Add an interval variable to a timestamp variable.

int PGTYPEStimestamp_add_interval(timestamp *tin, interval *span, timestamp *tout);

The function receives a pointer to a timestamp variable tin and a pointer to an interval variable
span. It adds the interval to the timestamp and saves the resulting timestamp in the variable that
tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_sub_interval

Subtract an interval variable from a timestamp variable.

int PGTYPEStimestamp_sub_interval(timestamp *tin, interval *span, timestamp *tout);

The function subtracts the interval variable that span points to from the timestamp variable that tin
points to and saves the result into the variable that tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

34.6.5. The interval Type
The interval type in C enables your programs to deal with data of the SQL type interval. See Section 8.5
for the equivalent type in the PostgreSQL server.

The following functions can be used to work with the interval type:

PGTYPESinterval_new

Return a pointer to a newly allocated interval variable.

interval *PGTYPESinterval_new(void);

PGTYPESinterval_free

Release the memory of a previously allocated interval variable.

void PGTYPESinterval_free(interval *intvl);

PGTYPESinterval_from_asc

Parse an interval from its textual representation.

interval *PGTYPESinterval_from_asc(char *str, char **endptr);

The function parses the input string str and returns a pointer to an allocated interval variable. At
the moment ECPG always parses the complete string and so it currently does not support to store
the address of the first invalid character in *endptr. You can safely set endptr to NULL.

PGTYPESinterval_to_asc

Convert a variable of type interval to its textual representation.

char *PGTYPESinterval_to_asc(interval *span);

978

ECPG — Embedded SQL in C

The function converts the interval variable that span points to into a C char*. The output looks like this
example: @ 1 day 12 hours 59 mins 10 secs. The result must be freed with PGTYPESchar_free().

PGTYPESinterval_copy

Copy a variable of type interval.

int PGTYPESinterval_copy(interval *intvlsrc, interval *intvldest);

The function copies the interval variable that intvlsrc points to into the variable that intvldest
points to. Note that you need to allocate the memory for the destination variable before.

34.6.6. The decimal Type
The decimal type is similar to the numeric type. However it is limited to a maximum precision of 30
significant digits. In contrast to the numeric type which can be created on the heap only, the decimal
type can be created either on the stack or on the heap (by means of the functions PGTYPESdecimal_new
and PGTYPESdecimal_free). There are a lot of other functions that deal with the decimal type in the
Informix compatibility mode described in Section 34.15.

The following functions can be used to work with the decimal type and are not only contained in the
libcompat library.

PGTYPESdecimal_new

Request a pointer to a newly allocated decimal variable.

decimal *PGTYPESdecimal_new(void);

PGTYPESdecimal_free

Free a decimal type, release all of its memory.

void PGTYPESdecimal_free(decimal *var);

34.6.7. errno Values of pgtypeslib
PGTYPES_NUM_BAD_NUMERIC

An argument should contain a numeric variable (or point to a numeric variable) but in fact its in-
memory representation was invalid.

PGTYPES_NUM_OVERFLOW

An overflow occurred. Since the numeric type can deal with almost arbitrary precision, converting
a numeric variable into other types might cause overflow.

PGTYPES_NUM_UNDERFLOW

An underflow occurred. Since the numeric type can deal with almost arbitrary precision, converting
a numeric variable into other types might cause underflow.

PGTYPES_NUM_DIVIDE_ZERO

A division by zero has been attempted.

PGTYPES_DATE_BAD_DATE

An invalid date string was passed to the PGTYPESdate_from_asc function.

PGTYPES_DATE_ERR_EARGS

Invalid arguments were passed to the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_ERR_ENOSHORTDATE

An invalid token in the input string was found by the PGTYPESdate_defmt_asc function.

979

ECPG — Embedded SQL in C

PGTYPES_INTVL_BAD_INTERVAL

An invalid interval string was passed to the PGTYPESinterval_from_asc function, or an invalid in-
terval value was passed to the PGTYPESinterval_to_asc function.

PGTYPES_DATE_ERR_ENOTDMY

There was a mismatch in the day/month/year assignment in the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_DAY

An invalid day of the month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_MONTH

An invalid month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_TS_BAD_TIMESTAMP

An invalid timestamp string pass passed to the PGTYPEStimestamp_from_asc function, or an invalid
timestamp value was passed to the PGTYPEStimestamp_to_asc function.

PGTYPES_TS_ERR_EINFTIME

An infinite timestamp value was encountered in a context that cannot handle it.

34.6.8. Special Constants of pgtypeslib
PGTYPESInvalidTimestamp

A value of type timestamp representing an invalid time stamp. This is returned by the function PG-
TYPEStimestamp_from_asc on parse error. Note that due to the internal representation of the time-
stamp data type, PGTYPESInvalidTimestamp is also a valid timestamp at the same time. It is set to
1899-12-31 23:59:59. In order to detect errors, make sure that your application does not only test for
PGTYPESInvalidTimestamp but also for errno != 0 after each call to PGTYPEStimestamp_from_asc.

34.7. Using Descriptor Areas
An SQL descriptor area is a more sophisticated method for processing the result of a SELECT, FETCH or a
DESCRIBE statement. An SQL descriptor area groups the data of one row of data together with metadata
items into one data structure. The metadata is particularly useful when executing dynamic SQL state-
ments, where the nature of the result columns might not be known ahead of time. PostgreSQL provides
two ways to use Descriptor Areas: the named SQL Descriptor Areas and the C-structure SQLDAs.

34.7.1. Named SQL Descriptor Areas
A named SQL descriptor area consists of a header, which contains information concerning the entire
descriptor, and one or more item descriptor areas, which basically each describe one column in the
result row.

Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTOR identifier;

The identifier serves as the “variable name” of the descriptor area. When you don't need the descriptor
anymore, you should deallocate it:

EXEC SQL DEALLOCATE DESCRIPTOR identifier;

To use a descriptor area, specify it as the storage target in an INTO clause, instead of listing host vari-
ables:

EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;

980

ECPG — Embedded SQL in C

If the result set is empty, the Descriptor Area will still contain the metadata from the query, i.e., the
field names.

For not yet executed prepared queries, the DESCRIBE statement can be used to get the metadata of the
result set:

EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;

Before PostgreSQL 9.0, the SQL keyword was optional, so using DESCRIPTOR and SQL DESCRIPTOR pro-
duced named SQL Descriptor Areas. Now it is mandatory, omitting the SQL keyword produces SQLDA
Descriptor Areas, see Section 34.7.2.

In DESCRIBE and FETCH statements, the INTO and USING keywords can be used to similarly: they produce
the result set and the metadata in a Descriptor Area.

Now how do you get the data out of the descriptor area? You can think of the descriptor area as a
structure with named fields. To retrieve the value of a field from the header and store it into a host
variable, use the following command:

EXEC SQL GET DESCRIPTOR name :hostvar = field;

Currently, there is only one header field defined: COUNT, which tells how many item descriptor areas
exist (that is, how many columns are contained in the result). The host variable needs to be of an integer
type. To get a field from the item descriptor area, use the following command:

EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;

num can be a literal integer or a host variable containing an integer. Possible fields are:

CARDINALITY (integer)

number of rows in the result set

DATA

actual data item (therefore, the data type of this field depends on the query)

DATETIME_INTERVAL_CODE (integer)

When TYPE is 9, DATETIME_INTERVAL_CODE will have a value of 1 for DATE, 2 for TIME, 3 for TIMESTAMP,
4 for TIME WITH TIME ZONE, or 5 for TIMESTAMP WITH TIME ZONE.

DATETIME_INTERVAL_PRECISION (integer)

not implemented

INDICATOR (integer)

the indicator (indicating a null value or a value truncation)

KEY_MEMBER (integer)

not implemented

LENGTH (integer)

length of the datum in characters

NAME (string)

name of the column

981

ECPG — Embedded SQL in C

NULLABLE (integer)

not implemented

OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

PRECISION (integer)

precision (for type numeric)

RETURNED_LENGTH (integer)

length of the datum in characters

RETURNED_OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

SCALE (integer)

scale (for type numeric)

TYPE (integer)

numeric code of the data type of the column

In EXECUTE, DECLARE and OPEN statements, the effect of the INTO and USING keywords are different. A
Descriptor Area can also be manually built to provide the input parameters for a query or a cursor and
USING SQL DESCRIPTOR name is the way to pass the input parameters into a parameterized query. The
statement to build a named SQL Descriptor Area is below:

EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;

PostgreSQL supports retrieving more that one record in one FETCH statement and storing the data in
host variables in this case assumes that the variable is an array. E.g.:

EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;

34.7.2. SQLDA Descriptor Areas
An SQLDA Descriptor Area is a C language structure which can be also used to get the result set and
the metadata of a query. One structure stores one record from the result set.

EXEC SQL include sqlda.h;
sqlda_t *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;

Note that the SQL keyword is omitted. The paragraphs about the use cases of the INTO and USING key-
words in Section 34.7.1 also apply here with an addition. In a DESCRIBE statement the DESCRIPTOR key-
word can be completely omitted if the INTO keyword is used:

EXEC SQL DESCRIBE prepared_statement INTO mysqlda;

The general flow of a program that uses SQLDA is:

1. Prepare a query, and declare a cursor for it.

982

ECPG — Embedded SQL in C

2. Declare an SQLDA for the result rows.
3. Declare an SQLDA for the input parameters, and initialize them (memory allocation, parameter

settings).
4. Open a cursor with the input SQLDA.
5. Fetch rows from the cursor, and store them into an output SQLDA.
6. Read values from the output SQLDA into the host variables (with conversion if necessary).
7. Close the cursor.
8. Free the memory area allocated for the input SQLDA.

34.7.2.1. SQLDA Data Structure
SQLDA uses three data structure types: sqlda_t, sqlvar_t, and struct sqlname.

Tip
PostgreSQL's SQLDA has a similar data structure to the one in IBM DB2 Universal Database, so
some technical information on DB2's SQLDA could help understanding PostgreSQL's one better.

34.7.2.1.1. sqlda_t Structure

The structure type sqlda_t is the type of the actual SQLDA. It holds one record. And two or more sqlda_t
structures can be connected in a linked list with the pointer in the desc_next field, thus representing
an ordered collection of rows. So, when two or more rows are fetched, the application can read them
by following the desc_next pointer in each sqlda_t node.

The definition of sqlda_t is:

struct sqlda_struct
{
 char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlda_struct *desc_next;
 struct sqlvar_struct sqlvar[1];
};

typedef struct sqlda_struct sqlda_t;

The meaning of the fields is:

sqldaid

It contains the literal string "SQLDA ".

sqldabc

It contains the size of the allocated space in bytes.

sqln

It contains the number of input parameters for a parameterized query in case it's passed into OPEN,
DECLARE or EXECUTE statements using the USING keyword. In case it's used as output of SELECT,
EXECUTE or FETCH statements, its value is the same as sqld statement

sqld

It contains the number of fields in a result set.

983

ECPG — Embedded SQL in C

desc_next

If the query returns more than one record, multiple linked SQLDA structures are returned, and
desc_next holds a pointer to the next entry in the list.

sqlvar

This is the array of the columns in the result set.

34.7.2.1.2. sqlvar_t Structure

The structure type sqlvar_t holds a column value and metadata such as type and length. The definition
of the type is:
struct sqlvar_struct
{
 short sqltype;
 short sqllen;
 char *sqldata;
 short *sqlind;
 struct sqlname sqlname;
};

typedef struct sqlvar_struct sqlvar_t;

The meaning of the fields is:
sqltype

Contains the type identifier of the field. For values, see enum ECPGttype in ecpgtype.h.

sqllen

Contains the binary length of the field. e.g., 4 bytes for ECPGt_int.

sqldata

Points to the data. The format of the data is described in Section 34.4.4.

sqlind

Points to the null indicator. 0 means not null, -1 means null.

sqlname

The name of the field.

34.7.2.1.3. struct sqlname Structure

A struct sqlname structure holds a column name. It is used as a member of the sqlvar_t structure.
The definition of the structure is:
#define NAMEDATALEN 64

struct sqlname
{
 short length;
 char data[NAMEDATALEN];
};

The meaning of the fields is:
length

Contains the length of the field name.

data

Contains the actual field name.

984

ECPG — Embedded SQL in C

34.7.2.2. Retrieving a Result Set Using an SQLDA
The general steps to retrieve a query result set through an SQLDA are:

1. Declare an sqlda_t structure to receive the result set.

2. Execute FETCH/EXECUTE/DESCRIBE commands to process a query specifying the declared SQLDA.

3. Check the number of records in the result set by looking at sqln, a member of the sqlda_t structure.

4. Get the values of each column from sqlvar[0], sqlvar[1], etc., members of the sqlda_t structure.

5. Go to next row (sqlda_t structure) by following the desc_next pointer, a member of the sqlda_t
structure.

6. Repeat above as you need.

Here is an example retrieving a result set through an SQLDA.

First, declare a sqlda_t structure to receive the result set.

sqlda_t *sqlda1;

Next, specify the SQLDA in a command. This is a FETCH command example.

EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Run a loop following the linked list to retrieve the rows.

sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
 cur_sqlda != NULL;
 cur_sqlda = cur_sqlda->desc_next)
{
 ...
}

Inside the loop, run another loop to retrieve each column data (sqlvar_t structure) of the row.

for (i = 0; i < cur_sqlda->sqld; i++)
{
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;
 ...
}

To get a column value, check the sqltype value, a member of the sqlvar_t structure. Then, switch to
an appropriate way, depending on the column type, to copy data from the sqlvar field to a host variable.

char var_buf[1024];

switch (v.sqltype)
{
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf) - 1 :
 sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);

985

ECPG — Embedded SQL in C

 break;

 ...
}

34.7.2.3. Passing Query Parameters Using an SQLDA
The general steps to use an SQLDA to pass input parameters to a prepared query are:

1. Create a prepared query (prepared statement)

2. Declare an sqlda_t structure as an input SQLDA.

3. Allocate memory area (as sqlda_t structure) for the input SQLDA.

4. Set (copy) input values in the allocated memory.

5. Open a cursor with specifying the input SQLDA.

Here is an example.

First, create a prepared statement.

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d, pg_stat_database s WHERE d.oid
 = s.datid AND (d.datname = ? OR d.oid = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;

Next, allocate memory for an SQLDA, and set the number of input parameters in sqln, a member variable
of the sqlda_t structure. When two or more input parameters are required for the prepared query,
the application has to allocate additional memory space which is calculated by (nr. of params - 1) *
sizeof(sqlvar_t). The example shown here allocates memory space for two input parameters.

sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

sqlda2->sqln = 2; /* number of input variables */

After memory allocation, store the parameter values into the sqlvar[] array. (This is same array used for
retrieving column values when the SQLDA is receiving a result set.) In this example, the input parameters
are "postgres", having a string type, and 1, having an integer type.

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

By opening a cursor and specifying the SQLDA that was set up beforehand, the input parameters are
passed to the prepared statement.

EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Finally, after using input SQLDAs, the allocated memory space must be freed explicitly, unlike SQLDAs
used for receiving query results.

free(sqlda2);

986

ECPG — Embedded SQL in C

34.7.2.4. A Sample Application Using SQLDA
Here is an example program, which describes how to fetch access statistics of the databases, specified
by the input parameters, from the system catalogs.

This application joins two system tables, pg_database and pg_stat_database on the database OID, and
also fetches and shows the database statistics which are retrieved by two input parameters (a database
postgres, and OID 1).

First, declare an SQLDA for input and an SQLDA for output.

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* an output descriptor */
sqlda_t *sqlda2; /* an input descriptor */

Next, connect to the database, prepare a statement, and declare a cursor for the prepared statement.

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE
 d.oid=s.datid AND (d.datname=? OR d.oid=?)";
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Next, put some values in the input SQLDA for the input parameters. Allocate memory for the input
SQLDA, and set the number of input parameters to sqln. Store type, value, and value length into sqltype,
sqldata, and sqllen in the sqlvar structure.

 /* Create SQLDA structure for input parameters. */
 sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *)&intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

After setting up the input SQLDA, open a cursor with the input SQLDA.

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Fetch rows into the output SQLDA from the opened cursor. (Generally, you have to call FETCH repeatedly
in the loop, to fetch all rows in the result set.)

 while (1)
 {
 sqlda_t *cur_sqlda;

987

ECPG — Embedded SQL in C

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Next, retrieve the fetched records from the SQLDA, by following the linked list of the sqlda_t structure.
 for (cur_sqlda = sqlda1 ;
 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 ...

Read each columns in the first record. The number of columns is stored in sqld, the actual data of the
first column is stored in sqlvar[0], both members of the sqlda_t structure.
 /* Print every column in a row. */
 for (i = 0; i < sqlda1->sqld; i++)
 {
 sqlvar_t v = sqlda1->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

Now, the column data is stored in the variable v. Copy every datum into host variables, looking at v.sql-
type for the type of the column.
 switch (v.sqltype) {
 int intval;
 double doubleval;
 unsigned long long int longlongval;

 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ?
 sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 ...

 default:
 ...
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
 }

Close the cursor after processing all of records, and disconnect from the database.
 EXEC SQL CLOSE cur1;
 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

The whole program is shown in Example 34.1.

988

ECPG — Embedded SQL in C

Example 34.1. Example SQLDA Program

#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* descriptor for output */
sqlda_t *sqlda2; /* descriptor for input */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE
 d.oid=s.datid AND (d.datname=? OR d.oid=?)";

 int intval;
 unsigned long long int longlongval;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

 /* Create an SQLDA structure for an input parameter */
 sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* a number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *) &intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

 while (1)
 {
 sqlda_t *cur_sqlda;

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

 for (cur_sqlda = sqlda1 ;

989

ECPG — Embedded SQL in C

 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 int i;
 char name_buf[1024];
 char var_buf[1024];

 /* Print every column in a row. */
 for (i=0 ; i<cur_sqlda->sqld ; i++)
 {
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

 switch (v.sqltype)
 {
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf)<=sqllen ?
 sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 case ECPGt_long_long: /* bigint */
 memcpy(&longlongval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%lld", longlongval);
 break;

 default:
 {
 int i;
 memset(var_buf, 0, sizeof(var_buf));
 for (i = 0; i < sqllen; i++)
 {
 char tmpbuf[16];
 snprintf(tmpbuf, sizeof(tmpbuf), "%02x ", (unsigned char)
 sqldata[i]);
 strncat(var_buf, tmpbuf, sizeof(var_buf));
 }
 }
 break;
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
 }

 printf("\n");
 }
 }

 EXEC SQL CLOSE cur1;

990

ECPG — Embedded SQL in C

 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

 return 0;
}

The output of this example should look something like the following (some numbers will vary).

oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = t (type: 1)
datallowconn = t (type: 1)
dathasloginevt = f (type: 1)
datconnlimit = -1 (type: 5)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
dathasloginevt = f (type: 1)
datconnlimit = -1 (type: 5)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

991

ECPG — Embedded SQL in C

34.8. Error Handling
This section describes how you can handle exceptional conditions and warnings in an embedded SQL
program. There are two nonexclusive facilities for this.

• Callbacks can be configured to handle warning and error conditions using the WHENEVER command.

• Detailed information about the error or warning can be obtained from the sqlca variable.

34.8.1. Setting Callbacks
One simple method to catch errors and warnings is to set a specific action to be executed whenever a
particular condition occurs. In general:

EXEC SQL WHENEVER condition action;

condition can be one of the following:

SQLERROR

The specified action is called whenever an error occurs during the execution of an SQL statement.

SQLWARNING

The specified action is called whenever a warning occurs during the execution of an SQL statement.

NOT FOUND

The specified action is called whenever an SQL statement retrieves or affects zero rows. (This con-
dition is not an error, but you might be interested in handling it specially.)

action can be one of the following:

CONTINUE

This effectively means that the condition is ignored. This is the default.

GOTO label
GO TO label

Jump to the specified label (using a C goto statement).

SQLPRINT

Print a message to standard error. This is useful for simple programs or during prototyping. The
details of the message cannot be configured.

STOP

Call exit(1), which will terminate the program.

DO BREAK

Execute the C statement break. This should only be used in loops or switch statements.

DO CONTINUE

Execute the C statement continue. This should only be used in loops statements. if executed, will
cause the flow of control to return to the top of the loop.

CALL name (args)
DO name (args)

Call the specified C functions with the specified arguments. (This use is different from the meaning
of CALL and DO in the normal PostgreSQL grammar.)

992

ECPG — Embedded SQL in C

The SQL standard only provides for the actions CONTINUE and GOTO (and GO TO).

Here is an example that you might want to use in a simple program. It prints a simple message when a
warning occurs and aborts the program when an error happens:
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

The statement EXEC SQL WHENEVER is a directive of the SQL preprocessor, not a C statement. The
error or warning actions that it sets apply to all embedded SQL statements that appear below the point
where the handler is set, unless a different action was set for the same condition between the first EXEC
SQL WHENEVER and the SQL statement causing the condition, regardless of the flow of control in the C
program. So neither of the two following C program excerpts will have the desired effect:
/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 if (verbose) {
 EXEC SQL WHENEVER SQLWARNING SQLPRINT;
 }
 ...
 EXEC SQL SELECT ...;
 ...
}

/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 set_error_handler();
 ...
 EXEC SQL SELECT ...;
 ...
}

static void set_error_handler(void)
{
 EXEC SQL WHENEVER SQLERROR STOP;
}

34.8.2. sqlca
For more powerful error handling, the embedded SQL interface provides a global variable with the name
sqlca (SQL communication area) that has the following structure:
struct
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[SQLERRMC_LEN];
 } sqlerrm;
 char sqlerrp[8];

993

ECPG — Embedded SQL in C

 long sqlerrd[6];
 char sqlwarn[8];
 char sqlstate[5];
} sqlca;

(In a multithreaded program, every thread automatically gets its own copy of sqlca. This works similarly
to the handling of the standard C global variable errno.)

sqlca covers both warnings and errors. If multiple warnings or errors occur during the execution of a
statement, then sqlca will only contain information about the last one.

If no error occurred in the last SQL statement, sqlca.sqlcode will be 0 and sqlca.sqlstate will be
"00000". If a warning or error occurred, then sqlca.sqlcode will be negative and sqlca.sqlstate will
be different from "00000". A positive sqlca.sqlcode indicates a harmless condition, such as that the
last query returned zero rows. sqlcode and sqlstate are two different error code schemes; details
appear below.

If the last SQL statement was successful, then sqlca.sqlerrd[1] contains the OID of the processed row,
if applicable, and sqlca.sqlerrd[2] contains the number of processed or returned rows, if applicable
to the command.

In case of an error or warning, sqlca.sqlerrm.sqlerrmc will contain a string that describes the er-
ror. The field sqlca.sqlerrm.sqlerrml contains the length of the error message that is stored in sql-
ca.sqlerrm.sqlerrmc (the result of strlen(), not really interesting for a C programmer). Note that
some messages are too long to fit in the fixed-size sqlerrmc array; they will be truncated.

In case of a warning, sqlca.sqlwarn[2] is set to W. (In all other cases, it is set to something different
from W.) If sqlca.sqlwarn[1] is set to W, then a value was truncated when it was stored in a host variable.
sqlca.sqlwarn[0] is set to W if any of the other elements are set to indicate a warning.

The fields sqlcaid, sqlabc, sqlerrp, and the remaining elements of sqlerrd and sqlwarn currently
contain no useful information.

The structure sqlca is not defined in the SQL standard, but is implemented in several other SQL database
systems. The definitions are similar at the core, but if you want to write portable applications, then you
should investigate the different implementations carefully.

Here is one example that combines the use of WHENEVER and sqlca, printing out the contents of sqlca
when an error occurs. This is perhaps useful for debugging or prototyping applications, before installing
a more “user-friendly” error handler.
EXEC SQL WHENEVER SQLERROR CALL print_sqlca();

void
print_sqlca()
{
 fprintf(stderr, "==== sqlca ====\n");
 fprintf(stderr, "sqlcode: %ld\n", sqlca.sqlcode);
 fprintf(stderr, "sqlerrm.sqlerrml: %d\n", sqlca.sqlerrm.sqlerrml);
 fprintf(stderr, "sqlerrm.sqlerrmc: %s\n", sqlca.sqlerrm.sqlerrmc);
 fprintf(stderr, "sqlerrd: %ld %ld %ld %ld %ld %ld\n",
 sqlca.sqlerrd[0],sqlca.sqlerrd[1],sqlca.sqlerrd[2],

 sqlca.sqlerrd[3],sqlca.sqlerrd[4],sqlca.sqlerrd[5]);
 fprintf(stderr, "sqlwarn: %d %d %d %d %d %d %d %d\n", sqlca.sqlwarn[0],
 sqlca.sqlwarn[1], sqlca.sqlwarn[2],
 sqlca.sqlwarn[3],
 sqlca.sqlwarn[4], sqlca.sqlwarn[5],
 sqlca.sqlwarn[6],
 sqlca.sqlwarn[7]);

994

ECPG — Embedded SQL in C

 fprintf(stderr, "sqlstate: %5s\n", sqlca.sqlstate);
 fprintf(stderr, "===============\n");
}

The result could look as follows (here an error due to a misspelled table name):

==== sqlca ====
sqlcode: -400
sqlerrm.sqlerrml: 49
sqlerrm.sqlerrmc: relation "pg_databasep" does not exist on line 38
sqlerrd: 0 0 0 0 0 0
sqlwarn: 0 0 0 0 0 0 0 0
sqlstate: 42P01
===============

34.8.3. SQLSTATE vs. SQLCODE
The fields sqlca.sqlstate and sqlca.sqlcode are two different schemes that provide error codes. Both
are derived from the SQL standard, but SQLCODE has been marked deprecated in the SQL-92 edition of the
standard and has been dropped in later editions. Therefore, new applications are strongly encouraged
to use SQLSTATE.

SQLSTATE is a five-character array. The five characters contain digits or upper-case letters that repre-
sent codes of various error and warning conditions. SQLSTATE has a hierarchical scheme: the first two
characters indicate the general class of the condition, the last three characters indicate a subclass of
the general condition. A successful state is indicated by the code 00000. The SQLSTATE codes are for the
most part defined in the SQL standard. The PostgreSQL server natively supports SQLSTATE error codes;
therefore a high degree of consistency can be achieved by using this error code scheme throughout all
applications. For further information see Appendix A.

SQLCODE, the deprecated error code scheme, is a simple integer. A value of 0 indicates success, a positive
value indicates success with additional information, a negative value indicates an error. The SQL stan-
dard only defines the positive value +100, which indicates that the last command returned or affected
zero rows, and no specific negative values. Therefore, this scheme can only achieve poor portability
and does not have a hierarchical code assignment. Historically, the embedded SQL processor for Post-
greSQL has assigned some specific SQLCODE values for its use, which are listed below with their numeric
value and their symbolic name. Remember that these are not portable to other SQL implementations. To
simplify the porting of applications to the SQLSTATE scheme, the corresponding SQLSTATE is also listed.
There is, however, no one-to-one or one-to-many mapping between the two schemes (indeed it is many-
to-many), so you should consult the global SQLSTATE listing in Appendix A in each case.

These are the assigned SQLCODE values:

0 (ECPG_NO_ERROR)

Indicates no error. (SQLSTATE 00000)

100 (ECPG_NOT_FOUND)

This is a harmless condition indicating that the last command retrieved or processed zero rows, or
that you are at the end of the cursor. (SQLSTATE 02000)

When processing a cursor in a loop, you could use this code as a way to detect when to abort the
loop, like this:

while (1)
{
 EXEC SQL FETCH ... ;
 if (sqlca.sqlcode == ECPG_NOT_FOUND)
 break;
}

995

ECPG — Embedded SQL in C

But WHENEVER NOT FOUND DO BREAK effectively does this internally, so there is usually no advantage
in writing this out explicitly.

-12 (ECPG_OUT_OF_MEMORY)

Indicates that your virtual memory is exhausted. The numeric value is defined as -ENOMEM. (SQLS-
TATE YE001)

-200 (ECPG_UNSUPPORTED)
Indicates the preprocessor has generated something that the library does not know about. Perhaps
you are running incompatible versions of the preprocessor and the library. (SQLSTATE YE002)

-201 (ECPG_TOO_MANY_ARGUMENTS)
This means that the command specified more host variables than the command expected. (SQLSTATE
07001 or 07002)

-202 (ECPG_TOO_FEW_ARGUMENTS)
This means that the command specified fewer host variables than the command expected. (SQLS-
TATE 07001 or 07002)

-203 (ECPG_TOO_MANY_MATCHES)
This means a query has returned multiple rows but the statement was only prepared to store one
result row (for example, because the specified variables are not arrays). (SQLSTATE 21000)

-204 (ECPG_INT_FORMAT)

The host variable is of type int and the datum in the database is of a different type and contains a
value that cannot be interpreted as an int. The library uses strtol() for this conversion. (SQLSTATE
42804)

-205 (ECPG_UINT_FORMAT)

The host variable is of type unsigned int and the datum in the database is of a different type and
contains a value that cannot be interpreted as an unsigned int. The library uses strtoul() for this
conversion. (SQLSTATE 42804)

-206 (ECPG_FLOAT_FORMAT)

The host variable is of type float and the datum in the database is of another type and contains a
value that cannot be interpreted as a float. The library uses strtod() for this conversion. (SQLS-
TATE 42804)

-207 (ECPG_NUMERIC_FORMAT)

The host variable is of type numeric and the datum in the database is of another type and contains
a value that cannot be interpreted as a numeric value. (SQLSTATE 42804)

-208 (ECPG_INTERVAL_FORMAT)

The host variable is of type interval and the datum in the database is of another type and contains
a value that cannot be interpreted as an interval value. (SQLSTATE 42804)

-209 (ECPG_DATE_FORMAT)

The host variable is of type date and the datum in the database is of another type and contains a
value that cannot be interpreted as a date value. (SQLSTATE 42804)

-210 (ECPG_TIMESTAMP_FORMAT)

The host variable is of type timestamp and the datum in the database is of another type and contains
a value that cannot be interpreted as a timestamp value. (SQLSTATE 42804)

996

ECPG — Embedded SQL in C

-211 (ECPG_CONVERT_BOOL)
This means the host variable is of type bool and the datum in the database is neither 't' nor 'f'.
(SQLSTATE 42804)

-212 (ECPG_EMPTY)
The statement sent to the PostgreSQL server was empty. (This cannot normally happen in an em-
bedded SQL program, so it might point to an internal error.) (SQLSTATE YE002)

-213 (ECPG_MISSING_INDICATOR)
A null value was returned and no null indicator variable was supplied. (SQLSTATE 22002)

-214 (ECPG_NO_ARRAY)
An ordinary variable was used in a place that requires an array. (SQLSTATE 42804)

-215 (ECPG_DATA_NOT_ARRAY)
The database returned an ordinary variable in a place that requires array value. (SQLSTATE 42804)

-216 (ECPG_ARRAY_INSERT)
The value could not be inserted into the array. (SQLSTATE 42804)

-220 (ECPG_NO_CONN)
The program tried to access a connection that does not exist. (SQLSTATE 08003)

-221 (ECPG_NOT_CONN)
The program tried to access a connection that does exist but is not open. (This is an internal error.)
(SQLSTATE YE002)

-230 (ECPG_INVALID_STMT)
The statement you are trying to use has not been prepared. (SQLSTATE 26000)

-239 (ECPG_INFORMIX_DUPLICATE_KEY)
Duplicate key error, violation of unique constraint (Informix compatibility mode). (SQLSTATE 23505)

-240 (ECPG_UNKNOWN_DESCRIPTOR)
The descriptor specified was not found. The statement you are trying to use has not been prepared.
(SQLSTATE 33000)

-241 (ECPG_INVALID_DESCRIPTOR_INDEX)
The descriptor index specified was out of range. (SQLSTATE 07009)

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)
An invalid descriptor item was requested. (This is an internal error.) (SQLSTATE YE002)

-243 (ECPG_VAR_NOT_NUMERIC)
During the execution of a dynamic statement, the database returned a numeric value and the host
variable was not numeric. (SQLSTATE 07006)

-244 (ECPG_VAR_NOT_CHAR)
During the execution of a dynamic statement, the database returned a non-numeric value and the
host variable was numeric. (SQLSTATE 07006)

-284 (ECPG_INFORMIX_SUBSELECT_NOT_ONE)
A result of the subquery is not single row (Informix compatibility mode). (SQLSTATE 21000)

997

ECPG — Embedded SQL in C

-400 (ECPG_PGSQL)
Some error caused by the PostgreSQL server. The message contains the error message from the
PostgreSQL server.

-401 (ECPG_TRANS)
The PostgreSQL server signaled that we cannot start, commit, or rollback the transaction. (SQLS-
TATE 08007)

-402 (ECPG_CONNECT)
The connection attempt to the database did not succeed. (SQLSTATE 08001)

-403 (ECPG_DUPLICATE_KEY)
Duplicate key error, violation of unique constraint. (SQLSTATE 23505)

-404 (ECPG_SUBSELECT_NOT_ONE)
A result for the subquery is not single row. (SQLSTATE 21000)

-602 (ECPG_WARNING_UNKNOWN_PORTAL)
An invalid cursor name was specified. (SQLSTATE 34000)

-603 (ECPG_WARNING_IN_TRANSACTION)
Transaction is in progress. (SQLSTATE 25001)

-604 (ECPG_WARNING_NO_TRANSACTION)
There is no active (in-progress) transaction. (SQLSTATE 25P01)

-605 (ECPG_WARNING_PORTAL_EXISTS)
An existing cursor name was specified. (SQLSTATE 42P03)

34.9. Preprocessor Directives
Several preprocessor directives are available that modify how the ecpg preprocessor parses and process-
es a file.

34.9.1. Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDE filename;
EXEC SQL INCLUDE <filename>;
EXEC SQL INCLUDE "filename";

The embedded SQL preprocessor will look for a file named filename.h, preprocess it, and include it in
the resulting C output. Thus, embedded SQL statements in the included file are handled correctly.

The ecpg preprocessor will search a file at several directories in following order:
• current directory
• /usr/local/include

• PostgreSQL include directory, defined at build time (e.g., /usr/local/pgsql/include)
• /usr/include

But when EXEC SQL INCLUDE "filename" is used, only the current directory is searched.

In each directory, the preprocessor will first look for the file name as given, and if not found will append
.h to the file name and try again (unless the specified file name already has that suffix).

998

ECPG — Embedded SQL in C

Note that EXEC SQL INCLUDE is not the same as:
#include <filename.h>

because this file would not be subject to SQL command preprocessing. Naturally, you can continue to
use the C #include directive to include other header files.

Note
The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE command
follows the normal SQL case-sensitivity rules.

34.9.2. The define and undef Directives
Similar to the directive #define that is known from C, embedded SQL has a similar concept:
EXEC SQL DEFINE name;
EXEC SQL DEFINE name value;

So you can define a name:
EXEC SQL DEFINE HAVE_FEATURE;

And you can also define constants:
EXEC SQL DEFINE MYNUMBER 12;
EXEC SQL DEFINE MYSTRING 'abc';

Use undef to remove a previous definition:
EXEC SQL UNDEF MYNUMBER;

Of course you can continue to use the C versions #define and #undef in your embedded SQL program.
The difference is where your defined values get evaluated. If you use EXEC SQL DEFINE then the ecpg
preprocessor evaluates the defines and substitutes the values. For example if you write:
EXEC SQL DEFINE MYNUMBER 12;
...
EXEC SQL UPDATE Tbl SET col = MYNUMBER;

then ecpg will already do the substitution and your C compiler will never see any name or identifier
MYNUMBER. Note that you cannot use #define for a constant that you are going to use in an embedded
SQL query because in this case the embedded SQL precompiler is not able to see this declaration.

If multiple input files are named on the ecpg preprocessor's command line, the effects of EXEC SQL
DEFINE and EXEC SQL UNDEF do not carry across files: each file starts with only the symbols defined by
-D switches on the command line.

34.9.3. ifdef, ifndef, elif, else, and endif Directives
You can use the following directives to compile code sections conditionally:
EXEC SQL ifdef name;

Checks a name and processes subsequent lines if name has been defined via EXEC SQL define name.

EXEC SQL ifndef name;

Checks a name and processes subsequent lines if name has not been defined via EXEC SQL define
name.

EXEC SQL elif name;

Begins an optional alternative section after an EXEC SQL ifdef name or EXEC SQL ifndef name
directive. Any number of elif sections can appear. Lines following an elif will be processed if

999

ECPG — Embedded SQL in C

name has been defined and no previous section of the same ifdef/ifndef...endif construct has been
processed.

EXEC SQL else;

Begins an optional, final alternative section after an EXEC SQL ifdef name or EXEC SQL ifndef name
directive. Subsequent lines will be processed if no previous section of the same ifdef/ifndef...endif
construct has been processed.

EXEC SQL endif;

Ends an ifdef/ifndef...endif construct. Subsequent lines are processed normally.

ifdef/ifndef...endif constructs can be nested, up to 127 levels deep.

This example will compile exactly one of the three SET TIMEZONE commands:

EXEC SQL ifdef TZVAR;
EXEC SQL SET TIMEZONE TO TZVAR;
EXEC SQL elif TZNAME;
EXEC SQL SET TIMEZONE TO TZNAME;
EXEC SQL else;
EXEC SQL SET TIMEZONE TO 'GMT';
EXEC SQL endif;

34.10. Processing Embedded SQL Programs
Now that you have an idea how to form embedded SQL C programs, you probably want to know how
to compile them. Before compiling you run the file through the embedded SQL C preprocessor, which
converts the SQL statements you used to special function calls. After compiling, you must link with a
special library that contains the needed functions. These functions fetch information from the arguments,
perform the SQL command using the libpq interface, and put the result in the arguments specified for
output.

The preprocessor program is called ecpg and is included in a normal PostgreSQL installation. Embedded
SQL programs are typically named with an extension .pgc. If you have a program file called prog1.pgc,
you can preprocess it by simply calling:

ecpg prog1.pgc

This will create a file called prog1.c. If your input files do not follow the suggested naming pattern, you
can specify the output file explicitly using the -o option.

The preprocessed file can be compiled normally, for example:

cc -c prog1.c

The generated C source files include header files from the PostgreSQL installation, so if you installed
PostgreSQL in a location that is not searched by default, you have to add an option such as -I/usr/
local/pgsql/include to the compilation command line.

To link an embedded SQL program, you need to include the libecpg library, like so:

cc -o myprog prog1.o prog2.o ... -lecpg

Again, you might have to add an option like -L/usr/local/pgsql/lib to that command line.

You can use pg_configor pkg-configwith package name libecpg to get the paths for your installation.

If you manage the build process of a larger project using make, it might be convenient to include the
following implicit rule to your makefiles:

ECPG = ecpg

1000

ECPG — Embedded SQL in C

%.c: %.pgc
 $(ECPG) $<

The complete syntax of the ecpg command is detailed in ecpg.

The ecpg library is thread-safe by default. However, you might need to use some threading command-line
options to compile your client code.

34.11. Library Functions
The libecpg library primarily contains “hidden” functions that are used to implement the functionality
expressed by the embedded SQL commands. But there are some functions that can usefully be called
directly. Note that this makes your code unportable.

• ECPGdebug(int on, FILE *stream) turns on debug logging if called with the first argument non-
zero. Debug logging is done on stream. The log contains all SQL statements with all the input vari-
ables inserted, and the results from the PostgreSQL server. This can be very useful when searching
for errors in your SQL statements.

Note
On Windows, if the ecpg libraries and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE point-
ers differ. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic
flags should be the same for the library and all applications using that library.

• ECPGget_PGconn(const char *connection_name) returns the library database connection han-
dle identified by the given name. If connection_name is set to NULL, the current connection handle
is returned. If no connection handle can be identified, the function returns NULL. The returned con-
nection handle can be used to call any other functions from libpq, if necessary.

Note
It is a bad idea to manipulate database connection handles made from ecpg directly with
libpq routines.

• ECPGtransactionStatus(const char *connection_name) returns the current transaction status
of the given connection identified by connection_name. See Section 32.2 and libpq's PQtransac-
tionStatus for details about the returned status codes.

• ECPGstatus(int lineno, const char* connection_name) returns true if you are connected to a
database and false if not. connection_name can be NULL if a single connection is being used.

34.12. Large Objects
Large objects are not directly supported by ECPG, but ECPG application can manipulate large ob-
jects through the libpq large object functions, obtaining the necessary PGconn object by calling the
ECPGget_PGconn() function. (However, use of the ECPGget_PGconn() function and touching PGconn ob-
jects directly should be done very carefully and ideally not mixed with other ECPG database access calls.)

For more details about the ECPGget_PGconn(), see Section 34.11. For information about the large object
function interface, see Chapter 33.

Large object functions have to be called in a transaction block, so when autocommit is off, BEGIN com-
mands have to be issued explicitly.

1001

ECPG — Embedded SQL in C

Example 34.2 shows an example program that illustrates how to create, write, and read a large object
in an ECPG application.

Example 34.2. ECPG Program Accessing Large Objects
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <libpq/libpq-fs.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 PGconn *conn;
 Oid loid;
 int fd;
 char buf[256];
 int buflen = 256;
 char buf2[256];
 int rc;

 memset(buf, 1, buflen);

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 conn = ECPGget_PGconn("con1");
 printf("conn = %p\n", conn);

 /* create */
 loid = lo_create(conn, 0);
 if (loid < 0)
 printf("lo_create() failed: %s", PQerrorMessage(conn));

 printf("loid = %d\n", loid);

 /* write test */
 fd = lo_open(conn, loid, INV_READ|INV_WRITE);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

 rc = lo_write(conn, fd, buf, buflen);
 if (rc < 0)
 printf("lo_write() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* read test */
 fd = lo_open(conn, loid, INV_READ);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

1002

ECPG — Embedded SQL in C

 rc = lo_read(conn, fd, buf2, buflen);
 if (rc < 0)
 printf("lo_read() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* check */
 rc = memcmp(buf, buf2, buflen);
 printf("memcmp() = %d\n", rc);

 /* cleanup */
 rc = lo_unlink(conn, loid);
 if (rc < 0)
 printf("lo_unlink() failed: %s", PQerrorMessage(conn));

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

34.13. C++ Applications
ECPG has some limited support for C++ applications. This section describes some caveats.

The ecpg preprocessor takes an input file written in C (or something like C) and embedded SQL com-
mands, converts the embedded SQL commands into C language chunks, and finally generates a .c file.
The header file declarations of the library functions used by the C language chunks that ecpg generates
are wrapped in extern "C" { ... } blocks when used under C++, so they should work seamlessly
in C++.

In general, however, the ecpg preprocessor only understands C; it does not handle the special syntax
and reserved words of the C++ language. So, some embedded SQL code written in C++ application
code that uses complicated features specific to C++ might fail to be preprocessed correctly or might
not work as expected.

A safe way to use the embedded SQL code in a C++ application is hiding the ECPG calls in a C module,
which the C++ application code calls into to access the database, and linking that together with the rest
of the C++ code. See Section 34.13.2 about that.

34.13.1. Scope for Host Variables
The ecpg preprocessor understands the scope of variables in C. In the C language, this is rather simple
because the scopes of variables is based on their code blocks. In C++, however, the class member
variables are referenced in a different code block from the declared position, so the ecpg preprocessor
will not understand the scope of the class member variables.

For example, in the following case, the ecpg preprocessor cannot find any declaration for the variable
dbname in the test method, so an error will occur.

class TestCpp
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 public:

1003

ECPG — Embedded SQL in C

 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
}

void Test::test()
{
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

TestCpp::~TestCpp()
{
 EXEC SQL DISCONNECT ALL;
}

This code will result in an error like this:
ecpg test_cpp.pgc
test_cpp.pgc:28: ERROR: variable "dbname" is not declared

To avoid this scope issue, the test method could be modified to use a local variable as intermediate stor-
age. But this approach is only a poor workaround, because it uglifies the code and reduces performance.
void TestCpp::test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char tmp[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :tmp;
 strlcpy(dbname, tmp, sizeof(tmp));

 printf("current_database = %s\n", dbname);
}

34.13.2. C++ Application Development with External C Module
If you understand these technical limitations of the ecpg preprocessor in C++, you might come to the
conclusion that linking C objects and C++ objects at the link stage to enable C++ applications to use
ECPG features could be better than writing some embedded SQL commands in C++ code directly. This
section describes a way to separate some embedded SQL commands from C++ application code with
a simple example. In this example, the application is implemented in C++, while C and ECPG is used
to connect to the PostgreSQL server.

Three kinds of files have to be created: a C file (*.pgc), a header file, and a C++ file:
test_mod.pgc

A sub-routine module to execute SQL commands embedded in C. It is going to be converted into
test_mod.c by the preprocessor.
#include "test_mod.h"
#include <stdio.h>

void

1004

ECPG — Embedded SQL in C

db_connect()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL
 COMMIT;
}

void
db_test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

void
db_disconnect()
{
 EXEC SQL DISCONNECT ALL;
}

test_mod.h

A header file with declarations of the functions in the C module (test_mod.pgc). It is included by
test_cpp.cpp. This file has to have an extern "C" block around the declarations, because it will
be linked from the C++ module.

#ifdef __cplusplus
extern "C" {
#endif

void db_connect();
void db_test();
void db_disconnect();

#ifdef __cplusplus
}
#endif

test_cpp.cpp

The main code for the application, including the main routine, and in this example a C++ class.

#include "test_mod.h"

class TestCpp
{
 public:
 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 db_connect();
}

1005

ECPG — Embedded SQL in C

void
TestCpp::test()
{
 db_test();
}

TestCpp::~TestCpp()
{
 db_disconnect();
}

int
main(void)
{
 TestCpp *t = new TestCpp();

 t->test();
 return 0;
}

To build the application, proceed as follows. Convert test_mod.pgc into test_mod.c by running ecpg,
and generate test_mod.o by compiling test_mod.c with the C compiler:

ecpg -o test_mod.c test_mod.pgc
cc -c test_mod.c -o test_mod.o

Next, generate test_cpp.o by compiling test_cpp.cpp with the C++ compiler:

c++ -c test_cpp.cpp -o test_cpp.o

Finally, link these object files, test_cpp.o and test_mod.o, into one executable, using the C++ compiler
driver:

c++ test_cpp.o test_mod.o -lecpg -o test_cpp

34.14. Embedded SQL Commands
This section describes all SQL commands that are specific to embedded SQL. Also refer to the SQL
commands listed in SQL Commands, which can also be used in embedded SQL, unless stated otherwise.

1006

ECPG — Embedded SQL in C

ALLOCATE DESCRIPTOR
ALLOCATE DESCRIPTOR — allocate an SQL descriptor area

Synopsis
ALLOCATE DESCRIPTOR name

Description
ALLOCATE DESCRIPTOR allocates a new named SQL descriptor area, which can be used to exchange data
between the PostgreSQL server and the host program.

Descriptor areas should be freed after use using the DEALLOCATE DESCRIPTOR command.

Parameters
name

A name of SQL descriptor, case sensitive. This can be an SQL identifier or a host variable.

Examples
EXEC SQL ALLOCATE DESCRIPTOR mydesc;

Compatibility
ALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

1007

ECPG — Embedded SQL in C

CONNECT
CONNECT — establish a database connection

Synopsis
CONNECT TO connection_target [AS connection_name] [USER connection_user]
CONNECT TO DEFAULT
CONNECT connection_user
DATABASE connection_target

Description
The CONNECT command establishes a connection between the client and the PostgreSQL server.

Parameters
connection_target

connection_target specifies the target server of the connection on one of several forms.

[database_name] [@host] [:port]

Connect over TCP/IP

unix:postgresql://host [:port] / [database_name] [?connection_option]

Connect over Unix-domain sockets

tcp:postgresql://host [:port] / [database_name] [?connection_option]

Connect over TCP/IP

SQL string constant

containing a value in one of the above forms

host variable

host variable of type char[] or VARCHAR[] containing a value in one of the above forms

connection_name

An optional identifier for the connection, so that it can be referred to in other commands. This can
be an SQL identifier or a host variable.

connection_user

The user name for the database connection.

This parameter can also specify user name and password, using one the forms user_name/password,
user_name IDENTIFIED BY password, or user_name USING password.

User name and password can be SQL identifiers, string constants, or host variables.

DEFAULT

Use all default connection parameters, as defined by libpq.

Examples
Here a several variants for specifying connection parameters:

EXEC SQL CONNECT TO "connectdb" AS main;
EXEC SQL CONNECT TO "connectdb" AS second;

1008

ECPG — Embedded SQL in C

EXEC SQL CONNECT TO "unix:postgresql://200.46.204.71/connectdb" AS main USER
 connectuser;
EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO 'connectdb' AS main;
EXEC SQL CONNECT TO 'unix:postgresql://localhost/connectdb' AS main USER :user;
EXEC SQL CONNECT TO :db AS :id;
EXEC SQL CONNECT TO :db USER connectuser USING :pw;
EXEC SQL CONNECT TO @localhost AS main USER connectdb;
EXEC SQL CONNECT TO REGRESSDB1 as main;
EXEC SQL CONNECT TO AS main USER connectdb;
EXEC SQL CONNECT TO connectdb AS :id;
EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb;
EXEC SQL CONNECT TO connectdb AS main;
EXEC SQL CONNECT TO connectdb@localhost AS main;
EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb;
EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY
 connectpw;
EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER connectuser IDENTIFIED
 BY connectpw;
EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER connectdb;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER connectuser;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser IDENTIFIED
 BY "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser USING
 "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?connect_timeout=14 USER
 connectuser;

Here is an example program that illustrates the use of host variables to specify connection parameters:
int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 char *dbname = "testdb"; /* database name */
 char *user = "testuser"; /* connection user name */
 char *connection = "tcp:postgresql://localhost:5432/testdb";
 /* connection string */
 char ver[256]; /* buffer to store the version string */
EXEC SQL END DECLARE SECTION;

 ECPGdebug(1, stderr);

 EXEC SQL CONNECT TO :dbname USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL SELECT version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 EXEC SQL CONNECT TO :connection USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL SELECT version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 return 0;
}

1009

ECPG — Embedded SQL in C

Compatibility
CONNECT is specified in the SQL standard, but the format of the connection parameters is implementa-
tion-specific.

See Also
DISCONNECT, SET CONNECTION

1010

ECPG — Embedded SQL in C

DEALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR — deallocate an SQL descriptor area

Synopsis
DEALLOCATE DESCRIPTOR name

Description
DEALLOCATE DESCRIPTOR deallocates a named SQL descriptor area.

Parameters
name

The name of the descriptor which is going to be deallocated. It is case sensitive. This can be an SQL
identifier or a host variable.

Examples
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility
DEALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

1011

ECPG — Embedded SQL in C

DECLARE
DECLARE — define a cursor

Synopsis
DECLARE cursor_name [BINARY] [ASENSITIVE | INSENSITIVE] [[NO] SCROLL] CURSOR
 [{ WITH | WITHOUT } HOLD] FOR prepared_name
DECLARE cursor_name [BINARY] [ASENSITIVE | INSENSITIVE] [[NO] SCROLL] CURSOR
 [{ WITH | WITHOUT } HOLD] FOR query

Description
DECLARE declares a cursor for iterating over the result set of a prepared statement. This command has
slightly different semantics from the direct SQL command DECLARE: Whereas the latter executes a query
and prepares the result set for retrieval, this embedded SQL command merely declares a name as a
“loop variable” for iterating over the result set of a query; the actual execution happens when the cursor
is opened with the OPEN command.

Parameters
cursor_name

A cursor name, case sensitive. This can be an SQL identifier or a host variable.

prepared_name

The name of a prepared query, either as an SQL identifier or a host variable.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

For the meaning of the cursor options, see DECLARE.

Examples
Examples declaring a cursor for a query:

EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table;
EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T;
EXEC SQL DECLARE cur1 CURSOR FOR SELECT version();

An example declaring a cursor for a prepared statement:

EXEC SQL PREPARE stmt1 AS SELECT version();
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Compatibility
DECLARE is specified in the SQL standard.

See Also
OPEN, CLOSE, DECLARE

1012

ECPG — Embedded SQL in C

DECLARE STATEMENT
DECLARE STATEMENT — declare SQL statement identifier

Synopsis
EXEC SQL [AT connection_name] DECLARE statement_name STATEMENT

Description
DECLARE STATEMENT declares an SQL statement identifier. SQL statement identifier can be associated
with the connection. When the identifier is used by dynamic SQL statements, the statements are executed
using the associated connection. The namespace of the declaration is the precompile unit, and multiple
declarations to the same SQL statement identifier are not allowed. Note that if the precompiler runs
in Informix compatibility mode and some SQL statement is declared, "database" can not be used as a
cursor name.

Parameters
connection_name

A database connection name established by the CONNECT command.

AT clause can be omitted, but such statement has no meaning.

statement_name

The name of an SQL statement identifier, either as an SQL identifier or a host variable.

Notes
This association is valid only if the declaration is physically placed on top of a dynamic statement.

Examples
EXEC SQL CONNECT TO postgres AS con1;
EXEC SQL AT con1 DECLARE sql_stmt STATEMENT;
EXEC SQL DECLARE cursor_name CURSOR FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :dyn_string;
EXEC SQL OPEN cursor_name;
EXEC SQL FETCH cursor_name INTO :column1;
EXEC SQL CLOSE cursor_name;

Compatibility
DECLARE STATEMENT is an extension of the SQL standard, but can be used in famous DBMSs.

See Also
CONNECT, DECLARE, OPEN

1013

ECPG — Embedded SQL in C

DESCRIBE
DESCRIBE — obtain information about a prepared statement or result set

Synopsis
DESCRIBE [OUTPUT] prepared_name USING [SQL] DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO [SQL] DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO sqlda_name

Description
DESCRIBE retrieves metadata information about the result columns contained in a prepared statement,
without actually fetching a row.

Parameters
prepared_name

The name of a prepared statement. This can be an SQL identifier or a host variable.

descriptor_name

A descriptor name. It is case sensitive. It can be an SQL identifier or a host variable.

sqlda_name

The name of an SQLDA variable.

Examples
EXEC SQL ALLOCATE DESCRIPTOR mydesc;
EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;
EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME;
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility
DESCRIBE is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

1014

ECPG — Embedded SQL in C

DISCONNECT
DISCONNECT — terminate a database connection

Synopsis
DISCONNECT connection_name
DISCONNECT [CURRENT]
DISCONNECT ALL

Description
DISCONNECT closes a connection (or all connections) to the database.

Parameters
connection_name

A database connection name established by the CONNECT command.

CURRENT

Close the “current” connection, which is either the most recently opened connection, or the connec-
tion set by the SET CONNECTION command. This is also the default if no argument is given to the
DISCONNECT command.

ALL

Close all open connections.

Examples
int
main(void)
{
 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL CONNECT TO testdb AS con2 USER testuser;
 EXEC SQL CONNECT TO testdb AS con3 USER testuser;

 EXEC SQL DISCONNECT CURRENT; /* close con3 */
 EXEC SQL DISCONNECT ALL; /* close con2 and con1 */

 return 0;
}

Compatibility
DISCONNECT is specified in the SQL standard.

See Also
CONNECT, SET CONNECTION

1015

ECPG — Embedded SQL in C

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE — dynamically prepare and execute a statement

Synopsis
EXECUTE IMMEDIATE string

Description
EXECUTE IMMEDIATE immediately prepares and executes a dynamically specified SQL statement, without
retrieving result rows.

Parameters
string

A literal string or a host variable containing the SQL statement to be executed.

Notes
In typical usage, the string is a host variable reference to a string containing a dynamically-constructed
SQL statement. The case of a literal string is not very useful; you might as well just write the SQL
statement directly, without the extra typing of EXECUTE IMMEDIATE.

If you do use a literal string, keep in mind that any double quotes you might wish to include in the
SQL statement must be written as octal escapes (\042) not the usual C idiom \". This is because the
string is inside an EXEC SQL section, so the ECPG lexer parses it according to SQL rules not C rules. Any
embedded backslashes will later be handled according to C rules; but \" causes an immediate syntax
error because it is seen as ending the literal.

Examples
Here is an example that executes an INSERT statement using EXECUTE IMMEDIATE and a host variable
named command:

sprintf(command, "INSERT INTO test (name, amount, letter) VALUES ('db: ''r1''', 1,
 'f')");
EXEC SQL EXECUTE IMMEDIATE :command;

Compatibility
EXECUTE IMMEDIATE is specified in the SQL standard.

1016

ECPG — Embedded SQL in C

GET DESCRIPTOR
GET DESCRIPTOR — get information from an SQL descriptor area

Synopsis
GET DESCRIPTOR descriptor_name :cvariable = descriptor_header_item [, ...]
GET DESCRIPTOR descriptor_name VALUE column_number :cvariable = descriptor_item
 [, ...]

Description
GET DESCRIPTOR retrieves information about a query result set from an SQL descriptor area and stores
it into host variables. A descriptor area is typically populated using FETCH or SELECT before using this
command to transfer the information into host language variables.

This command has two forms: The first form retrieves descriptor “header” items, which apply to the
result set in its entirety. One example is the row count. The second form, which requires the column
number as additional parameter, retrieves information about a particular column. Examples are the
column name and the actual column value.

Parameters
descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to retrieve. Only COUNT, to get the number of
columns in the result set, is currently supported.

column_number

The number of the column about which information is to be retrieved. The count starts at 1.

descriptor_item

A token identifying which item of information about a column to retrieve. See Section 34.7.1 for a
list of supported items.

cvariable

A host variable that will receive the data retrieved from the descriptor area.

Examples
An example to retrieve the number of columns in a result set:

EXEC SQL GET DESCRIPTOR d :d_count = COUNT;

An example to retrieve a data length in the first column:

EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;

An example to retrieve the data body of the second column as a string:

EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA;

Here is an example for a whole procedure of executing SELECT current_database(); and showing the
number of columns, the column data length, and the column data:

int
main(void)
{

1017

ECPG — Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
 int d_count;
 char d_data[1024];
 int d_returned_octet_length;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;

 /* Declare, open a cursor, and assign a descriptor to the cursor */
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database();
 EXEC SQL OPEN cur;
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;

 /* Get a number of total columns */
 EXEC SQL GET DESCRIPTOR d :d_count = COUNT;
 printf("d_count = %d\n", d_count);

 /* Get length of a returned column */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;
 printf("d_returned_octet_length = %d\n", d_returned_octet_length);

 /* Fetch the returned column as a string */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_data = DATA;
 printf("d_data = %s\n", d_data);

 /* Closing */
 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

When the example is executed, the result will look like this:

d_count = 1
d_returned_octet_length = 6
d_data = testdb

Compatibility
GET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, SET DESCRIPTOR

1018

ECPG — Embedded SQL in C

OPEN
OPEN — open a dynamic cursor

Synopsis
OPEN cursor_name
OPEN cursor_name USING value [, ...]
OPEN cursor_name USING SQL DESCRIPTOR descriptor_name

Description
OPEN opens a cursor and optionally binds actual values to the placeholders in the cursor's declaration.
The cursor must previously have been declared with the DECLARE command. The execution of OPEN causes
the query to start executing on the server.

Parameters
cursor_name

The name of the cursor to be opened. This can be an SQL identifier or a host variable.

value

A value to be bound to a placeholder in the cursor. This can be an SQL constant, a host variable,
or a host variable with indicator.

descriptor_name

The name of a descriptor containing values to be bound to the placeholders in the cursor. This can
be an SQL identifier or a host variable.

Examples
EXEC SQL OPEN a;
EXEC SQL OPEN d USING 1, 'test';
EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc;
EXEC SQL OPEN :curname1;

Compatibility
OPEN is specified in the SQL standard.

See Also
DECLARE, CLOSE

1019

ECPG — Embedded SQL in C

PREPARE
PREPARE — prepare a statement for execution

Synopsis
PREPARE prepared_name FROM string

Description
PREPARE prepares a statement dynamically specified as a string for execution. This is different from
the direct SQL statement PREPARE, which can also be used in embedded programs. The EXECUTE
command is used to execute either kind of prepared statement.

Parameters
prepared_name

An identifier for the prepared query.

string

A literal string or a host variable containing a preparable SQL statement, one of SELECT, INSERT,
UPDATE, or DELETE. Use question marks (?) for parameter values to be supplied at execution.

Notes
In typical usage, the string is a host variable reference to a string containing a dynamically-constructed
SQL statement. The case of a literal string is not very useful; you might as well just write a direct SQL
PREPARE statement.

If you do use a literal string, keep in mind that any double quotes you might wish to include in the
SQL statement must be written as octal escapes (\042) not the usual C idiom \". This is because the
string is inside an EXEC SQL section, so the ECPG lexer parses it according to SQL rules not C rules. Any
embedded backslashes will later be handled according to C rules; but \" causes an immediate syntax
error because it is seen as ending the literal.

Examples
char *stmt = "SELECT * FROM test1 WHERE a = ? AND b = ?";

EXEC SQL ALLOCATE DESCRIPTOR outdesc;
EXEC SQL PREPARE foo FROM :stmt;

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR outdesc;

Compatibility
PREPARE is specified in the SQL standard.

See Also
EXECUTE

1020

ECPG — Embedded SQL in C

SET AUTOCOMMIT
SET AUTOCOMMIT — set the autocommit behavior of the current session

Synopsis
SET AUTOCOMMIT { = | TO } { ON | OFF }

Description
SET AUTOCOMMIT sets the autocommit behavior of the current database session. By default, embedded
SQL programs are not in autocommit mode, so COMMIT needs to be issued explicitly when desired. This
command can change the session to autocommit mode, where each individual statement is committed
implicitly.

Compatibility
SET AUTOCOMMIT is an extension of PostgreSQL ECPG.

1021

ECPG — Embedded SQL in C

SET CONNECTION
SET CONNECTION — select a database connection

Synopsis
SET CONNECTION [TO | =] connection_name

Description
SET CONNECTION sets the “current” database connection, which is the one that all commands use unless
overridden.

Parameters
connection_name

A database connection name established by the CONNECT command.

CURRENT

Set the connection to the current connection (thus, nothing happens).

Examples
EXEC SQL SET CONNECTION TO con2;
EXEC SQL SET CONNECTION = con1;

Compatibility
SET CONNECTION is specified in the SQL standard.

See Also
CONNECT, DISCONNECT

1022

ECPG — Embedded SQL in C

SET DESCRIPTOR
SET DESCRIPTOR — set information in an SQL descriptor area

Synopsis
SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ...]
SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value [, ...]

Description
SET DESCRIPTOR populates an SQL descriptor area with values. The descriptor area is then typically
used to bind parameters in a prepared query execution.

This command has two forms: The first form applies to the descriptor “header”, which is independent of
a particular datum. The second form assigns values to particular datums, identified by number.

Parameters
descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to set. Only COUNT, to set the number of descriptor
items, is currently supported.

number

The number of the descriptor item to set. The count starts at 1.

descriptor_item

A token identifying which item of information to set in the descriptor. See Section 34.7.1 for a list
of supported items.

value

A value to store into the descriptor item. This can be an SQL constant or a host variable.

Examples
EXEC SQL SET DESCRIPTOR indesc COUNT = 1;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1;
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val1, DATA = 'some string';
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA = :val2;

Compatibility
SET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

1023

ECPG — Embedded SQL in C

TYPE
TYPE — define a new data type

Synopsis
TYPE type_name IS ctype

Description
The TYPE command defines a new C type. It is equivalent to putting a typedef into a declare section.

This command is only recognized when ecpg is run with the -c option.

Parameters
type_name

The name for the new type. It must be a valid C type name.

ctype

A C type specification.

Examples
EXEC SQL TYPE customer IS
 struct
 {
 varchar name[50];
 int phone;
 };

EXEC SQL TYPE cust_ind IS
 struct ind
 {
 short name_ind;
 short phone_ind;
 };

EXEC SQL TYPE c IS char reference;
EXEC SQL TYPE ind IS union { int integer; short smallint; };
EXEC SQL TYPE intarray IS int[AMOUNT];
EXEC SQL TYPE str IS varchar[BUFFERSIZ];
EXEC SQL TYPE string IS char[11];

Here is an example program that uses EXEC SQL TYPE:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

EXEC SQL TYPE tt IS
 struct
 {
 varchar v[256];
 int i;
 };

EXEC SQL TYPE tt_ind IS
 struct ind {
 short v_ind;
 short i_ind;
 };

1024

ECPG — Embedded SQL in C

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 tt t;
 tt_ind t_ind;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL SELECT current_database(), 256 INTO :t:t_ind LIMIT 1;

 printf("t.v = %s\n", t.v.arr);
 printf("t.i = %d\n", t.i);

 printf("t_ind.v_ind = %d\n", t_ind.v_ind);
 printf("t_ind.i_ind = %d\n", t_ind.i_ind);

 EXEC SQL DISCONNECT con1;

 return 0;
}

The output from this program looks like this:

t.v = testdb
t.i = 256
t_ind.v_ind = 0
t_ind.i_ind = 0

Compatibility
The TYPE command is a PostgreSQL extension.

1025

ECPG — Embedded SQL in C

VAR
VAR — define a variable

Synopsis
VAR varname IS ctype

Description
The VAR command assigns a new C data type to a host variable. The host variable must be previously
declared in a declare section.

Parameters
varname

A C variable name.

ctype

A C type specification.

Examples
Exec sql begin declare section;
short a;
exec sql end declare section;
EXEC SQL VAR a IS int;

Compatibility
The VAR command is a PostgreSQL extension.

1026

ECPG — Embedded SQL in C

WHENEVER
WHENEVER — specify the action to be taken when an SQL statement causes a specific class condition
to be raised

Synopsis
WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

Description
Define a behavior which is called on the special cases (Rows not found, SQL warnings or errors) in the
result of SQL execution.

Parameters
See Section 34.8.1 for a description of the parameters.

Examples
EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLWARNING DO warn();
EXEC SQL WHENEVER SQLERROR sqlprint;
EXEC SQL WHENEVER SQLERROR CALL print2();
EXEC SQL WHENEVER SQLERROR DO handle_error("select");
EXEC SQL WHENEVER SQLERROR DO sqlnotice(NULL, NONO);
EXEC SQL WHENEVER SQLERROR DO sqlprint();
EXEC SQL WHENEVER SQLERROR GOTO error_label;
EXEC SQL WHENEVER SQLERROR STOP;

A typical application is the use of WHENEVER NOT FOUND BREAK to handle looping through result sets:
int
main(void)
{
 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), 'hoge', 256;
 EXEC SQL OPEN cur;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;
 ...
 }

 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

1027

ECPG — Embedded SQL in C

Compatibility
WHENEVER is specified in the SQL standard, but most of the actions are PostgreSQL extensions.

34.15. Informix Compatibility Mode
ecpg can be run in a so-called Informix compatibility mode. If this mode is active, it tries to behave as
if it were the Informix precompiler for Informix E/SQL. Generally spoken this will allow you to use the
dollar sign instead of the EXEC SQL primitive to introduce embedded SQL commands:

$int j = 3;
$CONNECT TO :dbname;
$CREATE TABLE test(i INT PRIMARY KEY, j INT);
$INSERT INTO test(i, j) VALUES (7, :j);
$COMMIT;

Note
There must not be any white space between the $ and a following preprocessor directive, that is,
include, define, ifdef, etc. Otherwise, the preprocessor will parse the token as a host variable.

There are two compatibility modes: INFORMIX, INFORMIX_SE

When linking programs that use this compatibility mode, remember to link against libcompat that is
shipped with ECPG.

Besides the previously explained syntactic sugar, the Informix compatibility mode ports some functions
for input, output and transformation of data as well as embedded SQL statements known from E/SQL
to ECPG.

Informix compatibility mode is closely connected to the pgtypeslib library of ECPG. pgtypeslib maps SQL
data types to data types within the C host program and most of the additional functions of the Informix
compatibility mode allow you to operate on those C host program types. Note however that the extent
of the compatibility is limited. It does not try to copy Informix behavior; it allows you to do more or less
the same operations and gives you functions that have the same name and the same basic behavior but
it is no drop-in replacement if you are using Informix at the moment. Moreover, some of the data types
are different. For example, PostgreSQL's datetime and interval types do not know about ranges like for
example YEAR TO MINUTE so you won't find support in ECPG for that either.

34.15.1. Additional Types
The Informix-special "string" pseudo-type for storing right-trimmed character string data is now sup-
ported in Informix-mode without using typedef. In fact, in Informix-mode, ECPG refuses to process
source files that contain typedef sometype string;

EXEC SQL BEGIN DECLARE SECTION;
string userid; /* this variable will contain trimmed data */
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH MYCUR INTO :userid;

34.15.2. Additional/Missing Embedded SQL Statements
CLOSE DATABASE

This statement closes the current connection. In fact, this is a synonym for ECPG's DISCONNECT CUR-
RENT:

$CLOSE DATABASE; /* close the current connection */
EXEC SQL CLOSE DATABASE;

1028

ECPG — Embedded SQL in C

FREE cursor_name

Due to differences in how ECPG works compared to Informix's ESQL/C (namely, which steps are
purely grammar transformations and which steps rely on the underlying run-time library) there is no
FREE cursor_name statement in ECPG. This is because in ECPG, DECLARE CURSOR doesn't translate
to a function call into the run-time library that uses to the cursor name. This means that there's no
run-time bookkeeping of SQL cursors in the ECPG run-time library, only in the PostgreSQL server.

FREE statement_name

FREE statement_name is a synonym for DEALLOCATE PREPARE statement_name.

34.15.3. Informix-compatible SQLDA Descriptor Areas
Informix-compatible mode supports a different structure than the one described in Section 34.7.2. See
below:
struct sqlvar_compat
{
 short sqltype;
 int sqllen;
 char *sqldata;
 short *sqlind;
 char *sqlname;
 char *sqlformat;
 short sqlitype;
 short sqlilen;
 char *sqlidata;
 int sqlxid;
 char *sqltypename;
 short sqltypelen;
 short sqlownerlen;
 short sqlsourcetype;
 char *sqlownername;
 int sqlsourceid;
 char *sqlilongdata;
 int sqlflags;
 void *sqlreserved;
};

struct sqlda_compat
{
 short sqld;
 struct sqlvar_compat *sqlvar;
 char desc_name[19];
 short desc_occ;
 struct sqlda_compat *desc_next;
 void *reserved;
};

typedef struct sqlvar_compat sqlvar_t;
typedef struct sqlda_compat sqlda_t;

The global properties are:
sqld

The number of fields in the SQLDA descriptor.

sqlvar

Pointer to the per-field properties.

1029

ECPG — Embedded SQL in C

desc_name

Unused, filled with zero-bytes.

desc_occ

Size of the allocated structure.

desc_next

Pointer to the next SQLDA structure if the result set contains more than one record.

reserved

Unused pointer, contains NULL. Kept for Informix-compatibility.

The per-field properties are below, they are stored in the sqlvar array:

sqltype

Type of the field. Constants are in sqltypes.h

sqllen

Length of the field data.

sqldata

Pointer to the field data. The pointer is of char * type, the data pointed by it is in a binary format.
Example:

int intval;

switch (sqldata->sqlvar[i].sqltype)
{
 case SQLINTEGER:
 intval = *(int *)sqldata->sqlvar[i].sqldata;
 break;
 ...
}

sqlind

Pointer to the NULL indicator. If returned by DESCRIBE or FETCH then it's always a valid pointer.
If used as input for EXECUTE ... USING sqlda; then NULL-pointer value means that the value for
this field is non-NULL. Otherwise a valid pointer and sqlitype has to be properly set. Example:

if (*(int2 *)sqldata->sqlvar[i].sqlind != 0)
 printf("value is NULL\n");

sqlname

Name of the field. 0-terminated string.

sqlformat

Reserved in Informix, value of PQfformat for the field.

sqlitype

Type of the NULL indicator data. It's always SQLSMINT when returning data from the server. When
the SQLDA is used for a parameterized query, the data is treated according to the set type.

sqlilen

Length of the NULL indicator data.

1030

ECPG — Embedded SQL in C

sqlxid

Extended type of the field, result of PQftype.

sqltypename
sqltypelen
sqlownerlen
sqlsourcetype
sqlownername
sqlsourceid
sqlflags
sqlreserved

Unused.

sqlilongdata

It equals to sqldata if sqllen is larger than 32kB.

Example:
EXEC SQL INCLUDE sqlda.h;

 sqlda_t *sqlda; /* This doesn't need to be under embedded DECLARE SECTION */

 EXEC SQL BEGIN DECLARE SECTION;
 char *prep_stmt = "select * from table1";
 int i;
 EXEC SQL END DECLARE SECTION;

 ...

 EXEC SQL PREPARE mystmt FROM :prep_stmt;

 EXEC SQL DESCRIBE mystmt INTO sqlda;

 printf("# of fields: %d\n", sqlda->sqld);
 for (i = 0; i < sqlda->sqld; i++)
 printf("field %d: \"%s\"\n", sqlda->sqlvar[i]->sqlname);

 EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
 EXEC SQL OPEN mycursor;
 EXEC SQL WHENEVER NOT FOUND GOTO out;

 while (1)
 {
 EXEC SQL FETCH mycursor USING sqlda;
 }

 EXEC SQL CLOSE mycursor;

 free(sqlda); /* The main structure is all to be free(),
 * sqlda and sqlda->sqlvar is in one allocated area */

For more information, see the sqlda.h header and the src/interfaces/ecpg/test/compat_in-
formix/sqlda.pgc regression test.

34.15.4. Additional Functions
decadd

Add two decimal type values.

1031

ECPG — Embedded SQL in C

int decadd(decimal *arg1, decimal *arg2, decimal *sum);

The function receives a pointer to the first operand of type decimal (arg1), a pointer to the second
operand of type decimal (arg2) and a pointer to a value of type decimal that will contain the sum (sum).
On success, the function returns 0. ECPG_INFORMIX_NUM_OVERFLOW is returned in case of overflow
and ECPG_INFORMIX_NUM_UNDERFLOW in case of underflow. -1 is returned for other failures and errno
is set to the respective errno number of the pgtypeslib.

deccmp

Compare two variables of type decimal.

int deccmp(decimal *arg1, decimal *arg2);

The function receives a pointer to the first decimal value (arg1), a pointer to the second decimal
value (arg2) and returns an integer value that indicates which is the bigger value.

• 1, if the value that arg1 points to is bigger than the value that var2 points to

• -1, if the value that arg1 points to is smaller than the value that arg2 points to

• 0, if the value that arg1 points to and the value that arg2 points to are equal

deccopy

Copy a decimal value.

void deccopy(decimal *src, decimal *target);

The function receives a pointer to the decimal value that should be copied as the first argument (src)
and a pointer to the target structure of type decimal (target) as the second argument.

deccvasc

Convert a value from its ASCII representation into a decimal type.

int deccvasc(char *cp, int len, decimal *np);

The function receives a pointer to string that contains the string representation of the number to be
converted (cp) as well as its length len. np is a pointer to the decimal value that saves the result
of the operation.

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4.

The function returns 0 on success. If overflow or underflow occurred, ECPG_INFORMIX_NUM_OVER-
FLOW or ECPG_INFORMIX_NUM_UNDERFLOW is returned. If the ASCII representation could not be parsed,
ECPG_INFORMIX_BAD_NUMERIC is returned or ECPG_INFORMIX_BAD_EXPONENT if this problem occurred
while parsing the exponent.

deccvdbl

Convert a value of type double to a value of type decimal.

int deccvdbl(double dbl, decimal *np);

The function receives the variable of type double that should be converted as its first argument (dbl).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvint

Convert a value of type int to a value of type decimal.

int deccvint(int in, decimal *np);

1032

ECPG — Embedded SQL in C

The function receives the variable of type int that should be converted as its first argument (in). As
the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvlong

Convert a value of type long to a value of type decimal.

int deccvlong(long lng, decimal *np);

The function receives the variable of type long that should be converted as its first argument (lng).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

decdiv

Divide two variables of type decimal.

int decdiv(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1/n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the division fails. If overflow or underflow occurred,
the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW respectively.
If an attempt to divide by zero is observed, the function returns ECPG_INFORMIX_DIVIDE_ZERO.

decmul

Multiply two decimal values.

int decmul(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1*n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the multiplication fails. If overflow or underflow
occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW re-
spectively.

decsub

Subtract one decimal value from another.

int decsub(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1-n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the subtraction fails. If overflow or underflow oc-
curred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW re-
spectively.

dectoasc

Convert a variable of type decimal to its ASCII representation in a C char* string.

int dectoasc(decimal *np, char *cp, int len, int right)

The function receives a pointer to a variable of type decimal (np) that it converts to its textual rep-
resentation. cp is the buffer that should hold the result of the operation. The parameter right spec-
ifies, how many digits right of the decimal point should be included in the output. The result will
be rounded to this number of decimal digits. Setting right to -1 indicates that all available decimal

1033

ECPG — Embedded SQL in C

digits should be included in the output. If the length of the output buffer, which is indicated by len
is not sufficient to hold the textual representation including the trailing zero byte, only a single *
character is stored in the result and -1 is returned.

The function returns either -1 if the buffer cp was too small or ECPG_INFORMIX_OUT_OF_MEMORY if
memory was exhausted.

dectodbl

Convert a variable of type decimal to a double.

int dectodbl(decimal *np, double *dblp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the double
variable that should hold the result of the operation (dblp).

On success, 0 is returned and a negative value if the conversion failed.

dectoint

Convert a variable of type decimal to an integer.

int dectoint(decimal *np, int *ip);

The function receives a pointer to the decimal value to convert (np) and a pointer to the integer
variable that should hold the result of the operation (ip).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits an
integer to the range from -32767 to 32767, while the limits in the ECPG implementation depend on
the architecture (INT_MIN .. INT_MAX).

dectolong

Convert a variable of type decimal to a long integer.

int dectolong(decimal *np, long *lngp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the long variable
that should hold the result of the operation (lngp).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits a long
integer to the range from -2,147,483,647 to 2,147,483,647, while the limits in the ECPG implemen-
tation depend on the architecture (-LONG_MAX .. LONG_MAX).

rdatestr

Converts a date to a C char* string.

int rdatestr(date d, char *str);

The function receives two arguments, the first one is the date to convert (d) and the second one is a
pointer to the target string. The output format is always yyyy-mm-dd, so you need to allocate at least
11 bytes (including the zero-byte terminator) for the string.

The function returns 0 on success and a negative value in case of error.

Note that ECPG's implementation differs from the Informix implementation. In Informix the format
can be influenced by setting environment variables. In ECPG however, you cannot change the output
format.

1034

ECPG — Embedded SQL in C

rstrdate

Parse the textual representation of a date.
int rstrdate(char *str, date *d);

The function receives the textual representation of the date to convert (str) and a pointer to a vari-
able of type date (d). This function does not allow you to specify a format mask. It uses the default
format mask of Informix which is mm/dd/yyyy. Internally, this function is implemented by means of
rdefmtdate. Therefore, rstrdate is not faster and if you have the choice you should opt for rdefmt-
date which allows you to specify the format mask explicitly.

The function returns the same values as rdefmtdate.

rtoday

Get the current date.
void rtoday(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

Internally this function uses the PGTYPESdate_today function.

rjulmdy

Extract the values for the day, the month and the year from a variable of type date.
int rjulmdy(date d, short mdy[3]);

The function receives the date d and a pointer to an array of 3 short integer values mdy. The variable
name indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1]
will be set to the value of the day and mdy[2] will contain the year.

The function always returns 0 at the moment.

Internally the function uses the PGTYPESdate_julmdy function.

rdefmtdate

Use a format mask to convert a character string to a value of type date.
int rdefmtdate(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

The function returns the following values:
• 0 - The function terminated successfully.
• ECPG_INFORMIX_ENOSHORTDATE - The date does not contain delimiters between day, month and

year. In this case the input string must be exactly 6 or 8 bytes long but isn't.
• ECPG_INFORMIX_ENOTDMY - The format string did not correctly indicate the sequential order of

year, month and day.
• ECPG_INFORMIX_BAD_DAY - The input string does not contain a valid day.
• ECPG_INFORMIX_BAD_MONTH - The input string does not contain a valid month.
• ECPG_INFORMIX_BAD_YEAR - The input string does not contain a valid year.

Internally this function is implemented to use the PGTYPESdate_defmt_asc function. See the refer-
ence there for a table of example input.

1035

ECPG — Embedded SQL in C

rfmtdate

Convert a variable of type date to its textual representation using a format mask.

int rfmtdate(date d, char *fmt, char *str);

The function receives the date to convert (d), the format mask (fmt) and the string that will hold the
textual representation of the date (str).

On success, 0 is returned and a negative value if an error occurred.

Internally this function uses the PGTYPESdate_fmt_asc function, see the reference there for exam-
ples.

rmdyjul

Create a date value from an array of 3 short integers that specify the day, the month and the year
of the date.

int rmdyjul(short mdy[3], date *d);

The function receives the array of the 3 short integers (mdy) and a pointer to a variable of type date
that should hold the result of the operation.

Currently the function returns always 0.

Internally the function is implemented to use the function PGTYPESdate_mdyjul.

rdayofweek

Return a number representing the day of the week for a date value.

int rdayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.
• 0 - Sunday
• 1 - Monday
• 2 - Tuesday
• 3 - Wednesday
• 4 - Thursday
• 5 - Friday
• 6 - Saturday

Internally the function is implemented to use the function PGTYPESdate_dayofweek.

dtcurrent

Retrieve the current timestamp.

void dtcurrent(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points
to.

dtcvasc

Parses a timestamp from its textual representation into a timestamp variable.

int dtcvasc(char *str, timestamp *ts);

The function receives the string to parse (str) and a pointer to the timestamp variable that should
hold the result of the operation (ts).

1036

ECPG — Embedded SQL in C

The function returns 0 on success and a negative value in case of error.

Internally this function uses the PGTYPEStimestamp_from_asc function. See the reference there for
a table with example inputs.

dtcvfmtasc

Parses a timestamp from its textual representation using a format mask into a timestamp variable.

dtcvfmtasc(char *inbuf, char *fmtstr, timestamp *dtvalue)

The function receives the string to parse (inbuf), the format mask to use (fmtstr) and a pointer to
the timestamp variable that should hold the result of the operation (dtvalue).

This function is implemented by means of the PGTYPEStimestamp_defmt_asc function. See the doc-
umentation there for a list of format specifiers that can be used.

The function returns 0 on success and a negative value in case of error.

dtsub

Subtract one timestamp from another and return a variable of type interval.

int dtsub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

dttoasc

Convert a timestamp variable to a C char* string.

int dttoasc(timestamp *ts, char *output);

The function receives a pointer to the timestamp variable to convert (ts) and the string that should
hold the result of the operation (output). It converts ts to its textual representation according to the
SQL standard, which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

dttofmtasc

Convert a timestamp variable to a C char* using a format mask.

int dttofmtasc(timestamp *ts, char *output, int str_len, char *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

Internally, this function uses the PGTYPEStimestamp_fmt_asc function. See the reference there for
information on what format mask specifiers can be used.

intoasc

Convert an interval variable to a C char* string.

int intoasc(interval *i, char *str);

The function receives a pointer to the interval variable to convert (i) and the string that should hold
the result of the operation (str). It converts i to its textual representation according to the SQL
standard, which is be YYYY-MM-DD HH:MM:SS.

1037

ECPG — Embedded SQL in C

Upon success, the function returns 0 and a negative value if an error occurred.

rfmtlong

Convert a long integer value to its textual representation using a format mask.

int rfmtlong(long lng_val, char *fmt, char *outbuf);

The function receives the long value lng_val, the format mask fmt and a pointer to the output buffer
outbuf. It converts the long value according to the format mask to its textual representation.

The format mask can be composed of the following format specifying characters:
• * (asterisk) - if this position would be blank otherwise, fill it with an asterisk.
• & (ampersand) - if this position would be blank otherwise, fill it with a zero.
• # - turn leading zeroes into blanks.
• < - left-justify the number in the string.
• , (comma) - group numbers of four or more digits into groups of three digits separated by a

comma.
• . (period) - this character separates the whole-number part of the number from the fractional

part.
• - (minus) - the minus sign appears if the number is a negative value.
• + (plus) - the plus sign appears if the number is a positive value.
• (- this replaces the minus sign in front of the negative number. The minus sign will not appear.
•) - this character replaces the minus and is printed behind the negative value.
• $ - the currency symbol.

rupshift

Convert a string to upper case.

void rupshift(char *str);

The function receives a pointer to the string and transforms every lower case character to upper case.

byleng

Return the number of characters in a string without counting trailing blanks.

int byleng(char *str, int len);

The function expects a fixed-length string as its first argument (str) and its length as its second ar-
gument (len). It returns the number of significant characters, that is the length of the string without
trailing blanks.

ldchar

Copy a fixed-length string into a null-terminated string.

void ldchar(char *src, int len, char *dest);

The function receives the fixed-length string to copy (src), its length (len) and a pointer to the
destination memory (dest). Note that you need to reserve at least len+1 bytes for the string that
dest points to. The function copies at most len bytes to the new location (less if the source string
has trailing blanks) and adds the null-terminator.

rgetmsg

int rgetmsg(int msgnum, char *s, int maxsize);

This function exists but is not implemented at the moment!

1038

ECPG — Embedded SQL in C

rtypalign

int rtypalign(int offset, int type);

This function exists but is not implemented at the moment!

rtypmsize

int rtypmsize(int type, int len);

This function exists but is not implemented at the moment!

rtypwidth

int rtypwidth(int sqltype, int sqllen);

This function exists but is not implemented at the moment!

rsetnull

Set a variable to NULL.
int rsetnull(int t, char *ptr);

The function receives an integer that indicates the type of the variable and a pointer to the variable
itself that is cast to a C char* pointer.

The following types exist:
• CCHARTYPE - For a variable of type char or char*
• CSHORTTYPE - For a variable of type short int
• CINTTYPE - For a variable of type int
• CBOOLTYPE - For a variable of type boolean
• CFLOATTYPE - For a variable of type float
• CLONGTYPE - For a variable of type long
• CDOUBLETYPE - For a variable of type double
• CDECIMALTYPE - For a variable of type decimal
• CDATETYPE - For a variable of type date
• CDTIMETYPE - For a variable of type timestamp

Here is an example of a call to this function:
$char c[] = "abc ";
$short s = 17;
$int i = -74874;

rsetnull(CCHARTYPE, (char *) c);
rsetnull(CSHORTTYPE, (char *) &s);
rsetnull(CINTTYPE, (char *) &i);

risnull

Test if a variable is NULL.
int risnull(int t, char *ptr);

The function receives the type of the variable to test (t) as well a pointer to this variable (ptr). Note
that the latter needs to be cast to a char*. See the function rsetnull for a list of possible variable
types.

Here is an example of how to use this function:

1039

ECPG — Embedded SQL in C

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

risnull(CCHARTYPE, (char *) c);
risnull(CSHORTTYPE, (char *) &s);
risnull(CINTTYPE, (char *) &i);

34.15.5. Additional Constants
Note that all constants here describe errors and all of them are defined to represent negative values.
In the descriptions of the different constants you can also find the value that the constants represent in
the current implementation. However you should not rely on this number. You can however rely on the
fact all of them are defined to represent negative values.

ECPG_INFORMIX_NUM_OVERFLOW

Functions return this value if an overflow occurred in a calculation. Internally it is defined as -1200
(the Informix definition).

ECPG_INFORMIX_NUM_UNDERFLOW

Functions return this value if an underflow occurred in a calculation. Internally it is defined as -1201
(the Informix definition).

ECPG_INFORMIX_DIVIDE_ZERO

Functions return this value if an attempt to divide by zero is observed. Internally it is defined as
-1202 (the Informix definition).

ECPG_INFORMIX_BAD_YEAR

Functions return this value if a bad value for a year was found while parsing a date. Internally it is
defined as -1204 (the Informix definition).

ECPG_INFORMIX_BAD_MONTH

Functions return this value if a bad value for a month was found while parsing a date. Internally it
is defined as -1205 (the Informix definition).

ECPG_INFORMIX_BAD_DAY

Functions return this value if a bad value for a day was found while parsing a date. Internally it is
defined as -1206 (the Informix definition).

ECPG_INFORMIX_ENOSHORTDATE

Functions return this value if a parsing routine needs a short date representation but did not get the
date string in the right length. Internally it is defined as -1209 (the Informix definition).

ECPG_INFORMIX_DATE_CONVERT

Functions return this value if an error occurred during date formatting. Internally it is defined as
-1210 (the Informix definition).

ECPG_INFORMIX_OUT_OF_MEMORY

Functions return this value if memory was exhausted during their operation. Internally it is defined
as -1211 (the Informix definition).

ECPG_INFORMIX_ENOTDMY

Functions return this value if a parsing routine was supposed to get a format mask (like mmddyy) but
not all fields were listed correctly. Internally it is defined as -1212 (the Informix definition).

1040

ECPG — Embedded SQL in C

ECPG_INFORMIX_BAD_NUMERIC

Functions return this value either if a parsing routine cannot parse the textual representation for
a numeric value because it contains errors or if a routine cannot complete a calculation involving
numeric variables because at least one of the numeric variables is invalid. Internally it is defined as
-1213 (the Informix definition).

ECPG_INFORMIX_BAD_EXPONENT

Functions return this value if a parsing routine cannot parse an exponent. Internally it is defined as
-1216 (the Informix definition).

ECPG_INFORMIX_BAD_DATE

Functions return this value if a parsing routine cannot parse a date. Internally it is defined as -1218
(the Informix definition).

ECPG_INFORMIX_EXTRA_CHARS

Functions return this value if a parsing routine is passed extra characters it cannot parse. Internally
it is defined as -1264 (the Informix definition).

34.16. Oracle Compatibility Mode
ecpg can be run in a so-called Oracle compatibility mode. If this mode is active, it tries to behave as
if it were Oracle Pro*C.

Specifically, this mode changes ecpg in three ways:
• Pad character arrays receiving character string types with trailing spaces to the specified length
• Zero byte terminate these character arrays, and set the indicator variable if truncation occurs
• Set the null indicator to -1 when character arrays receive empty character string types

34.17. Internals
This section explains how ECPG works internally. This information can occasionally be useful to help
users understand how to use ECPG.

The first four lines written by ecpg to the output are fixed lines. Two are comments and two are include
lines necessary to interface to the library. Then the preprocessor reads through the file and writes
output. Normally it just echoes everything to the output.

When it sees an EXEC SQL statement, it intervenes and changes it. The command starts with EXEC SQL and
ends with ;. Everything in between is treated as an SQL statement and parsed for variable substitution.

Variable substitution occurs when a symbol starts with a colon (:). The variable with that name is looked
up among the variables that were previously declared within a EXEC SQL DECLARE section.

The most important function in the library is ECPGdo, which takes care of executing most commands. It
takes a variable number of arguments. This can easily add up to 50 or so arguments, and we hope this
will not be a problem on any platform.

The arguments are:
A line number

This is the line number of the original line; used in error messages only.

A string
This is the SQL command that is to be issued. It is modified by the input variables, i.e., the variables
that where not known at compile time but are to be entered in the command. Where the variables
should go the string contains ?.

1041

ECPG — Embedded SQL in C

Input variables

Every input variable causes ten arguments to be created. (See below.)

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables

Every output variable causes ten arguments to be created. (See below.) These variables are filled
by the function.

ECPGt_EORT

An enum telling that there are no more variables.

For every variable that is part of the SQL command, the function gets ten arguments:

1. The type as a special symbol.

2. A pointer to the value or a pointer to the pointer.

3. The size of the variable if it is a char or varchar.

4. The number of elements in the array (for array fetches).

5. The offset to the next element in the array (for array fetches).

6. The type of the indicator variable as a special symbol.

7. A pointer to the indicator variable.

8. 0

9. The number of elements in the indicator array (for array fetches).

10.The offset to the next element in the indicator array (for array fetches).

Note that not all SQL commands are treated in this way. For instance, an open cursor statement like:

EXEC SQL OPEN cursor;

is not copied to the output. Instead, the cursor's DECLARE command is used at the position of the OPEN
command because it indeed opens the cursor.

Here is a complete example describing the output of the preprocessor of a file foo.pgc (details might
change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;

1042

ECPG — Embedded SQL in C

 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ? ",
 ECPGt_int,&(index),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
 ECPGt_int,&(result),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"

(The indentation here is added for readability and not something the preprocessor does.)

1043

Chapter 35. The Information Schema
The information schema consists of a set of views that contain information about the objects defined in
the current database. The information schema is defined in the SQL standard and can therefore be ex-
pected to be portable and remain stable — unlike the system catalogs, which are specific to PostgreSQL
and are modeled after implementation concerns. The information schema views do not, however, contain
information about PostgreSQL-specific features; to inquire about those you need to query the system
catalogs or other PostgreSQL-specific views.

Note
When querying the database for constraint information, it is possible for a standard-compliant
query that expects to return one row to return several. This is because the SQL standard requires
constraint names to be unique within a schema, but PostgreSQL does not enforce this restriction.
PostgreSQL automatically-generated constraint names avoid duplicates in the same schema, but
users can specify such duplicate names.

This problem can appear when querying information schema views such as check_constrain-
t_routine_usage, check_constraints, domain_constraints, and referential_constraints.
Some other views have similar issues but contain the table name to help distinguish duplicate
rows, e.g., constraint_column_usage, constraint_table_usage, table_constraints.

35.1. The Schema
The information schema itself is a schema named information_schema. This schema automatically exists
in all databases. The owner of this schema is the initial database user in the cluster, and that user
naturally has all the privileges on this schema, including the ability to drop it (but the space savings
achieved by that are minuscule).

By default, the information schema is not in the schema search path, so you need to access all objects in
it through qualified names. Since the names of some of the objects in the information schema are generic
names that might occur in user applications, you should be careful if you want to put the information
schema in the path.

35.2. Data Types
The columns of the information schema views use special data types that are defined in the information
schema. These are defined as simple domains over ordinary built-in types. You should not use these
types for work outside the information schema, but your applications must be prepared for them if they
select from the information schema.

These types are:

cardinal_number

A nonnegative integer.

character_data

A character string (without specific maximum length).

sql_identifier

A character string. This type is used for SQL identifiers, the type character_data is used for any
other kind of text data.

time_stamp

A domain over the type timestamp with time zone

1044

The Information Schema

yes_or_no

A character string domain that contains either YES or NO. This is used to represent Boolean (true/
false) data in the information schema. (The information schema was invented before the type boolean
was added to the SQL standard, so this convention is necessary to keep the information schema
backward compatible.)

Every column in the information schema has one of these five types.

35.3. information_schema_catalog_name
information_schema_catalog_name is a table that always contains one row and one column containing
the name of the current database (current catalog, in SQL terminology).

Table 35.1. information_schema_catalog_name Columns

Column Type
Description

catalog_name sql_identifier
Name of the database that contains this information schema

35.4. administrable_role_authorizations
The view administrable_role_authorizations identifies all roles that the current user has the admin
option for.

Table 35.2. administrable_role_authorizations Columns

Column Type
Description

grantee sql_identifier
Name of the role to which this role membership was granted (can be the current user, or a
different role in case of nested role memberships)

role_name sql_identifier
Name of a role

is_grantable yes_or_no
Always YES

35.5. applicable_roles
The view applicable_roles identifies all roles whose privileges the current user can use. This means
there is some chain of role grants from the current user to the role in question. The current user itself
is also an applicable role. The set of applicable roles is generally used for permission checking.

Table 35.3. applicable_roles Columns

Column Type
Description

grantee sql_identifier
Name of the role to which this role membership was granted (can be the current user, or a
different role in case of nested role memberships)

role_name sql_identifier
Name of a role

is_grantable yes_or_no
YES if the grantee has the admin option on the role, NO if not

1045

The Information Schema

35.6. attributes
The view attributes contains information about the attributes of composite data types defined in the
database. (Note that the view does not give information about table columns, which are sometimes called
attributes in PostgreSQL contexts.) Only those attributes are shown that the current user has access to
(by way of being the owner of or having some privilege on the type).

Table 35.4. attributes Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database containing the data type (always the current database)

udt_schema sql_identifier
Name of the schema containing the data type

udt_name sql_identifier
Name of the data type

attribute_name sql_identifier
Name of the attribute

ordinal_position cardinal_number
Ordinal position of the attribute within the data type (count starts at 1)

attribute_default character_data
Default expression of the attribute

is_nullable yes_or_no
YES if the attribute is possibly nullable, NO if it is known not nullable.

data_type character_data
Data type of the attribute, if it is a built-in type, or ARRAY if it is some array (in that case,
see the view element_types), else USER-DEFINED (in that case, the type is identified in at-
tribute_udt_name and associated columns).

character_maximum_length cardinal_number
If data_type identifies a character or bit string type, the declared maximum length; null for
all other data types or if no maximum length was declared.

character_octet_length cardinal_number
If data_type identifies a character type, the maximum possible length in octets (bytes) of a
datum; null for all other data types. The maximum octet length depends on the declared char-
acter maximum length (see above) and the server encoding.

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Name of the database containing the collation of the attribute (always the current database),
null if default or the data type of the attribute is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the attribute, null if default or the data type of
the attribute is not collatable

collation_name sql_identifier
Name of the collation of the attribute, null if default or the data type of the attribute is not
collatable

1046

The Information Schema

Column Type
Description

numeric_precision cardinal_number
If data_type identifies a numeric type, this column contains the (declared or implicit) pre-
cision of the type for this attribute. The precision indicates the number of significant digits.
It can be expressed in decimal (base 10) or binary (base 2) terms, as specified in the column
numeric_precision_radix . For all other data types, this column is null.

numeric_precision_radix cardinal_number
If data_type identifies a numeric type, this column indicates in which base the values in the
columns numeric_precision and numeric_scale are expressed. The value is either 2 or
10. For all other data types, this column is null.

numeric_scale cardinal_number
If data_type identifies an exact numeric type, this column contains the (declared or implicit)
scale of the type for this attribute. The scale indicates the number of significant digits to the
right of the decimal point. It can be expressed in decimal (base 10) or binary (base 2) terms,
as specified in the column numeric_precision_radix . For all other data types, this column
is null.

datetime_precision cardinal_number
If data_type identifies a date, time, timestamp, or interval type, this column contains the
(declared or implicit) fractional seconds precision of the type for this attribute, that is, the
number of decimal digits maintained following the decimal point in the seconds value. For all
other data types, this column is null.

interval_type character_data
If data_type identifies an interval type, this column contains the specification which fields
the intervals include for this attribute, e.g., YEAR TO MONTH, DAY TO SECOND, etc. If no field re-
strictions were specified (that is, the interval accepts all fields), and for all other data types,
this field is null.

interval_precision cardinal_number
Applies to a feature not available in PostgreSQL (see datetime_precision for the fractional
seconds precision of interval type attributes)

attribute_udt_catalog sql_identifier
Name of the database that the attribute data type is defined in (always the current database)

attribute_udt_schema sql_identifier
Name of the schema that the attribute data type is defined in

attribute_udt_name sql_identifier
Name of the attribute data type

scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

scope_name sql_identifier
Applies to a feature not available in PostgreSQL

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in PostgreSQL

dtd_identifier sql_identifier
An identifier of the data type descriptor of the attribute, unique among the data type descrip-
tors pertaining to the composite type. This is mainly useful for joining with other instances of
such identifiers. (The specific format of the identifier is not defined and not guaranteed to re-
main the same in future versions.)

is_derived_reference_attribute yes_or_no
Applies to a feature not available in PostgreSQL

1047

The Information Schema

See also under Section 35.17, a similarly structured view, for further information on some of the columns.

35.7. character_sets
The view character_sets identifies the character sets available in the current database. Since Post-
greSQL does not support multiple character sets within one database, this view only shows one, which
is the database encoding.

Take note of how the following terms are used in the SQL standard:

character repertoire

An abstract collection of characters, for example UNICODE, UCS, or LATIN1. Not exposed as an SQL
object, but visible in this view.

character encoding form

An encoding of some character repertoire. Most older character repertoires only use one encoding
form, and so there are no separate names for them (e.g., LATIN2 is an encoding form applicable to
the LATIN2 repertoire). But for example Unicode has the encoding forms UTF8, UTF16, etc. (not all
supported by PostgreSQL). Encoding forms are not exposed as an SQL object, but are visible in this
view.

character set

A named SQL object that identifies a character repertoire, a character encoding, and a default colla-
tion. A predefined character set would typically have the same name as an encoding form, but users
could define other names. For example, the character set UTF8 would typically identify the character
repertoire UCS, encoding form UTF8, and some default collation.

You can think of an “encoding” in PostgreSQL either as a character set or a character encoding form.
They will have the same name, and there can only be one in one database.

Table 35.5. character_sets Columns

Column Type
Description

character_set_catalog sql_identifier
Character sets are currently not implemented as schema objects, so this column is null.

character_set_schema sql_identifier
Character sets are currently not implemented as schema objects, so this column is null.

character_set_name sql_identifier
Name of the character set, currently implemented as showing the name of the database en-
coding

character_repertoire sql_identifier
Character repertoire, showing UCS if the encoding is UTF8, else just the encoding name

form_of_use sql_identifier
Character encoding form, same as the database encoding

default_collate_catalog sql_identifier
Name of the database containing the default collation (always the current database, if any
collation is identified)

default_collate_schema sql_identifier
Name of the schema containing the default collation

default_collate_name sql_identifier
Name of the default collation. The default collation is identified as the collation that matches
the COLLATE and CTYPE settings of the current database. If there is no such collation, then this
column and the associated schema and catalog columns are null.

1048

The Information Schema

35.8. check_constraint_routine_usage
The view check_constraint_routine_usage identifies routines (functions and procedures) that are
used by a check constraint. Only those routines are shown that are owned by a currently enabled role.

Table 35.6. check_constraint_routine_usage Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database containing the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema containing the constraint

constraint_name sql_identifier
Name of the constraint

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

35.9. check_constraints
The view check_constraints contains all check constraints, either defined on a table or on a domain,
that are owned by a currently enabled role. (The owner of the table or domain is the owner of the
constraint.)

The SQL standard considers not-null constraints to be check constraints with a CHECK (column_name IS
NOT NULL) expression. So not-null constraints are also included here and don't have a separate view.

Table 35.7. check_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database containing the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema containing the constraint

constraint_name sql_identifier
Name of the constraint

check_clause character_data
The check expression of the check constraint

35.10. collations
The view collations contains the collations available in the current database.

Table 35.8. collations Columns

Column Type
Description

collation_catalog sql_identifier

1049

The Information Schema

Column Type
Description
Name of the database containing the collation (always the current database)

collation_schema sql_identifier
Name of the schema containing the collation

collation_name sql_identifier
Name of the default collation

pad_attribute character_data
Always NO PAD (The alternative PAD SPACE is not supported by PostgreSQL.)

35.11. collation_character_set_applicability
The view collation_character_set_applicability identifies which character set the available colla-
tions are applicable to. In PostgreSQL, there is only one character set per database (see explanation in
Section 35.7), so this view does not provide much useful information.

Table 35.9. collation_character_set_applicability Columns

Column Type
Description

collation_catalog sql_identifier
Name of the database containing the collation (always the current database)

collation_schema sql_identifier
Name of the schema containing the collation

collation_name sql_identifier
Name of the default collation

character_set_catalog sql_identifier
Character sets are currently not implemented as schema objects, so this column is null

character_set_schema sql_identifier
Character sets are currently not implemented as schema objects, so this column is null

character_set_name sql_identifier
Name of the character set

35.12. column_column_usage
The view column_column_usage identifies all generated columns that depend on another base column
in the same table. Only tables owned by a currently enabled role are included.

Table 35.10. column_column_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the base column that a generated column depends on

dependent_column sql_identifier
Name of the generated column

1050

The Information Schema

35.13. column_domain_usage
The view column_domain_usage identifies all columns (of a table or a view) that make use of some domain
defined in the current database and owned by a currently enabled role.

Table 35.11. column_domain_usage Columns

Column Type
Description

domain_catalog sql_identifier
Name of the database containing the domain (always the current database)

domain_schema sql_identifier
Name of the schema containing the domain

domain_name sql_identifier
Name of the domain

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the column

35.14. column_options
The view column_options contains all the options defined for foreign table columns in the current data-
base. Only those foreign table columns are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 35.12. column_options Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the foreign table (always the current database)

table_schema sql_identifier
Name of the schema that contains the foreign table

table_name sql_identifier
Name of the foreign table

column_name sql_identifier
Name of the column

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

35.15. column_privileges
The view column_privileges identifies all privileges granted on columns to a currently enabled role or
by a currently enabled role. There is one row for each combination of column, grantor, and grantee.

1051

The Information Schema

If a privilege has been granted on an entire table, it will show up in this view as a grant for each column,
but only for the privilege types where column granularity is possible: SELECT, INSERT, UPDATE, REFER-
ENCES.

Table 35.13. column_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table that contains the column (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column

table_name sql_identifier
Name of the table that contains the column

column_name sql_identifier
Name of the column

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, or REFERENCES

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.16. column_udt_usage
The view column_udt_usage identifies all columns that use data types owned by a currently enabled
role. Note that in PostgreSQL, built-in data types behave like user-defined types, so they are included
here as well. See also Section 35.17 for details.

Table 35.14. column_udt_usage Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database that the column data type (the underlying type of the domain, if applic-
able) is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the column data type (the underlying type of the domain, if applica-
ble) is defined in

udt_name sql_identifier
Name of the column data type (the underlying type of the domain, if applicable)

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the column

1052

The Information Schema

35.17. columns
The view columns contains information about all table columns (or view columns) in the database. System
columns (ctid, etc.) are not included. Only those columns are shown that the current user has access
to (by way of being the owner or having some privilege).

Table 35.15. columns Columns

Column Type
Description

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the column

ordinal_position cardinal_number
Ordinal position of the column within the table (count starts at 1)

column_default character_data
Default expression of the column

is_nullable yes_or_no
YES if the column is possibly nullable, NO if it is known not nullable. A not-null constraint is
one way a column can be known not nullable, but there can be others.

data_type character_data
Data type of the column, if it is a built-in type, or ARRAY if it is some array (in that case, see
the view element_types), else USER-DEFINED (in that case, the type is identified in udt_
name and associated columns). If the column is based on a domain, this column refers to the
type underlying the domain (and the domain is identified in domain_name and associated
columns).

character_maximum_length cardinal_number
If data_type identifies a character or bit string type, the declared maximum length; null for
all other data types or if no maximum length was declared.

character_octet_length cardinal_number
If data_type identifies a character type, the maximum possible length in octets (bytes) of a
datum; null for all other data types. The maximum octet length depends on the declared char-
acter maximum length (see above) and the server encoding.

numeric_precision cardinal_number
If data_type identifies a numeric type, this column contains the (declared or implicit) pre-
cision of the type for this column. The precision indicates the number of significant digits. It
can be expressed in decimal (base 10) or binary (base 2) terms, as specified in the column
numeric_precision_radix . For all other data types, this column is null.

numeric_precision_radix cardinal_number
If data_type identifies a numeric type, this column indicates in which base the values in the
columns numeric_precision and numeric_scale are expressed. The value is either 2 or
10. For all other data types, this column is null.

numeric_scale cardinal_number
If data_type identifies an exact numeric type, this column contains the (declared or implic-
it) scale of the type for this column. The scale indicates the number of significant digits to the
right of the decimal point. It can be expressed in decimal (base 10) or binary (base 2) terms,

1053

The Information Schema

Column Type
Description
as specified in the column numeric_precision_radix . For all other data types, this column
is null.

datetime_precision cardinal_number
If data_type identifies a date, time, timestamp, or interval type, this column contains the (
declared or implicit) fractional seconds precision of the type for this column, that is, the num-
ber of decimal digits maintained following the decimal point in the seconds value. For all oth-
er data types, this column is null.

interval_type character_data
If data_type identifies an interval type, this column contains the specification which fields
the intervals include for this column, e.g., YEAR TO MONTH, DAY TO SECOND, etc. If no field re-
strictions were specified (that is, the interval accepts all fields), and for all other data types,
this field is null.

interval_precision cardinal_number
Applies to a feature not available in PostgreSQL (see datetime_precision for the fractional
seconds precision of interval type columns)

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Name of the database containing the collation of the column (always the current database),
null if default or the data type of the column is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the column, null if default or the data type of
the column is not collatable

collation_name sql_identifier
Name of the collation of the column, null if default or the data type of the column is not collat-
able

domain_catalog sql_identifier
If the column has a domain type, the name of the database that the domain is defined in (al-
ways the current database), else null.

domain_schema sql_identifier
If the column has a domain type, the name of the schema that the domain is defined in, else
null.

domain_name sql_identifier
If the column has a domain type, the name of the domain, else null.

udt_catalog sql_identifier
Name of the database that the column data type (the underlying type of the domain, if applic-
able) is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the column data type (the underlying type of the domain, if applica-
ble) is defined in

udt_name sql_identifier
Name of the column data type (the underlying type of the domain, if applicable)

scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

1054

The Information Schema

Column Type
Description

scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

scope_name sql_identifier
Applies to a feature not available in PostgreSQL

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in PostgreSQL

dtd_identifier sql_identifier
An identifier of the data type descriptor of the column, unique among the data type descrip-
tors pertaining to the table. This is mainly useful for joining with other instances of such iden-
tifiers. (The specific format of the identifier is not defined and not guaranteed to remain the
same in future versions.)

is_self_referencing yes_or_no
Applies to a feature not available in PostgreSQL

is_identity yes_or_no
If the column is an identity column, then YES, else NO.

identity_generation character_data
If the column is an identity column, then ALWAYS or BY DEFAULT, reflecting the definition of
the column.

identity_start character_data
If the column is an identity column, then the start value of the internal sequence, else null.

identity_increment character_data
If the column is an identity column, then the increment of the internal sequence, else null.

identity_maximum character_data
If the column is an identity column, then the maximum value of the internal sequence, else
null.

identity_minimum character_data
If the column is an identity column, then the minimum value of the internal sequence, else
null.

identity_cycle yes_or_no
If the column is an identity column, then YES if the internal sequence cycles or NO if it does
not; otherwise null.

is_generated character_data
If the column is a generated column, then ALWAYS, else NEVER.

generation_expression character_data
If the column is a generated column, then the generation expression, else null.

is_updatable yes_or_no
YES if the column is updatable, NO if not (Columns in base tables are always updatable,
columns in views not necessarily)

Since data types can be defined in a variety of ways in SQL, and PostgreSQL contains additional ways
to define data types, their representation in the information schema can be somewhat difficult. The
column data_type is supposed to identify the underlying built-in type of the column. In PostgreSQL, this
means that the type is defined in the system catalog schema pg_catalog. This column might be useful
if the application can handle the well-known built-in types specially (for example, format the numeric
types differently or use the data in the precision columns). The columns udt_name, udt_schema, and
udt_catalog always identify the underlying data type of the column, even if the column is based on a
domain. (Since PostgreSQL treats built-in types like user-defined types, built-in types appear here as
well. This is an extension of the SQL standard.) These columns should be used if an application wants to
process data differently according to the type, because in that case it wouldn't matter if the column is

1055

The Information Schema

really based on a domain. If the column is based on a domain, the identity of the domain is stored in the
columns domain_name, domain_schema, and domain_catalog. If you want to pair up columns with their
associated data types and treat domains as separate types, you could write coalesce(domain_name,
udt_name), etc.

35.18. constraint_column_usage
The view constraint_column_usage identifies all columns in the current database that are used by some
constraint. Only those columns are shown that are contained in a table owned by a currently enabled
role. For a check constraint, this view identifies the columns that are used in the check expression. For
a not-null constraint, this view identifies the column that the constraint is defined on. For a foreign key
constraint, this view identifies the columns that the foreign key references. For a unique or primary key
constraint, this view identifies the constrained columns.

Table 35.16. constraint_column_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the table that contains the column that is used by some
constraint (always the current database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column that is used by some
constraint

table_name sql_identifier
Name of the table that contains the column that is used by some constraint

column_name sql_identifier
Name of the column that is used by some constraint

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

35.19. constraint_table_usage
The view constraint_table_usage identifies all tables in the current database that are used by some
constraint and are owned by a currently enabled role. (This is different from the view table_con-
straints, which identifies all table constraints along with the table they are defined on.) For a foreign
key constraint, this view identifies the table that the foreign key references. For a unique or primary key
constraint, this view simply identifies the table the constraint belongs to. Check constraints and not-null
constraints are not included in this view.

Table 35.17. constraint_table_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the table that is used by some constraint (always the cur-
rent database)

table_schema sql_identifier
Name of the schema that contains the table that is used by some constraint

table_name sql_identifier
Name of the table that is used by some constraint

1056

The Information Schema

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

35.20. data_type_privileges
The view data_type_privileges identifies all data type descriptors that the current user has access to,
by way of being the owner of the described object or having some privilege for it. A data type descriptor
is generated whenever a data type is used in the definition of a table column, a domain, or a function (as
parameter or return type) and stores some information about how the data type is used in that instance
(for example, the declared maximum length, if applicable). Each data type descriptor is assigned an
arbitrary identifier that is unique among the data type descriptor identifiers assigned for one object
(table, domain, function). This view is probably not useful for applications, but it is used to define some
other views in the information schema.

Table 35.18. data_type_privileges Columns

Column Type
Description

object_catalog sql_identifier
Name of the database that contains the described object (always the current database)

object_schema sql_identifier
Name of the schema that contains the described object

object_name sql_identifier
Name of the described object

object_type character_data
The type of the described object: one of TABLE (the data type descriptor pertains to a column
of that table), DOMAIN (the data type descriptors pertains to that domain), ROUTINE (the data
type descriptor pertains to a parameter or the return data type of that function).

dtd_identifier sql_identifier
The identifier of the data type descriptor, which is unique among the data type descriptors for
that same object.

35.21. domain_constraints
The view domain_constraints contains all constraints belonging to domains defined in the current
database. Only those domains are shown that the current user has access to (by way of being the owner
or having some privilege).

Table 35.19. domain_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

1057

The Information Schema

Column Type
Description

domain_catalog sql_identifier
Name of the database that contains the domain (always the current database)

domain_schema sql_identifier
Name of the schema that contains the domain

domain_name sql_identifier
Name of the domain

is_deferrable yes_or_no
YES if the constraint is deferrable, NO if not

initially_deferred yes_or_no
YES if the constraint is deferrable and initially deferred, NO if not

35.22. domain_udt_usage
The view domain_udt_usage identifies all domains that are based on data types owned by a currently
enabled role. Note that in PostgreSQL, built-in data types behave like user-defined types, so they are
included here as well.

Table 35.20. domain_udt_usage Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database that the domain data type is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the domain data type is defined in

udt_name sql_identifier
Name of the domain data type

domain_catalog sql_identifier
Name of the database that contains the domain (always the current database)

domain_schema sql_identifier
Name of the schema that contains the domain

domain_name sql_identifier
Name of the domain

35.23. domains
The view domains contains all domains defined in the current database. Only those domains are shown
that the current user has access to (by way of being the owner or having some privilege).

Table 35.21. domains Columns

Column Type
Description

domain_catalog sql_identifier
Name of the database that contains the domain (always the current database)

domain_schema sql_identifier
Name of the schema that contains the domain

domain_name sql_identifier
Name of the domain

data_type character_data

1058

The Information Schema

Column Type
Description
Data type of the domain, if it is a built-in type, or ARRAY if it is some array (in that case, see
the view element_types), else USER-DEFINED (in that case, the type is identified in udt_
name and associated columns).

character_maximum_length cardinal_number
If the domain has a character or bit string type, the declared maximum length; null for all oth-
er data types or if no maximum length was declared.

character_octet_length cardinal_number
If the domain has a character type, the maximum possible length in octets (bytes) of a datum;
null for all other data types. The maximum octet length depends on the declared character
maximum length (see above) and the server encoding.

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Name of the database containing the collation of the domain (always the current database),
null if default or the data type of the domain is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the domain, null if default or the data type of
the domain is not collatable

collation_name sql_identifier
Name of the collation of the domain, null if default or the data type of the domain is not col-
latable

numeric_precision cardinal_number
If the domain has a numeric type, this column contains the (declared or implicit) precision of
the type for this domain. The precision indicates the number of significant digits. It can be ex-
pressed in decimal (base 10) or binary (base 2) terms, as specified in the column numeric_
precision_radix . For all other data types, this column is null.

numeric_precision_radix cardinal_number
If the domain has a numeric type, this column indicates in which base the values in the
columns numeric_precision and numeric_scale are expressed. The value is either 2 or
10. For all other data types, this column is null.

numeric_scale cardinal_number
If the domain has an exact numeric type, this column contains the (declared or implicit) scale
of the type for this domain. The scale indicates the number of significant digits to the right of
the decimal point. It can be expressed in decimal (base 10) or binary (base 2) terms, as speci-
fied in the column numeric_precision_radix . For all other data types, this column is null.

datetime_precision cardinal_number
If data_type identifies a date, time, timestamp, or interval type, this column contains the (
declared or implicit) fractional seconds precision of the type for this domain, that is, the num-
ber of decimal digits maintained following the decimal point in the seconds value. For all oth-
er data types, this column is null.

interval_type character_data
If data_type identifies an interval type, this column contains the specification which fields
the intervals include for this domain, e.g., YEAR TO MONTH, DAY TO SECOND, etc. If no field re-
strictions were specified (that is, the interval accepts all fields), and for all other data types,
this field is null.

1059

The Information Schema

Column Type
Description

interval_precision cardinal_number
Applies to a feature not available in PostgreSQL (see datetime_precision for the fractional
seconds precision of interval type domains)

domain_default character_data
Default expression of the domain

udt_catalog sql_identifier
Name of the database that the domain data type is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the domain data type is defined in

udt_name sql_identifier
Name of the domain data type

scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

scope_name sql_identifier
Applies to a feature not available in PostgreSQL

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in PostgreSQL

dtd_identifier sql_identifier
An identifier of the data type descriptor of the domain, unique among the data type descrip-
tors pertaining to the domain (which is trivial, because a domain only contains one data type
descriptor). This is mainly useful for joining with other instances of such identifiers. (The spe-
cific format of the identifier is not defined and not guaranteed to remain the same in future
versions.)

35.24. element_types
The view element_types contains the data type descriptors of the elements of arrays. When a table
column, composite-type attribute, domain, function parameter, or function return value is defined to be
of an array type, the respective information schema view only contains ARRAY in the column data_type.
To obtain information on the element type of the array, you can join the respective view with this view.
For example, to show the columns of a table with data types and array element types, if applicable, you
could do:
SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN information_schema.element_types e
 ON ((c.table_catalog, c.table_schema, c.table_name, 'TABLE', c.dtd_identifier)
 = (e.object_catalog, e.object_schema, e.object_name, e.object_type,
 e.collection_type_identifier))
WHERE c.table_schema = '...' AND c.table_name = '...'
ORDER BY c.ordinal_position;

This view only includes objects that the current user has access to, by way of being the owner or having
some privilege.

Table 35.22. element_types Columns

Column Type
Description

object_catalog sql_identifier
Name of the database that contains the object that uses the array being described (always the
current database)

1060

The Information Schema

Column Type
Description

object_schema sql_identifier
Name of the schema that contains the object that uses the array being described

object_name sql_identifier
Name of the object that uses the array being described

object_type character_data
The type of the object that uses the array being described: one of TABLE (the array is used by
a column of that table), USER-DEFINED TYPE (the array is used by an attribute of that compos-
ite type), DOMAIN (the array is used by that domain), ROUTINE (the array is used by a parame-
ter or the return data type of that function).

collection_type_identifier sql_identifier
The identifier of the data type descriptor of the array being described. Use this to join with
the dtd_identifier columns of other information schema views.

data_type character_data
Data type of the array elements, if it is a built-in type, else USER-DEFINED (in that case, the
type is identified in udt_name and associated columns).

character_maximum_length cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

character_octet_length cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Name of the database containing the collation of the element type (always the current data-
base), null if default or the data type of the element is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the element type, null if default or the data
type of the element is not collatable

collation_name sql_identifier
Name of the collation of the element type, null if default or the data type of the element is not
collatable

numeric_precision cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

numeric_precision_radix cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

numeric_scale cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

datetime_precision cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

interval_type character_data
Always null, since this information is not applied to array element data types in PostgreSQL

interval_precision cardinal_number
Always null, since this information is not applied to array element data types in PostgreSQL

udt_catalog sql_identifier

1061

The Information Schema

Column Type
Description
Name of the database that the data type of the elements is defined in (always the current
database)

udt_schema sql_identifier
Name of the schema that the data type of the elements is defined in

udt_name sql_identifier
Name of the data type of the elements

scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

scope_name sql_identifier
Applies to a feature not available in PostgreSQL

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in PostgreSQL

dtd_identifier sql_identifier
An identifier of the data type descriptor of the element. This is currently not useful.

35.25. enabled_roles
The view enabled_roles identifies the currently “enabled roles”. The enabled roles are recursively de-
fined as the current user together with all roles that have been granted to the enabled roles with auto-
matic inheritance. In other words, these are all roles that the current user has direct or indirect, auto-
matically inheriting membership in.

For permission checking, the set of “applicable roles” is applied, which can be broader than the set
of enabled roles. So generally, it is better to use the view applicable_roles instead of this one; See
Section 35.5 for details on applicable_roles view.

Table 35.23. enabled_roles Columns

Column Type
Description

role_name sql_identifier
Name of a role

35.26. foreign_data_wrapper_options
The view foreign_data_wrapper_options contains all the options defined for foreign-data wrappers in
the current database. Only those foreign-data wrappers are shown that the current user has access to
(by way of being the owner or having some privilege).

Table 35.24. foreign_data_wrapper_options Columns

Column Type
Description

foreign_data_wrapper_catalog sql_identifier
Name of the database that the foreign-data wrapper is defined in (always the current data-
base)

foreign_data_wrapper_name sql_identifier
Name of the foreign-data wrapper

option_name sql_identifier
Name of an option

1062

The Information Schema

Column Type
Description

option_value character_data
Value of the option

35.27. foreign_data_wrappers
The view foreign_data_wrappers contains all foreign-data wrappers defined in the current database.
Only those foreign-data wrappers are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 35.25. foreign_data_wrappers Columns

Column Type
Description

foreign_data_wrapper_catalog sql_identifier
Name of the database that contains the foreign-data wrapper (always the current database)

foreign_data_wrapper_name sql_identifier
Name of the foreign-data wrapper

authorization_identifier sql_identifier
Name of the owner of the foreign server

library_name character_data
File name of the library that implementing this foreign-data wrapper

foreign_data_wrapper_language character_data
Language used to implement this foreign-data wrapper

35.28. foreign_server_options
The view foreign_server_options contains all the options defined for foreign servers in the current
database. Only those foreign servers are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 35.26. foreign_server_options Columns

Column Type
Description

foreign_server_catalog sql_identifier
Name of the database that the foreign server is defined in (always the current database)

foreign_server_name sql_identifier
Name of the foreign server

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

35.29. foreign_servers
The view foreign_servers contains all foreign servers defined in the current database. Only those
foreign servers are shown that the current user has access to (by way of being the owner or having
some privilege).

Table 35.27. foreign_servers Columns

Column Type
Description

foreign_server_catalog sql_identifier

1063

The Information Schema

Column Type
Description
Name of the database that the foreign server is defined in (always the current database)

foreign_server_name sql_identifier
Name of the foreign server

foreign_data_wrapper_catalog sql_identifier
Name of the database that contains the foreign-data wrapper used by the foreign server (al-
ways the current database)

foreign_data_wrapper_name sql_identifier
Name of the foreign-data wrapper used by the foreign server

foreign_server_type character_data
Foreign server type information, if specified upon creation

foreign_server_version character_data
Foreign server version information, if specified upon creation

authorization_identifier sql_identifier
Name of the owner of the foreign server

35.30. foreign_table_options
The view foreign_table_options contains all the options defined for foreign tables in the current data-
base. Only those foreign tables are shown that the current user has access to (by way of being the owner
or having some privilege).

Table 35.28. foreign_table_options Columns

Column Type
Description

foreign_table_catalog sql_identifier
Name of the database that contains the foreign table (always the current database)

foreign_table_schema sql_identifier
Name of the schema that contains the foreign table

foreign_table_name sql_identifier
Name of the foreign table

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

35.31. foreign_tables
The view foreign_tables contains all foreign tables defined in the current database. Only those foreign
tables are shown that the current user has access to (by way of being the owner or having some privilege).

Table 35.29. foreign_tables Columns

Column Type
Description

foreign_table_catalog sql_identifier
Name of the database that the foreign table is defined in (always the current database)

foreign_table_schema sql_identifier
Name of the schema that contains the foreign table

foreign_table_name sql_identifier
Name of the foreign table

1064

The Information Schema

Column Type
Description

foreign_server_catalog sql_identifier
Name of the database that the foreign server is defined in (always the current database)

foreign_server_name sql_identifier
Name of the foreign server

35.32. key_column_usage
The view key_column_usage identifies all columns in the current database that are restricted by some
unique, primary key, or foreign key constraint. Check constraints are not included in this view. Only
those columns are shown that the current user has access to, by way of being the owner or having some
privilege.

Table 35.30. key_column_usage Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

table_catalog sql_identifier
Name of the database that contains the table that contains the column that is restricted by
this constraint (always the current database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column that is restricted by this
constraint

table_name sql_identifier
Name of the table that contains the column that is restricted by this constraint

column_name sql_identifier
Name of the column that is restricted by this constraint

ordinal_position cardinal_number
Ordinal position of the column within the constraint key (count starts at 1)

position_in_unique_constraint cardinal_number
For a foreign-key constraint, ordinal position of the referenced column within its unique con-
straint (count starts at 1); otherwise null

35.33. parameters
The view parameters contains information about the parameters (arguments) of all functions in the
current database. Only those functions are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 35.31. parameters Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

1065

The Information Schema

Column Type
Description

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

ordinal_position cardinal_number
Ordinal position of the parameter in the argument list of the function (count starts at 1)

parameter_mode character_data
IN for input parameter, OUT for output parameter, and INOUT for input/output parameter.

is_result yes_or_no
Applies to a feature not available in PostgreSQL

as_locator yes_or_no
Applies to a feature not available in PostgreSQL

parameter_name sql_identifier
Name of the parameter, or null if the parameter has no name

data_type character_data
Data type of the parameter, if it is a built-in type, or ARRAY if it is some array (in that case,
see the view element_types), else USER-DEFINED (in that case, the type is identified in udt_
name and associated columns).

character_maximum_length cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

character_octet_length cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Always null, since this information is not applied to parameter data types in PostgreSQL

collation_schema sql_identifier
Always null, since this information is not applied to parameter data types in PostgreSQL

collation_name sql_identifier
Always null, since this information is not applied to parameter data types in PostgreSQL

numeric_precision cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

numeric_precision_radix cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

numeric_scale cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

datetime_precision cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

interval_type character_data
Always null, since this information is not applied to parameter data types in PostgreSQL

interval_precision cardinal_number
Always null, since this information is not applied to parameter data types in PostgreSQL

udt_catalog sql_identifier

1066

The Information Schema

Column Type
Description
Name of the database that the data type of the parameter is defined in (always the current
database)

udt_schema sql_identifier
Name of the schema that the data type of the parameter is defined in

udt_name sql_identifier
Name of the data type of the parameter

scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

scope_name sql_identifier
Applies to a feature not available in PostgreSQL

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in PostgreSQL

dtd_identifier sql_identifier
An identifier of the data type descriptor of the parameter, unique among the data type de-
scriptors pertaining to the function. This is mainly useful for joining with other instances of
such identifiers. (The specific format of the identifier is not defined and not guaranteed to re-
main the same in future versions.)

parameter_default character_data
The default expression of the parameter, or null if none or if the function is not owned by a
currently enabled role.

35.34. referential_constraints
The view referential_constraints contains all referential (foreign key) constraints in the current
database. Only those constraints are shown for which the current user has write access to the referencing
table (by way of being the owner or having some privilege other than SELECT).

Table 35.32. referential_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database containing the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema containing the constraint

constraint_name sql_identifier
Name of the constraint

unique_constraint_catalog sql_identifier
Name of the database that contains the unique or primary key constraint that the foreign key
constraint references (always the current database)

unique_constraint_schema sql_identifier
Name of the schema that contains the unique or primary key constraint that the foreign key
constraint references

unique_constraint_name sql_identifier
Name of the unique or primary key constraint that the foreign key constraint references

match_option character_data
Match option of the foreign key constraint: FULL, PARTIAL, or NONE.

update_rule character_data

1067

The Information Schema

Column Type
Description
Update rule of the foreign key constraint: CASCADE, SET NULL, SET DEFAULT, RESTRICT, or NO
ACTION.

delete_rule character_data
Delete rule of the foreign key constraint: CASCADE, SET NULL, SET DEFAULT, RESTRICT, or NO
ACTION.

35.35. role_column_grants
The view role_column_grants identifies all privileges granted on columns where the grantor or grantee
is a currently enabled role. Further information can be found under column_privileges. The only ef-
fective difference between this view and column_privileges is that this view omits columns that have
been made accessible to the current user by way of a grant to PUBLIC.

Table 35.33. role_column_grants Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table that contains the column (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column

table_name sql_identifier
Name of the table that contains the column

column_name sql_identifier
Name of the column

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, or REFERENCES

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.36. role_routine_grants
The view role_routine_grants identifies all privileges granted on functions where the grantor or
grantee is a currently enabled role. Further information can be found under routine_privileges. The
only effective difference between this view and routine_privileges is that this view omits functions
that have been made accessible to the current user by way of a grant to PUBLIC.

Table 35.34. role_routine_grants Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

specific_catalog sql_identifier

1068

The Information Schema

Column Type
Description
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

privilege_type character_data
Always EXECUTE (the only privilege type for functions)

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.37. role_table_grants
The view role_table_grants identifies all privileges granted on tables or views where the grantor or
grantee is a currently enabled role. Further information can be found under table_privileges. The
only effective difference between this view and table_privileges is that this view omits tables that
have been made accessible to the current user by way of a grant to PUBLIC.

Table 35.35. role_table_grants Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

with_hierarchy yes_or_no
In the SQL standard, WITH HIERARCHY OPTION is a separate (sub-)privilege allowing certain
operations on table inheritance hierarchies. In PostgreSQL, this is included in the SELECT
privilege, so this column shows YES if the privilege is SELECT, else NO.

35.38. role_udt_grants
The view role_udt_grants is intended to identify USAGE privileges granted on user-defined types where
the grantor or grantee is a currently enabled role. Further information can be found under udt_priv-

1069

The Information Schema

ileges. The only effective difference between this view and udt_privileges is that this view omits ob-
jects that have been made accessible to the current user by way of a grant to PUBLIC. Since data types
do not have real privileges in PostgreSQL, but only an implicit grant to PUBLIC, this view is empty.

Table 35.36. role_udt_grants Columns

Column Type
Description

grantor sql_identifier
The name of the role that granted the privilege

grantee sql_identifier
The name of the role that the privilege was granted to

udt_catalog sql_identifier
Name of the database containing the type (always the current database)

udt_schema sql_identifier
Name of the schema containing the type

udt_name sql_identifier
Name of the type

privilege_type character_data
Always TYPE USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.39. role_usage_grants
The view role_usage_grants identifies USAGE privileges granted on various kinds of objects where the
grantor or grantee is a currently enabled role. Further information can be found under usage_privi-
leges. The only effective difference between this view and usage_privileges is that this view omits
objects that have been made accessible to the current user by way of a grant to PUBLIC.

Table 35.37. role_usage_grants Columns

Column Type
Description

grantor sql_identifier
The name of the role that granted the privilege

grantee sql_identifier
The name of the role that the privilege was granted to

object_catalog sql_identifier
Name of the database containing the object (always the current database)

object_schema sql_identifier
Name of the schema containing the object, if applicable, else an empty string

object_name sql_identifier
Name of the object

object_type character_data
COLLATION or DOMAIN or FOREIGN DATA WRAPPER or FOREIGN SERVER or SEQUENCE

privilege_type character_data
Always USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

1070

The Information Schema

35.40. routine_column_usage
The view routine_column_usage identifies all columns that are used by a function or procedure, either
in the SQL body or in parameter default expressions. (This only works for unquoted SQL bodies, not
quoted bodies or functions in other languages.) A column is only included if its table is owned by a
currently enabled role.

Table 35.38. routine_column_usage Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

table_catalog sql_identifier
Name of the database that contains the table that is used by the function (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that is used by the function

table_name sql_identifier
Name of the table that is used by the function

column_name sql_identifier
Name of the column that is used by the function

35.41. routine_privileges
The view routine_privileges identifies all privileges granted on functions to a currently enabled role
or by a currently enabled role. There is one row for each combination of function, grantor, and grantee.

Table 35.39. routine_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

routine_catalog sql_identifier

1071

The Information Schema

Column Type
Description
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

privilege_type character_data
Always EXECUTE (the only privilege type for functions)

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.42. routine_routine_usage
The view routine_routine_usage identifies all functions or procedures that are used by another (or
the same) function or procedure, either in the SQL body or in parameter default expressions. (This only
works for unquoted SQL bodies, not quoted bodies or functions in other languages.) An entry is included
here only if the used function is owned by a currently enabled role. (There is no such restriction on the
using function.)

Note that the entries for both functions in the view refer to the “specific” name of the routine, even
though the column names are used in a way that is inconsistent with other information schema views
about routines. This is per SQL standard, although it is arguably a misdesign. See Section 35.45 for
more information about specific names.

Table 35.40. routine_routine_usage Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the using function (always the current database)

specific_schema sql_identifier
Name of the schema containing the using function

specific_name sql_identifier
The “specific name” of the using function.

routine_catalog sql_identifier
Name of the database that contains the function that is used by the first function (always the
current database)

routine_schema sql_identifier
Name of the schema that contains the function that is used by the first function

routine_name sql_identifier
The “specific name” of the function that is used by the first function.

35.43. routine_sequence_usage
The view routine_sequence_usage identifies all sequences that are used by a function or procedure,
either in the SQL body or in parameter default expressions. (This only works for unquoted SQL bodies,
not quoted bodies or functions in other languages.) A sequence is only included if that sequence is owned
by a currently enabled role.

Table 35.41. routine_sequence_usage Columns

Column Type
Description

specific_catalog sql_identifier

1072

The Information Schema

Column Type
Description
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

schema_catalog sql_identifier
Name of the database that contains the sequence that is used by the function (always the cur-
rent database)

sequence_schema sql_identifier
Name of the schema that contains the sequence that is used by the function

sequence_name sql_identifier
Name of the sequence that is used by the function

35.44. routine_table_usage
The view routine_table_usage is meant to identify all tables that are used by a function or procedure.
This information is currently not tracked by PostgreSQL.

Table 35.42. routine_table_usage Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

table_catalog sql_identifier
Name of the database that contains the table that is used by the function (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that is used by the function

table_name sql_identifier
Name of the table that is used by the function

1073

The Information Schema

35.45. routines
The view routines contains all functions and procedures in the current database. Only those functions
and procedures are shown that the current user has access to (by way of being the owner or having
some privilege).

Table 35.43. routines Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. This is a name that uniquely identifies the function in
the schema, even if the real name of the function is overloaded. The format of the specific
name is not defined, it should only be used to compare it to other instances of specific routine
names.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

routine_type character_data
FUNCTION for a function, PROCEDURE for a procedure

module_catalog sql_identifier
Applies to a feature not available in PostgreSQL

module_schema sql_identifier
Applies to a feature not available in PostgreSQL

module_name sql_identifier
Applies to a feature not available in PostgreSQL

udt_catalog sql_identifier
Applies to a feature not available in PostgreSQL

udt_schema sql_identifier
Applies to a feature not available in PostgreSQL

udt_name sql_identifier
Applies to a feature not available in PostgreSQL

data_type character_data
Return data type of the function, if it is a built-in type, or ARRAY if it is some array (in that
case, see the view element_types), else USER-DEFINED (in that case, the type is identified in
type_udt_name and associated columns). Null for a procedure.

character_maximum_length cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

character_octet_length cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

1074

The Information Schema

Column Type
Description

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Always null, since this information is not applied to return data types in PostgreSQL

collation_schema sql_identifier
Always null, since this information is not applied to return data types in PostgreSQL

collation_name sql_identifier
Always null, since this information is not applied to return data types in PostgreSQL

numeric_precision cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

numeric_precision_radix cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

numeric_scale cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

datetime_precision cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

interval_type character_data
Always null, since this information is not applied to return data types in PostgreSQL

interval_precision cardinal_number
Always null, since this information is not applied to return data types in PostgreSQL

type_udt_catalog sql_identifier
Name of the database that the return data type of the function is defined in (always the cur-
rent database). Null for a procedure.

type_udt_schema sql_identifier
Name of the schema that the return data type of the function is defined in. Null for a proce-
dure.

type_udt_name sql_identifier
Name of the return data type of the function. Null for a procedure.

scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

scope_name sql_identifier
Applies to a feature not available in PostgreSQL

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in PostgreSQL

dtd_identifier sql_identifier
An identifier of the data type descriptor of the return data type of this function, unique among
the data type descriptors pertaining to the function. This is mainly useful for joining with oth-
er instances of such identifiers. (The specific format of the identifier is not defined and not
guaranteed to remain the same in future versions.)

routine_body character_data
If the function is an SQL function, then SQL, else EXTERNAL.

routine_definition character_data
The source text of the function (null if the function is not owned by a currently enabled role).
(According to the SQL standard, this column is only applicable if routine_body is SQL, but

1075

The Information Schema

Column Type
Description
in PostgreSQL it will contain whatever source text was specified when the function was creat-
ed.)

external_name character_data
If this function is a C function, then the external name (link symbol) of the function; else null.
(This works out to be the same value that is shown in routine_definition .)

external_language character_data
The language the function is written in

parameter_style character_data
Always GENERAL (The SQL standard defines other parameter styles, which are not available in
PostgreSQL.)

is_deterministic yes_or_no
If the function is declared immutable (called deterministic in the SQL standard), then YES,
 else NO. (You cannot query the other volatility levels available in PostgreSQL through the in-
formation schema.)

sql_data_access character_data
Always MODIFIES, meaning that the function possibly modifies SQL data. This information is
not useful for PostgreSQL.

is_null_call yes_or_no
If the function automatically returns null if any of its arguments are null, then YES, else NO.
Null for a procedure.

sql_path character_data
Applies to a feature not available in PostgreSQL

schema_level_routine yes_or_no
Always YES (The opposite would be a method of a user-defined type, which is a feature not
available in PostgreSQL.)

max_dynamic_result_sets cardinal_number
Applies to a feature not available in PostgreSQL

is_user_defined_cast yes_or_no
Applies to a feature not available in PostgreSQL

is_implicitly_invocable yes_or_no
Applies to a feature not available in PostgreSQL

security_type character_data
If the function runs with the privileges of the current user, then INVOKER, if the function runs
with the privileges of the user who defined it, then DEFINER.

to_sql_specific_catalog sql_identifier
Applies to a feature not available in PostgreSQL

to_sql_specific_schema sql_identifier
Applies to a feature not available in PostgreSQL

to_sql_specific_name sql_identifier
Applies to a feature not available in PostgreSQL

as_locator yes_or_no
Applies to a feature not available in PostgreSQL

created time_stamp
Applies to a feature not available in PostgreSQL

last_altered time_stamp
Applies to a feature not available in PostgreSQL

new_savepoint_level yes_or_no

1076

The Information Schema

Column Type
Description
Applies to a feature not available in PostgreSQL

is_udt_dependent yes_or_no
Currently always NO. The alternative YES applies to a feature not available in PostgreSQL.

result_cast_from_data_type character_data
Applies to a feature not available in PostgreSQL

result_cast_as_locator yes_or_no
Applies to a feature not available in PostgreSQL

result_cast_char_max_length cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_char_octet_length cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_char_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_char_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_char_set_name sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_collation_catalog sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_collation_schema sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_collation_name sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_numeric_precision cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_numeric_precision_radix cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_numeric_scale cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_datetime_precision cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_interval_type character_data
Applies to a feature not available in PostgreSQL

result_cast_interval_precision cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_type_udt_catalog sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_type_udt_schema sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_type_udt_name sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_scope_catalog sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_scope_schema sql_identifier
Applies to a feature not available in PostgreSQL

result_cast_scope_name sql_identifier

1077

The Information Schema

Column Type
Description
Applies to a feature not available in PostgreSQL

result_cast_maximum_cardinality cardinal_number
Applies to a feature not available in PostgreSQL

result_cast_dtd_identifier sql_identifier
Applies to a feature not available in PostgreSQL

35.46. schemata
The view schemata contains all schemas in the current database that the current user has access to (by
way of being the owner or having some privilege).

Table 35.44. schemata Columns

Column Type
Description

catalog_name sql_identifier
Name of the database that the schema is contained in (always the current database)

schema_name sql_identifier
Name of the schema

schema_owner sql_identifier
Name of the owner of the schema

default_character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

default_character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

default_character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

sql_path character_data
Applies to a feature not available in PostgreSQL

35.47. sequences
The view sequences contains all sequences defined in the current database. Only those sequences are
shown that the current user has access to (by way of being the owner or having some privilege).

Table 35.45. sequences Columns

Column Type
Description

sequence_catalog sql_identifier
Name of the database that contains the sequence (always the current database)

sequence_schema sql_identifier
Name of the schema that contains the sequence

sequence_name sql_identifier
Name of the sequence

data_type character_data
The data type of the sequence.

numeric_precision cardinal_number
This column contains the (declared or implicit) precision of the sequence data type (see
above). The precision indicates the number of significant digits. It can be expressed in dec-

1078

The Information Schema

Column Type
Description
imal (base 10) or binary (base 2) terms, as specified in the column numeric_precision_
radix.

numeric_precision_radix cardinal_number
This column indicates in which base the values in the columns numeric_precision and nu-
meric_scale are expressed. The value is either 2 or 10.

numeric_scale cardinal_number
This column contains the (declared or implicit) scale of the sequence data type (see above).
The scale indicates the number of significant digits to the right of the decimal point. It can be
expressed in decimal (base 10) or binary (base 2) terms, as specified in the column numeric_
precision_radix .

start_value character_data
The start value of the sequence

minimum_value character_data
The minimum value of the sequence

maximum_value character_data
The maximum value of the sequence

increment character_data
The increment of the sequence

cycle_option yes_or_no
YES if the sequence cycles, else NO

Note that in accordance with the SQL standard, the start, minimum, maximum, and increment values
are returned as character strings.

35.48. sql_features
The table sql_features contains information about which formal features defined in the SQL standard
are supported by PostgreSQL. This is the same information that is presented in Appendix D. There you
can also find some additional background information.

Table 35.46. sql_features Columns

Column Type
Description

feature_id character_data
Identifier string of the feature

feature_name character_data
Descriptive name of the feature

sub_feature_id character_data
Identifier string of the subfeature, or a zero-length string if not a subfeature

sub_feature_name character_data
Descriptive name of the subfeature, or a zero-length string if not a subfeature

is_supported yes_or_no
YES if the feature is fully supported by the current version of PostgreSQL, NO if not

is_verified_by character_data
Always null, since the PostgreSQL development group does not perform formal testing of fea-
ture conformance

comments character_data
Possibly a comment about the supported status of the feature

1079

The Information Schema

35.49. sql_implementation_info
The table sql_implementation_info contains information about various aspects that are left implemen-
tation-defined by the SQL standard. This information is primarily intended for use in the context of the
ODBC interface; users of other interfaces will probably find this information to be of little use. For this
reason, the individual implementation information items are not described here; you will find them in
the description of the ODBC interface.

Table 35.47. sql_implementation_info Columns

Column Type
Description

implementation_info_id character_data
Identifier string of the implementation information item

implementation_info_name character_data
Descriptive name of the implementation information item

integer_value cardinal_number
Value of the implementation information item, or null if the value is contained in the column
character_value

character_value character_data
Value of the implementation information item, or null if the value is contained in the column
integer_value

comments character_data
Possibly a comment pertaining to the implementation information item

35.50. sql_parts
The table sql_parts contains information about which of the several parts of the SQL standard are
supported by PostgreSQL.

Table 35.48. sql_parts Columns

Column Type
Description

feature_id character_data
An identifier string containing the number of the part

feature_name character_data
Descriptive name of the part

is_supported yes_or_no
YES if the part is fully supported by the current version of PostgreSQL, NO if not

is_verified_by character_data
Always null, since the PostgreSQL development group does not perform formal testing of fea-
ture conformance

comments character_data
Possibly a comment about the supported status of the part

35.51. sql_sizing
The table sql_sizing contains information about various size limits and maximum values in PostgreSQL.
This information is primarily intended for use in the context of the ODBC interface; users of other inter-
faces will probably find this information to be of little use. For this reason, the individual sizing items
are not described here; you will find them in the description of the ODBC interface.

1080

The Information Schema

Table 35.49. sql_sizing Columns

Column Type
Description

sizing_id cardinal_number
Identifier of the sizing item

sizing_name character_data
Descriptive name of the sizing item

supported_value cardinal_number
Value of the sizing item, or 0 if the size is unlimited or cannot be determined, or null if the
features for which the sizing item is applicable are not supported

comments character_data
Possibly a comment pertaining to the sizing item

35.52. table_constraints
The view table_constraints contains all constraints belonging to tables that the current user owns or
has some privilege other than SELECT on.

Table 35.50. table_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

constraint_type character_data
Type of the constraint: CHECK (includes not-null constraints), FOREIGN KEY, PRIMARY KEY, or
UNIQUE

is_deferrable yes_or_no
YES if the constraint is deferrable, NO if not

initially_deferred yes_or_no
YES if the constraint is deferrable and initially deferred, NO if not

enforced yes_or_no
YES if the constraint is enforced, NO if not

nulls_distinct yes_or_no
If the constraint is a unique constraint, then YES if the constraint treats nulls as distinct or NO
if it treats nulls as not distinct, otherwise null for other types of constraints.

35.53. table_privileges
The view table_privileges identifies all privileges granted on tables or views to a currently enabled
role or by a currently enabled role. There is one row for each combination of table, grantor, and grantee.

1081

The Information Schema

Table 35.51. table_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

with_hierarchy yes_or_no
In the SQL standard, WITH HIERARCHY OPTION is a separate (sub-)privilege allowing certain
operations on table inheritance hierarchies. In PostgreSQL, this is included in the SELECT
privilege, so this column shows YES if the privilege is SELECT, else NO.

35.54. tables
The view tables contains all tables and views defined in the current database. Only those tables and
views are shown that the current user has access to (by way of being the owner or having some privilege).

Table 35.52. tables Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

table_type character_data
Type of the table: BASE TABLE for a persistent base table (the normal table type), VIEW for a
view, FOREIGN for a foreign table, or LOCAL TEMPORARY for a temporary table

self_referencing_column_name sql_identifier
Applies to a feature not available in PostgreSQL

reference_generation character_data
Applies to a feature not available in PostgreSQL

user_defined_type_catalog sql_identifier
If the table is a typed table, the name of the database that contains the underlying data type (
always the current database), else null.

user_defined_type_schema sql_identifier
If the table is a typed table, the name of the schema that contains the underlying data type,
else null.

user_defined_type_name sql_identifier

1082

The Information Schema

Column Type
Description
If the table is a typed table, the name of the underlying data type, else null.

is_insertable_into yes_or_no
YES if the table is insertable into, NO if not (Base tables are always insertable into, views not
necessarily.)

is_typed yes_or_no
YES if the table is a typed table, NO if not

commit_action character_data
Not yet implemented

35.55. transforms
The view transforms contains information about the transforms defined in the current database. More
precisely, it contains a row for each function contained in a transform (the “from SQL” or “to SQL”
function).

Table 35.53. transforms Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database that contains the type the transform is for (always the current data-
base)

udt_schema sql_identifier
Name of the schema that contains the type the transform is for

udt_name sql_identifier
Name of the type the transform is for

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

group_name sql_identifier
The SQL standard allows defining transforms in “groups”, and selecting a group at run time.
PostgreSQL does not support this. Instead, transforms are specific to a language. As a com-
promise, this field contains the language the transform is for.

transform_type character_data
FROM SQL or TO SQL

35.56. triggered_update_columns
For triggers in the current database that specify a column list (like UPDATE OF column1, column2), the
view triggered_update_columns identifies these columns. Triggers that do not specify a column list
are not included in this view. Only those columns are shown that the current user owns or has some
privilege other than SELECT on.

Table 35.54. triggered_update_columns Columns

Column Type
Description

trigger_catalog sql_identifier
Name of the database that contains the trigger (always the current database)

1083

The Information Schema

Column Type
Description

trigger_schema sql_identifier
Name of the schema that contains the trigger

trigger_name sql_identifier
Name of the trigger

event_object_catalog sql_identifier
Name of the database that contains the table that the trigger is defined on (always the cur-
rent database)

event_object_schema sql_identifier
Name of the schema that contains the table that the trigger is defined on

event_object_table sql_identifier
Name of the table that the trigger is defined on

event_object_column sql_identifier
Name of the column that the trigger is defined on

35.57. triggers
The view triggers contains all triggers defined in the current database on tables and views that the
current user owns or has some privilege other than SELECT on.

Table 35.55. triggers Columns

Column Type
Description

trigger_catalog sql_identifier
Name of the database that contains the trigger (always the current database)

trigger_schema sql_identifier
Name of the schema that contains the trigger

trigger_name sql_identifier
Name of the trigger

event_manipulation character_data
Event that fires the trigger (INSERT, UPDATE, or DELETE)

event_object_catalog sql_identifier
Name of the database that contains the table that the trigger is defined on (always the cur-
rent database)

event_object_schema sql_identifier
Name of the schema that contains the table that the trigger is defined on

event_object_table sql_identifier
Name of the table that the trigger is defined on

action_order cardinal_number
Firing order among triggers on the same table having the same event_manipulation , ac-
tion_timing , and action_orientation . In PostgreSQL, triggers are fired in name order,
so this column reflects that.

action_condition character_data
WHEN condition of the trigger, null if none (also null if the table is not owned by a currently en-
abled role)

action_statement character_data
Statement that is executed by the trigger (currently always EXECUTE FUNCTION function(
...))

action_orientation character_data

1084

The Information Schema

Column Type
Description
Identifies whether the trigger fires once for each processed row or once for each statement (
ROW or STATEMENT)

action_timing character_data
Time at which the trigger fires (BEFORE, AFTER, or INSTEAD OF)

action_reference_old_table sql_identifier
Name of the “old” transition table, or null if none

action_reference_new_table sql_identifier
Name of the “new” transition table, or null if none

action_reference_old_row sql_identifier
Applies to a feature not available in PostgreSQL

action_reference_new_row sql_identifier
Applies to a feature not available in PostgreSQL

created time_stamp
Applies to a feature not available in PostgreSQL

Triggers in PostgreSQL have two incompatibilities with the SQL standard that affect the representation
in the information schema. First, trigger names are local to each table in PostgreSQL, rather than being
independent schema objects. Therefore there can be duplicate trigger names defined in one schema,
so long as they belong to different tables. (trigger_catalog and trigger_schema are really the values
pertaining to the table that the trigger is defined on.) Second, triggers can be defined to fire on multiple
events in PostgreSQL (e.g., ON INSERT OR UPDATE), whereas the SQL standard only allows one. If a
trigger is defined to fire on multiple events, it is represented as multiple rows in the information schema,
one for each type of event. As a consequence of these two issues, the primary key of the view triggers is
really (trigger_catalog, trigger_schema, event_object_table, trigger_name, event_manipu-
lation) instead of (trigger_catalog, trigger_schema, trigger_name), which is what the SQL stan-
dard specifies. Nonetheless, if you define your triggers in a manner that conforms with the SQL standard
(trigger names unique in the schema and only one event type per trigger), this will not affect you.

Note
Prior to PostgreSQL 9.1, this view's columns action_timing, action_reference_old_table, ac-
tion_reference_new_table, action_reference_old_row, and action_reference_new_row were
named condition_timing, condition_reference_old_table, condition_reference_new_ta-
ble, condition_reference_old_row, and condition_reference_new_row respectively. That was
how they were named in the SQL:1999 standard. The new naming conforms to SQL:2003 and later.

35.58. udt_privileges
The view udt_privileges identifies USAGE privileges granted on user-defined types to a currently en-
abled role or by a currently enabled role. There is one row for each combination of type, grantor, and
grantee. This view shows only composite types (see under Section 35.60 for why); see Section 35.59
for domain privileges.

Table 35.56. udt_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

1085

The Information Schema

Column Type
Description

udt_catalog sql_identifier
Name of the database containing the type (always the current database)

udt_schema sql_identifier
Name of the schema containing the type

udt_name sql_identifier
Name of the type

privilege_type character_data
Always TYPE USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.59. usage_privileges
The view usage_privileges identifies USAGE privileges granted on various kinds of objects to a currently
enabled role or by a currently enabled role. In PostgreSQL, this currently applies to collations, domains,
foreign-data wrappers, foreign servers, and sequences. There is one row for each combination of object,
grantor, and grantee.

Since collations do not have real privileges in PostgreSQL, this view shows implicit non-grantable USAGE
privileges granted by the owner to PUBLIC for all collations. The other object types, however, show real
privileges.

In PostgreSQL, sequences also support SELECT and UPDATE privileges in addition to the USAGE privilege.
These are nonstandard and therefore not visible in the information schema.

Table 35.57. usage_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

object_catalog sql_identifier
Name of the database containing the object (always the current database)

object_schema sql_identifier
Name of the schema containing the object, if applicable, else an empty string

object_name sql_identifier
Name of the object

object_type character_data
COLLATION or DOMAIN or FOREIGN DATA WRAPPER or FOREIGN SERVER or SEQUENCE

privilege_type character_data
Always USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

35.60. user_defined_types
The view user_defined_types currently contains all composite types defined in the current database.
Only those types are shown that the current user has access to (by way of being the owner or having
some privilege).

1086

The Information Schema

SQL knows about two kinds of user-defined types: structured types (also known as composite types in
PostgreSQL) and distinct types (not implemented in PostgreSQL). To be future-proof, use the column
user_defined_type_category to differentiate between these. Other user-defined types such as base
types and enums, which are PostgreSQL extensions, are not shown here. For domains, see Section 35.23
instead.

Table 35.58. user_defined_types Columns

Column Type
Description

user_defined_type_catalog sql_identifier
Name of the database that contains the type (always the current database)

user_defined_type_schema sql_identifier
Name of the schema that contains the type

user_defined_type_name sql_identifier
Name of the type

user_defined_type_category character_data
Currently always STRUCTURED

is_instantiable yes_or_no
Applies to a feature not available in PostgreSQL

is_final yes_or_no
Applies to a feature not available in PostgreSQL

ordering_form character_data
Applies to a feature not available in PostgreSQL

ordering_category character_data
Applies to a feature not available in PostgreSQL

ordering_routine_catalog sql_identifier
Applies to a feature not available in PostgreSQL

ordering_routine_schema sql_identifier
Applies to a feature not available in PostgreSQL

ordering_routine_name sql_identifier
Applies to a feature not available in PostgreSQL

reference_type character_data
Applies to a feature not available in PostgreSQL

data_type character_data
Applies to a feature not available in PostgreSQL

character_maximum_length cardinal_number
Applies to a feature not available in PostgreSQL

character_octet_length cardinal_number
Applies to a feature not available in PostgreSQL

character_set_catalog sql_identifier
Applies to a feature not available in PostgreSQL

character_set_schema sql_identifier
Applies to a feature not available in PostgreSQL

character_set_name sql_identifier
Applies to a feature not available in PostgreSQL

collation_catalog sql_identifier
Applies to a feature not available in PostgreSQL

collation_schema sql_identifier
Applies to a feature not available in PostgreSQL

1087

The Information Schema

Column Type
Description

collation_name sql_identifier
Applies to a feature not available in PostgreSQL

numeric_precision cardinal_number
Applies to a feature not available in PostgreSQL

numeric_precision_radix cardinal_number
Applies to a feature not available in PostgreSQL

numeric_scale cardinal_number
Applies to a feature not available in PostgreSQL

datetime_precision cardinal_number
Applies to a feature not available in PostgreSQL

interval_type character_data
Applies to a feature not available in PostgreSQL

interval_precision cardinal_number
Applies to a feature not available in PostgreSQL

source_dtd_identifier sql_identifier
Applies to a feature not available in PostgreSQL

ref_dtd_identifier sql_identifier
Applies to a feature not available in PostgreSQL

35.61. user_mapping_options
The view user_mapping_options contains all the options defined for user mappings in the current data-
base. Only those user mappings are shown where the current user has access to the corresponding for-
eign server (by way of being the owner or having some privilege).

Table 35.59. user_mapping_options Columns

Column Type
Description

authorization_identifier sql_identifier
Name of the user being mapped, or PUBLIC if the mapping is public

foreign_server_catalog sql_identifier
Name of the database that the foreign server used by this mapping is defined in (always the
current database)

foreign_server_name sql_identifier
Name of the foreign server used by this mapping

option_name sql_identifier
Name of an option

option_value character_data
Value of the option. This column will show as null unless the current user is the user being
mapped, or the mapping is for PUBLIC and the current user is the server owner, or the cur-
rent user is a superuser. The intent is to protect password information stored as user map-
ping option.

35.62. user_mappings
The view user_mappings contains all user mappings defined in the current database. Only those user
mappings are shown where the current user has access to the corresponding foreign server (by way of
being the owner or having some privilege).

1088

The Information Schema

Table 35.60. user_mappings Columns

Column Type
Description

authorization_identifier sql_identifier
Name of the user being mapped, or PUBLIC if the mapping is public

foreign_server_catalog sql_identifier
Name of the database that the foreign server used by this mapping is defined in (always the
current database)

foreign_server_name sql_identifier
Name of the foreign server used by this mapping

35.63. view_column_usage
The view view_column_usage identifies all columns that are used in the query expression of a view (the
SELECT statement that defines the view). A column is only included if the table that contains the column
is owned by a currently enabled role.

Note
Columns of system tables are not included. This should be fixed sometime.

Table 35.61. view_column_usage Columns

Column Type
Description

view_catalog sql_identifier
Name of the database that contains the view (always the current database)

view_schema sql_identifier
Name of the schema that contains the view

view_name sql_identifier
Name of the view

table_catalog sql_identifier
Name of the database that contains the table that contains the column that is used by the
view (always the current database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column that is used by the view

table_name sql_identifier
Name of the table that contains the column that is used by the view

column_name sql_identifier
Name of the column that is used by the view

35.64. view_routine_usage
The view view_routine_usage identifies all routines (functions and procedures) that are used in the
query expression of a view (the SELECT statement that defines the view). A routine is only included if
that routine is owned by a currently enabled role.

Table 35.62. view_routine_usage Columns

Column Type
Description

table_catalog sql_identifier

1089

The Information Schema

Column Type
Description
Name of the database containing the view (always the current database)

table_schema sql_identifier
Name of the schema containing the view

table_name sql_identifier
Name of the view

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 35.45 for more information.

35.65. view_table_usage
The view view_table_usage identifies all tables that are used in the query expression of a view (the
SELECT statement that defines the view). A table is only included if that table is owned by a currently
enabled role.

Note
System tables are not included. This should be fixed sometime.

Table 35.63. view_table_usage Columns

Column Type
Description

view_catalog sql_identifier
Name of the database that contains the view (always the current database)

view_schema sql_identifier
Name of the schema that contains the view

view_name sql_identifier
Name of the view

table_catalog sql_identifier
Name of the database that contains the table that is used by the view (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that is used by the view

table_name sql_identifier
Name of the table that is used by the view

35.66. views
The view views contains all views defined in the current database. Only those views are shown that the
current user has access to (by way of being the owner or having some privilege).

Table 35.64. views Columns

Column Type
Description

table_catalog sql_identifier

1090

The Information Schema

Column Type
Description
Name of the database that contains the view (always the current database)

table_schema sql_identifier
Name of the schema that contains the view

table_name sql_identifier
Name of the view

view_definition character_data
Query expression defining the view (null if the view is not owned by a currently enabled role)

check_option character_data
CASCADED or LOCAL if the view has a CHECK OPTION defined on it, NONE if not

is_updatable yes_or_no
YES if the view is updatable (allows UPDATE and DELETE), NO if not

is_insertable_into yes_or_no
YES if the view is insertable into (allows INSERT), NO if not

is_trigger_updatable yes_or_no
YES if the view has an INSTEAD OF UPDATE trigger defined on it, NO if not

is_trigger_deletable yes_or_no
YES if the view has an INSTEAD OF DELETE trigger defined on it, NO if not

is_trigger_insertable_into yes_or_no
YES if the view has an INSTEAD OF INSERT trigger defined on it, NO if not

1091

Part V. Server Programming
This part is about extending the server functionality with user-defined functions, data types, triggers,
etc. These are advanced topics which should be approached only after all the other user documentation
about PostgreSQL has been understood. Later chapters in this part describe the server-side programming
languages available in the PostgreSQL distribution as well as general issues concerning server-side pro-
gramming. It is essential to read at least the earlier sections of Chapter 36 (covering functions) before
diving into the material about server-side programming.

Chapter 36. Extending SQL
In the sections that follow, we will discuss how you can extend the PostgreSQL SQL query language
by adding:
• functions (starting in Section 36.3)
• aggregates (starting in Section 36.12)
• data types (starting in Section 36.13)
• operators (starting in Section 36.14)
• operator classes for indexes (starting in Section 36.16)
• packages of related objects (starting in Section 36.17)

36.1. How Extensibility Works
PostgreSQL is extensible because its operation is catalog-driven. If you are familiar with standard rela-
tional database systems, you know that they store information about databases, tables, columns, etc.,
in what are commonly known as system catalogs. (Some systems call this the data dictionary.) The cat-
alogs appear to the user as tables like any other, but the DBMS stores its internal bookkeeping in them.
One key difference between PostgreSQL and standard relational database systems is that PostgreSQL
stores much more information in its catalogs: not only information about tables and columns, but also
information about data types, functions, access methods, and so on. These tables can be modified by
the user, and since PostgreSQL bases its operation on these tables, this means that PostgreSQL can be
extended by users. By comparison, conventional database systems can only be extended by changing
hardcoded procedures in the source code or by loading modules specially written by the DBMS vendor.

The PostgreSQL server can moreover incorporate user-written code into itself through dynamic loading.
That is, the user can specify an object code file (e.g., a shared library) that implements a new type or
function, and PostgreSQL will load it as required. Code written in SQL is even more trivial to add to
the server. This ability to modify its operation “on the fly” makes PostgreSQL uniquely suited for rapid
prototyping of new applications and storage structures.

36.2. The PostgreSQL Type System
PostgreSQL data types can be divided into base types, container types, domains, and pseudo-types.

36.2.1. Base Types
Base types are those, like integer, that are implemented below the level of the SQL language (typically
in a low-level language such as C). They generally correspond to what are often known as abstract data
types. PostgreSQL can only operate on such types through functions provided by the user and only
understands the behavior of such types to the extent that the user describes them. The built-in base
types are described in Chapter 8.

Enumerated (enum) types can be considered as a subcategory of base types. The main difference is that
they can be created using just SQL commands, without any low-level programming. Refer to Section 8.7
for more information.

36.2.2. Container Types
PostgreSQL has three kinds of “container” types, which are types that contain multiple values of other
types. These are arrays, composites, and ranges.

Arrays can hold multiple values that are all of the same type. An array type is automatically created
for each base type, composite type, range type, and domain type. But there are no arrays of arrays. So
far as the type system is concerned, multi-dimensional arrays are the same as one-dimensional arrays.
Refer to Section 8.15 for more information.

Composite types, or row types, are created whenever the user creates a table. It is also possible to use
CREATE TYPE to define a “stand-alone” composite type with no associated table. A composite type is

1093

Extending SQL

simply a list of types with associated field names. A value of a composite type is a row or record of field
values. Refer to Section 8.16 for more information.

A range type can hold two values of the same type, which are the lower and upper bounds of the range.
Range types are user-created, although a few built-in ones exist. Refer to Section 8.17 for more infor-
mation.

36.2.3. Domains
A domain is based on a particular underlying type and for many purposes is interchangeable with its
underlying type. However, a domain can have constraints that restrict its valid values to a subset of
what the underlying type would allow. Domains are created using the SQL command CREATE DOMAIN.
Refer to Section 8.18 for more information.

36.2.4. Pseudo-Types
There are a few “pseudo-types” for special purposes. Pseudo-types cannot appear as columns of tables
or components of container types, but they can be used to declare the argument and result types of
functions. This provides a mechanism within the type system to identify special classes of functions.
Table 8.27 lists the existing pseudo-types.

36.2.5. Polymorphic Types
Some pseudo-types of special interest are the polymorphic types, which are used to declare polymor-
phic functions. This powerful feature allows a single function definition to operate on many different
data types, with the specific data type(s) being determined by the data types actually passed to it in a
particular call. The polymorphic types are shown in Table 36.1. Some examples of their use appear in
Section 36.5.11.

Table 36.1. Polymorphic Types

Name Family Description
anyelement Simple Indicates that a function accepts any

data type
anyarray Simple Indicates that a function accepts any ar-

ray data type
anynonarray Simple Indicates that a function accepts any

non-array data type
anyenum Simple Indicates that a function accepts any

enum data type (see Section 8.7)
anyrange Simple Indicates that a function accepts any

range data type (see Section 8.17)
anymultirange Simple Indicates that a function accepts any

multirange data type (see Section 8.17)
anycompatible Common Indicates that a function accepts any

data type, with automatic promotion of
multiple arguments to a common data
type

anycompatiblearray Common Indicates that a function accepts any ar-
ray data type, with automatic promotion
of multiple arguments to a common da-
ta type

anycompatiblenonarray Common Indicates that a function accepts any
non-array data type, with automatic
promotion of multiple arguments to a
common data type

1094

Extending SQL

Name Family Description
anycompatiblerange Common Indicates that a function accepts any

range data type, with automatic promo-
tion of multiple arguments to a common
data type

anycompatiblemultirange Common Indicates that a function accepts any
multirange data type, with automatic
promotion of multiple arguments to a
common data type

Polymorphic arguments and results are tied to each other and are resolved to specific data types when
a query calling a polymorphic function is parsed. When there is more than one polymorphic argument,
the actual data types of the input values must match up as described below. If the function's result type
is polymorphic, or it has output parameters of polymorphic types, the types of those results are deduced
from the actual types of the polymorphic inputs as described below.

For the “simple” family of polymorphic types, the matching and deduction rules work like this:

Each position (either argument or return value) declared as anyelement is allowed to have any specific
actual data type, but in any given call they must all be the same actual type. Each position declared
as anyarray can have any array data type, but similarly they must all be the same type. And similarly,
positions declared as anyrange must all be the same range type. Likewise for anymultirange.

Furthermore, if there are positions declared anyarray and others declared anyelement, the actual array
type in the anyarray positions must be an array whose elements are the same type appearing in the
anyelement positions. anynonarray is treated exactly the same as anyelement, but adds the addition-
al constraint that the actual type must not be an array type. anyenum is treated exactly the same as
anyelement, but adds the additional constraint that the actual type must be an enum type.

Similarly, if there are positions declared anyrange and others declared anyelement or anyarray, the
actual range type in the anyrange positions must be a range whose subtype is the same type appearing
in the anyelement positions and the same as the element type of the anyarray positions. If there are
positions declared anymultirange, their actual multirange type must contain ranges matching parame-
ters declared anyrange and base elements matching parameters declared anyelement and anyarray.

Thus, when more than one argument position is declared with a polymorphic type, the net effect is that
only certain combinations of actual argument types are allowed. For example, a function declared as
equal(anyelement, anyelement) will take any two input values, so long as they are of the same data
type.

When the return value of a function is declared as a polymorphic type, there must be at least one argu-
ment position that is also polymorphic, and the actual data type(s) supplied for the polymorphic argu-
ments determine the actual result type for that call. For example, if there were not already an array
subscripting mechanism, one could define a function that implements subscripting as subscript(an-
yarray, integer) returns anyelement. This declaration constrains the actual first argument to be
an array type, and allows the parser to infer the correct result type from the actual first argument's
type. Another example is that a function declared as f(anyarray) returns anyenum will only accept
arrays of enum types.

In most cases, the parser can infer the actual data type for a polymorphic result type from arguments
that are of a different polymorphic type in the same family; for example anyarray can be deduced from
anyelement or vice versa. An exception is that a polymorphic result of type anyrange requires an argu-
ment of type anyrange; it cannot be deduced from anyarray or anyelement arguments. This is because
there could be multiple range types with the same subtype.

Note that anynonarray and anyenum do not represent separate type variables; they are the same type
as anyelement, just with an additional constraint. For example, declaring a function as f(anyelement,

1095

Extending SQL

anyenum) is equivalent to declaring it as f(anyenum, anyenum): both actual arguments have to be the
same enum type.

For the “common” family of polymorphic types, the matching and deduction rules work approximately
the same as for the “simple” family, with one major difference: the actual types of the arguments need
not be identical, so long as they can be implicitly cast to a single common type. The common type is
selected following the same rules as for UNION and related constructs (see Section 10.5). Selection of
the common type considers the actual types of anycompatible and anycompatiblenonarray inputs,
the array element types of anycompatiblearray inputs, the range subtypes of anycompatiblerange
inputs, and the multirange subtypes of anycompatiblemultirange inputs. If anycompatiblenonarray is
present then the common type is required to be a non-array type. Once a common type is identified,
arguments in anycompatible and anycompatiblenonarray positions are automatically cast to that type,
and arguments in anycompatiblearray positions are automatically cast to the array type for that type.

Since there is no way to select a range type knowing only its subtype, use of anycompatiblerange and/
or anycompatiblemultirange requires that all arguments declared with that type have the same actual
range and/or multirange type, and that that type's subtype agree with the selected common type, so that
no casting of the range values is required. As with anyrange and anymultirange, use of anycompati-
blerange and anymultirange as a function result type requires that there be an anycompatiblerange
or anycompatiblemultirange argument.

Notice that there is no anycompatibleenum type. Such a type would not be very useful, since there
normally are not any implicit casts to enum types, meaning that there would be no way to resolve a
common type for dissimilar enum inputs.

The “simple” and “common” polymorphic families represent two independent sets of type variables.
Consider for example

CREATE FUNCTION myfunc(a anyelement, b anyelement,
 c anycompatible, d anycompatible)
RETURNS anycompatible AS ...

In an actual call of this function, the first two inputs must have exactly the same type. The last two inputs
must be promotable to a common type, but this type need not have anything to do with the type of the
first two inputs. The result will have the common type of the last two inputs.

A variadic function (one taking a variable number of arguments, as in Section 36.5.6) can be polymor-
phic: this is accomplished by declaring its last parameter as VARIADIC anyarray or VARIADIC anycompat-
iblearray. For purposes of argument matching and determining the actual result type, such a func-
tion behaves the same as if you had written the appropriate number of anynonarray or anycompati-
blenonarray parameters.

36.3. User-Defined Functions
PostgreSQL provides four kinds of functions:

• query language functions (functions written in SQL) (Section 36.5)

• procedural language functions (functions written in, for example, PL/pgSQL or PL/Tcl) (Sec-
tion 36.8)

• internal functions (Section 36.9)

• C-language functions (Section 36.10)

Every kind of function can take base types, composite types, or combinations of these as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. Functions
can also be defined to return sets of base or composite values.

Many kinds of functions can take or return certain pseudo-types (such as polymorphic types), but the
available facilities vary. Consult the description of each kind of function for more details.

1096

Extending SQL

It's easiest to define SQL functions, so we'll start by discussing those. Most of the concepts presented
for SQL functions will carry over to the other types of functions.

Throughout this chapter, it can be useful to look at the reference page of the CREATE FUNCTION command
to understand the examples better. Some examples from this chapter can be found in funcs.sql and
funcs.c in the src/tutorial directory in the PostgreSQL source distribution.

36.4. User-Defined Procedures
A procedure is a database object similar to a function. The key differences are:

• Procedures are defined with the CREATE PROCEDURE command, not CREATE FUNCTION.

• Procedures do not return a function value; hence CREATE PROCEDURE lacks a RETURNS clause. How-
ever, procedures can instead return data to their callers via output parameters.

• While a function is called as part of a query or DML command, a procedure is called in isolation us-
ing the CALL command.

• A procedure can commit or roll back transactions during its execution (then automatically begin-
ning a new transaction), so long as the invoking CALL command is not part of an explicit transaction
block. A function cannot do that.

• Certain function attributes, such as strictness, don't apply to procedures. Those attributes control
how the function is used in a query, which isn't relevant to procedures.

The explanations in the following sections about how to define user-defined functions apply to proce-
dures as well, except for the points made above.

Collectively, functions and procedures are also known as routines. There are commands such as ALTER
ROUTINE and DROP ROUTINE that can operate on functions and procedures without having to know which
kind it is. Note, however, that there is no CREATE ROUTINE command.

36.5. Query Language (SQL) Functions
SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the
list. In the simple (non-set) case, the first row of the last query's result will be returned. (Bear in mind
that “the first row” of a multirow result is not well-defined unless you use ORDER BY.) If the last query
happens to return no rows at all, the null value will be returned.

Alternatively, an SQL function can be declared to return a set (that is, multiple rows) by specifying the
function's return type as SETOF sometype, or equivalently by declaring it as RETURNS TABLE(columns).
In this case all rows of the last query's result are returned. Further details appear below.

The body of an SQL function must be a list of SQL statements separated by semicolons. A semicolon
after the last statement is optional. Unless the function is declared to return void, the last statement
must be a SELECT, or an INSERT, UPDATE, DELETE, or MERGE that has a RETURNING clause.

Any collection of commands in the SQL language can be packaged together and defined as a function.
Besides SELECT queries, the commands can include data modification queries (INSERT, UPDATE, DELETE,
and MERGE), as well as other SQL commands. (You cannot use transaction control commands, e.g., COMMIT,
SAVEPOINT, and some utility commands, e.g., VACUUM, in SQL functions.) However, the final command
must be a SELECT or have a RETURNING clause that returns whatever is specified as the function's return
type. Alternatively, if you want to define an SQL function that performs actions but has no useful value
to return, you can define it as returning void. For example, this function removes rows with negative
salaries from the emp table:

CREATE FUNCTION clean_emp() RETURNS void AS '
 DELETE FROM emp
 WHERE salary < 0;
' LANGUAGE SQL;

1097

Extending SQL

SELECT clean_emp();

 clean_emp

(1 row)

You can also write this as a procedure, thus avoiding the issue of the return type. For example:

CREATE PROCEDURE clean_emp() AS '
 DELETE FROM emp
 WHERE salary < 0;
' LANGUAGE SQL;

CALL clean_emp();

In simple cases like this, the difference between a function returning void and a procedure is mostly
stylistic. However, procedures offer additional functionality such as transaction control that is not avail-
able in functions. Also, procedures are SQL standard whereas returning void is a PostgreSQL extension.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string con-
stant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant. If
you choose to use regular single-quoted string constant syntax, you must double single quote marks (')
and backslashes (\) (assuming escape string syntax) in the body of the function (see Section 4.1.2.1).

36.5.1. Arguments for SQL Functions
Arguments of an SQL function can be referenced in the function body using either names or numbers.
Examples of both methods appear below.

To use a name, declare the function argument as having a name, and then just write that name in the
function body. If the argument name is the same as any column name in the current SQL command
within the function, the column name will take precedence. To override this, qualify the argument name
with the name of the function itself, that is function_name.argument_name. (If this would conflict with a
qualified column name, again the column name wins. You can avoid the ambiguity by choosing a different
alias for the table within the SQL command.)

In the older numeric approach, arguments are referenced using the syntax $n: $1 refers to the first
input argument, $2 to the second, and so on. This will work whether or not the particular argument was
declared with a name.

If an argument is of a composite type, then the dot notation, e.g., argname.fieldname or $1.fieldname,
can be used to access attributes of the argument. Again, you might need to qualify the argument's name
with the function name to make the form with an argument name unambiguous.

SQL function arguments can only be used as data values, not as identifiers. Thus for example this is
reasonable:

INSERT INTO mytable VALUES ($1);

but this will not work:

INSERT INTO $1 VALUES (42);

Note
The ability to use names to reference SQL function arguments was added in PostgreSQL 9.2.
Functions to be used in older servers must use the $n notation.

1098

Extending SQL

36.5.2. SQL Functions on Base Types
The simplest possible SQL function has no arguments and simply returns a base type, such as integer:

CREATE FUNCTION one() RETURNS integer AS $$
 SELECT 1 AS result;
$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS '
 SELECT 1 AS result;
' LANGUAGE SQL;

SELECT one();

 one

 1

Notice that we defined a column alias within the function body for the result of the function (with the
name result), but this column alias is not visible outside the function. Hence, the result is labeled one
instead of result.

It is almost as easy to define SQL functions that take base types as arguments:

CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
 SELECT x + y;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

Alternatively, we could dispense with names for the arguments and use numbers:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

Here is a more useful function, which might be used to debit a bank account:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT 1;
$$ LANGUAGE SQL;

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tf1(17, 100.0);

In this example, we chose the name accountno for the first argument, but this is the same as the name of a
column in the bank table. Within the UPDATE command, accountno refers to the column bank.accountno,

1099

Extending SQL

so tf1.accountno must be used to refer to the argument. We could of course avoid this by using a
different name for the argument.

In practice one would probably like a more useful result from the function than a constant 1, so a more
likely definition is:
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;

which adjusts the balance and returns the new balance. The same thing could be done in one command
using RETURNING:
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno
 RETURNING balance;
$$ LANGUAGE SQL;

If the final SELECT or RETURNING clause in an SQL function does not return exactly the function's declared
result type, PostgreSQL will automatically cast the value to the required type, if that is possible with an
implicit or assignment cast. Otherwise, you must write an explicit cast. For example, suppose we wanted
the previous add_em function to return type float8 instead. It's sufficient to write
CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

since the integer sum can be implicitly cast to float8. (See Chapter 10 or CREATE CAST for more
about casts.)

36.5.3. SQL Functions on Composite Types
When writing functions with arguments of composite types, we must not only specify which argument
we want but also the desired attribute (field) of that argument. For example, suppose that emp is a table
containing employee data, and therefore also the name of the composite type of each row of the table.
Here is a function double_salary that computes what someone's salary would be if it were doubled:
CREATE TABLE emp (
 name text,
 salary numeric,
 age integer,
 cubicle point
);

INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
 SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

 name | dream
------+-------
 Bill | 8400

1100

Extending SQL

Notice the use of the syntax $1.salary to select one field of the argument row value. Also notice how the
calling SELECT command uses table_name.* to select the entire current row of a table as a composite
value. The table row can alternatively be referenced using just the table name, like this:

SELECT name, double_salary(emp) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

but this usage is deprecated since it's easy to get confused. (See Section 8.16.5 for details about these
two notations for the composite value of a table row.)

Sometimes it is handy to construct a composite argument value on-the-fly. This can be done with the ROW
construct. For example, we could adjust the data being passed to the function:

SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
 FROM emp;

It is also possible to build a function that returns a composite type. This is an example of a function that
returns a single emp row:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT text 'None' AS name,
 1000.0 AS salary,
 25 AS age,
 point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;

In this example we have specified each of the attributes with a constant value, but any computation
could have been substituted for these constants.

Note two important things about defining the function:
• The select list order in the query must be exactly the same as that in which the columns appear in

the composite type. (Naming the columns, as we did above, is irrelevant to the system.)
• We must ensure each expression's type can be cast to that of the corresponding column of the com-

posite type. Otherwise we'll get errors like this:

ERROR: return type mismatch in function declared to return emp
DETAIL: Final statement returns text instead of point at column 4.

As with the base-type case, the system will not insert explicit casts automatically, only implicit or
assignment casts.

A different way to define the same function is:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;

Here we wrote a SELECT that returns just a single column of the correct composite type. This isn't really
better in this situation, but it is a handy alternative in some cases — for example, if we need to compute
the result by calling another function that returns the desired composite value. Another example is that
if we are trying to write a function that returns a domain over composite, rather than a plain composite
type, it is always necessary to write it as returning a single column, since there is no way to cause a
coercion of the whole row result.

We could call this function directly either by using it in a value expression:

SELECT new_emp();

 new_emp

1101

Extending SQL

 (None,1000.0,25,"(2,2)")

or by calling it as a table function:

SELECT * FROM new_emp();

 name | salary | age | cubicle
------+--------+-----+---------
 None | 1000.0 | 25 | (2,2)

The second way is described more fully in Section 36.5.8.

When you use a function that returns a composite type, you might want only one field (attribute) from
its result. You can do that with syntax like this:

SELECT (new_emp()).name;

 name

 None

The extra parentheses are needed to keep the parser from getting confused. If you try to do it without
them, you get something like this:

SELECT new_emp().name;
ERROR: syntax error at or near "."
LINE 1: SELECT new_emp().name;
 ^

Another option is to use functional notation for extracting an attribute:

SELECT name(new_emp());

 name

 None

As explained in Section 8.16.5, the field notation and functional notation are equivalent.

Another way to use a function returning a composite type is to pass the result to another function that
accepts the correct row type as input:

CREATE FUNCTION getname(emp) RETURNS text AS $$
 SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());
 getname

 None
(1 row)

36.5.4. SQL Functions with Output Parameters
An alternative way of describing a function's results is to define it with output parameters, as in this
example:

CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;

SELECT add_em(3,7);
 add_em

1102

Extending SQL

 10
(1 row)

This is not essentially different from the version of add_em shown in Section 36.5.2. The real value
of output parameters is that they provide a convenient way of defining functions that return several
columns. For example,

CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)
AS 'SELECT x + y, x * y'
LANGUAGE SQL;

 SELECT * FROM sum_n_product(11,42);
 sum | product
-----+---------
 53 | 462
(1 row)

What has essentially happened here is that we have created an anonymous composite type for the result
of the function. The above example has the same end result as

CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;

but not having to bother with the separate composite type definition is often handy. Notice that the
names attached to the output parameters are not just decoration, but determine the column names of
the anonymous composite type. (If you omit a name for an output parameter, the system will choose a
name on its own.)

Notice that output parameters are not included in the calling argument list when invoking such a function
from SQL. This is because PostgreSQL considers only the input parameters to define the function's
calling signature. That means also that only the input parameters matter when referencing the function
for purposes such as dropping it. We could drop the above function with either of

DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);

Parameters can be marked as IN (the default), OUT, INOUT, or VARIADIC. An INOUT parameter serves as
both an input parameter (part of the calling argument list) and an output parameter (part of the result
record type). VARIADIC parameters are input parameters, but are treated specially as described below.

36.5.5. SQL Procedures with Output Parameters
Output parameters are also supported in procedures, but they work a bit differently from functions.
In CALL commands, output parameters must be included in the argument list. For example, the bank
account debiting routine from earlier could be written like this:

CREATE PROCEDURE tp1 (accountno integer, debit numeric, OUT new_balance numeric) AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tp1.accountno
 RETURNING balance;
$$ LANGUAGE SQL;

To call this procedure, an argument matching the OUT parameter must be included. It's customary to
write NULL:

CALL tp1(17, 100.0, NULL);

If you write something else, it must be an expression that is implicitly coercible to the declared type of
the parameter, just as for input parameters. Note however that such an expression will not be evaluated.

1103

Extending SQL

When calling a procedure from PL/pgSQL, instead of writing NULL you must write a variable that will
receive the procedure's output. See Section 41.6.3 for details.

36.5.6. SQL Functions with Variable Numbers of Arguments
SQL functions can be declared to accept variable numbers of arguments, so long as all the “optional”
arguments are of the same data type. The optional arguments will be passed to the function as an array.
The function is declared by marking the last parameter as VARIADIC; this parameter must be declared
as being of an array type. For example:
CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
 mleast

 -1
(1 row)

Effectively, all the actual arguments at or beyond the VARIADIC position are gathered up into a one-
dimensional array, as if you had written
SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn't work

You can't actually write that, though — or at least, it will not match this function definition. A parameter
marked VARIADIC matches one or more occurrences of its element type, not of its own type.

Sometimes it is useful to be able to pass an already-constructed array to a variadic function; this is
particularly handy when one variadic function wants to pass on its array parameter to another one. Also,
this is the only secure way to call a variadic function found in a schema that permits untrusted users to
create objects; see Section 10.3. You can do this by specifying VARIADIC in the call:
SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);

This prevents expansion of the function's variadic parameter into its element type, thereby allowing the
array argument value to match normally. VARIADIC can only be attached to the last actual argument
of a function call.

Specifying VARIADIC in the call is also the only way to pass an empty array to a variadic function, for
example:
SELECT mleast(VARIADIC ARRAY[]::numeric[]);

Simply writing SELECT mleast() does not work because a variadic parameter must match at least one
actual argument. (You could define a second function also named mleast, with no parameters, if you
wanted to allow such calls.)

The array element parameters generated from a variadic parameter are treated as not having any names
of their own. This means it is not possible to call a variadic function using named arguments (Section 4.3),
except when you specify VARIADIC. For example, this will work:
SELECT mleast(VARIADIC arr => ARRAY[10, -1, 5, 4.4]);

but not these:
SELECT mleast(arr => 10);
SELECT mleast(arr => ARRAY[10, -1, 5, 4.4]);

36.5.7. SQL Functions with Default Values for Arguments
Functions can be declared with default values for some or all input arguments. The default values are
inserted whenever the function is called with insufficiently many actual arguments. Since arguments can
only be omitted from the end of the actual argument list, all parameters after a parameter with a default
value have to have default values as well. (Although the use of named argument notation could allow this

1104

Extending SQL

restriction to be relaxed, it's still enforced so that positional argument notation works sensibly.) Whether
or not you use it, this capability creates a need for precautions when calling functions in databases where
some users mistrust other users; see Section 10.3.

For example:

CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$
 SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
 foo

 60
(1 row)

SELECT foo(10, 20);
 foo

 33
(1 row)

SELECT foo(10);
 foo

 15
(1 row)

SELECT foo(); -- fails since there is no default for the first argument
ERROR: function foo() does not exist

The = sign can also be used in place of the key word DEFAULT.

36.5.8. SQL Functions as Table Sources
All SQL functions can be used in the FROM clause of a query, but it is particularly useful for functions
returning composite types. If the function is defined to return a base type, the table function produces
a one-column table. If the function is defined to return a composite type, the table function produces a
column for each attribute of the composite type.

Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

 fooid | foosubid | fooname | upper
-------+----------+---------+-------
 1 | 1 | Joe | JOE
(1 row)

1105

Extending SQL

As the example shows, we can work with the columns of the function's result just the same as if they
were columns of a regular table.

Note that we only got one row out of the function. This is because we did not use SETOF. That is described
in the next section.

36.5.9. SQL Functions Returning Sets
When an SQL function is declared as returning SETOF sometype, the function's final query is executed
to completion, and each row it outputs is returned as an element of the result set.

This feature is normally used when calling the function in the FROM clause. In this case each row returned
by the function becomes a row of the table seen by the query. For example, assume that table foo has
the same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

Then we would get:

 fooid | foosubid | fooname
-------+----------+---------
 1 | 1 | Joe
 1 | 2 | Ed
(2 rows)

It is also possible to return multiple rows with the columns defined by output parameters, like this:

CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
 sum | product
-----+---------
 11 | 10
 13 | 30
 15 | 50
 17 | 70
(4 rows)

The key point here is that you must write RETURNS SETOF record to indicate that the function returns
multiple rows instead of just one. If there is only one output parameter, write that parameter's type
instead of record.

It is frequently useful to construct a query's result by invoking a set-returning function multiple times,
with the parameters for each invocation coming from successive rows of a table or subquery. The pre-
ferred way to do this is to use the LATERAL key word, which is described in Section 7.2.1.5. Here is an
example using a set-returning function to enumerate elements of a tree structure:

SELECT * FROM nodes;
 name | parent
-----------+--------
 Top |

1106

Extending SQL

 Child1 | Top
 Child2 | Top
 Child3 | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
 SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;

SELECT * FROM listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
 name | child
--------+-----------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

This example does not do anything that we couldn't have done with a simple join, but in more complex
calculations the option to put some of the work into a function can be quite convenient.

Functions returning sets can also be called in the select list of a query. For each row that the query gen-
erates by itself, the set-returning function is invoked, and an output row is generated for each element
of the function's result set. The previous example could also be done with queries like these:
SELECT listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
 name | listchildren
--------+--------------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

In the last SELECT, notice that no output row appears for Child2, Child3, etc. This happens because
listchildren returns an empty set for those arguments, so no result rows are generated. This is the
same behavior as we got from an inner join to the function result when using the LATERAL syntax.

PostgreSQL's behavior for a set-returning function in a query's select list is almost exactly the same as
if the set-returning function had been written in a LATERAL FROM-clause item instead. For example,

1107

Extending SQL

SELECT x, generate_series(1,5) AS g FROM tab;

is almost equivalent to

SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;

It would be exactly the same, except that in this specific example, the planner could choose to put g on
the outside of the nested-loop join, since g has no actual lateral dependency on tab. That would result
in a different output row order. Set-returning functions in the select list are always evaluated as though
they are on the inside of a nested-loop join with the rest of the FROM clause, so that the function(s) are
run to completion before the next row from the FROM clause is considered.

If there is more than one set-returning function in the query's select list, the behavior is similar to what
you get from putting the functions into a single LATERAL ROWS FROM(...) FROM-clause item. For
each row from the underlying query, there is an output row using the first result from each function,
then an output row using the second result, and so on. If some of the set-returning functions produce
fewer outputs than others, null values are substituted for the missing data, so that the total number of
rows emitted for one underlying row is the same as for the set-returning function that produced the
most outputs. Thus the set-returning functions run “in lockstep” until they are all exhausted, and then
execution continues with the next underlying row.

Set-returning functions can be nested in a select list, although that is not allowed in FROM-clause items.
In such cases, each level of nesting is treated separately, as though it were a separate LATERAL ROWS
FROM(...) item. For example, in

SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;

the set-returning functions srf2, srf3, and srf5 would be run in lockstep for each row of tab, and then
srf1 and srf4 would be applied in lockstep to each row produced by the lower functions.

Set-returning functions cannot be used within conditional-evaluation constructs, such as CASE or
COALESCE. For example, consider

SELECT x, CASE WHEN x > 0 THEN generate_series(1, 5) ELSE 0 END FROM tab;

It might seem that this should produce five repetitions of input rows that have x > 0, and a single
repetition of those that do not; but actually, because generate_series(1, 5) would be run in an implicit
LATERAL FROM item before the CASE expression is ever evaluated, it would produce five repetitions of
every input row. To reduce confusion, such cases produce a parse-time error instead.

Note
If a function's last command is INSERT, UPDATE, DELETE, or MERGE with RETURNING, that command
will always be executed to completion, even if the function is not declared with SETOF or the calling
query does not fetch all the result rows. Any extra rows produced by the RETURNING clause are
silently dropped, but the commanded table modifications still happen (and are all completed before
returning from the function).

Note
Before PostgreSQL 10, putting more than one set-returning function in the same select list did not
behave very sensibly unless they always produced equal numbers of rows. Otherwise, what you got
was a number of output rows equal to the least common multiple of the numbers of rows produced
by the set-returning functions. Also, nested set-returning functions did not work as described
above; instead, a set-returning function could have at most one set-returning argument, and each
nest of set-returning functions was run independently. Also, conditional execution (set-returning
functions inside CASE etc.) was previously allowed, complicating things even more. Use of the
LATERAL syntax is recommended when writing queries that need to work in older PostgreSQL
versions, because that will give consistent results across different versions. If you have a query

1108

Extending SQL

that is relying on conditional execution of a set-returning function, you may be able to fix it by
moving the conditional test into a custom set-returning function. For example,
SELECT x, CASE WHEN y > 0 THEN generate_series(1, z) ELSE 5 END FROM tab;

could become
CREATE FUNCTION case_generate_series(cond bool, start int, fin int, els int)
 RETURNS SETOF int AS $$
BEGIN
 IF cond THEN
 RETURN QUERY SELECT generate_series(start, fin);
 ELSE
 RETURN QUERY SELECT els;
 END IF;
END$$ LANGUAGE plpgsql;

SELECT x, case_generate_series(y > 0, 1, z, 5) FROM tab;

This formulation will work the same in all versions of PostgreSQL.

36.5.10. SQL Functions Returning TABLE
There is another way to declare a function as returning a set, which is to use the syntax RETURNS TA-
BLE(columns). This is equivalent to using one or more OUT parameters plus marking the function as
returning SETOF record (or SETOF a single output parameter's type, as appropriate). This notation is
specified in recent versions of the SQL standard, and thus may be more portable than using SETOF.

For example, the preceding sum-and-product example could also be done this way:
CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

It is not allowed to use explicit OUT or INOUT parameters with the RETURNS TABLE notation — you must
put all the output columns in the TABLE list.

36.5.11. Polymorphic SQL Functions
SQL functions can be declared to accept and return the polymorphic types described in Section 36.2.5.
Here is a polymorphic function make_array that builds up an array from two arbitrary data type elements:
CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
 intarray | textarray
----------+-----------
 {1,2} | {a,b}
(1 row)

Notice the use of the typecast 'a'::text to specify that the argument is of type text. This is required
if the argument is just a string literal, since otherwise it would be treated as type unknown, and array of
unknown is not a valid type. Without the typecast, you will get errors like this:
ERROR: could not determine polymorphic type because input has type unknown

With make_array declared as above, you must provide two arguments that are of exactly the same data
type; the system will not attempt to resolve any type differences. Thus for example this does not work:
SELECT make_array(1, 2.5) AS numericarray;

1109

Extending SQL

ERROR: function make_array(integer, numeric) does not exist

An alternative approach is to use the “common” family of polymorphic types, which allows the system
to try to identify a suitable common type:

CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array2(1, 2.5) AS numericarray;
 numericarray

 {1,2.5}
(1 row)

Because the rules for common type resolution default to choosing type text when all inputs are of
unknown types, this also works:

SELECT make_array2('a', 'b') AS textarray;
 textarray

 {a,b}
(1 row)

It is permitted to have polymorphic arguments with a fixed return type, but the converse is not. For
example:

CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
 SELECT $1 > $2;
$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
 is_greater

 f
(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
 SELECT 1;
$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A result of type anyelement requires at least one input of type anyelement,
 anyarray, anynonarray, anyenum, or anyrange.

Polymorphism can be used with functions that have output arguments. For example:

CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;

SELECT * FROM dup(22);
 f2 | f3
----+---------
 22 | {22,22}
(1 row)

Polymorphism can also be used with variadic functions. For example:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

1110

Extending SQL

SELECT anyleast(10, -1, 5, 4);
 anyleast

 -1
(1 row)

SELECT anyleast('abc'::text, 'def');
 anyleast

 abc
(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
 SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;

SELECT concat_values('|', 1, 4, 2);
 concat_values

 1|4|2
(1 row)

36.5.12. SQL Functions with Collations
When an SQL function has one or more parameters of collatable data types, a collation is identified
for each function call depending on the collations assigned to the actual arguments, as described in
Section 23.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations
among the arguments) then all the collatable parameters are treated as having that collation implicitly.
This will affect the behavior of collation-sensitive operations within the function. For example, using the
anyleast function described above, the result of
SELECT anyleast('abc'::text, 'ABC');

will depend on the database's default collation. In C locale the result will be ABC, but in many other locales
it will be abc. The collation to use can be forced by adding a COLLATE clause to any of the arguments,
for example
SELECT anyleast('abc'::text, 'ABC' COLLATE "C");

Alternatively, if you wish a function to operate with a particular collation regardless of what it is called
with, insert COLLATE clauses as needed in the function definition. This version of anyleast would always
use en_US locale to compare strings:
CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

But note that this will throw an error if applied to a non-collatable data type.

If no common collation can be identified among the actual arguments, then an SQL function treats its
parameters as having their data types' default collation (which is usually the database's default collation,
but could be different for parameters of domain types).

The behavior of collatable parameters can be thought of as a limited form of polymorphism, applicable
only to textual data types.

36.6. Function Overloading
More than one function can be defined with the same SQL name, so long as the arguments they take are
different. In other words, function names can be overloaded. Whether or not you use it, this capability
entails security precautions when calling functions in databases where some users mistrust other users;
see Section 10.3. When a query is executed, the server will determine which function to call from the data

1111

Extending SQL

types and the number of the provided arguments. Overloading can also be used to simulate functions
with a variable number of arguments, up to a finite maximum number.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions:

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

it is not immediately clear which function would be called with some trivial input like test(1, 1.5).
The currently implemented resolution rules are described in Chapter 10, but it is unwise to design a
system that subtly relies on this behavior.

A function that takes a single argument of a composite type should generally not have the same name as
any attribute (field) of that type. Recall that attribute(table) is considered equivalent to table.at-
tribute. In the case that there is an ambiguity between a function on a composite type and an attribute
of the composite type, the attribute will always be used. It is possible to override that choice by schema-
qualifying the function name (that is, schema.func(table)) but it's better to avoid the problem by not
choosing conflicting names.

Another possible conflict is between variadic and non-variadic functions. For instance, it is possible to
create both foo(numeric) and foo(VARIADIC numeric[]). In this case it is unclear which one should be
matched to a call providing a single numeric argument, such as foo(10.1). The rule is that the function
appearing earlier in the search path is used, or if the two functions are in the same schema, the non-
variadic one is preferred.

When overloading C-language functions, there is an additional constraint: The C name of each function
in the family of overloaded functions must be different from the C names of all other functions, either
internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might get a run-
time linker error, or one of the functions will get called (usually the internal one). The alternative form
of the AS clause for the SQL CREATE FUNCTION command decouples the SQL function name from the
function name in the C source code. For instance:

CREATE FUNCTION test(int) RETURNS int
 AS 'filename', 'test_1arg'
 LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
 AS 'filename', 'test_2arg'
 LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

36.7. Function Volatility Categories
Every function has a volatility classification, with the possibilities being VOLATILE, STABLE, or IMMUTABLE.
VOLATILE is the default if the CREATE FUNCTION command does not specify a category. The volatility
category is a promise to the optimizer about the behavior of the function:
• A VOLATILE function can do anything, including modifying the database. It can return different re-

sults on successive calls with the same arguments. The optimizer makes no assumptions about the
behavior of such functions. A query using a volatile function will re-evaluate the function at every
row where its value is needed.

• A STABLE function cannot modify the database and is guaranteed to return the same results given
the same arguments for all rows within a single statement. This category allows the optimizer to
optimize multiple calls of the function to a single call. In particular, it is safe to use an expression
containing such a function in an index scan condition. (Since an index scan will evaluate the com-
parison value only once, not once at each row, it is not valid to use a VOLATILE function in an index
scan condition.)

• An IMMUTABLE function cannot modify the database and is guaranteed to return the same results
given the same arguments forever. This category allows the optimizer to pre-evaluate the function

1112

Extending SQL

when a query calls it with constant arguments. For example, a query like SELECT ... WHERE x = 2
+ 2 can be simplified on sight to SELECT ... WHERE x = 4, because the function underlying the in-
teger addition operator is marked IMMUTABLE.

For best optimization results, you should label your functions with the strictest volatility category that
is valid for them.

Any function with side-effects must be labeled VOLATILE, so that calls to it cannot be optimized away.
Even a function with no side-effects needs to be labeled VOLATILE if its value can change within a single
query; some examples are random(), currval(), timeofday().

Another important example is that the current_timestamp family of functions qualify as STABLE, since
their values do not change within a transaction.

There is relatively little difference between STABLE and IMMUTABLE categories when considering simple
interactive queries that are planned and immediately executed: it doesn't matter a lot whether a function
is executed once during planning or once during query execution startup. But there is a big difference
if the plan is saved and reused later. Labeling a function IMMUTABLE when it really isn't might allow it
to be prematurely folded to a constant during planning, resulting in a stale value being re-used during
subsequent uses of the plan. This is a hazard when using prepared statements or when using function
languages that cache plans (such as PL/pgSQL).

For functions written in SQL or in any of the standard procedural languages, there is a second important
property determined by the volatility category, namely the visibility of any data changes that have been
made by the SQL command that is calling the function. A VOLATILE function will see such changes, a
STABLE or IMMUTABLE function will not. This behavior is implemented using the snapshotting behavior
of MVCC (see Chapter 13): STABLE and IMMUTABLE functions use a snapshot established as of the start
of the calling query, whereas VOLATILE functions obtain a fresh snapshot at the start of each query they
execute.

Note
Functions written in C can manage snapshots however they want, but it's usually a good idea to
make C functions work this way too.

Because of this snapshotting behavior, a function containing only SELECT commands can safely be
marked STABLE, even if it selects from tables that might be undergoing modifications by concurrent
queries. PostgreSQL will execute all commands of a STABLE function using the snapshot established for
the calling query, and so it will see a fixed view of the database throughout that query.

The same snapshotting behavior is used for SELECT commands within IMMUTABLE functions. It is generally
unwise to select from database tables within an IMMUTABLE function at all, since the immutability will be
broken if the table contents ever change. However, PostgreSQL does not enforce that you do not do that.

A common error is to label a function IMMUTABLE when its results depend on a configuration parameter.
For example, a function that manipulates timestamps might well have results that depend on the Time-
Zone setting. For safety, such functions should be labeled STABLE instead.

Note
PostgreSQL requires that STABLE and IMMUTABLE functions contain no SQL commands other than
SELECT to prevent data modification. (This is not a completely bulletproof test, since such functions
could still call VOLATILE functions that modify the database. If you do that, you will find that the
STABLE or IMMUTABLE function does not notice the database changes applied by the called function,
since they are hidden from its snapshot.)

1113

Extending SQL

36.8. Procedural Language Functions
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). Procedural languages aren't built
into the PostgreSQL server; they are offered by loadable modules. See Chapter 40 and following chapters
for more information.

36.9. Internal Functions
Internal functions are functions written in C that have been statically linked into the PostgreSQL server.
The “body” of the function definition specifies the C-language name of the function, which need not be
the same as the name being declared for SQL use. (For reasons of backward compatibility, an empty
body is accepted as meaning that the C-language function name is the same as the SQL name.)

Normally, all internal functions present in the server are declared during the initialization of the database
cluster (see Section 18.2), but a user could use CREATE FUNCTION to create additional alias names for an
internal function. Internal functions are declared in CREATE FUNCTION with language name internal.
For instance, to create an alias for the sqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
 AS 'dsqrt'
 LANGUAGE internal
 STRICT;

(Most internal functions expect to be declared “strict”.)

Note
Not all “predefined” functions are “internal” in the above sense. Some predefined functions are
written in SQL.

36.10. C-Language Functions
User-defined functions can be written in C (or a language that can be made compatible with C, such as
C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and
are loaded by the server on demand. The dynamic loading feature is what distinguishes “C language”
functions from “internal” functions — the actual coding conventions are essentially the same for both.
(Hence, the standard internal function library is a rich source of coding examples for user-defined C
functions.)

Currently only one calling convention is used for C functions (“version 1”). Support for that calling
convention is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function, as illustrated
below.

36.10.1. Dynamic Loading
The first time a user-defined function in a particular loadable object file is called in a session, the dynamic
loader loads that object file into memory so that the function can be called. The CREATE FUNCTION for a
user-defined C function must therefore specify two pieces of information for the function: the name of
the loadable object file, and the C name (link symbol) of the specific function to call within that object
file. If the C name is not explicitly specified then it is assumed to be the same as the SQL function name.

The following algorithm is used to locate the shared object file based on the name given in the CREATE
FUNCTION command:
1. If the name is an absolute path, the given file is loaded.
2. If the name starts with the string $libdir, that part is replaced by the PostgreSQL package library

directory name, which is determined at build time.

1114

Extending SQL

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variable dynamic_library_path.

4. Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the dynamic
loader will try to take the name as given, which will most likely fail. (It is unreliable to depend on
the current working directory.)

If this sequence does not work, the platform-specific shared library file name extension (often .so) is
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

It is recommended to locate shared libraries either relative to $libdir or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual directory
that $libdir stands for can be found out with the command pg_config --pkglibdir.

The user ID the PostgreSQL server runs as must be able to traverse the path to the file you intend to
load. Making the file or a higher-level directory not readable and/or not executable by the postgres user
is a common mistake.

In any case, the file name that is given in the CREATE FUNCTION command is recorded literally in the
system catalogs, so if the file needs to be loaded again the same procedure is applied.

Note
PostgreSQL will not compile a C function automatically. The object file must be compiled before
it is referenced in a CREATE FUNCTION command. See Section 36.10.5 for additional information.

To ensure that a dynamically loaded object file is not loaded into an incompatible server, PostgreSQL
checks that the file contains a “magic block” with the appropriate contents. This allows the server to
detect obvious incompatibilities, such as code compiled for a different major version of PostgreSQL. To
include a magic block, write this in one (and only one) of the module source files, after having included
the header fmgr.h:

PG_MODULE_MAGIC;

or

PG_MODULE_MAGIC_EXT(parameters);

The PG_MODULE_MAGIC_EXT variant allows the specification of additional information about the module;
currently, a name and/or a version string can be added. (More fields might be allowed in future.) Write
something like this:

PG_MODULE_MAGIC_EXT(
 .name = "my_module_name",
 .version = "1.2.3"
);

Subsequently the name and version can be examined via the pg_get_loaded_modules() function. The
meaning of the version string is not restricted by PostgreSQL, but use of semantic versioning rules is
recommended.

After it is used for the first time, a dynamically loaded object file is retained in memory. Future calls in
the same session to the function(s) in that file will only incur the small overhead of a symbol table lookup.
If you need to force a reload of an object file, for example after recompiling it, begin a fresh session.

Optionally, a dynamically loaded file can contain an initialization function. If the file includes a function
named _PG_init, that function will be called immediately after loading the file. The function receives
no parameters and should return void. There is presently no way to unload a dynamically loaded file.

36.10.2. Base Types in C-Language Functions

1115

Extending SQL

To know how to write C-language functions, you need to know how PostgreSQL internally represents
base data types and how they can be passed to and from functions. Internally, PostgreSQL regards a
base type as a “blob of memory”. The user-defined functions that you define over a type in turn define
the way that PostgreSQL can operate on it. That is, PostgreSQL will only store and retrieve the data
from disk and use your user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2, or 4 bytes in length (also 8 bytes, if sizeof(Datum) is 8 on your ma-
chine). You should be careful to define your types such that they will be the same size (in bytes) on all
architectures. For example, the long type is dangerous because it is 4 bytes on some machines and 8
bytes on others, whereas int type is 4 bytes on most Unix machines. A reasonable implementation of
the int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

(The actual PostgreSQL C code calls this type int32, because it is a convention in C that intXX means
XX bits. Note therefore also that the C type int8 is 1 byte in size. The SQL type int8 is called int64
in C. See also Table 36.2.)

On the other hand, fixed-length types of any size can be passed by-reference. For example, here is a
sample implementation of a PostgreSQL type:

/* 16-byte structure, passed by reference */
typedef struct
{
 double x, y;
} Point;

Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To return
a value of such a type, allocate the right amount of memory with palloc, fill in the allocated memory,
and return a pointer to it. (Also, if you just want to return the same value as one of your input arguments
that's of the same data type, you can skip the extra palloc and just return the pointer to the input value.)

Finally, all variable-length types must also be passed by reference. All variable-length types must begin
with an opaque length field of exactly 4 bytes, which will be set by SET_VARSIZE; never set this field
directly! All data to be stored within that type must be located in the memory immediately following
that length field. The length field contains the total length of the structure, that is, it includes the size
of the length field itself.

Another important point is to avoid leaving any uninitialized bits within data type values; for example,
take care to zero out any alignment padding bytes that might be present in structs. Without this, logical-
ly-equivalent constants of your data type might be seen as unequal by the planner, leading to inefficient
(though not incorrect) plans.

Warning
Never modify the contents of a pass-by-reference input value. If you do so you are likely to corrupt
on-disk data, since the pointer you are given might point directly into a disk buffer. The sole ex-
ception to this rule is explained in Section 36.12.

As an example, we can define the type text as follows:

typedef struct {

1116

Extending SQL

 int32 length;
 char data[FLEXIBLE_ARRAY_MEMBER];
} text;

The [FLEXIBLE_ARRAY_MEMBER] notation means that the actual length of the data part is not specified
by this declaration.

When manipulating variable-length types, we must be careful to allocate the correct amount of memory
and set the length field correctly. For example, if we wanted to store 40 bytes in a text structure, we
might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...

VARHDRSZ is the same as sizeof(int32), but it's considered good style to use the macro VARHDRSZ to
refer to the size of the overhead for a variable-length type. Also, the length field must be set using the
SET_VARSIZE macro, not by simple assignment.

Table 36.2 shows the C types corresponding to many of the built-in SQL data types of PostgreSQL. The
“Defined In” column gives the header file that needs to be included to get the type definition. (The actual
definition might be in a different file that is included by the listed file. It is recommended that users
stick to the defined interface.) Note that you should always include postgres.h first in any source file of
server code, because it declares a number of things that you will need anyway, and because including
other headers first can cause portability issues.

Table 36.2. Equivalent C Types for Built-in SQL Types

SQL Type C Type Defined In
boolean bool postgres.h (maybe compiler built-in)
box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)
character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

float4 (real) float4 postgres.h

float8 (double preci-
sion)

float8 postgres.h

int2 (smallint) int16 postgres.h

int4 (integer) int32 postgres.h

int8 (bigint) int64 postgres.h

interval Interval* datatype/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

numeric Numeric utils/numeric.h

oid Oid postgres.h

1117

Extending SQL

SQL Type C Type Defined In
oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc RegProcedure postgres.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp datatype/timestamp.h

timestamp with time
zone

TimestampTz datatype/timestamp.h

varchar VarChar* postgres.h

xid TransactionId postgres.h

Now that we've gone over all of the possible structures for base types, we can show some examples of
real functions.

36.10.3. Version 1 Calling Conventions
The version-1 calling convention relies on macros to suppress most of the complexity of passing argu-
ments and results. The C declaration of a version-1 function is always:

Datum funcname(PG_FUNCTION_ARGS)

In addition, the macro call:

PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file. (Conventionally, it's written just before the function itself.) This
macro call is not needed for internal-language functions, since PostgreSQL assumes that all internal
functions use the version-1 convention. It is, however, required for dynamically-loaded functions.

In a version-1 function, each actual argument is fetched using a PG_GETARG_xxx() macro that corre-
sponds to the argument's data type. (In non-strict functions there needs to be a previous check about
argument null-ness using PG_ARGISNULL(); see below.) The result is returned using a PG_RETURN_xxx()
macro for the return type. PG_GETARG_xxx() takes as its argument the number of the function argument
to fetch, where the count starts at 0. PG_RETURN_xxx() takes as its argument the actual value to return.

To call another version-1 function, you can use DirectFunctionCalln(func, arg1, ..., argn). This
is particularly useful when you want to call functions defined in the standard internal library, by using
an interface similar to their SQL signature.

These convenience functions and similar ones can be found in fmgr.h. The DirectFunctionCalln family
expect a C function name as their first argument. There are also OidFunctionCalln which take the
OID of the target function, and some other variants. All of these expect the function's arguments to be
supplied as Datums, and likewise they return Datum. Note that neither arguments nor result are allowed
to be NULL when using these convenience functions.

For example, to call the starts_with(text, text) function from C, you can search through the catalog
and find out that its C implementation is the Datum text_starts_with(PG_FUNCTION_ARGS) function.
Typically you would use DirectFunctionCall2(text_starts_with, ...) to call such a function. How-
ever, starts_with(text, text) requires collation information, so it will fail with “could not determine
which collation to use for string comparison” if called that way. Instead you must use DirectFunction-

1118

Extending SQL

Call2Coll(text_starts_with, ...) and provide the desired collation, which typically is just passed
through from PG_GET_COLLATION(), as shown in the example below.

fmgr.h also supplies macros that facilitate conversions between C types and Datum. For example to
turn Datum into text*, you can use DatumGetTextPP(X). While some types have macros named like
TypeGetDatum(X) for the reverse conversion, text* does not; it's sufficient to use the generic macro
PointerGetDatum(X) for that. If your extension defines additional types, it is usually convenient to define
similar macros for your types too.

Here are some examples using the version-1 calling convention:

#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"
#include "varatt.h"

PG_MODULE_MAGIC;

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
 int32 arg = PG_GETARG_INT32(0);

 PG_RETURN_INT32(arg + 1);
}

/* by reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
 /* The macros for FLOAT8 hide its pass-by-reference nature. */
 float8 arg = PG_GETARG_FLOAT8(0);

 PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
 /* Here, the pass-by-reference nature of Point is not hidden. */
 Point *pointx = PG_GETARG_POINT_P(0);
 Point *pointy = PG_GETARG_POINT_P(1);
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;
 new_point->y = pointy->y;

 PG_RETURN_POINT_P(new_point);

1119

Extending SQL

}

/* by reference, variable length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
 text *t = PG_GETARG_TEXT_PP(0);

 /*
 * VARSIZE_ANY_EXHDR is the size of the struct in bytes, minus the
 * VARHDRSZ or VARHDRSZ_SHORT of its header. Construct the copy with a
 * full-length header.
 */
 text *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
 SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);

 /*
 * VARDATA is a pointer to the data region of the new struct. The source
 * could be a short datum, so retrieve its data through VARDATA_ANY.
 */
 memcpy(VARDATA(new_t), /* destination */
 VARDATA_ANY(t), /* source */
 VARSIZE_ANY_EXHDR(t)); /* how many bytes */
 PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
 text *arg1 = PG_GETARG_TEXT_PP(0);
 text *arg2 = PG_GETARG_TEXT_PP(1);
 int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
 int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
 int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 SET_VARSIZE(new_text, new_text_size);
 memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);
 memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2), arg2_size);
 PG_RETURN_TEXT_P(new_text);
}

/* A wrapper around starts_with(text, text) */

PG_FUNCTION_INFO_V1(t_starts_with);

Datum
t_starts_with(PG_FUNCTION_ARGS)
{
 text *t1 = PG_GETARG_TEXT_PP(0);
 text *t2 = PG_GETARG_TEXT_PP(1);
 Oid collid = PG_GET_COLLATION();
 bool result;

1120

Extending SQL

 result = DatumGetBool(DirectFunctionCall2Coll(text_starts_with,
 collid,
 PointerGetDatum(t1),
 PointerGetDatum(t2)));
 PG_RETURN_BOOL(result);
}

Supposing that the above code has been prepared in file funcs.c and compiled into a shared object, we
could define the functions to PostgreSQL with commands like this:

CREATE FUNCTION add_one(integer) RETURNS integer
 AS 'DIRECTORY/funcs', 'add_one'
 LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision
 AS 'DIRECTORY/funcs', 'add_one_float8'
 LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
 AS 'DIRECTORY/funcs', 'makepoint'
 LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
 AS 'DIRECTORY/funcs', 'copytext'
 LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
 AS 'DIRECTORY/funcs', 'concat_text'
 LANGUAGE C STRICT;

CREATE FUNCTION t_starts_with(text, text) RETURNS boolean
 AS 'DIRECTORY/funcs', 't_starts_with'
 LANGUAGE C STRICT;

Here, DIRECTORY stands for the directory of the shared library file (for instance the PostgreSQL tutorial
directory, which contains the code for the examples used in this section). (Better style would be to use
just 'funcs' in the AS clause, after having added DIRECTORY to the search path. In any case, we can omit
the system-specific extension for a shared library, commonly .so.)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a null result if any input value is null. By doing this, we avoid having to check for null inputs in
the function code. Without this, we'd have to check for null values explicitly, using PG_ARGISNULL().

The macro PG_ARGISNULL(n) allows a function to test whether each input is null. (Of course, doing this
is only necessary in functions not declared “strict”.) As with the PG_GETARG_xxx() macros, the input
arguments are counted beginning at zero. Note that one should refrain from executing PG_GETARG_xxx()
until one has verified that the argument isn't null. To return a null result, execute PG_RETURN_NULL();
this works in both strict and nonstrict functions.

At first glance, the version-1 coding conventions might appear to be just pointless obscurantism, com-
pared to using plain C calling conventions. They do however allow us to deal with NULLable arguments/re-
turn values, and “toasted” (compressed or out-of-line) values.

Other options provided by the version-1 interface are two variants of the PG_GETARG_xxx() macros. The
first of these, PG_GETARG_xxx_COPY(), guarantees to return a copy of the specified argument that is
safe for writing into. (The normal macros will sometimes return a pointer to a value that is physically
stored in a table, which must not be written to. Using the PG_GETARG_xxx_COPY() macros guarantees

1121

Extending SQL

a writable result.) The second variant consists of the PG_GETARG_xxx_SLICE() macros which take three
arguments. The first is the number of the function argument (as above). The second and third are the
offset and length of the segment to be returned. Offsets are counted from zero, and a negative length
requests that the remainder of the value be returned. These macros provide more efficient access to
parts of large values in the case where they have storage type “external”. (The storage type of a column
can be specified using ALTER TABLE tablename ALTER COLUMN colname SET STORAGE storagetype.
storagetype is one of plain, external, extended, or main.)

Finally, the version-1 function call conventions make it possible to return set results (Section 36.10.9)
and implement trigger functions (Chapter 37) and procedural-language call handlers (Chapter 57). For
more details see src/backend/utils/fmgr/README in the source distribution.

36.10.4. Writing Code
Before we turn to the more advanced topics, we should discuss some coding rules for PostgreSQL C-
language functions. While it might be possible to load functions written in languages other than C into
PostgreSQL, this is usually difficult (when it is possible at all) because other languages, such as C++,
FORTRAN, or Pascal often do not follow the same calling convention as C. That is, other languages do
not pass argument and return values between functions in the same way. For this reason, we will assume
that your C-language functions are actually written in C.

The basic rules for writing and building C functions are as follows:
• Use pg_config --includedir-serverto find out where the PostgreSQL server header files are in-

stalled on your system (or the system that your users will be running on).
• Compiling and linking your code so that it can be dynamically loaded into PostgreSQL always re-

quires special flags. See Section 36.10.5 for a detailed explanation of how to do it for your particu-
lar operating system.

• Remember to define a “magic block” for your shared library, as described in Section 36.10.1.
• When allocating memory, use the PostgreSQL functions pallocand pfreeinstead of the correspond-

ing C library functions malloc and free. The memory allocated by palloc will be freed automati-
cally at the end of each transaction, preventing memory leaks.

• Always zero the bytes of your structures using memset (or allocate them with palloc0 in the first
place). Even if you assign to each field of your structure, there might be alignment padding (holes
in the structure) that contain garbage values. Without this, it's difficult to support hash indexes or
hash joins, as you must pick out only the significant bits of your data structure to compute a hash.
The planner also sometimes relies on comparing constants via bitwise equality, so you can get un-
desirable planning results if logically-equivalent values aren't bitwise equal.

• Most of the internal PostgreSQL types are declared in postgres.h, while the function manager in-
terfaces (PG_FUNCTION_ARGS, etc.) are in fmgr.h, so you will need to include at least these two files.
For portability reasons it's best to include postgres.h first, before any other system or user header
files. Including postgres.h will also include elog.h and palloc.h for you.

• Symbol names defined within object files must not conflict with each other or with symbols defined
in the PostgreSQL server executable. You will have to rename your functions or variables if you get
error messages to this effect.

36.10.5. Compiling and Linking Dynamically-Loaded Functions
Before you are able to use your PostgreSQL extension functions written in C, they must be compiled and
linked in a special way to produce a file that can be dynamically loaded by the server. To be precise, a
shared library needs to be created.

For information beyond what is contained in this section you should read the documentation of your
operating system, in particular the manual pages for the C compiler, cc, and the link editor, ld. In
addition, the PostgreSQL source code contains several working examples in the contrib directory. If
you rely on these examples you will make your modules dependent on the availability of the PostgreSQL
source code, however.

1122

Extending SQL

Creating shared libraries is generally analogous to linking executables: first the source files are compiled
into object files, then the object files are linked together. The object files need to be created as posi-
tion-independent code (PIC), which conceptually means that they can be placed at an arbitrary location
in memory when they are loaded by the executable. (Object files intended for executables are usually
not compiled that way.) The command to link a shared library contains special flags to distinguish it from
linking an executable (at least in theory — on some systems the practice is much uglier).

In the following examples we assume that your source code is in a file foo.c and we will create a shared
library foo.so. The intermediate object file will be called foo.o unless otherwise noted. A shared library
can contain more than one object file, but we only use one here.

FreeBSD
The compiler flag to create PIC is -fPIC. To create shared libraries the compiler flag is -shared.
cc -fPIC -c foo.c
cc -shared -o foo.so foo.o

This is applicable as of version 13.0 of FreeBSD, older versions used the gcc compiler.

Linux
The compiler flag to create PIC is -fPIC. The compiler flag to create a shared library is -shared. A
complete example looks like this:
cc -fPIC -c foo.c
cc -shared -o foo.so foo.o

macOS
Here is an example. It assumes the developer tools are installed.
cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

NetBSD
The compiler flag to create PIC is -fPIC. For ELF systems, the compiler with the flag -shared is used
to link shared libraries. On the older non-ELF systems, ld -Bshareable is used.
gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

OpenBSD
The compiler flag to create PIC is -fPIC. ld -Bshareable is used to link shared libraries.
gcc -fPIC -c foo.c
ld -Bshareable -o foo.so foo.o

Solaris
The compiler flag to create PIC is -KPIC with the Sun compiler and -fPIC with GCC. To link shared
libraries, the compiler option is -G with either compiler or alternatively -shared with GCC.
cc -KPIC -c foo.c
cc -G -o foo.so foo.o

or
gcc -fPIC -c foo.c
gcc -G -o foo.so foo.o

Tip
If this is too complicated for you, you should consider using GNU Libtool, which hides the platform
differences behind a uniform interface.

1123

https://www.gnu.org/software/libtool/

Extending SQL

The resulting shared library file can then be loaded into PostgreSQL. When specifying the file name to
the CREATE FUNCTION command, one must give it the name of the shared library file, not the intermediate
object file. Note that the system's standard shared-library extension (usually .so or .sl) can be omitted
from the CREATE FUNCTION command, and normally should be omitted for best portability.

Refer back to Section 36.10.1 about where the server expects to find the shared library files.

36.10.6. Server API and ABI Stability Guidance
This section contains guidance to authors of extensions and other server plugins about API and ABI
stability in the PostgreSQL server.

36.10.6.1. General
The PostgreSQL server contains several well-demarcated APIs for server plugins, such as the function
manager (fmgr, described in this chapter), SPI (Chapter 45), and various hooks specifically designed for
extensions. These interfaces are carefully managed for long-term stability and compatibility. However,
the entire set of global functions and variables in the server effectively constitutes the publicly usable
API, and most of it was not designed with extensibility and long-term stability in mind.

Therefore, while taking advantage of these interfaces is valid, the further one strays from the well-
trodden path, the likelier it will be that one might encounter API or ABI compatibility issues at some
point. Extension authors are encouraged to provide feedback about their requirements, so that over time,
as new use patterns arise, certain interfaces can be considered more stabilized or new, better-designed
interfaces can be added.

36.10.6.2. API Compatibility
The API, or application programming interface, is the interface used at compile time.

36.10.6.2.1. Major Versions
There is no promise of API compatibility between PostgreSQL major versions. Extension code therefore
might require source code changes to work with multiple major versions. These can usually be managed
with preprocessor conditions such as #if PG_VERSION_NUM >= 160000. Sophisticated extensions that
use interfaces beyond the well-demarcated ones usually require a few such changes for each major
server version.

36.10.6.2.2. Minor Versions
PostgreSQL makes an effort to avoid server API breaks in minor releases. In general, extension code
that compiles and works with a minor release should also compile and work with any other minor release
of the same major version, past or future.

When a change is required, it will be carefully managed, taking the requirements of extensions into
account. Such changes will be communicated in the release notes (Appendix E).

36.10.6.3. ABI Compatibility
The ABI, or application binary interface, is the interface used at run time.

36.10.6.3.1. Major Versions
Servers of different major versions have intentionally incompatible ABIs. Extensions that use server
APIs must therefore be re-compiled for each major release. The inclusion of PG_MODULE_MAGIC (see Sec-
tion 36.10.1) ensures that code compiled for one major version will be rejected by other major versions.

36.10.6.3.2. Minor Versions
PostgreSQL makes an effort to avoid server ABI breaks in minor releases. In general, an extension
compiled against any minor release should work with any other minor release of the same major version,
past or future.

When a change is required, PostgreSQL will choose the least invasive change possible, for example by
squeezing a new field into padding space or appending it to the end of a struct. These sorts of changes
should not impact extensions unless they use very unusual code patterns.

1124

Extending SQL

In rare cases, however, even such non-invasive changes may be impractical or impossible. In such an
event, the change will be carefully managed, taking the requirements of extensions into account. Such
changes will also be documented in the release notes (Appendix E).

Note, however, that many parts of the server are not designed or maintained as publicly-consumable
APIs (and that, in most cases, the actual boundary is also not well-defined). If urgent needs arise, changes
in those parts will naturally be made with less consideration for extension code than changes in well-
defined and widely used interfaces.

Also, in the absence of automated detection of such changes, this is not a guarantee, but historically
such breaking changes have been extremely rare.

36.10.7. Composite-Type Arguments
Composite types do not have a fixed layout like C structures. Instances of a composite type can contain
null fields. In addition, composite types that are part of an inheritance hierarchy can have different
fields than other members of the same inheritance hierarchy. Therefore, PostgreSQL provides a function
interface for accessing fields of composite types from C.

Suppose we want to write a function to answer the query:
SELECT name, c_overpaid(emp, 1500) AS overpaid
 FROM emp
 WHERE name = 'Bill' OR name = 'Sam';

Using the version-1 calling conventions, we can define c_overpaid as:
#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
 HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
 int32 limit = PG_GETARG_INT32(1);
 bool isnull;
 Datum salary;

 salary = GetAttributeByName(t, "salary", &isnull);
 if (isnull)
 PG_RETURN_BOOL(false);
 /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */

 PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}

GetAttributeByName is the PostgreSQL system function that returns attributes out of the specified row.
It has three arguments: the argument of type HeapTupleHeader passed into the function, the name of
the desired attribute, and a return parameter that tells whether the attribute is null. GetAttributeBy-
Name returns a Datum value that you can convert to the proper data type by using the appropriate Da-
tumGetXXX() function. Note that the return value is meaningless if the null flag is set; always check the
null flag before trying to do anything with the result.

There is also GetAttributeByNum, which selects the target attribute by column number instead of name.

The following command declares the function c_overpaid in SQL:

1125

Extending SQL

CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
 AS 'DIRECTORY/funcs', 'c_overpaid'
 LANGUAGE C STRICT;

Notice we have used STRICT so that we did not have to check whether the input arguments were NULL.

36.10.8. Returning Rows (Composite Types)
To return a row or composite-type value from a C-language function, you can use a special API that
provides macros and functions to hide most of the complexity of building composite data types. To use
this API, the source file must include:
#include "funcapi.h"

There are two ways you can build a composite data value (henceforth a “tuple”): you can build it from an
array of Datum values, or from an array of C strings that can be passed to the input conversion functions
of the tuple's column data types. In either case, you first need to obtain or construct a TupleDesc de-
scriptor for the tuple structure. When working with Datums, you pass the TupleDesc to BlessTupleDesc,
and then call heap_form_tuple for each row. When working with C strings, you pass the TupleDesc
to TupleDescGetAttInMetadata, and then call BuildTupleFromCStrings for each row. In the case of a
function returning a set of tuples, the setup steps can all be done once during the first call of the function.

Several helper functions are available for setting up the needed TupleDesc. The recommended way to
do this in most functions returning composite values is to call:
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
 Oid *resultTypeId,
 TupleDesc *resultTupleDesc)

passing the same fcinfo struct passed to the calling function itself. (This of course requires that you
use the version-1 calling conventions.) resultTypeId can be specified as NULL or as the address of a
local variable to receive the function's result type OID. resultTupleDesc should be the address of a local
TupleDesc variable. Check that the result is TYPEFUNC_COMPOSITE; if so, resultTupleDesc has been filled
with the needed TupleDesc. (If it is not, you can report an error along the lines of “function returning
record called in context that cannot accept type record”.)

Tip
get_call_result_type can resolve the actual type of a polymorphic function result; so it is useful
in functions that return scalar polymorphic results, not only functions that return composites. The
resultTypeId output is primarily useful for functions returning polymorphic scalars.

Note
get_call_result_type has a sibling get_expr_result_type, which can be used to resolve the
expected output type for a function call represented by an expression tree. This can be used when
trying to determine the result type from outside the function itself. There is also get_func_re-
sult_type, which can be used when only the function's OID is available. However these functions
are not able to deal with functions declared to return record, and get_func_result_type cannot
resolve polymorphic types, so you should preferentially use get_call_result_type.

Older, now-deprecated functions for obtaining TupleDescs are:
TupleDesc RelationNameGetTupleDesc(const char *relname)

to get a TupleDesc for the row type of a named relation, and:
TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

to get a TupleDesc based on a type OID. This can be used to get a TupleDesc for a base or composite type.
It will not work for a function that returns record, however, and it cannot resolve polymorphic types.

1126

Extending SQL

Once you have a TupleDesc, call:

TupleDesc BlessTupleDesc(TupleDesc tupdesc)

if you plan to work with Datums, or:

AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)

if you plan to work with C strings. If you are writing a function returning set, you can save the results of
these functions in the FuncCallContext structure — use the tuple_desc or attinmeta field respectively.

When working with Datums, use:

HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)

to build a HeapTuple given user data in Datum form.

When working with C strings, use:

HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)

to build a HeapTuple given user data in C string form. values is an array of C strings, one for each
attribute of the return row. Each C string should be in the form expected by the input function of the
attribute data type. In order to return a null value for one of the attributes, the corresponding pointer in
the values array should be set to NULL. This function will need to be called again for each row you return.

Once you have built a tuple to return from your function, it must be converted into a Datum. Use:

HeapTupleGetDatum(HeapTuple tuple)

to convert a HeapTuple into a valid Datum. This Datum can be returned directly if you intend to return
just a single row, or it can be used as the current return value in a set-returning function.

An example appears in the next section.

36.10.9. Returning Sets
C-language functions have two options for returning sets (multiple rows). In one method, called Value-
PerCall mode, a set-returning function is called repeatedly (passing the same arguments each time) and
it returns one new row on each call, until it has no more rows to return and signals that by returning
NULL. The set-returning function (SRF) must therefore save enough state across calls to remember
what it was doing and return the correct next item on each call. In the other method, called Materialize
mode, an SRF fills and returns a tuplestore object containing its entire result; then only one call occurs
for the whole result, and no inter-call state is needed.

When using ValuePerCall mode, it is important to remember that the query is not guaranteed to be
run to completion; that is, due to options such as LIMIT, the executor might stop making calls to the
set-returning function before all rows have been fetched. This means it is not safe to perform cleanup
activities in the last call, because that might not ever happen. It's recommended to use Materialize mode
for functions that need access to external resources, such as file descriptors.

The remainder of this section documents a set of helper macros that are commonly used (though not
required to be used) for SRFs using ValuePerCall mode. Additional details about Materialize mode can
be found in src/backend/utils/fmgr/README. Also, the contrib modules in the PostgreSQL source
distribution contain many examples of SRFs using both ValuePerCall and Materialize mode.

To use the ValuePerCall support macros described here, include funcapi.h. These macros work with a
structure FuncCallContext that contains the state that needs to be saved across calls. Within the calling
SRF, fcinfo->flinfo->fn_extra is used to hold a pointer to FuncCallContext across calls. The macros
automatically fill that field on first use, and expect to find the same pointer there on subsequent uses.

typedef struct FuncCallContext
{
 /*
 * Number of times we've been called before

1127

Extending SQL

 *
 * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
 * incremented for you every time SRF_RETURN_NEXT() is called.
 */
 uint64 call_cntr;

 /*
 * OPTIONAL maximum number of calls
 *
 * max_calls is here for convenience only and setting it is optional.
 * If not set, you must provide alternative means to know when the
 * function is done.
 */
 uint64 max_calls;

 /*
 * OPTIONAL pointer to miscellaneous user-provided context information
 *
 * user_fctx is for use as a pointer to your own data to retain
 * arbitrary context information between calls of your function.
 */
 void *user_fctx;

 /*
 * OPTIONAL pointer to struct containing attribute type input metadata
 *
 * attinmeta is for use when returning tuples (i.e., composite data types)
 * and is not used when returning base data types. It is only needed
 * if you intend to use BuildTupleFromCStrings() to create the return
 * tuple.
 */
 AttInMetadata *attinmeta;

 /*
 * memory context used for structures that must live for multiple calls
 *
 * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
 * by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
 * context for any memory that is to be reused across multiple calls
 * of the SRF.
 */
 MemoryContext multi_call_memory_ctx;

 /*
 * OPTIONAL pointer to struct containing tuple description
 *
 * tuple_desc is for use when returning tuples (i.e., composite data types)
 * and is only needed if you are going to build the tuples with
 * heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that
 * the TupleDesc pointer stored here should usually have been run through
 * BlessTupleDesc() first.
 */
 TupleDesc tuple_desc;

} FuncCallContext;

The macros to be used by an SRF using this infrastructure are:
SRF_IS_FIRSTCALL()

1128

Extending SQL

Use this to determine if your function is being called for the first or a subsequent time. On the first
call (only), call:
SRF_FIRSTCALL_INIT()

to initialize the FuncCallContext. On every function call, including the first, call:
SRF_PERCALL_SETUP()

to set up for using the FuncCallContext.

If your function has data to return in the current call, use:
SRF_RETURN_NEXT(funcctx, result)

to return it to the caller. (result must be of type Datum, either a single value or a tuple prepared as
described above.) Finally, when your function is finished returning data, use:
SRF_RETURN_DONE(funcctx)

to clean up and end the SRF.

The memory context that is current when the SRF is called is a transient context that will be cleared
between calls. This means that you do not need to call pfree on everything you allocated using pal-
loc; it will go away anyway. However, if you want to allocate any data structures to live across calls,
you need to put them somewhere else. The memory context referenced by multi_call_memory_ctx is
a suitable location for any data that needs to survive until the SRF is finished running. In most cases,
this means that you should switch into multi_call_memory_ctx while doing the first-call setup. Use
funcctx->user_fctx to hold a pointer to any such cross-call data structures. (Data you allocate in mul-
ti_call_memory_ctx will go away automatically when the query ends, so it is not necessary to free that
data manually, either.)

Warning
While the actual arguments to the function remain unchanged between calls, if you detoast the
argument values (which is normally done transparently by the PG_GETARG_xxx macro) in the tran-
sient context then the detoasted copies will be freed on each cycle. Accordingly, if you keep ref-
erences to such values in your user_fctx, you must either copy them into the multi_call_memo-
ry_ctx after detoasting, or ensure that you detoast the values only in that context.

A complete pseudo-code example looks like the following:
Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 Datum result;
 further declarations as needed

 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 funcctx = SRF_FIRSTCALL_INIT();
 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
 /* One-time setup code appears here: */
 user code
 if returning composite
 build TupleDesc, and perhaps AttInMetadata
 endif returning composite
 user code
 MemoryContextSwitchTo(oldcontext);

1129

Extending SQL

 }

 /* Each-time setup code appears here: */
 user code
 funcctx = SRF_PERCALL_SETUP();
 user code

 /* this is just one way we might test whether we are done: */
 if (funcctx->call_cntr < funcctx->max_calls)
 {
 /* Here we want to return another item: */
 user code
 obtain result Datum
 SRF_RETURN_NEXT(funcctx, result);
 }
 else
 {
 /* Here we are done returning items, so just report that fact. */
 /* (Resist the temptation to put cleanup code here.) */
 SRF_RETURN_DONE(funcctx);
 }
}

A complete example of a simple SRF returning a composite type looks like:
PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 int call_cntr;
 int max_calls;
 TupleDesc tupdesc;
 AttInMetadata *attinmeta;

 /* stuff done only on the first call of the function */
 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 /* create a function context for cross-call persistence */
 funcctx = SRF_FIRSTCALL_INIT();

 /* switch to memory context appropriate for multiple function calls */
 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

 /* total number of tuples to be returned */
 funcctx->max_calls = PG_GETARG_INT32(0);

 /* Build a tuple descriptor for our result type */
 if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
 ereport(ERROR,
 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
 errmsg("function returning record called in context "
 "that cannot accept type record")));

 /*
 * generate attribute metadata needed later to produce tuples from raw

1130

Extending SQL

 * C strings
 */
 attinmeta = TupleDescGetAttInMetadata(tupdesc);
 funcctx->attinmeta = attinmeta;

 MemoryContextSwitchTo(oldcontext);
 }

 /* stuff done on every call of the function */
 funcctx = SRF_PERCALL_SETUP();

 call_cntr = funcctx->call_cntr;
 max_calls = funcctx->max_calls;
 attinmeta = funcctx->attinmeta;

 if (call_cntr < max_calls) /* do when there is more left to send */
 {
 char **values;
 HeapTuple tuple;
 Datum result;

 /*
 * Prepare a values array for building the returned tuple.
 * This should be an array of C strings which will
 * be processed later by the type input functions.
 */
 values = (char **) palloc(3 * sizeof(char *));
 values[0] = (char *) palloc(16 * sizeof(char));
 values[1] = (char *) palloc(16 * sizeof(char));
 values[2] = (char *) palloc(16 * sizeof(char));

 snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
 snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
 snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

 /* build a tuple */
 tuple = BuildTupleFromCStrings(attinmeta, values);

 /* make the tuple into a datum */
 result = HeapTupleGetDatum(tuple);

 /* clean up (this is not really necessary) */
 pfree(values[0]);
 pfree(values[1]);
 pfree(values[2]);
 pfree(values);

 SRF_RETURN_NEXT(funcctx, result);
 }
 else /* do when there is no more left */
 {
 SRF_RETURN_DONE(funcctx);
 }
}

One way to declare this function in SQL is:

CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

1131

Extending SQL

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
 RETURNS SETOF __retcomposite
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

A different way is to use OUT parameters:

CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
 OUT f1 integer, OUT f2 integer, OUT f3 integer)
 RETURNS SETOF record
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

Notice that in this method the output type of the function is formally an anonymous record type.

36.10.10. Polymorphic Arguments and Return Types
C-language functions can be declared to accept and return the polymorphic types described in Sec-
tion 36.2.5. When a function's arguments or return types are defined as polymorphic types, the function
author cannot know in advance what data type it will be called with, or need to return. There are two
routines provided in fmgr.h to allow a version-1 C function to discover the actual data types of its ar-
guments and the type it is expected to return. The routines are called get_fn_expr_rettype(FmgrIn-
fo *flinfo) and get_fn_expr_argtype(FmgrInfo *flinfo, int argnum). They return the result or
argument type OID, or InvalidOid if the information is not available. The structure flinfo is normally
accessed as fcinfo->flinfo. The parameter argnum is zero based. get_call_result_type can also be
used as an alternative to get_fn_expr_rettype. There is also get_fn_expr_variadic, which can be
used to find out whether variadic arguments have been merged into an array. This is primarily useful for
VARIADIC "any" functions, since such merging will always have occurred for variadic functions taking
ordinary array types.

For example, suppose we want to write a function to accept a single element of any type, and return a
one-dimensional array of that type:

PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
 ArrayType *result;
 Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
 Datum element;
 bool isnull;
 int16 typlen;
 bool typbyval;
 char typalign;
 int ndims;
 int dims[MAXDIM];
 int lbs[MAXDIM];

 if (!OidIsValid(element_type))
 elog(ERROR, "could not determine data type of input");

 /* get the provided element, being careful in case it's NULL */
 isnull = PG_ARGISNULL(0);
 if (isnull)
 element = (Datum) 0;
 else
 element = PG_GETARG_DATUM(0);

 /* we have one dimension */

1132

Extending SQL

 ndims = 1;
 /* and one element */
 dims[0] = 1;
 /* and lower bound is 1 */
 lbs[0] = 1;

 /* get required info about the element type */
 get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);

 /* now build the array */
 result = construct_md_array(&element, &isnull, ndims, dims, lbs,
 element_type, typlen, typbyval, typalign);

 PG_RETURN_ARRAYTYPE_P(result);
}

The following command declares the function make_array in SQL:
CREATE FUNCTION make_array(anyelement) RETURNS anyarray
 AS 'DIRECTORY/funcs', 'make_array'
 LANGUAGE C IMMUTABLE;

There is a variant of polymorphism that is only available to C-language functions: they can be declared to
take parameters of type "any". (Note that this type name must be double-quoted, since it's also an SQL
reserved word.) This works like anyelement except that it does not constrain different "any" arguments
to be the same type, nor do they help determine the function's result type. A C-language function can also
declare its final parameter to be VARIADIC "any". This will match one or more actual arguments of any
type (not necessarily the same type). These arguments will not be gathered into an array as happens with
normal variadic functions; they will just be passed to the function separately. The PG_NARGS() macro
and the methods described above must be used to determine the number of actual arguments and their
types when using this feature. Also, users of such a function might wish to use the VARIADIC keyword
in their function call, with the expectation that the function would treat the array elements as separate
arguments. The function itself must implement that behavior if wanted, after using get_fn_expr_vari-
adic to detect that the actual argument was marked with VARIADIC.

36.10.11. Shared Memory
36.10.11.1. Requesting Shared Memory at Startup

Add-ins can reserve shared memory on server startup. To do so, the add-in's shared library must be pre-
loaded by specifying it in shared_preload_libraries. The shared library should also register a shmem_re-
quest_hook in its _PG_init function. This shmem_request_hook can reserve shared memory by calling:
void RequestAddinShmemSpace(Size size)

Each backend should obtain a pointer to the reserved shared memory by calling:
void *ShmemInitStruct(const char *name, Size size, bool *foundPtr)

If this function sets foundPtr to false, the caller should proceed to initialize the contents of the reserved
shared memory. If foundPtr is set to true, the shared memory was already initialized by another back-
end, and the caller need not initialize further.

To avoid race conditions, each backend should use the LWLock AddinShmemInitLock when initializing
its allocation of shared memory, as shown here:
static mystruct *ptr = NULL;
bool found;

LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
ptr = ShmemInitStruct("my struct name", size, &found);
if (!found)

1133

Extending SQL

{
 ... initialize contents of shared memory ...
 ptr->locks = GetNamedLWLockTranche("my tranche name");
}
LWLockRelease(AddinShmemInitLock);

shmem_startup_hook provides a convenient place for the initialization code, but it is not strictly required
that all such code be placed in this hook. On Windows (and anywhere else where EXEC_BACKEND is de-
fined), each backend executes the registered shmem_startup_hook shortly after it attaches to shared
memory, so add-ins should still acquire AddinShmemInitLock within this hook, as shown in the example
above. On other platforms, only the postmaster process executes the shmem_startup_hook, and each
backend automatically inherits the pointers to shared memory.

An example of a shmem_request_hook and shmem_startup_hook can be found in contrib/pg_stat_s-
tatements/pg_stat_statements.c in the PostgreSQL source tree.

36.10.11.2. Requesting Shared Memory After Startup
There is another, more flexible method of reserving shared memory that can be done after server startup
and outside a shmem_request_hook. To do so, each backend that will use the shared memory should
obtain a pointer to it by calling:
void *GetNamedDSMSegment(const char *name, size_t size,
 void (*init_callback) (void *ptr),
 bool *found)

If a dynamic shared memory segment with the given name does not yet exist, this function will allocate
it and initialize it with the provided init_callback callback function. If the segment has already been
allocated and initialized by another backend, this function simply attaches the existing dynamic shared
memory segment to the current backend.

Unlike shared memory reserved at server startup, there is no need to acquire AddinShmemInitLock or
otherwise take action to avoid race conditions when reserving shared memory with GetNamedDSMSeg-
ment. This function ensures that only one backend allocates and initializes the segment and that all other
backends receive a pointer to the fully allocated and initialized segment.

A complete usage example of GetNamedDSMSegment can be found in src/test/modules/test_dsm_reg-
istry/test_dsm_registry.c in the PostgreSQL source tree.

36.10.12. LWLocks
36.10.12.1. Requesting LWLocks at Startup

Add-ins can reserve LWLocks on server startup. As with shared memory reserved at server startup, the
add-in's shared library must be preloaded by specifying it in shared_preload_libraries, and the shared
library should register a shmem_request_hook in its _PG_init function. This shmem_request_hook can
reserve LWLocks by calling:
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)

This ensures that an array of num_lwlocks LWLocks is available under the name tranche_name. A pointer
to this array can be obtained by calling:
LWLockPadded *GetNamedLWLockTranche(const char *tranche_name)

36.10.12.2. Requesting LWLocks After Startup
There is another, more flexible method of obtaining LWLocks that can be done after server startup and
outside a shmem_request_hook. To do so, first allocate a tranche_id by calling:
int LWLockNewTrancheId(void)

Next, initialize each LWLock, passing the new tranche_id as an argument:
void LWLockInitialize(LWLock *lock, int tranche_id)

1134

Extending SQL

Similar to shared memory, each backend should ensure that only one process allocates a new tranche_id
and initializes each new LWLock. One way to do this is to only call these functions in your shared memory
initialization code with the AddinShmemInitLock held exclusively. If using GetNamedDSMSegment, calling
these functions in the init_callback callback function is sufficient to avoid race conditions.

Finally, each backend using the tranche_id should associate it with a tranche_name by calling:

void LWLockRegisterTranche(int tranche_id, const char *tranche_name)

A complete usage example of LWLockNewTrancheId, LWLockInitialize, and LWLockRegisterTranche
can be found in contrib/pg_prewarm/autoprewarm.c in the PostgreSQL source tree.

36.10.13. Custom Wait Events
Add-ins can define custom wait events under the wait event type Extension by calling:

uint32 WaitEventExtensionNew(const char *wait_event_name)

The wait event is associated to a user-facing custom string. An example can be found in src/test/
modules/worker_spi in the PostgreSQL source tree.

Custom wait events can be viewed in pg_stat_activity:

=# SELECT wait_event_type, wait_event FROM pg_stat_activity
 WHERE backend_type ~ 'worker_spi';
 wait_event_type | wait_event
-----------------+---------------
 Extension | WorkerSpiMain
(1 row)

36.10.14. Injection Points
An injection point with a given name is declared using macro:

INJECTION_POINT(name, arg);

There are a few injection points already declared at strategic points within the server code. After adding
a new injection point the code needs to be compiled in order for that injection point to be available in
the binary. Add-ins written in C-language can declare injection points in their own code using the same
macro. The injection point names should use lower-case characters, with terms separated by dashes.
arg is an optional argument value given to the callback at run-time.

Executing an injection point can require allocating a small amount of memory, which can fail. If you
need to have an injection point in a critical section where dynamic allocations are not allowed, you can
use a two-step approach with the following macros:

INJECTION_POINT_LOAD(name);
INJECTION_POINT_CACHED(name, arg);

Before entering the critical section, call INJECTION_POINT_LOAD. It checks the shared memory state,
and loads the callback into backend-private memory if it is active. Inside the critical section, use INJEC-
TION_POINT_CACHED to execute the callback.

Add-ins can attach callbacks to an already-declared injection point by calling:

extern void InjectionPointAttach(const char *name,
 const char *library,
 const char *function,
 const void *private_data,
 int private_data_size);

name is the name of the injection point, which when reached during execution will execute the function
loaded from library. private_data is a private area of data of size private_data_size given as argu-
ment to the callback when executed.

1135

Extending SQL

Here is an example of callback for InjectionPointCallback:
static void
custom_injection_callback(const char *name,
 const void *private_data,
 void *arg)
{
 uint32 wait_event_info = WaitEventInjectionPointNew(name);

 pgstat_report_wait_start(wait_event_info);
 elog(NOTICE, "%s: executed custom callback", name);
 pgstat_report_wait_end();
}

This callback prints a message to server error log with severity NOTICE, but callbacks may implement
more complex logic.

An alternative way to define the action to take when an injection point is reached is to add the testing
code alongside the normal source code. This can be useful if the action e.g. depends on local variables
that are not accessible to loaded modules. The IS_INJECTION_POINT_ATTACHED macro can then be used
to check if an injection point is attached, for example:
#ifdef USE_INJECTION_POINTS
if (IS_INJECTION_POINT_ATTACHED("before-foobar"))
{
 /* change a local variable if injection point is attached */
 local_var = 123;

 /* also execute the callback */
 INJECTION_POINT_CACHED("before-foobar", NULL);
}
#endif

Note that the callback attached to the injection point will not be executed by the IS_INJECTION_POIN-
T_ATTACHED macro. If you want to execute the callback, you must also call INJECTION_POINT_CACHED
like in the above example.

Optionally, it is possible to detach an injection point by calling:
extern bool InjectionPointDetach(const char *name);

On success, true is returned, false otherwise.

A callback attached to an injection point is available across all the backends including the backends
started after InjectionPointAttach is called. It remains attached while the server is running or until
the injection point is detached using InjectionPointDetach.

An example can be found in src/test/modules/injection_points in the PostgreSQL source tree.

Enabling injections points requires --enable-injection-points with configure or -Dinjec-
tion_points=true with Meson.

36.10.15. Custom Cumulative Statistics
It is possible for add-ins written in C-language to use custom types of cumulative statistics registered
in the Cumulative Statistics System.

First, define a PgStat_KindInfo that includes all the information related to the custom type registered.
For example:
static const PgStat_KindInfo custom_stats = {
 .name = "custom_stats",
 .fixed_amount = false,

1136

Extending SQL

 .shared_size = sizeof(PgStatShared_Custom),
 .shared_data_off = offsetof(PgStatShared_Custom, stats),
 .shared_data_len = sizeof(((PgStatShared_Custom *) 0)->stats),
 .pending_size = sizeof(PgStat_StatCustomEntry),
}

Then, each backend that needs to use this custom type needs to register it with pgstat_register_kind
and a unique ID used to store the entries related to this type of statistics:

extern PgStat_Kind pgstat_register_kind(PgStat_Kind kind,
 const PgStat_KindInfo *kind_info);

While developing a new extension, use PGSTAT_KIND_EXPERIMENTAL for kind. When you are ready to
release the extension to users, reserve a kind ID at the Custom Cumulative Statistics page.

The details of the API for PgStat_KindInfo can be found in src/include/utils/pgstat_internal.h.

The type of statistics registered is associated with a name and a unique ID shared across the server
in shared memory. Each backend using a custom type of statistics maintains a local cache storing the
information of each custom PgStat_KindInfo.

Place the extension module implementing the custom cumulative statistics type in shared_preload_li-
braries so that it will be loaded early during PostgreSQL startup.

An example describing how to register and use custom statistics can be found in src/test/modules/in-
jection_points.

36.10.16. Using C++ for Extensibility
Although the PostgreSQL backend is written in C, it is possible to write extensions in C++ if these
guidelines are followed:

• All functions accessed by the backend must present a C interface to the backend; these C functions
can then call C++ functions. For example, extern C linkage is required for backend-accessed func-
tions. This is also necessary for any functions that are passed as pointers between the backend and
C++ code.

• Free memory using the appropriate deallocation method. For example, most backend memory is al-
located using palloc(), so use pfree() to free it. Using C++ delete in such cases will fail.

• Prevent exceptions from propagating into the C code (use a catch-all block at the top level of all ex-
tern C functions). This is necessary even if the C++ code does not explicitly throw any exceptions,
because events like out-of-memory can still throw exceptions. Any exceptions must be caught and
appropriate errors passed back to the C interface. If possible, compile C++ with -fno-exceptions
to eliminate exceptions entirely; in such cases, you must check for failures in your C++ code, e.g.,
check for NULL returned by new().

• If calling backend functions from C++ code, be sure that the C++ call stack contains only plain old
data structures (POD). This is necessary because backend errors generate a distant longjmp() that
does not properly unroll a C++ call stack with non-POD objects.

In summary, it is best to place C++ code behind a wall of extern C functions that interface to the
backend, and avoid exception, memory, and call stack leakage.

36.11. Function Optimization Information
By default, a function is just a “black box” that the database system knows very little about the behavior
of. However, that means that queries using the function may be executed much less efficiently than they
could be. It is possible to supply additional knowledge that helps the planner optimize function calls.

Some basic facts can be supplied by declarative annotations provided in the CREATE FUNCTION com-
mand. Most important of these is the function's volatility category (IMMUTABLE, STABLE, or VOLATILE); one

1137

https://wiki.postgresql.org/wiki/CustomCumulativeStats

Extending SQL

should always be careful to specify this correctly when defining a function. The parallel safety property
(PARALLEL UNSAFE, PARALLEL RESTRICTED, or PARALLEL SAFE) must also be specified if you hope to use
the function in parallelized queries. It can also be useful to specify the function's estimated execution
cost, and/or the number of rows a set-returning function is estimated to return. However, the declarative
way of specifying those two facts only allows specifying a constant value, which is often inadequate.

It is also possible to attach a planner support function to an SQL-callable function (called its target
function), and thereby provide knowledge about the target function that is too complex to be represented
declaratively. Planner support functions have to be written in C (although their target functions might
not be), so this is an advanced feature that relatively few people will use.

A planner support function must have the SQL signature

supportfn(internal) returns internal

It is attached to its target function by specifying the SUPPORT clause when creating the target function.

The details of the API for planner support functions can be found in file src/include/nodes/support-
nodes.h in the PostgreSQL source code. Here we provide just an overview of what planner support
functions can do. The set of possible requests to a support function is extensible, so more things might
be possible in future versions.

Some function calls can be simplified during planning based on properties specific to the function. For
example, int4mul(n, 1) could be simplified to just n. This type of transformation can be performed
by a planner support function, by having it implement the SupportRequestSimplify request type. The
support function will be called for each instance of its target function found in a query parse tree. If it
finds that the particular call can be simplified into some other form, it can build and return a parse tree
representing that expression. This will automatically work for operators based on the function, too — in
the example just given, n * 1 would also be simplified to n. (But note that this is just an example; this
particular optimization is not actually performed by standard PostgreSQL.) We make no guarantee that
PostgreSQL will never call the target function in cases that the support function could simplify. Ensure
rigorous equivalence between the simplified expression and an actual execution of the target function.

For target functions that return boolean, it is often useful to estimate the fraction of rows that will be
selected by a WHERE clause using that function. This can be done by a support function that implements
the SupportRequestSelectivity request type.

If the target function's run time is highly dependent on its inputs, it may be useful to provide a non-
constant cost estimate for it. This can be done by a support function that implements the SupportRe-
questCost request type.

For target functions that return sets, it is often useful to provide a non-constant estimate for the number
of rows that will be returned. This can be done by a support function that implements the SupportRe-
questRows request type.

For target functions that return boolean, it may be possible to convert a function call appearing in WHERE
into an indexable operator clause or clauses. The converted clauses might be exactly equivalent to the
function's condition, or they could be somewhat weaker (that is, they might accept some values that the
function condition does not). In the latter case the index condition is said to be lossy; it can still be used
to scan an index, but the function call will have to be executed for each row returned by the index to
see if it really passes the WHERE condition or not. To create such conditions, the support function must
implement the SupportRequestIndexCondition request type.

36.12. User-Defined Aggregates
Aggregate functions in PostgreSQL are defined in terms of state values and state transition functions.
That is, an aggregate operates using a state value that is updated as each successive input row is
processed. To define a new aggregate function, one selects a data type for the state value, an initial value
for the state, and a state transition function. The state transition function takes the previous state value

1138

Extending SQL

and the aggregate's input value(s) for the current row, and returns a new state value. A final function
can also be specified, in case the desired result of the aggregate is different from the data that needs
to be kept in the running state value. The final function takes the ending state value and returns what-
ever is wanted as the aggregate result. In principle, the transition and final functions are just ordinary
functions that could also be used outside the context of the aggregate. (In practice, it's often helpful
for performance reasons to create specialized transition functions that can only work when called as
part of an aggregate.)

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an
internal state-value data type that might be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a
running function of the column values from each row. sum is an example of this kind of aggregate. sum
starts at zero and always adds the current row's value to its running total. For example, if we want to
make a sum aggregate to work on a data type for complex numbers, we only need the addition function
for that data type. The aggregate definition would be:

CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)'
);

which we might use like this:

SELECT sum(a) FROM test_complex;

 sum

 (34,53.9)

(Notice that we are relying on function overloading: there is more than one aggregate named sum, but
PostgreSQL can figure out which kind of sum applies to a column of type complex.)

The above definition of sum will return zero (the initial state value) if there are no nonnull input values.
Perhaps we want to return null in that case instead — the SQL standard expects sum to behave that way.
We can do this simply by omitting the initcond phrase, so that the initial state value is null. Ordinarily
this would mean that the sfunc would need to check for a null state-value input. But for sum and some
other simple aggregates like max and min, it is sufficient to insert the first nonnull input value into
the state variable and then start applying the transition function at the second nonnull input value.
PostgreSQL will do that automatically if the initial state value is null and the transition function is marked
“strict” (i.e., not to be called for null inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is retained
unchanged whenever a null input value is encountered. Thus, null values are ignored. If you need some
other behavior for null inputs, do not declare your transition function as strict; instead code it to test
for null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state: the
sum of the inputs and the count of the number of inputs. The final result is obtained by dividing these
quantities. Average is typically implemented by using an array as the state value. For example, the built-
in implementation of avg(float8) looks like:

CREATE AGGREGATE avg (float8)
(
 sfunc = float8_accum,
 stype = float8[],
 finalfunc = float8_avg,
 initcond = '{0,0,0}'
);

1139

Extending SQL

Note
float8_accum requires a three-element array, not just two elements, because it accumulates the
sum of squares as well as the sum and count of the inputs. This is so that it can be used for some
other aggregates as well as avg.

Aggregate function calls in SQL allow DISTINCT and ORDER BY options that control which rows are fed to
the aggregate's transition function and in what order. These options are implemented behind the scenes
and are not the concern of the aggregate's support functions.

For further details see the CREATE AGGREGATE command.

36.12.1. Moving-Aggregate Mode
Aggregate functions can optionally support moving-aggregate mode, which allows substantially faster
execution of aggregate functions within windows with moving frame starting points. (See Section 3.5
and Section 4.2.8 for information about use of aggregate functions as window functions.) The basic idea
is that in addition to a normal “forward” transition function, the aggregate provides an inverse transition
function, which allows rows to be removed from the aggregate's running state value when they exit the
window frame. For example a sum aggregate, which uses addition as the forward transition function,
would use subtraction as the inverse transition function. Without an inverse transition function, the
window function mechanism must recalculate the aggregate from scratch each time the frame starting
point moves, resulting in run time proportional to the number of input rows times the average frame
length. With an inverse transition function, the run time is only proportional to the number of input rows.

The inverse transition function is passed the current state value and the aggregate input value(s) for the
earliest row included in the current state. It must reconstruct what the state value would have been if the
given input row had never been aggregated, but only the rows following it. This sometimes requires that
the forward transition function keep more state than is needed for plain aggregation mode. Therefore,
the moving-aggregate mode uses a completely separate implementation from the plain mode: it has its
own state data type, its own forward transition function, and its own final function if needed. These can
be the same as the plain mode's data type and functions, if there is no need for extra state.

As an example, we could extend the sum aggregate given above to support moving-aggregate mode like
this:
CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)',
 msfunc = complex_add,
 minvfunc = complex_sub,
 mstype = complex,
 minitcond = '(0,0)'
);

The parameters whose names begin with m define the moving-aggregate implementation. Except for the
inverse transition function minvfunc, they correspond to the plain-aggregate parameters without m.

The forward transition function for moving-aggregate mode is not allowed to return null as the new state
value. If the inverse transition function returns null, this is taken as an indication that the inverse function
cannot reverse the state calculation for this particular input, and so the aggregate calculation will be
redone from scratch for the current frame starting position. This convention allows moving-aggregate
mode to be used in situations where there are some infrequent cases that are impractical to reverse out
of the running state value. The inverse transition function can “punt” on these cases, and yet still come
out ahead so long as it can work for most cases. As an example, an aggregate working with floating-point
numbers might choose to punt when a NaN (not a number) input has to be removed from the running
state value.

1140

Extending SQL

When writing moving-aggregate support functions, it is important to be sure that the inverse transition
function can reconstruct the correct state value exactly. Otherwise there might be user-visible differ-
ences in results depending on whether the moving-aggregate mode is used. An example of an aggregate
for which adding an inverse transition function seems easy at first, yet where this requirement cannot
be met is sum over float4 or float8 inputs. A naive declaration of sum(float8) could be

CREATE AGGREGATE unsafe_sum (float8)
(
 stype = float8,
 sfunc = float8pl,
 mstype = float8,
 msfunc = float8pl,
 minvfunc = float8mi
);

This aggregate, however, can give wildly different results than it would have without the inverse tran-
sition function. For example, consider

SELECT
 unsafe_sum(x) OVER (ORDER BY n ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING)
FROM (VALUES (1, 1.0e20::float8),
 (2, 1.0::float8)) AS v (n,x);

This query returns 0 as its second result, rather than the expected answer of 1. The cause is the limited
precision of floating-point values: adding 1 to 1e20 results in 1e20 again, and so subtracting 1e20 from
that yields 0, not 1. Note that this is a limitation of floating-point arithmetic in general, not a limitation
of PostgreSQL.

36.12.2. Polymorphic and Variadic Aggregates
Aggregate functions can use polymorphic state transition functions or final functions, so that the same
functions can be used to implement multiple aggregates. See Section 36.2.5 for an explanation of poly-
morphic functions. Going a step further, the aggregate function itself can be specified with polymorphic
input type(s) and state type, allowing a single aggregate definition to serve for multiple input data types.
Here is an example of a polymorphic aggregate:

CREATE AGGREGATE array_accum (anycompatible)
(
 sfunc = array_append,
 stype = anycompatiblearray,
 initcond = '{}'
);

Here, the actual state type for any given aggregate call is the array type having the actual input type
as elements. The behavior of the aggregate is to concatenate all the inputs into an array of that type.
(Note: the built-in aggregate array_agg provides similar functionality, with better performance than
this definition would have.)

Here's the output using two different actual data types as arguments:

SELECT attrelid::regclass, array_accum(attname)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------------------
 pg_tablespace | {spcname,spcowner,spcacl,spcoptions}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
 FROM pg_attribute

1141

Extending SQL

 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------
 pg_tablespace | {name,oid,aclitem[],text[]}
(1 row)

Ordinarily, an aggregate function with a polymorphic result type has a polymorphic state type, as in the
above example. This is necessary because otherwise the final function cannot be declared sensibly: it
would need to have a polymorphic result type but no polymorphic argument type, which CREATE FUNC-
TION will reject on the grounds that the result type cannot be deduced from a call. But sometimes it is
inconvenient to use a polymorphic state type. The most common case is where the aggregate support
functions are to be written in C and the state type should be declared as internal because there is
no SQL-level equivalent for it. To address this case, it is possible to declare the final function as taking
extra “dummy” arguments that match the input arguments of the aggregate. Such dummy arguments
are always passed as null values since no specific value is available when the final function is called.
Their only use is to allow a polymorphic final function's result type to be connected to the aggregate's
input type(s). For example, the definition of the built-in aggregate array_agg is equivalent to
CREATE FUNCTION array_agg_transfn(internal, anynonarray)
 RETURNS internal ...;
CREATE FUNCTION array_agg_finalfn(internal, anynonarray)
 RETURNS anyarray ...;

CREATE AGGREGATE array_agg (anynonarray)
(
 sfunc = array_agg_transfn,
 stype = internal,
 finalfunc = array_agg_finalfn,
 finalfunc_extra
);

Here, the finalfunc_extra option specifies that the final function receives, in addition to the state value,
extra dummy argument(s) corresponding to the aggregate's input argument(s). The extra anynonarray
argument allows the declaration of array_agg_finalfn to be valid.

An aggregate function can be made to accept a varying number of arguments by declaring its last argu-
ment as a VARIADIC array, in much the same fashion as for regular functions; see Section 36.5.6. The
aggregate's transition function(s) must have the same array type as their last argument. The transition
function(s) typically would also be marked VARIADIC, but this is not strictly required.

Note
Variadic aggregates are easily misused in connection with the ORDER BY option (see Section 4.2.7),
since the parser cannot tell whether the wrong number of actual arguments have been given in
such a combination. Keep in mind that everything to the right of ORDER BY is a sort key, not an
argument to the aggregate. For example, in
SELECT myaggregate(a ORDER BY a, b, c) FROM ...

the parser will see this as a single aggregate function argument and three sort keys. However,
the user might have intended
SELECT myaggregate(a, b, c ORDER BY a) FROM ...

If myaggregate is variadic, both these calls could be perfectly valid.

For the same reason, it's wise to think twice before creating aggregate functions with the same
names and different numbers of regular arguments.

1142

Extending SQL

36.12.3. Ordered-Set Aggregates
The aggregates we have been describing so far are “normal” aggregates. PostgreSQL also supports or-
dered-set aggregates, which differ from normal aggregates in two key ways. First, in addition to ordi-
nary aggregated arguments that are evaluated once per input row, an ordered-set aggregate can have
“direct” arguments that are evaluated only once per aggregation operation. Second, the syntax for the
ordinary aggregated arguments specifies a sort ordering for them explicitly. An ordered-set aggregate
is usually used to implement a computation that depends on a specific row ordering, for instance rank or
percentile, so that the sort ordering is a required aspect of any call. For example, the built-in definition
of percentile_disc is equivalent to:
CREATE FUNCTION ordered_set_transition(internal, anyelement)
 RETURNS internal ...;
CREATE FUNCTION percentile_disc_final(internal, float8, anyelement)
 RETURNS anyelement ...;

CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
 sfunc = ordered_set_transition,
 stype = internal,
 finalfunc = percentile_disc_final,
 finalfunc_extra
);

This aggregate takes a float8 direct argument (the percentile fraction) and an aggregated input that
can be of any sortable data type. It could be used to obtain a median household income like this:
SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_disc

 50489

Here, 0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

Unlike the case for normal aggregates, the sorting of input rows for an ordered-set aggregate is not
done behind the scenes, but is the responsibility of the aggregate's support functions. The typical im-
plementation approach is to keep a reference to a “tuplesort” object in the aggregate's state value, feed
the incoming rows into that object, and then complete the sorting and read out the data in the final
function. This design allows the final function to perform special operations such as injecting additional
“hypothetical” rows into the data to be sorted. While normal aggregates can often be implemented with
support functions written in PL/pgSQL or another PL language, ordered-set aggregates generally have
to be written in C, since their state values aren't definable as any SQL data type. (In the above example,
notice that the state value is declared as type internal — this is typical.) Also, because the final function
performs the sort, it is not possible to continue adding input rows by executing the transition function
again later. This means the final function is not READ_ONLY; it must be declared in CREATE AGGREGATE
as READ_WRITE, or as SHAREABLE if it's possible for additional final-function calls to make use of the al-
ready-sorted state.

The state transition function for an ordered-set aggregate receives the current state value plus the ag-
gregated input values for each row, and returns the updated state value. This is the same definition as
for normal aggregates, but note that the direct arguments (if any) are not provided. The final function
receives the last state value, the values of the direct arguments if any, and (if finalfunc_extra is speci-
fied) null values corresponding to the aggregated input(s). As with normal aggregates, finalfunc_extra
is only really useful if the aggregate is polymorphic; then the extra dummy argument(s) are needed to
connect the final function's result type to the aggregate's input type(s).

Currently, ordered-set aggregates cannot be used as window functions, and therefore there is no need
for them to support moving-aggregate mode.

36.12.4. Partial Aggregation

1143

Extending SQL

Optionally, an aggregate function can support partial aggregation. The idea of partial aggregation is
to run the aggregate's state transition function over different subsets of the input data independently,
and then to combine the state values resulting from those subsets to produce the same state value
that would have resulted from scanning all the input in a single operation. This mode can be used for
parallel aggregation by having different worker processes scan different portions of a table. Each worker
produces a partial state value, and at the end those state values are combined to produce a final state
value. (In the future this mode might also be used for purposes such as combining aggregations over
local and remote tables; but that is not implemented yet.)

To support partial aggregation, the aggregate definition must provide a combine function, which takes
two values of the aggregate's state type (representing the results of aggregating over two subsets of the
input rows) and produces a new value of the state type, representing what the state would have been
after aggregating over the combination of those sets of rows. It is unspecified what the relative order
of the input rows from the two sets would have been. This means that it's usually impossible to define a
useful combine function for aggregates that are sensitive to input row order.

As simple examples, MAX and MIN aggregates can be made to support partial aggregation by specifying
the combine function as the same greater-of-two or lesser-of-two comparison function that is used as
their transition function. SUM aggregates just need an addition function as combine function. (Again, this
is the same as their transition function, unless the state value is wider than the input data type.)

The combine function is treated much like a transition function that happens to take a value of the
state type, not of the underlying input type, as its second argument. In particular, the rules for dealing
with null values and strict functions are similar. Also, if the aggregate definition specifies a non-null
initcond, keep in mind that that will be used not only as the initial state for each partial aggregation
run, but also as the initial state for the combine function, which will be called to combine each partial
result into that state.

If the aggregate's state type is declared as internal, it is the combine function's responsibility that its
result is allocated in the correct memory context for aggregate state values. This means in particular
that when the first input is NULL it's invalid to simply return the second input, as that value will be in
the wrong context and will not have sufficient lifespan.

When the aggregate's state type is declared as internal, it is usually also appropriate for the aggregate
definition to provide a serialization function and a deserialization function, which allow such a state
value to be copied from one process to another. Without these functions, parallel aggregation cannot be
performed, and future applications such as local/remote aggregation will probably not work either.

A serialization function must take a single argument of type internal and return a result of type bytea,
which represents the state value packaged up into a flat blob of bytes. Conversely, a deserialization
function reverses that conversion. It must take two arguments of types bytea and internal, and return
a result of type internal. (The second argument is unused and is always zero, but it is required for
type-safety reasons.) The result of the deserialization function should simply be allocated in the current
memory context, as unlike the combine function's result, it is not long-lived.

Worth noting also is that for an aggregate to be executed in parallel, the aggregate itself must be marked
PARALLEL SAFE. The parallel-safety markings on its support functions are not consulted.

36.12.5. Support Functions for Aggregates
A function written in C can detect that it is being called as an aggregate support function by calling
AggCheckCallContext, for example:

if (AggCheckCallContext(fcinfo, NULL))

One reason for checking this is that when it is true, the first input must be a temporary state value
and can therefore safely be modified in-place rather than allocating a new copy. See int8inc() for an
example. (While aggregate transition functions are always allowed to modify the transition value in-
place, aggregate final functions are generally discouraged from doing so; if they do so, the behavior
must be declared when creating the aggregate. See CREATE AGGREGATE for more detail.)

1144

Extending SQL

The second argument of AggCheckCallContext can be used to retrieve the memory context in which
aggregate state values are being kept. This is useful for transition functions that wish to use “expanded”
objects (see Section 36.13.1) as their state values. On first call, the transition function should return an
expanded object whose memory context is a child of the aggregate state context, and then keep returning
the same expanded object on subsequent calls. See array_append() for an example. (array_append()
is not the transition function of any built-in aggregate, but it is written to behave efficiently when used
as transition function of a custom aggregate.)

Another support routine available to aggregate functions written in C is AggGetAggref, which returns
the Aggref parse node that defines the aggregate call. This is mainly useful for ordered-set aggregates,
which can inspect the substructure of the Aggref node to find out what sort ordering they are supposed
to implement. Examples can be found in orderedsetaggs.c in the PostgreSQL source code.

36.13. User-Defined Types
As described in Section 36.2, PostgreSQL can be extended to support new data types. This section de-
scribes how to define new base types, which are data types defined below the level of the SQL language.
Creating a new base type requires implementing functions to operate on the type in a low-level language,
usually C.

The examples in this section can be found in complex.sql and complex.c in the src/tutorial direc-
tory of the source distribution. See the README file in that directory for instructions about running the
examples.

A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized in
memory. The input function takes a null-terminated character string as its argument and returns the
internal (in memory) representation of the type. The output function takes the internal representation of
the type as argument and returns a null-terminated character string. If we want to do anything more with
the type than merely store it, we must provide additional functions to implement whatever operations
we'd like to have for the type.

Suppose we want to define a type complex that represents complex numbers. A natural way to represent
a complex number in memory would be the following C structure:

typedef struct Complex {
 double x;
 double y;
} Complex;

We will need to make this a pass-by-reference type, since it's too large to fit into a single Datum value.

As the external string representation of the type, we choose a string of the form (x,y).

The input and output functions are usually not hard to write, especially the output function. But when
defining the external string representation of the type, remember that you must eventually write a com-
plete and robust parser for that representation as your input function. For instance:

PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{
 char *str = PG_GETARG_CSTRING(0);
 double x,
 y;
 Complex *result;

 if (sscanf(str, " (%lf , %lf)", &x, &y) != 2)
 ereport(ERROR,

1145

Extending SQL

 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
 errmsg("invalid input syntax for type %s: \"%s\"",
 "complex", str)));

 result = (Complex *) palloc(sizeof(Complex));
 result->x = x;
 result->y = y;
 PG_RETURN_POINTER(result);
}

The output function can simply be:

PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 char *result;

 result = psprintf("(%g,%g)", complex->x, complex->y);
 PG_RETURN_CSTRING(result);
}

You should be careful to make the input and output functions inverses of each other. If you do not, you
will have severe problems when you need to dump your data into a file and then read it back in. This is
a particularly common problem when floating-point numbers are involved.

Optionally, a user-defined type can provide binary input and output routines. Binary I/O is normally
faster but less portable than textual I/O. As with textual I/O, it is up to you to define exactly what the
external binary representation is. Most of the built-in data types try to provide a machine-independent
binary representation. For complex, we will piggy-back on the binary I/O converters for type float8:

PG_FUNCTION_INFO_V1(complex_recv);

Datum
complex_recv(PG_FUNCTION_ARGS)
{
 StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
 Complex *result;

 result = (Complex *) palloc(sizeof(Complex));
 result->x = pq_getmsgfloat8(buf);
 result->y = pq_getmsgfloat8(buf);
 PG_RETURN_POINTER(result);
}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 StringInfoData buf;

 pq_begintypsend(&buf);
 pq_sendfloat8(&buf, complex->x);
 pq_sendfloat8(&buf, complex->y);

1146

Extending SQL

 PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}

Once we have written the I/O functions and compiled them into a shared library, we can define the
complex type in SQL. First we declare it as a shell type:
CREATE TYPE complex;

This serves as a placeholder that allows us to reference the type while defining its I/O functions. Now
we can define the I/O functions:
CREATE FUNCTION complex_in(cstring)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
 RETURNS cstring
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
 RETURNS bytea
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Finally, we can provide the full definition of the data type:
CREATE TYPE complex (
 internallength = 16,
 input = complex_in,
 output = complex_out,
 receive = complex_recv,
 send = complex_send,
 alignment = double
);

When you define a new base type, PostgreSQL automatically provides support for arrays of that type. The
array type typically has the same name as the base type with the underscore character (_) prepended.

Once the data type exists, we can declare additional functions to provide useful operations on the data
type. Operators can then be defined atop the functions, and if needed, operator classes can be created
to support indexing of the data type. These additional layers are discussed in following sections.

If the internal representation of the data type is variable-length, the internal representation must follow
the standard layout for variable-length data: the first four bytes must be a char[4] field which is never
accessed directly (customarily named vl_len_). You must use the SET_VARSIZE() macro to store the
total size of the datum (including the length field itself) in this field and VARSIZE() to retrieve it. (These
macros exist because the length field may be encoded depending on platform.)

For further details see the description of the CREATE TYPE command.

36.13.1. TOAST Considerations
If the values of your data type vary in size (in internal form), it's usually desirable to make the data
type TOAST-able (see Section 66.2). You should do this even if the values are always too small to be

1147

Extending SQL

compressed or stored externally, because TOAST can save space on small data too, by reducing header
overhead.

To support TOAST storage, the C functions operating on the data type must always be careful to unpack
any toasted values they are handed by using PG_DETOAST_DATUM. (This detail is customarily hidden by
defining type-specific GETARG_DATATYPE_P macros.) Then, when running the CREATE TYPE command,
specify the internal length as variable and select some appropriate storage option other than plain.

If data alignment is unimportant (either just for a specific function or because the data type specifies byte
alignment anyway) then it's possible to avoid some of the overhead of PG_DETOAST_DATUM. You can use
PG_DETOAST_DATUM_PACKED instead (customarily hidden by defining a GETARG_DATATYPE_PP macro) and
using the macros VARSIZE_ANY_EXHDR and VARDATA_ANY to access a potentially-packed datum. Again,
the data returned by these macros is not aligned even if the data type definition specifies an alignment.
If the alignment is important you must go through the regular PG_DETOAST_DATUM interface.

Note
Older code frequently declares vl_len_ as an int32 field instead of char[4]. This is OK as long
as the struct definition has other fields that have at least int32 alignment. But it is dangerous to
use such a struct definition when working with a potentially unaligned datum; the compiler may
take it as license to assume the datum actually is aligned, leading to core dumps on architectures
that are strict about alignment.

Another feature that's enabled by TOAST support is the possibility of having an expanded in-memory
data representation that is more convenient to work with than the format that is stored on disk. The
regular or “flat” varlena storage format is ultimately just a blob of bytes; it cannot for example contain
pointers, since it may get copied to other locations in memory. For complex data types, the flat format
may be quite expensive to work with, so PostgreSQL provides a way to “expand” the flat format into
a representation that is more suited to computation, and then pass that format in-memory between
functions of the data type.

To use expanded storage, a data type must define an expanded format that follows the rules given in src/
include/utils/expandeddatum.h, and provide functions to “expand” a flat varlena value into expanded
format and “flatten” the expanded format back to the regular varlena representation. Then ensure that
all C functions for the data type can accept either representation, possibly by converting one into the
other immediately upon receipt. This does not require fixing all existing functions for the data type at
once, because the standard PG_DETOAST_DATUM macro is defined to convert expanded inputs into regular
flat format. Therefore, existing functions that work with the flat varlena format will continue to work,
though slightly inefficiently, with expanded inputs; they need not be converted until and unless better
performance is important.

C functions that know how to work with an expanded representation typically fall into two categories:
those that can only handle expanded format, and those that can handle either expanded or flat varlena
inputs. The former are easier to write but may be less efficient overall, because converting a flat input
to expanded form for use by a single function may cost more than is saved by operating on the expanded
format. When only expanded format need be handled, conversion of flat inputs to expanded form can
be hidden inside an argument-fetching macro, so that the function appears no more complex than one
working with traditional varlena input. To handle both types of input, write an argument-fetching func-
tion that will detoast external, short-header, and compressed varlena inputs, but not expanded inputs.
Such a function can be defined as returning a pointer to a union of the flat varlena format and the ex-
panded format. Callers can use the VARATT_IS_EXPANDED_HEADER() macro to determine which format
they received.

The TOAST infrastructure not only allows regular varlena values to be distinguished from expanded
values, but also distinguishes “read-write” and “read-only” pointers to expanded values. C functions that
only need to examine an expanded value, or will only change it in safe and non-semantically-visible ways,
need not care which type of pointer they receive. C functions that produce a modified version of an input

1148

Extending SQL

value are allowed to modify an expanded input value in-place if they receive a read-write pointer, but
must not modify the input if they receive a read-only pointer; in that case they have to copy the value
first, producing a new value to modify. A C function that has constructed a new expanded value should
always return a read-write pointer to it. Also, a C function that is modifying a read-write expanded value
in-place should take care to leave the value in a sane state if it fails partway through.

For examples of working with expanded values, see the standard array infrastructure, particularly src/
backend/utils/adt/array_expanded.c.

36.14. User-Defined Operators
Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so you
must first create the underlying function before you can create the operator. However, an operator is not
merely syntactic sugar, because it carries additional information that helps the query planner optimize
queries that use the operator. The next section will be devoted to explaining that additional information.

PostgreSQL supports prefix and infix operators. Operators can be overloaded; that is, the same operator
name can be used for different operators that have different numbers and types of operands. When a
query is executed, the system determines the operator to call from the number and types of the provided
operands.

Here is an example of creating an operator for adding two complex numbers. We assume we've already
created the definition of type complex (see Section 36.13). First we need a function that does the work,
then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS 'filename', 'complex_add'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 function = complex_add,
 commutator = +
);

Now we could execute a query like this:

SELECT (a + b) AS c FROM test_complex;

 c

 (5.2,6.05)
 (133.42,144.95)

We've shown how to create a binary operator here. To create a prefix operator, just omit the leftarg.
The function clause and the argument clauses are the only required items in CREATE OPERATOR. The
commutator clause shown in the example is an optional hint to the query optimizer. Further details about
commutator and other optimizer hints appear in the next section.

36.15. Operator Optimization Information
A PostgreSQL operator definition can include several optional clauses that tell the system useful things
about how the operator behaves. These clauses should be provided whenever appropriate, because they
can make for considerable speedups in execution of queries that use the operator. But if you provide
them, you must be sure that they are right! Incorrect use of an optimization clause can result in slow
queries, subtly wrong output, or other Bad Things. You can always leave out an optimization clause if
you are not sure about it; the only consequence is that queries might run slower than they need to.

1149

Extending SQL

Additional optimization clauses might be added in future versions of PostgreSQL. The ones described
here are all the ones that release 18.0 understands.

It is also possible to attach a planner support function to the function that underlies an operator, pro-
viding another way of telling the system about the behavior of the operator. See Section 36.11 for more
information.

36.15.1. COMMUTATOR
The COMMUTATOR clause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all possible
input values x, y. Notice that B is also the commutator of A. For example, operators < and > for a particular
data type are usually each others' commutators, and operator + is usually commutative with itself. But
operator - is usually not commutative with anything.

The left operand type of a commutable operator is the same as the right operand type of its commutator,
and vice versa. So the name of the commutator operator is all that PostgreSQL needs to be given to look
up the commutator, and that's all that needs to be provided in the COMMUTATOR clause.

It's critical to provide commutator information for operators that will be used in indexes and join clauses,
because this allows the query optimizer to “flip around” such a clause to the forms needed for different
plan types. For example, consider a query with a WHERE clause like tab1.x = tab2.y, where tab1.x and
tab2.y are of a user-defined type, and suppose that tab2.y is indexed. The optimizer cannot generate
an index scan unless it can determine how to flip the clause around to tab2.y = tab1.x, because
the index-scan machinery expects to see the indexed column on the left of the operator it is given.
PostgreSQL will not simply assume that this is a valid transformation — the creator of the = operator
must specify that it is valid, by marking the operator with commutator information.

36.15.2. NEGATOR
The NEGATOR clause, if provided, names an operator that is the negator of the operator being defined.
We say that operator A is the negator of operator B if both return Boolean results and (x A y) equals
NOT (x B y) for all possible inputs x, y. Notice that B is also the negator of A. For example, < and >= are
a negator pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each other's negators; that
would mean (A x) equals NOT (B x) for all x.

An operator's negator must have the same left and/or right operand types as the operator to be defined,
so just as with COMMUTATOR, only the operator name need be given in the NEGATOR clause.

Providing a negator is very helpful to the query optimizer since it allows expressions like NOT (x = y)
to be simplified into x <> y. This comes up more often than you might think, because NOT operations
can be inserted as a consequence of other rearrangements.

36.15.3. RESTRICT
The RESTRICT clause, if provided, names a restriction selectivity estimation function for the operator.
(Note that this is a function name, not an operator name.) RESTRICT clauses only make sense for binary
operators that return boolean. The idea behind a restriction selectivity estimator is to guess what frac-
tion of the rows in a table will satisfy a WHERE-clause condition of the form:
column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some
idea of how many rows will be eliminated by WHERE clauses that have this form. (What happens if the
constant is on the left, you might be wondering? Well, that's one of the things that COMMUTATOR is for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but fortu-
nately you can usually just use one of the system's standard estimators for many of your own operators.
These are the standard restriction estimators:

1150

Extending SQL

eqsel for =
neqsel for <>
scalarltsel for <
scalarlesel for <=
scalargtsel for >
scalargesel for >=

You can frequently get away with using either eqsel or neqsel for operators that have very high or very
low selectivity, even if they aren't really equality or inequality. For example, the approximate-equality
geometric operators use eqsel on the assumption that they'll usually only match a small fraction of the
entries in a table.

You can use scalarltsel, scalarlesel, scalargtsel and scalargesel for comparisons on data types
that have some sensible means of being converted into numeric scalars for range comparisons. If possi-
ble, add the data type to those understood by the function convert_to_scalar() in src/backend/utils/
adt/selfuncs.c. (Eventually, this function should be replaced by per-data-type functions identified
through a column of the pg_type system catalog; but that hasn't happened yet.) If you do not do this,
things will still work, but the optimizer's estimates won't be as good as they could be.

Another useful built-in selectivity estimation function is matchingsel, which will work for almost any
binary operator, if standard MCV and/or histogram statistics are collected for the input data type(s).
Its default estimate is set to twice the default estimate used in eqsel, making it most suitable for com-
parison operators that are somewhat less strict than equality. (Or you could call the underlying gener-
ic_restriction_selectivity function, providing a different default estimate.)

There are additional selectivity estimation functions designed for geometric operators in src/back-
end/utils/adt/geo_selfuncs.c: areasel, positionsel, and contsel. At this writing these are just
stubs, but you might want to use them (or even better, improve them) anyway.

36.15.4. JOIN
The JOIN clause, if provided, names a join selectivity estimation function for the operator. (Note that
this is a function name, not an operator name.) JOIN clauses only make sense for binary operators that
return boolean. The idea behind a join selectivity estimator is to guess what fraction of the rows in a
pair of tables will satisfy a WHERE-clause condition of the form:
table1.column1 OP table2.column2

for the current operator. As with the RESTRICT clause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity estimator function,
but will just suggest that you use one of the standard estimators if one is applicable:
eqjoinsel for =
neqjoinsel for <>
scalarltjoinsel for <
scalarlejoinsel for <=
scalargtjoinsel for >
scalargejoinsel for >=
matchingjoinsel for generic matching operators
areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons
contjoinsel for 2D containment-based comparisons

36.15.5. HASHES
The HASHES clause, if present, tells the system that it is permissible to use the hash join method for a
join based on this operator. HASHES only makes sense for a binary operator that returns boolean, and in
practice the operator must represent equality for some data type or pair of data types.

1151

Extending SQL

The assumption underlying hash join is that the join operator can only return true for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join will
never compare them at all, implicitly assuming that the result of the join operator must be false. So it
never makes sense to specify HASHES for operators that do not represent some form of equality. In most
cases it is only practical to support hashing for operators that take the same data type on both sides.
However, sometimes it is possible to design compatible hash functions for two or more data types; that
is, functions that will generate the same hash codes for “equal” values, even though the values have
different representations. For example, it's fairly simple to arrange this property when hashing integers
of different widths.

To be marked HASHES, the join operator must appear in a hash index operator family. This is not enforced
when you create the operator, since of course the referencing operator family couldn't exist yet. But
attempts to use the operator in hash joins will fail at run time if no such operator family exists. The
system needs the operator family to find the data-type-specific hash function(s) for the operator's input
data type(s). Of course, you must also create suitable hash functions before you can create the operator
family.

Care should be exercised when preparing a hash function, because there are machine-dependent ways in
which it might fail to do the right thing. For example, if your data type is a structure in which there might
be uninteresting pad bits, you cannot simply pass the whole structure to hash_any. (Unless you write your
other operators and functions to ensure that the unused bits are always zero, which is the recommended
strategy.) Another example is that on machines that meet the IEEE floating-point standard, negative
zero and positive zero are different values (different bit patterns) but they are defined to compare equal.
If a float value might contain negative zero then extra steps are needed to ensure it generates the same
hash value as positive zero.

A hash-joinable operator must have a commutator (itself if the two operand data types are the same, or
a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a hash operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note
The function underlying a hash-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a hash join.

Note
If a hash-joinable operator has an underlying function that is marked strict, the function must also
be complete: that is, it should return true or false, never null, for any two nonnull inputs. If this rule
is not followed, hash-optimization of IN operations might generate wrong results. (Specifically, IN
might return false where the correct answer according to the standard would be null; or it might
yield an error complaining that it wasn't prepared for a null result.)

36.15.6. MERGES
The MERGES clause, if present, tells the system that it is permissible to use the merge-join method for a
join based on this operator. MERGES only makes sense for a binary operator that returns boolean, and in
practice the operator must represent equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator must
be one that can only succeed for pairs of values that fall at the “same place” in the sort order. In practice
this means that the join operator must behave like equality. But it is possible to merge-join two distinct

1152

Extending SQL

data types so long as they are logically compatible. For example, the smallint-versus-integer equality
operator is merge-joinable. We only need sorting operators that will bring both data types into a logically
compatible sequence.

To be marked MERGES, the join operator must appear as an equality member of a btree index operator
family. This is not enforced when you create the operator, since of course the referencing operator
family couldn't exist yet. But the operator will not actually be used for merge joins unless a matching
operator family can be found. The MERGES flag thus acts as a hint to the planner that it's worth looking
for a matching operator family.

A merge-joinable operator must have a commutator (itself if the two operand data types are the same,
or a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a btree operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note
The function underlying a merge-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a merge join.

36.16. Interfacing Extensions to Indexes
The procedures described thus far let you define new types, new functions, and new operators. However,
we cannot yet define an index on a column of a new data type. To do this, we must define an operator
class for the new data type. Later in this section, we will illustrate this concept in an example: a new
operator class for the B-tree index method that stores and sorts complex numbers in ascending absolute
value order.

Operator classes can be grouped into operator families to show the relationships between semantically
compatible classes. When only a single data type is involved, an operator class is sufficient, so we'll focus
on that case first and then return to operator families.

36.16.1. Index Methods and Operator Classes
Operator classes are associated with an index access method, such as B-Tree or GIN. Custom index
access method may be defined with CREATE ACCESS METHOD. See Chapter 63 for details.

The routines for an index method do not directly know anything about the data types that the index
method will operate on. Instead, an operator classidentifies the set of operations that the index method
needs to use to work with a particular data type. Operator classes are so called because one thing they
specify is the set of WHERE-clause operators that can be used with an index (i.e., can be converted into an
index-scan qualification). An operator class can also specify some support function that are needed by
the internal operations of the index method, but do not directly correspond to any WHERE-clause operator
that can be used with the index.

It is possible to define multiple operator classes for the same data type and index method. By doing
this, multiple sets of indexing semantics can be defined for a single data type. For example, a B-tree
index requires a sort ordering to be defined for each data type it works on. It might be useful for a
complex-number data type to have one B-tree operator class that sorts the data by complex absolute
value, another that sorts by real part, and so on. Typically, one of the operator classes will be deemed
most commonly useful and will be marked as the default operator class for that data type and index
method.

The same operator class name can be used for several different index methods (for example, both B-tree
and hash index methods have operator classes named int4_ops), but each such class is an independent
entity and must be defined separately.

1153

Extending SQL

36.16.2. Index Method Strategies
The operators associated with an operator class are identified by “strategy numbers”, which serve to
identify the semantics of each operator within the context of its operator class. For example, B-trees
impose a strict ordering on keys, lesser to greater, and so operators like “less than” and “greater than
or equal to” are interesting with respect to a B-tree. Because PostgreSQL allows the user to define
operators, PostgreSQL cannot look at the name of an operator (e.g., < or >=) and tell what kind of
comparison it is. Instead, the index method defines a set of “strategies”, which can be thought of as
generalized operators. Each operator class specifies which actual operator corresponds to each strategy
for a particular data type and interpretation of the index semantics.

The B-tree index method defines five strategies, shown in Table 36.3.

Table 36.3. B-Tree Strategies

Operation Strategy Number
less than 1
less than or equal 2
equal 3
greater than or equal 4
greater than 5

Hash indexes support only equality comparisons, and so they use only one strategy, shown in Table 36.4.

Table 36.4. Hash Strategies

Operation Strategy Number
equal 1

GiST indexes are more flexible: they do not have a fixed set of strategies at all. Instead, the “consistency”
support routine of each particular GiST operator class interprets the strategy numbers however it likes.
As an example, several of the built-in GiST index operator classes index two-dimensional geometric
objects, providing the “R-tree” strategies shown in Table 36.5. Four of these are true two-dimensional
tests (overlaps, same, contains, contained by); four of them consider only the X direction; and the other
four provide the same tests in the Y direction.

Table 36.5. GiST Two-Dimensional “R-tree” Strategies

Operation Strategy Number
strictly left of 1
does not extend to right of 2
overlaps 3
does not extend to left of 4
strictly right of 5
same 6
contains 7
contained by 8
does not extend above 9
strictly below 10
strictly above 11
does not extend below 12

SP-GiST indexes are similar to GiST indexes in flexibility: they don't have a fixed set of strategies. Instead
the support routines of each operator class interpret the strategy numbers according to the operator

1154

Extending SQL

class's definition. As an example, the strategy numbers used by the built-in operator classes for points
are shown in Table 36.6.

Table 36.6. SP-GiST Point Strategies

Operation Strategy Number
strictly left of 1
strictly right of 5
same 6
contained by 8
strictly below 10
strictly above 11

GIN indexes are similar to GiST and SP-GiST indexes, in that they don't have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to
the operator class's definition. As an example, the strategy numbers used by the built-in operator class
for arrays are shown in Table 36.7.

Table 36.7. GIN Array Strategies

Operation Strategy Number
overlap 1
contains 2
is contained by 3
equal 4

BRIN indexes are similar to GiST, SP-GiST and GIN indexes in that they don't have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to
the operator class's definition. As an example, the strategy numbers used by the built-in Minmax operator
classes are shown in Table 36.8.

Table 36.8. BRIN Minmax Strategies

Operation Strategy Number
less than 1
less than or equal 2
equal 3
greater than or equal 4
greater than 5

Notice that all the operators listed above return Boolean values. In practice, all operators defined as
index method search operators must return type boolean, since they must appear at the top level of a
WHERE clause to be used with an index. (Some index access methods also support ordering operators,
which typically don't return Boolean values; that feature is discussed in Section 36.16.7.)

36.16.3. Index Method Support Routines
Strategies aren't usually enough information for the system to figure out how to use an index. In practice,
the index methods require additional support routines in order to work. For example, the B-tree index
method must be able to compare two keys and determine whether one is greater than, equal to, or less
than the other. Similarly, the hash index method must be able to compute hash codes for key values.
These operations do not correspond to operators used in qualifications in SQL commands; they are
administrative routines used by the index methods, internally.

1155

Extending SQL

Just as with strategies, the operator class identifies which specific functions should play each of these
roles for a given data type and semantic interpretation. The index method defines the set of functions it
needs, and the operator class identifies the correct functions to use by assigning them to the “support
function numbers” specified by the index method.

Additionally, some opclasses allow users to specify parameters which control their behavior. Each builtin
index access method has an optional options support function, which defines a set of opclass-specific
parameters.

B-trees require a comparison support function, and allow four additional support functions to be sup-
plied at the operator class author's option, as shown in Table 36.9. The requirements for these support
functions are explained further in Section 65.1.3.

Table 36.9. B-Tree Support Functions

Function Support Number
Compare two keys and return an integer less than zero, zero, or greater
than zero, indicating whether the first key is less than, equal to, or greater
than the second

1

Return the addresses of C-callable sort support function(s) (optional) 2
Compare a test value to a base value plus/minus an offset, and return true
or false according to the comparison result (optional)

3

Determine if it is safe for indexes that use the operator class to apply the
btree deduplication optimization (optional)

4

Define options that are specific to this operator class (optional) 5
Return the addresses of C-callable skip support function(s) (optional) 6

Hash indexes require one support function, and allow two additional ones to be supplied at the operator
class author's option, as shown in Table 36.10.

Table 36.10. Hash Support Functions

Function Support Number
Compute the 32-bit hash value for a key 1
Compute the 64-bit hash value for a key given a 64-bit salt; if the salt is 0,
the low 32 bits of the result must match the value that would have been
computed by function 1 (optional)

2

Define options that are specific to this operator class (optional) 3

GiST indexes have twelve support functions, seven of which are optional, as shown in Table 36.11. (For
more information see Section 65.2.)

Table 36.11. GiST Support Functions

Function Description Support Num-
ber

consistent determine whether key satisfies the query qualifi-
er

1

union compute union of a set of keys 2
compress compute a compressed representation of a key or

value to be indexed (optional)
3

decompress compute a decompressed representation of a com-
pressed key (optional)

4

penalty compute penalty for inserting new key into sub-
tree with given subtree's key

5

1156

Extending SQL

Function Description Support Num-
ber

picksplit determine which entries of a page are to be
moved to the new page and compute the union
keys for resulting pages

6

same compare two keys and return true if they are
equal

7

distance determine distance from key to query value (op-
tional)

8

fetch compute original representation of a compressed
key for index-only scans (optional)

9

options define options that are specific to this operator
class (optional)

10

sortsupport provide a sort comparator to be used in fast index
builds (optional)

11

translate_cmptype translate compare types to strategy numbers used
by the operator class (optional)

12

SP-GiST indexes have six support functions, one of which is optional, as shown in Table 36.12. (For more
information see Section 65.3.)

Table 36.12. SP-GiST Support Functions

Function Description Support Num-
ber

config provide basic information about the operator class 1
choose determine how to insert a new value into an inner

tuple
2

picksplit determine how to partition a set of values 3
inner_consistent determine which sub-partitions need to be

searched for a query
4

leaf_consistent determine whether key satisfies the query qualifi-
er

5

options define options that are specific to this operator
class (optional)

6

GIN indexes have seven support functions, four of which are optional, as shown in Table 36.13. (For
more information see Section 65.4.)

Table 36.13. GIN Support Functions

Function Description Support Num-
ber

compare compare two keys and return an integer less
than zero, zero, or greater than zero, indicating
whether the first key is less than, equal to, or
greater than the second

1

extractValue extract keys from a value to be indexed 2
extractQuery extract keys from a query condition 3
consistent determine whether value matches query condition

(Boolean variant) (optional if support function 6 is
present)

4

1157

Extending SQL

Function Description Support Num-
ber

comparePartial compare partial key from query and key from in-
dex, and return an integer less than zero, zero, or
greater than zero, indicating whether GIN should
ignore this index entry, treat the entry as a match,
or stop the index scan (optional)

5

triConsistent determine whether value matches query condition
(ternary variant) (optional if support function 4 is
present)

6

options define options that are specific to this operator
class (optional)

7

BRIN indexes have five basic support functions, one of which is optional, as shown in Table 36.14. Some
versions of the basic functions require additional support functions to be provided. (For more information
see Section 65.5.3.)

Table 36.14. BRIN Support Functions

Function Description Support Num-
ber

opcInfo return internal information describing the indexed
columns' summary data

1

add_value add a new value to an existing summary index tu-
ple

2

consistent determine whether value matches query condition 3
union compute union of two summary tuples 4
options define options that are specific to this operator

class (optional)
5

Unlike search operators, support functions return whichever data type the particular index method
expects; for example in the case of the comparison function for B-trees, a signed integer. The number
and types of the arguments to each support function are likewise dependent on the index method. For
B-tree and hash the comparison and hashing support functions take the same input data types as do
the operators included in the operator class, but this is not the case for most GiST, SP-GiST, GIN, and
BRIN support functions.

36.16.4. An Example
Now that we have seen the ideas, here is the promised example of creating a new operator class. (You
can find a working copy of this example in src/tutorial/complex.c and src/tutorial/complex.sql
in the source distribution.) The operator class encapsulates operators that sort complex numbers in
absolute value order, so we choose the name complex_abs_ops. First, we need a set of operators. The
procedure for defining operators was discussed in Section 36.14. For an operator class on B-trees, the
operators we require are:

• absolute-value less-than (strategy 1)
• absolute-value less-than-or-equal (strategy 2)
• absolute-value equal (strategy 3)
• absolute-value greater-than-or-equal (strategy 4)
• absolute-value greater-than (strategy 5)

The least error-prone way to define a related set of comparison operators is to write the B-tree compar-
ison support function first, and then write the other functions as one-line wrappers around the support

1158

Extending SQL

function. This reduces the odds of getting inconsistent results for corner cases. Following this approach,
we first write:

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{
 double amag = Mag(a),
 bmag = Mag(b);

 if (amag < bmag)
 return -1;
 if (amag > bmag)
 return 1;
 return 0;
}

Now the less-than function looks like:

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{
 Complex *a = (Complex *) PG_GETARG_POINTER(0);
 Complex *b = (Complex *) PG_GETARG_POINTER(1);

 PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

The other four functions differ only in how they compare the internal function's result to zero.

Next we declare the functions and the operators based on the functions to SQL:

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
 AS 'filename', 'complex_abs_lt'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
 leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
 commutator = > , negator = >= ,
 restrict = scalarltsel, join = scalarltjoinsel
);

It is important to specify the correct commutator and negator operators, as well as suitable restriction
and join selectivity functions, otherwise the optimizer will be unable to make effective use of the index.

Other things worth noting are happening here:

• There can only be one operator named, say, = and taking type complex for both operands. In this
case we don't have any other operator = for complex, but if we were building a practical data type
we'd probably want = to be the ordinary equality operation for complex numbers (and not the
equality of the absolute values). In that case, we'd need to use some other operator name for com-
plex_abs_eq.

• Although PostgreSQL can cope with functions having the same SQL name as long as they have dif-
ferent argument data types, C can only cope with one global function having a given name. So we
shouldn't name the C function something simple like abs_eq. Usually it's a good practice to include
the data type name in the C function name, so as not to conflict with functions for other data types.

1159

Extending SQL

• We could have made the SQL name of the function abs_eq, relying on PostgreSQL to distinguish it
by argument data types from any other SQL function of the same name. To keep the example sim-
ple, we make the function have the same names at the C level and SQL level.

The next step is the registration of the support routine required by B-trees. The example C code that
implements this is in the same file that contains the operator functions. This is how we declare the
function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
 RETURNS integer
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
 DEFAULT FOR TYPE complex USING btree AS
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 complex_abs_cmp(complex, complex);

And we're done! It should now be possible to create and use B-tree indexes on complex columns.

We could have written the operator entries more verbosely, as in:

 OPERATOR 1 < (complex, complex) ,

but there is no need to do so when the operators take the same data type we are defining the operator
class for.

The above example assumes that you want to make this new operator class the default B-tree operator
class for the complex data type. If you don't, just leave out the word DEFAULT.

36.16.5. Operator Classes and Operator Families
So far we have implicitly assumed that an operator class deals with only one data type. While there
certainly can be only one data type in a particular index column, it is often useful to index operations that
compare an indexed column to a value of a different data type. Also, if there is use for a cross-data-type
operator in connection with an operator class, it is often the case that the other data type has a related
operator class of its own. It is helpful to make the connections between related classes explicit, because
this can aid the planner in optimizing SQL queries (particularly for B-tree operator classes, since the
planner contains a great deal of knowledge about how to work with them).

To handle these needs, PostgreSQL uses the concept of an operator family. An operator family contains
one or more operator classes, and can also contain indexable operators and corresponding support
functions that belong to the family as a whole but not to any single class within the family. We say that
such operators and functions are “loose” within the family, as opposed to being bound into a specific
class. Typically each operator class contains single-data-type operators while cross-data-type operators
are loose in the family.

All the operators and functions in an operator family must have compatible semantics, where the com-
patibility requirements are set by the index method. You might therefore wonder why bother to single
out particular subsets of the family as operator classes; and indeed for many purposes the class divisions
are irrelevant and the family is the only interesting grouping. The reason for defining operator classes
is that they specify how much of the family is needed to support any particular index. If there is an index
using an operator class, then that operator class cannot be dropped without dropping the index — but
other parts of the operator family, namely other operator classes and loose operators, could be dropped.

1160

Extending SQL

Thus, an operator class should be specified to contain the minimum set of operators and functions that
are reasonably needed to work with an index on a specific data type, and then related but non-essential
operators can be added as loose members of the operator family.

As an example, PostgreSQL has a built-in B-tree operator family integer_ops, which includes operator
classes int8_ops, int4_ops, and int2_ops for indexes on bigint (int8), integer (int4), and smallint
(int2) columns respectively. The family also contains cross-data-type comparison operators allowing
any two of these types to be compared, so that an index on one of these types can be searched using a
comparison value of another type. The family could be duplicated by these definitions:
CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
 -- standard int8 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint8cmp(int8, int8) ,
 FUNCTION 2 btint8sortsupport(internal) ,
 FUNCTION 3 in_range(int8, int8, int8, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ,
 FUNCTION 6 btint8skipsupport(internal) ;

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
 -- standard int4 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint4cmp(int4, int4) ,
 FUNCTION 2 btint4sortsupport(internal) ,
 FUNCTION 3 in_range(int4, int4, int4, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ,
 FUNCTION 6 btint4skipsupport(internal) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
 -- standard int2 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint2cmp(int2, int2) ,
 FUNCTION 2 btint2sortsupport(internal) ,
 FUNCTION 3 in_range(int2, int2, int2, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ,
 FUNCTION 6 btint2skipsupport(internal) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
 -- cross-type comparisons int8 vs int2
 OPERATOR 1 < (int8, int2) ,
 OPERATOR 2 <= (int8, int2) ,
 OPERATOR 3 = (int8, int2) ,

1161

Extending SQL

 OPERATOR 4 >= (int8, int2) ,
 OPERATOR 5 > (int8, int2) ,
 FUNCTION 1 btint82cmp(int8, int2) ,

 -- cross-type comparisons int8 vs int4
 OPERATOR 1 < (int8, int4) ,
 OPERATOR 2 <= (int8, int4) ,
 OPERATOR 3 = (int8, int4) ,
 OPERATOR 4 >= (int8, int4) ,
 OPERATOR 5 > (int8, int4) ,
 FUNCTION 1 btint84cmp(int8, int4) ,

 -- cross-type comparisons int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- cross-type comparisons int4 vs int8
 OPERATOR 1 < (int4, int8) ,
 OPERATOR 2 <= (int4, int8) ,
 OPERATOR 3 = (int4, int8) ,
 OPERATOR 4 >= (int4, int8) ,
 OPERATOR 5 > (int4, int8) ,
 FUNCTION 1 btint48cmp(int4, int8) ,

 -- cross-type comparisons int2 vs int8
 OPERATOR 1 < (int2, int8) ,
 OPERATOR 2 <= (int2, int8) ,
 OPERATOR 3 = (int2, int8) ,
 OPERATOR 4 >= (int2, int8) ,
 OPERATOR 5 > (int2, int8) ,
 FUNCTION 1 btint28cmp(int2, int8) ,

 -- cross-type comparisons int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ,

 -- cross-type in_range functions
 FUNCTION 3 in_range(int4, int4, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int4, int4, int2, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int4, boolean, boolean) ;

Notice that this definition “overloads” the operator strategy and support function numbers: each number
occurs multiple times within the family. This is allowed so long as each instance of a particular number
has distinct input data types. The instances that have both input types equal to an operator class's input
type are the primary operators and support functions for that operator class, and in most cases should
be declared as part of the operator class rather than as loose members of the family.

In a B-tree operator family, all the operators in the family must sort compatibly, as is specified in detail
in Section 65.1.2. For each operator in the family there must be a support function having the same two

1162

Extending SQL

input data types as the operator. It is recommended that a family be complete, i.e., for each combination
of data types, all operators are included. Each operator class should include just the non-cross-type
operators and support function for its data type.

To build a multiple-data-type hash operator family, compatible hash support functions must be created
for each data type supported by the family. Here compatibility means that the functions are guaranteed
to return the same hash code for any two values that are considered equal by the family's equality
operators, even when the values are of different types. This is usually difficult to accomplish when the
types have different physical representations, but it can be done in some cases. Furthermore, casting a
value from one data type represented in the operator family to another data type also represented in the
operator family via an implicit or binary coercion cast must not change the computed hash value. Notice
that there is only one support function per data type, not one per equality operator. It is recommended
that a family be complete, i.e., provide an equality operator for each combination of data types. Each
operator class should include just the non-cross-type equality operator and the support function for its
data type.

GiST, SP-GiST, and GIN indexes do not have any explicit notion of cross-data-type operations. The set of
operators supported is just whatever the primary support functions for a given operator class can handle.

In BRIN, the requirements depends on the framework that provides the operator classes. For operator
classes based on minmax, the behavior required is the same as for B-tree operator families: all the oper-
ators in the family must sort compatibly, and casts must not change the associated sort ordering.

Note
Prior to PostgreSQL 8.3, there was no concept of operator families, and so any cross-data-type
operators intended to be used with an index had to be bound directly into the index's operator
class. While this approach still works, it is deprecated because it makes an index's dependencies
too broad, and because the planner can handle cross-data-type comparisons more effectively when
both data types have operators in the same operator family.

36.16.6. System Dependencies on Operator Classes
PostgreSQL uses operator classes to infer the properties of operators in more ways than just whether
they can be used with indexes. Therefore, you might want to create operator classes even if you have
no intention of indexing any columns of your data type.

In particular, there are SQL features such as ORDER BY and DISTINCT that require comparison and sorting
of values. To implement these features on a user-defined data type, PostgreSQL looks for the default B-
tree operator class for the data type. The “equals” member of this operator class defines the system's
notion of equality of values for GROUP BY and DISTINCT, and the sort ordering imposed by the operator
class defines the default ORDER BY ordering.

If there is no default B-tree operator class for a data type, the system will look for a default hash operator
class. But since that kind of operator class only provides equality, it is only able to support grouping
not sorting.

When there is no default operator class for a data type, you will get errors like “could not identify an
ordering operator” if you try to use these SQL features with the data type.

Note
In PostgreSQL versions before 7.4, sorting and grouping operations would implicitly use operators
named =, <, and >. The new behavior of relying on default operator classes avoids having to make
any assumption about the behavior of operators with particular names.

1163

Extending SQL

Sorting by a non-default B-tree operator class is possible by specifying the class's less-than operator in
a USING option, for example

SELECT * FROM mytable ORDER BY somecol USING ~<~;

Alternatively, specifying the class's greater-than operator in USING selects a descending-order sort.

Comparison of arrays of a user-defined type also relies on the semantics defined by the type's default
B-tree operator class. If there is no default B-tree operator class, but there is a default hash operator
class, then array equality is supported, but not ordering comparisons.

Another SQL feature that requires even more data-type-specific knowledge is the RANGE offset PRE-
CEDING/FOLLOWING framing option for window functions (see Section 4.2.8). For a query such as

SELECT sum(x) OVER (ORDER BY x RANGE BETWEEN 5 PRECEDING AND 10 FOLLOWING)
 FROM mytable;

it is not sufficient to know how to order by x; the database must also understand how to “subtract
5” or “add 10” to the current row's value of x to identify the bounds of the current window frame.
Comparing the resulting bounds to other rows' values of x is possible using the comparison operators
provided by the B-tree operator class that defines the ORDER BY ordering — but addition and subtraction
operators are not part of the operator class, so which ones should be used? Hard-wiring that choice would
be undesirable, because different sort orders (different B-tree operator classes) might need different
behavior. Therefore, a B-tree operator class can specify an in_range support function that encapsulates
the addition and subtraction behaviors that make sense for its sort order. It can even provide more than
one in_range support function, in case there is more than one data type that makes sense to use as the
offset in RANGE clauses. If the B-tree operator class associated with the window's ORDER BY clause does
not have a matching in_range support function, the RANGE offset PRECEDING/FOLLOWING option is not
supported.

Another important point is that an equality operator that appears in a hash operator family is a candidate
for hash joins, hash aggregation, and related optimizations. The hash operator family is essential here
since it identifies the hash function(s) to use.

36.16.7. Ordering Operators
Some index access methods (currently, only GiST and SP-GiST) support the concept of ordering oper-
ators. What we have been discussing so far are search operators. A search operator is one for which
the index can be searched to find all rows satisfying WHERE indexed_column operator constant. Note
that nothing is promised about the order in which the matching rows will be returned. In contrast, an
ordering operator does not restrict the set of rows that can be returned, but instead determines their
order. An ordering operator is one for which the index can be scanned to return rows in the order rep-
resented by ORDER BY indexed_column operator constant. The reason for defining ordering operators
that way is that it supports nearest-neighbor searches, if the operator is one that measures distance.
For example, a query like

SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

finds the ten places closest to a given target point. A GiST index on the location column can do this
efficiently because <-> is an ordering operator.

While search operators have to return Boolean results, ordering operators usually return some other
type, such as float or numeric for distances. This type is normally not the same as the data type being
indexed. To avoid hard-wiring assumptions about the behavior of different data types, the definition of
an ordering operator is required to name a B-tree operator family that specifies the sort ordering of
the result data type. As was stated in the previous section, B-tree operator families define PostgreSQL's
notion of ordering, so this is a natural representation. Since the point <-> operator returns float8, it
could be specified in an operator class creation command like this:

OPERATOR 15 <-> (point, point) FOR ORDER BY float_ops

1164

Extending SQL

where float_ops is the built-in operator family that includes operations on float8. This declaration
states that the index is able to return rows in order of increasing values of the <-> operator.

36.16.8. Special Features of Operator Classes
There are two special features of operator classes that we have not discussed yet, mainly because they
are not useful with the most commonly used index methods.

Normally, declaring an operator as a member of an operator class (or family) means that the index
method can retrieve exactly the set of rows that satisfy a WHERE condition using the operator. For ex-
ample:

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index
is useful as an inexact guide to the matching rows. For example, if a GiST index stores only bounding
boxes for geometric objects, then it cannot exactly satisfy a WHERE condition that tests overlap between
nonrectangular objects such as polygons. Yet we could use the index to find objects whose bounding
box overlaps the bounding box of the target object, and then do the exact overlap test only on the
objects found by the index. If this scenario applies, the index is said to be “lossy” for the operator. Lossy
index searches are implemented by having the index method return a recheck flag when a row might or
might not really satisfy the query condition. The core system will then test the original query condition
on the retrieved row to see whether it should be returned as a valid match. This approach works if
the index is guaranteed to return all the required rows, plus perhaps some additional rows, which can
be eliminated by performing the original operator invocation. The index methods that support lossy
searches (currently, GiST, SP-GiST and GIN) allow the support functions of individual operator classes
to set the recheck flag, and so this is essentially an operator-class feature.

Consider again the situation where we are storing in the index only the bounding box of a complex object
such as a polygon. In this case there's not much value in storing the whole polygon in the index entry
— we might as well store just a simpler object of type box. This situation is expressed by the STORAGE
option in CREATE OPERATOR CLASS: we'd write something like:

CREATE OPERATOR CLASS polygon_ops
 DEFAULT FOR TYPE polygon USING gist AS
 ...
 STORAGE box;

At present, only the GiST, SP-GiST, GIN and BRIN index methods support a STORAGE type that's differ-
ent from the column data type. The GiST compress and decompress support routines must deal with
data-type conversion when STORAGE is used. SP-GiST likewise requires a compress support function to
convert to the storage type, when that is different; if an SP-GiST opclass also supports retrieving data,
the reverse conversion must be handled by the consistent function. In GIN, the STORAGE type identi-
fies the type of the “key” values, which normally is different from the type of the indexed column —
for example, an operator class for integer-array columns might have keys that are just integers. The
GIN extractValue and extractQuery support routines are responsible for extracting keys from indexed
values. BRIN is similar to GIN: the STORAGE type identifies the type of the stored summary values, and
operator classes' support procedures are responsible for interpreting the summary values correctly.

36.17. Packaging Related Objects into an Extension
A useful extension to PostgreSQL typically includes multiple SQL objects; for example, a new data type
will require new functions, new operators, and probably new index operator classes. It is helpful to
collect all these objects into a single package to simplify database management. PostgreSQL calls such
a package an extension. To define an extension, you need at least a script file that contains the SQL
commands to create the extension's objects, and a control file that specifies a few basic properties of
the extension itself. If the extension includes C code, there will typically also be a shared library file
into which the C code has been built. Once you have these files, a simple CREATE EXTENSION command
loads the objects into your database.

1165

Extending SQL

The main advantage of using an extension, rather than just running the SQL script to load a bunch
of “loose” objects into your database, is that PostgreSQL will then understand that the objects of the
extension go together. You can drop all the objects with a single DROP EXTENSION command (no need
to maintain a separate “uninstall” script). Even more useful, pg_dump knows that it should not dump
the individual member objects of the extension — it will just include a CREATE EXTENSION command in
dumps, instead. This vastly simplifies migration to a new version of the extension that might contain
more or different objects than the old version. Note however that you must have the extension's control,
script, and other files available when loading such a dump into a new database.

PostgreSQL will not let you drop an individual object contained in an extension, except by dropping the
whole extension. Also, while you can change the definition of an extension member object (for example,
via CREATE OR REPLACE FUNCTION for a function), bear in mind that the modified definition will not be
dumped by pg_dump. Such a change is usually only sensible if you concurrently make the same change
in the extension's script file. (But there are special provisions for tables containing configuration data;
see Section 36.17.3.) In production situations, it's generally better to create an extension update script
to perform changes to extension member objects.

The extension script may set privileges on objects that are part of the extension, using GRANT and REVOKE
statements. The final set of privileges for each object (if any are set) will be stored in the pg_init_privs
system catalog. When pg_dump is used, the CREATE EXTENSION command will be included in the dump,
followed by the set of GRANT and REVOKE statements necessary to set the privileges on the objects to
what they were at the time the dump was taken.

PostgreSQL does not currently support extension scripts issuing CREATE POLICY or SECURITY LABEL
statements. These are expected to be set after the extension has been created. All RLS policies and
security labels on extension objects will be included in dumps created by pg_dump.

The extension mechanism also has provisions for packaging modification scripts that adjust the defini-
tions of the SQL objects contained in an extension. For example, if version 1.1 of an extension adds one
function and changes the body of another function compared to 1.0, the extension author can provide
an update script that makes just those two changes. The ALTER EXTENSION UPDATE command can then
be used to apply these changes and track which version of the extension is actually installed in a given
database.

The kinds of SQL objects that can be members of an extension are shown in the description of ALTER
EXTENSION. Notably, objects that are database-cluster-wide, such as databases, roles, and tablespaces,
cannot be extension members since an extension is only known within one database. (Although an ex-
tension script is not prohibited from creating such objects, if it does so they will not be tracked as part
of the extension.) Also notice that while a table can be a member of an extension, its subsidiary objects
such as indexes are not directly considered members of the extension. Another important point is that
schemas can belong to extensions, but not vice versa: an extension as such has an unqualified name and
does not exist “within” any schema. The extension's member objects, however, will belong to schemas
whenever appropriate for their object types. It may or may not be appropriate for an extension to own
the schema(s) its member objects are within.

If an extension's script creates any temporary objects (such as temp tables), those objects are treated as
extension members for the remainder of the current session, but are automatically dropped at session
end, as any temporary object would be. This is an exception to the rule that extension member objects
cannot be dropped without dropping the whole extension.

36.17.1. Extension Files
The CREATE EXTENSION command relies on a control file for each extension, which must be named the
same as the extension with a suffix of .control, and must be placed in the installation's SHAREDIR/
extension directory. There must also be at least one SQL script file, which follows the naming pattern
extension--version.sql (for example, foo--1.0.sql for version 1.0 of extension foo). By default, the
script file(s) are also placed in the SHAREDIR/extension directory; but the control file can specify a
different directory for the script file(s).

1166

Extending SQL

Additional locations for extension control files can be configured using the parameter extension_con-
trol_path.

The file format for an extension control file is the same as for the postgresql.conf file, namely a list
of parameter_name = value assignments, one per line. Blank lines and comments introduced by # are
allowed. Be sure to quote any value that is not a single word or number.

A control file can set the following parameters:

directory (string)
The directory containing the extension's SQL script file(s). Unless an absolute path is given, the name
is relative to the directory where the control file was found. By default, the script files are looked for
in the same directory where the control file was found.

default_version (string)

The default version of the extension (the one that will be installed if no version is specified in CREATE
EXTENSION). Although this can be omitted, that will result in CREATE EXTENSION failing if no VERSION
option appears, so you generally don't want to do that.

comment (string)
A comment (any string) about the extension. The comment is applied when initially creating an ex-
tension, but not during extension updates (since that might override user-added comments). Alter-
natively, the extension's comment can be set by writing a COMMENT command in the script file.

encoding (string)
The character set encoding used by the script file(s). This should be specified if the script files contain
any non-ASCII characters. Otherwise the files will be assumed to be in the database encoding.

module_pathname (string)

The value of this parameter will be substituted for each occurrence of MODULE_PATHNAME in the script
file(s). If it is not set, no substitution is made. Typically, this is set to just shared_library_name and
then MODULE_PATHNAME is used in CREATE FUNCTION commands for C-language functions, so that the
script files do not need to hard-wire the name of the shared library.

requires (string)

A list of names of extensions that this extension depends on, for example requires = 'foo, bar'.
Those extensions must be installed before this one can be installed.

no_relocate (string)
A list of names of extensions that this extension depends on that should be barred from changing their
schemas via ALTER EXTENSION ... SET SCHEMA. This is needed if this extension's script references
the name of a required extension's schema (using the @extschema:name@ syntax) in a way that cannot
track renames.

superuser (boolean)

If this parameter is true (which is the default), only superusers can create the extension or update
it to a new version (but see also trusted, below). If it is set to false, just the privileges required
to execute the commands in the installation or update script are required. This should normally be
set to true if any of the script commands require superuser privileges. (Such commands would fail
anyway, but it's more user-friendly to give the error up front.)

trusted (boolean)

This parameter, if set to true (which is not the default), allows some non-superusers to install an
extension that has superuser set to true. Specifically, installation will be permitted for anyone who
has CREATE privilege on the current database. When the user executing CREATE EXTENSION is not

1167

Extending SQL

a superuser but is allowed to install by virtue of this parameter, then the installation or update
script is run as the bootstrap superuser, not as the calling user. This parameter is irrelevant if su-
peruser is false. Generally, this should not be set true for extensions that could allow access to
otherwise-superuser-only abilities, such as file system access. Also, marking an extension trusted
requires significant extra effort to write the extension's installation and update script(s) securely;
see Section 36.17.6.

relocatable (boolean)
An extension is relocatable if it is possible to move its contained objects into a different schema
after initial creation of the extension. The default is false, i.e., the extension is not relocatable. See
Section 36.17.2 for more information.

schema (string)
This parameter can only be set for non-relocatable extensions. It forces the extension to be loaded into
exactly the named schema and not any other. The schema parameter is consulted only when initially
creating an extension, not during extension updates. See Section 36.17.2 for more information.

In addition to the primary control file extension.control, an extension can have secondary control files
named in the style extension--version.control. If supplied, these must be located in the script file
directory. Secondary control files follow the same format as the primary control file. Any parameters set
in a secondary control file override the primary control file when installing or updating to that version of
the extension. However, the parameters directory and default_version cannot be set in a secondary
control file.

An extension's SQL script files can contain any SQL commands, except for transaction control commands
(BEGIN, COMMIT, etc.) and commands that cannot be executed inside a transaction block (such as VACUUM).
This is because the script files are implicitly executed within a transaction block.

An extension's SQL script files can also contain lines beginning with \echo, which will be ignored (treat-
ed as comments) by the extension mechanism. This provision is commonly used to throw an error if
the script file is fed to psql rather than being loaded via CREATE EXTENSION (see example script in Sec-
tion 36.17.7). Without that, users might accidentally load the extension's contents as “loose” objects
rather than as an extension, a state of affairs that's a bit tedious to recover from.

If the extension script contains the string @extowner@, that string is replaced with the (suitably quoted)
name of the user calling CREATE EXTENSION or ALTER EXTENSION. Typically this feature is used by exten-
sions that are marked trusted to assign ownership of selected objects to the calling user rather than the
bootstrap superuser. (One should be careful about doing so, however. For example, assigning ownership
of a C-language function to a non-superuser would create a privilege escalation path for that user.)

While the script files can contain any characters allowed by the specified encoding, control files should
contain only plain ASCII, because there is no way for PostgreSQL to know what encoding a control file is
in. In practice this is only an issue if you want to use non-ASCII characters in the extension's comment.
Recommended practice in that case is to not use the control file comment parameter, but instead use
COMMENT ON EXTENSION within a script file to set the comment.

36.17.2. Extension Relocatability
Users often wish to load the objects contained in an extension into a different schema than the extension's
author had in mind. There are three supported levels of relocatability:

• A fully relocatable extension can be moved into another schema at any time, even after it's been
loaded into a database. This is done with the ALTER EXTENSION SET SCHEMA command, which au-
tomatically renames all the member objects into the new schema. Normally, this is only possible if
the extension contains no internal assumptions about what schema any of its objects are in. Also,
the extension's objects must all be in one schema to begin with (ignoring objects that do not belong
to any schema, such as procedural languages). Mark a fully relocatable extension by setting relo-
catable = true in its control file.

1168

Extending SQL

• An extension might be relocatable during installation but not afterwards. This is typically the case
if the extension's script file needs to reference the target schema explicitly, for example in setting
search_path properties for SQL functions. For such an extension, set relocatable = false in its
control file, and use @extschema@ to refer to the target schema in the script file. All occurrences of
this string will be replaced by the actual target schema's name (double-quoted if necessary) before
the script is executed. The user can set the target schema using the SCHEMA option of CREATE EX-
TENSION.

• If the extension does not support relocation at all, set relocatable = false in its control file, and
also set schema to the name of the intended target schema. This will prevent use of the SCHEMA
option of CREATE EXTENSION, unless it specifies the same schema named in the control file. This
choice is typically necessary if the extension contains internal assumptions about its schema name
that can't be replaced by uses of @extschema@. The @extschema@ substitution mechanism is avail-
able in this case too, although it is of limited use since the schema name is determined by the con-
trol file.

In all cases, the script file will be executed with search_path initially set to point to the target schema;
that is, CREATE EXTENSION does the equivalent of this:
SET LOCAL search_path TO @extschema@, pg_temp;

This allows the objects created by the script file to go into the target schema. The script file can change
search_path if it wishes, but that is generally undesirable. search_path is restored to its previous setting
upon completion of CREATE EXTENSION.

The target schema is determined by the schema parameter in the control file if that is given, otherwise
by the SCHEMA option of CREATE EXTENSION if that is given, otherwise the current default object creation
schema (the first one in the caller's search_path). When the control file schema parameter is used, the
target schema will be created if it doesn't already exist, but in the other two cases it must already exist.

If any prerequisite extensions are listed in requires in the control file, their target schemas are added to
the initial setting of search_path, following the new extension's target schema. This allows their objects
to be visible to the new extension's script file.

For security, pg_temp is automatically appended to the end of search_path in all cases.

Although a non-relocatable extension can contain objects spread across multiple schemas, it is usual-
ly desirable to place all the objects meant for external use into a single schema, which is considered
the extension's target schema. Such an arrangement works conveniently with the default setting of
search_path during creation of dependent extensions.

If an extension references objects belonging to another extension, it is recommended to schema-qualify
those references. To do that, write @extschema:name@ in the extension's script file, where name is the
name of the other extension (which must be listed in this extension's requires list). This string will
be replaced by the name (double-quoted if necessary) of that extension's target schema. Although this
notation avoids the need to make hard-wired assumptions about schema names in the extension's script
file, its use may embed the other extension's schema name into the installed objects of this extension.
(Typically, that happens when @extschema:name@ is used inside a string literal, such as a function body
or a search_path setting. In other cases, the object reference is reduced to an OID during parsing and
does not require subsequent lookups.) If the other extension's schema name is so embedded, you should
prevent the other extension from being relocated after yours is installed, by adding the name of the
other extension to this one's no_relocate list.

36.17.3. Extension Configuration Tables
Some extensions include configuration tables, which contain data that might be added or changed by
the user after installation of the extension. Ordinarily, if a table is part of an extension, neither the
table's definition nor its content will be dumped by pg_dump. But that behavior is undesirable for a
configuration table; any data changes made by the user need to be included in dumps, or the extension
will behave differently after a dump and restore.

1169

Extending SQL

To solve this problem, an extension's script file can mark a table or a sequence it has created as a
configuration relation, which will cause pg_dump to include the table's or the sequence's contents (not
its definition) in dumps. To do that, call the function pg_extension_config_dump(regclass, text) after
creating the table or the sequence, for example

CREATE TABLE my_config (key text, value text);
CREATE SEQUENCE my_config_seq;

SELECT pg_catalog.pg_extension_config_dump('my_config', '');
SELECT pg_catalog.pg_extension_config_dump('my_config_seq', '');

Any number of tables or sequences can be marked this way. Sequences associated with serial or bigse-
rial columns can be marked as well.

When the second argument of pg_extension_config_dump is an empty string, the entire contents of the
table are dumped by pg_dump. This is usually only correct if the table is initially empty as created by
the extension script. If there is a mixture of initial data and user-provided data in the table, the second
argument of pg_extension_config_dump provides a WHERE condition that selects the data to be dumped.
For example, you might do

CREATE TABLE my_config (key text, value text, standard_entry boolean);

SELECT pg_catalog.pg_extension_config_dump('my_config', 'WHERE NOT standard_entry');

and then make sure that standard_entry is true only in the rows created by the extension's script.

For sequences, the second argument of pg_extension_config_dump has no effect.

More complicated situations, such as initially-provided rows that might be modified by users, can be han-
dled by creating triggers on the configuration table to ensure that modified rows are marked correctly.

You can alter the filter condition associated with a configuration table by calling pg_extension_con-
fig_dump again. (This would typically be useful in an extension update script.) The only way to mark a
table as no longer a configuration table is to dissociate it from the extension with ALTER EXTENSION ...
DROP TABLE.

Note that foreign key relationships between these tables will dictate the order in which the tables are
dumped out by pg_dump. Specifically, pg_dump will attempt to dump the referenced-by table before
the referencing table. As the foreign key relationships are set up at CREATE EXTENSION time (prior to
data being loaded into the tables) circular dependencies are not supported. When circular dependencies
exist, the data will still be dumped out but the dump will not be able to be restored directly and user
intervention will be required.

Sequences associated with serial or bigserial columns need to be directly marked to dump their state.
Marking their parent relation is not enough for this purpose.

36.17.4. Extension Updates
One advantage of the extension mechanism is that it provides convenient ways to manage updates to the
SQL commands that define an extension's objects. This is done by associating a version name or number
with each released version of the extension's installation script. In addition, if you want users to be able
to update their databases dynamically from one version to the next, you should provide update scripts
that make the necessary changes to go from one version to the next. Update scripts have names fol-
lowing the pattern extension--old_version--target_version.sql (for example, foo--1.0--1.1.sql
contains the commands to modify version 1.0 of extension foo into version 1.1).

Given that a suitable update script is available, the command ALTER EXTENSION UPDATE will update an
installed extension to the specified new version. The update script is run in the same environment that
CREATE EXTENSION provides for installation scripts: in particular, search_path is set up in the same way,
and any new objects created by the script are automatically added to the extension. Also, if the script
chooses to drop extension member objects, they are automatically dissociated from the extension.

1170

Extending SQL

If an extension has secondary control files, the control parameters that are used for an update script are
those associated with the script's target (new) version.

ALTER EXTENSION is able to execute sequences of update script files to achieve a requested update. For
example, if only foo--1.0--1.1.sql and foo--1.1--2.0.sql are available, ALTER EXTENSION will apply
them in sequence if an update to version 2.0 is requested when 1.0 is currently installed.

PostgreSQL doesn't assume anything about the properties of version names: for example, it does not
know whether 1.1 follows 1.0. It just matches up the available version names and follows the path that
requires applying the fewest update scripts. (A version name can actually be any string that doesn't
contain -- or leading or trailing -.)

Sometimes it is useful to provide “downgrade” scripts, for example foo--1.1--1.0.sql to allow revert-
ing the changes associated with version 1.1. If you do that, be careful of the possibility that a downgrade
script might unexpectedly get applied because it yields a shorter path. The risky case is where there
is a “fast path” update script that jumps ahead several versions as well as a downgrade script to the
fast path's start point. It might take fewer steps to apply the downgrade and then the fast path than
to move ahead one version at a time. If the downgrade script drops any irreplaceable objects, this will
yield undesirable results.

To check for unexpected update paths, use this command:

SELECT * FROM pg_extension_update_paths('extension_name');

This shows each pair of distinct known version names for the specified extension, together with the
update path sequence that would be taken to get from the source version to the target version, or NULL
if there is no available update path. The path is shown in textual form with -- separators. You can use
regexp_split_to_array(path,'--') if you prefer an array format.

36.17.5. Installing Extensions Using Update Scripts
An extension that has been around for awhile will probably exist in several versions, for which the au-
thor will need to write update scripts. For example, if you have released a foo extension in versions
1.0, 1.1, and 1.2, there should be update scripts foo--1.0--1.1.sql and foo--1.1--1.2.sql. Before
PostgreSQL 10, it was necessary to also create new script files foo--1.1.sql and foo--1.2.sql that
directly build the newer extension versions, or else the newer versions could not be installed directly,
only by installing 1.0 and then updating. That was tedious and duplicative, but now it's unnecessary,
because CREATE EXTENSION can follow update chains automatically. For example, if only the script files
foo--1.0.sql, foo--1.0--1.1.sql, and foo--1.1--1.2.sql are available then a request to install ver-
sion 1.2 is honored by running those three scripts in sequence. The processing is the same as if you'd
first installed 1.0 and then updated to 1.2. (As with ALTER EXTENSION UPDATE, if multiple pathways are
available then the shortest is preferred.) Arranging an extension's script files in this style can reduce
the amount of maintenance effort needed to produce small updates.

If you use secondary (version-specific) control files with an extension maintained in this style, keep in
mind that each version needs a control file even if it has no stand-alone installation script, as that control
file will determine how the implicit update to that version is performed. For example, if foo--1.0.con-
trol specifies requires = 'bar' but foo's other control files do not, the extension's dependency on bar
will be dropped when updating from 1.0 to another version.

36.17.6. Security Considerations for Extensions
Widely-distributed extensions should assume little about the database they occupy. Therefore, it's ap-
propriate to write functions provided by an extension in a secure style that cannot be compromised by
search-path-based attacks.

An extension that has the superuser property set to true must also consider security hazards for the
actions taken within its installation and update scripts. It is not terribly difficult for a malicious user to
create trojan-horse objects that will compromise later execution of a carelessly-written extension script,
allowing that user to acquire superuser privileges.

1171

Extending SQL

If an extension is marked trusted, then its installation schema can be selected by the installing user,
who might intentionally use an insecure schema in hopes of gaining superuser privileges. Therefore, a
trusted extension is extremely exposed from a security standpoint, and all its script commands must be
carefully examined to ensure that no compromise is possible.

Advice about writing functions securely is provided in Section 36.17.6.1 below, and advice about writing
installation scripts securely is provided in Section 36.17.6.2.

36.17.6.1. Security Considerations for Extension Functions
SQL-language and PL-language functions provided by extensions are at risk of search-path-based attacks
when they are executed, since parsing of these functions occurs at execution time not creation time.

The CREATE FUNCTION reference page contains advice about writing SECURITY DEFINER functions safely.
It's good practice to apply those techniques for any function provided by an extension, since the function
might be called by a high-privilege user.

If you cannot set the search_path to contain only secure schemas, assume that each unqualified name
could resolve to an object that a malicious user has defined. Beware of constructs that depend on
search_path implicitly; for example, IN and CASE expression WHEN always select an operator using the
search path. In their place, use OPERATOR(schema.=) ANY and CASE WHEN expression.

A general-purpose extension usually should not assume that it's been installed into a secure schema,
which means that even schema-qualified references to its own objects are not entirely risk-free.
For example, if the extension has defined a function myschema.myfunc(bigint) then a call such as
myschema.myfunc(42) could be captured by a hostile function myschema.myfunc(integer). Be careful
that the data types of function and operator parameters exactly match the declared argument types,
using explicit casts where necessary.

36.17.6.2. Security Considerations for Extension Scripts
An extension installation or update script should be written to guard against search-path-based attacks
occurring when the script executes. If an object reference in the script can be made to resolve to some
other object than the script author intended, then a compromise might occur immediately, or later when
the mis-defined extension object is used.

DDL commands such as CREATE FUNCTION and CREATE OPERATOR CLASS are generally secure, but beware
of any command having a general-purpose expression as a component. For example, CREATE VIEW needs
to be vetted, as does a DEFAULT expression in CREATE FUNCTION.

Sometimes an extension script might need to execute general-purpose SQL, for example to make cat-
alog adjustments that aren't possible via DDL. Be careful to execute such commands with a secure
search_path; do not trust the path provided by CREATE/ALTER EXTENSION to be secure. Best practice
is to temporarily set search_path to pg_catalog, pg_temp and insert references to the extension's
installation schema explicitly where needed. (This practice might also be helpful for creating views.)
Examples can be found in the contrib modules in the PostgreSQL source code distribution.

Secure cross-extension references typically require schema-qualification of the names of the other ex-
tension's objects, using the @extschema:name@ syntax, in addition to careful matching of argument types
for functions and operators.

36.17.7. Extension Example
Here is a complete example of an SQL-only extension, a two-element composite type that can store any
type of value in its slots, which are named “k” and “v”. Non-text values are automatically coerced to
text for storage.

The script file pair--1.0.sql looks like this:
-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION pair" to load this file. \quit

1172

Extending SQL

CREATE TYPE pair AS (k text, v text);

CREATE FUNCTION pair(text, text)
RETURNS pair LANGUAGE SQL AS 'SELECT ROW($1, $2)::@extschema@.pair;';

CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = text, FUNCTION = pair);

-- "SET search_path" is easy to get right, but qualified names perform better.
CREATE FUNCTION lower(pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW(lower($1.k), lower($1.v))::@extschema@.pair;'
SET search_path = pg_temp;

CREATE FUNCTION pair_concat(pair, pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW($1.k OPERATOR(pg_catalog.||) $2.k,
 $1.v OPERATOR(pg_catalog.||) $2.v)::@extschema@.pair;';

The control file pair.control looks like this:
pair extension
comment = 'A key/value pair data type'
default_version = '1.0'
cannot be relocatable because of use of @extschema@
relocatable = false

While you hardly need a makefile to install these two files into the correct directory, you could use a
Makefile containing this:
EXTENSION = pair
DATA = pair--1.0.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

This makefile relies on PGXS, which is described in Section 36.18. The command make install will
install the control and script files into the correct directory as reported by pg_config.

Once the files are installed, use the CREATE EXTENSION command to load the objects into any particular
database.

36.18. Extension Building Infrastructure
If you are thinking about distributing your PostgreSQL extension modules, setting up a portable build
system for them can be fairly difficult. Therefore the PostgreSQL installation provides a build infrastruc-
ture for extensions, called PGXS, so that simple extension modules can be built simply against an already
installed server. PGXS is mainly intended for extensions that include C code, although it can be used
for pure-SQL extensions too. Note that PGXS is not intended to be a universal build system framework
that can be used to build any software interfacing to PostgreSQL; it simply automates common build
rules for simple server extension modules. For more complicated packages, you might need to write
your own build system.

To use the PGXS infrastructure for your extension, you must write a simple makefile. In the makefile,
you need to set some variables and include the global PGXS makefile. Here is an example that builds an
extension module named isbn_issn, consisting of a shared library containing some C code, an exten-
sion control file, an SQL script, an include file (only needed if other modules might need to access the
extension functions without going via SQL), and a documentation text file:
MODULES = isbn_issn

1173

Extending SQL

EXTENSION = isbn_issn
DATA = isbn_issn--1.0.sql
DOCS = README.isbn_issn
HEADERS_isbn_issn = isbn_issn.h

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

The last three lines should always be the same. Earlier in the file, you assign variables or add custom
make rules.

Set one of these three variables to specify what is built:
MODULES

list of shared-library objects to be built from source files with same stem (do not include library
suffixes in this list)

MODULE_big

a shared library to build from multiple source files (list object files in OBJS)

PROGRAM

an executable program to build (list object files in OBJS)

The following variables can also be set:
EXTENSION

extension name(s); for each name you must provide an extension.control file, which will be in-
stalled into prefix/share/extension

MODULEDIR

subdirectory of prefix/share into which DATA and DOCS files should be installed (if not set, default
is extension if EXTENSION is set, or contrib if not)

DATA

random files to install into prefix/share/$MODULEDIR

DATA_built

random files to install into prefix/share/$MODULEDIR, which need to be built first

DATA_TSEARCH

random files to install under prefix/share/tsearch_data

DOCS

random files to install under prefix/doc/$MODULEDIR

HEADERS
HEADERS_built

Files to (optionally build and) install under prefix/include/server/$MODULEDIR/$MODULE_big.

Unlike DATA_built, files in HEADERS_built are not removed by the clean target; if you want them
removed, also add them to EXTRA_CLEAN or add your own rules to do it.

HEADERS_$MODULE
HEADERS_built_$MODULE

Files to install (after building if specified) under prefix/include/server/$MODULEDIR/$MODULE,
where $MODULE must be a module name used in MODULES or MODULE_big.

1174

Extending SQL

Unlike DATA_built, files in HEADERS_built_$MODULE are not removed by the clean target; if you want
them removed, also add them to EXTRA_CLEAN or add your own rules to do it.

It is legal to use both variables for the same module, or any combination, unless you have two module
names in the MODULES list that differ only by the presence of a prefix built_, which would cause am-
biguity. In that (hopefully unlikely) case, you should use only the HEADERS_built_$MODULE variables.

SCRIPTS

script files (not binaries) to install into prefix/bin

SCRIPTS_built

script files (not binaries) to install into prefix/bin, which need to be built first

REGRESS

list of regression test cases (without suffix), see below

REGRESS_OPTS

additional switches to pass to pg_regress

ISOLATION

list of isolation test cases, see below for more details

ISOLATION_OPTS

additional switches to pass to pg_isolation_regress

TAP_TESTS

switch defining if TAP tests need to be run, see below

NO_INSTALL

don't define an install target, useful for test modules that don't need their build products to be
installed

NO_INSTALLCHECK

don't define an installcheck target, useful e.g., if tests require special configuration, or don't use
pg_regress

EXTRA_CLEAN

extra files to remove in make clean

PG_CPPFLAGS

will be prepended to CPPFLAGS

PG_CFLAGS

will be appended to CFLAGS

PG_CXXFLAGS

will be appended to CXXFLAGS

PG_LDFLAGS

will be prepended to LDFLAGS

PG_LIBS

will be added to PROGRAM link line

1175

Extending SQL

SHLIB_LINK

will be added to MODULE_big link line

PG_CONFIG

path to pg_config program for the PostgreSQL installation to build against (typically just pg_config
to use the first one in your PATH)

Put this makefile as Makefile in the directory which holds your extension. Then you can do make to com-
pile, and then make install to install your module. By default, the extension is compiled and installed
for the PostgreSQL installation that corresponds to the first pg_config program found in your PATH. You
can use a different installation by setting PG_CONFIG to point to its pg_config program, either within
the makefile or on the make command line.

You can select a separate directory prefix in which to install your extension's files, by setting the make
variable prefix when executing make install like so:

make install prefix=/usr/local/postgresql

This will install the extension control and SQL files into /usr/local/postgresql/share and the shared
modules into /usr/local/postgresql/lib. If the prefix does not include the strings postgres or pgsql,
such as

make install prefix=/usr/local/extras

then postgresql will be appended to the directory names, installing the control and SQL files into /usr/
local/extras/share/postgresql/extension and the shared modules into /usr/local/extras/lib/
postgresql. Either way, you'll need to set extension_control_path and dynamic_library_path to enable
the PostgreSQL server to find the files:

extension_control_path = '/usr/local/extras/share/postgresql:$system'
dynamic_library_path = '/usr/local/extras/lib/postgresql:$libdir'

You can also run make in a directory outside the source tree of your extension, if you want to keep the
build directory separate. This procedure is also called a VPATH build. Here's how:

mkdir build_dir
cd build_dir
make -f /path/to/extension/source/tree/Makefile
make -f /path/to/extension/source/tree/Makefile install

Alternatively, you can set up a directory for a VPATH build in a similar way to how it is done for the core
code. One way to do this is using the core script config/prep_buildtree. Once this has been done you
can build by setting the make variable VPATH like this:

make VPATH=/path/to/extension/source/tree
make VPATH=/path/to/extension/source/tree install

This procedure can work with a greater variety of directory layouts.

The scripts listed in the REGRESS variable are used for regression testing of your module, which can be
invoked by make installcheck after doing make install. For this to work you must have a running
PostgreSQL server. The script files listed in REGRESS must appear in a subdirectory named sql/ in your
extension's directory. These files must have extension .sql, which must not be included in the REGRESS
list in the makefile. For each test there should also be a file containing the expected output in a subdi-
rectory named expected/, with the same stem and extension .out. make installcheck executes each
test script with psql, and compares the resulting output to the matching expected file. Any differences
will be written to the file regression.diffs in diff -c format. Note that trying to run a test that is
missing its expected file will be reported as “trouble”, so make sure you have all expected files.

The scripts listed in the ISOLATION variable are used for tests stressing behavior of concurrent session
with your module, which can be invoked by make installcheck after doing make install. For this

1176

Extending SQL

to work you must have a running PostgreSQL server. The script files listed in ISOLATION must appear
in a subdirectory named specs/ in your extension's directory. These files must have extension .spec,
which must not be included in the ISOLATION list in the makefile. For each test there should also be a file
containing the expected output in a subdirectory named expected/, with the same stem and extension
.out. make installcheck executes each test script, and compares the resulting output to the matching
expected file. Any differences will be written to the file output_iso/regression.diffs in diff -c for-
mat. Note that trying to run a test that is missing its expected file will be reported as “trouble”, so make
sure you have all expected files.

TAP_TESTS enables the use of TAP tests. Data from each run is present in a subdirectory named tm-
p_check/. See also Section 31.4 for more details.

Tip
The easiest way to create the expected files is to create empty files, then do a test run (which will
of course report differences). Inspect the actual result files found in the results/ directory (for
tests in REGRESS), or output_iso/results/ directory (for tests in ISOLATION), then copy them to
expected/ if they match what you expect from the test.

1177

Chapter 37. Triggers
This chapter provides general information about writing trigger functions. Trigger functions can be
written in most of the available procedural languages, including PL/pgSQL (Chapter 41), PL/Tcl (Chap-
ter 42), PL/Perl (Chapter 43), and PL/Python (PL/Python). After reading this chapter, you should consult
the chapter for your favorite procedural language to find out the language-specific details of writing a
trigger in it.

It is also possible to write a trigger function in C, although most people find it easier to use one of the
procedural languages. It is not currently possible to write a trigger function in the plain SQL function
language.

37.1. Overview of Trigger Behavior
A trigger is a specification that the database should automatically execute a particular function whenever
a certain type of operation is performed. Triggers can be attached to tables (partitioned or not), views,
and foreign tables.

On tables and foreign tables, triggers can be defined to execute either before or after any INSERT, UPDATE,
or DELETE operation, either once per modified row, or once per SQL statement. UPDATE triggers can
moreover be set to fire only if certain columns are mentioned in the SET clause of the UPDATE statement.
Triggers can also fire for TRUNCATE statements. If a trigger event occurs, the trigger's function is called
at the appropriate time to handle the event.

On views, triggers can be defined to execute instead of INSERT, UPDATE, or DELETE operations. Such
INSTEAD OF triggers are fired once for each row that needs to be modified in the view. It is the respon-
sibility of the trigger's function to perform the necessary modifications to the view's underlying base
table(s) and, where appropriate, return the modified row as it will appear in the view. Triggers on views
can also be defined to execute once per SQL statement, before or after INSERT, UPDATE, or DELETE oper-
ations. However, such triggers are fired only if there is also an INSTEAD OF trigger on the view. Other-
wise, any statement targeting the view must be rewritten into a statement affecting its underlying base
table(s), and then the triggers that will be fired are the ones attached to the base table(s).

The trigger function must be defined before the trigger itself can be created. The trigger function must be
declared as a function taking no arguments and returning type trigger. (The trigger function receives its
input through a specially-passed TriggerData structure, not in the form of ordinary function arguments.)

Once a suitable trigger function has been created, the trigger is established with CREATE TRIGGER.
The same trigger function can be used for multiple triggers.

PostgreSQL offers both per-row triggers and per-statement triggers. With a per-row trigger, the trigger
function is invoked once for each row that is affected by the statement that fired the trigger. In contrast,
a per-statement trigger is invoked only once when an appropriate statement is executed, regardless of
the number of rows affected by that statement. In particular, a statement that affects zero rows will
still result in the execution of any applicable per-statement triggers. These two types of triggers are
sometimes called row-level triggers and statement-level triggers, respectively. Triggers on TRUNCATE
may only be defined at statement level, not per-row.

Triggers are also classified according to whether they fire before, after, or instead of the operation. These
are referred to as BEFORE triggers, AFTER triggers, and INSTEAD OF triggers respectively. Statement-level
BEFORE triggers naturally fire before the statement starts to do anything, while statement-level AFTER
triggers fire at the very end of the statement. These types of triggers may be defined on tables, views, or
foreign tables. Row-level BEFORE triggers fire immediately before a particular row is operated on, while
row-level AFTER triggers fire at the end of the statement (but before any statement-level AFTER triggers).
These types of triggers may only be defined on tables and foreign tables, not views. INSTEAD OF triggers
may only be defined on views, and only at row level; they fire immediately as each row in the view is
identified as needing to be operated on.

1178

Triggers

The execution of an AFTER trigger can be deferred to the end of the transaction, rather than the end of
the statement, if it was defined as a constraint trigger. In all cases, a trigger is executed as part of the
same transaction as the statement that triggered it, so if either the statement or the trigger causes an
error, the effects of both will be rolled back. Also, the trigger will always run as the role that queued
the trigger event, unless the trigger function is marked as SECURITY DEFINER, in which case it will run
as the function owner.

If an INSERT contains an ON CONFLICT DO UPDATE clause, it is possible for row-level BEFORE INSERT and
then BEFORE UPDATE triggers to be executed on triggered rows. Such interactions can be complex if the
triggers are not idempotent because change made by BEFORE INSERT triggers will be seen by BEFORE
UPDATE triggers, including changes to EXCLUDED columns.

Note that statement-level UPDATE triggers are executed when ON CONFLICT DO UPDATE is specified,
regardless of whether or not any rows were affected by the UPDATE (and regardless of whether the
alternative UPDATE path was ever taken). An INSERT with an ON CONFLICT DO UPDATE clause will execute
statement-level BEFORE INSERT triggers first, then statement-level BEFORE UPDATE triggers, followed by
statement-level AFTER UPDATE triggers and finally statement-level AFTER INSERT triggers.

A statement that targets a parent table in an inheritance or partitioning hierarchy does not cause the
statement-level triggers of affected child tables to be fired; only the parent table's statement-level trig-
gers are fired. However, row-level triggers of any affected child tables will be fired.

If an UPDATE on a partitioned table causes a row to move to another partition, it will be performed as a
DELETE from the original partition followed by an INSERT into the new partition. In this case, all row-level
BEFORE UPDATE triggers and all row-level BEFORE DELETE triggers are fired on the original partition. Then
all row-level BEFORE INSERT triggers are fired on the destination partition. The possibility of surprising
outcomes should be considered when all these triggers affect the row being moved. As far as AFTER
ROW triggers are concerned, AFTER DELETE and AFTER INSERT triggers are applied; but AFTER UPDATE
triggers are not applied because the UPDATE has been converted to a DELETE and an INSERT. As far as
statement-level triggers are concerned, none of the DELETE or INSERT triggers are fired, even if row
movement occurs; only the UPDATE triggers defined on the target table used in the UPDATE statement
will be fired.

No separate triggers are defined for MERGE. Instead, statement-level or row-level UPDATE, DELETE, and
INSERT triggers are fired depending on (for statement-level triggers) what actions are specified in the
MERGE query and (for row-level triggers) what actions are performed.

While running a MERGE command, statement-level BEFORE and AFTER triggers are fired for events spec-
ified in the actions of the MERGE command, irrespective of whether or not the action is ultimately per-
formed. This is the same as an UPDATE statement that updates no rows, yet statement-level triggers
are fired. The row-level triggers are fired only when a row is actually updated, inserted or deleted. So
it's perfectly legal that while statement-level triggers are fired for certain types of action, no row-level
triggers are fired for the same kind of action.

Trigger functions invoked by per-statement triggers should always return NULL. Trigger functions in-
voked by per-row triggers can return a table row (a value of type HeapTuple) to the calling executor, if
they choose. A row-level trigger fired before an operation has the following choices:

• It can return NULL to skip the operation for the current row. This instructs the executor to not per-
form the row-level operation that invoked the trigger (the insertion, modification, or deletion of a
particular table row).

• For row-level INSERT and UPDATE triggers only, the returned row becomes the row that will be in-
serted or will replace the row being updated. This allows the trigger function to modify the row be-
ing inserted or updated.

A row-level BEFORE trigger that does not intend to cause either of these behaviors must be careful to
return as its result the same row that was passed in (that is, the NEW row for INSERT and UPDATE triggers,
the OLD row for DELETE triggers).

1179

Triggers

A row-level INSTEAD OF trigger should either return NULL to indicate that it did not modify any data from
the view's underlying base tables, or it should return the view row that was passed in (the NEW row for
INSERT and UPDATE operations, or the OLD row for DELETE operations). A nonnull return value is used to
signal that the trigger performed the necessary data modifications in the view. This will cause the count
of the number of rows affected by the command to be incremented. For INSERT and UPDATE operations
only, the trigger may modify the NEW row before returning it. This will change the data returned by
INSERT RETURNING or UPDATE RETURNING, and is useful when the view will not show exactly the same
data that was provided.

The return value is ignored for row-level triggers fired after an operation, and so they can return NULL.

Some considerations apply for generated columns. Stored generated columns are computed after BEFORE
triggers and before AFTER triggers. Therefore, the generated value can be inspected in AFTER triggers. In
BEFORE triggers, the OLD row contains the old generated value, as one would expect, but the NEW row does
not yet contain the new generated value and should not be accessed. In the C language interface, the
content of the column is undefined at this point; a higher-level programming language should prevent
access to a stored generated column in the NEW row in a BEFORE trigger. Changes to the value of a
generated column in a BEFORE trigger are ignored and will be overwritten. Virtual generated columns are
never computed when triggers fire. In the C language interface, their content is undefined in a trigger
function. Higher-level programming languages should prevent access to virtual generated columns in
triggers.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired in
alphabetical order by trigger name. In the case of BEFORE and INSTEAD OF triggers, the possibly-modified
row returned by each trigger becomes the input to the next trigger. If any BEFORE or INSTEAD OF trigger
returns NULL, the operation is abandoned for that row and subsequent triggers are not fired (for that
row).

A trigger definition can also specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values
of columns of the row. (Statement-level triggers can also have WHEN conditions, although the feature is
not so useful for them.) In a BEFORE trigger, the WHEN condition is evaluated just before the function is
or would be executed, so using WHEN is not materially different from testing the same condition at the
beginning of the trigger function. However, in an AFTER trigger, the WHEN condition is evaluated just
after the row update occurs, and it determines whether an event is queued to fire the trigger at the
end of statement. So when an AFTER trigger's WHEN condition does not return true, it is not necessary to
queue an event nor to re-fetch the row at end of statement. This can result in significant speedups in
statements that modify many rows, if the trigger only needs to be fired for a few of the rows. INSTEAD
OF triggers do not support WHEN conditions.

Typically, row-level BEFORE triggers are used for checking or modifying the data that will be inserted
or updated. For example, a BEFORE trigger might be used to insert the current time into a timestamp
column, or to check that two elements of the row are consistent. Row-level AFTER triggers are most
sensibly used to propagate the updates to other tables, or make consistency checks against other tables.
The reason for this division of labor is that an AFTER trigger can be certain it is seeing the final value
of the row, while a BEFORE trigger cannot; there might be other BEFORE triggers firing after it. If you
have no specific reason to make a trigger BEFORE or AFTER, the BEFORE case is more efficient, since the
information about the operation doesn't have to be saved until end of statement.

If a trigger function executes SQL commands then these commands might fire triggers again. This is
known as cascading triggers. There is no direct limitation on the number of cascade levels. It is possible
for cascades to cause a recursive invocation of the same trigger; for example, an INSERT trigger might
execute a command that inserts an additional row into the same table, causing the INSERT trigger to be
fired again. It is the trigger programmer's responsibility to avoid infinite recursion in such scenarios.

If a foreign key constraint specifies referential actions (that is, cascading updates or deletes), those
actions are performed via ordinary SQL UPDATE or DELETE commands on the referencing table. In par-
ticular, any triggers that exist on the referencing table will be fired for those changes. If such a trigger

1180

Triggers

modifies or blocks the effect of one of these commands, the end result could be to break referential
integrity. It is the trigger programmer's responsibility to avoid that.

When a trigger is being defined, arguments can be specified for it. The purpose of including arguments
in the trigger definition is to allow different triggers with similar requirements to call the same function.
As an example, there could be a generalized trigger function that takes as its arguments two column
names and puts the current user in one and the current time stamp in the other. Properly written, this
trigger function would be independent of the specific table it is triggering on. So the same function
could be used for INSERT events on any table with suitable columns, to automatically track creation of
records in a transaction table for example. It could also be used to track last-update events if defined
as an UPDATE trigger.

Each programming language that supports triggers has its own method for making the trigger input
data available to the trigger function. This input data includes the type of trigger event (e.g., INSERT
or UPDATE) as well as any arguments that were listed in CREATE TRIGGER. For a row-level trigger, the
input data also includes the NEW row for INSERT and UPDATE triggers, and/or the OLD row for UPDATE and
DELETE triggers.

By default, statement-level triggers do not have any way to examine the individual row(s) modified by the
statement. But an AFTER STATEMENT trigger can request that transition tables be created to make the sets
of affected rows available to the trigger. AFTER ROW triggers can also request transition tables, so that
they can see the total changes in the table as well as the change in the individual row they are currently
being fired for. The method for examining the transition tables again depends on the programming
language that is being used, but the typical approach is to make the transition tables act like read-only
temporary tables that can be accessed by SQL commands issued within the trigger function.

37.2. Visibility of Data Changes
If you execute SQL commands in your trigger function, and these commands access the table that the
trigger is for, then you need to be aware of the data visibility rules, because they determine whether
these SQL commands will see the data change that the trigger is fired for. Briefly:
• Statement-level triggers follow simple visibility rules: none of the changes made by a statement are

visible to statement-level BEFORE triggers, whereas all modifications are visible to statement-level
AFTER triggers.

• The data change (insertion, update, or deletion) causing the trigger to fire is naturally not visible to
SQL commands executed in a row-level BEFORE trigger, because it hasn't happened yet.

• However, SQL commands executed in a row-level BEFORE trigger will see the effects of data
changes for rows previously processed in the same outer command. This requires caution, since the
ordering of these change events is not in general predictable; an SQL command that affects multi-
ple rows can visit the rows in any order.

• Similarly, a row-level INSTEAD OF trigger will see the effects of data changes made by previous fir-
ings of INSTEAD OF triggers in the same outer command.

• When a row-level AFTER trigger is fired, all data changes made by the outer command are already
complete, and are visible to the invoked trigger function.

If your trigger function is written in any of the standard procedural languages, then the above statements
apply only if the function is declared VOLATILE. Functions that are declared STABLE or IMMUTABLE will
not see changes made by the calling command in any case.

Further information about data visibility rules can be found in Section 45.5. The example in Section 37.4
contains a demonstration of these rules.

37.3. Writing Trigger Functions in C
This section describes the low-level details of the interface to a trigger function. This information is only
needed when writing trigger functions in C. If you are using a higher-level language then these details

1181

Triggers

are handled for you. In most cases you should consider using a procedural language before writing your
triggers in C. The documentation of each procedural language explains how to write a trigger in that
language.

Trigger functions must use the “version 1” function manager interface.

When a function is called by the trigger manager, it is not passed any normal arguments, but it is passed
a “context” pointer pointing to a TriggerData structure. C functions can check whether they were called
from the trigger manager or not by executing the macro:

CALLED_AS_TRIGGER(fcinfo)

which expands to:

((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

If this returns true, then it is safe to cast fcinfo->context to type TriggerData * and make use of
the pointed-to TriggerData structure. The function must not alter the TriggerData structure or any of
the data it points to.

struct TriggerData is defined in commands/trigger.h:

typedef struct TriggerData
{
 NodeTag type;
 TriggerEvent tg_event;
 Relation tg_relation;
 HeapTuple tg_trigtuple;
 HeapTuple tg_newtuple;
 Trigger *tg_trigger;
 TupleTableSlot *tg_trigslot;
 TupleTableSlot *tg_newslot;
 Tuplestorestate *tg_oldtable;
 Tuplestorestate *tg_newtable;
 const Bitmapset *tg_updatedcols;
} TriggerData;

where the members are defined as follows:

type

Always T_TriggerData.

tg_event

Describes the event for which the function is called. You can use the following macros to examine
tg_event:

TRIGGER_FIRED_BEFORE(tg_event)

Returns true if the trigger fired before the operation.

TRIGGER_FIRED_AFTER(tg_event)

Returns true if the trigger fired after the operation.

TRIGGER_FIRED_INSTEAD(tg_event)

Returns true if the trigger fired instead of the operation.

TRIGGER_FIRED_FOR_ROW(tg_event)

Returns true if the trigger fired for a row-level event.

1182

Triggers

TRIGGER_FIRED_FOR_STATEMENT(tg_event)

Returns true if the trigger fired for a statement-level event.

TRIGGER_FIRED_BY_INSERT(tg_event)

Returns true if the trigger was fired by an INSERT command.

TRIGGER_FIRED_BY_UPDATE(tg_event)

Returns true if the trigger was fired by an UPDATE command.

TRIGGER_FIRED_BY_DELETE(tg_event)

Returns true if the trigger was fired by a DELETE command.

TRIGGER_FIRED_BY_TRUNCATE(tg_event)

Returns true if the trigger was fired by a TRUNCATE command.

tg_relation

A pointer to a structure describing the relation that the trigger fired for. Look at utils/rel.h for
details about this structure. The most interesting things are tg_relation->rd_att (descriptor of
the relation tuples) and tg_relation->rd_rel->relname (relation name; the type is not char* but
NameData; use SPI_getrelname(tg_relation) to get a char* if you need a copy of the name).

tg_trigtuple

A pointer to the row for which the trigger was fired. This is the row being inserted, updated, or
deleted. If this trigger was fired for an INSERT or DELETE then this is what you should return from
the function if you don't want to replace the row with a different one (in the case of INSERT) or skip
the operation. For triggers on foreign tables, values of system columns herein are unspecified.

tg_newtuple

A pointer to the new version of the row, if the trigger was fired for an UPDATE, and NULL if it is for an
INSERT or a DELETE. This is what you have to return from the function if the event is an UPDATE and
you don't want to replace this row by a different one or skip the operation. For triggers on foreign
tables, values of system columns herein are unspecified.

tg_trigger

A pointer to a structure of type Trigger, defined in utils/reltrigger.h:

typedef struct Trigger
{
 Oid tgoid;
 char *tgname;
 Oid tgfoid;
 int16 tgtype;
 char tgenabled;
 bool tgisinternal;
 bool tgisclone;
 Oid tgconstrrelid;
 Oid tgconstrindid;
 Oid tgconstraint;
 bool tgdeferrable;
 bool tginitdeferred;
 int16 tgnargs;
 int16 tgnattr;

1183

Triggers

 int16 *tgattr;
 char **tgargs;
 char *tgqual;
 char *tgoldtable;
 char *tgnewtable;
} Trigger;

where tgname is the trigger's name, tgnargs is the number of arguments in tgargs, and tgargs is an
array of pointers to the arguments specified in the CREATE TRIGGER statement. The other members
are for internal use only.

tg_trigslot

The slot containing tg_trigtuple, or a NULL pointer if there is no such tuple.

tg_newslot

The slot containing tg_newtuple, or a NULL pointer if there is no such tuple.

tg_oldtable

A pointer to a structure of type Tuplestorestate containing zero or more rows in the format specified
by tg_relation, or a NULL pointer if there is no OLD TABLE transition relation.

tg_newtable

A pointer to a structure of type Tuplestorestate containing zero or more rows in the format specified
by tg_relation, or a NULL pointer if there is no NEW TABLE transition relation.

tg_updatedcols

For UPDATE triggers, a bitmap set indicating the columns that were updated by the triggering com-
mand. Generic trigger functions can use this to optimize actions by not having to deal with columns
that were not changed.

As an example, to determine whether a column with attribute number attnum (1-based) is a member
of this bitmap set, call bms_is_member(attnum - FirstLowInvalidHeapAttributeNumber, trig-
data->tg_updatedcols)).

For triggers other than UPDATE triggers, this will be NULL.

To allow queries issued through SPI to reference transition tables, see SPI_register_trigger_data.

A trigger function must return either a HeapTuple pointer or a NULL pointer (not an SQL null value, that
is, do not set isNull true). Be careful to return either tg_trigtuple or tg_newtuple, as appropriate, if
you don't want to modify the row being operated on.

37.4. A Complete Trigger Example
Here is a very simple example of a trigger function written in C. (Examples of triggers written in proce-
dural languages can be found in the documentation of the procedural languages.)

The function trigf reports the number of rows in the table ttest and skips the actual operation if the
command attempts to insert a null value into the column x. (So the trigger acts as a not-null constraint
but doesn't abort the transaction.)

First, the table definition:

CREATE TABLE ttest (
 x integer

1184

Triggers

);

This is the source code of the trigger function:
#include "postgres.h"
#include "fmgr.h"
#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* ... triggers ... */
#include "utils/rel.h" /* ... and relations */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{
 TriggerData *trigdata = (TriggerData *) fcinfo->context;
 TupleDesc tupdesc;
 HeapTuple rettuple;
 char *when;
 bool checknull = false;
 bool isnull;
 int ret, i;

 /* make sure it's called as a trigger at all */
 if (!CALLED_AS_TRIGGER(fcinfo))
 elog(ERROR, "trigf: not called by trigger manager");

 /* tuple to return to executor */
 if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
 rettuple = trigdata->tg_newtuple;
 else
 rettuple = trigdata->tg_trigtuple;

 /* check for null values */
 if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)
 && TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 checknull = true;

 if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 when = "before";
 else
 when = "after ";

 tupdesc = trigdata->tg_relation->rd_att;

 /* connect to SPI manager */
 SPI_connect();

 /* get number of rows in table */
 ret = SPI_exec("SELECT count(*) FROM ttest", 0);

 if (ret < 0)
 elog(ERROR, "trigf (fired %s): SPI_exec returned %d", when, ret);

 /* count(*) returns int8, so be careful to convert */
 i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
 SPI_tuptable->tupdesc,

1185

Triggers

 1,
 &isnull));

 elog (INFO, "trigf (fired %s): there are %d rows in ttest", when, i);

 SPI_finish();

 if (checknull)
 {
 SPI_getbinval(rettuple, tupdesc, 1, &isnull);
 if (isnull)
 rettuple = NULL;
 }

 return PointerGetDatum(rettuple);
}

After you have compiled the source code (see Section 36.10.5), declare the function and the triggers:

CREATE FUNCTION trigf() RETURNS trigger
 AS 'filename'
 LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

Now you can test the operation of the trigger:

=> INSERT INTO ttest VALUES (NULL);
INFO: trigf (fired before): there are 0 rows in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

=> SELECT * FROM ttest;
 x

(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are 0 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167793 1
vac=> SELECT * FROM ttest;
 x

 1
(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
 ^^^^^^

1186

Triggers

 remember what we said about visibility.
INSERT 167794 1
=> SELECT * FROM ttest;
 x

 1
 2
(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
 x

 1
 4
(2 rows)

=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
 ^^^^^^
 remember what we said about visibility.
DELETE 2
=> SELECT * FROM ttest;
 x

(0 rows)

There are more complex examples in src/test/regress/regress.c and in spi.

1187

Chapter 38. Event Triggers
To supplement the trigger mechanism discussed in Chapter 37, PostgreSQL also provides event triggers.
Unlike regular triggers, which are attached to a single table and capture only DML events, event triggers
are global to a particular database and are capable of capturing DDL events.

Like regular triggers, event triggers can be written in any procedural language that includes event
trigger support, or in C, but not in plain SQL.

38.1. Overview of Event Trigger Behavior
An event trigger fires whenever the event with which it is associated occurs in the database in which
it is defined. Currently, the supported events are login, ddl_command_start, ddl_command_end, ta-
ble_rewrite and sql_drop. Support for additional events may be added in future releases.

38.1.1. login
The login event occurs when an authenticated user logs into the system. Any bug in a trigger procedure
for this event may prevent successful login to the system. Such bugs may be worked around by setting
event_triggers to false either in a connection string or configuration file. Alternatively, you can restart
the system in single-user mode (as event triggers are disabled in this mode). See the postgres reference
page for details about using single-user mode. The login event will also fire on standby servers. To
prevent servers from becoming inaccessible, such triggers must avoid writing anything to the database
when running on a standby. Also, it's recommended to avoid long-running queries in login event trig-
gers. Note that, for instance, canceling a connection in psql will not cancel the in-progress login trigger.

For an example on how to use the login event trigger, see Section 38.5.

38.1.2. ddl_command_start
The ddl_command_start event occurs just before the execution of a DDL command. DDL commands in
this context are:
• CREATE

• ALTER

• DROP

• COMMENT

• GRANT

• IMPORT FOREIGN SCHEMA

• REINDEX

• REFRESH MATERIALIZED VIEW

• REVOKE

• SECURITY LABEL

ddl_command_start also occurs just before the execution of a SELECT INTO command, since this is
equivalent to CREATE TABLE AS.

As an exception, this event does not occur for DDL commands targeting shared objects:
• databases
• roles (role definitions and role memberships)
• tablespaces
• parameter privileges
• ALTER SYSTEM

1188

Event Triggers

This event also does not occur for commands targeting event triggers themselves.

No check whether the affected object exists or doesn't exist is performed before the event trigger fires.

38.1.3. ddl_command_end
The ddl_command_end event occurs just after the execution of the same set of commands as ddl_com-
mand_start. To obtain more details on the DDL operations that took place, use the set-returning function
pg_event_trigger_ddl_commands() from the ddl_command_end event trigger code (see Section 9.30).
Note that the trigger fires after the actions have taken place (but before the transaction commits), and
thus the system catalogs can be read as already changed.

38.1.4. sql_drop
The sql_drop event occurs just before the ddl_command_end event trigger for any operation that drops
database objects. Note that besides the obvious DROP commands, some ALTER commands can also trigger
an sql_drop event.

To list the objects that have been dropped, use the set-returning function pg_event_trig-
ger_dropped_objects() from the sql_drop event trigger code (see Section 9.30). Note that the trigger
is executed after the objects have been deleted from the system catalogs, so it's not possible to look
them up anymore.

38.1.5. table_rewrite
The table_rewrite event occurs just before a table is rewritten by some actions of the commands ALTER
TABLE and ALTER TYPE. While other control statements are available to rewrite a table, like CLUSTER
and VACUUM, the table_rewrite event is not triggered by them. To find the OID of the table that was
rewritten, use the function pg_event_trigger_table_rewrite_oid(), to discover the reason(s) for the
rewrite, use the function pg_event_trigger_table_rewrite_reason() (see Section 9.30).

38.1.6. Event Triggers in Aborted Transactions
Event triggers (like other functions) cannot be executed in an aborted transaction. Thus, if a DDL com-
mand fails with an error, any associated ddl_command_end triggers will not be executed. Conversely,
if a ddl_command_start trigger fails with an error, no further event triggers will fire, and no attempt
will be made to execute the command itself. Similarly, if a ddl_command_end trigger fails with an error,
the effects of the DDL statement will be rolled back, just as they would be in any other case where the
containing transaction aborts.

38.1.7. Creating Event Triggers
Event triggers are created using the command CREATE EVENT TRIGGER. In order to create an event
trigger, you must first create a function with the special return type event_trigger. This function need
not (and may not) return a value; the return type serves merely as a signal that the function is to be
invoked as an event trigger.

If more than one event trigger is defined for a particular event, they will fire in alphabetical order by
trigger name.

A trigger definition can also specify a WHEN condition so that, for example, a ddl_command_start trigger
can be fired only for particular commands which the user wishes to intercept. A common use of such
triggers is to restrict the range of DDL operations which users may perform.

38.2. Writing Event Trigger Functions in C
This section describes the low-level details of the interface to an event trigger function. This information
is only needed when writing event trigger functions in C. If you are using a higher-level language then
these details are handled for you. In most cases you should consider using a procedural language before

1189

Event Triggers

writing your event triggers in C. The documentation of each procedural language explains how to write
an event trigger in that language.

Event trigger functions must use the “version 1” function manager interface.

When a function is called by the event trigger manager, it is not passed any normal arguments, but it
is passed a “context” pointer pointing to a EventTriggerData structure. C functions can check whether
they were called from the event trigger manager or not by executing the macro:
CALLED_AS_EVENT_TRIGGER(fcinfo)

which expands to:
((fcinfo)->context != NULL && IsA((fcinfo)->context, EventTriggerData))

If this returns true, then it is safe to cast fcinfo->context to type EventTriggerData * and make
use of the pointed-to EventTriggerData structure. The function must not alter the EventTriggerData
structure or any of the data it points to.

struct EventTriggerData is defined in commands/event_trigger.h:
typedef struct EventTriggerData
{
 NodeTag type;
 const char *event; /* event name */
 Node *parsetree; /* parse tree */
 CommandTag tag; /* command tag */
} EventTriggerData;

where the members are defined as follows:
type

Always T_EventTriggerData.

event

Describes the event for which the function is called, one of "login", "ddl_command_start",
"ddl_command_end", "sql_drop", "table_rewrite". See Section 38.1 for the meaning of these
events.

parsetree

A pointer to the parse tree of the command. Check the PostgreSQL source code for details. The parse
tree structure is subject to change without notice.

tag

The command tag associated with the event for which the event trigger is run, for example "CREATE
FUNCTION".

An event trigger function must return a NULL pointer (not an SQL null value, that is, do not set isNull
true).

38.3. A Complete Event Trigger Example
Here is a very simple example of an event trigger function written in C. (Examples of triggers written in
procedural languages can be found in the documentation of the procedural languages.)

The function noddl raises an exception each time it is called. The event trigger definition associated the
function with the ddl_command_start event. The effect is that all DDL commands (with the exceptions
mentioned in Section 38.1) are prevented from running.

This is the source code of the trigger function:
#include "postgres.h"

1190

Event Triggers

#include "commands/event_trigger.h"
#include "fmgr.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(noddl);

Datum
noddl(PG_FUNCTION_ARGS)
{
 EventTriggerData *trigdata;

 if (!CALLED_AS_EVENT_TRIGGER(fcinfo)) /* internal error */
 elog(ERROR, "not fired by event trigger manager");

 trigdata = (EventTriggerData *) fcinfo->context;

 ereport(ERROR,
 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
 errmsg("command \"%s\" denied",
 GetCommandTagName(trigdata->tag))));

 PG_RETURN_NULL();
}

After you have compiled the source code (see Section 36.10.5), declare the function and the triggers:
CREATE FUNCTION noddl() RETURNS event_trigger
 AS 'noddl' LANGUAGE C;

CREATE EVENT TRIGGER noddl ON ddl_command_start
 EXECUTE FUNCTION noddl();

Now you can test the operation of the trigger:
=# \dy
 List of event triggers
 Name | Event | Owner | Enabled | Function | Tags
-------+-------------------+-------+---------+----------+------
 noddl | ddl_command_start | dim | enabled | noddl |
(1 row)

=# CREATE TABLE foo(id serial);
ERROR: command "CREATE TABLE" denied

In this situation, in order to be able to run some DDL commands when you need to do so, you have
to either drop the event trigger or disable it. It can be convenient to disable the trigger for only the
duration of a transaction:
BEGIN;
ALTER EVENT TRIGGER noddl DISABLE;
CREATE TABLE foo (id serial);
ALTER EVENT TRIGGER noddl ENABLE;
COMMIT;

(Recall that DDL commands on event triggers themselves are not affected by event triggers.)

38.4. A Table Rewrite Event Trigger Example
Thanks to the table_rewrite event, it is possible to implement a table rewriting policy only allowing
the rewrite in maintenance windows.

1191

Event Triggers

Here's an example implementing such a policy.

CREATE OR REPLACE FUNCTION no_rewrite()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$

--- Implement local Table Rewriting policy:
--- public.foo is not allowed rewriting, ever
--- other tables are only allowed rewriting between 1am and 6am
--- unless they have more than 100 blocks

DECLARE
 table_oid oid := pg_event_trigger_table_rewrite_oid();
 current_hour integer := extract('hour' from current_time);
 pages integer;
 max_pages integer := 100;
BEGIN
 IF pg_event_trigger_table_rewrite_oid() = 'public.foo'::regclass
 THEN
 RAISE EXCEPTION 'you''re not allowed to rewrite the table %',
 table_oid::regclass;
 END IF;

 SELECT INTO pages relpages FROM pg_class WHERE oid = table_oid;
 IF pages > max_pages
 THEN
 RAISE EXCEPTION 'rewrites only allowed for table with less than % pages',
 max_pages;
 END IF;

 IF current_hour NOT BETWEEN 1 AND 6
 THEN
 RAISE EXCEPTION 'rewrites only allowed between 1am and 6am';
 END IF;
END;
$$;

CREATE EVENT TRIGGER no_rewrite_allowed
 ON table_rewrite
 EXECUTE FUNCTION no_rewrite();

38.5. A Database Login Event Trigger Example
The event trigger on the login event can be useful for logging user logins, for verifying the connection
and assigning roles according to current circumstances, or for session data initialization. It is very im-
portant that any event trigger using the login event checks whether or not the database is in recovery
before performing any writes. Writing to a standby server will make it inaccessible.

The following example demonstrates these options.

-- create test tables and roles
CREATE TABLE user_login_log (
 "user" text,
 "session_start" timestamp with time zone
);
CREATE ROLE day_worker;
CREATE ROLE night_worker;

1192

Event Triggers

-- the example trigger function
CREATE OR REPLACE FUNCTION init_session()
 RETURNS event_trigger SECURITY DEFINER
 LANGUAGE plpgsql AS
$$
DECLARE
 hour integer = EXTRACT('hour' FROM current_time at time zone 'utc');
 rec boolean;
BEGIN
-- 1. Forbid logging in between 2AM and 4AM.
IF hour BETWEEN 2 AND 4 THEN
 RAISE EXCEPTION 'Login forbidden';
END IF;

-- The checks below cannot be performed on standby servers so
-- ensure the database is not in recovery before we perform any
-- operations.
SELECT pg_is_in_recovery() INTO rec;
IF rec THEN
 RETURN;
END IF;

-- 2. Assign some roles. At daytime, grant the day_worker role, else the
-- night_worker role.
IF hour BETWEEN 8 AND 20 THEN
 EXECUTE 'REVOKE night_worker FROM ' || quote_ident(session_user);
 EXECUTE 'GRANT day_worker TO ' || quote_ident(session_user);
ELSE
 EXECUTE 'REVOKE day_worker FROM ' || quote_ident(session_user);
 EXECUTE 'GRANT night_worker TO ' || quote_ident(session_user);
END IF;

-- 3. Initialize user session data
CREATE TEMP TABLE session_storage (x float, y integer);
ALTER TABLE session_storage OWNER TO session_user;

-- 4. Log the connection time
INSERT INTO public.user_login_log VALUES (session_user, current_timestamp);

END;
$$;

-- trigger definition
CREATE EVENT TRIGGER init_session
 ON login
 EXECUTE FUNCTION init_session();
ALTER EVENT TRIGGER init_session ENABLE ALWAYS;

1193

Chapter 39. The Rule System
This chapter discusses the rule system in PostgreSQL. Production rule systems are conceptually simple,
but there are many subtle points involved in actually using them.

Some other database systems define active database rules, which are usually stored procedures and
triggers. In PostgreSQL, these can be implemented using functions and triggers as well.

The rule system (more precisely speaking, the query rewrite rule system) is totally different from stored
procedures and triggers. It modifies queries to take rules into consideration, and then passes the mod-
ified query to the query planner for planning and execution. It is very powerful, and can be used for
many things such as query language procedures, views, and versions. The theoretical foundations and
the power of this rule system are also discussed in ston90b and ong90.

39.1. The Query Tree
To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the parser and the planner. It takes the output of the parser, one
query tree, and the user-defined rewrite rules, which are also query trees with some extra information,
and creates zero or more query trees as result. So its input and output are always things the parser itself
could have produced and thus, anything it sees is basically representable as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single parts
that it is built from are stored separately. These query trees can be shown in the server log if you set
the configuration parameters debug_print_parse, debug_print_rewritten, or debug_print_plan. The
rule actions are also stored as query trees, in the system catalog pg_rewrite. They are not formatted
like the log output, but they contain exactly the same information.

Reading a raw query tree requires some experience. But since SQL representations of query trees are
sufficient to understand the rule system, this chapter will not teach how to read them.

When reading the SQL representations of the query trees in this chapter it is necessary to be able to
identify the parts the statement is broken into when it is in the query tree structure. The parts of a
query tree are
the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) produced the query
tree.

the range table
The range table is a list of relations that are used in the query. In a SELECT statement these are the
relations given after the FROM key word.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree, the range table entries are referenced by number rather than
by name, so here it doesn't matter if there are duplicate names as it would in an SQL statement.
This can happen after the range tables of rules have been merged in. The examples in this chapter
will not have this situation.

the result relation
This is an index into the range table that identifies the relation where the results of the query go.

SELECT queries don't have a result relation. (The special case of SELECT INTO is mostly identical to
CREATE TABLE followed by INSERT ... SELECT, and is not discussed separately here.)

For INSERT, UPDATE, and DELETE commands, the result relation is the table (or view!) where the
changes are to take effect.

1194

The Rule System

the target list

The target list is a list of expressions that define the result of the query. In the case of a SELECT, these
expressions are the ones that build the final output of the query. They correspond to the expressions
between the key words SELECT and FROM. (* is just an abbreviation for all the column names of a
relation. It is expanded by the parser into the individual columns, so the rule system never sees it.)

DELETE commands don't need a normal target list because they don't produce any result. Instead,
the planner adds a special CTID entry to the empty target list, to allow the executor to find the row
to be deleted. (CTID is added when the result relation is an ordinary table. If it is a view, a whole-
row variable is added instead, by the rule system, as described in Section 39.2.4.)

For INSERT commands, the target list describes the new rows that should go into the result relation.
It consists of the expressions in the VALUES clause or the ones from the SELECT clause in INSERT ...
SELECT. The first step of the rewrite process adds target list entries for any columns that were not
assigned to by the original command but have defaults. Any remaining columns (with neither a given
value nor a default) will be filled in by the planner with a constant null expression.

For UPDATE commands, the target list describes the new rows that should replace the old ones. In
the rule system, it contains just the expressions from the SET column = expression part of the
command. The planner will handle missing columns by inserting expressions that copy the values
from the old row into the new one. Just as for DELETE, a CTID or whole-row variable is added so that
the executor can identify the old row to be updated.

Every entry in the target list contains an expression that can be a constant value, a variable pointing
to a column of one of the relations in the range table, a parameter, or an expression tree made of
function calls, constants, variables, operators, etc.

the qualification

The query's qualification is an expression much like one of those contained in the target list entries.
The result value of this expression is a Boolean that tells whether the operation (INSERT, UPDATE,
DELETE, or SELECT) for the final result row should be executed or not. It corresponds to the WHERE
clause of an SQL statement.

the join tree

The query's join tree shows the structure of the FROM clause. For a simple query like SELECT ...
FROM a, b, c, the join tree is just a list of the FROM items, because we are allowed to join them
in any order. But when JOIN expressions, particularly outer joins, are used, we have to join in the
order shown by the joins. In that case, the join tree shows the structure of the JOIN expressions.
The restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored as
qualification expressions attached to those join-tree nodes. It turns out to be convenient to store the
top-level WHERE expression as a qualification attached to the top-level join-tree item, too. So really
the join tree represents both the FROM and WHERE clauses of a SELECT.

the others

The other parts of the query tree like the ORDER BY clause aren't of interest here. The rule system
substitutes some entries there while applying rules, but that doesn't have much to do with the fun-
damentals of the rule system.

39.2. Views and the Rule System
Views in PostgreSQL are implemented using the rule system. A view is basically an empty table (having
no actual storage) with an ON SELECT DO INSTEAD rule. Conventionally, that rule is named _RETURN.
So a view like

CREATE VIEW myview AS SELECT * FROM mytab;

is very nearly the same thing as

1195

The Rule System

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
 SELECT * FROM mytab;

although you can't actually write that, because tables are not allowed to have ON SELECT rules.

A view can also have other kinds of DO INSTEAD rules, allowing INSERT, UPDATE, or DELETE commands
to be performed on the view despite its lack of underlying storage. This is discussed further below, in
Section 39.2.4.

39.2.1. How SELECT Rules Work
Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from rules on the other command types in that
they modify the query tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional SELECT
action that is INSTEAD. This restriction was required to make rules safe enough to open them for ordinary
users, and it restricts ON SELECT rules to act like views.

The examples for this chapter are two join views that do some calculations and some more views using
them in turn. One of the two first views is customized later by adding rules for INSERT, UPDATE, and
DELETE operations so that the final result will be a view that behaves like a real table with some magic
functionality. This is not such a simple example to start from and this makes things harder to get into.
But it's better to have one example that covers all the points discussed step by step rather than having
many different ones that might mix up in mind.

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (
 shoename text, -- primary key
 sh_avail integer, -- available number of pairs
 slcolor text, -- preferred shoelace color
 slminlen real, -- minimum shoelace length
 slmaxlen real, -- maximum shoelace length
 slunit text -- length unit
);

CREATE TABLE shoelace_data (
 sl_name text, -- primary key
 sl_avail integer, -- available number of pairs
 sl_color text, -- shoelace color
 sl_len real, -- shoelace length
 sl_unit text -- length unit
);

CREATE TABLE unit (
 un_name text, -- primary key
 un_fact real -- factor to transform to cm
);

As you can see, they represent shoe-store data.

The views are created as:

CREATE VIEW shoe AS
 SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,

1196

The Rule System

 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
 SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
 SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

The CREATE VIEW command for the shoelace view (which is the simplest one we have) will create a
relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that must be applied
whenever the relation shoelace is referenced in a query's range table. The rule has no rule qualification
(discussed later, with the non-SELECT rules, since SELECT rules currently cannot have them) and it is
INSTEAD. Note that rule qualifications are not the same as query qualifications. The action of our rule
has a query qualification. The action of the rule is one query tree that is a copy of the SELECT statement
in the view creation command.

Note
The two extra range table entries for NEW and OLD that you can see in the pg_rewrite entry aren't
of interest for SELECT rules.

Now we populate unit, shoe_data and shoelace_data and run a simple query on a view:
INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0 , 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9 , 'm');

1197

The Rule System

INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60 , 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40 , 'inch');

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 7 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

This is the simplest SELECT you can do on our views, so we take this opportunity to explain the basics of
view rules. The SELECT * FROM shoelace was interpreted by the parser and produced the query tree:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there
are rules for any relation. When processing the range table entry for shoelace (the only one up to now)
it finds the _RETURN rule with the query tree:

SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len, s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

To expand the view, the rewriter simply creates a subquery range-table entry containing the rule's action
query tree, and substitutes this range table entry for the original one that referenced the view. The
resulting rewritten query tree is almost the same as if you had typed:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the subquery's range table has two extra entries shoelace old and
shoelace new. These entries don't participate directly in the query, since they aren't referenced by the
subquery's join tree or target list. The rewriter uses them to store the access privilege check information
that was originally present in the range-table entry that referenced the view. In this way, the executor
will still check that the user has proper privileges to access the view, even though there's no direct use
of the view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table entries
in the top query (in this example there are no more), and it will recursively check the range-table entries

1198

The Rule System

in the added subquery to see if any of them reference views. (But it won't expand old or new — otherwise
we'd have infinite recursion!) In this example, there are no rewrite rules for shoelace_data or unit, so
rewriting is complete and the above is the final result given to the planner.

Now we want to write a query that finds out for which shoes currently in the store we have the matching
shoelaces (color and length) and where the total number of exactly matching pairs is greater than or
equal to two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1 | 2 | sl1 | 5 | 2
 sh3 | 4 | sl7 | 7 | 4
(2 rows)

The output of the parser this time is the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;

The first rule applied will be the one for the shoe_ready view and it results in the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;

Similarly, the rules for shoe and shoelace are substituted into the range table of the subquery, leading
to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM (SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name) rsh,

1199

The Rule System

 (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;

This might look inefficient, but the planner will collapse this into a single-level query tree by “pulling up”
the subqueries, and then it will plan the joins just as if we'd written them out manually. So collapsing
the query tree is an optimization that the rewrite system doesn't have to concern itself with.

39.2.2. View Rules in Non-SELECT Statements
Two details of the query tree aren't touched in the description of view rules above. These are the com-
mand type and the result relation. In fact, the command type is not needed by view rules, but the result
relation may affect the way in which the query rewriter works, because special care needs to be taken
if the result relation is a view.

There are only a few differences between a query tree for a SELECT and one for any other command.
Obviously, they have a different command type and for a command other than a SELECT, the result
relation points to the range-table entry where the result should go. Everything else is absolutely the
same. So having two tables t1 and t2 with columns a and b, the query trees for the two statements:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

are nearly identical. In particular:

• The range tables contain entries for the tables t1 and t2.

• The target lists contain one variable that points to column b of the range table entry for table t2.

• The qualification expressions compare the columns a of both range-table entries for equality.

• The join trees show a simple join between t1 and t2.

The consequence is, that both query trees result in similar execution plans: They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner and
the final query tree will read as:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

But there is a little problem in UPDATE: the part of the executor plan that does the join does not care
what the results from the join are meant for. It just produces a result set of rows. The fact that one is a
SELECT command and the other is an UPDATE is handled higher up in the executor, where it knows that
this is an UPDATE, and it knows that this result should go into table t1. But which of the rows that are
there has to be replaced by the new row?

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE) state-
ments: the current tuple ID (CTID). This is a system column containing the file block number and position
in the block for the row. Knowing the table, the CTID can be used to retrieve the original row of t1 to
be updated. After adding the CTID to the target list, the query actually looks like:

1200

The Rule System

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of PostgreSQL enters the stage. Old table rows aren't overwritten, and this is why
ROLLBACK is fast. In an UPDATE, the new result row is inserted into the table (after stripping the CTID)
and in the row header of the old row, which the CTID pointed to, the cmax and xmax entries are set
to the current command counter and current transaction ID. Thus the old row is hidden, and after the
transaction commits the vacuum cleaner can eventually remove the dead row.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There
is no difference.

39.2.3. The Power of Views in PostgreSQL
The above demonstrates how the rule system incorporates view definitions into the original query tree.
In the second example, a simple SELECT from one view created a final query tree that is a join of 4 tables
(unit was used twice with different names).

The benefit of implementing views with the rule system is that the planner has all the information about
which tables have to be scanned plus the relationships between these tables plus the restrictive qual-
ifications from the views plus the qualifications from the original query in one single query tree. And
this is still the situation when the original query is already a join over views. The planner has to decide
which is the best path to execute the query, and the more information the planner has, the better this
decision can be. And the rule system as implemented in PostgreSQL ensures that this is all information
available about the query up to that point.

39.2.4. Updating a View
What happens if a view is named as the target relation for an INSERT, UPDATE, DELETE, or MERGE? Doing
the substitutions described above would give a query tree in which the result relation points at a sub-
query range-table entry, which will not work. There are several ways in which PostgreSQL can support
the appearance of updating a view, however. In order of user-experienced complexity those are: auto-
matically substitute in the underlying table for the view, execute a user-defined trigger, or rewrite the
query per a user-defined rule. These options are discussed below.

If the subquery selects from a single base relation and is simple enough, the rewriter can automatically
replace the subquery with the underlying base relation so that the INSERT, UPDATE, DELETE, or MERGE is
applied to the base relation in the appropriate way. Views that are “simple enough” for this are called
automatically updatable. For detailed information on the kinds of view that can be automatically updated,
see CREATE VIEW.

Alternatively, the operation may be handled by a user-provided INSTEAD OF trigger on the view (see
CREATE TRIGGER). Rewriting works slightly differently in this case. For INSERT, the rewriter does
nothing at all with the view, leaving it as the result relation for the query. For UPDATE, DELETE, and MERGE,
it's still necessary to expand the view query to produce the “old” rows that the command will attempt to
update, delete, or merge. So the view is expanded as normal, but another unexpanded range-table entry
is added to the query to represent the view in its capacity as the result relation.

The problem that now arises is how to identify the rows to be updated in the view. Recall that when the
result relation is a table, a special CTID entry is added to the target list to identify the physical locations
of the rows to be updated. This does not work if the result relation is a view, because a view does not
have any CTID, since its rows do not have actual physical locations. Instead, for an UPDATE, DELETE,
or MERGE operation, a special wholerow entry is added to the target list, which expands to include all
columns from the view. The executor uses this value to supply the “old” row to the INSTEAD OF trigger.
It is up to the trigger to work out what to update based on the old and new row values.

Another possibility is for the user to define INSTEAD rules that specify substitute actions for INSERT,
UPDATE, and DELETE commands on a view. These rules will rewrite the command, typically into a command
that updates one or more tables, rather than views. That is the topic of Section 39.4. Note that this will
not work with MERGE, which currently does not support rules on the target relation other than SELECT
rules.

1201

The Rule System

Note that rules are evaluated first, rewriting the original query before it is planned and executed. There-
fore, if a view has INSTEAD OF triggers as well as rules on INSERT, UPDATE, or DELETE, then the rules will
be evaluated first, and depending on the result, the triggers may not be used at all.

Automatic rewriting of an INSERT, UPDATE, DELETE, or MERGE query on a simple view is always tried
last. Therefore, if a view has rules or triggers, they will override the default behavior of automatically
updatable views.

If there are no INSTEAD rules or INSTEAD OF triggers for the view, and the rewriter cannot automatically
rewrite the query as an update on the underlying base relation, an error will be thrown because the
executor cannot update a view as such.

39.3. Materialized Views
Materialized views in PostgreSQL use the rule system like views do, but persist the results in a table-like
form. The main differences between:
CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;

and:
CREATE TABLE mymatview AS SELECT * FROM mytab;

are that the materialized view cannot subsequently be directly updated and that the query used to create
the materialized view is stored in exactly the same way that a view's query is stored, so that fresh data
can be generated for the materialized view with:
REFRESH MATERIALIZED VIEW mymatview;

The information about a materialized view in the PostgreSQL system catalogs is exactly the same as it is
for a table or view. So for the parser, a materialized view is a relation, just like a table or a view. When a
materialized view is referenced in a query, the data is returned directly from the materialized view, like
from a table; the rule is only used for populating the materialized view.

While access to the data stored in a materialized view is often much faster than accessing the underlying
tables directly or through a view, the data is not always current; yet sometimes current data is not
needed. Consider a table which records sales:
CREATE TABLE invoice (
 invoice_no integer PRIMARY KEY,
 seller_no integer, -- ID of salesperson
 invoice_date date, -- date of sale
 invoice_amt numeric(13,2) -- amount of sale
);

If people want to be able to quickly graph historical sales data, they might want to summarize, and they
may not care about the incomplete data for the current date:
CREATE MATERIALIZED VIEW sales_summary AS
 SELECT
 seller_no,
 invoice_date,
 sum(invoice_amt)::numeric(13,2) as sales_amt
 FROM invoice
 WHERE invoice_date < CURRENT_DATE
 GROUP BY
 seller_no,
 invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
 ON sales_summary (seller_no, invoice_date);

This materialized view might be useful for displaying a graph in the dashboard created for salespeople.
A job could be scheduled to update the statistics each night using this SQL statement:

1202

The Rule System

REFRESH MATERIALIZED VIEW sales_summary;

Another use for a materialized view is to allow faster access to data brought across from a remote system
through a foreign data wrapper. A simple example using file_fdw is below, with timings, but since this
is using cache on the local system the performance difference compared to access to a remote system
would usually be greater than shown here. Notice we are also exploiting the ability to put an index on
the materialized view, whereas file_fdw does not support indexes; this advantage might not apply for
other sorts of foreign data access.

Setup:
CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
 SERVER local_file
 OPTIONS (filename '/usr/share/dict/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;

Now let's spell-check a word. Using file_fdw directly:
SELECT count(*) FROM words WHERE word = 'caterpiler';

 count

 0
(1 row)

With EXPLAIN ANALYZE, we see:
 Aggregate (cost=21763.99..21764.00 rows=1 width=0) (actual time=188.180..188.181
 rows=1.00 loops=1)
 -> Foreign Scan on words (cost=0.00..21761.41 rows=1032 width=0) (actual
 time=188.177..188.177 rows=0.00 loops=1)
 Filter: (word = 'caterpiler'::text)
 Rows Removed by Filter: 479829
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.118 ms
 Execution time: 188.273 ms

If the materialized view is used instead, the query is much faster:
 Aggregate (cost=4.44..4.45 rows=1 width=0) (actual time=0.042..0.042 rows=1.00
 loops=1)
 -> Index Only Scan using wrd_word on wrd (cost=0.42..4.44 rows=1 width=0) (actual
 time=0.039..0.039 rows=0.00 loops=1)
 Index Cond: (word = 'caterpiler'::text)
 Heap Fetches: 0
 Index Searches: 1
 Planning time: 0.164 ms
 Execution time: 0.117 ms

Either way, the word is spelled wrong, so let's look for what we might have wanted. Again using file_fdw
and pg_trgm:
SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

 word

1203

The Rule System

 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)

 Limit (cost=11583.61..11583.64 rows=10 width=32) (actual time=1431.591..1431.594
 rows=10.00 loops=1)
 -> Sort (cost=11583.61..11804.76 rows=88459 width=32) (actual
 time=1431.589..1431.591 rows=10.00 loops=1)
 Sort Key: ((word <-> 'caterpiler'::text))
 Sort Method: top-N heapsort Memory: 25kB
 -> Foreign Scan on words (cost=0.00..9672.05 rows=88459 width=32) (actual
 time=0.057..1286.455 rows=479829.00 loops=1)
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.128 ms
 Execution time: 1431.679 ms

Using the materialized view:

 Limit (cost=0.29..1.06 rows=10 width=10) (actual time=187.222..188.257 rows=10.00
 loops=1)
 -> Index Scan using wrd_trgm on wrd (cost=0.29..37020.87 rows=479829 width=10)
 (actual time=187.219..188.252 rows=10.00 loops=1)
 Order By: (word <-> 'caterpiler'::text)
 Index Searches: 1
 Planning time: 0.196 ms
 Execution time: 198.640 ms

If you can tolerate periodic update of the remote data to the local database, the performance benefit
can be substantial.

39.4. Rules on INSERT, UPDATE, and DELETE
Rules that are defined on INSERT, UPDATE, and DELETE are significantly different from the view rules
described in the previous sections. First, their CREATE RULE command allows more:

• They are allowed to have no action.

• They can have multiple actions.

• They can be INSTEAD or ALSO (the default).

• The pseudorelations NEW and OLD become useful.

• They can have rule qualifications.

Second, they don't modify the query tree in place. Instead they create zero or more new query trees
and can throw away the original one.

Caution
In many cases, tasks that could be performed by rules on INSERT/UPDATE/DELETE are better done
with triggers. Triggers are notationally a bit more complicated, but their semantics are much
simpler to understand. Rules tend to have surprising results when the original query contains

1204

The Rule System

volatile functions: volatile functions may get executed more times than expected in the process
of carrying out the rules.

Also, there are some cases that are not supported by these types of rules at all, notably including
WITH clauses in the original query and multiple-assignment sub-SELECTs in the SET list of UPDATE
queries. This is because copying these constructs into a rule query would result in multiple eval-
uations of the sub-query, contrary to the express intent of the query's author.

39.4.1. How Update Rules Work
Keep the syntax:
CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

in mind. In the following, update rules means rules that are defined on INSERT, UPDATE, or DELETE.

Update rules get applied by the rule system when the result relation and the command type of a query
tree are equal to the object and event given in the CREATE RULE command. For update rules, the rule
system creates a list of query trees. Initially the query-tree list is empty. There can be zero (NOTHING key
word), one, or multiple actions. To simplify, we will look at a rule with one action. This rule can have a
qualification or not and it can be INSTEAD or ALSO (the default).

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done
and when not. This qualification can only reference the pseudorelations NEW and/or OLD, which basically
represent the relation that was given as object (but with a special meaning).

So we have three cases that produce the following query trees for a one-action rule.
No qualification, with either ALSO or INSTEAD

the query tree from the rule action with the original query tree's qualification added

Qualification given and ALSO
the query tree from the rule action with the rule qualification and the original query tree's qualifi-
cation added

Qualification given and INSTEAD
the query tree from the rule action with the rule qualification and the original query tree's qualifica-
tion; and the original query tree with the negated rule qualification added

Finally, if the rule is ALSO, the unchanged original query tree is added to the list. Since only qualified
INSTEAD rules already add the original query tree, we end up with either one or two output query trees
for a rule with one action.

For ON INSERT rules, the original query (if not suppressed by INSTEAD) is done before any actions added
by rules. This allows the actions to see the inserted row(s). But for ON UPDATE and ON DELETE rules,
the original query is done after the actions added by rules. This ensures that the actions can see the to-
be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they find no rows
matching their qualifications.

The query trees generated from rule actions are thrown into the rewrite system again, and maybe more
rules get applied resulting in additional or fewer query trees. So a rule's actions must have either a
different command type or a different result relation than the rule itself is on, otherwise this recursive
process will end up in an infinite loop. (Recursive expansion of a rule will be detected and reported as
an error.)

The query trees found in the actions of the pg_rewrite system catalog are only templates. Since they can
reference the range-table entries for NEW and OLD, some substitutions have to be made before they can

1205

The Rule System

be used. For any reference to NEW, the target list of the original query is searched for a corresponding
entry. If found, that entry's expression replaces the reference. Otherwise, NEW means the same as OLD
(for an UPDATE) or is replaced by a null value (for an INSERT). Any reference to OLD is replaced by a
reference to the range-table entry that is the result relation.

After the system is done applying update rules, it applies view rules to the produced query tree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view rewriting.

39.4.1.1. A First Rule Step by Step
Say we want to trace changes to the sl_avail column in the shoelace_data relation. So we set up a log
table and a rule that conditionally writes a log entry when an UPDATE is performed on shoelace_data.

CREATE TABLE shoelace_log (
 sl_name text, -- shoelace changed
 sl_avail integer, -- new available value
 log_who text, -- who did it
 log_when timestamp -- when
);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
 WHERE NEW.sl_avail <> OLD.sl_avail
 DO INSERT INTO shoelace_log VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 current_user,
 current_timestamp
);

Now someone does:

UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = 'sl7';

and we look at the log table:

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 16:14:45 1998 MET DST
(1 row)

That's what we expected. What happened in the background is the following. The parser created the
query tree:

UPDATE shoelace_data SET sl_avail = 6
 FROM shoelace_data shoelace_data
 WHERE shoelace_data.sl_name = 'sl7';

There is a rule log_shoelace that is ON UPDATE with the rule qualification expression:

NEW.sl_avail <> OLD.sl_avail

and the action:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old;

(This looks a little strange since you cannot normally write INSERT ... VALUES ... FROM. The FROM
clause here is just to indicate that there are range-table entries in the query tree for new and old. These
are needed so that they can be referenced by variables in the INSERT command's query tree.)

1206

The Rule System

The rule is a qualified ALSO rule, so the rule system has to return two query trees: the modified rule
action and the original query tree. In step 1, the range table of the original query is incorporated into
the rule's action query tree. This results in:
INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data;

In step 2, the rule qualification is added to it, so the result set is restricted to rows where sl_avail
changes:
INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail;

(This looks even stranger, since INSERT ... VALUES doesn't have a WHERE clause either, but the planner
and executor will have no difficulty with it. They need to support this same functionality anyway for
INSERT ... SELECT.)

In step 3, the original query tree's qualification is added, restricting the result set further to only the
rows that would have been touched by the original query:
INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

Step 4 replaces references to NEW by the target list entries from the original query tree or by the matching
variable references from the result relation:
INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

Step 5 changes OLD references into result relation references:
INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

That's it. Since the rule is ALSO, we also output the original query tree. In short, the output from the rule
system is a list of two query trees that correspond to these statements:
INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data

1207

The Rule System

 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = 'sl7';

These are executed in this order, and that is exactly what the rule was meant to do.

The substitutions and the added qualifications ensure that, if the original query would be, say:

UPDATE shoelace_data SET sl_color = 'green'
 WHERE sl_name = 'sl7';

no log entry would get written. In that case, the original query tree does not contain a target list entry
for sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail. Thus, the extra command
generated by the rule is:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, shoelace_data.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE shoelace_data.sl_avail <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

and that qualification will never be true.

It will also work if the original query modifies multiple rows. So if someone issued the command:

UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = 'black';

four rows in fact get updated (sl1, sl2, sl3, and sl4). But sl3 already has sl_avail = 0. In this case,
the original query trees qualification is different and that results in the extra query tree:

INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,
 current_user, current_timestamp
 FROM shoelace_data
 WHERE 0 <> shoelace_data.sl_avail
 AND shoelace_data.sl_color = 'black';

being generated by the rule. This query tree will surely insert three new log entries. And that's absolutely
correct.

Here we can see why it is important that the original query tree is executed last. If the UPDATE had been
executed first, all the rows would have already been set to zero, so the logging INSERT would not find
any row where 0 <> shoelace_data.sl_avail.

39.4.2. Cooperation with Views
A simple way to protect view relations from the mentioned possibility that someone can try to run INSERT,
UPDATE, or DELETE on them is to let those query trees get thrown away. So we could create the rules:

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_del_protect AS ON DELETE TO shoe
 DO INSTEAD NOTHING;

If someone now tries to do any of these operations on the view relation shoe, the rule system will apply
these rules. Since the rules have no actions and are INSTEAD, the resulting list of query trees will be
empty and the whole query will become nothing because there is nothing left to be optimized or executed
after the rule system is done with it.

1208

The Rule System

A more sophisticated way to use the rule system is to create rules that rewrite the query tree into one
that does the right operation on the real tables. To do that on the shoelace view, we create the following
rules:
CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
 DO INSTEAD
 UPDATE shoelace_data
 SET sl_name = NEW.sl_name,
 sl_avail = NEW.sl_avail,
 sl_color = NEW.sl_color,
 sl_len = NEW.sl_len,
 sl_unit = NEW.sl_unit
 WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
 DO INSTEAD
 DELETE FROM shoelace_data
 WHERE sl_name = OLD.sl_name;

If you want to support RETURNING queries on the view, you need to make the rules include RETURNING
clauses that compute the view rows. This is usually pretty trivial for views on a single table, but it's a bit
tedious for join views such as shoelace. An example for the insert case is:
CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
)
 RETURNING
 shoelace_data.*,
 (SELECT shoelace_data.sl_len * u.un_fact
 FROM unit u WHERE shoelace_data.sl_unit = u.un_name);

Note that this one rule supports both INSERT and INSERT RETURNING queries on the view — the RETURNING
clause is simply ignored for INSERT.

Note that in the RETURNING clause of a rule, OLD and NEW refer to the pseudorelations added as extra range
table entries to the rewritten query, rather than old/new rows in the result relation. Thus, for example,
in a rule supporting UPDATE queries on this view, if the RETURNING clause contained old.sl_name, the
old name would always be returned, regardless of whether the RETURNING clause in the query on the
view specified OLD or NEW, which might be confusing. To avoid this confusion, and support returning old
and new values in queries on the view, the RETURNING clause in the rule definition should refer to entries
from the result relation such as shoelace_data.sl_name, without specifying OLD or NEW.

Now assume that once in a while, a pack of shoelaces arrives at the shop and a big parts list along with
it. But you don't want to manually update the shoelace view every time. Instead we set up two little

1209

The Rule System

tables: one where you can insert the items from the part list, and one with a special trick. The creation
commands for these are:
CREATE TABLE shoelace_arrive (
 arr_name text,
 arr_quant integer
);

CREATE TABLE shoelace_ok (
 ok_name text,
 ok_quant integer
);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
 DO INSTEAD
 UPDATE shoelace
 SET sl_avail = sl_avail + NEW.ok_quant
 WHERE sl_name = NEW.ok_name;

Now you can fill the table shoelace_arrive with the data from the parts list:
SELECT * FROM shoelace_arrive;

 arr_name | arr_quant
----------+-----------
 sl3 | 10
 sl6 | 20
 sl8 | 20
(3 rows)

Take a quick look at the current data:
SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

Now move the arrived shoelaces in:
INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results:
SELECT * FROM shoelace ORDER BY sl_name;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100

1210

The Rule System

 sl6 | 20 | brown | 0.9 | m | 90
(8 rows)

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 19:14:45 1998 MET DST
 sl3 | 10 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl6 | 20 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl8 | 21 | Al | Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

It's a long way from the one INSERT ... SELECT to these results. And the description of the query-tree
transformation will be the last in this chapter. First, there is the parser's output:
INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first rule shoelace_ok_ins is applied and turns this into:
UPDATE shoelace
 SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace
 WHERE shoelace.sl_name = shoelace_arrive.arr_name;

and throws away the original INSERT on shoelace_ok. This rewritten query is passed to the rule system
again, and the second applied rule shoelace_upd produces:
UPDATE shoelace_data
 SET sl_name = shoelace.sl_name,
 sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
 sl_color = shoelace.sl_color,
 sl_len = shoelace.sl_len,
 sl_unit = shoelace.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data
 WHERE shoelace.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = shoelace.sl_name;

Again it's an INSTEAD rule and the previous query tree is trashed. Note that this query still uses the
view shoelace. But the rule system isn't finished with this step, so it continues and applies the _RETURN
rule on it, and we get:
UPDATE shoelace_data
 SET sl_name = s.sl_name,
 sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
 sl_color = s.sl_color,
 sl_len = s.sl_len,
 sl_unit = s.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_name = shoelace_arrive.arr_name

1211

The Rule System

 AND shoelace_data.sl_name = s.sl_name;

Finally, the rule log_shoelace gets applied, producing the extra query tree:

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u,
 shoelace_data old, shoelace_data new
 shoelace_log shoelace_log
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;

After that the rule system runs out of rules and returns the generated query trees.

So we end up with two final query trees that are equivalent to the SQL statements:

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
 SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive,
 shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
 AND shoelace_data.sl_name = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

There is a little detail that's a bit ugly. Looking at the two queries, it turns out that the shoelace_data
relation appears twice in the range table where it could definitely be reduced to one. The planner does
not handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop
 -> Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive
 -> Seq Scan on shoelace_data

while omitting the extra range table entry would result in a

1212

The Rule System

Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive

which produces exactly the same entries in the log table. Thus, the rule system caused one extra scan
on the table shoelace_data that is absolutely not necessary. And the same redundant scan is done once
more in the UPDATE. But it was a really hard job to make that all possible at all.

Now we make a final demonstration of the PostgreSQL rule system and its power. Say you add some
shoelaces with extraordinary colors to your database:

INSERT INTO shoelace VALUES ('sl9', 0, 'pink', 35.0, 'inch', 0.0);
INSERT INTO shoelace VALUES ('sl10', 1000, 'magenta', 40.0, 'inch', 0.0);

We would like to make a view to check which shoelace entries do not fit any shoe in color. The view
for this is:

CREATE VIEW shoelace_mismatch AS
 SELECT * FROM shoelace WHERE NOT EXISTS
 (SELECT shoename FROM shoe WHERE slcolor = sl_color);

Its output is:

SELECT * FROM shoelace_mismatch;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl9 | 0 | pink | 35 | inch | 88.9
 sl10 | 1000 | magenta | 40 | inch | 101.6

Now we want to set it up so that mismatching shoelaces that are not in stock are deleted from the
database. To make it a little harder for PostgreSQL, we don't delete it directly. Instead we create one
more view:

CREATE VIEW shoelace_can_delete AS
 SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;

and do it this way:

DELETE FROM shoelace WHERE EXISTS
 (SELECT * FROM shoelace_can_delete
 WHERE sl_name = shoelace.sl_name);

The results are:

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl10 | 1000 | magenta | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(9 rows)

1213

The Rule System

A DELETE on a view, with a subquery qualification that in total uses 4 nesting/joined views, where one of
them itself has a subquery qualification containing a view and where calculated view columns are used,
gets rewritten into one single query tree that deletes the requested data from a real table.

There are probably only a few situations out in the real world where such a construct is necessary. But
it makes you feel comfortable that it works.

39.5. Rules and Privileges
Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the
original query get accessed. When update rules are used, this can include write access to tables.

Rewrite rules don't have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior of
the default access control system. With the exception of SELECT rules associated with security invoker
views (see CREATE VIEW), all relations that are used due to rules get checked against the privileges of
the rule owner, not the user invoking the rule. This means that, except for security invoker views, users
only need the required privileges for the tables/views that are explicitly named in their queries.

For example: A user has a list of phone numbers where some of them are private, the others are of
interest for the assistant of the office. The user can construct the following:

CREATE TABLE phone_data (person text, phone text, private boolean);
CREATE VIEW phone_number AS
 SELECT person, CASE WHEN NOT private THEN phone END AS phone
 FROM phone_data;
GRANT SELECT ON phone_number TO assistant;

Nobody except that user (and the database superusers) can access the phone_data table. But because
of the GRANT, the assistant can run a SELECT on the phone_number view. The rule system will rewrite the
SELECT from phone_number into a SELECT from phone_data. Since the user is the owner of phone_number
and therefore the owner of the rule, the read access to phone_data is now checked against the user's
privileges and the query is permitted. The check for accessing phone_number is also performed, but this
is done against the invoking user, so nobody but the user and the assistant can use it.

The privileges are checked rule by rule. So the assistant is for now the only one who can see the public
phone numbers. But the assistant can set up another view and grant access to that to the public. Then,
anyone can see the phone_number data through the assistant's view. What the assistant cannot do is to
create a view that directly accesses phone_data. (Actually the assistant can, but it will not work since
every access will be denied during the permission checks.) And as soon as the user notices that the
assistant opened their phone_number view, the user can revoke the assistant's access. Immediately, any
access to the assistant's view would fail.

One might think that this rule-by-rule checking is a security hole, but in fact it isn't. But if it did not work
this way, the assistant could set up a table with the same columns as phone_number and copy the data
to there once per day. Then it's the assistant's own data and the assistant can grant access to everyone
they want. A GRANT command means, “I trust you”. If someone you trust does the thing above, it's time
to think it over and then use REVOKE.

Note that while views can be used to hide the contents of certain columns using the technique shown
above, they cannot be used to reliably conceal the data in unseen rows unless the security_barrier
flag has been set. For example, the following view is insecure:

CREATE VIEW phone_number AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

This view might seem secure, since the rule system will rewrite any SELECT from phone_number into a
SELECT from phone_data and add the qualification that only entries where phone does not begin with
412 are wanted. But if the user can create their own functions, it is not difficult to convince the planner
to execute the user-defined function prior to the NOT LIKE expression. For example:

1214

The Rule System

CREATE FUNCTION tricky(text, text) RETURNS bool AS $$
BEGIN
 RAISE NOTICE '% => %', $1, $2;
 RETURN true;
END;
$$ LANGUAGE plpgsql COST 0.0000000000000000000001;

SELECT * FROM phone_number WHERE tricky(person, phone);

Every person and phone number in the phone_data table will be printed as a NOTICE, because the planner
will choose to execute the inexpensive tricky function before the more expensive NOT LIKE. Even if
the user is prevented from defining new functions, built-in functions can be used in similar attacks. (For
example, most casting functions include their input values in the error messages they produce.)

Similar considerations apply to update rules. In the examples of the previous section, the owner of the
tables in the example database could grant the privileges SELECT, INSERT, UPDATE, and DELETE on the
shoelace view to someone else, but only SELECT on shoelace_log. The rule action to write log entries
will still be executed successfully, and that other user could see the log entries. But they could not create
fake entries, nor could they manipulate or remove existing ones. In this case, there is no possibility
of subverting the rules by convincing the planner to alter the order of operations, because the only
rule which references shoelace_log is an unqualified INSERT. This might not be true in more complex
scenarios.

When it is necessary for a view to provide row-level security, the security_barrier attribute should be
applied to the view. This prevents maliciously-chosen functions and operators from being passed values
from rows until after the view has done its work. For example, if the view shown above had been created
like this, it would be secure:

CREATE VIEW phone_number WITH (security_barrier) AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

Views created with the security_barrier may perform far worse than views created without this option.
In general, there is no way to avoid this: the fastest possible plan must be rejected if it may compromise
security. For this reason, this option is not enabled by default.

The query planner has more flexibility when dealing with functions that have no side effects. Such func-
tions are referred to as LEAKPROOF, and include many simple, commonly used operators, such as many
equality operators. The query planner can safely allow such functions to be evaluated at any point in the
query execution process, since invoking them on rows invisible to the user will not leak any information
about the unseen rows. Further, functions which do not take arguments or which are not passed any
arguments from the security barrier view do not have to be marked as LEAKPROOF to be pushed down, as
they never receive data from the view. In contrast, a function that might throw an error depending on
the values received as arguments (such as one that throws an error in the event of overflow or division
by zero) is not leakproof, and could provide significant information about the unseen rows if applied
before the security view's row filters.

For example, an index scan cannot be selected for queries on security barrier views (or tables with row-
level security policies) if an operator used in the WHERE clause is associated with the operator family of the
index, but its underlying function is not marked LEAKPROOF. The psql program's \dAo+ meta-command
is useful to list operator families and determine which of their operators are marked as leakproof.

It is important to understand that even a view created with the security_barrier option is intended
to be secure only in the limited sense that the contents of the invisible tuples will not be passed to
possibly-insecure functions. The user may well have other means of making inferences about the unseen
data; for example, they can see the query plan using EXPLAIN, or measure the run time of queries against
the view. A malicious attacker might be able to infer something about the amount of unseen data, or
even gain some information about the data distribution or most common values (since these things may
affect the run time of the plan; or even, since they are also reflected in the optimizer statistics, the choice
of plan). If these types of "covert channel" attacks are of concern, it is probably unwise to grant any
access to the data at all.

1215

The Rule System

39.6. Rules and Command Status
The PostgreSQL server returns a command status string, such as INSERT 149592 1, for each command
it receives. This is simple enough when there are no rules involved, but what happens when the query
is rewritten by rules?

Rules affect the command status as follows:
• If there is no unconditional INSTEAD rule for the query, then the originally given query will be ex-

ecuted, and its command status will be returned as usual. (But note that if there were any condi-
tional INSTEAD rules, the negation of their qualifications will have been added to the original query.
This might reduce the number of rows it processes, and if so the reported status will be affected.)

• If there is any unconditional INSTEAD rule for the query, then the original query will not be execut-
ed at all. In this case, the server will return the command status for the last query that was insert-
ed by an INSTEAD rule (conditional or unconditional) and is of the same command type (INSERT, UP-
DATE, or DELETE) as the original query. If no query meeting those requirements is added by any rule,
then the returned command status shows the original query type and zeroes for the row-count and
OID fields.

The programmer can ensure that any desired INSTEAD rule is the one that sets the command status in
the second case, by giving it the alphabetically last rule name among the active rules, so that it gets
applied last.

39.7. Rules Versus Triggers
Many things that can be done using triggers can also be implemented using the PostgreSQL rule system.
One of the things that cannot be implemented by rules are some kinds of constraints, especially foreign
keys. It is possible to place a qualified rule that rewrites a command to NOTHING if the value of a column
does not appear in another table. But then the data is silently thrown away and that's not a good idea.
If checks for valid values are required, and in the case of an invalid value an error message should be
generated, it must be done by a trigger.

In this chapter, we focused on using rules to update views. All of the update rule examples in this chapter
can also be implemented using INSTEAD OF triggers on the views. Writing such triggers is often easier
than writing rules, particularly if complex logic is required to perform the update.

For the things that can be implemented by both, which is best depends on the usage of the database. A
trigger is fired once for each affected row. A rule modifies the query or generates an additional query. So
if many rows are affected in one statement, a rule issuing one extra command is likely to be faster than
a trigger that is called for every single row and must re-determine what to do many times. However, the
trigger approach is conceptually far simpler than the rule approach, and is easier for novices to get right.

Here we show an example of how the choice of rules versus triggers plays out in one situation. There
are two tables:

CREATE TABLE computer (
 hostname text, -- indexed
 manufacturer text -- indexed
);

CREATE TABLE software (
 software text, -- indexed
 hostname text -- indexed
);

Both tables have many thousands of rows and the indexes on hostname are unique. The rule or trigger
should implement a constraint that deletes rows from software that reference a deleted computer. The
trigger would use this command:

DELETE FROM software WHERE hostname = $1;

1216

The Rule System

Since the trigger is called for each individual row deleted from computer, it can prepare and save the
plan for this command and pass the hostname value in the parameter. The rule would be written as:
CREATE RULE computer_del AS ON DELETE TO computer
 DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a:
DELETE FROM computer WHERE hostname = 'mypc.local.net';

the table computer is scanned by index (fast), and the command issued by the trigger would also use an
index scan (also fast). The extra command from the rule would be:
DELETE FROM software WHERE computer.hostname = 'mypc.local.net'
 AND software.hostname = computer.hostname;

Since there are appropriate indexes set up, the planner will create a plan of
Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.

With the next delete we want to get rid of all the 2000 computers where the hostname starts with old.
There are two possible commands to do that. One is:
DELETE FROM computer WHERE hostname >= 'old'
 AND hostname < 'ole'

The command added by the rule will be:
DELETE FROM software WHERE computer.hostname >= 'old' AND computer.hostname < 'ole'
 AND software.hostname = computer.hostname;

with the plan
Hash Join
 -> Seq Scan on software
 -> Hash
 -> Index Scan using comp_hostidx on computer

The other possible command is:
DELETE FROM computer WHERE hostname ~ '^old';

which results in the following executing plan for the command added by the rule:
Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification for hostname in computer could also
be used for an index scan on software when there are multiple qualification expressions combined
with AND, which is what it does in the regular-expression version of the command. The trigger will get
invoked once for each of the 2000 old computers that have to be deleted, and that will result in one index
scan over computer and 2000 index scans over software. The rule implementation will do it with two
commands that use indexes. And it depends on the overall size of the table software whether the rule
will still be faster in the sequential scan situation. 2000 command executions from the trigger over the
SPI manager take some time, even if all the index blocks will soon be in the cache.

The last command we look at is:
DELETE FROM computer WHERE manufacturer = 'bim';

Again this could result in many rows to be deleted from computer. So the trigger will again run many
commands through the executor. The command generated by the rule will be:
DELETE FROM software WHERE computer.manufacturer = 'bim'

1217

The Rule System

 AND software.hostname = computer.hostname;

The plan for that command will again be the nested loop over two index scans, only using a different
index on computer:

Nestloop
 -> Index Scan using comp_manufidx on computer
 -> Index Scan using soft_hostidx on software

In any of these cases, the extra commands from the rule system will be more or less independent from
the number of affected rows in a command.

The summary is, rules will only be significantly slower than triggers if their actions result in large and
badly qualified joins, a situation where the planner fails.

1218

Chapter 40. Procedural Languages
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). For a function written in a procedural
language, the database server has no built-in knowledge about how to interpret the function's source
text. Instead, the task is passed to a special handler that knows the details of the language. The handler
could either do all the work of parsing, syntax analysis, execution, etc. itself, or it could serve as “glue”
between PostgreSQL and an existing implementation of a programming language. The handler itself is a
C language function compiled into a shared object and loaded on demand, just like any other C function.

There are currently four procedural languages available in the standard PostgreSQL distribution: PL/
pgSQL (Chapter 41), PL/Tcl (Chapter 42), PL/Perl (Chapter 43), and PL/Python (PL/Python). There are
additional procedural languages available that are not included in the core distribution. Appendix H
has information about finding them. In addition other languages can be defined by users; the basics of
developing a new procedural language are covered in Chapter 57.

40.1. Installing Procedural Languages
A procedural language must be “installed” into each database where it is to be used. But procedural
languages installed in the database template1 are automatically available in all subsequently created
databases, since their entries in template1 will be copied by CREATE DATABASE. So the database admin-
istrator can decide which languages are available in which databases and can make some languages
available by default if desired.

For the languages supplied with the standard distribution, it is only necessary to execute CREATE EX-
TENSION language_name to install the language into the current database. The manual procedure de-
scribed below is only recommended for installing languages that have not been packaged as extensions.

Manual Procedural Language Installation
A procedural language is installed in a database in five steps, which must be carried out by a database
superuser. In most cases the required SQL commands should be packaged as the installation script of
an “extension”, so that CREATE EXTENSION can be used to execute them.

1. The shared object for the language handler must be compiled and installed into an appropriate
library directory. This works in the same way as building and installing modules with regular user-
defined C functions does; see Section 36.10.5. Often, the language handler will depend on an external
library that provides the actual programming language engine; if so, that must be installed as well.

2. The handler must be declared with the command
CREATE FUNCTION handler_function_name()
 RETURNS language_handler
 AS 'path-to-shared-object'
 LANGUAGE C;

The special return type of language_handler tells the database system that this function does not
return one of the defined SQL data types and is not directly usable in SQL statements.

3. (Optional) Optionally, the language handler can provide an “inline” handler function that executes
anonymous code blocks (DO commands) written in this language. If an inline handler function is
provided by the language, declare it with a command like
CREATE FUNCTION inline_function_name(internal)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C;

4. (Optional) Optionally, the language handler can provide a “validator” function that checks a function
definition for correctness without actually executing it. The validator function is called by CREATE
FUNCTION if it exists. If a validator function is provided by the language, declare it with a command
like

1219

Procedural Languages

CREATE FUNCTION validator_function_name(oid)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C STRICT;

5. Finally, the PL must be declared with the command

CREATE [TRUSTED] LANGUAGE language_name
 HANDLER handler_function_name
 [INLINE inline_function_name]
 [VALIDATOR validator_function_name] ;

The optional key word TRUSTED specifies that the language does not grant access to data that the user
would not otherwise have. Trusted languages are designed for ordinary database users (those with-
out superuser privilege) and allows them to safely create functions and procedures. Since PL func-
tions are executed inside the database server, the TRUSTED flag should only be given for languages
that do not allow access to database server internals or the file system. The languages PL/pgSQL,
PL/Tcl, and PL/Perl are considered trusted; the languages PL/TclU, PL/PerlU, and PL/PythonU are
designed to provide unlimited functionality and should not be marked trusted.

Example 40.1 shows how the manual installation procedure would work with the language PL/Perl.

Example 40.1. Manual Installation of PL/Perl

The following command tells the database server where to find the shared object for the PL/Perl lan-
guage's call handler function:

CREATE FUNCTION plperl_call_handler() RETURNS language_handler AS
 '$libdir/plperl' LANGUAGE C;

PL/Perl has an inline handler function and a validator function, so we declare those too:

CREATE FUNCTION plperl_inline_handler(internal) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

CREATE FUNCTION plperl_validator(oid) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

The command:

CREATE TRUSTED LANGUAGE plperl
 HANDLER plperl_call_handler
 INLINE plperl_inline_handler
 VALIDATOR plperl_validator;

then defines that the previously declared functions should be invoked for functions and procedures
where the language attribute is plperl.

In a default PostgreSQL installation, the handler for the PL/pgSQL language is built and installed into the
“library” directory; furthermore, the PL/pgSQL language itself is installed in all databases. If Tcl support
is configured in, the handlers for PL/Tcl and PL/TclU are built and installed in the library directory,
but the language itself is not installed in any database by default. Likewise, the PL/Perl and PL/PerlU
handlers are built and installed if Perl support is configured, and the PL/PythonU handler is installed if
Python support is configured, but these languages are not installed by default.

1220

Chapter 41. PL/pgSQL — SQL Procedural
Language
41.1. Overview

PL/pgSQL is a loadable procedural language for the PostgreSQL database system. The design goals of
PL/pgSQL were to create a loadable procedural language that

• can be used to create functions, procedures, and triggers,

• adds control structures to the SQL language,

• can perform complex computations,

• inherits all user-defined types, functions, procedures, and operators,

• can be defined to be trusted by the server,

• is easy to use.

Functions created with PL/pgSQL can be used anywhere that built-in functions could be used. For ex-
ample, it is possible to create complex conditional computation functions and later use them to define
operators or use them in index expressions.

In PostgreSQL 9.0 and later, PL/pgSQL is installed by default. However it is still a loadable module, so
especially security-conscious administrators could choose to remove it.

41.1.1. Advantages of Using PL/pgSQL
SQL is the language PostgreSQL and most other relational databases use as query language. It's portable
and easy to learn. But every SQL statement must be executed individually by the database server.

That means that your client application must send each query to the database server, wait for it to
be processed, receive and process the results, do some computation, then send further queries to the
server. All this incurs interprocess communication and will also incur network overhead if your client
is on a different machine than the database server.

With PL/pgSQL you can group a block of computation and a series of queries inside the database server,
thus having the power of a procedural language and the ease of use of SQL, but with considerable savings
of client/server communication overhead.

• Extra round trips between client and server are eliminated

• Intermediate results that the client does not need do not have to be marshaled or transferred be-
tween server and client

• Multiple rounds of query parsing can be avoided

This can result in a considerable performance increase as compared to an application that does not use
stored functions.

Also, with PL/pgSQL you can use all the data types, operators and functions of SQL.

41.1.2. Supported Argument and Result Data Types
Functions written in PL/pgSQL can accept as arguments any scalar or array data type supported by the
server, and they can return a result of any of these types. They can also accept or return any composite
type (row type) specified by name. It is also possible to declare a PL/pgSQL function as accepting record,
which means that any composite type will do as input, or as returning record, which means that the
result is a row type whose columns are determined by specification in the calling query, as discussed
in Section 7.2.1.4.

1221

PL/pgSQL — SQL Pro-
cedural Language

PL/pgSQL functions can be declared to accept a variable number of arguments by using the VARIADIC
marker. This works exactly the same way as for SQL functions, as discussed in Section 36.5.6.

PL/pgSQL functions can also be declared to accept and return the polymorphic types described in Sec-
tion 36.2.5, thus allowing the actual data types handled by the function to vary from call to call. Exam-
ples appear in Section 41.3.1.

PL/pgSQL functions can also be declared to return a “set” (or table) of any data type that can be returned
as a single instance. Such a function generates its output by executing RETURN NEXT for each desired
element of the result set, or by using RETURN QUERY to output the result of evaluating a query.

Finally, a PL/pgSQL function can be declared to return void if it has no useful return value. (Alternatively,
it could be written as a procedure in that case.)

PL/pgSQL functions can also be declared with output parameters in place of an explicit specification of
the return type. This does not add any fundamental capability to the language, but it is often convenient,
especially for returning multiple values. The RETURNS TABLE notation can also be used in place of RETURNS
SETOF.

Specific examples appear in Section 41.3.1 and Section 41.6.1.

41.2. Structure of PL/pgSQL
Functions written in PL/pgSQL are defined to the server by executing CREATE FUNCTION commands.
Such a command would normally look like, say,

CREATE FUNCTION somefunc(integer, text) RETURNS integer
AS 'function body text'
LANGUAGE plpgsql;

The function body is simply a string literal so far as CREATE FUNCTION is concerned. It is often helpful to
use dollar quoting (see Section 4.1.2.4) to write the function body, rather than the normal single quote
syntax. Without dollar quoting, any single quotes or backslashes in the function body must be escaped by
doubling them. Almost all the examples in this chapter use dollar-quoted literals for their function bodies.

PL/pgSQL is a block-structured language. The complete text of a function body must be a block. A block
is defined as:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
END [label];

Each declaration and each statement within a block is terminated by a semicolon. A block that appears
within another block must have a semicolon after END, as shown above; however the final END that con-
cludes a function body does not require a semicolon.

Tip
A common mistake is to write a semicolon immediately after BEGIN. This is incorrect and will result
in a syntax error.

A label is only needed if you want to identify the block for use in an EXIT statement, or to qualify the
names of the variables declared in the block. If a label is given after END, it must match the label at
the block's beginning.

1222

PL/pgSQL — SQL Pro-
cedural Language

All key words are case-insensitive. Identifiers are implicitly converted to lower case unless double-quot-
ed, just as they are in ordinary SQL commands.

Comments work the same way in PL/pgSQL code as in ordinary SQL. A double dash (--) starts a comment
that extends to the end of the line. A /* starts a block comment that extends to the matching occurrence
of */. Block comments nest.

Any statement in the statement section of a block can be a subblock. Subblocks can be used for logical
grouping or to localize variables to a small group of statements. Variables declared in a subblock mask
any similarly-named variables of outer blocks for the duration of the subblock; but you can access the
outer variables anyway if you qualify their names with their block's label. For example:
CREATE FUNCTION somefunc() RETURNS integer AS $$
<< outerblock >>
DECLARE
 quantity integer := 30;
BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 30
 quantity := 50;
 --
 -- Create a subblock
 --
 DECLARE
 quantity integer := 80;
 BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 80
 RAISE NOTICE 'Outer quantity here is %', outerblock.quantity; -- Prints 50
 END;

 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 50

 RETURN quantity;
END;
$$ LANGUAGE plpgsql;

Note
There is actually a hidden “outer block” surrounding the body of any PL/pgSQL function. This block
provides the declarations of the function's parameters (if any), as well as some special variables
such as FOUND (see Section 41.5.5). The outer block is labeled with the function's name, meaning
that parameters and special variables can be qualified with the function's name.

It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the similar-
ly-named SQL commands for transaction control. PL/pgSQL's BEGIN/END are only for grouping; they do
not start or end a transaction. See Section 41.8 for information on managing transactions in PL/pgSQL.
Also, a block containing an EXCEPTION clause effectively forms a subtransaction that can be rolled back
without affecting the outer transaction. For more about that see Section 41.6.8.

41.3. Declarations
All variables used in a block must be declared in the declarations section of the block. (The only excep-
tions are that the loop variable of a FOR loop iterating over a range of integer values is automatically
declared as an integer variable, and likewise the loop variable of a FOR loop iterating over a cursor's
result is automatically declared as a record variable.)

PL/pgSQL variables can have any SQL data type, such as integer, varchar, and char.

Here are some examples of variable declarations:

1223

PL/pgSQL — SQL Pro-
cedural Language

user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

The general syntax of a variable declaration is:

name [CONSTANT] type [COLLATE collation_name] [NOT NULL] [{ DEFAULT | := |
 = } expression];

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is entered.
If the DEFAULT clause is not given then the variable is initialized to the SQL null value. The CONSTANT
option prevents the variable from being assigned to after initialization, so that its value will remain
constant for the duration of the block. The COLLATE option specifies a collation to use for the variable
(see Section 41.3.6). If NOT NULL is specified, an assignment of a null value results in a run-time error.
All variables declared as NOT NULL must have a nonnull default value specified. Equal (=) can be used
instead of PL/SQL-compliant :=.

A variable's default value is evaluated and assigned to the variable each time the block is entered (not
just once per function call). So, for example, assigning now() to a variable of type timestamp causes the
variable to have the time of the current function call, not the time when the function was precompiled.

Examples:

quantity integer DEFAULT 32;
url varchar := 'http://mysite.com';
transaction_time CONSTANT timestamp with time zone := now();

Once declared, a variable's value can be used in later initialization expressions in the same block, for
example:

DECLARE
 x integer := 1;
 y integer := x + 1;

41.3.1. Declaring Function Parameters
Parameters passed to functions are named with the identifiers $1, $2, etc. Optionally, aliases can be
declared for $n parameter names for increased readability. Either the alias or the numeric identifier can
then be used to refer to the parameter value.

There are two ways to create an alias. The preferred way is to give a name to the parameter in the
CREATE FUNCTION command, for example:

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

The other way is to explicitly declare an alias, using the declaration syntax

name ALIAS FOR $n;

The same example in this style looks like:

CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE
 subtotal ALIAS FOR $1;
BEGIN

1224

PL/pgSQL — SQL Pro-
cedural Language

 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Note
These two examples are not perfectly equivalent. In the first case, subtotal could be referenced
as sales_tax.subtotal, but in the second case it could not. (Had we attached a label to the inner
block, subtotal could be qualified with that label, instead.)

Some more examples:

CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE
 v_string ALIAS FOR $1;
 index ALIAS FOR $2;
BEGIN
 -- some computations using v_string and index here
END;
$$ LANGUAGE plpgsql;

CREATE FUNCTION concat_selected_fields(in_t sometablename) RETURNS text AS $$
BEGIN
 RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;
$$ LANGUAGE plpgsql;

When a PL/pgSQL function is declared with output parameters, the output parameters are given $n
names and optional aliases in just the same way as the normal input parameters. An output parameter is
effectively a variable that starts out NULL; it should be assigned to during the execution of the function.
The final value of the parameter is what is returned. For instance, the sales-tax example could also be
done this way:

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN
 tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Notice that we omitted RETURNS real — we could have included it, but it would be redundant.

To call a function with OUT parameters, omit the output parameter(s) in the function call:

SELECT sales_tax(100.00);

Output parameters are most useful when returning multiple values. A trivial example is:

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
 sum := x + y;
 prod := x * y;
END;
$$ LANGUAGE plpgsql;

SELECT * FROM sum_n_product(2, 4);
 sum | prod
-----+------
 6 | 8

1225

PL/pgSQL — SQL Pro-
cedural Language

As discussed in Section 36.5.4, this effectively creates an anonymous record type for the function's
results. If a RETURNS clause is given, it must say RETURNS record.

This also works with procedures, for example:

CREATE PROCEDURE sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
 sum := x + y;
 prod := x * y;
END;
$$ LANGUAGE plpgsql;

In a call to a procedure, all the parameters must be specified. For output parameters, NULL may be
specified when calling the procedure from plain SQL:

CALL sum_n_product(2, 4, NULL, NULL);
 sum | prod
-----+------
 6 | 8

However, when calling a procedure from PL/pgSQL, you should instead write a variable for any output
parameter; the variable will receive the result of the call. See Section 41.6.3 for details.

Another way to declare a PL/pgSQL function is with RETURNS TABLE, for example:

CREATE FUNCTION extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN
 RETURN QUERY SELECT s.quantity, s.quantity * s.price FROM sales AS s
 WHERE s.itemno = p_itemno;
END;
$$ LANGUAGE plpgsql;

This is exactly equivalent to declaring one or more OUT parameters and specifying RETURNS SETOF some-
type.

When the return type of a PL/pgSQL function is declared as a polymorphic type (see Section 36.2.5), a
special parameter $0 is created. Its data type is the actual return type of the function, as deduced from
the actual input types. This allows the function to access its actual return type as shown in Section 41.3.3.
$0 is initialized to null and can be modified by the function, so it can be used to hold the return value
if desired, though that is not required. $0 can also be given an alias. For example, this function works
on any data type that has a + operator:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement)
RETURNS anyelement AS $$
DECLARE
 result ALIAS FOR $0;
BEGIN
 result := v1 + v2 + v3;
 RETURN result;
END;
$$ LANGUAGE plpgsql;

The same effect can be obtained by declaring one or more output parameters as polymorphic types.
In this case the special $0 parameter is not used; the output parameters themselves serve the same
purpose. For example:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement,
 OUT sum anyelement)
AS $$
BEGIN

1226

PL/pgSQL — SQL Pro-
cedural Language

 sum := v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

In practice it might be more useful to declare a polymorphic function using the anycompatible family
of types, so that automatic promotion of the input arguments to a common type will occur. For example:

CREATE FUNCTION add_three_values(v1 anycompatible, v2 anycompatible, v3 anycompatible)
RETURNS anycompatible AS $$
BEGIN
 RETURN v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

With this example, a call such as

SELECT add_three_values(1, 2, 4.7);

will work, automatically promoting the integer inputs to numeric. The function using anyelement would
require you to cast the three inputs to the same type manually.

41.3.2. ALIAS
newname ALIAS FOR oldname;

The ALIAS syntax is more general than is suggested in the previous section: you can declare an alias for
any variable, not just function parameters. The main practical use for this is to assign a different name
for variables with predetermined names, such as NEW or OLD within a trigger function.

Examples:

DECLARE
 prior ALIAS FOR old;
 updated ALIAS FOR new;

Since ALIAS creates two different ways to name the same object, unrestricted use can be confusing. It's
best to use it only for the purpose of overriding predetermined names.

41.3.3. Copying Types
name table.column%TYPE
name variable%TYPE

%TYPE provides the data type of a table column or a previously-declared PL/pgSQL variable. You can use
this to declare variables that will hold database values. For example, let's say you have a column named
user_id in your users table. To declare a variable with the same data type as users.user_id you write:

user_id users.user_id%TYPE;

It is also possible to write array decoration after %TYPE, thereby creating a variable that holds an array
of the referenced type:

user_ids users.user_id%TYPE[];
user_ids users.user_id%TYPE ARRAY[4]; -- equivalent to the above

Just as when declaring table columns that are arrays, it doesn't matter whether you write multiple brack-
et pairs or specific array dimensions: PostgreSQL treats all arrays of a given element type as the same
type, regardless of dimensionality. (See Section 8.15.1.)

By using %TYPE you don't need to know the data type of the structure you are referencing, and most
importantly, if the data type of the referenced item changes in the future (for instance: you change the
type of user_id from integer to real), you might not need to change your function definition.

1227

PL/pgSQL — SQL Pro-
cedural Language

%TYPE is particularly valuable in polymorphic functions, since the data types needed for internal variables
can change from one call to the next. Appropriate variables can be created by applying %TYPE to the
function's arguments or result placeholders.

41.3.4. Row Types
name table_name%ROWTYPE;
name composite_type_name;

A variable of a composite type is called a row variable (or row-type variable). Such a variable can hold
a whole row of a SELECT or FOR query result, so long as that query's column set matches the declared
type of the variable. The individual fields of the row value are accessed using the usual dot notation,
for example rowvar.field.

A row variable can be declared to have the same type as the rows of an existing table or view, by using
the table_name%ROWTYPE notation; or it can be declared by giving a composite type's name. (Since every
table has an associated composite type of the same name, it actually does not matter in PostgreSQL
whether you write %ROWTYPE or not. But the form with %ROWTYPE is more portable.)

As with %TYPE, %ROWTYPE can be followed by array decoration to declare a variable that holds an array
of the referenced composite type.

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier $n will be a row variable, and fields can be selected from it, for example $1.user_id.

Here is an example of using composite types. table1 and table2 are existing tables having at least the
mentioned fields:

CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE
 t2_row table2%ROWTYPE;
BEGIN
 SELECT * INTO t2_row FROM table2 WHERE ... ;
 RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;
END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;

41.3.5. Record Types
name RECORD;

Record variables are similar to row-type variables, but they have no predefined structure. They take on
the actual row structure of the row they are assigned during a SELECT or FOR command. The substructure
of a record variable can change each time it is assigned to. A consequence of this is that until a record
variable is first assigned to, it has no substructure, and any attempt to access a field in it will draw a
run-time error.

Note that RECORD is not a true data type, only a placeholder. One should also realize that when a PL/
pgSQL function is declared to return type record, this is not quite the same concept as a record variable,
even though such a function might use a record variable to hold its result. In both cases the actual
row structure is unknown when the function is written, but for a function returning record the actual
structure is determined when the calling query is parsed, whereas a record variable can change its row
structure on-the-fly.

41.3.6. Collation of PL/pgSQL Variables
When a PL/pgSQL function has one or more parameters of collatable data types, a collation is identified
for each function call depending on the collations assigned to the actual arguments, as described in

1228

PL/pgSQL — SQL Pro-
cedural Language

Section 23.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations
among the arguments) then all the collatable parameters are treated as having that collation implicitly.
This will affect the behavior of collation-sensitive operations within the function. For example, consider

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b;
END;
$$ LANGUAGE plpgsql;

SELECT less_than(text_field_1, text_field_2) FROM table1;
SELECT less_than(text_field_1, text_field_2 COLLATE "C") FROM table1;

The first use of less_than will use the common collation of text_field_1 and text_field_2 for the
comparison, while the second use will use C collation.

Furthermore, the identified collation is also assumed as the collation of any local variables that are of
collatable types. Thus this function would not work any differently if it were written as

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
DECLARE
 local_a text := a;
 local_b text := b;
BEGIN
 RETURN local_a < local_b;
END;
$$ LANGUAGE plpgsql;

If there are no parameters of collatable data types, or no common collation can be identified for them,
then parameters and local variables use the default collation of their data type (which is usually the
database's default collation, but could be different for variables of domain types).

A local variable of a collatable data type can have a different collation associated with it by including
the COLLATE option in its declaration, for example

DECLARE
 local_a text COLLATE "en_US";

This option overrides the collation that would otherwise be given to the variable according to the rules
above.

Also, of course explicit COLLATE clauses can be written inside a function if it is desired to force a particular
collation to be used in a particular operation. For example,

CREATE FUNCTION less_than_c(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b COLLATE "C";
END;
$$ LANGUAGE plpgsql;

This overrides the collations associated with the table columns, parameters, or local variables used in
the expression, just as would happen in a plain SQL command.

41.4. Expressions
All expressions used in PL/pgSQL statements are processed using the server's main SQL executor. For
example, when you write a PL/pgSQL statement like

IF expression THEN ...

PL/pgSQL will evaluate the expression by feeding a query like

1229

PL/pgSQL — SQL Pro-
cedural Language

SELECT expression

to the main SQL engine. While forming the SELECT command, any occurrences of PL/pgSQL variable
names are replaced by query parameters, as discussed in detail in Section 41.11.1. This allows the query
plan for the SELECT to be prepared just once and then reused for subsequent evaluations with different
values of the variables. Thus, what really happens on first use of an expression is essentially a PREPARE
command. For example, if we have declared two integer variables x and y, and we write

IF x < y THEN ...

what happens behind the scenes is equivalent to

PREPARE statement_name(integer, integer) AS SELECT $1 < $2;

and then this prepared statement is EXECUTEd for each execution of the IF statement, with the current
values of the PL/pgSQL variables supplied as parameter values. Normally these details are not important
to a PL/pgSQL user, but they are useful to know when trying to diagnose a problem. More information
appears in Section 41.11.2.

Since an expression is converted to a SELECT command, it can contain the same clauses that an ordinary
SELECT would, except that it cannot include a top-level UNION, INTERSECT, or EXCEPT clause. Thus for
example one could test whether a table is non-empty with

IF count(*) > 0 FROM my_table THEN ...

since the expression between IF and THEN is parsed as though it were SELECT count(*) > 0 FROM
my_table. The SELECT must produce a single column, and not more than one row. (If it produces no
rows, the result is taken as NULL.)

41.5. Basic Statements
In this section and the following ones, we describe all the statement types that are explicitly understood
by PL/pgSQL. Anything not recognized as one of these statement types is presumed to be an SQL com-
mand and is sent to the main database engine to execute, as described in Section 41.5.2.

41.5.1. Assignment
An assignment of a value to a PL/pgSQL variable is written as:

variable { := | = } expression;

As explained previously, the expression in such a statement is evaluated by means of an SQL SELECT
command sent to the main database engine. The expression must yield a single value (possibly a row
value, if the variable is a row or record variable). The target variable can be a simple variable (optionally
qualified with a block name), a field of a row or record target, or an element or slice of an array target.
Equal (=) can be used instead of PL/SQL-compliant :=.

If the expression's result data type doesn't match the variable's data type, the value will be coerced as
though by an assignment cast (see Section 10.4). If no assignment cast is known for the pair of data
types involved, the PL/pgSQL interpreter will attempt to convert the result value textually, that is by
applying the result type's output function followed by the variable type's input function. Note that this
could result in run-time errors generated by the input function, if the string form of the result value is
not acceptable to the input function.

Examples:

tax := subtotal * 0.06;
my_record.user_id := 20;
my_array[j] := 20;
my_array[1:3] := array[1,2,3];
complex_array[n].realpart = 12.3;

1230

PL/pgSQL — SQL Pro-
cedural Language

41.5.2. Executing SQL Commands
In general, any SQL command that does not return rows can be executed within a PL/pgSQL function
just by writing the command. For example, you could create and fill a table by writing

CREATE TABLE mytable (id int primary key, data text);
INSERT INTO mytable VALUES (1,'one'), (2,'two');

If the command does return rows (for example SELECT, or INSERT/UPDATE/DELETE/MERGE with RETURNING),
there are two ways to proceed. When the command will return at most one row, or you only care about
the first row of output, write the command as usual but add an INTO clause to capture the output, as
described in Section 41.5.3. To process all of the output rows, write the command as the data source
for a FOR loop, as described in Section 41.6.6.

Usually it is not sufficient just to execute statically-defined SQL commands. Typically you'll want a com-
mand to use varying data values, or even to vary in more fundamental ways such as by using different
table names at different times. Again, there are two ways to proceed depending on the situation.

PL/pgSQL variable values can be automatically inserted into optimizable SQL commands, which are
SELECT, INSERT, UPDATE, DELETE, MERGE, and certain utility commands that incorporate one of these,
such as EXPLAIN and CREATE TABLE ... AS SELECT. In these commands, any PL/pgSQL variable name
appearing in the command text is replaced by a query parameter, and then the current value of the
variable is provided as the parameter value at run time. This is exactly like the processing described
earlier for expressions; for details see Section 41.11.1.

When executing an optimizable SQL command in this way, PL/pgSQL may cache and re-use the execution
plan for the command, as discussed in Section 41.11.2.

Non-optimizable SQL commands (also called utility commands) are not capable of accepting query pa-
rameters. So automatic substitution of PL/pgSQL variables does not work in such commands. To include
non-constant text in a utility command executed from PL/pgSQL, you must build the utility command as
a string and then EXECUTE it, as discussed in Section 41.5.4.

EXECUTE must also be used if you want to modify the command in some other way than supplying a data
value, for example by changing a table name.

Sometimes it is useful to evaluate an expression or SELECT query but discard the result, for example
when calling a function that has side-effects but no useful result value. To do this in PL/pgSQL, use the
PERFORM statement:

PERFORM query;

This executes query and discards the result. Write the query the same way you would write an SQL
SELECT command, but replace the initial keyword SELECT with PERFORM. For WITH queries, use PERFORM
and then place the query in parentheses. (In this case, the query can only return one row.) PL/pgSQL
variables will be substituted into the query just as described above, and the plan is cached in the same
way. Also, the special variable FOUND is set to true if the query produced at least one row, or false if it
produced no rows (see Section 41.5.5).

Note
One might expect that writing SELECT directly would accomplish this result, but at present the
only accepted way to do it is PERFORM. An SQL command that can return rows, such as SELECT,
will be rejected as an error unless it has an INTO clause as discussed in the next section.

An example:

PERFORM create_mv('cs_session_page_requests_mv', my_query);

1231

PL/pgSQL — SQL Pro-
cedural Language

41.5.3. Executing a Command with a Single-Row Result
The result of an SQL command yielding a single row (possibly of multiple columns) can be assigned to
a record variable, row-type variable, or list of scalar variables. This is done by writing the base SQL
command and adding an INTO clause. For example,

SELECT select_expressions INTO [STRICT] target FROM ...;
INSERT ... RETURNING expressions INTO [STRICT] target;
UPDATE ... RETURNING expressions INTO [STRICT] target;
DELETE ... RETURNING expressions INTO [STRICT] target;
MERGE ... RETURNING expressions INTO [STRICT] target;

where target can be a record variable, a row variable, or a comma-separated list of simple variables and
record/row fields. PL/pgSQL variables will be substituted into the rest of the command (that is, every-
thing but the INTO clause) just as described above, and the plan is cached in the same way. This works
for SELECT, INSERT/UPDATE/DELETE/MERGE with RETURNING, and certain utility commands that return row
sets, such as EXPLAIN. Except for the INTO clause, the SQL command is the same as it would be written
outside PL/pgSQL.

Tip
Note that this interpretation of SELECT with INTO is quite different from PostgreSQL's regular
SELECT INTO command, wherein the INTO target is a newly created table. If you want to create
a table from a SELECT result inside a PL/pgSQL function, use the syntax CREATE TABLE ... AS
SELECT.

If a row variable or a variable list is used as target, the command's result columns must exactly match
the structure of the target as to number and data types, or else a run-time error occurs. When a record
variable is the target, it automatically configures itself to the row type of the command's result columns.

The INTO clause can appear almost anywhere in the SQL command. Customarily it is written either just
before or just after the list of select_expressions in a SELECT command, or at the end of the command
for other command types. It is recommended that you follow this convention in case the PL/pgSQL parser
becomes stricter in future versions.

If STRICT is not specified in the INTO clause, then target will be set to the first row returned by the
command, or to nulls if the command returned no rows. (Note that “the first row” is not well-defined
unless you've used ORDER BY.) Any result rows after the first row are discarded. You can check the special
FOUND variable (see Section 41.5.5) to determine whether a row was returned:

SELECT * INTO myrec FROM emp WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
END IF;

If the STRICT option is specified, the command must return exactly one row or a run-time error will
be reported, either NO_DATA_FOUND (no rows) or TOO_MANY_ROWS (more than one row). You can use an
exception block if you wish to catch the error, for example:

BEGIN
 SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
 WHEN TOO_MANY_ROWS THEN
 RAISE EXCEPTION 'employee % not unique', myname;
END;

Successful execution of a command with STRICT always sets FOUND to true.

1232

PL/pgSQL — SQL Pro-
cedural Language

For INSERT/UPDATE/DELETE/MERGE with RETURNING, PL/pgSQL reports an error for more than one returned
row, even when STRICT is not specified. This is because there is no option such as ORDER BY with which
to determine which affected row should be returned.

If print_strict_params is enabled for the function, then when an error is thrown because the require-
ments of STRICT are not met, the DETAIL part of the error message will include information about the
parameters passed to the command. You can change the print_strict_params setting for all functions
by setting plpgsql.print_strict_params, though only subsequent function compilations will be affect-
ed. You can also enable it on a per-function basis by using a compiler option, for example:

CREATE FUNCTION get_userid(username text) RETURNS int
AS $$
#print_strict_params on
DECLARE
userid int;
BEGIN
 SELECT users.userid INTO STRICT userid
 FROM users WHERE users.username = get_userid.username;
 RETURN userid;
END;
$$ LANGUAGE plpgsql;

On failure, this function might produce an error message such as

ERROR: query returned no rows
DETAIL: parameters: username = 'nosuchuser'
CONTEXT: PL/pgSQL function get_userid(text) line 6 at SQL statement

Note
The STRICT option matches the behavior of Oracle PL/SQL's SELECT INTO and related statements.

41.5.4. Executing Dynamic Commands
Oftentimes you will want to generate dynamic commands inside your PL/pgSQL functions, that is, com-
mands that will involve different tables or different data types each time they are executed. PL/pgSQL's
normal attempts to cache plans for commands (as discussed in Section 41.11.2) will not work in such
scenarios. To handle this sort of problem, the EXECUTE statement is provided:

EXECUTE command-string [INTO [STRICT] target] [USING expression [, ...]];

where command-string is an expression yielding a string (of type text) containing the command to be
executed. The optional target is a record variable, a row variable, or a comma-separated list of simple
variables and record/row fields, into which the results of the command will be stored. The optional USING
expressions supply values to be inserted into the command.

No substitution of PL/pgSQL variables is done on the computed command string. Any required variable
values must be inserted in the command string as it is constructed; or you can use parameters as de-
scribed below.

Also, there is no plan caching for commands executed via EXECUTE. Instead, the command is always
planned each time the statement is run. Thus the command string can be dynamically created within
the function to perform actions on different tables and columns.

The INTO clause specifies where the results of an SQL command returning rows should be assigned. If a
row variable or variable list is provided, it must exactly match the structure of the command's results; if a
record variable is provided, it will configure itself to match the result structure automatically. If multiple
rows are returned, only the first will be assigned to the INTO variable(s). If no rows are returned, NULL
is assigned to the INTO variable(s). If no INTO clause is specified, the command results are discarded.

1233

PL/pgSQL — SQL Pro-
cedural Language

If the STRICT option is given, an error is reported unless the command produces exactly one row.

The command string can use parameter values, which are referenced in the command as $1, $2, etc.
These symbols refer to values supplied in the USING clause. This method is often preferable to inserting
data values into the command string as text: it avoids run-time overhead of converting the values to
text and back, and it is much less prone to SQL-injection attacks since there is no need for quoting or
escaping. An example is:

EXECUTE 'SELECT count(*) FROM mytable WHERE inserted_by = $1 AND inserted <= $2'
 INTO c
 USING checked_user, checked_date;

Note that parameter symbols can only be used for data values — if you want to use dynamically deter-
mined table or column names, you must insert them into the command string textually. For example, if
the preceding query needed to be done against a dynamically selected table, you could do this:

EXECUTE 'SELECT count(*) FROM '
 || quote_ident(tabname)
 || ' WHERE inserted_by = $1 AND inserted <= $2'
 INTO c
 USING checked_user, checked_date;

A cleaner approach is to use format()'s %I specification to insert table or column names with automatic
quoting:

EXECUTE format('SELECT count(*) FROM %I '
 'WHERE inserted_by = $1 AND inserted <= $2', tabname)
 INTO c
 USING checked_user, checked_date;

(This example relies on the SQL rule that string literals separated by a newline are implicitly concate-
nated.)

Another restriction on parameter symbols is that they only work in optimizable SQL commands (SELECT,
INSERT, UPDATE, DELETE, MERGE, and certain commands containing one of these). In other statement types
(generically called utility statements), you must insert values textually even if they are just data values.

An EXECUTE with a simple constant command string and some USING parameters, as in the first example
above, is functionally equivalent to just writing the command directly in PL/pgSQL and allowing replace-
ment of PL/pgSQL variables to happen automatically. The important difference is that EXECUTE will re-
plan the command on each execution, generating a plan that is specific to the current parameter values;
whereas PL/pgSQL may otherwise create a generic plan and cache it for re-use. In situations where the
best plan depends strongly on the parameter values, it can be helpful to use EXECUTE to positively ensure
that a generic plan is not selected.

SELECT INTO is not currently supported within EXECUTE; instead, execute a plain SELECT command and
specify INTO as part of the EXECUTE itself.

Note
The PL/pgSQL EXECUTE statement is not related to the EXECUTE SQL statement supported by the
PostgreSQL server. The server's EXECUTE statement cannot be used directly within PL/pgSQL func-
tions (and is not needed).

Example 41.1. Quoting Values in Dynamic Queries

When working with dynamic commands you will often have to handle escaping of single quotes. The
recommended method for quoting fixed text in your function body is dollar quoting. (If you have legacy

1234

PL/pgSQL — SQL Pro-
cedural Language

code that does not use dollar quoting, please refer to the overview in Section 41.12.1, which can save
you some effort when translating said code to a more reasonable scheme.)

Dynamic values require careful handling since they might contain quote characters. An example using
format() (this assumes that you are dollar quoting the function body so quote marks need not be dou-
bled):

EXECUTE format('UPDATE tbl SET %I = $1 '
 'WHERE key = $2', colname) USING newvalue, keyvalue;

It is also possible to call the quoting functions directly:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_literal(newvalue)
 || ' WHERE key = '
 || quote_literal(keyvalue);

This example demonstrates the use of the quote_ident and quote_literal functions (see Section 9.4).
For safety, expressions containing column or table identifiers should be passed through quote_ident
before insertion in a dynamic query. Expressions containing values that should be literal strings in the
constructed command should be passed through quote_literal. These functions take the appropriate
steps to return the input text enclosed in double or single quotes respectively, with any embedded special
characters properly escaped.

Because quote_literal is labeled STRICT, it will always return null when called with a null argument.
In the above example, if newvalue or keyvalue were null, the entire dynamic query string would become
null, leading to an error from EXECUTE. You can avoid this problem by using the quote_nullable function,
which works the same as quote_literal except that when called with a null argument it returns the
string NULL. For example,

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_nullable(newvalue)
 || ' WHERE key = '
 || quote_nullable(keyvalue);

If you are dealing with values that might be null, you should usually use quote_nullable in place of
quote_literal.

As always, care must be taken to ensure that null values in a query do not deliver unintended results.
For example the WHERE clause

'WHERE key = ' || quote_nullable(keyvalue)

will never succeed if keyvalue is null, because the result of using the equality operator = with a null
operand is always null. If you wish null to work like an ordinary key value, you would need to rewrite
the above as

'WHERE key IS NOT DISTINCT FROM ' || quote_nullable(keyvalue)

(At present, IS NOT DISTINCT FROM is handled much less efficiently than =, so don't do this unless you
must. See Section 9.2 for more information on nulls and IS DISTINCT.)

Note that dollar quoting is only useful for quoting fixed text. It would be a very bad idea to try to write
this example as:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = $$'

1235

PL/pgSQL — SQL Pro-
cedural Language

 || newvalue
 || '$$ WHERE key = '
 || quote_literal(keyvalue);

because it would break if the contents of newvalue happened to contain $$. The same objection would
apply to any other dollar-quoting delimiter you might pick. So, to safely quote text that is not known in
advance, you must use quote_literal, quote_nullable, or quote_ident, as appropriate.

Dynamic SQL statements can also be safely constructed using the format function (see Section 9.4.1).
For example:

EXECUTE format('UPDATE tbl SET %I = %L '
 'WHERE key = %L', colname, newvalue, keyvalue);

%I is equivalent to quote_ident, and %L is equivalent to quote_nullable. The format function can be
used in conjunction with the USING clause:

EXECUTE format('UPDATE tbl SET %I = $1 WHERE key = $2', colname)
 USING newvalue, keyvalue;

This form is better because the variables are handled in their native data type format, rather than un-
conditionally converting them to text and quoting them via %L. It is also more efficient.

A much larger example of a dynamic command and EXECUTE can be seen in Example 41.10, which builds
and executes a CREATE FUNCTION command to define a new function.

41.5.5. Obtaining the Result Status
There are several ways to determine the effect of a command. The first method is to use the GET DIAG-
NOSTICS command, which has the form:

GET [CURRENT] DIAGNOSTICS variable { = | := } item [, ...];

This command allows retrieval of system status indicators. CURRENT is a noise word (but see also GET
STACKED DIAGNOSTICS in Section 41.6.8.1). Each item is a key word identifying a status value to be
assigned to the specified variable (which should be of the right data type to receive it). The currently
available status items are shown in Table 41.1. Colon-equal (:=) can be used instead of the SQL-standard
= token. An example:

GET DIAGNOSTICS integer_var = ROW_COUNT;

Table 41.1. Available Diagnostics Items

Name Type Description
ROW_COUNT bigint the number of rows processed by the most recent

SQL command
PG_CONTEXT text line(s) of text describing the current call stack (

see Section 41.6.9)
PG_ROUTINE_OID oid OID of the current function

The second method to determine the effects of a command is to check the special variable named FOUND,
which is of type boolean. FOUND starts out false within each PL/pgSQL function call. It is set by each of
the following types of statements:

• A SELECT INTO statement sets FOUND true if a row is assigned, false if no row is returned.

• A PERFORM statement sets FOUND true if it produces (and discards) one or more rows, false if no row
is produced.

• UPDATE, INSERT, DELETE, and MERGE statements set FOUND true if at least one row is affected, false if
no row is affected.

1236

PL/pgSQL — SQL Pro-
cedural Language

• A FETCH statement sets FOUND true if it returns a row, false if no row is returned.

• A MOVE statement sets FOUND true if it successfully repositions the cursor, false otherwise.

• A FOR or FOREACH statement sets FOUND true if it iterates one or more times, else false. FOUND is set
this way when the loop exits; inside the execution of the loop, FOUND is not modified by the loop
statement, although it might be changed by the execution of other statements within the loop body.

• RETURN QUERY and RETURN QUERY EXECUTE statements set FOUND true if the query returns at least
one row, false if no row is returned.

Other PL/pgSQL statements do not change the state of FOUND. Note in particular that EXECUTE changes
the output of GET DIAGNOSTICS, but does not change FOUND.

FOUND is a local variable within each PL/pgSQL function; any changes to it affect only the current func-
tion.

41.5.6. Doing Nothing At All
Sometimes a placeholder statement that does nothing is useful. For example, it can indicate that one
arm of an if/then/else chain is deliberately empty. For this purpose, use the NULL statement:

NULL;

For example, the following two fragments of code are equivalent:

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 NULL; -- ignore the error
END;

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN -- ignore the error
END;

Which is preferable is a matter of taste.

Note
In Oracle's PL/SQL, empty statement lists are not allowed, and so NULL statements are required
for situations such as this. PL/pgSQL allows you to just write nothing, instead.

41.6. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL's
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

41.6.1. Returning from a Function
There are two commands available that allow you to return data from a function: RETURN and RETURN
NEXT.

41.6.1.1. RETURN
RETURN expression;

1237

PL/pgSQL — SQL Pro-
cedural Language

RETURN with an expression terminates the function and returns the value of expression to the caller.
This form is used for PL/pgSQL functions that do not return a set.

In a function that returns a scalar type, the expression's result will automatically be cast into the func-
tion's return type as described for assignments. But to return a composite (row) value, you must write
an expression delivering exactly the requested column set. This may require use of explicit casting.

If you declared the function with output parameters, write just RETURN with no expression. The current
values of the output parameter variables will be returned.

If you declared the function to return void, a RETURN statement can be used to exit the function early;
but do not write an expression following RETURN.

The return value of a function cannot be left undefined. If control reaches the end of the top-level block
of the function without hitting a RETURN statement, a run-time error will occur. This restriction does
not apply to functions with output parameters and functions returning void, however. In those cases a
RETURN statement is automatically executed if the top-level block finishes.

Some examples:

-- functions returning a scalar type
RETURN 1 + 2;
RETURN scalar_var;

-- functions returning a composite type
RETURN composite_type_var;
RETURN (1, 2, 'three'::text); -- must cast columns to correct types

41.6.1.2. RETURN NEXT and RETURN QUERY
RETURN NEXT expression;
RETURN QUERY query;
RETURN QUERY EXECUTE command-string [USING expression [, ...]];

When a PL/pgSQL function is declared to return SETOF sometype, the procedure to follow is slightly
different. In that case, the individual items to return are specified by a sequence of RETURN NEXT or
RETURN QUERY commands, and then a final RETURN command with no argument is used to indicate that
the function has finished executing. RETURN NEXT can be used with both scalar and composite data types;
with a composite result type, an entire “table” of results will be returned. RETURN QUERY appends the
results of executing a query to the function's result set. RETURN NEXT and RETURN QUERY can be freely
intermixed in a single set-returning function, in which case their results will be concatenated.

RETURN NEXT and RETURN QUERY do not actually return from the function — they simply append zero
or more rows to the function's result set. Execution then continues with the next statement in the PL/
pgSQL function. As successive RETURN NEXT or RETURN QUERY commands are executed, the result set
is built up. A final RETURN, which should have no argument, causes control to exit the function (or you
can just let control reach the end of the function).

RETURN QUERY has a variant RETURN QUERY EXECUTE, which specifies the query to be executed dynami-
cally. Parameter expressions can be inserted into the computed query string via USING, in just the same
way as in the EXECUTE command.

If you declared the function with output parameters, write just RETURN NEXT with no expression. On
each execution, the current values of the output parameter variable(s) will be saved for eventual return
as a row of the result. Note that you must declare the function as returning SETOF record when there
are multiple output parameters, or SETOF sometype when there is just one output parameter of type
sometype, in order to create a set-returning function with output parameters.

Here is an example of a function using RETURN NEXT:

1238

PL/pgSQL — SQL Pro-
cedural Language

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS
$BODY$
DECLARE
 r foo%rowtype;
BEGIN
 FOR r IN
 SELECT * FROM foo WHERE fooid > 0
 LOOP
 -- can do some processing here
 RETURN NEXT r; -- return current row of SELECT
 END LOOP;
 RETURN;
END;
$BODY$
LANGUAGE plpgsql;

SELECT * FROM get_all_foo();

Here is an example of a function using RETURN QUERY:

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS
$BODY$
BEGIN
 RETURN QUERY SELECT flightid
 FROM flight
 WHERE flightdate >= $1
 AND flightdate < ($1 + 1);

 -- Since execution is not finished, we can check whether rows were returned
 -- and raise exception if not.
 IF NOT FOUND THEN
 RAISE EXCEPTION 'No flight at %.', $1;
 END IF;

 RETURN;
 END;
$BODY$
LANGUAGE plpgsql;

-- Returns available flights or raises exception if there are no
-- available flights.
SELECT * FROM get_available_flightid(CURRENT_DATE);

Note
The current implementation of RETURN NEXT and RETURN QUERY stores the entire result set before
returning from the function, as discussed above. That means that if a PL/pgSQL function produces
a very large result set, performance might be poor: data will be written to disk to avoid memory
exhaustion, but the function itself will not return until the entire result set has been generated. A
future version of PL/pgSQL might allow users to define set-returning functions that do not have
this limitation. Currently, the point at which data begins being written to disk is controlled by
the work_mem configuration variable. Administrators who have sufficient memory to store larger
result sets in memory should consider increasing this parameter.

1239

PL/pgSQL — SQL Pro-
cedural Language

41.6.2. Returning from a Procedure
A procedure does not have a return value. A procedure can therefore end without a RETURN statement.
If you wish to use a RETURN statement to exit the code early, write just RETURN with no expression.

If the procedure has output parameters, the final values of the output parameter variables will be re-
turned to the caller.

41.6.3. Calling a Procedure
A PL/pgSQL function, procedure, or DO block can call a procedure using CALL. Output parameters are
handled differently from the way that CALL works in plain SQL. Each OUT or INOUT parameter of the
procedure must correspond to a variable in the CALL statement, and whatever the procedure returns is
assigned back to that variable after it returns. For example:

CREATE PROCEDURE triple(INOUT x int)
LANGUAGE plpgsql
AS $$
BEGIN
 x := x * 3;
END;
$$;

DO $$
DECLARE myvar int := 5;
BEGIN
 CALL triple(myvar);
 RAISE NOTICE 'myvar = %', myvar; -- prints 15
END;
$$;

The variable corresponding to an output parameter can be a simple variable or a field of a composite-type
variable. Currently, it cannot be an element of an array.

41.6.4. Conditionals
IF and CASE statements let you execute alternative commands based on certain conditions. PL/pgSQL
has three forms of IF:

• IF ... THEN ... END IF

• IF ... THEN ... ELSE ... END IF

• IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF

and two forms of CASE:

• CASE ... WHEN ... THEN ... ELSE ... END CASE

• CASE WHEN ... THEN ... ELSE ... END CASE

41.6.4.1. IF-THEN
IF boolean-expression THEN
 statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be
executed if the condition is true. Otherwise, they are skipped.

Example:

IF v_user_id <> 0 THEN

1240

PL/pgSQL — SQL Pro-
cedural Language

 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

41.6.4.2. IF-THEN-ELSE
IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that
should be executed if the condition is not true. (Note this includes the case where the condition evaluates
to NULL.)

Examples:

IF parentid IS NULL OR parentid = ''
THEN
 RETURN fullname;
ELSE
 RETURN hp_true_filename(parentid) || '/' || fullname;
END IF;

IF v_count > 0 THEN
 INSERT INTO users_count (count) VALUES (v_count);
 RETURN 't';
ELSE
 RETURN 'f';
END IF;

41.6.4.3. IF-THEN-ELSIF
IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
 ...
]
]
[ELSE
 statements]
END IF;

Sometimes there are more than just two alternatives. IF-THEN-ELSIF provides a convenient method of
checking several alternatives in turn. The IF conditions are tested successively until the first one that
is true is found. Then the associated statement(s) are executed, after which control passes to the next
statement after END IF. (Any subsequent IF conditions are not tested.) If none of the IF conditions is
true, then the ELSE block (if any) is executed.

Here is an example:

IF number = 0 THEN
 result := 'zero';
ELSIF number > 0 THEN
 result := 'positive';
ELSIF number < 0 THEN
 result := 'negative';
ELSE

1241

PL/pgSQL — SQL Pro-
cedural Language

 -- hmm, the only other possibility is that number is null
 result := 'NULL';
END IF;

The key word ELSIF can also be spelled ELSEIF.

An alternative way of accomplishing the same task is to nest IF-THEN-ELSE statements, as in the follow-
ing example:

IF demo_row.sex = 'm' THEN
 pretty_sex := 'man';
ELSE
 IF demo_row.sex = 'f' THEN
 pretty_sex := 'woman';
 END IF;
END IF;

However, this method requires writing a matching END IF for each IF, so it is much more cumbersome
than using ELSIF when there are many alternatives.

41.6.4.4. Simple CASE
CASE search-expression
 WHEN expression [, expression [...]] THEN
 statements
 [WHEN expression [, expression [...]] THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

The simple form of CASE provides conditional execution based on equality of operands. The search-
expression is evaluated (once) and successively compared to each expression in the WHEN clauses. If
a match is found, then the corresponding statements are executed, and then control passes to the next
statement after END CASE. (Subsequent WHEN expressions are not evaluated.) If no match is found, the
ELSE statements are executed; but if ELSE is not present, then a CASE_NOT_FOUND exception is raised.

Here is a simple example:

CASE x
 WHEN 1, 2 THEN
 msg := 'one or two';
 ELSE
 msg := 'other value than one or two';
END CASE;

41.6.4.5. Searched CASE
CASE
 WHEN boolean-expression THEN
 statements
 [WHEN boolean-expression THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

The searched form of CASE provides conditional execution based on truth of Boolean expressions. Each
WHEN clause's boolean-expression is evaluated in turn, until one is found that yields true. Then the

1242

PL/pgSQL — SQL Pro-
cedural Language

corresponding statements are executed, and then control passes to the next statement after END CASE.
(Subsequent WHEN expressions are not evaluated.) If no true result is found, the ELSE statements are
executed; but if ELSE is not present, then a CASE_NOT_FOUND exception is raised.

Here is an example:

CASE
 WHEN x BETWEEN 0 AND 10 THEN
 msg := 'value is between zero and ten';
 WHEN x BETWEEN 11 AND 20 THEN
 msg := 'value is between eleven and twenty';
END CASE;

This form of CASE is entirely equivalent to IF-THEN-ELSIF, except for the rule that reaching an omitted
ELSE clause results in an error rather than doing nothing.

41.6.5. Simple Loops
With the LOOP, EXIT, CONTINUE, WHILE, FOR, and FOREACH statements, you can arrange for your PL/pgSQL
function to repeat a series of commands.

41.6.5.1. LOOP
[<<label>>]
LOOP
 statements
END LOOP [label];

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN
statement. The optional label can be used by EXIT and CONTINUE statements within nested loops to
specify which loop those statements refer to.

41.6.5.2. EXIT
EXIT [label] [WHEN boolean-expression];

If no label is given, the innermost loop is terminated and the statement following END LOOP is executed
next. If label is given, it must be the label of the current or some outer level of nested loop or block.
Then the named loop or block is terminated and control continues with the statement after the loop's/
block's corresponding END.

If WHEN is specified, the loop exit occurs only if boolean-expression is true. Otherwise, control passes
to the statement after EXIT.

EXIT can be used with all types of loops; it is not limited to use with unconditional loops.

When used with a BEGIN block, EXIT passes control to the next statement after the end of the block.
Note that a label must be used for this purpose; an unlabeled EXIT is never considered to match a BEGIN
block. (This is a change from pre-8.4 releases of PostgreSQL, which would allow an unlabeled EXIT to
match a BEGIN block.)

Examples:

LOOP
 -- some computations
 IF count > 0 THEN
 EXIT; -- exit loop
 END IF;
END LOOP;

1243

PL/pgSQL — SQL Pro-
cedural Language

LOOP
 -- some computations
 EXIT WHEN count > 0; -- same result as previous example
END LOOP;

<<ablock>>
BEGIN
 -- some computations
 IF stocks > 100000 THEN
 EXIT ablock; -- causes exit from the BEGIN block
 END IF;
 -- computations here will be skipped when stocks > 100000
END;

41.6.5.3. CONTINUE
CONTINUE [label] [WHEN boolean-expression];

If no label is given, the next iteration of the innermost loop is begun. That is, all statements remaining
in the loop body are skipped, and control returns to the loop control expression (if any) to determine
whether another loop iteration is needed. If label is present, it specifies the label of the loop whose
execution will be continued.

If WHEN is specified, the next iteration of the loop is begun only if boolean-expression is true. Otherwise,
control passes to the statement after CONTINUE.

CONTINUE can be used with all types of loops; it is not limited to use with unconditional loops.

Examples:

LOOP
 -- some computations
 EXIT WHEN count > 100;
 CONTINUE WHEN count < 50;
 -- some computations for count IN [50 .. 100]
END LOOP;

41.6.5.4. WHILE
[<<label>>]
WHILE boolean-expression LOOP
 statements
END LOOP [label];

The WHILE statement repeats a sequence of statements so long as the boolean-expression evaluates to
true. The expression is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
 -- some computations here
END LOOP;

WHILE NOT done LOOP
 -- some computations here
END LOOP;

41.6.5.5. FOR (Integer Variant)
[<<label>>]
FOR name IN [REVERSE] expression .. expression [BY expression] LOOP

1244

PL/pgSQL — SQL Pro-
cedural Language

 statements
END LOOP [label];

This form of FOR creates a loop that iterates over a range of integer values. The variable name is auto-
matically defined as type integer and exists only inside the loop (any existing definition of the variable
name is ignored within the loop). The two expressions giving the lower and upper bound of the range
are evaluated once when entering the loop. If the BY clause isn't specified the iteration step is 1, other-
wise it's the value specified in the BY clause, which again is evaluated once on loop entry. If REVERSE is
specified then the step value is subtracted, rather than added, after each iteration.

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
 -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
 -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP
 -- i will take on the values 10,8,6,4,2 within the loop
END LOOP;

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop body
is not executed at all. No error is raised.

If a label is attached to the FOR loop then the integer loop variable can be referenced with a qualified
name, using that label.

41.6.6. Looping through Query Results
Using a different type of FOR loop, you can iterate through the results of a query and manipulate that
data accordingly. The syntax is:

[<<label>>]
FOR target IN query LOOP
 statements
END LOOP [label];

The target is a record variable, row variable, or comma-separated list of scalar variables. The target
is successively assigned each row resulting from the query and the loop body is executed for each row.
Here is an example:

CREATE FUNCTION refresh_mviews() RETURNS integer AS $$
DECLARE
 mviews RECORD;
BEGIN
 RAISE NOTICE 'Refreshing all materialized views...';

 FOR mviews IN
 SELECT n.nspname AS mv_schema,
 c.relname AS mv_name,
 pg_catalog.pg_get_userbyid(c.relowner) AS owner
 FROM pg_catalog.pg_class c
 LEFT JOIN pg_catalog.pg_namespace n ON (n.oid = c.relnamespace)
 WHERE c.relkind = 'm'
 ORDER BY 1
 LOOP

1245

PL/pgSQL — SQL Pro-
cedural Language

 -- Now "mviews" has one record with information about the materialized view

 RAISE NOTICE 'Refreshing materialized view %.% (owner: %)...',
 quote_ident(mviews.mv_schema),
 quote_ident(mviews.mv_name),
 quote_ident(mviews.owner);
 EXECUTE format('REFRESH MATERIALIZED VIEW %I.%I', mviews.mv_schema,
 mviews.mv_name);
 END LOOP;

 RAISE NOTICE 'Done refreshing materialized views.';
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the
loop.

The query used in this type of FOR statement can be any SQL command that returns rows to the caller:
SELECT is the most common case, but you can also use INSERT, UPDATE, DELETE, or MERGE with a RETURNING
clause. Some utility commands such as EXPLAIN will work too.

PL/pgSQL variables are replaced by query parameters, and the query plan is cached for possible re-use,
as discussed in detail in Section 41.11.1 and Section 41.11.2.

The FOR-IN-EXECUTE statement is another way to iterate over rows:

[<<label>>]
FOR target IN EXECUTE text_expression [USING expression [, ...]] LOOP
 statements
END LOOP [label];

This is like the previous form, except that the source query is specified as a string expression, which is
evaluated and replanned on each entry to the FOR loop. This allows the programmer to choose the speed
of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE statement. As
with EXECUTE, parameter values can be inserted into the dynamic command via USING.

Another way to specify the query whose results should be iterated through is to declare it as a cursor.
This is described in Section 41.7.4.

41.6.7. Looping through Arrays
The FOREACH loop is much like a FOR loop, but instead of iterating through the rows returned by an
SQL query, it iterates through the elements of an array value. (In general, FOREACH is meant for looping
through components of a composite-valued expression; variants for looping through composites besides
arrays may be added in future.) The FOREACH statement to loop over an array is:

[<<label>>]
FOREACH target [SLICE number] IN ARRAY expression LOOP
 statements
END LOOP [label];

Without SLICE, or if SLICE 0 is specified, the loop iterates through individual elements of the array
produced by evaluating the expression. The target variable is assigned each element value in sequence,
and the loop body is executed for each element. Here is an example of looping through the elements
of an integer array:

CREATE FUNCTION sum(int[]) RETURNS int8 AS $$
DECLARE
 s int8 := 0;

1246

PL/pgSQL — SQL Pro-
cedural Language

 x int;
BEGIN
 FOREACH x IN ARRAY $1
 LOOP
 s := s + x;
 END LOOP;
 RETURN s;
END;
$$ LANGUAGE plpgsql;

The elements are visited in storage order, regardless of the number of array dimensions. Although the
target is usually just a single variable, it can be a list of variables when looping through an array
of composite values (records). In that case, for each array element, the variables are assigned from
successive columns of the composite value.

With a positive SLICE value, FOREACH iterates through slices of the array rather than single elements.
The SLICE value must be an integer constant not larger than the number of dimensions of the array.
The target variable must be an array, and it receives successive slices of the array value, where each
slice is of the number of dimensions specified by SLICE. Here is an example of iterating through one-
dimensional slices:

CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$
DECLARE
 x int[];
BEGIN
 FOREACH x SLICE 1 IN ARRAY $1
 LOOP
 RAISE NOTICE 'row = %', x;
 END LOOP;
END;
$$ LANGUAGE plpgsql;

SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);

NOTICE: row = {1,2,3}
NOTICE: row = {4,5,6}
NOTICE: row = {7,8,9}
NOTICE: row = {10,11,12}

41.6.8. Trapping Errors
By default, any error occurring in a PL/pgSQL function aborts execution of the function and the sur-
rounding transaction. You can trap errors and recover from them by using a BEGIN block with an EXCEP-
TION clause. The syntax is an extension of the normal syntax for a BEGIN block:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 WHEN condition [OR condition ...] THEN
 handler_statements
 [WHEN condition [OR condition ...] THEN
 handler_statements
 ...]
END;

If no error occurs, this form of block simply executes all the statements, and then control passes to
the next statement after END. But if an error occurs within the statements, further processing of the

1247

PL/pgSQL — SQL Pro-
cedural Language

statements is abandoned, and control passes to the EXCEPTION list. The list is searched for the first con-
dition matching the error that occurred. If a match is found, the corresponding handler_statements
are executed, and then control passes to the next statement after END. If no match is found, the error
propagates out as though the EXCEPTION clause were not there at all: the error can be caught by an
enclosing block with EXCEPTION, or if there is none it aborts processing of the function.

The condition names can be any of those shown in Appendix A. A category name matches any error
within its category. The special condition name OTHERS matches every error type except QUERY_CANCELED
and ASSERT_FAILURE. (It is possible, but often unwise, to trap those two error types by name.) Condition
names are not case-sensitive. Also, an error condition can be specified by SQLSTATE code; for example
these are equivalent:

WHEN division_by_zero THEN ...
WHEN SQLSTATE '22012' THEN ...

If a new error occurs within the selected handler_statements, it cannot be caught by this EXCEPTION
clause, but is propagated out. A surrounding EXCEPTION clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the PL/pgSQL function remain
as they were when the error occurred, but all changes to persistent database state within the block are
rolled back. As an example, consider this fragment:

INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');
BEGIN
 UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
 x := x + 1;
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 RAISE NOTICE 'caught division_by_zero';
 RETURN x;
END;

When control reaches the assignment to y, it will fail with a division_by_zero error. This will be caught
by the EXCEPTION clause. The value returned in the RETURN statement will be the incremented value of
x, but the effects of the UPDATE command will have been rolled back. The INSERT command preceding
the block is not rolled back, however, so the end result is that the database contains Tom Jones not
Joe Jones.

Tip
A block containing an EXCEPTION clause is significantly more expensive to enter and exit than a
block without one. Therefore, don't use EXCEPTION without need.

Example 41.2. Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as appropriate. It is recom-
mended that applications use INSERT with ON CONFLICT DO UPDATE rather than actually using this pat-
tern. This example serves primarily to illustrate use of PL/pgSQL control flow structures:

CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
 LOOP
 -- first try to update the key

1248

PL/pgSQL — SQL Pro-
cedural Language

 UPDATE db SET b = data WHERE a = key;
 IF found THEN
 RETURN;
 END IF;
 -- not there, so try to insert the key
 -- if someone else inserts the same key concurrently,
 -- we could get a unique-key failure
 BEGIN
 INSERT INTO db(a,b) VALUES (key, data);
 RETURN;
 EXCEPTION WHEN unique_violation THEN
 -- Do nothing, and loop to try the UPDATE again.
 END;
 END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

This coding assumes the unique_violation error is caused by the INSERT, and not by, say, an INSERT
in a trigger function on the table. It might also misbehave if there is more than one unique index on the
table, since it will retry the operation regardless of which index caused the error. More safety could be
had by using the features discussed next to check that the trapped error was the one expected.

41.6.8.1. Obtaining Information about an Error
Exception handlers frequently need to identify the specific error that occurred. There are two ways
to get information about the current exception in PL/pgSQL: special variables and the GET STACKED
DIAGNOSTICS command.

Within an exception handler, the special variable SQLSTATE contains the error code that corresponds to
the exception that was raised (refer to Table A.1 for a list of possible error codes). The special variable
SQLERRM contains the error message associated with the exception. These variables are undefined outside
exception handlers.

Within an exception handler, one may also retrieve information about the current exception by using
the GET STACKED DIAGNOSTICS command, which has the form:

GET STACKED DIAGNOSTICS variable { = | := } item [, ...];

Each item is a key word identifying a status value to be assigned to the specified variable (which should
be of the right data type to receive it). The currently available status items are shown in Table 41.2.

Table 41.2. Error Diagnostics Items

Name Type Description
RETURNED_SQLSTATE text the SQLSTATE error code of the excep-

tion
COLUMN_NAME text the name of the column related to ex-

ception
CONSTRAINT_NAME text the name of the constraint related to

exception
PG_DATATYPE_NAME text the name of the data type related to ex-

ception
MESSAGE_TEXT text the text of the exception's primary mes-

sage

1249

PL/pgSQL — SQL Pro-
cedural Language

Name Type Description
TABLE_NAME text the name of the table related to excep-

tion
SCHEMA_NAME text the name of the schema related to ex-

ception
PG_EXCEPTION_DETAIL text the text of the exception's detail mes-

sage, if any
PG_EXCEPTION_HINT text the text of the exception's hint mes-

sage, if any
PG_EXCEPTION_CONTEXT text line(s) of text describing the call stack

at the time of the exception (see Sec-
tion 41.6.9)

If the exception did not set a value for an item, an empty string will be returned.

Here is an example:

DECLARE
 text_var1 text;
 text_var2 text;
 text_var3 text;
BEGIN
 -- some processing which might cause an exception
 ...
EXCEPTION WHEN OTHERS THEN
 GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT,
 text_var2 = PG_EXCEPTION_DETAIL,
 text_var3 = PG_EXCEPTION_HINT;
END;

41.6.9. Obtaining Execution Location Information
The GET DIAGNOSTICS command, previously described in Section 41.5.5, retrieves information about
current execution state (whereas the GET STACKED DIAGNOSTICS command discussed above reports
information about the execution state as of a previous error). Its PG_CONTEXT status item is useful for
identifying the current execution location. PG_CONTEXT returns a text string with line(s) of text describing
the call stack. The first line refers to the current function and currently executing GET DIAGNOSTICS
command. The second and any subsequent lines refer to calling functions further up the call stack. For
example:

CREATE OR REPLACE FUNCTION outer_func() RETURNS integer AS $$
BEGIN
 RETURN inner_func();
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION inner_func() RETURNS integer AS $$
DECLARE
 stack text;
BEGIN
 GET DIAGNOSTICS stack = PG_CONTEXT;
 RAISE NOTICE E'--- Call Stack ---\n%', stack;
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

1250

PL/pgSQL — SQL Pro-
cedural Language

SELECT outer_func();

NOTICE: --- Call Stack ---
PL/pgSQL function inner_func() line 5 at GET DIAGNOSTICS
PL/pgSQL function outer_func() line 3 at RETURN
CONTEXT: PL/pgSQL function outer_func() line 3 at RETURN
 outer_func

 1
(1 row)

GET STACKED DIAGNOSTICS ... PG_EXCEPTION_CONTEXT returns the same sort of stack trace, but de-
scribing the location at which an error was detected, rather than the current location.

41.7. Cursors
Rather than executing a whole query at once, it is possible to set up a cursor that encapsulates the query,
and then read the query result a few rows at a time. One reason for doing this is to avoid memory overrun
when the result contains a large number of rows. (However, PL/pgSQL users do not normally need to
worry about that, since FOR loops automatically use a cursor internally to avoid memory problems.) A
more interesting usage is to return a reference to a cursor that a function has created, allowing the
caller to read the rows. This provides an efficient way to return large row sets from functions.

41.7.1. Declaring Cursor Variables
All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special data
type refcursor. One way to create a cursor variable is just to declare it as a variable of type refcursor.
Another way is to use the cursor declaration syntax, which in general is:

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

(FOR can be replaced by IS for Oracle compatibility.) If SCROLL is specified, the cursor will be capable of
scrolling backward; if NO SCROLL is specified, backward fetches will be rejected; if neither specification
appears, it is query-dependent whether backward fetches will be allowed. arguments, if specified, is a
comma-separated list of pairs name datatype that define names to be replaced by parameter values in
the given query. The actual values to substitute for these names will be specified later, when the cursor
is opened.

Some examples:

DECLARE
 curs1 refcursor;
 curs2 CURSOR FOR SELECT * FROM tenk1;
 curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 = key;

All three of these variables have the data type refcursor, but the first can be used with any query, while
the second has a fully specified query already bound to it, and the last has a parameterized query bound
to it. (key will be replaced by an integer parameter value when the cursor is opened.) The variable curs1
is said to be unbound since it is not bound to any particular query.

The SCROLL option cannot be used when the cursor's query uses FOR UPDATE/SHARE. Also, it is best to
use NO SCROLL with a query that involves volatile functions. The implementation of SCROLL assumes that
re-reading the query's output will give consistent results, which a volatile function might not do.

41.7.2. Opening Cursors
Before a cursor can be used to retrieve rows, it must be opened. (This is the equivalent action to the
SQL command DECLARE CURSOR.) PL/pgSQL has three forms of the OPEN statement, two of which use
unbound cursor variables while the third uses a bound cursor variable.

1251

PL/pgSQL — SQL Pro-
cedural Language

Note
Bound cursor variables can also be used without explicitly opening the cursor, via the FOR state-
ment described in Section 41.7.4. A FOR loop will open the cursor and then close it again when
the loop completes.

Opening a cursor involves creating a server-internal data structure called a portal, which holds the
execution state for the cursor's query. A portal has a name, which must be unique within the session for
the duration of the portal's existence. By default, PL/pgSQL will assign a unique name to each portal it
creates. However, if you assign a non-null string value to a cursor variable, that string will be used as
its portal name. This feature can be used as described in Section 41.7.3.5.

41.7.2.1. OPEN FOR query
OPEN unbound_cursorvar [[NO] SCROLL] FOR query;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open
already, and it must have been declared as an unbound cursor variable (that is, as a simple refcursor
variable). The query must be a SELECT, or something else that returns rows (such as EXPLAIN). The
query is treated in the same way as other SQL commands in PL/pgSQL: PL/pgSQL variable names are
substituted, and the query plan is cached for possible reuse. When a PL/pgSQL variable is substituted
into the cursor query, the value that is substituted is the one it has at the time of the OPEN; subsequent
changes to the variable will not affect the cursor's behavior. The SCROLL and NO SCROLL options have
the same meanings as for a bound cursor.

An example:

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

41.7.2.2. OPEN FOR EXECUTE
OPEN unbound_cursorvar [[NO] SCROLL] FOR EXECUTE query_string
 [USING expression [, ...]];

The cursor variable is opened and given the specified query to execute. The cursor cannot be open
already, and it must have been declared as an unbound cursor variable (that is, as a simple refcursor
variable). The query is specified as a string expression, in the same way as in the EXECUTE command. As
usual, this gives flexibility so the query plan can vary from one run to the next (see Section 41.11.2), and
it also means that variable substitution is not done on the command string. As with EXECUTE, parameter
values can be inserted into the dynamic command via format() and USING. The SCROLL and NO SCROLL
options have the same meanings as for a bound cursor.

An example:

OPEN curs1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 = $1',tabname) USING
 keyvalue;

In this example, the table name is inserted into the query via format(). The comparison value for col1
is inserted via a USING parameter, so it needs no quoting.

41.7.2.3. Opening a Bound Cursor
OPEN bound_cursorvar [([argument_name { := | => }] argument_value [, ...])];

This form of OPEN is used to open a cursor variable whose query was bound to it when it was declared.
The cursor cannot be open already. A list of actual argument value expressions must appear if and only
if the cursor was declared to take arguments. These values will be substituted in the query.

The query plan for a bound cursor is always considered cacheable; there is no equivalent of EXECUTE
in this case. Notice that SCROLL and NO SCROLL cannot be specified in OPEN, as the cursor's scrolling
behavior was already determined.

1252

PL/pgSQL — SQL Pro-
cedural Language

Argument values can be passed using either positional or named notation. In positional notation, all
arguments are specified in order. In named notation, each argument's name is specified using := or =>
to separate it from the argument expression. Similar to calling functions, described in Section 4.3, it is
also allowed to mix positional and named notation.

Examples (these use the cursor declaration examples above):

OPEN curs2;
OPEN curs3(42);
OPEN curs3(key := 42);
OPEN curs3(key => 42);

Because variable substitution is done on a bound cursor's query, there are really two ways to pass values
into the cursor: either with an explicit argument to OPEN, or implicitly by referencing a PL/pgSQL variable
in the query. However, only variables declared before the bound cursor was declared will be substituted
into it. In either case the value to be passed is determined at the time of the OPEN. For example, another
way to get the same effect as the curs3 example above is

DECLARE
 key integer;
 curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;
BEGIN
 key := 42;
 OPEN curs4;

41.7.3. Using Cursors
Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You
can return a refcursor value out of a function and let the caller operate on the cursor. (Internally, a
refcursor value is simply the string name of the portal containing the active query for the cursor. This
name can be passed around, assigned to other refcursor variables, and so on, without disturbing the
portal.)

All portals are implicitly closed at transaction end. Therefore a refcursor value is usable to reference
an open cursor only until the end of the transaction.

41.7.3.1. FETCH
FETCH [direction { FROM | IN }] cursor INTO target;

FETCH retrieves the next row (in the indicated direction) from the cursor into a target, which might be
a row variable, a record variable, or a comma-separated list of simple variables, just like SELECT INTO.
If there is no suitable row, the target is set to NULL(s). As with SELECT INTO, the special variable FOUND
can be checked to see whether a row was obtained or not. If no row is obtained, the cursor is positioned
after the last row or before the first row, depending on the movement direction.

The direction clause can be any of the variants allowed in the SQL FETCH command except the ones
that can fetch more than one row; namely, it can be NEXT, PRIOR, FIRST, LAST, ABSOLUTE count, RELATIVE
count, FORWARD, or BACKWARD. Omitting direction is the same as specifying NEXT. In the forms using
a count, the count can be any integer-valued expression (unlike the SQL FETCH command, which only
allows an integer constant). direction values that require moving backward are likely to fail unless the
cursor was declared or opened with the SCROLL option.

cursor must be the name of a refcursor variable that references an open cursor portal.

Examples:

FETCH curs1 INTO rowvar;

1253

PL/pgSQL — SQL Pro-
cedural Language

FETCH curs2 INTO foo, bar, baz;
FETCH LAST FROM curs3 INTO x, y;
FETCH RELATIVE -2 FROM curs4 INTO x;

41.7.3.2. MOVE
MOVE [direction { FROM | IN }] cursor;

MOVE repositions a cursor without retrieving any data. MOVE works like the FETCH command, except it
only repositions the cursor and does not return the row moved to. The direction clause can be any of
the variants allowed in the SQL FETCH command, including those that can fetch more than one row; the
cursor is positioned to the last such row. (However, the case in which the direction clause is simply a
count expression with no key word is deprecated in PL/pgSQL. That syntax is ambiguous with the case
where the direction clause is omitted altogether, and hence it may fail if the count is not a constant.)
As with SELECT INTO, the special variable FOUND can be checked to see whether there was a row to move
to. If there is no such row, the cursor is positioned after the last row or before the first row, depending
on the movement direction.

Examples:

MOVE curs1;
MOVE LAST FROM curs3;
MOVE RELATIVE -2 FROM curs4;
MOVE FORWARD 2 FROM curs4;

41.7.3.3. UPDATE/DELETE WHERE CURRENT OF
UPDATE table SET ... WHERE CURRENT OF cursor;
DELETE FROM table WHERE CURRENT OF cursor;

When a cursor is positioned on a table row, that row can be updated or deleted using the cursor to
identify the row. There are restrictions on what the cursor's query can be (in particular, no grouping)
and it's best to use FOR UPDATE in the cursor. For more information see the DECLARE reference page.

An example:

UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;

41.7.3.4. CLOSE
CLOSE cursor;

CLOSE closes the portal underlying an open cursor. This can be used to release resources earlier than
end of transaction, or to free up the cursor variable to be opened again.

An example:

CLOSE curs1;

41.7.3.5. Returning Cursors
PL/pgSQL functions can return cursors to the caller. This is useful to return multiple rows or columns,
especially with very large result sets. To do this, the function opens the cursor and returns the cursor
name to the caller (or simply opens the cursor using a portal name specified by or otherwise known to
the caller). The caller can then fetch rows from the cursor. The cursor can be closed by the caller, or it
will be closed automatically when the transaction closes.

The portal name used for a cursor can be specified by the programmer or automatically generated. To
specify a portal name, simply assign a string to the refcursor variable before opening it. The string
value of the refcursor variable will be used by OPEN as the name of the underlying portal. However,
if the refcursor variable's value is null (as it will be by default), then OPEN automatically generates a
name that does not conflict with any existing portal, and assigns it to the refcursor variable.

1254

PL/pgSQL — SQL Pro-
cedural Language

Note
Prior to PostgreSQL 16, bound cursor variables were initialized to contain their own names, rather
than being left as null, so that the underlying portal name would be the same as the cursor vari-
able's name by default. This was changed because it created too much risk of conflicts between
similarly-named cursors in different functions.

The following example shows one way a cursor name can be supplied by the caller:
CREATE TABLE test (col text);
INSERT INTO test VALUES ('123');

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '
BEGIN
 OPEN $1 FOR SELECT col FROM test;
 RETURN $1;
END;
' LANGUAGE plpgsql;

BEGIN;
SELECT reffunc('funccursor');
FETCH ALL IN funccursor;
COMMIT;

The following example uses automatic cursor name generation:
CREATE FUNCTION reffunc2() RETURNS refcursor AS '
DECLARE
 ref refcursor;
BEGIN
 OPEN ref FOR SELECT col FROM test;
 RETURN ref;
END;
' LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;
SELECT reffunc2();

 reffunc2

 <unnamed cursor 1>
(1 row)

FETCH ALL IN "<unnamed cursor 1>";
COMMIT;

The following example shows one way to return multiple cursors from a single function:
CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$
BEGIN
 OPEN $1 FOR SELECT * FROM table_1;
 RETURN NEXT $1;
 OPEN $2 FOR SELECT * FROM table_2;
 RETURN NEXT $2;
END;
$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.

1255

PL/pgSQL — SQL Pro-
cedural Language

BEGIN;

SELECT * FROM myfunc('a', 'b');

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;

41.7.4. Looping through a Cursor's Result
There is a variant of the FOR statement that allows iterating through the rows returned by a cursor.
The syntax is:

[<<label>>]
FOR recordvar IN bound_cursorvar [([argument_name { := | => }] argument_value
 [, ...])] LOOP
 statements
END LOOP [label];

The cursor variable must have been bound to some query when it was declared, and it cannot be open
already. The FOR statement automatically opens the cursor, and it closes the cursor again when the loop
exits. A list of actual argument value expressions must appear if and only if the cursor was declared to
take arguments. These values will be substituted in the query, in just the same way as during an OPEN
(see Section 41.7.2.3).

The variable recordvar is automatically defined as type record and exists only inside the loop (any
existing definition of the variable name is ignored within the loop). Each row returned by the cursor is
successively assigned to this record variable and the loop body is executed.

41.8. Transaction Management
In procedures invoked by the CALL command as well as in anonymous code blocks (DO command), it is
possible to end transactions using the commands COMMIT and ROLLBACK. A new transaction is started au-
tomatically after a transaction is ended using these commands, so there is no separate START TRANSAC-
TION command. (Note that BEGIN and END have different meanings in PL/pgSQL.)

Here is a simple example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plpgsql
AS $$
BEGIN
 FOR i IN 0..9 LOOP
 INSERT INTO test1 (a) VALUES (i);
 IF i % 2 = 0 THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 END LOOP;
END;
$$;

CALL transaction_test1();

A new transaction starts out with default transaction characteristics such as transaction isolation level.
In cases where transactions are committed in a loop, it might be desirable to start new transactions
automatically with the same characteristics as the previous one. The commands COMMIT AND CHAIN and
ROLLBACK AND CHAIN accomplish this.

1256

PL/pgSQL — SQL Pro-
cedural Language

Transaction control is only possible in CALL or DO invocations from the top level or nested CALL or DO
invocations without any other intervening command. For example, if the call stack is CALL proc1() →
CALL proc2() → CALL proc3(), then the second and third procedures can perform transaction control
actions. But if the call stack is CALL proc1() → SELECT func2() → CALL proc3(), then the last procedure
cannot do transaction control, because of the SELECT in between.

PL/pgSQL does not support savepoints (SAVEPOINT/ROLLBACK TO SAVEPOINT/RELEASE SAVEPOINT com-
mands). Typical usage patterns for savepoints can be replaced by blocks with exception handlers (see
Section 41.6.8). Under the hood, a block with exception handlers forms a subtransaction, which means
that transactions cannot be ended inside such a block.

Special considerations apply to cursor loops. Consider this example:

CREATE PROCEDURE transaction_test2()
LANGUAGE plpgsql
AS $$
DECLARE
 r RECORD;
BEGIN
 FOR r IN SELECT * FROM test2 ORDER BY x LOOP
 INSERT INTO test1 (a) VALUES (r.x);
 COMMIT;
 END LOOP;
END;
$$;

CALL transaction_test2();

Normally, cursors are automatically closed at transaction commit. However, a cursor created as part
of a loop like this is automatically converted to a holdable cursor by the first COMMIT or ROLLBACK. That
means that the cursor is fully evaluated at the first COMMIT or ROLLBACK rather than row by row. The
cursor is still removed automatically after the loop, so this is mostly invisible to the user. But one must
keep in mind that any table or row locks taken by the cursor's query will no longer be held after the
first COMMIT or ROLLBACK.

Transaction commands are not allowed in cursor loops driven by commands that are not read-only (for
example UPDATE ... RETURNING).

41.9. Errors and Messages
41.9.1. Reporting Errors and Messages

Use the RAISE statement to report messages and raise errors.

RAISE [level] 'format' [, expression [, ...]] [USING option { = | := } expression
 [, ...]];
RAISE [level] condition_name [USING option { = | := } expression [, ...]];
RAISE [level] SQLSTATE 'sqlstate' [USING option { = | := } expression [, ...]];
RAISE [level] USING option { = | := } expression [, ...];
RAISE ;

The level option specifies the error severity. Allowed levels are DEBUG, LOG, INFO, NOTICE, WARNING,
and EXCEPTION, with EXCEPTION being the default. EXCEPTION raises an error (which normally aborts
the current transaction); the other levels only generate messages of different priority levels. Whether
messages of a particular priority are reported to the client, written to the server log, or both is controlled
by the log_min_messages and client_min_messages configuration variables. See Chapter 19 for more
information.

In the first syntax variant, after the level if any, write a format string (which must be a simple string
literal, not an expression). The format string specifies the error message text to be reported. The format

1257

PL/pgSQL — SQL Pro-
cedural Language

string can be followed by optional argument expressions to be inserted into the message. Inside the
format string, % is replaced by the string representation of the next optional argument's value. Write %
% to emit a literal %. The number of arguments must match the number of % placeholders in the format
string, or an error is raised during the compilation of the function.

In this example, the value of v_job_id will replace the % in the string:

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

In the second and third syntax variants, condition_name and sqlstate specify an error condition name
or a five-character SQLSTATE code, respectively. See Appendix A for the valid error condition names
and the predefined SQLSTATE codes.

Here are examples of condition_name and sqlstate usage:

RAISE division_by_zero;
RAISE WARNING SQLSTATE '22012';

In any of these syntax variants, you can attach additional information to the error report by writing
USING followed by option = expression items. Each expression can be any string-valued expression.
The allowed option key words are:

MESSAGE

Sets the error message text. This option can't be used in the first syntax variant, since the message
is already supplied.

DETAIL

Supplies an error detail message.

HINT

Supplies a hint message.

ERRCODE

Specifies the error code (SQLSTATE) to report, either by condition name, as shown in Appendix A, or
directly as a five-character SQLSTATE code. This option can't be used in the second or third syntax
variant, since the error code is already supplied.

COLUMN
CONSTRAINT
DATATYPE
TABLE
SCHEMA

Supplies the name of a related object.

This example will abort the transaction with the given error message and hint:

RAISE EXCEPTION 'Nonexistent ID --> %', user_id
 USING HINT = 'Please check your user ID';

These two examples show equivalent ways of setting the SQLSTATE:

RAISE 'Duplicate user ID: %', user_id USING ERRCODE = 'unique_violation';
RAISE 'Duplicate user ID: %', user_id USING ERRCODE = '23505';

Another way to produce the same result is:

RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;

As shown in the fourth syntax variant, it is also possible to write RAISE USING or RAISE level USING
and put everything else into the USING list.

1258

PL/pgSQL — SQL Pro-
cedural Language

The last variant of RAISE has no parameters at all. This form can only be used inside a BEGIN block's
EXCEPTION clause; it causes the error currently being handled to be re-thrown.

Note
Before PostgreSQL 9.1, RAISE without parameters was interpreted as re-throwing the error from
the block containing the active exception handler. Thus an EXCEPTION clause nested within that
handler could not catch it, even if the RAISE was within the nested EXCEPTION clause's block. This
was deemed surprising as well as being incompatible with Oracle's PL/SQL.

If no condition name nor SQLSTATE is specified in a RAISE EXCEPTION command, the default is to use
raise_exception (P0001). If no message text is specified, the default is to use the condition name or
SQLSTATE as message text.

Note
When specifying an error code by SQLSTATE code, you are not limited to the predefined error
codes, but can select any error code consisting of five digits and/or upper-case ASCII letters, other
than 00000. It is recommended that you avoid throwing error codes that end in three zeroes,
because these are category codes and can only be trapped by trapping the whole category.

41.9.2. Checking Assertions
The ASSERT statement is a convenient shorthand for inserting debugging checks into PL/pgSQL func-
tions.

ASSERT condition [, message];

The condition is a Boolean expression that is expected to always evaluate to true; if it does, the ASSERT
statement does nothing further. If the result is false or null, then an ASSERT_FAILURE exception is raised.
(If an error occurs while evaluating the condition, it is reported as a normal error.)

If the optional message is provided, it is an expression whose result (if not null) replaces the default error
message text “assertion failed”, should the condition fail. The message expression is not evaluated in
the normal case where the assertion succeeds.

Testing of assertions can be enabled or disabled via the configuration parameter plpgsql.check_as-
serts, which takes a Boolean value; the default is on. If this parameter is off then ASSERT statements
do nothing.

Note that ASSERT is meant for detecting program bugs, not for reporting ordinary error conditions. Use
the RAISE statement, described above, for that.

41.10. Trigger Functions
PL/pgSQL can be used to define trigger functions on data changes or database events. A trigger function
is created with the CREATE FUNCTION command, declaring it as a function with no arguments and a return
type of trigger (for data change triggers) or event_trigger (for database event triggers). Special local
variables named TG_something are automatically defined to describe the condition that triggered the
call.

41.10.1. Triggers on Data Changes
A data change trigger is declared as a function with no arguments and a return type of trigger. Note
that the function must be declared with no arguments even if it expects to receive some arguments
specified in CREATE TRIGGER — such arguments are passed via TG_ARGV, as described below.

1259

PL/pgSQL — SQL Pro-
cedural Language

When a PL/pgSQL function is called as a trigger, several special variables are created automatically in
the top-level block. They are:

NEW record

new database row for INSERT/UPDATE operations in row-level triggers. This variable is null in state-
ment-level triggers and for DELETE operations.

OLD record

old database row for UPDATE/DELETE operations in row-level triggers. This variable is null in state-
ment-level triggers and for INSERT operations.

TG_NAME name

name of the trigger which fired.

TG_WHEN text

BEFORE, AFTER, or INSTEAD OF, depending on the trigger's definition.

TG_LEVEL text

ROW or STATEMENT, depending on the trigger's definition.

TG_OP text

operation for which the trigger was fired: INSERT, UPDATE, DELETE, or TRUNCATE.

TG_RELID oid (references pg_class.oid)

object ID of the table that caused the trigger invocation.

TG_RELNAME name

table that caused the trigger invocation. This is now deprecated, and could disappear in a future
release. Use TG_TABLE_NAME instead.

TG_TABLE_NAME name

table that caused the trigger invocation.

TG_TABLE_SCHEMA name

schema of the table that caused the trigger invocation.

TG_NARGS integer

number of arguments given to the trigger function in the CREATE TRIGGER statement.

TG_ARGV text[]

arguments from the CREATE TRIGGER statement. The index counts from 0. Invalid indexes (less than
0 or greater than or equal to tg_nargs) result in a null value.

A trigger function must return either NULL or a record/row value having exactly the structure of the
table the trigger was fired for.

Row-level triggers fired BEFORE can return null to signal the trigger manager to skip the rest of the
operation for this row (i.e., subsequent triggers are not fired, and the INSERT/UPDATE/DELETE does not
occur for this row). If a nonnull value is returned then the operation proceeds with that row value.
Returning a row value different from the original value of NEW alters the row that will be inserted or

1260

PL/pgSQL — SQL Pro-
cedural Language

updated. Thus, if the trigger function wants the triggering action to succeed normally without altering
the row value, NEW (or a value equal thereto) has to be returned. To alter the row to be stored, it is
possible to replace single values directly in NEW and return the modified NEW, or to build a complete new
record/row to return. In the case of a before-trigger on DELETE, the returned value has no direct effect,
but it has to be nonnull to allow the trigger action to proceed. Note that NEW is null in DELETE triggers,
so returning that is usually not sensible. The usual idiom in DELETE triggers is to return OLD.

INSTEAD OF triggers (which are always row-level triggers, and may only be used on views) can return
null to signal that they did not perform any updates, and that the rest of the operation for this row
should be skipped (i.e., subsequent triggers are not fired, and the row is not counted in the rows-affected
status for the surrounding INSERT/UPDATE/DELETE). Otherwise a nonnull value should be returned, to
signal that the trigger performed the requested operation. For INSERT and UPDATE operations, the return
value should be NEW, which the trigger function may modify to support INSERT RETURNING and UPDATE
RETURNING (this will also affect the row value passed to any subsequent triggers, or passed to a special
EXCLUDED alias reference within an INSERT statement with an ON CONFLICT DO UPDATE clause). For
DELETE operations, the return value should be OLD.

The return value of a row-level trigger fired AFTER or a statement-level trigger fired BEFORE or AFTER is
always ignored; it might as well be null. However, any of these types of triggers might still abort the
entire operation by raising an error.

Example 41.3 shows an example of a trigger function in PL/pgSQL.

Example 41.3. A PL/pgSQL Trigger Function

This example trigger ensures that any time a row is inserted or updated in the table, the current user
name and time are stamped into the row. And it checks that an employee's name is given and that the
salary is a positive value.

CREATE TABLE emp (
 empname text,
 salary integer,
 last_date timestamp,
 last_user text
);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname IS NULL THEN
 RAISE EXCEPTION 'empname cannot be null';
 END IF;
 IF NEW.salary IS NULL THEN
 RAISE EXCEPTION '% cannot have null salary', NEW.empname;
 END IF;

 -- Who works for us when they must pay for it?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION '% cannot have a negative salary', NEW.empname;
 END IF;

 -- Remember who changed the payroll when
 NEW.last_date := current_timestamp;
 NEW.last_user := current_user;
 RETURN NEW;
 END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp

1261

PL/pgSQL — SQL Pro-
cedural Language

 FOR EACH ROW EXECUTE FUNCTION emp_stamp();

Another way to log changes to a table involves creating a new table that holds a row for each insert, up-
date, or delete that occurs. This approach can be thought of as auditing changes to a table. Example 41.4
shows an example of an audit trigger function in PL/pgSQL.

Example 41.4. A PL/pgSQL Trigger Function for Auditing

This example trigger ensures that any insert, update or delete of a row in the emp table is recorded (i.e.,
audited) in the emp_audit table. The current time and user name are stamped into the row, together
with the type of operation performed on it.

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
 BEGIN
 --
 -- Create a row in emp_audit to reflect the operation performed on emp,
 -- making use of the special variable TG_OP to work out the operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit SELECT 'D', now(), current_user, OLD.*;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit SELECT 'U', now(), current_user, NEW.*;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_audit SELECT 'I', now(), current_user, NEW.*;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW EXECUTE FUNCTION process_emp_audit();

A variation of the previous example uses a view joining the main table to the audit table, to show when
each entry was last modified. This approach still records the full audit trail of changes to the table, but
also presents a simplified view of the audit trail, showing just the last modified timestamp derived from
the audit trail for each entry. Example 41.5 shows an example of an audit trigger on a view in PL/pgSQL.

Example 41.5. A PL/pgSQL View Trigger Function for Auditing

This example uses a trigger on the view to make it updatable, and ensure that any insert, update or delete
of a row in the view is recorded (i.e., audited) in the emp_audit table. The current time and user name
are recorded, together with the type of operation performed, and the view displays the last modified
time of each row.

CREATE TABLE emp (
 empname text PRIMARY KEY,

1262

PL/pgSQL — SQL Pro-
cedural Language

 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer,
 stamp timestamp NOT NULL
);

CREATE VIEW emp_view AS
 SELECT e.empname,
 e.salary,
 max(ea.stamp) AS last_updated
 FROM emp e
 LEFT JOIN emp_audit ea ON ea.empname = e.empname
 GROUP BY 1, 2;

CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$
 BEGIN
 --
 -- Perform the required operation on emp, and create a row in emp_audit
 -- to reflect the change made to emp.
 --
 IF (TG_OP = 'DELETE') THEN
 DELETE FROM emp WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 OLD.last_updated = now();
 INSERT INTO emp_audit VALUES('D', current_user, OLD.*);
 RETURN OLD;
 ELSIF (TG_OP = 'UPDATE') THEN
 UPDATE emp SET salary = NEW.salary WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('U', current_user, NEW.*);
 RETURN NEW;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp VALUES(NEW.empname, NEW.salary);

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('I', current_user, NEW.*);
 RETURN NEW;
 END IF;
 END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view
 FOR EACH ROW EXECUTE FUNCTION update_emp_view();

One use of triggers is to maintain a summary table of another table. The resulting summary can be used
in place of the original table for certain queries — often with vastly reduced run times. This technique
is commonly used in Data Warehousing, where the tables of measured or observed data (called fact
tables) might be extremely large. Example 41.6 shows an example of a trigger function in PL/pgSQL that
maintains a summary table for a fact table in a data warehouse.

1263

PL/pgSQL — SQL Pro-
cedural Language

Example 41.6. A PL/pgSQL Trigger Function for Maintaining a Summary Table
The schema detailed here is partly based on the Grocery Store example from The Data Warehouse
Toolkit by Ralph Kimball.

--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (
 time_key integer NOT NULL,
 day_of_week integer NOT NULL,
 day_of_month integer NOT NULL,
 month integer NOT NULL,
 quarter integer NOT NULL,
 year integer NOT NULL
);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
 time_key integer NOT NULL,
 product_key integer NOT NULL,
 store_key integer NOT NULL,
 amount_sold numeric(12,2) NOT NULL,
 units_sold integer NOT NULL,
 amount_cost numeric(12,2) NOT NULL
);
CREATE INDEX sales_fact_time ON sales_fact(time_key);

--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (
 time_key integer NOT NULL,
 amount_sold numeric(15,2) NOT NULL,
 units_sold numeric(12) NOT NULL,
 amount_cost numeric(15,2) NOT NULL
);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);

--
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER
AS $maint_sales_summary_bytime$
 DECLARE
 delta_time_key integer;
 delta_amount_sold numeric(15,2);
 delta_units_sold numeric(12);
 delta_amount_cost numeric(15,2);
 BEGIN

 -- Work out the increment/decrement amount(s).
 IF (TG_OP = 'DELETE') THEN

 delta_time_key = OLD.time_key;
 delta_amount_sold = -1 * OLD.amount_sold;
 delta_units_sold = -1 * OLD.units_sold;
 delta_amount_cost = -1 * OLD.amount_cost;

1264

PL/pgSQL — SQL Pro-
cedural Language

 ELSIF (TG_OP = 'UPDATE') THEN

 -- forbid updates that change the time_key -
 -- (probably not too onerous, as DELETE + INSERT is how most
 -- changes will be made).
 IF (OLD.time_key != NEW.time_key) THEN
 RAISE EXCEPTION 'Update of time_key : % -> % not allowed',
 OLD.time_key, NEW.time_key;
 END IF;

 delta_time_key = OLD.time_key;
 delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
 delta_units_sold = NEW.units_sold - OLD.units_sold;
 delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

 ELSIF (TG_OP = 'INSERT') THEN

 delta_time_key = NEW.time_key;
 delta_amount_sold = NEW.amount_sold;
 delta_units_sold = NEW.units_sold;
 delta_amount_cost = NEW.amount_cost;

 END IF;

 -- Insert or update the summary row with the new values.
 <<insert_update>>
 LOOP
 UPDATE sales_summary_bytime
 SET amount_sold = amount_sold + delta_amount_sold,
 units_sold = units_sold + delta_units_sold,
 amount_cost = amount_cost + delta_amount_cost
 WHERE time_key = delta_time_key;

 EXIT insert_update WHEN found;

 BEGIN
 INSERT INTO sales_summary_bytime (
 time_key,
 amount_sold,
 units_sold,
 amount_cost)
 VALUES (
 delta_time_key,
 delta_amount_sold,
 delta_units_sold,
 delta_amount_cost
);

 EXIT insert_update;

 EXCEPTION
 WHEN UNIQUE_VIOLATION THEN
 -- do nothing
 END;
 END LOOP insert_update;

 RETURN NULL;

1265

PL/pgSQL — SQL Pro-
cedural Language

 END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact
 FOR EACH ROW EXECUTE FUNCTION maint_sales_summary_bytime();

INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;

AFTER triggers can also make use of transition tables to inspect the entire set of rows changed by the
triggering statement. The CREATE TRIGGER command assigns names to one or both transition tables, and
then the function can refer to those names as though they were read-only temporary tables. Example 41.7
shows an example.

Example 41.7. Auditing with Transition Tables

This example produces the same results as Example 41.4, but instead of using a trigger that fires for
every row, it uses a trigger that fires once per statement, after collecting the relevant information in
a transition table. This can be significantly faster than the row-trigger approach when the invoking
statement has modified many rows. Notice that we must make a separate trigger declaration for each
kind of event, since the REFERENCING clauses must be different for each case. But this does not stop us
from using a single trigger function if we choose. (In practice, it might be better to use three separate
functions and avoid the run-time tests on TG_OP.)

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
 BEGIN
 --
 -- Create rows in emp_audit to reflect the operations performed on emp,
 -- making use of the special variable TG_OP to work out the operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit
 SELECT 'D', now(), current_user, o.* FROM old_table o;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit
 SELECT 'U', now(), current_user, n.* FROM new_table n;
 ELSIF (TG_OP = 'INSERT') THEN

1266

PL/pgSQL — SQL Pro-
cedural Language

 INSERT INTO emp_audit
 SELECT 'I', now(), current_user, n.* FROM new_table n;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit_ins
 AFTER INSERT ON emp
 REFERENCING NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_upd
 AFTER UPDATE ON emp
 REFERENCING OLD TABLE AS old_table NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_del
 AFTER DELETE ON emp
 REFERENCING OLD TABLE AS old_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();

41.10.2. Triggers on Events
PL/pgSQL can be used to define event triggers. PostgreSQL requires that a function that is to be called as
an event trigger must be declared as a function with no arguments and a return type of event_trigger.

When a PL/pgSQL function is called as an event trigger, several special variables are created automat-
ically in the top-level block. They are:
TG_EVENT text

event the trigger is fired for.

TG_TAG text
command tag for which the trigger is fired.

Example 41.8 shows an example of an event trigger function in PL/pgSQL.

Example 41.8. A PL/pgSQL Event Trigger Function

This example trigger simply raises a NOTICE message each time a supported command is executed.

CREATE OR REPLACE FUNCTION snitch() RETURNS event_trigger AS $$
BEGIN
 RAISE NOTICE 'snitch: % %', tg_event, tg_tag;
END;
$$ LANGUAGE plpgsql;

CREATE EVENT TRIGGER snitch ON ddl_command_start EXECUTE FUNCTION snitch();

41.11. PL/pgSQL under the Hood
This section discusses some implementation details that are frequently important for PL/pgSQL users
to know.

41.11.1. Variable Substitution
SQL statements and expressions within a PL/pgSQL function can refer to variables and parameters of
the function. Behind the scenes, PL/pgSQL substitutes query parameters for such references. Query
parameters will only be substituted in places where they are syntactically permissible. As an extreme
case, consider this example of poor programming style:
INSERT INTO foo (foo) VALUES (foo(foo));

1267

PL/pgSQL — SQL Pro-
cedural Language

The first occurrence of foo must syntactically be a table name, so it will not be substituted, even if the
function has a variable named foo. The second occurrence must be the name of a column of that table,
so it will not be substituted either. Likewise the third occurrence must be a function name, so it also
will not be substituted for. Only the last occurrence is a candidate to be a reference to a variable of the
PL/pgSQL function.

Another way to understand this is that variable substitution can only insert data values into an SQL
command; it cannot dynamically change which database objects are referenced by the command. (If you
want to do that, you must build a command string dynamically, as explained in Section 41.5.4.)

Since the names of variables are syntactically no different from the names of table columns, there can
be ambiguity in statements that also refer to tables: is a given name meant to refer to a table column,
or a variable? Let's change the previous example to
INSERT INTO dest (col) SELECT foo + bar FROM src;

Here, dest and src must be table names, and col must be a column of dest, but foo and bar might
reasonably be either variables of the function or columns of src.

By default, PL/pgSQL will report an error if a name in an SQL statement could refer to either a variable
or a table column. You can fix such a problem by renaming the variable or column, or by qualifying the
ambiguous reference, or by telling PL/pgSQL which interpretation to prefer.

The simplest solution is to rename the variable or column. A common coding rule is to use a different
naming convention for PL/pgSQL variables than you use for column names. For example, if you consis-
tently name function variables v_something while none of your column names start with v_, no conflicts
will occur.

Alternatively you can qualify ambiguous references to make them clear. In the above example, src.foo
would be an unambiguous reference to the table column. To create an unambiguous reference to a
variable, declare it in a labeled block and use the block's label (see Section 41.2). For example,
<<block>>
DECLARE
 foo int;
BEGIN
 foo := ...;
 INSERT INTO dest (col) SELECT block.foo + bar FROM src;

Here block.foo means the variable even if there is a column foo in src. Function parameters, as well
as special variables such as FOUND, can be qualified by the function's name, because they are implicitly
declared in an outer block labeled with the function's name.

Sometimes it is impractical to fix all the ambiguous references in a large body of PL/pgSQL code. In
such cases you can specify that PL/pgSQL should resolve ambiguous references as the variable (which
is compatible with PL/pgSQL's behavior before PostgreSQL 9.0), or as the table column (which is com-
patible with some other systems such as Oracle).

To change this behavior on a system-wide basis, set the configuration parameter plpgsql.vari-
able_conflict to one of error, use_variable, or use_column (where error is the factory default). This
parameter affects subsequent compilations of statements in PL/pgSQL functions, but not statements
already compiled in the current session. Because changing this setting can cause unexpected changes
in the behavior of PL/pgSQL functions, it can only be changed by a superuser.

You can also set the behavior on a function-by-function basis, by inserting one of these special commands
at the start of the function text:
#variable_conflict error
#variable_conflict use_variable
#variable_conflict use_column

These commands affect only the function they are written in, and override the setting of plpgsql.vari-
able_conflict. An example is

1268

PL/pgSQL — SQL Pro-
cedural Language

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 #variable_conflict use_variable
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = curtime, comment = comment
 WHERE users.id = id;
 END;
$$ LANGUAGE plpgsql;

In the UPDATE command, curtime, comment, and id will refer to the function's variable and parameters
whether or not users has columns of those names. Notice that we had to qualify the reference to user-
s.id in the WHERE clause to make it refer to the table column. But we did not have to qualify the reference
to comment as a target in the UPDATE list, because syntactically that must be a column of users. We could
write the same function without depending on the variable_conflict setting in this way:

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 <<fn>>
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = fn.curtime, comment = stamp_user.comment
 WHERE users.id = stamp_user.id;
 END;
$$ LANGUAGE plpgsql;

Variable substitution does not happen in a command string given to EXECUTE or one of its variants. If
you need to insert a varying value into such a command, do so as part of constructing the string value,
or use USING, as illustrated in Section 41.5.4.

Variable substitution currently works only in SELECT, INSERT, UPDATE, DELETE, and commands containing
one of these (such as EXPLAIN and CREATE TABLE ... AS SELECT), because the main SQL engine allows
query parameters only in these commands. To use a non-constant name or value in other statement types
(generically called utility statements), you must construct the utility statement as a string and EXECUTE it.

41.11.2. Plan Caching
The PL/pgSQL interpreter parses the function's source text and produces an internal binary instruction
tree the first time the function is called (within each session). The instruction tree fully translates the
PL/pgSQL statement structure, but individual SQL expressions and SQL commands used in the function
are not translated immediately.

As each expression and SQL command is first executed in the function, the PL/pgSQL interpreter parses
and analyzes the command to create a prepared statement, using the SPI manager's SPI_prepare func-
tion. Subsequent visits to that expression or command reuse the prepared statement. Thus, a function
with conditional code paths that are seldom visited will never incur the overhead of analyzing those
commands that are never executed within the current session. A disadvantage is that errors in a specif-
ic expression or command cannot be detected until that part of the function is reached in execution.
(Trivial syntax errors will be detected during the initial parsing pass, but anything deeper will not be
detected until execution.)

PL/pgSQL (or more precisely, the SPI manager) can furthermore attempt to cache the execution plan
associated with any particular prepared statement. If a cached plan is not used, then a fresh execution
plan is generated on each visit to the statement, and the current parameter values (that is, PL/pgSQL
variable values) can be used to optimize the selected plan. If the statement has no parameters, or is
executed many times, the SPI manager will consider creating a generic plan that is not dependent on
specific parameter values, and caching that for re-use. Typically this will happen only if the execution
plan is not very sensitive to the values of the PL/pgSQL variables referenced in it. If it is, generating a plan
each time is a net win. See PREPARE for more information about the behavior of prepared statements.

1269

PL/pgSQL — SQL Pro-
cedural Language

Because PL/pgSQL saves prepared statements and sometimes execution plans in this way, SQL com-
mands that appear directly in a PL/pgSQL function must refer to the same tables and columns on every
execution; that is, you cannot use a parameter as the name of a table or column in an SQL command. To
get around this restriction, you can construct dynamic commands using the PL/pgSQL EXECUTE state-
ment — at the price of performing new parse analysis and constructing a new execution plan on every
execution.

The mutable nature of record variables presents another problem in this connection. When fields of a
record variable are used in expressions or statements, the data types of the fields must not change from
one call of the function to the next, since each expression will be analyzed using the data type that is
present when the expression is first reached. EXECUTE can be used to get around this problem when
necessary.

If the same function is used as a trigger for more than one table, PL/pgSQL prepares and caches state-
ments independently for each such table — that is, there is a cache for each trigger function and table
combination, not just for each function. This alleviates some of the problems with varying data types; for
instance, a trigger function will be able to work successfully with a column named key even if it happens
to have different types in different tables.

Likewise, functions having polymorphic argument types have a separate statement cache for each com-
bination of actual argument types they have been invoked for, so that data type differences do not cause
unexpected failures.

Statement caching can sometimes have surprising effects on the interpretation of time-sensitive values.
For example there is a difference between what these two functions do:

CREATE FUNCTION logfunc1(logtxt text) RETURNS void AS $$
 BEGIN
 INSERT INTO logtable VALUES (logtxt, 'now');
 END;
$$ LANGUAGE plpgsql;

and:

CREATE FUNCTION logfunc2(logtxt text) RETURNS void AS $$
 DECLARE
 curtime timestamp;
 BEGIN
 curtime := 'now';
 INSERT INTO logtable VALUES (logtxt, curtime);
 END;
$$ LANGUAGE plpgsql;

In the case of logfunc1, the PostgreSQL main parser knows when analyzing the INSERT that the string
'now' should be interpreted as timestamp, because the target column of logtable is of that type. Thus,
'now' will be converted to a timestamp constant when the INSERT is analyzed, and then used in all in-
vocations of logfunc1 during the lifetime of the session. Needless to say, this isn't what the programmer
wanted. A better idea is to use the now() or current_timestamp function.

In the case of logfunc2, the PostgreSQL main parser does not know what type 'now' should become and
therefore it returns a data value of type text containing the string now. During the ensuing assignment
to the local variable curtime, the PL/pgSQL interpreter casts this string to the timestamp type by calling
the textout and timestamp_in functions for the conversion. So, the computed time stamp is updated
on each execution as the programmer expects. Even though this happens to work as expected, it's not
terribly efficient, so use of the now() function would still be a better idea.

41.12. Tips for Developing in PL/pgSQL
One good way to develop in PL/pgSQL is to use the text editor of your choice to create your functions,
and in another window, use psql to load and test those functions. If you are doing it this way, it is a good

1270

PL/pgSQL — SQL Pro-
cedural Language

idea to write the function using CREATE OR REPLACE FUNCTION. That way you can just reload the file to
update the function definition. For example:
CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$

$$ LANGUAGE plpgsql;

While running psql, you can load or reload such a function definition file with:
\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is with a GUI database access tool that facilitates development
in a procedural language. One example of such a tool is pgAdmin, although others exist. These tools
often provide convenient features such as escaping single quotes and making it easier to recreate and
debug functions.

41.12.1. Handling of Quotation Marks
The code of a PL/pgSQL function is specified in CREATE FUNCTION as a string literal. If you write the string
literal in the ordinary way with surrounding single quotes, then any single quotes inside the function
body must be doubled; likewise any backslashes must be doubled (assuming escape string syntax is
used). Doubling quotes is at best tedious, and in more complicated cases the code can become downright
incomprehensible, because you can easily find yourself needing half a dozen or more adjacent quote
marks. It's recommended that you instead write the function body as a “dollar-quoted” string literal (see
Section 4.1.2.4). In the dollar-quoting approach, you never double any quote marks, but instead take
care to choose a different dollar-quoting delimiter for each level of nesting you need. For example, you
might write the CREATE FUNCTION command as:
CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$

$PROC$ LANGUAGE plpgsql;

Within this, you might use quote marks for simple literal strings in SQL commands and $$ to delimit
fragments of SQL commands that you are assembling as strings. If you need to quote text that includes
$$, you could use Q, and so on.

The following chart shows what you have to do when writing quote marks without dollar quoting. It
might be useful when translating pre-dollar quoting code into something more comprehensible.

1 quotation mark
To begin and end the function body, for example:
CREATE FUNCTION foo() RETURNS integer AS '

' LANGUAGE plpgsql;

Anywhere within a single-quoted function body, quote marks must appear in pairs.

2 quotation marks
For string literals inside the function body, for example:
a_output := ''Blah'';
SELECT * FROM users WHERE f_name=''foobar'';

In the dollar-quoting approach, you'd just write:
a_output := 'Blah';
SELECT * FROM users WHERE f_name='foobar';

which is exactly what the PL/pgSQL parser would see in either case.

4 quotation marks
When you need a single quotation mark in a string constant inside the function body, for example:
a_output := a_output || '' AND name LIKE ''''foobar'''' AND xyz''

1271

PL/pgSQL — SQL Pro-
cedural Language

The value actually appended to a_output would be: AND name LIKE 'foobar' AND xyz.

In the dollar-quoting approach, you'd write:
a_output := a_output || $$ AND name LIKE 'foobar' AND xyz$$

being careful that any dollar-quote delimiters around this are not just $$.

6 quotation marks
When a single quotation mark in a string inside the function body is adjacent to the end of that string
constant, for example:
a_output := a_output || '' AND name LIKE ''''foobar''''''

The value appended to a_output would then be: AND name LIKE 'foobar'.

In the dollar-quoting approach, this becomes:
a_output := a_output || $$ AND name LIKE 'foobar'$$

10 quotation marks
When you want two single quotation marks in a string constant (which accounts for 8 quotation
marks) and this is adjacent to the end of that string constant (2 more). You will probably only need
that if you are writing a function that generates other functions, as in Example 41.10. For example:
a_output := a_output || '' if v_'' ||
 referrer_keys.kind || '' like ''''''''''
 || referrer_keys.key_string || ''''''''''
 then return '''''' || referrer_keys.referrer_type
 || ''''''; end if;'';

The value of a_output would then be:
if v_... like ''...'' then return ''...''; end if;

In the dollar-quoting approach, this becomes:
a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like '$$
 || referrer_keys.key_string || $$'
 then return '$$ || referrer_keys.referrer_type
 || $$'; end if;$$;

where we assume we only need to put single quote marks into a_output, because it will be re-quoted
before use.

41.12.2. Additional Compile-Time and Run-Time Checks
To aid the user in finding instances of simple but common problems before they cause harm, PL/pgSQL
provides additional checks. When enabled, depending on the configuration, they can be used to emit
either a WARNING or an ERROR during the compilation of a function. A function which has received a
WARNING can be executed without producing further messages, so you are advised to test in a separate
development environment.

Setting plpgsql.extra_warnings, or plpgsql.extra_errors, as appropriate, to "all" is encouraged
in development and/or testing environments.

These additional checks are enabled through the configuration variables plpgsql.extra_warnings for
warnings and plpgsql.extra_errors for errors. Both can be set either to a comma-separated list of
checks, "none" or "all". The default is "none". Currently the list of available checks includes:
shadowed_variables

Checks if a declaration shadows a previously defined variable.

strict_multi_assignment

Some PL/pgSQL commands allow assigning values to more than one variable at a time, such as
SELECT INTO. Typically, the number of target variables and the number of source variables should

1272

PL/pgSQL — SQL Pro-
cedural Language

match, though PL/pgSQL will use NULL for missing values and extra variables are ignored. Enabling
this check will cause PL/pgSQL to throw a WARNING or ERROR whenever the number of target variables
and the number of source variables are different.

too_many_rows

Enabling this check will cause PL/pgSQL to check if a given query returns more than one row when an
INTO clause is used. As an INTO statement will only ever use one row, having a query return multiple
rows is generally either inefficient and/or nondeterministic and therefore is likely an error.

The following example shows the effect of plpgsql.extra_warnings set to shadowed_variables:
SET plpgsql.extra_warnings TO 'shadowed_variables';

CREATE FUNCTION foo(f1 int) RETURNS int AS $$
DECLARE
f1 int;
BEGIN
RETURN f1;
END;
$$ LANGUAGE plpgsql;
WARNING: variable "f1" shadows a previously defined variable
LINE 3: f1 int;
 ^
CREATE FUNCTION

The below example shows the effects of setting plpgsql.extra_warnings to strict_multi_assignment:
SET plpgsql.extra_warnings TO 'strict_multi_assignment';

CREATE OR REPLACE FUNCTION public.foo()
 RETURNS void
 LANGUAGE plpgsql
AS $$
DECLARE
 x int;
 y int;
BEGIN
 SELECT 1 INTO x, y;
 SELECT 1, 2 INTO x, y;
 SELECT 1, 2, 3 INTO x, y;
END;
$$;

SELECT foo();
WARNING: number of source and target fields in assignment does not match
DETAIL: strict_multi_assignment check of extra_warnings is active.
HINT: Make sure the query returns the exact list of columns.
WARNING: number of source and target fields in assignment does not match
DETAIL: strict_multi_assignment check of extra_warnings is active.
HINT: Make sure the query returns the exact list of columns.

 foo

(1 row)

41.13. Porting from Oracle PL/SQL
This section explains differences between PostgreSQL's PL/pgSQL language and Oracle's PL/SQL lan-
guage, to help developers who port applications from Oracle® to PostgreSQL.

1273

PL/pgSQL — SQL Pro-
cedural Language

PL/pgSQL is similar to PL/SQL in many aspects. It is a block-structured, imperative language, and all
variables have to be declared. Assignments, loops, and conditionals are similar. The main differences
you should keep in mind when porting from PL/SQL to PL/pgSQL are:

• If a name used in an SQL command could be either a column name of a table used in the com-
mand or a reference to a variable of the function, PL/SQL treats it as a column name. By de-
fault, PL/pgSQL will throw an error complaining that the name is ambiguous. You can specify
plpgsql.variable_conflict = use_column to change this behavior to match PL/SQL, as explained
in Section 41.11.1. It's often best to avoid such ambiguities in the first place, but if you have to port
a large amount of code that depends on this behavior, setting variable_conflict may be the best
solution.

• In PostgreSQL the function body must be written as a string literal. Therefore you need to use dol-
lar quoting or escape single quotes in the function body. (See Section 41.12.1.)

• Data type names often need translation. For example, in Oracle string values are commonly de-
clared as being of type varchar2, which is a non-SQL-standard type. In PostgreSQL, use type var-
char or text instead. Similarly, replace type number with numeric, or use some other numeric data
type if there's a more appropriate one.

• Instead of packages, use schemas to organize your functions into groups.

• Since there are no packages, there are no package-level variables either. This is somewhat annoy-
ing. You can keep per-session state in temporary tables instead.

• Integer FOR loops with REVERSE work differently: PL/SQL counts down from the second num-
ber to the first, while PL/pgSQL counts down from the first number to the second, requiring the
loop bounds to be swapped when porting. This incompatibility is unfortunate but is unlikely to be
changed. (See Section 41.6.5.5.)

• FOR loops over queries (other than cursors) also work differently: the target variable(s) must have
been declared, whereas PL/SQL always declares them implicitly. An advantage of this is that the
variable values are still accessible after the loop exits.

• There are various notational differences for the use of cursor variables.

41.13.1. Porting Examples
Example 41.9 shows how to port a simple function from PL/SQL to PL/pgSQL.

Example 41.9. Porting a Simple Function from PL/SQL to PL/pgSQL

Here is an Oracle PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar2,
 v_version varchar2)
RETURN varchar2 IS
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
/
show errors;

Let's go through this function and see the differences compared to PL/pgSQL:

• The type name varchar2 has to be changed to varchar or text. In the examples in this section,
we'll use varchar, but text is often a better choice if you do not need specific string length limits.

• The RETURN key word in the function prototype (not the function body) becomes RETURNS in Post-
greSQL. Also, IS becomes AS, and you need to add a LANGUAGE clause because PL/pgSQL is not the
only possible function language.

1274

PL/pgSQL — SQL Pro-
cedural Language

• In PostgreSQL, the function body is considered to be a string literal, so you need to use quote
marks or dollar quotes around it. This substitutes for the terminating / in the Oracle approach.

• The show errors command does not exist in PostgreSQL, and is not needed since errors are re-
ported automatically.

This is how this function would look when ported to PostgreSQL:
CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
 v_version varchar)
RETURNS varchar AS $$
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
$$ LANGUAGE plpgsql;

Example 41.10 shows how to port a function that creates another function and how to handle the ensuing
quoting problems.

Example 41.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL

The following procedure grabs rows from a SELECT statement and builds a large function with the results
in IF statements, for the sake of efficiency.

This is the Oracle version:
CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
 CURSOR referrer_keys IS
 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_cmd VARCHAR(4000);
BEGIN
 func_cmd := 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR2,
 v_domain IN VARCHAR2, v_url IN VARCHAR2) RETURN VARCHAR2 IS BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_cmd := func_cmd ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ''' || referrer_key.key_string
 || ''' THEN RETURN ''' || referrer_key.referrer_type
 || '''; END IF;';
 END LOOP;

 func_cmd := func_cmd || ' RETURN NULL; END;';

 EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

Here is how this function would end up in PostgreSQL:
CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc() AS $func$
DECLARE
 referrer_keys CURSOR IS
 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_body text;
 func_cmd text;

1275

PL/pgSQL — SQL Pro-
cedural Language

BEGIN
 func_body := 'BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_body := func_body ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ' || quote_literal(referrer_key.key_string)
 || ' THEN RETURN ' || quote_literal(referrer_key.referrer_type)
 || '; END IF;' ;
 END LOOP;

 func_body := func_body || ' RETURN NULL; END;';

 func_cmd :=
 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,
 v_domain varchar,
 v_url varchar)
 RETURNS varchar AS '
 || quote_literal(func_body)
 || ' LANGUAGE plpgsql;' ;

 EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;

Notice how the body of the function is built separately and passed through quote_literal to dou-
ble any quote marks in it. This technique is needed because we cannot safely use dollar quoting for
defining the new function: we do not know for sure what strings will be interpolated from the refer-
rer_key.key_string field. (We are assuming here that referrer_key.kind can be trusted to always be
host, domain, or url, but referrer_key.key_string might be anything, in particular it might contain
dollar signs.) This function is actually an improvement on the Oracle original, because it will not generate
broken code when referrer_key.key_string or referrer_key.referrer_type contain quote marks.

Example 41.11 shows how to port a function with OUT parameters and string manipulation. PostgreSQL
does not have a built-in instr function, but you can create one using a combination of other functions.
In Section 41.13.3 there is a PL/pgSQL implementation of instr that you can use to make your porting
easier.

Example 41.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL
to PL/pgSQL

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host, path,
and query).

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_parse_url(
 v_url IN VARCHAR2,
 v_host OUT VARCHAR2, -- This will be passed back
 v_path OUT VARCHAR2, -- This one too
 v_query OUT VARCHAR2) -- And this one
IS
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

1276

PL/pgSQL — SQL Pro-
cedural Language

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
/
show errors;

Here is a possible translation into PL/pgSQL:
CREATE OR REPLACE FUNCTION cs_parse_url(
 v_url IN VARCHAR,
 v_host OUT VARCHAR, -- This will be passed back
 v_path OUT VARCHAR, -- This one too
 v_query OUT VARCHAR) -- And this one
AS $$
DECLARE
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

1277

PL/pgSQL — SQL Pro-
cedural Language

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
$$ LANGUAGE plpgsql;

This function could be used like this:

SELECT * FROM cs_parse_url('http://foobar.com/query.cgi?baz');

Example 41.12 shows how to port a procedure that uses numerous features that are specific to Oracle.

Example 41.12. Porting a Procedure from PL/SQL to PL/pgSQL

The Oracle version:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
 a_running_job_count INTEGER;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 raise_application_error(-20000,
 'Unable to create a new job: a job is currently running.');
 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
 EXCEPTION
 WHEN dup_val_on_index THEN NULL; -- don't worry if it already exists
 END;
 COMMIT;
END;
/
show errors

This is how we could port this procedure to PL/pgSQL:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id integer) AS $$
DECLARE
 a_running_job_count integer;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 RAISE EXCEPTION 'Unable to create a new job: a job is currently running'; -- 1
 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());

1278

PL/pgSQL — SQL Pro-
cedural Language

 EXCEPTION
 WHEN unique_violation THEN -- 2
 -- don't worry if it already exists
 END;
 COMMIT;
END;
$$ LANGUAGE plpgsql;

1 The syntax of RAISE is considerably different from Oracle's statement, although the basic case RAISE
exception_name works similarly.

2 The exception names supported by PL/pgSQL are different from Oracle's. The set of built-in excep-
tion names is much larger (see Appendix A). There is not currently a way to declare user-defined
exception names, although you can throw user-chosen SQLSTATE values instead.

41.13.2. Other Things to Watch For
This section explains a few other things to watch for when porting Oracle PL/SQL functions to Post-
greSQL.

41.13.2.1. Implicit Rollback after Exceptions
In PL/pgSQL, when an exception is caught by an EXCEPTION clause, all database changes since the block's
BEGIN are automatically rolled back. That is, the behavior is equivalent to what you'd get in Oracle with:
BEGIN
 SAVEPOINT s1;
 ... code here ...
EXCEPTION
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
END;

If you are translating an Oracle procedure that uses SAVEPOINT and ROLLBACK TO in this style, your task
is easy: just omit the SAVEPOINT and ROLLBACK TO. If you have a procedure that uses SAVEPOINT and
ROLLBACK TO in a different way then some actual thought will be required.

41.13.2.2. EXECUTE
The PL/pgSQL version of EXECUTE works similarly to the PL/SQL version, but you have to remember to
use quote_literal and quote_ident as described in Section 41.5.4. Constructs of the type EXECUTE
'SELECT * FROM $1'; will not work reliably unless you use these functions.

41.13.2.3. Optimizing PL/pgSQL Functions
PostgreSQL gives you two function creation modifiers to optimize execution: “volatility” (whether the
function always returns the same result when given the same arguments) and “strictness” (whether the
function returns null if any argument is null). Consult the CREATE FUNCTION reference page for details.

When making use of these optimization attributes, your CREATE FUNCTION statement might look some-
thing like this:
CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

41.13.3. Appendix
This section contains the code for a set of Oracle-compatible instr functions that you can use to simplify
your porting efforts.

1279

PL/pgSQL — SQL Pro-
cedural Language

--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1, string2 [, n [, m]])
-- where [] denotes optional parameters.
--
-- Search string1, beginning at the nth character, for the mth occurrence
-- of string2. If n is negative, search backwards, starting at the abs(n)'th
-- character from the end of string1.
-- If n is not passed, assume 1 (search starts at first character).
-- If m is not passed, assume 1 (find first occurrence).
-- Returns starting index of string2 in string1, or 0 if string2 is not found.
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
BEGIN
 RETURN instr($1, $2, 1);
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 length integer;
 ss_length integer;
BEGIN
 IF beg_index > 0 THEN
 temp_str := substring(string FROM beg_index);
 pos := position(string_to_search_for IN temp_str);

 IF pos = 0 THEN
 RETURN 0;
 ELSE
 RETURN pos + beg_index - 1;
 END IF;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 RETURN beg;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE
 RETURN 0;
 END IF;

1280

PL/pgSQL — SQL Pro-
cedural Language

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer, occur_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 occur_number integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 i integer;
 length integer;
 ss_length integer;
BEGIN
 IF occur_index <= 0 THEN
 RAISE 'argument ''%'' is out of range', occur_index
 USING ERRCODE = '22003';
 END IF;

 IF beg_index > 0 THEN
 beg := beg_index - 1;
 FOR i IN 1..occur_index LOOP
 temp_str := substring(string FROM beg + 1);
 pos := position(string_to_search_for IN temp_str);
 IF pos = 0 THEN
 RETURN 0;
 END IF;
 beg := beg + pos;
 END LOOP;

 RETURN beg;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 occur_number := occur_number + 1;
 IF occur_number = occur_index THEN
 RETURN beg;
 END IF;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE
 RETURN 0;
 END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

1281

Chapter 42. PL/Tcl — Tcl Procedural
Language

PL/Tcl is a loadable procedural language for the PostgreSQL database system that enables the Tcl
language to be used to write PostgreSQL functions and procedures.

42.1. Overview
PL/Tcl offers most of the capabilities a function writer has in the C language, with a few restrictions,
and with the addition of the powerful string processing libraries that are available for Tcl.

One compelling good restriction is that everything is executed from within the safety of the context of
a Tcl interpreter. In addition to the limited command set of safe Tcl, only a few commands are available
to access the database via SPI and to raise messages via elog(). PL/Tcl provides no way to access
internals of the database server or to gain OS-level access under the permissions of the PostgreSQL
server process, as a C function can do. Thus, unprivileged database users can be trusted to use this
language; it does not give them unlimited authority.

The other notable implementation restriction is that Tcl functions cannot be used to create input/output
functions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl. For example, one might
want a Tcl function that sends email. To handle these cases, there is a variant of PL/Tcl called PL/TclU
(for untrusted Tcl). This is exactly the same language except that a full Tcl interpreter is used. If PL/
TclU is used, it must be installed as an untrusted procedural language so that only database superusers
can create functions in it. The writer of a PL/TclU function must take care that the function cannot be
used to do anything unwanted, since it will be able to do anything that could be done by a user logged
in as the database administrator.

The shared object code for the PL/Tcl and PL/TclU call handlers is automatically built and installed in the
PostgreSQL library directory if Tcl support is specified in the configuration step of the installation pro-
cedure. To install PL/Tcl and/or PL/TclU in a particular database, use the CREATE EXTENSION command,
for example CREATE EXTENSION pltcl or CREATE EXTENSION pltclu.

42.2. PL/Tcl Functions and Arguments
To create a function in the PL/Tcl language, use the standard CREATE FUNCTION syntax:
CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
 # PL/Tcl function body
$$ LANGUAGE pltcl;

PL/TclU is the same, except that the language has to be specified as pltclu.

The body of the function is simply a piece of Tcl script. When the function is called, the argument values
are passed to the Tcl script as variables named 1 ... n. The result is returned from the Tcl code in the
usual way, with a return statement. In a procedure, the return value from the Tcl code is ignored.

For example, a function returning the greater of two integer values could be defined as:
CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl STRICT;

Note the clause STRICT, which saves us from having to think about null input values: if a null value is
passed, the function will not be called at all, but will just return a null result automatically.

In a nonstrict function, if the actual value of an argument is null, the corresponding $n variable will be
set to an empty string. To detect whether a particular argument is null, use the function argisnull.

1282

https://www.tcl.tk/
https://www.tcl.tk/

PL/Tcl — Tcl Procedural Language

For example, suppose that we wanted tcl_max with one null and one nonnull argument to return the
nonnull argument, rather than null:
CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {[argisnull 1]} {
 if {[argisnull 2]} { return_null }
 return $2
 }
 if {[argisnull 2]} { return $1 }
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl;

As shown above, to return a null value from a PL/Tcl function, execute return_null. This can be done
whether the function is strict or not.

Composite-type arguments are passed to the function as Tcl arrays. The element names of the array are
the attribute names of the composite type. If an attribute in the passed row has the null value, it will
not appear in the array. Here is an example:
CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
$$ LANGUAGE pltcl;

PL/Tcl functions can return composite-type results, too. To do this, the Tcl code must return a list of
column name/value pairs matching the expected result type. Any column names omitted from the list
are returned as nulls, and an error is raised if there are unexpected column names. Here is an example:
CREATE FUNCTION square_cube(in int, out squared int, out cubed int) AS $$
 return [list squared [expr {$1 * $1}] cubed [expr {$1 * $1 * $1}]]
$$ LANGUAGE pltcl;

Output arguments of procedures are returned in the same way, for example:
CREATE PROCEDURE tcl_triple(INOUT a integer, INOUT b integer) AS $$
 return [list a [expr {$1 * 3}] b [expr {$2 * 3}]]
$$ LANGUAGE pltcl;

CALL tcl_triple(5, 10);

Tip
The result list can be made from an array representation of the desired tuple with the array get
Tcl command. For example:
CREATE FUNCTION raise_pay(employee, delta int) RETURNS employee AS $$
 set 1(salary) [expr {$1(salary) + $2}]
 return [array get 1]
$$ LANGUAGE pltcl;

1283

PL/Tcl — Tcl Procedural Language

PL/Tcl functions can return sets. To do this, the Tcl code should call return_next once per row to be
returned, passing either the appropriate value when returning a scalar type, or a list of column name/
value pairs when returning a composite type. Here is an example returning a scalar type:

CREATE FUNCTION sequence(int, int) RETURNS SETOF int AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next $i
 }
$$ LANGUAGE pltcl;

and here is one returning a composite type:

CREATE FUNCTION table_of_squares(int, int) RETURNS TABLE (x int, x2 int) AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next [list x $i x2 [expr {$i * $i}]]
 }
$$ LANGUAGE pltcl;

42.3. Data Values in PL/Tcl
The argument values supplied to a PL/Tcl function's code are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function's declared
result type, or for the specified column of a composite result type.

42.4. Global Data in PL/Tcl
Sometimes it is useful to have some global data that is held between two calls to a function or is shared
between different functions. This is easily done in PL/Tcl, but there are some restrictions that must be
understood.

For security reasons, PL/Tcl executes functions called by any one SQL role in a separate Tcl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user's PL/Tcl functions. Each such interpreter will have its own values for any “global” Tcl variables.
Thus, two PL/Tcl functions will share the same global variables if and only if they are executed by the
same SQL role. In an application wherein a single session executes code under multiple SQL roles (via
SECURITY DEFINER functions, use of SET ROLE, etc.) you may need to take explicit steps to ensure that PL/
Tcl functions can share data. To do that, make sure that functions that should communicate are owned
by the same user, and mark them SECURITY DEFINER. You must of course take care that such functions
can't be used to do anything unintended.

All PL/TclU functions used in a session execute in the same Tcl interpreter, which of course is distinct
from the interpreter(s) used for PL/Tcl functions. So global data is automatically shared between PL/
TclU functions. This is not considered a security risk because all PL/TclU functions execute at the same
trust level, namely that of a database superuser.

To help protect PL/Tcl functions from unintentionally interfering with each other, a global array is made
available to each function via the upvar command. The global name of this variable is the function's
internal name, and the local name is GD. It is recommended that GD be used for persistent private data
of a function. Use regular Tcl global variables only for values that you specifically intend to be shared
among multiple functions. (Note that the GD arrays are only global within a particular interpreter, so
they do not bypass the security restrictions mentioned above.)

An example of using GD appears in the spi_execp example below.

42.5. Database Access from PL/Tcl
In this section, we follow the usual Tcl convention of using question marks, rather than brackets, to
indicate an optional element in a syntax synopsis. The following commands are available to access the
database from the body of a PL/Tcl function:

1284

PL/Tcl — Tcl Procedural Language

spi_exec ?-count n? ?-array name? command ?loop-body?

Executes an SQL command given as a string. An error in the command causes an error to be raised.
Otherwise, the return value of spi_exec is the number of rows processed (selected, inserted, updat-
ed, or deleted) by the command, or zero if the command is a utility statement. In addition, if the
command is a SELECT statement, the values of the selected columns are placed in Tcl variables as
described below.

The optional -count value tells spi_exec to stop once n rows have been retrieved, much as if the
query included a LIMIT clause. If n is zero, the query is run to completion, the same as when -count
is omitted.

If the command is a SELECT statement, the values of the result columns are placed into Tcl variables
named after the columns. If the -array option is given, the column values are instead stored into
elements of the named associative array, with the column names used as array indexes. In addition,
the current row number within the result (counting from zero) is stored into the array element named
“.tupno”, unless that name is in use as a column name in the result.

If the command is a SELECT statement and no loop-body script is given, then only the first row of
results are stored into Tcl variables or array elements; remaining rows, if any, are ignored. No storing
occurs if the query returns no rows. (This case can be detected by checking the result of spi_exec.)
For example:
spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variable $cnt to the number of rows in the pg_proc system catalog.

If the optional loop-body argument is given, it is a piece of Tcl script that is executed once for each
row in the query result. (loop-body is ignored if the given command is not a SELECT.) The values
of the current row's columns are stored into Tcl variables or array elements before each iteration.
For example:
spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
}

will print a log message for every row of pg_class. This feature works similarly to other Tcl looping
constructs; in particular continue and break work in the usual way inside the loop body.

If a column of a query result is null, the target variable for it is “unset” rather than being set.

spi_prepare query typelist
Prepares and saves a query plan for later execution. The saved plan will be retained for the life of
the current session.

The query can use parameters, that is, placeholders for values to be supplied whenever the plan is
actually executed. In the query string, refer to parameters by the symbols $1 ... $n. If the query uses
parameters, the names of the parameter types must be given as a Tcl list. (Write an empty list for
typelist if no parameters are used.)

The return value from spi_prepare is a query ID to be used in subsequent calls to spi_execp. See
spi_execp for an example.

spi_execp ?-count n? ?-array name? ?-nulls string? queryid ?value-list? ?loop-body?

Executes a query previously prepared with spi_prepare. queryid is the ID returned by spi_prepare.
If the query references parameters, a value-list must be supplied. This is a Tcl list of actual values
for the parameters. The list must be the same length as the parameter type list previously given to
spi_prepare. Omit value-list if the query has no parameters.

The optional value for -nulls is a string of spaces and 'n' characters telling spi_execp which of
the parameters are null values. If given, it must have exactly the same length as the value-list. If
it is not given, all the parameter values are nonnull.

1285

PL/Tcl — Tcl Procedural Language

Except for the way in which the query and its parameters are specified, spi_execp works just like
spi_exec. The -count, -array, and loop-body options are the same, and so is the result value.

Here's an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
 if {![info exists GD(plan)]} {
 # prepare the saved plan on the first call
 set GD(plan) [spi_prepare \
 "SELECT count(*) AS cnt FROM t1 WHERE num >= \$1 AND num <= \$2" \
 [list int4 int4]]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
$$ LANGUAGE pltcl;

We need backslashes inside the query string given to spi_prepare to ensure that the $n markers will
be passed through to spi_prepare as-is, and not replaced by Tcl variable substitution.

subtransaction command

The Tcl script contained in command is executed within an SQL subtransaction. If the script returns
an error, that entire subtransaction is rolled back before returning the error out to the surrounding
Tcl code. See Section 42.9 for more details and an example.

quote string
Doubles all occurrences of single quote and backslash characters in the given string. This can be used
to safely quote strings that are to be inserted into SQL commands given to spi_exec or spi_prepare.
For example, think about an SQL command string like:

"SELECT '$val' AS ret"

where the Tcl variable val actually contains doesn't. This would result in the final command string:

SELECT 'doesn't' AS ret

which would cause a parse error during spi_exec or spi_prepare. To work properly, the submitted
command should contain:

SELECT 'doesn''t' AS ret

which can be formed in PL/Tcl using:

"SELECT '[quote $val]' AS ret"

One advantage of spi_execp is that you don't have to quote parameter values like this, since the
parameters are never parsed as part of an SQL command string.

elog level msg

Emits a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, ERROR, and
FATAL. ERROR raises an error condition; if this is not trapped by the surrounding Tcl code, the error
propagates out to the calling query, causing the current transaction or subtransaction to be aborted.
This is effectively the same as the Tcl error command. FATAL aborts the transaction and causes the
current session to shut down. (There is probably no good reason to use this error level in PL/Tcl
functions, but it's provided for completeness.) The other levels only generate messages of different
priority levels. Whether messages of a particular priority are reported to the client, written to the
server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 19 and Section 42.8 for more information.

42.6. Trigger Functions in PL/Tcl
Trigger functions can be written in PL/Tcl. PostgreSQL requires that a function that is to be called as a
trigger must be declared as a function with no arguments and a return type of trigger.

1286

PL/Tcl — Tcl Procedural Language

The information from the trigger manager is passed to the function body in the following variables:

$TG_name

The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

The object ID of the table that caused the trigger function to be invoked.

$TG_table_name

The name of the table that caused the trigger function to be invoked.

$TG_table_schema

The schema of the table that caused the trigger function to be invoked.

$TG_relatts

A Tcl list of the table column names, prefixed with an empty list element. So looking up a column
name in the list with Tcl's lsearch command returns the element's number starting with 1 for the first
column, the same way the columns are customarily numbered in PostgreSQL. (Empty list elements
also appear in the positions of columns that have been dropped, so that the attribute numbering is
correct for columns to their right.)

$TG_when

The string BEFORE, AFTER, or INSTEAD OF, depending on the type of trigger event.

$TG_level

The string ROW or STATEMENT depending on the type of trigger event.

$TG_op

The string INSERT, UPDATE, DELETE, or TRUNCATE depending on the type of trigger event.

$NEW

An associative array containing the values of the new table row for INSERT or UPDATE actions, or
empty for DELETE. The array is indexed by column name. Columns that are null will not appear in
the array. This is not set for statement-level triggers.

$OLD

An associative array containing the values of the old table row for UPDATE or DELETE actions, or empty
for INSERT. The array is indexed by column name. Columns that are null will not appear in the array.
This is not set for statement-level triggers.

$args

A Tcl list of the arguments to the function as given in the CREATE TRIGGER statement. These arguments
are also accessible as $1 ... $n in the function body.

The return value from a trigger function can be one of the strings OK or SKIP, or a list of column name/
value pairs. If the return value is OK, the operation (INSERT/UPDATE/DELETE) that fired the trigger will
proceed normally. SKIP tells the trigger manager to silently suppress the operation for this row. If a list
is returned, it tells PL/Tcl to return a modified row to the trigger manager; the contents of the modified
row are specified by the column names and values in the list. Any columns not mentioned in the list are
set to null. Returning a modified row is only meaningful for row-level BEFORE INSERT or UPDATE triggers,
for which the modified row will be inserted instead of the one given in $NEW; or for row-level INSTEAD
OF INSERT or UPDATE triggers where the returned row is used as the source data for INSERT RETURNING
or UPDATE RETURNING clauses. In row-level BEFORE DELETE or INSTEAD OF DELETE triggers, returning

1287

PL/Tcl — Tcl Procedural Language

a modified row has the same effect as returning OK, that is the operation proceeds. The trigger return
value is ignored for all other types of triggers.

Tip
The result list can be made from an array representation of the modified tuple with the array
get Tcl command.

Here's a little example trigger function that forces an integer value in a table to keep track of the number
of updates that are performed on the row. For new rows inserted, the value is initialized to 0 and then
incremented on every update operation.

CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
 switch $TG_op {
 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
$$ LANGUAGE pltcl;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
 FOR EACH ROW EXECUTE FUNCTION trigfunc_modcount('modcnt');

Notice that the trigger function itself does not know the column name; that's supplied from the trigger
arguments. This lets the trigger function be reused with different tables.

42.7. Event Trigger Functions in PL/Tcl
Event trigger functions can be written in PL/Tcl. PostgreSQL requires that a function that is to be called
as an event trigger must be declared as a function with no arguments and a return type of event_trig-
ger.

The information from the trigger manager is passed to the function body in the following variables:

$TG_event

The name of the event the trigger is fired for.

$TG_tag

The command tag for which the trigger is fired.

The return value of the trigger function is ignored.

Here's a little example event trigger function that simply raises a NOTICE message each time a supported
command is executed:

CREATE OR REPLACE FUNCTION tclsnitch() RETURNS event_trigger AS $$
 elog NOTICE "tclsnitch: $TG_event $TG_tag"
$$ LANGUAGE pltcl;

1288

PL/Tcl — Tcl Procedural Language

CREATE EVENT TRIGGER tcl_a_snitch ON ddl_command_start EXECUTE FUNCTION tclsnitch();

42.8. Error Handling in PL/Tcl
Tcl code within or called from a PL/Tcl function can raise an error, either by executing some invalid
operation or by generating an error using the Tcl error command or PL/Tcl's elog command. Such
errors can be caught within Tcl using the Tcl catch command. If an error is not caught but is allowed
to propagate out to the top level of execution of the PL/Tcl function, it is reported as an SQL error in
the function's calling query.

Conversely, SQL errors that occur within PL/Tcl's spi_exec, spi_prepare, and spi_execp commands are
reported as Tcl errors, so they are catchable by Tcl's catch command. (Each of these PL/Tcl commands
runs its SQL operation in a subtransaction, which is rolled back on error, so that any partially-completed
operation is automatically cleaned up.) Again, if an error propagates out to the top level without being
caught, it turns back into an SQL error.

Tcl provides an errorCode variable that can represent additional information about an error in a form
that is easy for Tcl programs to interpret. The contents are in Tcl list format, and the first word identifies
the subsystem or library reporting the error; beyond that the contents are left to the individual subsystem
or library. For database errors reported by PL/Tcl commands, the first word is POSTGRES, the second word
is the PostgreSQL version number, and additional words are field name/value pairs providing detailed
information about the error. Fields SQLSTATE, condition, and message are always supplied (the first two
represent the error code and condition name as shown in Appendix A). Fields that may be present include
detail, hint, context, schema, table, column, datatype, constraint, statement, cursor_position,
filename, lineno, and funcname.

A convenient way to work with PL/Tcl's errorCode information is to load it into an array, so that the field
names become array subscripts. Code for doing that might look like

if {[catch { spi_exec $sql_command }]} {
 if {[lindex $::errorCode 0] == "POSTGRES"} {
 array set errorArray $::errorCode
 if {$errorArray(condition) == "undefined_table"} {
 # deal with missing table
 } else {
 # deal with some other type of SQL error
 }
 }
}

(The double colons explicitly specify that errorCode is a global variable.)

42.9. Explicit Subtransactions in PL/Tcl
Recovering from errors caused by database access as described in Section 42.8 can lead to an unde-
sirable situation where some operations succeed before one of them fails, and after recovering from
that error the data is left in an inconsistent state. PL/Tcl offers a solution to this problem in the form
of explicit subtransactions.

Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
 if [catch {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'"
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]

1289

PL/Tcl — Tcl Procedural Language

 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;

If the second UPDATE statement results in an exception being raised, this function will log the failure, but
the result of the first UPDATE will nevertheless be committed. In other words, the funds will be withdrawn
from Joe's account, but will not be transferred to Mary's account. This happens because each spi_exec
is a separate subtransaction, and only one of those subtransactions got rolled back.

To handle such cases, you can wrap multiple database operations in an explicit subtransaction, which
will succeed or roll back as a whole. PL/Tcl provides a subtransaction command to manage this. We
can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
 if [catch {
 subtransaction {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'"
 }
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]
 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;

Note that use of catch is still required for this purpose. Otherwise the error would propagate to the top
level of the function, preventing the desired insertion into the operations table. The subtransaction
command does not trap errors, it only assures that all database operations executed inside its scope will
be rolled back together when an error is reported.

A rollback of an explicit subtransaction occurs on any error reported by the contained Tcl code, not only
errors originating from database access. Thus a regular Tcl exception raised inside a subtransaction
command will also cause the subtransaction to be rolled back. However, non-error exits out of the con-
tained Tcl code (for instance, due to return) do not cause a rollback.

42.10. Transaction Management
In a procedure called from the top level or an anonymous code block (DO command) called from the top
level it is possible to control transactions. To commit the current transaction, call the commit command.
To roll back the current transaction, call the rollback command. (Note that it is not possible to run the
SQL commands COMMIT or ROLLBACK via spi_exec or similar. It has to be done using these functions.)
After a transaction is ended, a new transaction is automatically started, so there is no separate command
for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE pltcl
AS $$
for {set i 0} {$i < 10} {incr i} {
 spi_exec "INSERT INTO test1 (a) VALUES ($i)"
 if {$i % 2 == 0} {
 commit
 } else {

1290

PL/Tcl — Tcl Procedural Language

 rollback
 }
}
$$;

CALL transaction_test1();

Transactions cannot be ended when an explicit subtransaction is active.

42.11. PL/Tcl Configuration
This section lists configuration parameters that affect PL/Tcl.

pltcl.start_proc (string)
This parameter, if set to a nonempty string, specifies the name (possibly schema-qualified) of a pa-
rameterless PL/Tcl function that is to be executed whenever a new Tcl interpreter is created for PL/
Tcl. Such a function can perform per-session initialization, such as loading additional Tcl code. A new
Tcl interpreter is created when a PL/Tcl function is first executed in a database session, or when an
additional interpreter has to be created because a PL/Tcl function is called by a new SQL role.

The referenced function must be written in the pltcl language, and must not be marked SECURITY
DEFINER. (These restrictions ensure that it runs in the interpreter it's supposed to initialize.) The
current user must have permission to call it, too.

If the function fails with an error it will abort the function call that caused the new interpreter to be
created and propagate out to the calling query, causing the current transaction or subtransaction to
be aborted. Any actions already done within Tcl won't be undone; however, that interpreter won't
be used again. If the language is used again the initialization will be attempted again within a fresh
Tcl interpreter.

Only superusers can change this setting. Although this setting can be changed within a session, such
changes will not affect Tcl interpreters that have already been created.

pltclu.start_proc (string)

This parameter is exactly like pltcl.start_proc, except that it applies to PL/TclU. The referenced
function must be written in the pltclu language.

42.12. Tcl Procedure Names
In PostgreSQL, the same function name can be used for different function definitions if the functions are
placed in different schemas, or if the number of arguments or their types differ. Tcl, however, requires
all procedure names to be distinct. PL/Tcl deals with this by including the argument type names in
the internal Tcl procedure name, and then appending the function's object ID (OID) to the internal Tcl
procedure name if necessary to make it different from the names of all previously-loaded functions in
the same Tcl interpreter. Thus, PostgreSQL functions with the same name and different argument types
will be different Tcl procedures, too. This is not normally a concern for a PL/Tcl programmer, but it might
be visible when debugging.

For this reason among others, a PL/Tcl function cannot call another one directly (that is, within Tcl). If
you need to do that, you must go through SQL, using spi_exec or a related command.

1291

Chapter 43. PL/Perl — Perl Procedural
Language

PL/Perl is a loadable procedural language that enables you to write PostgreSQL functions and procedures
in the Perl programming language.

The main advantage to using PL/Perl is that this allows use, within stored functions and procedures, of
the manyfold “string munging” operators and functions available for Perl. Parsing complex strings might
be easier using Perl than it is with the string functions and control structures provided in PL/pgSQL.

To install PL/Perl in a particular database, use CREATE EXTENSION plperl.

Tip
If a language is installed into template1, all subsequently created databases will have the language
installed automatically.

Note
Users of source packages must specially enable the build of PL/Perl during the installation process.
(Refer to Chapter 17 for more information.) Users of binary packages might find PL/Perl in a
separate subpackage.

43.1. PL/Perl Functions and Arguments
To create a function in the PL/Perl language, use the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-types)
RETURNS return-type
-- function attributes can go here
AS $$
 # PL/Perl function body goes here
$$ LANGUAGE plperl;

The body of the function is ordinary Perl code. In fact, the PL/Perl glue code wraps it inside a Perl
subroutine. A PL/Perl function is called in a scalar context, so it can't return a list. You can return non-
scalar values (arrays, records, and sets) by returning a reference, as discussed below.

In a PL/Perl procedure, any return value from the Perl code is ignored.

PL/Perl also supports anonymous code blocks called with the DO statement:

DO $$
 # PL/Perl code
$$ LANGUAGE plperl;

An anonymous code block receives no arguments, and whatever value it might return is discarded.
Otherwise it behaves just like a function.

Note
The use of named nested subroutines is dangerous in Perl, especially if they refer to lexical vari-
ables in the enclosing scope. Because a PL/Perl function is wrapped in a subroutine, any named
subroutine you place inside one will be nested. In general, it is far safer to create anonymous

1292

https://www.perl.org

PL/Perl — Perl Procedural Language

subroutines which you call via a coderef. For more information, see the entries for Variable "%s"
will not stay shared and Variable "%s" is not available in the perldiag man page, or
search the Internet for “perl nested named subroutine”.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string con-
stant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant. If
you choose to use escape string syntax E'', you must double any single quote marks (') and backslashes
(\) used in the body of the function (see Section 4.1.2.1).

Arguments and results are handled as in any other Perl subroutine: arguments are passed in @_, and a
result value is returned with return or as the last expression evaluated in the function.

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 if ($_[0] > $_[1]) { return $_[0]; }
 return $_[1];
$$ LANGUAGE plperl;

Note
Arguments will be converted from the database's encoding to UTF-8 for use inside PL/Perl, and
then converted from UTF-8 back to the database encoding upon return.

If an SQL null value is passed to a function, the argument value will appear as “undefined” in Perl.
The above function definition will not behave very nicely with null inputs (in fact, it will act as though
they are zeroes). We could add STRICT to the function definition to make PostgreSQL do something
more reasonable: if a null value is passed, the function will not be called at all, but will just return a
null result automatically. Alternatively, we could check for undefined inputs in the function body. For
example, suppose that we wanted perl_max with one null and one nonnull argument to return the nonnull
argument, rather than a null value:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 my ($x, $y) = @_;
 if (not defined $x) {
 return undef if not defined $y;
 return $y;
 }
 return $x if not defined $y;
 return $x if $x > $y;
 return $y;
$$ LANGUAGE plperl;

As shown above, to return an SQL null value from a PL/Perl function, return an undefined value. This
can be done whether the function is strict or not.

Anything in a function argument that is not a reference is a string, which is in the standard PostgreSQL
external text representation for the relevant data type. In the case of ordinary numeric or text types, Perl
will just do the right thing and the programmer will normally not have to worry about it. However, in
other cases the argument will need to be converted into a form that is more usable in Perl. For example,
the decode_bytea function can be used to convert an argument of type bytea into unescaped binary.

Similarly, values passed back to PostgreSQL must be in the external text representation format. For
example, the encode_bytea function can be used to escape binary data for a return value of type bytea.

One case that is particularly important is boolean values. As just stated, the default behavior for bool
values is that they are passed to Perl as text, thus either 't' or 'f'. This is problematic, since Perl will not

1293

PL/Perl — Perl Procedural Language

treat 'f' as false! It is possible to improve matters by using a “transform” (see CREATE TRANSFORM).
Suitable transforms are provided by the bool_plperl extension. To use it, install the extension:

CREATE EXTENSION bool_plperl; -- or bool_plperlu for PL/PerlU

Then use the TRANSFORM function attribute for a PL/Perl function that takes or returns bool, for example:

CREATE FUNCTION perl_and(bool, bool) RETURNS bool
TRANSFORM FOR TYPE bool
AS $$
 my ($a, $b) = @_;
 return $a && $b;
$$ LANGUAGE plperl;

When this transform is applied, bool arguments will be seen by Perl as being 1 or empty, thus properly
true or false. If the function result is type bool, it will be true or false according to whether Perl would
evaluate the returned value as true. Similar transformations are also performed for boolean query ar-
guments and results of SPI queries performed inside the function (Section 43.3.1).

Perl can return PostgreSQL arrays as references to Perl arrays. Here is an example:

CREATE OR REPLACE function returns_array()
RETURNS text[][] AS $$
 return [['a"b','c,d'],['e\\f','g']];
$$ LANGUAGE plperl;

select returns_array();

Perl passes PostgreSQL arrays as a blessed PostgreSQL::InServer::ARRAY object. This object may be
treated as an array reference or a string, allowing for backward compatibility with Perl code written for
PostgreSQL versions below 9.1 to run. For example:

CREATE OR REPLACE FUNCTION concat_array_elements(text[]) RETURNS TEXT AS $$
 my $arg = shift;
 my $result = "";
 return undef if (!defined $arg);

 # as an array reference
 for (@$arg) {
 $result .= $_;
 }

 # also works as a string
 $result .= $arg;

 return $result;
$$ LANGUAGE plperl;

SELECT concat_array_elements(ARRAY['PL','/','Perl']);

Note
Multidimensional arrays are represented as references to lower-dimensional arrays of references
in a way common to every Perl programmer.

Composite-type arguments are passed to the function as references to hashes. The keys of the hash are
the attribute names of the composite type. Here is an example:

CREATE TABLE employee (

1294

PL/Perl — Perl Procedural Language

 name text,
 basesalary integer,
 bonus integer
);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
 my ($emp) = @_;
 return $emp->{basesalary} + $emp->{bonus};
$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

A PL/Perl function can return a composite-type result using the same approach: return a reference to a
hash that has the required attributes. For example:

CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
 return {f2 => 'hello', f1 => 1, f3 => 'world'};
$$ LANGUAGE plperl;

SELECT * FROM perl_row();

Any columns in the declared result data type that are not present in the hash will be returned as null
values.

Similarly, output arguments of procedures can be returned as a hash reference:

CREATE PROCEDURE perl_triple(INOUT a integer, INOUT b integer) AS $$
 my ($a, $b) = @_;
 return {a => $a * 3, b => $b * 3};
$$ LANGUAGE plperl;

CALL perl_triple(5, 10);

PL/Perl functions can also return sets of either scalar or composite types. Usually you'll want to return
rows one at a time, both to speed up startup time and to keep from queuing up the entire result set in
memory. You can do this with return_next as illustrated below. Note that after the last return_next,
you must put either return or (better) return undef.

CREATE OR REPLACE FUNCTION perl_set_int(int)
RETURNS SETOF INTEGER AS $$
 foreach (0..$_[0]) {
 return_next($_);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set()
RETURNS SETOF testrowperl AS $$
 return_next({ f1 => 1, f2 => 'Hello', f3 => 'World' });
 return_next({ f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' });
 return_next({ f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' });
 return undef;
$$ LANGUAGE plperl;

For small result sets, you can return a reference to an array that contains either scalars, references to
arrays, or references to hashes for simple types, array types, and composite types, respectively. Here
are some simple examples of returning the entire result set as an array reference:

1295

PL/Perl — Perl Procedural Language

CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS $$
 return [0..$_[0]];
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$
 return [
 { f1 => 1, f2 => 'Hello', f3 => 'World' },
 { f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' },
 { f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' }
];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();

If you wish to use the strict pragma with your code you have a few options. For temporary global use
you can SET plperl.use_strict to true. This will affect subsequent compilations of PL/Perl functions,
but not functions already compiled in the current session. For permanent global use you can set plper-
l.use_strict to true in the postgresql.conf file.

For permanent use in specific functions you can simply put:

use strict;

at the top of the function body.

The feature pragma is also available to use if your Perl is version 5.10.0 or higher.

43.2. Data Values in PL/Perl
The argument values supplied to a PL/Perl function's code are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function's declared
return type.

If this behavior is inconvenient for a particular case, it can be improved by using a transform, as already
illustrated for bool values. Several examples of transform modules are included in the PostgreSQL dis-
tribution.

43.3. Built-in Functions
43.3.1. Database Access from PL/Perl

Access to the database itself from your Perl function can be done via the following functions:

spi_exec_query(query [, limit])

spi_exec_query executes an SQL command and returns the entire row set as a reference to an array
of hash references. If limit is specified and is greater than zero, then spi_exec_query retrieves at
most limit rows, much as if the query included a LIMIT clause. Omitting limit or specifying it as
zero results in no row limit.

You should only use this command when you know that the result set will be relatively small. Here
is an example of a query (SELECT command) with the optional maximum number of rows:

$rv = spi_exec_query('SELECT * FROM my_table', 5);

This returns up to 5 rows from the table my_table. If my_table has a column my_column, you can get
that value from row $i of the result like this:

1296

PL/Perl — Perl Procedural Language

$foo = $rv->{rows}[$i]->{my_column};

The total number of rows returned from a SELECT query can be accessed like this:

$nrows = $rv->{processed}

Here is an example using a different command type:

$query = "INSERT INTO my_table VALUES (1, 'test')";
$rv = spi_exec_query($query);

You can then access the command status (e.g., SPI_OK_INSERT) like this:

$res = $rv->{status};

To get the number of rows affected, do:

$nrows = $rv->{processed};

Here is a complete example:

CREATE TABLE test (
 i int,
 v varchar
);

INSERT INTO test (i, v) VALUES (1, 'first line');
INSERT INTO test (i, v) VALUES (2, 'second line');
INSERT INTO test (i, v) VALUES (3, 'third line');
INSERT INTO test (i, v) VALUES (4, 'immortal');

CREATE OR REPLACE FUNCTION test_munge() RETURNS SETOF test AS $$
 my $rv = spi_exec_query('select i, v from test;');
 my $status = $rv->{status};
 my $nrows = $rv->{processed};
 foreach my $rn (0 .. $nrows - 1) {
 my $row = $rv->{rows}[$rn];
 $row->{i} += 200 if defined($row->{i});
 $row->{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row->{v}));
 return_next($row);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM test_munge();

spi_query(command)
spi_fetchrow(cursor)
spi_cursor_close(cursor)

spi_query and spi_fetchrow work together as a pair for row sets which might be large, or for
cases where you wish to return rows as they arrive. spi_fetchrow works only with spi_query. The
following example illustrates how you use them together:

CREATE TYPE foo_type AS (the_num INTEGER, the_text TEXT);

CREATE OR REPLACE FUNCTION lotsa_md5 (INTEGER) RETURNS SETOF foo_type AS $$
 use Digest::MD5 qw(md5_hex);
 my $file = '/usr/share/dict/words';
 my $t = localtime;
 elog(NOTICE, "opening file $file at $t");
 open my $fh, '<', $file # ooh, it's a file access!
 or elog(ERROR, "cannot open $file for reading: $!");

1297

PL/Perl — Perl Procedural Language

 my @words = <$fh>;
 close $fh;
 $t = localtime;
 elog(NOTICE, "closed file $file at $t");
 chomp(@words);
 my $row;
 my $sth = spi_query("SELECT * FROM generate_series(1,$_[0]) AS b(a)");
 while (defined ($row = spi_fetchrow($sth))) {
 return_next({
 the_num => $row->{a},
 the_text => md5_hex($words[rand @words])
 });
 }
 return;
$$ LANGUAGE plperlu;

SELECT * from lotsa_md5(500);

Normally, spi_fetchrow should be repeated until it returns undef, indicating that there are no more
rows to read. The cursor returned by spi_query is automatically freed when spi_fetchrow returns
undef. If you do not wish to read all the rows, instead call spi_cursor_close to free the cursor.
Failure to do so will result in memory leaks.

spi_prepare(command, argument types)
spi_query_prepared(plan, arguments)
spi_exec_prepared(plan [, attributes], arguments)
spi_freeplan(plan)

spi_prepare, spi_query_prepared, spi_exec_prepared, and spi_freeplan implement the same
functionality but for prepared queries. spi_prepare accepts a query string with numbered argument
placeholders ($1, $2, etc.) and a string list of argument types:

$plan = spi_prepare('SELECT * FROM test WHERE id > $1 AND name = $2',
 'INTEGER', 'TEXT');

Once a query plan is prepared by a call to spi_prepare, the plan can be used instead of the string
query, either in spi_exec_prepared, where the result is the same as returned by spi_exec_query,
or in spi_query_prepared which returns a cursor exactly as spi_query does, which can be later
passed to spi_fetchrow. The optional second parameter to spi_exec_prepared is a hash reference
of attributes; the only attribute currently supported is limit, which sets the maximum number of
rows returned from the query. Omitting limit or specifying it as zero results in no row limit.

The advantage of prepared queries is that is it possible to use one prepared plan for more than one
query execution. After the plan is not needed anymore, it can be freed with spi_freeplan:

CREATE OR REPLACE FUNCTION init() RETURNS VOID AS $$
 $_SHARED{my_plan} = spi_prepare('SELECT (now() + $1)::date AS now',
 'INTERVAL');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION add_time(INTERVAL) RETURNS TEXT AS $$
 return spi_exec_prepared(
 $_SHARED{my_plan},
 $_[0]
)->{rows}->[0]->{now};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION done() RETURNS VOID AS $$
 spi_freeplan($_SHARED{my_plan});
 undef $_SHARED{my_plan};

1298

PL/Perl — Perl Procedural Language

$$ LANGUAGE plperl;

SELECT init();
SELECT add_time('1 day'), add_time('2 days'), add_time('3 days');
SELECT done();

 add_time | add_time | add_time
------------+------------+------------
 2005-12-10 | 2005-12-11 | 2005-12-12

Note that the parameter subscript in spi_prepare is defined via $1, $2, $3, etc., so avoid declaring
query strings in double quotes that might easily lead to hard-to-catch bugs.

Another example illustrates usage of an optional parameter in spi_exec_prepared:

CREATE TABLE hosts AS SELECT id, ('192.168.1.'||id)::inet AS address
 FROM generate_series(1,3) AS id;

CREATE OR REPLACE FUNCTION init_hosts_query() RETURNS VOID AS $$
 $_SHARED{plan} = spi_prepare('SELECT * FROM hosts
 WHERE address << $1', 'inet');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION query_hosts(inet) RETURNS SETOF hosts AS $$
 return spi_exec_prepared(
 $_SHARED{plan},
 {limit => 2},
 $_[0]
)->{rows};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION release_hosts_query() RETURNS VOID AS $$
 spi_freeplan($_SHARED{plan});
 undef $_SHARED{plan};
$$ LANGUAGE plperl;

SELECT init_hosts_query();
SELECT query_hosts('192.168.1.0/30');
SELECT release_hosts_query();

 query_hosts

 (1,192.168.1.1)
 (2,192.168.1.2)
(2 rows)

spi_commit()
spi_rollback()

Commit or roll back the current transaction. This can only be called in a procedure or anonymous
code block (DO command) called from the top level. (Note that it is not possible to run the SQL com-
mands COMMIT or ROLLBACK via spi_exec_query or similar. It has to be done using these functions.)
After a transaction is ended, a new transaction is automatically started, so there is no separate func-
tion for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plperl
AS $$

1299

PL/Perl — Perl Procedural Language

foreach my $i (0..9) {
 spi_exec_query("INSERT INTO test1 (a) VALUES ($i)");
 if ($i % 2 == 0) {
 spi_commit();
 } else {
 spi_rollback();
 }
}
$$;

CALL transaction_test1();

43.3.2. Utility Functions in PL/Perl
elog(level, msg)

Emit a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, and ERROR. ERROR
raises an error condition; if this is not trapped by the surrounding Perl code, the error propagates
out to the calling query, causing the current transaction or subtransaction to be aborted. This is
effectively the same as the Perl die command. The other levels only generate messages of different
priority levels. Whether messages of a particular priority are reported to the client, written to the
server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 19 for more information.

quote_literal(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string.
Embedded single-quotes and backslashes are properly doubled. Note that quote_literal returns
undef on undef input; if the argument might be undef, quote_nullable is often more suitable.

quote_nullable(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string; or, if
the argument is undef, return the unquoted string "NULL". Embedded single-quotes and backslashes
are properly doubled.

quote_ident(string)

Return the given string suitably quoted to be used as an identifier in an SQL statement string. Quotes
are added only if necessary (i.e., if the string contains non-identifier characters or would be case-
folded). Embedded quotes are properly doubled.

decode_bytea(string)

Return the unescaped binary data represented by the contents of the given string, which should be
bytea encoded.

encode_bytea(string)

Return the bytea encoded form of the binary data contents of the given string.

encode_array_literal(array)
encode_array_literal(array, delimiter)

Returns the contents of the referenced array as a string in array literal format (see Section 8.15.2).
Returns the argument value unaltered if it's not a reference to an array. The delimiter used between
elements of the array literal defaults to ", " if a delimiter is not specified or is undef.

encode_typed_literal(value, typename)

Converts a Perl variable to the value of the data type passed as a second argument and returns a
string representation of this value. Correctly handles nested arrays and values of composite types.

1300

PL/Perl — Perl Procedural Language

encode_array_constructor(array)

Returns the contents of the referenced array as a string in array constructor format (see Sec-
tion 4.2.12). Individual values are quoted using quote_nullable. Returns the argument value, quot-
ed using quote_nullable, if it's not a reference to an array.

looks_like_number(string)

Returns a true value if the content of the given string looks like a number, according to Perl, returns
false otherwise. Returns undef if the argument is undef. Leading and trailing space is ignored. Inf
and Infinity are regarded as numbers.

is_array_ref(argument)

Returns a true value if the given argument may be treated as an array reference, that is, if ref of the
argument is ARRAY or PostgreSQL::InServer::ARRAY. Returns false otherwise.

43.4. Global Values in PL/Perl
You can use the global hash %_SHARED to store data, including code references, between function calls
for the lifetime of the current session.

Here is a simple example for shared data:

CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text AS $$
 if ($_SHARED{$_[0]} = $_[1]) {
 return 'ok';
 } else {
 return "cannot set shared variable $_[0] to $_[1]";
 }
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
 return $_SHARED{$_[0]};
$$ LANGUAGE plperl;

SELECT set_var('sample', 'Hello, PL/Perl! How''s tricks?');
SELECT get_var('sample');

Here is a slightly more complicated example using a code reference:

CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
 $_SHARED{myquote} = sub {
 my $arg = shift;
 $arg =~ s/(['\\])/\\$1/g;
 return "'$arg'";
 };
$$ LANGUAGE plperl;

SELECT myfuncs(); /* initializes the function */

/* Set up a function that uses the quote function */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
 my $text_to_quote = shift;
 my $qfunc = $_SHARED{myquote};
 return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

(You could have replaced the above with the one-liner return $_SHARED{myquote}->($_[0]); at the
expense of readability.)

1301

PL/Perl — Perl Procedural Language

For security reasons, PL/Perl executes functions called by any one SQL role in a separate Perl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user's PL/Perl functions. Each such interpreter has its own value of the %_SHARED variable and other
global state. Thus, two PL/Perl functions will share the same value of %_SHARED if and only if they are
executed by the same SQL role. In an application wherein a single session executes code under multiple
SQL roles (via SECURITY DEFINER functions, use of SET ROLE, etc.) you may need to take explicit steps
to ensure that PL/Perl functions can share data via %_SHARED. To do that, make sure that functions that
should communicate are owned by the same user, and mark them SECURITY DEFINER. You must of course
take care that such functions can't be used to do anything unintended.

43.5. Trusted and Untrusted PL/Perl
Normally, PL/Perl is installed as a “trusted” programming language named plperl. In this setup, certain
Perl operations are disabled to preserve security. In general, the operations that are restricted are those
that interact with the environment. This includes file handle operations, require, and use (for external
modules). There is no way to access internals of the database server process or to gain OS-level access
with the permissions of the server process, as a C function can do. Thus, any unprivileged database user
can be permitted to use this language.

Warning
Trusted PL/Perl relies on the Perl Opcode module to preserve security. Perl documents that the
module is not effective for the trusted PL/Perl use case. If your security needs are incompatible
with the uncertainty in that warning, consider executing REVOKE USAGE ON LANGUAGE plperl
FROM PUBLIC.

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:
CREATE FUNCTION badfunc() RETURNS integer AS $$
 my $tmpfile = "/tmp/badfile";
 open my $fh, '>', $tmpfile
 or elog(ERROR, qq{could not open the file "$tmpfile": $!});
 print $fh "Testing writing to a file\n";
 close $fh or elog(ERROR, qq{could not close the file "$tmpfile": $!});
 return 1;
$$ LANGUAGE plperl;

The creation of this function will fail as its use of a forbidden operation will be caught by the validator.

Sometimes it is desirable to write Perl functions that are not restricted. For example, one might want
a Perl function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted”
language (usually called PL/PerlU). In this case the full Perl language is available. When installing the
language, the language name plperlu will select the untrusted PL/Perl variant.

The writer of a PL/PerlU function must take care that the function cannot be used to do anything un-
wanted, since it will be able to do anything that could be done by a user logged in as the database
administrator. Note that the database system allows only database superusers to create functions in
untrusted languages.

If the above function was created by a superuser using the language plperlu, execution would succeed.

In the same way, anonymous code blocks written in Perl can use restricted operations if the language is
specified as plperlu rather than plperl, but the caller must be a superuser.

Note
While PL/Perl functions run in a separate Perl interpreter for each SQL role, all PL/PerlU functions
executed in a given session run in a single Perl interpreter (which is not any of the ones used for

1302

https://perldoc.perl.org/Opcode#WARNING

PL/Perl — Perl Procedural Language

PL/Perl functions). This allows PL/PerlU functions to share data freely, but no communication can
occur between PL/Perl and PL/PerlU functions.

Note
Perl cannot support multiple interpreters within one process unless it was built with the appro-
priate flags, namely either usemultiplicity or useithreads. (usemultiplicity is preferred un-
less you actually need to use threads. For more details, see the perlembed man page.) If PL/Perl
is used with a copy of Perl that was not built this way, then it is only possible to have one Perl
interpreter per session, and so any one session can only execute either PL/PerlU functions, or PL/
Perl functions that are all called by the same SQL role.

43.6. PL/Perl Triggers
PL/Perl can be used to write trigger functions. In a trigger function, the hash reference $_TD contains
information about the current trigger event. $_TD is a global variable, which gets a separate local value
for each invocation of the trigger. The fields of the $_TD hash reference are:

$_TD->{new}{foo}

NEW value of column foo

$_TD->{old}{foo}

OLD value of column foo

$_TD->{name}

Name of the trigger being called

$_TD->{event}

Trigger event: INSERT, UPDATE, DELETE, TRUNCATE, or UNKNOWN

$_TD->{when}

When the trigger was called: BEFORE, AFTER, INSTEAD OF, or UNKNOWN

$_TD->{level}

The trigger level: ROW, STATEMENT, or UNKNOWN

$_TD->{relid}

OID of the table on which the trigger fired

$_TD->{table_name}

Name of the table on which the trigger fired

$_TD->{relname}

Name of the table on which the trigger fired. This has been deprecated, and could be removed in a
future release. Please use $_TD->{table_name} instead.

$_TD->{table_schema}

Name of the schema in which the table on which the trigger fired, is

$_TD->{argc}

Number of arguments of the trigger function

1303

PL/Perl — Perl Procedural Language

@{$_TD->{args}}

Arguments of the trigger function. Does not exist if $_TD->{argc} is 0.

Row-level triggers can return one of the following:

return;

Execute the operation

"SKIP"

Don't execute the operation

"MODIFY"

Indicates that the NEW row was modified by the trigger function

Here is an example of a trigger function, illustrating some of the above:

CREATE TABLE test (
 i int,
 v varchar
);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
 if (($_TD->{new}{i} >= 100) || ($_TD->{new}{i} <= 0)) {
 return "SKIP"; # skip INSERT/UPDATE command
 } elsif ($_TD->{new}{v} ne "immortal") {
 $_TD->{new}{v} .= "(modified by trigger)";
 return "MODIFY"; # modify row and execute INSERT/UPDATE command
 } else {
 return; # execute INSERT/UPDATE command
 }
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
 BEFORE INSERT OR UPDATE ON test
 FOR EACH ROW EXECUTE FUNCTION valid_id();

43.7. PL/Perl Event Triggers
PL/Perl can be used to write event trigger functions. In an event trigger function, the hash reference $_TD
contains information about the current trigger event. $_TD is a global variable, which gets a separate
local value for each invocation of the trigger. The fields of the $_TD hash reference are:

$_TD->{event}

The name of the event the trigger is fired for.

$_TD->{tag}

The command tag for which the trigger is fired.

The return value of the trigger function is ignored.

Here is an example of an event trigger function, illustrating some of the above:

CREATE OR REPLACE FUNCTION perlsnitch() RETURNS event_trigger AS $$
 elog(NOTICE, "perlsnitch: " . $_TD->{event} . " " . $_TD->{tag} . " ");
$$ LANGUAGE plperl;

CREATE EVENT TRIGGER perl_a_snitch
 ON ddl_command_start

1304

PL/Perl — Perl Procedural Language

 EXECUTE FUNCTION perlsnitch();

43.8. PL/Perl Under the Hood
43.8.1. Configuration

This section lists configuration parameters that affect PL/Perl.

plperl.on_init (string)
Specifies Perl code to be executed when a Perl interpreter is first initialized, before it is specialized
for use by plperl or plperlu. The SPI functions are not available when this code is executed. If the
code fails with an error it will abort the initialization of the interpreter and propagate out to the
calling query, causing the current transaction or subtransaction to be aborted.

The Perl code is limited to a single string. Longer code can be placed into a module and loaded by
the on_init string. Examples:
plperl.on_init = 'require "plperlinit.pl"'
plperl.on_init = 'use lib "/my/app"; use MyApp::PgInit;'

Any modules loaded by plperl.on_init, either directly or indirectly, will be available for use by
plperl. This may create a security risk. To see what modules have been loaded you can use:
DO 'elog(WARNING, join ", ", sort keys %INC)' LANGUAGE plperl;

Initialization will happen in the postmaster if the plperl library is included in shared_preload_li-
braries, in which case extra consideration should be given to the risk of destabilizing the postmaster.
The principal reason for making use of this feature is that Perl modules loaded by plperl.on_init
need be loaded only at postmaster start, and will be instantly available without loading overhead
in individual database sessions. However, keep in mind that the overhead is avoided only for the
first Perl interpreter used by a database session — either PL/PerlU, or PL/Perl for the first SQL role
that calls a PL/Perl function. Any additional Perl interpreters created in a database session will have
to execute plperl.on_init afresh. Also, on Windows there will be no savings whatsoever from pre-
loading, since the Perl interpreter created in the postmaster process does not propagate to child
processes.

This parameter can only be set in the postgresql.conf file or on the server command line.

plperl.on_plperl_init (string)
plperl.on_plperlu_init (string)

These parameters specify Perl code to be executed when a Perl interpreter is specialized for plperl
or plperlu respectively. This will happen when a PL/Perl or PL/PerlU function is first executed in a
database session, or when an additional interpreter has to be created because the other language
is called or a PL/Perl function is called by a new SQL role. This follows any initialization done by
plperl.on_init. The SPI functions are not available when this code is executed. The Perl code
in plperl.on_plperl_init is executed after “locking down” the interpreter, and thus it can only
perform trusted operations.

If the code fails with an error it will abort the initialization and propagate out to the calling query,
causing the current transaction or subtransaction to be aborted. Any actions already done within
Perl won't be undone; however, that interpreter won't be used again. If the language is used again
the initialization will be attempted again within a fresh Perl interpreter.

Only superusers can change these settings. Although these settings can be changed within a session,
such changes will not affect Perl interpreters that have already been used to execute functions.

plperl.use_strict (boolean)
When set true subsequent compilations of PL/Perl functions will have the strict pragma enabled.
This parameter does not affect functions already compiled in the current session.

1305

PL/Perl — Perl Procedural Language

43.8.2. Limitations and Missing Features
The following features are currently missing from PL/Perl, but they would make welcome contributions.
• PL/Perl functions cannot call each other directly.
• SPI is not yet fully implemented.
• If you are fetching very large data sets using spi_exec_query, you should be aware that these will

all go into memory. You can avoid this by using spi_query/spi_fetchrow as illustrated earlier.

A similar problem occurs if a set-returning function passes a large set of rows back to PostgreSQL
via return. You can avoid this problem too by instead using return_next for each row returned, as
shown previously.

• When a session ends normally, not due to a fatal error, any END blocks that have been defined are
executed. Currently no other actions are performed. Specifically, file handles are not automatically
flushed and objects are not automatically destroyed.

1306

Chapter 44. PL/Python — Python Procedural
Language

The PL/Python procedural language allows PostgreSQL functions and procedures to be written in the
Python language.

To install PL/Python in a particular database, use CREATE EXTENSION plpython3u.

Tip
If a language is installed into template1, all subsequently created databases will have the language
installed automatically.

PL/Python is only available as an “untrusted” language, meaning it does not offer any way of restricting
what users can do in it and is therefore named plpython3u. A trusted variant plpython might become
available in the future if a secure execution mechanism is developed in Python. The writer of a function
in untrusted PL/Python must take care that the function cannot be used to do anything unwanted, since
it will be able to do anything that could be done by a user logged in as the database administrator. Only
superusers can create functions in untrusted languages such as plpython3u.

Note
Users of source packages must specially enable the build of PL/Python during the installation
process. (Refer to the installation instructions for more information.) Users of binary packages
might find PL/Python in a separate subpackage.

44.1. PL/Python Functions
Functions in PL/Python are declared via the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-list)
 RETURNS return-type
AS $$
 # PL/Python function body
$$ LANGUAGE plpython3u;

The body of a function is simply a Python script. When the function is called, its arguments are passed
as elements of the list args; named arguments are also passed as ordinary variables to the Python
script. Use of named arguments is usually more readable. The result is returned from the Python code
in the usual way, with return or yield (in case of a result-set statement). If you do not provide a return
value, Python returns the default None. PL/Python translates Python's None into the SQL null value. In
a procedure, the result from the Python code must be None (typically achieved by ending the procedure
without a return statement or by using a return statement without argument); otherwise, an error will
be raised.

For example, a function to return the greater of two integers can be defined as:

CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if a > b:
 return a
 return b
$$ LANGUAGE plpython3u;

1307

https://www.python.org

PL/Python — Python
Procedural Language

The Python code that is given as the body of the function definition is transformed into a Python function.
For example, the above results in:

def __plpython_procedure_pymax_23456():
 if a > b:
 return a
 return b

assuming that 23456 is the OID assigned to the function by PostgreSQL.

The arguments are set as global variables. Because of the scoping rules of Python, this has the subtle
consequence that an argument variable cannot be reassigned inside the function to the value of an
expression that involves the variable name itself, unless the variable is redeclared as global in the block.
For example, the following won't work:

CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 x = x.strip() # error
 return x
$$ LANGUAGE plpython3u;

because assigning to x makes x a local variable for the entire block, and so the x on the right-hand side
of the assignment refers to a not-yet-assigned local variable x, not the PL/Python function parameter.
Using the global statement, this can be made to work:

CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 global x
 x = x.strip() # ok now
 return x
$$ LANGUAGE plpython3u;

But it is advisable not to rely on this implementation detail of PL/Python. It is better to treat the function
parameters as read-only.

44.2. Data Values
Generally speaking, the aim of PL/Python is to provide a “natural” mapping between the PostgreSQL
and the Python worlds. This informs the data mapping rules described below.

44.2.1. Data Type Mapping
When a PL/Python function is called, its arguments are converted from their PostgreSQL data type to
a corresponding Python type:

• PostgreSQL boolean is converted to Python bool.

• PostgreSQL smallint, int, bigint and oid are converted to Python int.

• PostgreSQL real and double are converted to Python float.

• PostgreSQL numeric is converted to Python Decimal. This type is imported from the cdecimal
package if that is available. Otherwise, decimal.Decimal from the standard library will be used.
cdecimal is significantly faster than decimal. In Python 3.3 and up, however, cdecimal has been
integrated into the standard library under the name decimal, so there is no longer any difference.

• PostgreSQL bytea is converted to Python bytes.

• All other data types, including the PostgreSQL character string types, are converted to a Python
str (in Unicode like all Python strings).

• For nonscalar data types, see below.

1308

PL/Python — Python
Procedural Language

When a PL/Python function returns, its return value is converted to the function's declared PostgreSQL
return data type as follows:
• When the PostgreSQL return type is boolean, the return value will be evaluated for truth according

to the Python rules. That is, 0 and empty string are false, but notably 'f' is true.
• When the PostgreSQL return type is bytea, the return value will be converted to Python bytes us-

ing the respective Python built-ins, with the result being converted to bytea.
• For all other PostgreSQL return types, the return value is converted to a string using the Python

built-in str, and the result is passed to the input function of the PostgreSQL data type. (If the
Python value is a float, it is converted using the repr built-in instead of str, to avoid loss of preci-
sion.)

Strings are automatically converted to the PostgreSQL server encoding when they are passed to
PostgreSQL.

• For nonscalar data types, see below.
Note that logical mismatches between the declared PostgreSQL return type and the Python data type
of the actual return object are not flagged; the value will be converted in any case.

44.2.2. Null, None
If an SQL null value is passed to a function, the argument value will appear as None in Python. For exam-
ple, the function definition of pymax shown in Section 44.1 will return the wrong answer for null inputs.
We could add STRICT to the function definition to make PostgreSQL do something more reasonable: if a
null value is passed, the function will not be called at all, but will just return a null result automatically.
Alternatively, we could check for null inputs in the function body:
CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if (a is None) or (b is None):
 return None
 if a > b:
 return a
 return b
$$ LANGUAGE plpython3u;

As shown above, to return an SQL null value from a PL/Python function, return the value None. This can
be done whether the function is strict or not.

44.2.3. Arrays, Lists
SQL array values are passed into PL/Python as a Python list. To return an SQL array value out of a PL/
Python function, return a Python list:
CREATE FUNCTION return_arr()
 RETURNS int[]
AS $$
return [1, 2, 3, 4, 5]
$$ LANGUAGE plpython3u;

SELECT return_arr();
 return_arr

 {1,2,3,4,5}
(1 row)

Multidimensional arrays are passed into PL/Python as nested Python lists. A 2-dimensional array is a
list of lists, for example. When returning a multi-dimensional SQL array out of a PL/Python function, the
inner lists at each level must all be of the same size. For example:
CREATE FUNCTION test_type_conversion_array_int4(x int4[]) RETURNS int4[] AS $$

1309

PL/Python — Python
Procedural Language

plpy.info(x, type(x))
return x
$$ LANGUAGE plpython3u;

SELECT * FROM test_type_conversion_array_int4(ARRAY[[1,2,3],[4,5,6]]);
INFO: ([[1, 2, 3], [4, 5, 6]], <type 'list'>)
 test_type_conversion_array_int4

 {{1,2,3},{4,5,6}}
(1 row)

Other Python sequences, like tuples, are also accepted for backwards-compatibility with PostgreSQL
versions 9.6 and below, when multi-dimensional arrays were not supported. However, they are always
treated as one-dimensional arrays, because they are ambiguous with composite types. For the same
reason, when a composite type is used in a multi-dimensional array, it must be represented by a tuple,
rather than a list.

Note that in Python, strings are sequences, which can have undesirable effects that might be familiar
to Python programmers:
CREATE FUNCTION return_str_arr()
 RETURNS varchar[]
AS $$
return "hello"
$$ LANGUAGE plpython3u;

SELECT return_str_arr();
 return_str_arr

 {h,e,l,l,o}
(1 row)

44.2.4. Composite Types
Composite-type arguments are passed to the function as Python mappings. The element names of the
mapping are the attribute names of the composite type. If an attribute in the passed row has the null
value, it has the value None in the mapping. Here is an example:
CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid (e employee)
 RETURNS boolean
AS $$
 if e["salary"] > 200000:
 return True
 if (e["age"] < 30) and (e["salary"] > 100000):
 return True
 return False
$$ LANGUAGE plpython3u;

There are multiple ways to return row or composite types from a Python function. The following examples
assume we have:
CREATE TYPE named_value AS (
 name text,
 value integer
);

1310

PL/Python — Python
Procedural Language

A composite result can be returned as a:
Sequence type (a tuple or list, but not a set because it is not indexable)

Returned sequence objects must have the same number of items as the composite result type has
fields. The item with index 0 is assigned to the first field of the composite type, 1 to the second and
so on. For example:
CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return (name, value)
 # or alternatively, as list: return [name, value]
$$ LANGUAGE plpython3u;

To return an SQL null for any column, insert None at the corresponding position.

When an array of composite types is returned, it cannot be returned as a list, because it is ambiguous
whether the Python list represents a composite type, or another array dimension.

Mapping (dictionary)
The value for each result type column is retrieved from the mapping with the column name as key.
Example:
CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return { "name": name, "value": value }
$$ LANGUAGE plpython3u;

Any extra dictionary key/value pairs are ignored. Missing keys are treated as errors. To return an
SQL null value for any column, insert None with the corresponding column name as the key.

Object (any object providing method __getattr__)
This works the same as a mapping. Example:
CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 class named_value:
 def __init__ (self, n, v):
 self.name = n
 self.value = v
 return named_value(name, value)

 # or simply
 class nv: pass
 nv.name = name
 nv.value = value
 return nv
$$ LANGUAGE plpython3u;

Functions with OUT parameters are also supported. For example:
CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$
return (1, 2)
$$ LANGUAGE plpython3u;

SELECT * FROM multiout_simple();

Output parameters of procedures are passed back the same way. For example:
CREATE PROCEDURE python_triple(INOUT a integer, INOUT b integer) AS $$

1311

PL/Python — Python
Procedural Language

return (a * 3, b * 3)
$$ LANGUAGE plpython3u;

CALL python_triple(5, 10);

44.2.5. Set-Returning Functions
A PL/Python function can also return sets of scalar or composite types. There are several ways to achieve
this because the returned object is internally turned into an iterator. The following examples assume
we have composite type:

CREATE TYPE greeting AS (
 how text,
 who text
);

A set result can be returned from a:
Sequence type (tuple, list, set)

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 # return tuple containing lists as composite types
 # all other combinations work also
 return ([how, "World"], [how, "PostgreSQL"], [how, "PL/Python"])
$$ LANGUAGE plpython3u;

Iterator (any object providing __iter__ and __next__ methods)

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 class producer:
 def __init__ (self, how, who):
 self.how = how
 self.who = who
 self.ndx = -1

 def __iter__ (self):
 return self

 def __next__(self):
 self.ndx += 1
 if self.ndx == len(self.who):
 raise StopIteration
 return (self.how, self.who[self.ndx])

 return producer(how, ["World", "PostgreSQL", "PL/Python"])
$$ LANGUAGE plpython3u;

Generator (yield)

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 for who in ["World", "PostgreSQL", "PL/Python"]:
 yield (how, who)
$$ LANGUAGE plpython3u;

Set-returning functions with OUT parameters (using RETURNS SETOF record) are also supported. For
example:

1312

PL/Python — Python
Procedural Language

CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT integer) RETURNS
 SETOF record AS $$
return [(1, 2)] * n
$$ LANGUAGE plpython3u;

SELECT * FROM multiout_simple_setof(3);

44.3. Sharing Data
The global dictionary SD is available to store private data between repeated calls to the same function.
The global dictionary GD is public data, that is available to all Python functions within a session; use
with care.

Each function gets its own execution environment in the Python interpreter, so that global data and
function arguments from myfunc are not available to myfunc2. The exception is the data in the GD dic-
tionary, as mentioned above.

44.4. Anonymous Code Blocks
PL/Python also supports anonymous code blocks called with the DO statement:
DO $$
 # PL/Python code
$$ LANGUAGE plpython3u;

An anonymous code block receives no arguments, and whatever value it might return is discarded.
Otherwise it behaves just like a function.

44.5. Trigger Functions
When a function is used as a trigger, the dictionary TD contains trigger-related values:
TD["event"]

contains the event as a string: INSERT, UPDATE, DELETE, or TRUNCATE.

TD["when"]

contains one of BEFORE, AFTER, or INSTEAD OF.

TD["level"]

contains ROW or STATEMENT.

TD["new"]
TD["old"]

For a row-level trigger, one or both of these fields contain the respective trigger rows, depending
on the trigger event.

TD["name"]

contains the trigger name.

TD["table_name"]

contains the name of the table on which the trigger occurred.

TD["table_schema"]

contains the schema of the table on which the trigger occurred.

TD["relid"]

contains the OID of the table on which the trigger occurred.

1313

PL/Python — Python
Procedural Language

TD["args"]

If the CREATE TRIGGER command included arguments, they are available in TD["args"][0] to
TD["args"][n-1].

If TD["when"] is BEFORE or INSTEAD OF and TD["level"] is ROW, you can return None or "OK" from the
Python function to indicate the row is unmodified, "SKIP" to abort the event, or if TD["event"] is INSERT
or UPDATE you can return "MODIFY" to indicate you've modified the new row. Otherwise the return value
is ignored.

44.6. Database Access
The PL/Python language module automatically imports a Python module called plpy. The functions and
constants in this module are available to you in the Python code as plpy.foo.

44.6.1. Database Access Functions
The plpy module provides several functions to execute database commands:

plpy.execute(query [, limit])

Calling plpy.execute with a query string and an optional row limit argument causes that query to
be run and the result to be returned in a result object.

If limit is specified and is greater than zero, then plpy.execute retrieves at most limit rows, much
as if the query included a LIMIT clause. Omitting limit or specifying it as zero results in no row limit.

The result object emulates a list or dictionary object. The result object can be accessed by row
number and column name. For example:
rv = plpy.execute("SELECT * FROM my_table", 5)

returns up to 5 rows from my_table. If my_table has a column my_column, it would be accessed as:
foo = rv[i]["my_column"]

The number of rows returned can be obtained using the built-in len function.

The result object has these additional methods:
nrows()

Returns the number of rows processed by the command. Note that this is not necessarily the
same as the number of rows returned. For example, an UPDATE command will set this value but
won't return any rows (unless RETURNING is used).

status()

The SPI_execute() return value.

colnames()
coltypes()
coltypmods()

Return a list of column names, list of column type OIDs, and list of type-specific type modifiers
for the columns, respectively.

These methods raise an exception when called on a result object from a command that did not
produce a result set, e.g., UPDATE without RETURNING, or DROP TABLE. But it is OK to use these
methods on a result set containing zero rows.

__str__()

The standard __str__ method is defined so that it is possible for example to debug query execu-
tion results using plpy.debug(rv).

1314

PL/Python — Python
Procedural Language

The result object can be modified.

Note that calling plpy.execute will cause the entire result set to be read into memory. Only use
that function when you are sure that the result set will be relatively small. If you don't want to risk
excessive memory usage when fetching large results, use plpy.cursor rather than plpy.execute.

plpy.prepare(query [, argtypes])
plpy.execute(plan [, arguments [, limit]])

plpy.prepare prepares the execution plan for a query. It is called with a query string and a list of
parameter types, if you have parameter references in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1",
 ["text"])

text is the type of the variable you will be passing for $1. The second argument is optional if you
don't want to pass any parameters to the query.

After preparing a statement, you use a variant of the function plpy.execute to run it:

rv = plpy.execute(plan, ["name"], 5)

Pass the plan as the first argument (instead of the query string), and a list of values to substitute into
the query as the second argument. The second argument is optional if the query does not expect any
parameters. The third argument is the optional row limit as before.

Alternatively, you can call the execute method on the plan object:

rv = plan.execute(["name"], 5)

Query parameters and result row fields are converted between PostgreSQL and Python data types
as described in Section 44.2.

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI docu-
mentation (Chapter 45) for a description of what this means. In order to make effective use of this
across function calls one needs to use one of the persistent storage dictionaries SD or GD (see Sec-
tion 44.3). For example:

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
 if "plan" in SD:
 plan = SD["plan"]
 else:
 plan = plpy.prepare("SELECT 1")
 SD["plan"] = plan
 # rest of function
$$ LANGUAGE plpython3u;

plpy.cursor(query)
plpy.cursor(plan [, arguments])

The plpy.cursor function accepts the same arguments as plpy.execute (except for the row limit)
and returns a cursor object, which allows you to process large result sets in smaller chunks. As with
plpy.execute, either a query string or a plan object along with a list of arguments can be used, or
the cursor function can be called as a method of the plan object.

The cursor object provides a fetch method that accepts an integer parameter and returns a result
object. Each time you call fetch, the returned object will contain the next batch of rows, never
larger than the parameter value. Once all rows are exhausted, fetch starts returning an empty result
object. Cursor objects also provide an iterator interface, yielding one row at a time until all rows are
exhausted. Data fetched that way is not returned as result objects, but rather as dictionaries, each
dictionary corresponding to a single result row.

An example of two ways of processing data from a large table is:

1315

https://docs.python.org/library/stdtypes.html#iterator-types

PL/Python — Python
Procedural Language

CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$
odd = 0
for row in plpy.cursor("select num from largetable"):
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpython3u;

CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$
odd = 0
cursor = plpy.cursor("select num from largetable")
while True:
 rows = cursor.fetch(batch_size)
 if not rows:
 break
 for row in rows:
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpython3u;

CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$
odd = 0
plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integer"])
rows = list(plpy.cursor(plan, [2])) # or: = list(plan.cursor([2]))

return len(rows)
$$ LANGUAGE plpython3u;

Cursors are automatically disposed of. But if you want to explicitly release all resources held by a
cursor, use the close method. Once closed, a cursor cannot be fetched from anymore.

Tip
Do not confuse objects created by plpy.cursor with DB-API cursors as defined by the Python
Database API specification. They don't have anything in common except for the name.

44.6.2. Trapping Errors
Functions accessing the database might encounter errors, which will cause them to abort and raise an
exception. Both plpy.execute and plpy.prepare can raise an instance of a subclass of plpy.SPIError,
which by default will terminate the function. This error can be handled just like any other Python excep-
tion, by using the try/except construct. For example:

CREATE FUNCTION try_adding_joe() RETURNS text AS $$
 try:
 plpy.execute("INSERT INTO users(username) VALUES ('joe')")
 except plpy.SPIError:
 return "something went wrong"
 else:
 return "Joe added"
$$ LANGUAGE plpython3u;

The actual class of the exception being raised corresponds to the specific condition that caused the error.
Refer to Table A.1 for a list of possible conditions. The module plpy.spiexceptions defines an exception
class for each PostgreSQL condition, deriving their names from the condition name. For instance, di-
vision_by_zero becomes DivisionByZero, unique_violation becomes UniqueViolation, fdw_error

1316

https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/

PL/Python — Python
Procedural Language

becomes FdwError, and so on. Each of these exception classes inherits from SPIError. This separation
makes it easier to handle specific errors, for instance:

CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text AS $$
from plpy import spiexceptions
try:
 plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["int",
 "int"])
 plpy.execute(plan, [numerator, denominator])
except spiexceptions.DivisionByZero:
 return "denominator cannot equal zero"
except spiexceptions.UniqueViolation:
 return "already have that fraction"
except plpy.SPIError as e:
 return "other error, SQLSTATE %s" % e.sqlstate
else:
 return "fraction inserted"
$$ LANGUAGE plpython3u;

Note that because all exceptions from the plpy.spiexceptions module inherit from SPIError, an except
clause handling it will catch any database access error.

As an alternative way of handling different error conditions, you can catch the SPIError exception and
determine the specific error condition inside the except block by looking at the sqlstate attribute of the
exception object. This attribute is a string value containing the “SQLSTATE” error code. This approach
provides approximately the same functionality

44.7. Explicit Subtransactions
Recovering from errors caused by database access as described in Section 44.6.2 can lead to an unde-
sirable situation where some operations succeed before one of them fails, and after recovering from that
error the data is left in an inconsistent state. PL/Python offers a solution to this problem in the form of
explicit subtransactions.

44.7.1. Subtransaction Context Managers
Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'")
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpython3u;

If the second UPDATE statement results in an exception being raised, this function will report the error,
but the result of the first UPDATE will nevertheless be committed. In other words, the funds will be
withdrawn from Joe's account, but will not be transferred to Mary's account.

To avoid such issues, you can wrap your plpy.execute calls in an explicit subtransaction. The plpy mod-
ule provides a helper object to manage explicit subtransactions that gets created with the plpy.sub-
transaction() function. Objects created by this function implement the context manager interface.
Using explicit subtransactions we can rewrite our function as:

1317

https://docs.python.org/library/stdtypes.html#context-manager-types

PL/Python — Python
Procedural Language

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:
 with plpy.subtransaction():
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'")
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpython3u;

Note that the use of try/except is still required. Otherwise the exception would propagate to the top
of the Python stack and would cause the whole function to abort with a PostgreSQL error, so that the
operations table would not have any row inserted into it. The subtransaction context manager does
not trap errors, it only assures that all database operations executed inside its scope will be atomically
committed or rolled back. A rollback of the subtransaction block occurs on any kind of exception exit, not
only ones caused by errors originating from database access. A regular Python exception raised inside
an explicit subtransaction block would also cause the subtransaction to be rolled back.

44.8. Transaction Management
In a procedure called from the top level or an anonymous code block (DO command) called from the
top level it is possible to control transactions. To commit the current transaction, call plpy.commit().
To roll back the current transaction, call plpy.rollback(). (Note that it is not possible to run the SQL
commands COMMIT or ROLLBACK via plpy.execute or similar. It has to be done using these functions.)
After a transaction is ended, a new transaction is automatically started, so there is no separate function
for that.

Here is an example:
CREATE PROCEDURE transaction_test1()
LANGUAGE plpython3u
AS $$
for i in range(0, 10):
 plpy.execute("INSERT INTO test1 (a) VALUES (%d)" % i)
 if i % 2 == 0:
 plpy.commit()
 else:
 plpy.rollback()
$$;

CALL transaction_test1();

Transactions cannot be ended when an explicit subtransaction is active.

44.9. Utility Functions
The plpy module also provides the functions
plpy.debug(msg, **kwargs)
plpy.log(msg, **kwargs)
plpy.info(msg, **kwargs)
plpy.notice(msg, **kwargs)
plpy.warning(msg, **kwargs)
plpy.error(msg, **kwargs)
plpy.fatal(msg, **kwargs)

1318

PL/Python — Python
Procedural Language

plpy.error and plpy.fatal actually raise a Python exception which, if uncaught, propagates out to the
calling query, causing the current transaction or subtransaction to be aborted. raise plpy.Error(msg)
and raise plpy.Fatal(msg) are equivalent to calling plpy.error(msg) and plpy.fatal(msg), respec-
tively but the raise form does not allow passing keyword arguments. The other functions only gener-
ate messages of different priority levels. Whether messages of a particular priority are reported to the
client, written to the server log, or both is controlled by the log_min_messages and client_min_messages
configuration variables. See Chapter 19 for more information.

The msg argument is given as a positional argument. For backward compatibility, more than one posi-
tional argument can be given. In that case, the string representation of the tuple of positional arguments
becomes the message reported to the client.

The following keyword-only arguments are accepted:
detail
hint
sqlstate
schema_name
table_name
column_name
datatype_name
constraint_name

The string representation of the objects passed as keyword-only arguments is used to enrich the mes-
sages reported to the client. For example:
CREATE FUNCTION raise_custom_exception() RETURNS void AS $$
plpy.error("custom exception message",
 detail="some info about exception",
 hint="hint for users")
$$ LANGUAGE plpython3u;

=# SELECT raise_custom_exception();
ERROR: plpy.Error: custom exception message
DETAIL: some info about exception
HINT: hint for users
CONTEXT: Traceback (most recent call last):
 PL/Python function "raise_custom_exception", line 4, in <module>
 hint="hint for users")
PL/Python function "raise_custom_exception"

Another set of utility functions are plpy.quote_literal(string), plpy.quote_nullable(string), and
plpy.quote_ident(string). They are equivalent to the built-in quoting functions described in Sec-
tion 9.4. They are useful when constructing ad-hoc queries. A PL/Python equivalent of dynamic SQL
from Example 41.1 would be:
plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
 plpy.quote_ident(colname),
 plpy.quote_nullable(newvalue),
 plpy.quote_literal(keyvalue)))

44.10. Python 2 vs. Python 3
PL/Python supports only Python 3. Past versions of PostgreSQL supported Python 2, using the plpythonu
and plpython2u language names.

44.11. Environment Variables
Some of the environment variables that are accepted by the Python interpreter can also be used to
affect PL/Python behavior. They would need to be set in the environment of the main PostgreSQL server

1319

PL/Python — Python
Procedural Language

process, for example in a start script. The available environment variables depend on the version of
Python; see the Python documentation for details. At the time of this writing, the following environment
variables have an affect on PL/Python, assuming an adequate Python version:
• PYTHONHOME

• PYTHONPATH

• PYTHONY2K

• PYTHONOPTIMIZE

• PYTHONDEBUG

• PYTHONVERBOSE

• PYTHONCASEOK

• PYTHONDONTWRITEBYTECODE

• PYTHONIOENCODING

• PYTHONUSERBASE

• PYTHONHASHSEED

(It appears to be a Python implementation detail beyond the control of PL/Python that some of the
environment variables listed on the python man page are only effective in a command-line interpreter
and not an embedded Python interpreter.)

1320

Chapter 45. Server Programming Interface
The Server Programming Interface (SPI) gives writers of user-defined C functions the ability to run SQL
commands inside their functions or procedures. SPI is a set of interface functions to simplify access to
the parser, planner, and executor. SPI also does some memory management.

Note
The available procedural languages provide various means to execute SQL commands from func-
tions. Most of these facilities are based on SPI, so this documentation might be of use for users
of those languages as well.

Note that if a command invoked via SPI fails, then control will not be returned to your C function. Rather,
the transaction or subtransaction in which your C function executes will be rolled back. (This might
seem surprising given that the SPI functions mostly have documented error-return conventions. Those
conventions only apply for errors detected within the SPI functions themselves, however.) It is possible
to recover control after an error by establishing your own subtransaction surrounding SPI calls that
might fail.

SPI functions return a nonnegative result on success (either via a returned integer value or in the global
variable SPI_result, as described below). On error, a negative result or NULL will be returned.

Source code files that use SPI must include the header file executor/spi.h.

45.1. Interface Functions

1321

Server Programming Interface

SPI_connect
SPI_connect, SPI_connect_ext — connect a C function to the SPI manager

Synopsis
int SPI_connect(void)

int SPI_connect_ext(int options)

Description
SPI_connect opens a connection from a C function invocation to the SPI manager. You must call this
function if you want to execute commands through SPI. Some utility SPI functions can be called from
unconnected C functions.

SPI_connect_ext does the same but has an argument that allows passing option flags. Currently, the
following option values are available:

SPI_OPT_NONATOMIC

Sets the SPI connection to be nonatomic, which means that transaction control calls (SPI_commit,
SPI_rollback) are allowed. Otherwise, calling those functions will result in an immediate error.

SPI_connect() is equivalent to SPI_connect_ext(0).

Return Value
SPI_OK_CONNECT

on success

The fact that these functions return int not void is historical. All failure cases are reported via ereport
or elog. (In versions before PostgreSQL v10, some but not all failures would be reported with a result
value of SPI_ERROR_CONNECT.)

1322

Server Programming Interface

SPI_finish
SPI_finish — disconnect a C function from the SPI manager

Synopsis
int SPI_finish(void)

Description
SPI_finish closes an existing connection to the SPI manager. You must call this function after complet-
ing the SPI operations needed during your C function's current invocation. You do not need to worry
about making this happen, however, if you abort the transaction via elog(ERROR). In that case SPI will
clean itself up automatically.

Return Value
SPI_OK_FINISH

if properly disconnected

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

1323

Server Programming Interface

SPI_execute
SPI_execute — execute a command

Synopsis
int SPI_execute(const char * command, bool read_only, long count)

Description
SPI_execute executes the specified SQL command for count rows. If read_only is true, the command
must be read-only, and execution overhead is somewhat reduced.

This function can only be called from a connected C function.

If count is zero then the command is executed for all rows that it applies to. If count is greater than
zero, then no more than count rows will be retrieved; execution stops when the count is reached, much
like adding a LIMIT clause to the query. For example,

SPI_execute("SELECT * FROM foo", true, 5);

will retrieve at most 5 rows from the table. Note that such a limit is only effective when the command
actually returns rows. For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

inserts all rows from bar, ignoring the count parameter. However, with

SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false, 5);

at most 5 rows would be inserted, since execution would stop after the fifth RETURNING result row is
retrieved.

You can pass multiple commands in one string; SPI_execute returns the result for the command executed
last. The count limit applies to each command separately (even though only the last result will actually
be returned). The limit is not applied to any hidden commands generated by rules.

When read_only is false, SPI_execute increments the command counter and computes a new snap-
shot before executing each command in the string. The snapshot does not actually change if the cur-
rent transaction isolation level is SERIALIZABLE or REPEATABLE READ, but in READ COMMITTED mode the
snapshot update allows each command to see the results of newly committed transactions from other
sessions. This is essential for consistent behavior when the commands are modifying the database.

When read_only is true, SPI_execute does not update either the snapshot or the command counter,
and it allows only plain SELECT commands to appear in the command string. The commands are executed
using the snapshot previously established for the surrounding query. This execution mode is somewhat
faster than the read/write mode due to eliminating per-command overhead. It also allows genuinely
stable functions to be built: since successive executions will all use the same snapshot, there will be no
change in the results.

It is generally unwise to mix read-only and read-write commands within a single function using SPI; that
could result in very confusing behavior, since the read-only queries would not see the results of any
database updates done by the read-write queries.

The actual number of rows for which the (last) command was executed is returned in the global vari-
able SPI_processed. If the return value of the function is SPI_OK_SELECT, SPI_OK_INSERT_RETURNING,
SPI_OK_DELETE_RETURNING, SPI_OK_UPDATE_RETURNING, or SPI_OK_MERGE_RETURNING, then you can use
the global pointer SPITupleTable *SPI_tuptable to access the result rows. Some utility commands
(such as EXPLAIN) also return row sets, and SPI_tuptable will contain the result in these cases too.
Some utility commands (COPY, CREATE TABLE AS) don't return a row set, so SPI_tuptable is NULL, but
they still return the number of rows processed in SPI_processed.

1324

Server Programming Interface

The structure SPITupleTable is defined thus:

typedef struct SPITupleTable
{
 /* Public members */
 TupleDesc tupdesc; /* tuple descriptor */
 HeapTuple *vals; /* array of tuples */
 uint64 numvals; /* number of valid tuples */

 /* Private members, not intended for external callers */
 uint64 alloced; /* allocated length of vals array */
 MemoryContext tuptabcxt; /* memory context of result table */
 slist_node next; /* link for internal bookkeeping */
 SubTransactionId subid; /* subxact in which tuptable was created */
} SPITupleTable;

The fields tupdesc, vals, and numvals can be used by SPI callers; the remaining fields are internal.
vals is an array of pointers to rows. The number of rows is given by numvals (for somewhat historical
reasons, this count is also returned in SPI_processed). tupdesc is a row descriptor which you can pass
to SPI functions dealing with rows.

SPI_finish frees all SPITupleTables allocated during the current C function. You can free a particular
result table earlier, if you are done with it, by calling SPI_freetuptable.

Arguments
const char * command

string containing command to execute

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
If the execution of the command was successful then one of the following (nonnegative) values will be
returned:

SPI_OK_SELECT

if a SELECT (but not SELECT INTO) was executed

SPI_OK_SELINTO

if a SELECT INTO was executed

SPI_OK_INSERT

if an INSERT was executed

SPI_OK_DELETE

if a DELETE was executed

SPI_OK_UPDATE

if an UPDATE was executed

SPI_OK_MERGE

if a MERGE was executed

1325

Server Programming Interface

SPI_OK_INSERT_RETURNING

if an INSERT RETURNING was executed

SPI_OK_DELETE_RETURNING

if a DELETE RETURNING was executed

SPI_OK_UPDATE_RETURNING

if an UPDATE RETURNING was executed

SPI_OK_MERGE_RETURNING

if a MERGE RETURNING was executed

SPI_OK_UTILITY

if a utility command (e.g., CREATE TABLE) was executed

SPI_OK_REWRITTEN

if the command was rewritten into another kind of command (e.g., UPDATE became an INSERT) by
a rule.

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if command is NULL or count is less than 0

SPI_ERROR_COPY

if COPY TO stdout or COPY FROM stdin was attempted

SPI_ERROR_TRANSACTION

if a transaction manipulation command was attempted (BEGIN, COMMIT, ROLLBACK, SAVEPOINT, PRE-
PARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED, or any variant thereof)

SPI_ERROR_OPUNKNOWN

if the command type is unknown (shouldn't happen)

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

Notes
All SPI query-execution functions set both SPI_processed and SPI_tuptable (just the pointer, not the
contents of the structure). Save these two global variables into local C function variables if you need to
access the result table of SPI_execute or another query-execution function across later calls.

1326

Server Programming Interface

SPI_exec
SPI_exec — execute a read/write command

Synopsis
int SPI_exec(const char * command, long count)

Description
SPI_exec is the same as SPI_execute, with the latter's read_only parameter always taken as false.

Arguments
const char * command

string containing command to execute

long count

maximum number of rows to return, or 0 for no limit

Return Value
See SPI_execute.

1327

Server Programming Interface

SPI_execute_extended
SPI_execute_extended — execute a command with out-of-line parameters

Synopsis
int SPI_execute_extended(const char *command,
 const SPIExecuteOptions * options)

Description
SPI_execute_extended executes a command that might include references to externally supplied para-
meters. The command text refers to a parameter as $n, and the options->params object (if supplied)
provides values and type information for each such symbol. Various execution options can be specified
in the options struct, too.

The options->params object should normally mark each parameter with the PARAM_FLAG_CONST flag,
since a one-shot plan is always used for the query.

If options->dest is not NULL, then result tuples are passed to that object as they are generated by the
executor, instead of being accumulated in SPI_tuptable. Using a caller-supplied DestReceiver object
is particularly helpful for queries that might generate many tuples, since the data can be processed on-
the-fly instead of being accumulated in memory.

Arguments
const char * command

command string

const SPIExecuteOptions * options

struct containing optional arguments

Callers should always zero out the entire options struct, then fill whichever fields they want to set.
This ensures forward compatibility of code, since any fields that are added to the struct in future will be
defined to behave backwards-compatibly if they are zero. The currently available options fields are:

ParamListInfo params

data structure containing query parameter types and values; NULL if none

bool read_only

true for read-only execution

bool allow_nonatomic

true allows non-atomic execution of CALL and DO statements (but this field is ignored unless the
SPI_OPT_NONATOMIC flag was passed to SPI_connect_ext)

bool must_return_tuples

if true, raise error if the query is not of a kind that returns tuples (this does not forbid the case
where it happens to return zero tuples)

uint64 tcount

maximum number of rows to return, or 0 for no limit

DestReceiver * dest

DestReceiver object that will receive any tuples emitted by the query; if NULL, result tuples are
accumulated into a SPI_tuptable structure, as in SPI_execute

1328

Server Programming Interface

ResourceOwner owner

This field is present for consistency with SPI_execute_plan_extended, but it is ignored, since the
plan used by SPI_execute_extended is never saved.

Return Value
The return value is the same as for SPI_execute.

When options->dest is NULL, SPI_processed and SPI_tuptable are set as in SPI_execute. When
options->dest is not NULL, SPI_processed is set to zero and SPI_tuptable is set to NULL. If a tuple
count is required, the caller's DestReceiver object must calculate it.

1329

Server Programming Interface

SPI_execute_with_args
SPI_execute_with_args — execute a command with out-of-line parameters

Synopsis
int SPI_execute_with_args(const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, long count)

Description
SPI_execute_with_args executes a command that might include references to externally supplied pa-
rameters. The command text refers to a parameter as $n, and the call specifies data types and values
for each such symbol. read_only and count have the same interpretation as in SPI_execute.

The main advantage of this routine compared to SPI_execute is that data values can be inserted into
the command without tedious quoting/escaping, and thus with much less risk of SQL-injection attacks.

Similar results can be achieved with SPI_prepare followed by SPI_execute_plan; however, when using
this function the query plan is always customized to the specific parameter values provided. For one-
time query execution, this function should be preferred. If the same command is to be executed with
many different parameters, either method might be faster, depending on the cost of re-planning versus
the benefit of custom plans.

Arguments
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array of length nargs, containing the OIDs of the data types of the parameters

Datum * values

an array of length nargs, containing the actual parameter values

const char * nulls

an array of length nargs, describing which parameters are null

If nulls is NULL then SPI_execute_with_args assumes that no parameters are null. Otherwise, each
entry of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if
the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

1330

Server Programming Interface

Return Value
The return value is the same as for SPI_execute.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1331

Server Programming Interface

SPI_prepare
SPI_prepare — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid * argtypes)

Description
SPI_prepare creates and returns a prepared statement for the specified command, but doesn't execute
the command. The prepared statement can later be executed repeatedly using SPI_execute_plan.

When the same or a similar command is to be executed repeatedly, it is generally advantageous to
perform parse analysis only once, and might furthermore be advantageous to re-use an execution plan
for the command. SPI_prepare converts a command string into a prepared statement that encapsulates
the results of parse analysis. The prepared statement also provides a place for caching an execution plan
if it is found that generating a custom plan for each execution is not helpful.

A prepared command can be generalized by writing parameters ($1, $2, etc.) in place of what would be
constants in a normal command. The actual values of the parameters are then specified when SPI_ex-
ecute_plan is called. This allows the prepared command to be used over a wider range of situations
than would be possible without parameters.

The statement returned by SPI_prepare can be used only in the current invocation of the C function,
since SPI_finish frees memory allocated for such a statement. But the statement can be saved for
longer using the functions SPI_keepplan or SPI_saveplan.

Arguments
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

Return Value
SPI_prepare returns a non-null pointer to an SPIPlan, which is an opaque struct representing a prepared
statement. On error, NULL will be returned, and SPI_result will be set to one of the same error codes
used by SPI_execute, except that it is set to SPI_ERROR_ARGUMENT if command is NULL, or if nargs is less
than 0, or if nargs is greater than 0 and argtypes is NULL.

Notes
If no parameters are defined, a generic plan will be created at the first use of SPI_execute_plan,
and used for all subsequent executions as well. If there are parameters, the first few uses of SPI_exe-
cute_plan will generate custom plans that are specific to the supplied parameter values. After enough
uses of the same prepared statement, SPI_execute_plan will build a generic plan, and if that is not
too much more expensive than the custom plans, it will start using the generic plan instead of re-plan-
ning each time. If this default behavior is unsuitable, you can alter it by passing the CURSOR_OPT_GEN-
ERIC_PLAN or CURSOR_OPT_CUSTOM_PLAN flag to SPI_prepare_cursor, to force use of generic or custom
plans respectively.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the
statement, PostgreSQL will force re-analysis and re-planning of the statement before using it whenever

1332

Server Programming Interface

database objects used in the statement have undergone definitional (DDL) changes since the previous
use of the prepared statement. Also, if the value of search_path changes from one use to the next, the
statement will be re-parsed using the new search_path. (This latter behavior is new as of PostgreSQL
9.3.) See PREPARE for more information about the behavior of prepared statements.

This function should only be called from a connected C function.

SPIPlanPtr is declared as a pointer to an opaque struct type in spi.h. It is unwise to try to access its
contents directly, as that makes your code much more likely to break in future revisions of PostgreSQL.

The name SPIPlanPtr is somewhat historical, since the data structure no longer necessarily contains
an execution plan.

1333

Server Programming Interface

SPI_prepare_cursor
SPI_prepare_cursor — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_cursor(const char * command, int nargs,
 Oid * argtypes, int cursorOptions)

Description
SPI_prepare_cursor is identical to SPI_prepare, except that it also allows specification of the planner's
“cursor options” parameter. This is a bit mask having the values shown in nodes/parsenodes.h for the
options field of DeclareCursorStmt. SPI_prepare always takes the cursor options as zero.

This function is now deprecated in favor of SPI_prepare_extended.

Arguments
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_cursor has the same return conventions as SPI_prepare.

Notes
Useful bits to set in cursorOptions include CURSOR_OPT_SCROLL, CURSOR_OPT_NO_SCROLL, CURSOR_OP-
T_FAST_PLAN, CURSOR_OPT_GENERIC_PLAN, and CURSOR_OPT_CUSTOM_PLAN. Note in particular that
CURSOR_OPT_HOLD is ignored.

1334

Server Programming Interface

SPI_prepare_extended
SPI_prepare_extended — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_extended(const char * command,
 const SPIPrepareOptions * options)

Description
SPI_prepare_extended creates and returns a prepared statement for the specified command, but
doesn't execute the command. This function is equivalent to SPI_prepare, with the addition that the
caller can specify options to control the parsing of external parameter references, as well as other facets
of query parsing and planning.

Arguments
const char * command

command string

const SPIPrepareOptions * options

struct containing optional arguments

Callers should always zero out the entire options struct, then fill whichever fields they want to set.
This ensures forward compatibility of code, since any fields that are added to the struct in future will be
defined to behave backwards-compatibly if they are zero. The currently available options fields are:

ParserSetupHook parserSetup

Parser hook setup function

void * parserSetupArg

pass-through argument for parserSetup

RawParseMode parseMode

mode for raw parsing; RAW_PARSE_DEFAULT (zero) produces default behavior

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_extended has the same return conventions as SPI_prepare.

1335

Server Programming Interface

SPI_prepare_params
SPI_prepare_params — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_params(const char * command,
 ParserSetupHook parserSetup,
 void * parserSetupArg,
 int cursorOptions)

Description
SPI_prepare_params creates and returns a prepared statement for the specified command, but doesn't
execute the command. This function is equivalent to SPI_prepare_cursor, with the addition that the
caller can specify parser hook functions to control the parsing of external parameter references.

This function is now deprecated in favor of SPI_prepare_extended.

Arguments
const char * command

command string

ParserSetupHook parserSetup

Parser hook setup function

void * parserSetupArg

pass-through argument for parserSetup

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_params has the same return conventions as SPI_prepare.

1336

Server Programming Interface

SPI_getargcount
SPI_getargcount — return the number of arguments needed by a statement prepared by SPI_prepare

Synopsis
int SPI_getargcount(SPIPlanPtr plan)

Description
SPI_getargcount returns the number of arguments needed to execute a statement prepared by
SPI_prepare.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value
The count of expected arguments for the plan. If the plan is NULL or invalid, SPI_result is set to SPI_ER-
ROR_ARGUMENT and -1 is returned.

1337

Server Programming Interface

SPI_getargtypeid
SPI_getargtypeid — return the data type OID for an argument of a statement prepared by SPI_prepare

Synopsis
Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex)

Description
SPI_getargtypeid returns the OID representing the type for the argIndex'th argument of a statement
prepared by SPI_prepare. First argument is at index zero.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

int argIndex

zero based index of the argument

Return Value
The type OID of the argument at the given index. If the plan is NULL or invalid, or argIndex is less than
0 or not less than the number of arguments declared for the plan, SPI_result is set to SPI_ERROR_AR-
GUMENT and InvalidOid is returned.

1338

Server Programming Interface

SPI_is_cursor_plan
SPI_is_cursor_plan — return true if a statement prepared by SPI_prepare can be used with SPI_cur-
sor_open

Synopsis
bool SPI_is_cursor_plan(SPIPlanPtr plan)

Description
SPI_is_cursor_plan returns true if a statement prepared by SPI_prepare can be passed as an argu-
ment to SPI_cursor_open, or false if that is not the case. The criteria are that the plan represents
one single command and that this command returns tuples to the caller; for example, SELECT is allowed
unless it contains an INTO clause, and UPDATE is allowed only if it contains a RETURNING clause.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value
true or false to indicate if the plan can produce a cursor or not, with SPI_result set to zero. If it is
not possible to determine the answer (for example, if the plan is NULL or invalid, or if called when not
connected to SPI), then SPI_result is set to a suitable error code and false is returned.

1339

Server Programming Interface

SPI_execute_plan
SPI_execute_plan — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan(SPIPlanPtr plan, Datum * values, const char * nulls,
 bool read_only, long count)

Description
SPI_execute_plan executes a statement prepared by SPI_prepare or one of its siblings. read_only and
count have the same interpretation as in SPI_execute.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number
of arguments.

If nulls is NULL then SPI_execute_plan assumes that no parameters are null. Otherwise, each entry
of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if the
corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
The return value is the same as for SPI_execute, with the following additional possible error (negative)
results:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid, or count is less than 0

SPI_ERROR_PARAM

if values is NULL and plan was prepared with some parameters

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1340

Server Programming Interface

SPI_execute_plan_extended
SPI_execute_plan_extended — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan_extended(SPIPlanPtr plan,
 const SPIExecuteOptions * options)

Description
SPI_execute_plan_extended executes a statement prepared by SPI_prepare or one of its siblings. This
function is equivalent to SPI_execute_plan, except that information about the parameter values to be
passed to the query is presented differently, and additional execution-controlling options can be passed.

Query parameter values are represented by a ParamListInfo struct, which is convenient for passing
down values that are already available in that format. Dynamic parameter sets can also be used, via
hook functions specified in ParamListInfo.

Also, instead of always accumulating the result tuples into a SPI_tuptable structure, tuples can be
passed to a caller-supplied DestReceiver object as they are generated by the executor. This is partic-
ularly helpful for queries that might generate many tuples, since the data can be processed on-the-fly
instead of being accumulated in memory.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

const SPIExecuteOptions * options

struct containing optional arguments

Callers should always zero out the entire options struct, then fill whichever fields they want to set.
This ensures forward compatibility of code, since any fields that are added to the struct in future will be
defined to behave backwards-compatibly if they are zero. The currently available options fields are:

ParamListInfo params

data structure containing query parameter types and values; NULL if none

bool read_only

true for read-only execution

bool allow_nonatomic

true allows non-atomic execution of CALL and DO statements (but this field is ignored unless the
SPI_OPT_NONATOMIC flag was passed to SPI_connect_ext)

bool must_return_tuples

if true, raise error if the query is not of a kind that returns tuples (this does not forbid the case
where it happens to return zero tuples)

uint64 tcount

maximum number of rows to return, or 0 for no limit

DestReceiver * dest

DestReceiver object that will receive any tuples emitted by the query; if NULL, result tuples are
accumulated into a SPI_tuptable structure, as in SPI_execute_plan

1341

Server Programming Interface

ResourceOwner owner

The resource owner that will hold a reference count on the plan while it is executed. If NULL, Cur-
rentResourceOwner is used. Ignored for non-saved plans, as SPI does not acquire reference counts
on those.

Return Value
The return value is the same as for SPI_execute_plan.

When options->dest is NULL, SPI_processed and SPI_tuptable are set as in SPI_execute_plan. When
options->dest is not NULL, SPI_processed is set to zero and SPI_tuptable is set to NULL. If a tuple
count is required, the caller's DestReceiver object must calculate it.

1342

Server Programming Interface

SPI_execute_plan_with_paramlist
SPI_execute_plan_with_paramlist — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only,
 long count)

Description
SPI_execute_plan_with_paramlist executes a statement prepared by SPI_prepare. This function is
equivalent to SPI_execute_plan except that information about the parameter values to be passed to the
query is presented differently. The ParamListInfo representation can be convenient for passing down
values that are already available in that format. It also supports use of dynamic parameter sets via hook
functions specified in ParamListInfo.

This function is now deprecated in favor of SPI_execute_plan_extended.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
The return value is the same as for SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute_plan if successful.

1343

Server Programming Interface

SPI_execp
SPI_execp — execute a statement in read/write mode

Synopsis
int SPI_execp(SPIPlanPtr plan, Datum * values, const char * nulls, long count)

Description
SPI_execp is the same as SPI_execute_plan, with the latter's read_only parameter always taken as
false.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number
of arguments.

If nulls is NULL then SPI_execp assumes that no parameters are null. Otherwise, each entry of the
nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if the correspond-
ing parameter value is null. (In the latter case, the actual value in the corresponding values entry
doesn't matter.) Note that nulls is not a text string, just an array: it does not need a '\0' terminator.

long count

maximum number of rows to return, or 0 for no limit

Return Value
See SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1344

Server Programming Interface

SPI_cursor_open
SPI_cursor_open — set up a cursor using a statement created with SPI_prepare

Synopsis
Portal SPI_cursor_open(const char * name, SPIPlanPtr plan,
 Datum * values, const char * nulls,
 bool read_only)

Description
SPI_cursor_open sets up a cursor (internally, a portal) that will execute a statement prepared by
SPI_prepare. The parameters have the same meanings as the corresponding parameters to SPI_exe-
cute_plan.

Using a cursor instead of executing the statement directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a portal
can outlive the current C function (it can, in fact, live to the end of the current transaction). Returning
the portal name to the C function's caller provides a way of returning a row set as result.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments
const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number
of arguments.

If nulls is NULL then SPI_cursor_open assumes that no parameters are null. Otherwise, each entry
of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if the
corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1345

Server Programming Interface

SPI_cursor_open_with_args
SPI_cursor_open_with_args — set up a cursor using a query and parameters

Synopsis
Portal SPI_cursor_open_with_args(const char *name,
 const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, int cursorOptions)

Description
SPI_cursor_open_with_args sets up a cursor (internally, a portal) that will execute the specified query.
Most of the parameters have the same meanings as the corresponding parameters to SPI_prepare_cur-
sor and SPI_cursor_open.

For one-time query execution, this function should be preferred over SPI_prepare_cursor followed by
SPI_cursor_open. If the same command is to be executed with many different parameters, either method
might be faster, depending on the cost of re-planning versus the benefit of custom plans.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

This function is now deprecated in favor of SPI_cursor_parse_open, which provides equivalent func-
tionality using a more modern API for handling query parameters.

Arguments
const char * name

name for portal, or NULL to let the system select a name

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array of length nargs, containing the OIDs of the data types of the parameters

Datum * values

an array of length nargs, containing the actual parameter values

const char * nulls

an array of length nargs, describing which parameters are null

If nulls is NULL then SPI_cursor_open_with_args assumes that no parameters are null. Otherwise,
each entry of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n'
if the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

bool read_only

true for read-only execution

1346

Server Programming Interface

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1347

Server Programming Interface

SPI_cursor_open_with_paramlist
SPI_cursor_open_with_paramlist — set up a cursor using parameters

Synopsis
Portal SPI_cursor_open_with_paramlist(const char *name,
 SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only)

Description
SPI_cursor_open_with_paramlist sets up a cursor (internally, a portal) that will execute a statement
prepared by SPI_prepare. This function is equivalent to SPI_cursor_open except that information about
the parameter values to be passed to the query is presented differently. The ParamListInfo representa-
tion can be convenient for passing down values that are already available in that format. It also supports
use of dynamic parameter sets via hook functions specified in ParamListInfo.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments
const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1348

Server Programming Interface

SPI_cursor_parse_open
SPI_cursor_parse_open — set up a cursor using a query string and parameters

Synopsis
Portal SPI_cursor_parse_open(const char *name,
 const char *command,
 const SPIParseOpenOptions * options)

Description
SPI_cursor_parse_open sets up a cursor (internally, a portal) that will execute the specified query
string. This is comparable to SPI_prepare_cursor followed by SPI_cursor_open_with_paramlist, ex-
cept that parameter references within the query string are handled entirely by supplying a ParamListIn-
fo object.

For one-time query execution, this function should be preferred over SPI_prepare_cursor followed by
SPI_cursor_open_with_paramlist. If the same command is to be executed with many different para-
meters, either method might be faster, depending on the cost of re-planning versus the benefit of custom
plans.

The options->params object should normally mark each parameter with the PARAM_FLAG_CONST flag,
since a one-shot plan is always used for the query.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments
const char * name

name for portal, or NULL to let the system select a name

const char * command

command string

const SPIParseOpenOptions * options

struct containing optional arguments

Callers should always zero out the entire options struct, then fill whichever fields they want to set.
This ensures forward compatibility of code, since any fields that are added to the struct in future will be
defined to behave backwards-compatibly if they are zero. The currently available options fields are:

ParamListInfo params

data structure containing query parameter types and values; NULL if none

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1349

Server Programming Interface

SPI_cursor_find
SPI_cursor_find — find an existing cursor by name

Synopsis
Portal SPI_cursor_find(const char * name)

Description
SPI_cursor_find finds an existing portal by name. This is primarily useful to resolve a cursor name
returned as text by some other function.

Arguments
const char * name

name of the portal

Return Value
pointer to the portal with the specified name, or NULL if none was found

Notes
Beware that this function can return a Portal object that does not have cursor-like properties; for ex-
ample it might not return tuples. If you simply pass the Portal pointer to other SPI functions, they can
defend themselves against such cases, but caution is appropriate when directly inspecting the Portal.

1350

Server Programming Interface

SPI_cursor_fetch
SPI_cursor_fetch — fetch some rows from a cursor

Synopsis
void SPI_cursor_fetch(Portal portal, bool forward, long count)

Description
SPI_cursor_fetch fetches some rows from a cursor. This is equivalent to a subset of the SQL command
FETCH (see SPI_scroll_cursor_fetch for more functionality).

Arguments
Portal portal

portal containing the cursor

bool forward

true for fetch forward, false for fetch backward

long count

maximum number of rows to fetch

Return Value
SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes
Fetching backward may fail if the cursor's plan was not created with the CURSOR_OPT_SCROLL option.

1351

Server Programming Interface

SPI_cursor_move
SPI_cursor_move — move a cursor

Synopsis
void SPI_cursor_move(Portal portal, bool forward, long count)

Description
SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to a subset of the SQL
command MOVE (see SPI_scroll_cursor_move for more functionality).

Arguments
Portal portal

portal containing the cursor

bool forward

true for move forward, false for move backward

long count

maximum number of rows to move

Notes
Moving backward may fail if the cursor's plan was not created with the CURSOR_OPT_SCROLL option.

1352

Server Programming Interface

SPI_scroll_cursor_fetch
SPI_scroll_cursor_fetch — fetch some rows from a cursor

Synopsis
void SPI_scroll_cursor_fetch(Portal portal, FetchDirection direction,
 long count)

Description
SPI_scroll_cursor_fetch fetches some rows from a cursor. This is equivalent to the SQL command
FETCH.

Arguments
Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to fetch for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to fetch for
FETCH_ABSOLUTE; or relative row number to fetch for FETCH_RELATIVE

Return Value
SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes
See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor's plan was not created with the
CURSOR_OPT_SCROLL option.

1353

Server Programming Interface

SPI_scroll_cursor_move
SPI_scroll_cursor_move — move a cursor

Synopsis
void SPI_scroll_cursor_move(Portal portal, FetchDirection direction,
 long count)

Description
SPI_scroll_cursor_move skips over some number of rows in a cursor. This is equivalent to the SQL
command MOVE.

Arguments
Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to move for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to move to for
FETCH_ABSOLUTE; or relative row number to move to for FETCH_RELATIVE

Return Value
SPI_processed is set as in SPI_execute if successful. SPI_tuptable is set to NULL, since no rows are
returned by this function.

Notes
See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor's plan was not created with the
CURSOR_OPT_SCROLL option.

1354

Server Programming Interface

SPI_cursor_close
SPI_cursor_close — close a cursor

Synopsis
void SPI_cursor_close(Portal portal)

Description
SPI_cursor_close closes a previously created cursor and releases its portal storage.

All open cursors are closed automatically at the end of a transaction. SPI_cursor_close need only be
invoked if it is desirable to release resources sooner.

Arguments
Portal portal

portal containing the cursor

1355

Server Programming Interface

SPI_keepplan
SPI_keepplan — save a prepared statement

Synopsis
int SPI_keepplan(SPIPlanPtr plan)

Description
SPI_keepplan saves a passed statement (prepared by SPI_prepare) so that it will not be freed by
SPI_finish nor by the transaction manager. This gives you the ability to reuse prepared statements in
the subsequent invocations of your C function in the current session.

Arguments
SPIPlanPtr plan

the prepared statement to be saved

Return Value
0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

Notes
The passed-in statement is relocated to permanent storage by means of pointer adjustment (no data
copying is required). If you later wish to delete it, use SPI_freeplan on it.

1356

Server Programming Interface

SPI_saveplan
SPI_saveplan — save a prepared statement

Synopsis
SPIPlanPtr SPI_saveplan(SPIPlanPtr plan)

Description
SPI_saveplan copies a passed statement (prepared by SPI_prepare) into memory that will not be freed
by SPI_finish nor by the transaction manager, and returns a pointer to the copied statement. This
gives you the ability to reuse prepared statements in the subsequent invocations of your C function in
the current session.

Arguments
SPIPlanPtr plan

the prepared statement to be saved

Return Value
Pointer to the copied statement; or NULL if unsuccessful. On error, SPI_result is set thus:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

Notes
The originally passed-in statement is not freed, so you might wish to do SPI_freeplan on it to avoid
leaking memory until SPI_finish.

In most cases, SPI_keepplan is preferred to this function, since it accomplishes largely the same result
without needing to physically copy the prepared statement's data structures.

1357

Server Programming Interface

SPI_register_relation
SPI_register_relation — make an ephemeral named relation available by name in SPI queries

Synopsis
int SPI_register_relation(EphemeralNamedRelation enr)

Description
SPI_register_relation makes an ephemeral named relation, with associated information, available to
queries planned and executed through the current SPI connection.

Arguments
EphemeralNamedRelation enr

the ephemeral named relation registry entry

Return Value
If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_REL_REGISTER

if the relation has been successfully registered by name

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if enr is NULL or its name field is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_DUPLICATE

if the name specified in the name field of enr is already registered for this connection

1358

Server Programming Interface

SPI_unregister_relation
SPI_unregister_relation — remove an ephemeral named relation from the registry

Synopsis
int SPI_unregister_relation(const char * name)

Description
SPI_unregister_relation removes an ephemeral named relation from the registry for the current con-
nection.

Arguments
const char * name

the relation registry entry name

Return Value
If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_REL_UNREGISTER

if the tuplestore has been successfully removed from the registry

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if name is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_NOT_FOUND

if name is not found in the registry for the current connection

1359

Server Programming Interface

SPI_register_trigger_data
SPI_register_trigger_data — make ephemeral trigger data available in SPI queries

Synopsis
int SPI_register_trigger_data(TriggerData *tdata)

Description
SPI_register_trigger_data makes any ephemeral relations captured by a trigger available to queries
planned and executed through the current SPI connection. Currently, this means the transition tables
captured by an AFTER trigger defined with a REFERENCING OLD/NEW TABLE AS ... clause. This function
should be called by a PL trigger handler function after connecting.

Arguments
TriggerData *tdata

the TriggerData object passed to a trigger handler function as fcinfo->context

Return Value
If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_TD_REGISTER

if the captured trigger data (if any) has been successfully registered

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if tdata is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_DUPLICATE

if the name of any trigger data transient relation is already registered for this connection

45.2. Interface Support Functions
The functions described here provide an interface for extracting information from result sets returned
by SPI_execute and other SPI functions.

All functions described in this section can be used by both connected and unconnected C functions.

1360

Server Programming Interface

SPI_fname
SPI_fname — determine the column name for the specified column number

Synopsis
char * SPI_fname(TupleDesc rowdesc, int colnumber)

Description
SPI_fname returns a copy of the column name of the specified column. (You can use pfree to release
the copy of the name when you don't need it anymore.)

Arguments
TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The column name; NULL if colnumber is out of range. SPI_result set to SPI_ERROR_NOATTRIBUTE on
error.

1361

Server Programming Interface

SPI_fnumber
SPI_fnumber — determine the column number for the specified column name

Synopsis
int SPI_fnumber(TupleDesc rowdesc, const char * colname)

Description
SPI_fnumber returns the column number for the column with the specified name.

If colname refers to a system column (e.g., ctid) then the appropriate negative column number will be
returned. The caller should be careful to test the return value for exact equality to SPI_ERROR_NOAT-
TRIBUTE to detect an error; testing the result for less than or equal to 0 is not correct unless system
columns should be rejected.

Arguments
TupleDesc rowdesc

input row description

const char * colname

column name

Return Value
Column number (count starts at 1 for user-defined columns), or SPI_ERROR_NOATTRIBUTE if the named
column was not found.

1362

Server Programming Interface

SPI_getvalue
SPI_getvalue — return the string value of the specified column

Synopsis
char * SPI_getvalue(HeapTuple row, TupleDesc rowdesc, int colnumber)

Description
SPI_getvalue returns the string representation of the value of the specified column.

The result is returned in memory allocated using palloc. (You can use pfree to release the memory
when you don't need it anymore.)

Arguments
HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
Column value, or NULL if the column is null, colnumber is out of range (SPI_result is set to SPI_ER-
ROR_NOATTRIBUTE), or no output function is available (SPI_result is set to SPI_ERROR_NOOUTFUNC).

1363

Server Programming Interface

SPI_getbinval
SPI_getbinval — return the binary value of the specified column

Synopsis
Datum SPI_getbinval(HeapTuple row, TupleDesc rowdesc, int colnumber,
 bool * isnull)

Description
SPI_getbinval returns the value of the specified column in the internal form (as type Datum).

This function does not allocate new space for the datum. In the case of a pass-by-reference data type,
the return value will be a pointer into the passed row.

Arguments
HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

bool * isnull

flag for a null value in the column

Return Value
The binary value of the column is returned. The variable pointed to by isnull is set to true if the column
is null, else to false.

SPI_result is set to SPI_ERROR_NOATTRIBUTE on error.

1364

Server Programming Interface

SPI_gettype
SPI_gettype — return the data type name of the specified column

Synopsis
char * SPI_gettype(TupleDesc rowdesc, int colnumber)

Description
SPI_gettype returns a copy of the data type name of the specified column. (You can use pfree to release
the copy of the name when you don't need it anymore.)

Arguments
TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The data type name of the specified column, or NULL on error. SPI_result is set to SPI_ERROR_NOAT-
TRIBUTE on error.

1365

Server Programming Interface

SPI_gettypeid
SPI_gettypeid — return the data type OID of the specified column

Synopsis
Oid SPI_gettypeid(TupleDesc rowdesc, int colnumber)

Description
SPI_gettypeid returns the OID of the data type of the specified column.

Arguments
TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The OID of the data type of the specified column or InvalidOid on error. On error, SPI_result is set
to SPI_ERROR_NOATTRIBUTE.

1366

Server Programming Interface

SPI_getrelname
SPI_getrelname — return the name of the specified relation

Synopsis
char * SPI_getrelname(Relation rel)

Description
SPI_getrelname returns a copy of the name of the specified relation. (You can use pfree to release the
copy of the name when you don't need it anymore.)

Arguments
Relation rel

input relation

Return Value
The name of the specified relation.

1367

Server Programming Interface

SPI_getnspname
SPI_getnspname — return the namespace of the specified relation

Synopsis
char * SPI_getnspname(Relation rel)

Description
SPI_getnspname returns a copy of the name of the namespace that the specified Relation belongs to.
This is equivalent to the relation's schema. You should pfree the return value of this function when you
are finished with it.

Arguments
Relation rel

input relation

Return Value
The name of the specified relation's namespace.

1368

Server Programming Interface

SPI_result_code_string
SPI_result_code_string — return error code as string

Synopsis
const char * SPI_result_code_string(int code);

Description
SPI_result_code_string returns a string representation of the result code returned by various SPI
functions or stored in SPI_result.

Arguments
int code

result code

Return Value
A string representation of the result code.

45.3. Memory Management
PostgreSQL allocates memory within memory contexts, which provide a convenient method of managing
allocations made in many different places that need to live for differing amounts of time. Destroying
a context releases all the memory that was allocated in it. Thus, it is not necessary to keep track of
individual objects to avoid memory leaks; instead only a relatively small number of contexts have to be
managed. palloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it current. SPI_finish restores the previous
current memory context and destroys the context created by SPI_connect. These actions ensure that
transient memory allocations made inside your C function are reclaimed at C function exit, avoiding
memory leakage.

However, if your C function needs to return an object in allocated memory (such as a value of a pass-by-
reference data type), you cannot allocate that memory using palloc, at least not while you are connected
to SPI. If you try, the object will be deallocated by SPI_finish, and your C function will not work reliably.
To solve this problem, use SPI_palloc to allocate memory for your return object. SPI_palloc allocates
memory in the “upper executor context”, that is, the memory context that was current when SPI_connect
was called, which is precisely the right context for a value returned from your C function. Several of the
other utility functions described in this section also return objects created in the upper executor context.

When SPI_connect is called, the private context of the C function, which is created by SPI_connect, is
made the current context. All allocations made by palloc, repalloc, or SPI utility functions (except as
described in this section) are made in this context. When a C function disconnects from the SPI manager
(via SPI_finish) the current context is restored to the upper executor context, and all allocations made
in the C function memory context are freed and cannot be used any more.

1369

Server Programming Interface

SPI_palloc
SPI_palloc — allocate memory in the upper executor context

Synopsis
void * SPI_palloc(Size size)

Description
SPI_palloc allocates memory in the upper executor context.

This function can only be used while connected to SPI. Otherwise, it throws an error.

Arguments
Size size

size in bytes of storage to allocate

Return Value
pointer to new storage space of the specified size

1370

Server Programming Interface

SPI_repalloc
SPI_repalloc — reallocate memory in the upper executor context

Synopsis
void * SPI_repalloc(void * pointer, Size size)

Description
SPI_repalloc changes the size of a memory segment previously allocated using SPI_palloc.

This function is no longer different from plain repalloc. It's kept just for backward compatibility of
existing code.

Arguments
void * pointer

pointer to existing storage to change

Size size

size in bytes of storage to allocate

Return Value
pointer to new storage space of specified size with the contents copied from the existing area

1371

Server Programming Interface

SPI_pfree
SPI_pfree — free memory in the upper executor context

Synopsis
void SPI_pfree(void * pointer)

Description
SPI_pfree frees memory previously allocated using SPI_palloc or SPI_repalloc.

This function is no longer different from plain pfree. It's kept just for backward compatibility of existing
code.

Arguments
void * pointer

pointer to existing storage to free

1372

Server Programming Interface

SPI_copytuple
SPI_copytuple — make a copy of a row in the upper executor context

Synopsis
HeapTuple SPI_copytuple(HeapTuple row)

Description
SPI_copytuple makes a copy of a row in the upper executor context. This is normally used to return a
modified row from a trigger. In a function declared to return a composite type, use SPI_returntuple
instead.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Arguments
HeapTuple row

row to be copied

Return Value
the copied row, or NULL on error (see SPI_result for an error indication)

1373

Server Programming Interface

SPI_returntuple
SPI_returntuple — prepare to return a tuple as a Datum

Synopsis
HeapTupleHeader SPI_returntuple(HeapTuple row, TupleDesc rowdesc)

Description
SPI_returntuple makes a copy of a row in the upper executor context, returning it in the form of a row
type Datum. The returned pointer need only be converted to Datum via PointerGetDatum before returning.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Note that this should be used for functions that are declared to return composite types. It is not used
for triggers; use SPI_copytuple for returning a modified row in a trigger.

Arguments
HeapTuple row

row to be copied

TupleDesc rowdesc

descriptor for row (pass the same descriptor each time for most effective caching)

Return Value
HeapTupleHeader pointing to copied row, or NULL on error (see SPI_result for an error indication)

1374

Server Programming Interface

SPI_modifytuple
SPI_modifytuple — create a row by replacing selected fields of a given row

Synopsis
HeapTuple SPI_modifytuple(Relation rel, HeapTuple row, int ncols,
 int * colnum, Datum * values, const char * nulls)

Description
SPI_modifytuple creates a new row by substituting new values for selected columns, copying the orig-
inal row's columns at other positions. The input row is not modified. The new row is returned in the
upper executor context.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Arguments
Relation rel

Used only as the source of the row descriptor for the row. (Passing a relation rather than a row
descriptor is a misfeature.)

HeapTuple row

row to be modified

int ncols

number of columns to be changed

int * colnum

an array of length ncols, containing the numbers of the columns that are to be changed (column
numbers start at 1)

Datum * values

an array of length ncols, containing the new values for the specified columns

const char * nulls

an array of length ncols, describing which new values are null

If nulls is NULL then SPI_modifytuple assumes that no new values are null. Otherwise, each entry of
the nulls array should be ' ' if the corresponding new value is non-null, or 'n' if the corresponding
new value is null. (In the latter case, the actual value in the corresponding values entry doesn't
matter.) Note that nulls is not a text string, just an array: it does not need a '\0' terminator.

Return Value
new row with modifications, allocated in the upper executor context, or NULL on error (see SPI_result
for an error indication)

On error, SPI_result is set as follows:

SPI_ERROR_ARGUMENT

if rel is NULL, or if row is NULL, or if ncols is less than or equal to 0, or if colnum is NULL, or if values
is NULL.

1375

Server Programming Interface

SPI_ERROR_NOATTRIBUTE

if colnum contains an invalid column number (less than or equal to 0 or greater than the number
of columns in row)

SPI_ERROR_UNCONNECTED

if SPI is not active

1376

Server Programming Interface

SPI_freetuple
SPI_freetuple — free a row allocated in the upper executor context

Synopsis
void SPI_freetuple(HeapTuple row)

Description
SPI_freetuple frees a row previously allocated in the upper executor context.

This function is no longer different from plain heap_freetuple. It's kept just for backward compatibility
of existing code.

Arguments
HeapTuple row

row to free

1377

Server Programming Interface

SPI_freetuptable
SPI_freetuptable — free a row set created by SPI_execute or a similar function

Synopsis
void SPI_freetuptable(SPITupleTable * tuptable)

Description
SPI_freetuptable frees a row set created by a prior SPI command execution function, such as SPI_ex-
ecute. Therefore, this function is often called with the global variable SPI_tuptable as argument.

This function is useful if an SPI-using C function needs to execute multiple commands and does not want
to keep the results of earlier commands around until it ends. Note that any unfreed row sets will be freed
anyway at SPI_finish. Also, if a subtransaction is started and then aborted within execution of an SPI-
using C function, SPI automatically frees any row sets created while the subtransaction was running.

Beginning in PostgreSQL 9.3, SPI_freetuptable contains guard logic to protect against duplicate dele-
tion requests for the same row set. In previous releases, duplicate deletions would lead to crashes.

Arguments
SPITupleTable * tuptable

pointer to row set to free, or NULL to do nothing

1378

Server Programming Interface

SPI_freeplan
SPI_freeplan — free a previously saved prepared statement

Synopsis
int SPI_freeplan(SPIPlanPtr plan)

Description
SPI_freeplan releases a prepared statement previously returned by SPI_prepare or saved by SPI_keep-
plan or SPI_saveplan.

Arguments
SPIPlanPtr plan

pointer to statement to free

Return Value
0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

45.4. Transaction Management
It is not possible to run transaction control commands such as COMMIT and ROLLBACK through SPI func-
tions such as SPI_execute. There are, however, separate interface functions that allow transaction con-
trol through SPI.

It is not generally safe and sensible to start and end transactions in arbitrary user-defined SQL-callable
functions without taking into account the context in which they are called. For example, a transaction
boundary in the middle of a function that is part of a complex SQL expression that is part of some SQL
command will probably result in obscure internal errors or crashes. The interface functions presented
here are primarily intended to be used by procedural language implementations to support transaction
management in SQL-level procedures that are invoked by the CALL command, taking the context of the
CALL invocation into account. SPI-using procedures implemented in C can implement the same logic,
but the details of that are beyond the scope of this documentation.

1379

Server Programming Interface

SPI_commit
SPI_commit, SPI_commit_and_chain — commit the current transaction

Synopsis
void SPI_commit(void)

void SPI_commit_and_chain(void)

Description
SPI_commit commits the current transaction. It is approximately equivalent to running the SQL com-
mand COMMIT. After the transaction is committed, a new transaction is automatically started using de-
fault transaction characteristics, so that the caller can continue using SPI facilities. If there is a failure
during commit, the current transaction is instead rolled back and a new transaction is started, after
which the error is thrown in the usual way.

SPI_commit_and_chain is the same, but the new transaction is started with the same transaction char-
acteristics as the just finished one, like with the SQL command COMMIT AND CHAIN.

These functions can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

1380

Server Programming Interface

SPI_rollback
SPI_rollback, SPI_rollback_and_chain — abort the current transaction

Synopsis
void SPI_rollback(void)

void SPI_rollback_and_chain(void)

Description
SPI_rollback rolls back the current transaction. It is approximately equivalent to running the SQL
command ROLLBACK. After the transaction is rolled back, a new transaction is automatically started using
default transaction characteristics, so that the caller can continue using SPI facilities.

SPI_rollback_and_chain is the same, but the new transaction is started with the same transaction
characteristics as the just finished one, like with the SQL command ROLLBACK AND CHAIN.

These functions can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

1381

Server Programming Interface

SPI_start_transaction
SPI_start_transaction — obsolete function

Synopsis
void SPI_start_transaction(void)

Description
SPI_start_transaction does nothing, and exists only for code compatibility with earlier PostgreSQL
releases. It used to be required after calling SPI_commit or SPI_rollback, but now those functions start
a new transaction automatically.

45.5. Visibility of Data Changes
The following rules govern the visibility of data changes in functions that use SPI (or any other C func-
tion):
• During the execution of an SQL command, any data changes made by the command are invisible to

the command itself. For example, in:
INSERT INTO a SELECT * FROM a;

the inserted rows are invisible to the SELECT part.
• Changes made by a command C are visible to all commands that are started after C, no matter

whether they are started inside C (during the execution of C) or after C is done.
• Commands executed via SPI inside a function called by an SQL command (either an ordinary func-

tion or a trigger) follow one or the other of the above rules depending on the read/write flag passed
to SPI. Commands executed in read-only mode follow the first rule: they cannot see changes of the
calling command. Commands executed in read-write mode follow the second rule: they can see all
changes made so far.

• All standard procedural languages set the SPI read-write mode depending on the volatility attribute
of the function. Commands of STABLE and IMMUTABLE functions are done in read-only mode, while
commands of VOLATILE functions are done in read-write mode. While authors of C functions are
able to violate this convention, it's unlikely to be a good idea to do so.

The next section contains an example that illustrates the application of these rules.

45.6. Examples
This section contains a very simple example of SPI usage. The C function execq takes an SQL command
as its first argument and a row count as its second, executes the command using SPI_exec and returns
the number of rows that were processed by the command. You can find more complex examples for SPI
in the source tree in src/test/regress/regress.c and in the spi module.

#include "postgres.h"

#include "executor/spi.h"
#include "utils/builtins.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(execq);

Datum
execq(PG_FUNCTION_ARGS)
{
 char *command;
 int cnt;

1382

Server Programming Interface

 int ret;
 uint64 proc;

 /* Convert given text object to a C string */
 command = text_to_cstring(PG_GETARG_TEXT_PP(0));
 cnt = PG_GETARG_INT32(1);

 SPI_connect();

 ret = SPI_exec(command, cnt);

 proc = SPI_processed;

 /*
 * If some rows were fetched, print them via elog(INFO).
 */
 if (ret > 0 && SPI_tuptable != NULL)
 {
 SPITupleTable *tuptable = SPI_tuptable;
 TupleDesc tupdesc = tuptable->tupdesc;
 char buf[8192];
 uint64 j;

 for (j = 0; j < tuptable->numvals; j++)
 {
 HeapTuple tuple = tuptable->vals[j];
 int i;

 for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " %s%s",
 SPI_getvalue(tuple, tupdesc, i),
 (i == tupdesc->natts) ? " " : " |");
 elog(INFO, "EXECQ: %s", buf);
 }
 }

 SPI_finish();
 pfree(command);

 PG_RETURN_INT64(proc);
}

This is how you declare the function after having compiled it into a shared library (details are in Sec-
tion 36.10.5.):
CREATE FUNCTION execq(text, integer) RETURNS int8
 AS 'filename'
 LANGUAGE C STRICT;

Here is a sample session:
=> SELECT execq('CREATE TABLE a (x integer)', 0);
 execq

 0
(1 row)

=> INSERT INTO a VALUES (execq('INSERT INTO a VALUES (0)', 0));
INSERT 0 1
=> SELECT execq('SELECT * FROM a', 0);

1383

Server Programming Interface

INFO: EXECQ: 0 -- inserted by execq
INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT

 execq

 2
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 2 FROM a RETURNING *', 1);
INFO: EXECQ: 2 -- 0 + 2, then execution was stopped by count
 execq

 1
(1 row)

=> SELECT execq('SELECT * FROM a', 10);
INFO: EXECQ: 0
INFO: EXECQ: 1
INFO: EXECQ: 2

 execq

 3 -- 10 is the max value only, 3 is the real number of rows
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 10 FROM a', 1);
 execq

 3 -- all rows processed; count does not stop it, because nothing is
 returned
(1 row)

=> SELECT * FROM a;
 x

 0
 1
 2
 10
 11
 12
(6 rows)

=> DELETE FROM a;
DELETE 6
=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INSERT 0 1
=> SELECT * FROM a;
 x

 1 -- 0 (no rows in a) + 1
(1 row)

=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INFO: EXECQ: 1
INSERT 0 1
=> SELECT * FROM a;
 x

1384

Server Programming Interface

 1
 2 -- 1 (there was one row in a) + 1
(2 rows)

-- This demonstrates the data changes visibility rule.
-- execq is called twice and sees different numbers of rows each time:

=> INSERT INTO a SELECT execq('SELECT * FROM a', 0) * x FROM a;
INFO: EXECQ: 1 -- results from first execq
INFO: EXECQ: 2
INFO: EXECQ: 1 -- results from second execq
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2
=> SELECT * FROM a;
 x

 1
 2
 2 -- 2 rows * 1 (x in first row)
 6 -- 3 rows (2 + 1 just inserted) * 2 (x in second row)
(4 rows)

1385

Chapter 46. Background Worker Processes
PostgreSQL can be extended to run user-supplied code in separate processes. Such processes are start-
ed, stopped and monitored by postgres, which permits them to have a lifetime closely linked to the
server's status. These processes are attached to PostgreSQL's shared memory area and have the option
to connect to databases internally; they can also run multiple transactions serially, just like a regular
client-connected server process. Also, by linking to libpq they can connect to the server and behave like
a regular client application.

Warning
There are considerable robustness and security risks in using background worker processes be-
cause, being written in the C language, they have unrestricted access to data. Administrators
wishing to enable modules that include background worker processes should exercise extreme
caution. Only carefully audited modules should be permitted to run background worker processes.

Background workers can be initialized at the time that PostgreSQL is started by including the mod-
ule name in shared_preload_libraries. A module wishing to run a background worker can register
it by calling RegisterBackgroundWorker(BackgroundWorker *worker) from its _PG_init() function.
Background workers can also be started after the system is up and running by calling RegisterDy-
namicBackgroundWorker(BackgroundWorker *worker, BackgroundWorkerHandle **handle). Unlike
RegisterBackgroundWorker, which can only be called from within the postmaster process, Register-
DynamicBackgroundWorker must be called from a regular backend or another background worker.

The structure BackgroundWorker is defined thus:
typedef void (*bgworker_main_type)(Datum main_arg);
typedef struct BackgroundWorker
{
 char bgw_name[BGW_MAXLEN];
 char bgw_type[BGW_MAXLEN];
 int bgw_flags;
 BgWorkerStartTime bgw_start_time;
 int bgw_restart_time; /* in seconds, or BGW_NEVER_RESTART */
 char bgw_library_name[MAXPGPATH];
 char bgw_function_name[BGW_MAXLEN];
 Datum bgw_main_arg;
 char bgw_extra[BGW_EXTRALEN];
 pid_t bgw_notify_pid;
} BackgroundWorker;

bgw_name and bgw_type are strings to be used in log messages, process listings and similar contexts.
bgw_type should be the same for all background workers of the same type, so that it is possible to
group such workers in a process listing, for example. bgw_name on the other hand can contain additional
information about the specific process. (Typically, the string for bgw_name will contain the type somehow,
but that is not strictly required.)

bgw_flags is a bitwise-or'd bit mask indicating the capabilities that the module wants. Possible values
are:
BGWORKER_SHMEM_ACCESS

Requests shared memory access. This flag is required.

BGWORKER_BACKEND_DATABASE_CONNECTION

Requests the ability to establish a database connection through which it can later run transactions
and queries. A background worker using BGWORKER_BACKEND_DATABASE_CONNECTION to connect to a
database must also attach shared memory using BGWORKER_SHMEM_ACCESS, or worker start-up will fail.

1386

Background Worker Processes

bgw_start_time is the server state during which postgres should start the process; it can be one of
BgWorkerStart_PostmasterStart (start as soon as postgres itself has finished its own initialization;
processes requesting this are not eligible for database connections), BgWorkerStart_ConsistentState
(start as soon as a consistent state has been reached in a hot standby, allowing processes to connect
to databases and run read-only queries), and BgWorkerStart_RecoveryFinished (start as soon as the
system has entered normal read-write state). Note the last two values are equivalent in a server that's
not a hot standby. Note that this setting only indicates when the processes are to be started; they do
not stop when a different state is reached.

bgw_restart_time is the interval, in seconds, that postgres should wait before restarting the process
in the event that it crashes. It can be any positive value, or BGW_NEVER_RESTART, indicating not to restart
the process in case of a crash.

bgw_library_name is the name of a library in which the initial entry point for the background worker
should be sought. The named library will be dynamically loaded by the worker process and bgw_func-
tion_name will be used to identify the function to be called. If calling a function in the core code, this
must be set to "postgres".

bgw_function_name is the name of the function to use as the initial entry point for the new background
worker. If this function is in a dynamically loaded library, it must be marked PGDLLEXPORT (and not
static).

bgw_main_arg is the Datum argument to the background worker main function. This main function should
take a single argument of type Datum and return void. bgw_main_arg will be passed as the argument.
In addition, the global variable MyBgworkerEntry points to a copy of the BackgroundWorker structure
passed at registration time; the worker may find it helpful to examine this structure.

On Windows (and anywhere else where EXEC_BACKEND is defined) or in dynamic background workers it
is not safe to pass a Datum by reference, only by value. If an argument is required, it is safest to pass
an int32 or other small value and use that as an index into an array allocated in shared memory. If a
value like a cstring or text is passed then the pointer won't be valid from the new background worker
process.

bgw_extra can contain extra data to be passed to the background worker. Unlike bgw_main_arg, this data
is not passed as an argument to the worker's main function, but it can be accessed via MyBgworkerEntry,
as discussed above.

bgw_notify_pid is the PID of a PostgreSQL backend process to which the postmaster should send
SIGUSR1 when the process is started or exits. It should be 0 for workers registered at postmaster start-
up time, or when the backend registering the worker does not wish to wait for the worker to start up.
Otherwise, it should be initialized to MyProcPid.

Once running, the process can connect to a database by calling BackgroundWorkerInitializeConnec-
tion(char *dbname, char *username, uint32 flags) or BackgroundWorkerInitializeConnection-
ByOid(Oid dboid, Oid useroid, uint32 flags). This allows the process to run transactions and
queries using the SPI interface. If dbname is NULL or dboid is InvalidOid, the session is not connected
to any particular database, but shared catalogs can be accessed. If username is NULL or useroid is In-
validOid, the process will run as the superuser created during initdb. If BGWORKER_BYPASS_ALLOWCONN
is specified as flags it is possible to bypass the restriction to connect to databases not allowing user
connections. If BGWORKER_BYPASS_ROLELOGINCHECK is specified as flags it is possible to bypass the login
check for the role used to connect to databases. A background worker can only call one of these two
functions, and only once. It is not possible to switch databases.

Signals are initially blocked when control reaches the background worker's main function, and must be
unblocked by it; this is to allow the process to customize its signal handlers, if necessary. Signals can
be unblocked in the new process by calling BackgroundWorkerUnblockSignals and blocked by calling
BackgroundWorkerBlockSignals.

If bgw_restart_time for a background worker is configured as BGW_NEVER_RESTART, or if it exits with
an exit code of 0 or is terminated by TerminateBackgroundWorker, it will be automatically unregis-

1387

Background Worker Processes

tered by the postmaster on exit. Otherwise, it will be restarted after the time period configured via
bgw_restart_time, or immediately if the postmaster reinitializes the cluster due to a backend failure.
Backends which need to suspend execution only temporarily should use an interruptible sleep rather
than exiting; this can be achieved by calling WaitLatch(). Make sure the WL_POSTMASTER_DEATH flag is
set when calling that function, and verify the return code for a prompt exit in the emergency case that
postgres itself has terminated.

When a background worker is registered using the RegisterDynamicBackgroundWorker function, it is
possible for the backend performing the registration to obtain information regarding the status of the
worker. Backends wishing to do this should pass the address of a BackgroundWorkerHandle * as the
second argument to RegisterDynamicBackgroundWorker. If the worker is successfully registered, this
pointer will be initialized with an opaque handle that can subsequently be passed to GetBackground-
WorkerPid(BackgroundWorkerHandle *, pid_t *) or TerminateBackgroundWorker(BackgroundWork-
erHandle *). GetBackgroundWorkerPid can be used to poll the status of the worker: a return value of
BGWH_NOT_YET_STARTED indicates that the worker has not yet been started by the postmaster; BGWH_S-
TOPPED indicates that it has been started but is no longer running; and BGWH_STARTED indicates that it
is currently running. In this last case, the PID will also be returned via the second argument. Termi-
nateBackgroundWorker causes the postmaster to send SIGTERM to the worker if it is running, and to
unregister it as soon as it is not.

In some cases, a process which registers a background worker may wish to wait for the worker to
start up. This can be accomplished by initializing bgw_notify_pid to MyProcPid and then passing the
BackgroundWorkerHandle * obtained at registration time to WaitForBackgroundWorkerStartup(Back-
groundWorkerHandle *handle, pid_t *) function. This function will block until the postmaster has
attempted to start the background worker, or until the postmaster dies. If the background worker is
running, the return value will be BGWH_STARTED, and the PID will be written to the provided address.
Otherwise, the return value will be BGWH_STOPPED or BGWH_POSTMASTER_DIED.

A process can also wait for a background worker to shut down, by using the WaitForBackgroundWork-
erShutdown(BackgroundWorkerHandle *handle) function and passing the BackgroundWorkerHandle *
obtained at registration. This function will block until the background worker exits, or postmaster dies.
When the background worker exits, the return value is BGWH_STOPPED, if postmaster dies it will return
BGWH_POSTMASTER_DIED.

Background workers can send asynchronous notification messages, either by using the NOTIFY command
via SPI, or directly via Async_Notify(). Such notifications will be sent at transaction commit. Back-
ground workers should not register to receive asynchronous notifications with the LISTEN command, as
there is no infrastructure for a worker to consume such notifications.

The src/test/modules/worker_spi module contains a working example, which demonstrates some use-
ful techniques.

The maximum number of registered background workers is limited by max_worker_processes.

1388

Chapter 47. Logical Decoding
PostgreSQL provides infrastructure to stream the modifications performed via SQL to external con-
sumers. This functionality can be used for a variety of purposes, including replication solutions and au-
diting.

Changes are sent out in streams identified by logical replication slots.

The format in which those changes are streamed is determined by the output plugin used. An example
plugin is provided in the PostgreSQL distribution. Additional plugins can be written to extend the choice
of available formats without modifying any core code. Every output plugin has access to each individual
new row produced by INSERT and the new row version created by UPDATE. Availability of old row versions
for UPDATE and DELETE depends on the configured replica identity (see REPLICA IDENTITY).

Changes can be consumed either using the streaming replication protocol (see Section 54.4 and Sec-
tion 47.3), or by calling functions via SQL (see Section 47.4). It is also possible to write additional meth-
ods of consuming the output of a replication slot without modifying core code (see Section 47.7).

47.1. Logical Decoding Examples
The following example demonstrates controlling logical decoding using the SQL interface.

Before you can use logical decoding, you must set wal_level to logical and max_replication_slots to at
least 1. Then, you should connect to the target database (in the example below, postgres) as a superuser.

postgres=# -- Create a slot named 'regression_slot' using the output plugin
 'test_decoding'
postgres=# SELECT * FROM pg_create_logical_replication_slot('regression_slot',
 'test_decoding', false, true);
 slot_name | lsn
-----------------+-----------
 regression_slot | 0/16B1970
(1 row)

postgres=# SELECT slot_name, plugin, slot_type, database, active, restart_lsn,
 confirmed_flush_lsn FROM pg_replication_slots;
 slot_name | plugin | slot_type | database | active | restart_lsn |
 confirmed_flush_lsn
-----------------+---------------+-----------+----------+--------+-------------
+-----------------
 regression_slot | test_decoding | logical | postgres | f | 0/16A4408 |
 0/16A4440
(1 row)

postgres=# -- There are no changes to see yet
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# CREATE TABLE data(id serial primary key, data text);
CREATE TABLE

postgres=# -- DDL isn't replicated, so all you'll see is the transaction
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+--------------
 0/BA2DA58 | 10297 | BEGIN 10297
 0/BA5A5A0 | 10297 | COMMIT 10297

1389

Logical Decoding

(2 rows)

postgres=# -- Once changes are read, they're consumed and not emitted
postgres=# -- in a subsequent call:
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('1');
postgres=*# INSERT INTO data(data) VALUES('2');
postgres=*# COMMIT;

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A688 | 10298 | BEGIN 10298
 0/BA5A6F0 | 10298 | table public.data: INSERT: id[integer]:1 data[text]:'1'
 0/BA5A7F8 | 10298 | table public.data: INSERT: id[integer]:2 data[text]:'2'
 0/BA5A8A8 | 10298 | COMMIT 10298
(4 rows)

postgres=# INSERT INTO data(data) VALUES('3');

postgres=# -- You can also peek ahead in the change stream without consuming changes
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- The next call to pg_logical_slot_peek_changes() returns the same changes
 again
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- options can be passed to output plugin, to influence the formatting
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL,
 'include-timestamp', 'on');
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299 (at 2017-05-10 12:07:21.272494-04)
(3 rows)

postgres=# -- Remember to destroy a slot you no longer need to stop it consuming
postgres=# -- server resources:
postgres=# SELECT pg_drop_replication_slot('regression_slot');
 pg_drop_replication_slot

1390

Logical Decoding

(1 row)

The following examples show how logical decoding is controlled over the streaming replication protocol,
using the program pg_recvlogical included in the PostgreSQL distribution. This requires that client au-
thentication is set up to allow replication connections (see Section 26.2.5.1) and that max_wal_senders
is set sufficiently high to allow an additional connection. The second example shows how to stream two-
phase transactions. Before you use two-phase commands, you must set max_prepared_transactions to
at least 1.

Example 1:
$ pg_recvlogical -d postgres --slot=test --create-slot
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "INSERT INTO data(data) VALUES('4');"
$ fg
BEGIN 693
table public.data: INSERT: id[integer]:4 data[text]:'4'
COMMIT 693
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot

Example 2:
$ pg_recvlogical -d postgres --slot=test --create-slot --enable-two-phase
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "BEGIN;INSERT INTO data(data) VALUES('5');PREPARE TRANSACTION
 'test';"
$ fg
BEGIN 694
table public.data: INSERT: id[integer]:5 data[text]:'5'
PREPARE TRANSACTION 'test', txid 694
Control+Z
$ psql -d postgres -c "COMMIT PREPARED 'test';"
$ fg
COMMIT PREPARED 'test', txid 694
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot

The following example shows SQL interface that can be used to decode prepared transactions. Before you
use two-phase commit commands, you must set max_prepared_transactions to at least 1. You must also
have set the two-phase parameter as 'true' while creating the slot using pg_create_logical_replica-
tion_slot Note that we will stream the entire transaction after the commit if it is not already decoded.

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('5');
postgres=*# PREPARE TRANSACTION 'test_prepared1';

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+---
 0/1689DC0 | 529 | BEGIN 529
 0/1689DC0 | 529 | table public.data: INSERT: id[integer]:3 data[text]:'5'
 0/1689FC0 | 529 | PREPARE TRANSACTION 'test_prepared1', txid 529
(3 rows)

postgres=# COMMIT PREPARED 'test_prepared1';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);

1391

Logical Decoding

 lsn | xid | data
-----------+-----+--
 0/168A060 | 529 | COMMIT PREPARED 'test_prepared1', txid 529
(4 row)

postgres=#-- you can also rollback a prepared transaction
postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('6');
postgres=*# PREPARE TRANSACTION 'test_prepared2';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+---
 0/168A180 | 530 | BEGIN 530
 0/168A1E8 | 530 | table public.data: INSERT: id[integer]:4 data[text]:'6'
 0/168A430 | 530 | PREPARE TRANSACTION 'test_prepared2', txid 530
(3 rows)

postgres=# ROLLBACK PREPARED 'test_prepared2';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+--
 0/168A4B8 | 530 | ROLLBACK PREPARED 'test_prepared2', txid 530
(1 row)

47.2. Logical Decoding Concepts
47.2.1. Logical Decoding

Logical decoding is the process of extracting all persistent changes to a database's tables into a coher-
ent, easy to understand format which can be interpreted without detailed knowledge of the database's
internal state.

In PostgreSQL, logical decoding is implemented by decoding the contents of the write-ahead log, which
describe changes on a storage level, into an application-specific form such as a stream of tuples or SQL
statements.

47.2.2. Replication Slots
In the context of logical replication, a slot represents a stream of changes that can be replayed to a
client in the order they were made on the origin server. Each slot streams a sequence of changes from
a single database.

Note
PostgreSQL also has streaming replication slots (see Section 26.2.5), but they are used somewhat
differently there.

A replication slot has an identifier that is unique across all databases in a PostgreSQL cluster. Slots
persist independently of the connection using them and are crash-safe.

A logical slot will emit each change just once in normal operation. The current position of each slot is
persisted only at checkpoint, so in the case of a crash the slot might return to an earlier LSN, which
will then cause recent changes to be sent again when the server restarts. Logical decoding clients are
responsible for avoiding ill effects from handling the same message more than once. Clients may wish
to record the last LSN they saw when decoding and skip over any repeated data or (when using the
replication protocol) request that decoding start from that LSN rather than letting the server determine
the start point. The Replication Progress Tracking feature is designed for this purpose, refer to replica-
tion origins.

1392

Logical Decoding

Multiple independent slots may exist for a single database. Each slot has its own state, allowing different
consumers to receive changes from different points in the database change stream. For most applica-
tions, a separate slot will be required for each consumer.

A logical replication slot knows nothing about the state of the receiver(s). It's even possible to have
multiple different receivers using the same slot at different times; they'll just get the changes following
on from when the last receiver stopped consuming them. Only one receiver may consume changes from
a slot at any given time.

A logical replication slot can also be created on a hot standby. To prevent VACUUM from removing required
rows from the system catalogs, hot_standby_feedback should be set on the standby. In spite of that,
if any required rows get removed, the slot gets invalidated. It's highly recommended to use a physical
slot between the primary and the standby. Otherwise, hot_standby_feedback will work but only while
the connection is alive (for example a node restart would break it). Then, the primary may delete system
catalog rows that could be needed by the logical decoding on the standby (as it does not know about
the catalog_xmin on the standby). Existing logical slots on standby also get invalidated if wal_level on
the primary is reduced to less than logical. This is done as soon as the standby detects such a change
in the WAL stream. It means that, for walsenders that are lagging (if any), some WAL records up to the
wal_level parameter change on the primary won't be decoded.

Creation of a logical slot requires information about all the currently running transactions. On the pri-
mary, this information is available directly, but on a standby, this information has to be obtained from
primary. Thus, slot creation may need to wait for some activity to happen on the primary. If the primary
is idle, creating a logical slot on standby may take noticeable time. This can be sped up by calling the
pg_log_standby_snapshot function on the primary.

Caution
Replication slots persist across crashes and know nothing about the state of their consumer(s).
They will prevent removal of required resources even when there is no connection using them.
This consumes storage because neither required WAL nor required rows from the system catalogs
can be removed by VACUUM as long as they are required by a replication slot. In extreme cases this
could cause the database to shut down to prevent transaction ID wraparound (see Section 24.1.5).
So if a slot is no longer required it should be dropped.

47.2.3. Replication Slot Synchronization
The logical replication slots on the primary can be synchronized to the hot standby by using the failover
parameter of pg_create_logical_replication_slot, or by using the failover option of CREATE
SUBSCRIPTION during slot creation. Additionally, enabling sync_replication_slots on the standby is
required. By enabling sync_replication_slots on the standby, the failover slots can be synchronized
periodically in the slotsync worker. For the synchronization to work, it is mandatory to have a physical
replication slot between the primary and the standby (i.e., primary_slot_name should be configured on
the standby), and hot_standby_feedback must be enabled on the standby. It is also necessary to spec-
ify a valid dbname in the primary_conninfo. It's highly recommended that the said physical replication
slot is named in synchronized_standby_slots list on the primary, to prevent the subscriber from con-
suming changes faster than the hot standby. Even when correctly configured, some latency is expect-
ed when sending changes to logical subscribers due to the waiting on slots named in synchronized_s-
tandby_slots. When synchronized_standby_slots is utilized, the primary server will not completely
shut down until the corresponding standbys, associated with the physical replication slots specified in
synchronized_standby_slots, have confirmed receiving the WAL up to the latest flushed position on
the primary server.

Note
While enabling sync_replication_slots allows for automatic periodic synchronization of
failover slots, they can also be manually synchronized using the pg_sync_replication_slots

1393

Logical Decoding

function on the standby. However, this function is primarily intended for testing and debugging
and should be used with caution. Unlike automatic synchronization, it does not include cyclic re-
tries, making it more prone to synchronization failures, particularly during initial sync scenarios
where the required WAL files or catalog rows for the slot might have already been removed or are
at risk of being removed on the standby. In contrast, automatic synchronization via sync_repli-
cation_slots provides continuous slot updates, enabling seamless failover and supporting high
availability. Therefore, it is the recommended method for synchronizing slots.

When slot synchronization is configured as recommended, and the initial synchronization is performed
either automatically or manually via pg_sync_replication_slots, the standby can persist the synchro-
nized slot only if the following condition is met: The logical replication slot on the primary must retain
WALs and system catalog rows that are still available on the standby. This ensures data integrity and
allows logical replication to continue smoothly after promotion. If the required WALs or catalog rows
have already been purged from the standby, the slot will not be persisted to avoid data loss. In such
cases, the following log message may appear:

LOG: could not synchronize replication slot "failover_slot"
DETAIL: Synchronization could lead to data loss, because the remote slot needs WAL at
 LSN 0/3003F28 and catalog xmin 754, but the standby has LSN 0/3003F28 and catalog xmin
 756.

If the logical replication slot is actively used by a consumer, no manual intervention is needed; the
slot will advance automatically, and synchronization will resume in the next cycle. However, if no con-
sumer is configured, it is advisable to manually advance the slot on the primary using pg_logical_s-
lot_get_changes or pg_logical_slot_get_binary_changes, allowing synchronization to proceed.

The ability to resume logical replication after failover depends upon the pg_replication_slots.synced
value for the synchronized slots on the standby at the time of failover. Only persistent slots that have
attained synced state as true on the standby before failover can be used for logical replication after
failover. Temporary synced slots cannot be used for logical decoding, therefore logical replication for
those slots cannot be resumed. For example, if the synchronized slot could not become persistent on
the standby due to a disabled subscription, then the subscription cannot be resumed after failover even
when it is enabled.

To resume logical replication after failover from the synced logical slots, the subscription's 'conninfo'
must be altered to point to the new primary server. This is done using ALTER SUBSCRIPTION ... CON-
NECTION. It is recommended that subscriptions are first disabled before promoting the standby and are
re-enabled after altering the connection string.

Caution
There is a chance that the old primary is up again during the promotion and if subscriptions are
not disabled, the logical subscribers may continue to receive data from the old primary server
even after promotion until the connection string is altered. This might result in data inconsistency
issues, preventing the logical subscribers from being able to continue replication from the new
primary server.

47.2.4. Output Plugins
Output plugins transform the data from the write-ahead log's internal representation into the format
the consumer of a replication slot desires.

47.2.5. Exported Snapshots
When a new replication slot is created using the streaming replication interface (see CREATE_REPLI-
CATION_SLOT), a snapshot is exported (see Section 9.28.5), which will show exactly the state of the
database after which all changes will be included in the change stream. This can be used to create a

1394

Logical Decoding

new replica by using SET TRANSACTION SNAPSHOT to read the state of the database at the moment the
slot was created. This transaction can then be used to dump the database's state at that point in time,
which afterwards can be updated using the slot's contents without losing any changes.

Applications that do not require snapshot export may suppress it with the SNAPSHOT 'nothing' option.

47.3. Streaming Replication Protocol Interface
The commands

• CREATE_REPLICATION_SLOT slot_name LOGICAL output_plugin

• DROP_REPLICATION_SLOT slot_name [WAIT]

• START_REPLICATION SLOT slot_name LOGICAL ...

are used to create, drop, and stream changes from a replication slot, respectively. These commands are
only available over a replication connection; they cannot be used via SQL. See Section 54.4 for details
on these commands.

The command pg_recvlogical can be used to control logical decoding over a streaming replication con-
nection. (It uses these commands internally.)

47.4. Logical Decoding SQL Interface
See Section 9.28.6 for detailed documentation on the SQL-level API for interacting with logical decoding.

Synchronous replication (see Section 26.2.8) is only supported on replication slots used over the stream-
ing replication interface. The function interface and additional, non-core interfaces do not support syn-
chronous replication.

47.5. System Catalogs Related to Logical Decoding
The pg_replication_slots view and the pg_stat_replication view provide information about the
current state of replication slots and streaming replication connections respectively. These views apply
to both physical and logical replication. The pg_stat_replication_slots view provides statistics in-
formation about the logical replication slots.

47.6. Logical Decoding Output Plugins
An example output plugin can be found in the contrib/test_decoding subdirectory of the PostgreSQL
source tree.

47.6.1. Initialization Function
An output plugin is loaded by dynamically loading a shared library with the output plugin's name as the
library base name. The normal library search path is used to locate the library. To provide the required
output plugin callbacks and to indicate that the library is actually an output plugin it needs to provide
a function named _PG_output_plugin_init. This function is passed a struct that needs to be filled with
the callback function pointers for individual actions.

typedef struct OutputPluginCallbacks
{
 LogicalDecodeStartupCB startup_cb;
 LogicalDecodeBeginCB begin_cb;
 LogicalDecodeChangeCB change_cb;
 LogicalDecodeTruncateCB truncate_cb;
 LogicalDecodeCommitCB commit_cb;
 LogicalDecodeMessageCB message_cb;
 LogicalDecodeFilterByOriginCB filter_by_origin_cb;

1395

Logical Decoding

 LogicalDecodeShutdownCB shutdown_cb;
 LogicalDecodeFilterPrepareCB filter_prepare_cb;
 LogicalDecodeBeginPrepareCB begin_prepare_cb;
 LogicalDecodePrepareCB prepare_cb;
 LogicalDecodeCommitPreparedCB commit_prepared_cb;
 LogicalDecodeRollbackPreparedCB rollback_prepared_cb;
 LogicalDecodeStreamStartCB stream_start_cb;
 LogicalDecodeStreamStopCB stream_stop_cb;
 LogicalDecodeStreamAbortCB stream_abort_cb;
 LogicalDecodeStreamPrepareCB stream_prepare_cb;
 LogicalDecodeStreamCommitCB stream_commit_cb;
 LogicalDecodeStreamChangeCB stream_change_cb;
 LogicalDecodeStreamMessageCB stream_message_cb;
 LogicalDecodeStreamTruncateCB stream_truncate_cb;
} OutputPluginCallbacks;

typedef void (*LogicalOutputPluginInit) (struct OutputPluginCallbacks *cb);

The begin_cb, change_cb and commit_cb callbacks are required, while startup_cb, truncate_cb, mes-
sage_cb, filter_by_origin_cb, and shutdown_cb are optional. If truncate_cb is not set but a TRUNCATE
is to be decoded, the action will be ignored.

An output plugin may also define functions to support streaming of large, in-progress transactions. The
stream_start_cb, stream_stop_cb, stream_abort_cb, stream_commit_cb, and stream_change_cb are
required, while stream_message_cb and stream_truncate_cb are optional. The stream_prepare_cb is
also required if the output plugin also support two-phase commits.

An output plugin may also define functions to support two-phase commits, which allows actions to be
decoded on the PREPARE TRANSACTION. The begin_prepare_cb, prepare_cb, commit_prepared_cb and
rollback_prepared_cb callbacks are required, while filter_prepare_cb is optional. The stream_pre-
pare_cb is also required if the output plugin also supports the streaming of large in-progress transac-
tions.

47.6.2. Capabilities
To decode, format and output changes, output plugins can use most of the backend's normal infrastruc-
ture, including calling output functions. Read only access to relations is permitted as long as only rela-
tions are accessed that either have been created by initdb in the pg_catalog schema, or have been
marked as user provided catalog tables using

ALTER TABLE user_catalog_table SET (user_catalog_table = true);
CREATE TABLE another_catalog_table(data text) WITH (user_catalog_table = true);

Note that access to user catalog tables or regular system catalog tables in the output plugins has to be
done via the systable_* scan APIs only. Access via the heap_* scan APIs will error out. Additionally,
any actions leading to transaction ID assignment are prohibited. That, among others, includes writing
to tables, performing DDL changes, and calling pg_current_xact_id().

47.6.3. Output Modes
Output plugin callbacks can pass data to the consumer in nearly arbitrary formats. For some use cases,
like viewing the changes via SQL, returning data in a data type that can contain arbitrary data (e.g.,
bytea) is cumbersome. If the output plugin only outputs textual data in the server's encoding, it can
declare that by setting OutputPluginOptions.output_type to OUTPUT_PLUGIN_TEXTUAL_OUTPUT instead
of OUTPUT_PLUGIN_BINARY_OUTPUT in the startup callback. In that case, all the data has to be in the
server's encoding so that a text datum can contain it. This is checked in assertion-enabled builds.

47.6.4. Output Plugin Callbacks
An output plugin gets notified about changes that are happening via various callbacks it needs to provide.

1396

Logical Decoding

Concurrent transactions are decoded in commit order, and only changes belonging to a specific transac-
tion are decoded between the begin and commit callbacks. Transactions that were rolled back explicitly
or implicitly never get decoded. Successful savepoints are folded into the transaction containing them
in the order they were executed within that transaction. A transaction that is prepared for a two-phase
commit using PREPARE TRANSACTION will also be decoded if the output plugin callbacks needed for de-
coding them are provided. It is possible that the current prepared transaction which is being decoded is
aborted concurrently via a ROLLBACK PREPARED command. In that case, the logical decoding of this trans-
action will be aborted too. All the changes of such a transaction are skipped once the abort is detected
and the prepare_cb callback is invoked. Thus even in case of a concurrent abort, enough information is
provided to the output plugin for it to properly deal with ROLLBACK PREPARED once that is decoded.

Note
Only transactions that have already safely been flushed to disk will be decoded. That can lead to a
COMMIT not immediately being decoded in a directly following pg_logical_slot_get_changes()
when synchronous_commit is set to off.

47.6.4.1. Startup Callback
The optional startup_cb callback is called whenever a replication slot is created or asked to stream
changes, independent of the number of changes that are ready to be put out.

typedef void (*LogicalDecodeStartupCB) (struct LogicalDecodingContext *ctx,
 OutputPluginOptions *options,
 bool is_init);

The is_init parameter will be true when the replication slot is being created and false otherwise.
options points to a struct of options that output plugins can set:

typedef struct OutputPluginOptions
{
 OutputPluginOutputType output_type;
 bool receive_rewrites;
} OutputPluginOptions;

output_type has to either be set to OUTPUT_PLUGIN_TEXTUAL_OUTPUT or OUTPUT_PLUGIN_BINARY_OUT-
PUT. See also Section 47.6.3. If receive_rewrites is true, the output plugin will also be called for
changes made by heap rewrites during certain DDL operations. These are of interest to plugins that
handle DDL replication, but they require special handling.

The startup callback should validate the options present in ctx->output_plugin_options. If the output
plugin needs to have a state, it can use ctx->output_plugin_private to store it.

47.6.4.2. Shutdown Callback
The optional shutdown_cb callback is called whenever a formerly active replication slot is not used
anymore and can be used to deallocate resources private to the output plugin. The slot isn't necessarily
being dropped, streaming is just being stopped.

typedef void (*LogicalDecodeShutdownCB) (struct LogicalDecodingContext *ctx);

47.6.4.3. Transaction Begin Callback
The required begin_cb callback is called whenever a start of a committed transaction has been decoded.
Aborted transactions and their contents never get decoded.

typedef void (*LogicalDecodeBeginCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

The txn parameter contains meta information about the transaction, like the time stamp at which it has
been committed and its XID.

1397

Logical Decoding

47.6.4.4. Transaction End Callback
The required commit_cb callback is called whenever a transaction commit has been decoded. The
change_cb callbacks for all modified rows will have been called before this, if there have been any mod-
ified rows.

typedef void (*LogicalDecodeCommitCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

47.6.4.5. Change Callback
The required change_cb callback is called for every individual row modification inside a transaction,
may it be an INSERT, UPDATE, or DELETE. Even if the original command modified several rows at once
the callback will be called individually for each row. The change_cb callback may access system or user
catalog tables to aid in the process of outputting the row modification details. In case of decoding a
prepared (but yet uncommitted) transaction or decoding of an uncommitted transaction, this change
callback might also error out due to simultaneous rollback of this very same transaction. In that case,
the logical decoding of this aborted transaction is stopped gracefully.

typedef void (*LogicalDecodeChangeCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 Relation relation,
 ReorderBufferChange *change);

The ctx and txn parameters have the same contents as for the begin_cb and commit_cb callbacks,
but additionally the relation descriptor relation points to the relation the row belongs to and a struct
change describing the row modification are passed in.

Note
Only changes in user defined tables that are not unlogged (see UNLOGGED) and not temporary (see
TEMPORARY or TEMP) can be extracted using logical decoding.

47.6.4.6. Truncate Callback
The optional truncate_cb callback is called for a TRUNCATE command.

typedef void (*LogicalDecodeTruncateCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 int nrelations,
 Relation relations[],
 ReorderBufferChange *change);

The parameters are analogous to the change_cb callback. However, because TRUNCATE actions on tables
connected by foreign keys need to be executed together, this callback receives an array of relations
instead of just a single one. See the description of the TRUNCATE statement for details.

47.6.4.7. Origin Filter Callback
The optional filter_by_origin_cb callback is called to determine whether data that has been replayed
from origin_id is of interest to the output plugin.

typedef bool (*LogicalDecodeFilterByOriginCB) (struct LogicalDecodingContext *ctx,
 RepOriginId origin_id);

The ctx parameter has the same contents as for the other callbacks. No information but the origin is
available. To signal that changes originating on the passed in node are irrelevant, return true, causing
them to be filtered away; false otherwise. The other callbacks will not be called for transactions and
changes that have been filtered away.

1398

Logical Decoding

This is useful when implementing cascading or multidirectional replication solutions. Filtering by the
origin allows to prevent replicating the same changes back and forth in such setups. While transactions
and changes also carry information about the origin, filtering via this callback is noticeably more effi-
cient.

47.6.4.8. Generic Message Callback
The optional message_cb callback is called whenever a logical decoding message has been decoded.
typedef void (*LogicalDecodeMessageCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr message_lsn,
 bool transactional,
 const char *prefix,
 Size message_size,
 const char *message);

The txn parameter contains meta information about the transaction, like the time stamp at which it has
been committed and its XID. Note however that it can be NULL when the message is non-transactional
and the XID was not assigned yet in the transaction which logged the message. The lsn has WAL location
of the message. The transactional says if the message was sent as transactional or not. Similar to the
change callback, in case of decoding a prepared (but yet uncommitted) transaction or decoding of an
uncommitted transaction, this message callback might also error out due to simultaneous rollback of this
very same transaction. In that case, the logical decoding of this aborted transaction is stopped gracefully.
The prefix is arbitrary null-terminated prefix which can be used for identifying interesting messages for
the current plugin. And finally the message parameter holds the actual message of message_size size.

Extra care should be taken to ensure that the prefix the output plugin considers interesting is unique.
Using name of the extension or the output plugin itself is often a good choice.

47.6.4.9. Prepare Filter Callback
The optional filter_prepare_cb callback is called to determine whether data that is part of the current
two-phase commit transaction should be considered for decoding at this prepare stage or later as a
regular one-phase transaction at COMMIT PREPARED time. To signal that decoding should be skipped,
return true; false otherwise. When the callback is not defined, false is assumed (i.e. no filtering, all
transactions using two-phase commit are decoded in two phases as well).
typedef bool (*LogicalDecodeFilterPrepareCB) (struct LogicalDecodingContext *ctx,
 TransactionId xid,
 const char *gid);

The ctx parameter has the same contents as for the other callbacks. The parameters xid and gid provide
two different ways to identify the transaction. The later COMMIT PREPARED or ROLLBACK PREPARED carries
both identifiers, providing an output plugin the choice of what to use.

The callback may be invoked multiple times per transaction to decode and must provide the same static
answer for a given pair of xid and gid every time it is called.

47.6.4.10. Transaction Begin Prepare Callback
The required begin_prepare_cb callback is called whenever the start of a prepared transaction has
been decoded. The gid field, which is part of the txn parameter, can be used in this callback to check if
the plugin has already received this PREPARE in which case it can either error out or skip the remaining
changes of the transaction.
typedef void (*LogicalDecodeBeginPrepareCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

47.6.4.11. Transaction Prepare Callback
The required prepare_cb callback is called whenever a transaction which is prepared for two-phase
commit has been decoded. The change_cb callback for all modified rows will have been called before

1399

Logical Decoding

this, if there have been any modified rows. The gid field, which is part of the txn parameter, can be
used in this callback.

typedef void (*LogicalDecodePrepareCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr prepare_lsn);

47.6.4.12. Transaction Commit Prepared Callback
The required commit_prepared_cb callback is called whenever a transaction COMMIT PREPARED has been
decoded. The gid field, which is part of the txn parameter, can be used in this callback.

typedef void (*LogicalDecodeCommitPreparedCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

47.6.4.13. Transaction Rollback Prepared Callback
The required rollback_prepared_cb callback is called whenever a transaction ROLLBACK PREPARED has
been decoded. The gid field, which is part of the txn parameter, can be used in this callback. The para-
meters prepare_end_lsn and prepare_time can be used to check if the plugin has received this PREPARE
TRANSACTION in which case it can apply the rollback, otherwise, it can skip the rollback operation. The
gid alone is not sufficient because the downstream node can have a prepared transaction with same
identifier.

typedef void (*LogicalDecodeRollbackPreparedCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr prepare_end_lsn,
 TimestampTz prepare_time);

47.6.4.14. Stream Start Callback
The required stream_start_cb callback is called when opening a block of streamed changes from an
in-progress transaction.

typedef void (*LogicalDecodeStreamStartCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

47.6.4.15. Stream Stop Callback
The required stream_stop_cb callback is called when closing a block of streamed changes from an in-
progress transaction.

typedef void (*LogicalDecodeStreamStopCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

47.6.4.16. Stream Abort Callback
The required stream_abort_cb callback is called to abort a previously streamed transaction.

typedef void (*LogicalDecodeStreamAbortCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr abort_lsn);

47.6.4.17. Stream Prepare Callback
The stream_prepare_cb callback is called to prepare a previously streamed transaction as part of a two-
phase commit. This callback is required when the output plugin supports both the streaming of large
in-progress transactions and two-phase commits.

typedef void (*LogicalDecodeStreamPrepareCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr prepare_lsn);

1400

Logical Decoding

47.6.4.18. Stream Commit Callback
The required stream_commit_cb callback is called to commit a previously streamed transaction.

typedef void (*LogicalDecodeStreamCommitCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

47.6.4.19. Stream Change Callback
The required stream_change_cb callback is called when sending a change in a block of streamed changes
(demarcated by stream_start_cb and stream_stop_cb calls). The actual changes are not displayed as
the transaction can abort at a later point in time and we don't decode changes for aborted transactions.

typedef void (*LogicalDecodeStreamChangeCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 Relation relation,
 ReorderBufferChange *change);

47.6.4.20. Stream Message Callback
The optional stream_message_cb callback is called when sending a generic message in a block of
streamed changes (demarcated by stream_start_cb and stream_stop_cb calls). The message contents
for transactional messages are not displayed as the transaction can abort at a later point in time and
we don't decode changes for aborted transactions.

typedef void (*LogicalDecodeStreamMessageCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr message_lsn,
 bool transactional,
 const char *prefix,
 Size message_size,
 const char *message);

47.6.4.21. Stream Truncate Callback
The optional stream_truncate_cb callback is called for a TRUNCATE command in a block of streamed
changes (demarcated by stream_start_cb and stream_stop_cb calls).

typedef void (*LogicalDecodeStreamTruncateCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 int nrelations,
 Relation relations[],
 ReorderBufferChange *change);

The parameters are analogous to the stream_change_cb callback. However, because TRUNCATE actions
on tables connected by foreign keys need to be executed together, this callback receives an array of
relations instead of just a single one. See the description of the TRUNCATE statement for details.

47.6.5. Functions for Producing Output
To actually produce output, output plugins can write data to the StringInfo output buffer in ctx->out
when inside the begin_cb, commit_cb, or change_cb callbacks. Before writing to the output buffer, Out-
putPluginPrepareWrite(ctx, last_write) has to be called, and after finishing writing to the buffer,
OutputPluginWrite(ctx, last_write) has to be called to perform the write. The last_write indicates
whether a particular write was the callback's last write.

The following example shows how to output data to the consumer of an output plugin:

OutputPluginPrepareWrite(ctx, true);
appendStringInfo(ctx->out, "BEGIN %u", txn->xid);
OutputPluginWrite(ctx, true);

1401

Logical Decoding

47.7. Logical Decoding Output Writers
It is possible to add more output methods for logical decoding. For details, see src/backend/replica-
tion/logical/logicalfuncs.c. Essentially, three functions need to be provided: one to read WAL, one
to prepare writing output, and one to write the output (see Section 47.6.5).

47.8. Synchronous Replication Support for Logical Decod-
ing
47.8.1. Overview

Logical decoding can be used to build synchronous replication solutions with the same user interface as
synchronous replication for streaming replication. To do this, the streaming replication interface (see
Section 47.3) must be used to stream out data. Clients have to send Standby status update (F) (see
Section 54.4) messages, just like streaming replication clients do.

Note
A synchronous replica receiving changes via logical decoding will work in the scope of a single
database. Since, in contrast to that, synchronous_standby_names currently is server wide, this
means this technique will not work properly if more than one database is actively used.

47.8.2. Caveats
In synchronous replication setup, a deadlock can happen, if the transaction has locked [user] catalog
tables exclusively. See Section 47.6.2 for information on user catalog tables. This is because logical
decoding of transactions can lock catalog tables to access them. To avoid this users must refrain from
taking an exclusive lock on [user] catalog tables. This can happen in the following ways:
• Issuing an explicit LOCK on pg_class in a transaction.
• Perform CLUSTER on pg_class in a transaction.
• PREPARE TRANSACTION after LOCK command on pg_class and allow logical decoding of two-phase

transactions.
• PREPARE TRANSACTION after CLUSTER command on pg_trigger and allow logical decoding of two-

phase transactions. This will lead to deadlock only when published table have a trigger.
• Executing TRUNCATE on [user] catalog table in a transaction.
Note that these commands can cause deadlocks not only for the system catalog tables listed above but
for other catalog tables.

47.9. Streaming of Large Transactions for Logical Decod-
ing

The basic output plugin callbacks (e.g., begin_cb, change_cb, commit_cb and message_cb) are only in-
voked when the transaction actually commits. The changes are still decoded from the transaction log,
but are only passed to the output plugin at commit (and discarded if the transaction aborts).

This means that while the decoding happens incrementally, and may spill to disk to keep memory usage
under control, all the decoded changes have to be transmitted when the transaction finally commits (or
more precisely, when the commit is decoded from the transaction log). Depending on the size of the
transaction and network bandwidth, the transfer time may significantly increase the apply lag.

To reduce the apply lag caused by large transactions, an output plugin may provide additional
callback to support incremental streaming of in-progress transactions. There are multiple required

1402

Logical Decoding

streaming callbacks (stream_start_cb, stream_stop_cb, stream_abort_cb, stream_commit_cb and
stream_change_cb) and two optional callbacks (stream_message_cb and stream_truncate_cb). Also, if
streaming of two-phase commands is to be supported, then additional callbacks must be provided. (See
Section 47.10 for details).

When streaming an in-progress transaction, the changes (and messages) are streamed in blocks demar-
cated by stream_start_cb and stream_stop_cb callbacks. Once all the decoded changes are transmit-
ted, the transaction can be committed using the stream_commit_cb callback (or possibly aborted using
the stream_abort_cb callback). If two-phase commits are supported, the transaction can be prepared
using the stream_prepare_cb callback, COMMIT PREPARED using the commit_prepared_cb callback or
aborted using the rollback_prepared_cb.

One example sequence of streaming callback calls for one transaction may look like this:

stream_start_cb(...); <-- start of first block of changes
 stream_change_cb(...);
 stream_change_cb(...);
 stream_message_cb(...);
 stream_change_cb(...);
 ...
 stream_change_cb(...);
stream_stop_cb(...); <-- end of first block of changes

stream_start_cb(...); <-- start of second block of changes
 stream_change_cb(...);
 stream_change_cb(...);
 stream_change_cb(...);
 ...
 stream_message_cb(...);
 stream_change_cb(...);
stream_stop_cb(...); <-- end of second block of changes

[a. when using normal commit]
stream_commit_cb(...); <-- commit of the streamed transaction

[b. when using two-phase commit]
stream_prepare_cb(...); <-- prepare the streamed transaction
commit_prepared_cb(...); <-- commit of the prepared transaction

The actual sequence of callback calls may be more complicated, of course. There may be blocks for
multiple streamed transactions, some of the transactions may get aborted, etc.

Similar to spill-to-disk behavior, streaming is triggered when the total amount of changes decoded from
the WAL (for all in-progress transactions) exceeds the limit defined by logical_decoding_work_mem
setting. At that point, the largest top-level transaction (measured by the amount of memory currently
used for decoded changes) is selected and streamed. However, in some cases we still have to spill to
disk even if streaming is enabled because we exceed the memory threshold but still have not decoded
the complete tuple e.g., only decoded toast table insert but not the main table insert.

Even when streaming large transactions, the changes are still applied in commit order, preserving the
same guarantees as the non-streaming mode.

47.10. Two-phase Commit Support for Logical Decoding
With the basic output plugin callbacks (eg., begin_cb, change_cb, commit_cb and message_cb) two-
phase commit commands like PREPARE TRANSACTION, COMMIT PREPARED and ROLLBACK PREPARED are
not decoded. While the PREPARE TRANSACTION is ignored, COMMIT PREPARED is decoded as a COMMIT and
ROLLBACK PREPARED is decoded as a ROLLBACK.

1403

Logical Decoding

To support the streaming of two-phase commands, an output plugin needs to provide additional call-
backs. There are multiple two-phase commit callbacks that are required, (begin_prepare_cb, pre-
pare_cb, commit_prepared_cb, rollback_prepared_cb and stream_prepare_cb) and an optional call-
back (filter_prepare_cb).

If the output plugin callbacks for decoding two-phase commit commands are provided, then on PREPARE
TRANSACTION, the changes of that transaction are decoded, passed to the output plugin, and the pre-
pare_cb callback is invoked. This differs from the basic decoding setup where changes are only passed
to the output plugin when a transaction is committed. The start of a prepared transaction is indicated
by the begin_prepare_cb callback.

When a prepared transaction is rolled back using the ROLLBACK PREPARED, then the rollback_pre-
pared_cb callback is invoked and when the prepared transaction is committed using COMMIT PREPARED,
then the commit_prepared_cb callback is invoked.

Optionally the output plugin can define filtering rules via filter_prepare_cb to decode only specific
transaction in two phases. This can be achieved by pattern matching on the gid or via lookups using
the xid.

The users that want to decode prepared transactions need to be careful about below mentioned points:
• If the prepared transaction has locked [user] catalog tables exclusively then decoding prepare can

block till the main transaction is committed.
• The logical replication solution that builds distributed two phase commit using this feature can

deadlock if the prepared transaction has locked [user] catalog tables exclusively. To avoid this
users must refrain from having locks on catalog tables (e.g. explicit LOCK command) in such trans-
actions. See Section 47.8.2 for the details.

1404

Chapter 48. Replication Progress Tracking
Replication origins are intended to make it easier to implement logical replication solutions on top of
logical decoding. They provide a solution to two common problems:
• How to safely keep track of replication progress
• How to change replication behavior based on the origin of a row; for example, to prevent loops in

bi-directional replication setups

Replication origins have just two properties, a name and an ID. The name, which is what should be
used to refer to the origin across systems, is free-form text. It should be used in a way that makes
conflicts between replication origins created by different replication solutions unlikely; e.g., by prefixing
the replication solution's name to it. The ID is used only to avoid having to store the long version in
situations where space efficiency is important. It should never be shared across systems.

Replication origins can be created using the function pg_replication_origin_create(); dropped using
pg_replication_origin_drop(); and seen in the pg_replication_origin system catalog.

One nontrivial part of building a replication solution is to keep track of replay progress in a safe manner.
When the applying process, or the whole cluster, dies, it needs to be possible to find out up to where
data has successfully been replicated. Naive solutions to this, such as updating a row in a table for every
replayed transaction, have problems like run-time overhead and database bloat.

Using the replication origin infrastructure a session can be marked as replaying from a remote node
(using the pg_replication_origin_session_setup() function). Additionally the LSN and commit time
stamp of every source transaction can be configured on a per transaction basis using pg_replica-
tion_origin_xact_setup(). If that's done replication progress will persist in a crash safe manner. Re-
play progress for all replication origins can be seen in the pg_replication_origin_status view. An
individual origin's progress, e.g., when resuming replication, can be acquired using pg_replication_o-
rigin_progress() for any origin or pg_replication_origin_session_progress() for the origin con-
figured in the current session.

In replication topologies more complex than replication from exactly one system to one other system,
another problem can be that it is hard to avoid replicating replayed rows again. That can lead both to
cycles in the replication and inefficiencies. Replication origins provide an optional mechanism to recog-
nize and prevent that. When configured using the functions referenced in the previous paragraph, every
change and transaction passed to output plugin callbacks (see Section 47.6) generated by the session
is tagged with the replication origin of the generating session. This allows treating them differently in
the output plugin, e.g., ignoring all but locally-originating rows. Additionally the filter_by_origin_cb
callback can be used to filter the logical decoding change stream based on the source. While less flexible,
filtering via that callback is considerably more efficient than doing it in the output plugin.

1405

Chapter 49. Archive Modules
PostgreSQL provides infrastructure to create custom modules for continuous archiving (see Sec-
tion 25.3). While archiving via a shell command (i.e., archive_command) is much simpler, a custom
archive module will often be considerably more robust and performant.

When a custom archive_library is configured, PostgreSQL will submit completed WAL files to the module,
and the server will avoid recycling or removing these WAL files until the module indicates that the files
were successfully archived. It is ultimately up to the module to decide what to do with each WAL file,
but many recommendations are listed at Section 25.3.1.

Archiving modules must at least consist of an initialization function (see Section 49.1) and the required
callbacks (see Section 49.2). However, archive modules are also permitted to do much more (e.g., declare
GUCs and register background workers).

The contrib/basic_archive module contains a working example, which demonstrates some useful tech-
niques.

49.1. Initialization Functions
An archive library is loaded by dynamically loading a shared library with the archive_library's name
as the library base name. The normal library search path is used to locate the library. To provide the
required archive module callbacks and to indicate that the library is actually an archive module, it needs
to provide a function named _PG_archive_module_init. The result of the function must be a pointer to
a struct of type ArchiveModuleCallbacks, which contains everything that the core code needs to know
to make use of the archive module. The return value needs to be of server lifetime, which is typically
achieved by defining it as a static const variable in global scope.

typedef struct ArchiveModuleCallbacks
{
 ArchiveStartupCB startup_cb;
 ArchiveCheckConfiguredCB check_configured_cb;
 ArchiveFileCB archive_file_cb;
 ArchiveShutdownCB shutdown_cb;
} ArchiveModuleCallbacks;
typedef const ArchiveModuleCallbacks *(*ArchiveModuleInit) (void);

Only the archive_file_cb callback is required. The others are optional.

49.2. Archive Module Callbacks
The archive callbacks define the actual archiving behavior of the module. The server will call them as
required to process each individual WAL file.

49.2.1. Startup Callback
The startup_cb callback is called shortly after the module is loaded. This callback can be used to per-
form any additional initialization required. If the archive module has any state, it can use state->pri-
vate_data to store it.

typedef void (*ArchiveStartupCB) (ArchiveModuleState *state);

49.2.2. Check Callback
The check_configured_cb callback is called to determine whether the module is fully configured and
ready to accept WAL files (e.g., its configuration parameters are set to valid values). If no check_con-
figured_cb is defined, the server always assumes the module is configured.

typedef bool (*ArchiveCheckConfiguredCB) (ArchiveModuleState *state);

1406

Archive Modules

If true is returned, the server will proceed with archiving the file by calling the archive_file_cb call-
back. If false is returned, archiving will not proceed, and the archiver will emit the following message
to the server log:

WARNING: archive_mode enabled, yet archiving is not configured

In the latter case, the server will periodically call this function, and archiving will proceed only when
it returns true.

Note
When returning false, it may be useful to append some additional information to the generic
warning message. To do that, provide a message to the arch_module_check_errdetail macro
before returning false. Like errdetail(), this macro accepts a format string followed by an
optional list of arguments. The resulting string will be emitted as the DETAIL line of the warning
message.

49.2.3. Archive Callback
The archive_file_cb callback is called to archive a single WAL file.

typedef bool (*ArchiveFileCB) (ArchiveModuleState *state, const char *file, const char
 *path);

If true is returned, the server proceeds as if the file was successfully archived, which may include
recycling or removing the original WAL file. If false is returned or an error is thrown, the server will
keep the original WAL file and retry archiving later. file will contain just the file name of the WAL file
to archive, while path contains the full path of the WAL file (including the file name).

Note
The archive_file_cb callback is called in a short-lived memory context that will be reset between
invocations. If you need longer-lived storage, create a memory context in the module's startup_cb
callback.

49.2.4. Shutdown Callback
The shutdown_cb callback is called when the archiver process exits (e.g., after an error) or the value of
archive_library changes. If no shutdown_cb is defined, no special action is taken in these situations. If
the archive module has any state, this callback should free it to avoid leaks.

typedef void (*ArchiveShutdownCB) (ArchiveModuleState *state);

1407

Chapter 50. OAuth Validator Modules
PostgreSQL provides infrastructure for creating custom modules to perform server-side validation of
OAuth bearer tokens. Because OAuth implementations vary so wildly, and bearer token validation is
heavily dependent on the issuing party, the server cannot check the token itself; validator modules
provide the integration layer between the server and the OAuth provider in use.

OAuth validator modules must at least consist of an initialization function (see Section 50.2) and the
required callback for performing validation (see Section 50.3.2).

Warning
Since a misbehaving validator might let unauthorized users into the database, correct implemen-
tation is crucial for server safety. See Section 50.1 for design considerations.

50.1. Safely Designing a Validator Module

Warning
Read and understand the entirety of this section before implementing a validator module. A mal-
functioning validator is potentially worse than no authentication at all, both because of the false
sense of security it provides, and because it may contribute to attacks against other pieces of an
OAuth ecosystem.

50.1.1. Validator Responsibilities
Although different modules may take very different approaches to token validation, implementations
generally need to perform three separate actions:

Validate the Token

The validator must first ensure that the presented token is in fact a valid Bearer token for use in client
authentication. The correct way to do this depends on the provider, but it generally involves either
cryptographic operations to prove that the token was created by a trusted party (offline validation),
or the presentation of the token to that trusted party so that it can perform validation for you (online
validation).

Online validation, usually implemented via OAuth Token Introspection, requires fewer steps of a
validator module and allows central revocation of a token in the event that it is stolen or misissued.
However, it does require the module to make at least one network call per authentication attempt (all
of which must complete within the configured authentication_timeout). Additionally, your provider
may not provide introspection endpoints for use by external resource servers.

Offline validation is much more involved, typically requiring a validator to maintain a list of trusted
signing keys for a provider and then check the token's cryptographic signature along with its con-
tents. Implementations must follow the provider's instructions to the letter, including any verification
of issuer ("where is this token from?"), audience ("who is this token for?"), and validity period ("when
can this token be used?"). Since there is no communication between the module and the provider,
tokens cannot be centrally revoked using this method; offline validator implementations may wish
to place restrictions on the maximum length of a token's validity period.

If the token cannot be validated, the module should immediately fail. Further authentication/autho-
rization is pointless if the bearer token wasn't issued by a trusted party.

1408

https://datatracker.ietf.org/doc/html/rfc7662

OAuth Validator Modules

Authorize the Client

Next the validator must ensure that the end user has given the client permission to access the server
on their behalf. This generally involves checking the scopes that have been assigned to the token, to
make sure that they cover database access for the current HBA parameters.

The purpose of this step is to prevent an OAuth client from obtaining a token under false pretenses.
If the validator requires all tokens to carry scopes that cover database access, the provider should
then loudly prompt the user to grant that access during the flow. This gives them the opportunity to
reject the request if the client isn't supposed to be using their credentials to connect to databases.

While it is possible to establish client authorization without explicit scopes by using out-of-band
knowledge of the deployed architecture, doing so removes the user from the loop, which prevents
them from catching deployment mistakes and allows any such mistakes to be exploited silently. Ac-
cess to the database must be tightly restricted to only trusted clients 1 if users are not prompted
for additional scopes.

Even if authorization fails, a module may choose to continue to pull authentication information from
the token for use in auditing and debugging.

Authenticate the End User

Finally, the validator should determine a user identifier for the token, either by asking the provider
for this information or by extracting it from the token itself, and return that identifier to the server
(which will then make a final authorization decision using the HBA configuration). This identifier will
be available within the session via system_user and recorded in the server logs if log_connections
is enabled.

Different providers may record a variety of different authentication information for an end user, typi-
cally referred to as claims. Providers usually document which of these claims are trustworthy enough
to use for authorization decisions and which are not. (For instance, it would probably not be wise
to use an end user's full name as the identifier for authentication, since many providers allow users
to change their display names arbitrarily.) Ultimately, the choice of which claim (or combination of
claims) to use comes down to the provider implementation and application requirements.

Note that anonymous/pseudonymous login is possible as well, by enabling usermap delegation; see
Section 50.1.3.

50.1.2. General Coding Guidelines
Developers should keep the following in mind when implementing token validation:

Token Confidentiality

Modules should not write tokens, or pieces of tokens, into the server log. This is true even if the
module considers the token invalid; an attacker who confuses a client into communicating with the
wrong provider should not be able to retrieve that (otherwise valid) token from the disk.

Implementations that send tokens over the network (for example, to perform online token validation
with a provider) must authenticate the peer and ensure that strong transport security is in use.

Logging

Modules may use the same logging facilities as standard extensions; however, the rules for emitting
log entries to the client are subtly different during the authentication phase of the connection. Gen-
erally speaking, modules should log verification problems at the COMMERROR level and return normal-
ly, instead of using ERROR/FATAL to unwind the stack, to avoid leaking information to unauthenticated
clients.

1 That is, "trusted" in the sense that the OAuth client and the PostgreSQL server are controlled by the same entity. Notably, the Device Authorization client flow
supported by libpq does not usually meet this bar, since it's designed for use by public/untrusted clients.

1409

OAuth Validator Modules

Interruptibility
Modules must remain interruptible by signals so that the server can correctly handle authentica-
tion timeouts and shutdown signals from pg_ctl. For example, blocking calls on sockets should gen-
erally be replaced with code that handles both socket events and interrupts without races (see
WaitLatchOrSocket(), WaitEventSetWait(), et al), and long-running loops should periodically call
CHECK_FOR_INTERRUPTS(). Failure to follow this guidance may result in unresponsive backend ses-
sions.

Testing
The breadth of testing an OAuth system is well beyond the scope of this documentation, but at min-
imum, negative testing should be considered mandatory. It's trivial to design a module that lets au-
thorized users in; the whole point of the system is to keep unauthorized users out.

Documentation
Validator implementations should document the contents and format of the authenticated ID that is
reported to the server for each end user, since DBAs may need to use this information to construct
pg_ident maps. (For instance, is it an email address? an organizational ID number? a UUID?) They
should also document whether or not it is safe to use the module in delegate_ident_mapping=1
mode, and what additional configuration is required in order to do so.

50.1.3. Authorizing Users (Usermap Delegation)
The standard deliverable of a validation module is the user identifier, which the server will then compare
to any configured pg_ident.conf mappings and determine whether the end user is authorized to con-
nect. However, OAuth is itself an authorization framework, and tokens may carry information about user
privileges. For example, a token may be associated with the organizational groups that a user belongs
to, or list the roles that a user may assume, and duplicating that knowledge into local usermaps for every
server may not be desirable.

To bypass username mapping entirely, and have the validator module assume the additional responsi-
bility of authorizing user connections, the HBA may be configured with delegate_ident_mapping. The
module may then use token scopes or an equivalent method to decide whether the user is allowed to
connect under their desired role. The user identifier will still be recorded by the server, but it plays no
part in determining whether to continue the connection.

Using this scheme, authentication itself is optional. As long as the module reports that the connection is
authorized, login will continue even if there is no recorded user identifier at all. This makes it possible
to implement anonymous or pseudonymous access to the database, where the third-party provider per-
forms all necessary authentication but does not provide any user-identifying information to the server.
(Some providers may create an anonymized ID number that can be recorded instead, for later auditing.)

Usermap delegation provides the most architectural flexibility, but it turns the validator module into a
single point of failure for connection authorization. Use with caution.

50.2. Initialization Functions
OAuth validator modules are dynamically loaded from the shared libraries listed in oauth_validator_li-
braries. Modules are loaded on demand when requested from a login in progress. The normal library
search path is used to locate the library. To provide the validator callbacks and to indicate that the li-
brary is an OAuth validator module a function named _PG_oauth_validator_module_init must be pro-
vided. The return value of the function must be a pointer to a struct of type OAuthValidatorCallbacks,
which contains a magic number and pointers to the module's token validation functions. The returned
pointer must be of server lifetime, which is typically achieved by defining it as a static const variable
in global scope.

typedef struct OAuthValidatorCallbacks
{
 uint32 magic; /* must be set to PG_OAUTH_VALIDATOR_MAGIC */

1410

OAuth Validator Modules

 ValidatorStartupCB startup_cb;
 ValidatorShutdownCB shutdown_cb;
 ValidatorValidateCB validate_cb;
} OAuthValidatorCallbacks;

typedef const OAuthValidatorCallbacks *(*OAuthValidatorModuleInit) (void);

Only the validate_cb callback is required, the others are optional.

50.3. OAuth Validator Callbacks
OAuth validator modules implement their functionality by defining a set of callbacks. The server will call
them as required to process the authentication request from the user.

50.3.1. Startup Callback
The startup_cb callback is executed directly after loading the module. This callback can be used to set
up local state and perform additional initialization if required. If the validator module has state it can
use state->private_data to store it.

typedef void (*ValidatorStartupCB) (ValidatorModuleState *state);

50.3.2. Validate Callback
The validate_cb callback is executed during the OAuth exchange when a user attempts to authenticate
using OAuth. Any state set in previous calls will be available in state->private_data.

typedef bool (*ValidatorValidateCB) (const ValidatorModuleState *state,
 const char *token, const char *role,
 ValidatorModuleResult *result);

token will contain the bearer token to validate. PostgreSQL has ensured that the token is well-formed
syntactically, but no other validation has been performed. role will contain the role the user has request-
ed to log in as. The callback must set output parameters in the result struct, which is defined as below:

typedef struct ValidatorModuleResult
{
 bool authorized;
 char *authn_id;
} ValidatorModuleResult;

The connection will only proceed if the module sets result->authorized to true. To authenticate the
user, the authenticated user name (as determined using the token) shall be palloc'd and returned in the
result->authn_id field. Alternatively, result->authn_id may be set to NULL if the token is valid but
the associated user identity cannot be determined.

A validator may return false to signal an internal error, in which case any result parameters are ignored
and the connection fails. Otherwise the validator should return true to indicate that it has processed
the token and made an authorization decision.

The behavior after validate_cb returns depends on the specific HBA setup. Normally, the result->au-
thn_id user name must exactly match the role that the user is logging in as. (This behavior may be
modified with a usermap.) But when authenticating against an HBA rule with delegate_ident_mapping
turned on, PostgreSQL will not perform any checks on the value of result->authn_id at all; in this case
it is up to the validator to ensure that the token carries enough privileges for the user to log in under
the indicated role.

50.3.3. Shutdown Callback
The shutdown_cb callback is executed when the backend process associated with the connection exits.
If the validator module has any allocated state, this callback should free it to avoid resource leaks.

1411

OAuth Validator Modules

typedef void (*ValidatorShutdownCB) (ValidatorModuleState *state);

1412

Part VI. Reference
The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and
formal summary about their respective subjects. More information about the use of PostgreSQL, in nar-
rative, tutorial, or example form, can be found in other parts of this book. See the cross-references listed
on each reference page.

The reference entries are also available as traditional “man” pages.

SQL Commands
This part contains reference information for the SQL commands supported by PostgreSQL. By “SQL” the
language in general is meant; information about the standards conformance and compatibility of each
command can be found on the respective reference page.

1414

ABORT
ABORT — abort the current transaction

Synopsis
ABORT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
ABORT rolls back the current transaction and causes all the updates made by the transaction to be dis-
carded. This command is identical in behavior to the standard SQL command ROLLBACK, and is present
only for historical reasons.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction char-
acteristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ABORT outside of a transaction block emits a warning and otherwise has no effect.

Examples
To abort all changes:

ABORT;

Compatibility
This command is a PostgreSQL extension present for historical reasons. ROLLBACK is the equivalent
standard SQL command.

See Also
BEGIN, COMMIT, ROLLBACK

1415

ALTER AGGREGATE
ALTER AGGREGATE — change the definition of an aggregate function

Synopsis
ALTER AGGREGATE name (aggregate_signature) RENAME TO new_name
ALTER AGGREGATE name (aggregate_signature)
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER AGGREGATE name (aggregate_signature) SET SCHEMA new_schema

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the schema of an aggregate
function, you must also have CREATE privilege on the new schema. To alter the owner, you must be
able to SET ROLE to the new owning role, and that role must have CREATE privilege on the aggregate
function's schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't
do by dropping and recreating the aggregate function. However, a superuser can alter ownership of any
aggregate function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that ALTER AGGREGATE does not actually pay any attention to argu-
ment names, since only the argument data types are needed to determine the aggregate function's
identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument aggre-
gate function, write * in place of the list of argument specifications. To reference an ordered-set
aggregate function, write ORDER BY between the direct and aggregated argument specifications.

new_name

The new name of the aggregate function.

new_owner

The new owner of the aggregate function.

new_schema

The new schema for the aggregate function.

1416

ALTER AGGREGATE

Notes
The recommended syntax for referencing an ordered-set aggregate is to write ORDER BY between the
direct and aggregated argument specifications, in the same style as in CREATE AGGREGATE. However,
it will also work to omit ORDER BY and just run the direct and aggregated argument specifications into
a single list. In this abbreviated form, if VARIADIC "any" was used in both the direct and aggregated
argument lists, write VARIADIC "any" only once.

Examples
To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;

To move the ordered-set aggregate mypercentile with direct argument of type float8 and aggregated
argument of type integer into schema myschema:

ALTER AGGREGATE mypercentile(float8 ORDER BY integer) SET SCHEMA myschema;

This will work too:

ALTER AGGREGATE mypercentile(float8, integer) SET SCHEMA myschema;

Compatibility
There is no ALTER AGGREGATE statement in the SQL standard.

See Also
CREATE AGGREGATE, DROP AGGREGATE

1417

ALTER COLLATION
ALTER COLLATION — change the definition of a collation

Synopsis
ALTER COLLATION name REFRESH VERSION

ALTER COLLATION name RENAME TO new_name
ALTER COLLATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER COLLATION name SET SCHEMA new_schema

Description
ALTER COLLATION changes the definition of a collation.

You must own the collation to use ALTER COLLATION. To alter the owner, you must be able to SET ROLE to
the new owning role, and that role must have CREATE privilege on the collation's schema. (These restric-
tions enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating
the collation. However, a superuser can alter ownership of any collation anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing collation.

new_name

The new name of the collation.

new_owner

The new owner of the collation.

new_schema

The new schema for the collation.

REFRESH VERSION

Update the collation's version. See Notes below.

Notes
When a collation object is created, the provider-specific version of the collation is recorded in the system
catalog. When the collation is used, the current version is checked against the recorded version, and a
warning is issued when there is a mismatch, for example:

WARNING: collation "xx-x-icu" has version mismatch
DETAIL: The collation in the database was created using version 1.2.3.4, but the
 operating system provides version 2.3.4.5.
HINT: Rebuild all objects affected by this collation and run ALTER COLLATION
 pg_catalog."xx-x-icu" REFRESH VERSION, or build PostgreSQL with the right library
 version.

A change in collation definitions can lead to corrupt indexes and other problems because the database
system relies on stored objects having a certain sort order. Generally, this should be avoided, but it
can happen in legitimate circumstances, such as when upgrading the operating system to a new major
version or when using pg_upgrade to upgrade to server binaries linked with a newer version of ICU.

1418

ALTER COLLATION

When this happens, all objects depending on the collation should be rebuilt, for example, using REINDEX.
When that is done, the collation version can be refreshed using the command ALTER COLLATION ...
REFRESH VERSION. This will update the system catalog to record the current collation version and will
make the warning go away. Note that this does not actually check whether all affected objects have
been rebuilt correctly.

When using collations provided by libc, version information is recorded on systems using the GNU C
library (most Linux systems), FreeBSD and Windows. When using collations provided by ICU, the version
information is provided by the ICU library and is available on all platforms.

Note
When using the GNU C library for collations, the C library's version is used as a proxy for the
collation version. Many Linux distributions change collation definitions only when upgrading the
C library, but this approach is imperfect as maintainers are free to back-port newer collation
definitions to older C library releases.

When using Windows for collations, version information is only available for collations defined
with BCP 47 language tags such as en-US.

For the database default collation, there is an analogous command ALTER DATABASE ... REFRESH COL-
LATION VERSION.

The following query can be used to identify all collations in the current database that need to be refreshed
and the objects that depend on them:

SELECT pg_describe_object(refclassid, refobjid, refobjsubid) AS "Collation",
 pg_describe_object(classid, objid, objsubid) AS "Object"
 FROM pg_depend d JOIN pg_collation c
 ON refclassid = 'pg_collation'::regclass AND refobjid = c.oid
 WHERE c.collversion <> pg_collation_actual_version(c.oid)
 ORDER BY 1, 2;

Examples
To rename the collation de_DE to german:

ALTER COLLATION "de_DE" RENAME TO german;

To change the owner of the collation en_US to joe:

ALTER COLLATION "en_US" OWNER TO joe;

Compatibility
There is no ALTER COLLATION statement in the SQL standard.

See Also
CREATE COLLATION, DROP COLLATION

1419

ALTER CONVERSION
ALTER CONVERSION — change the definition of a conversion

Synopsis
ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER CONVERSION name SET SCHEMA new_schema

Description
ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you must be able to SET
ROLE to the new owning role, and that role must have CREATE privilege on the conversion's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the conversion. However, a superuser can alter ownership of any conversion anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing conversion.

new_name

The new name of the conversion.

new_owner

The new owner of the conversion.

new_schema

The new schema for the conversion.

Examples
To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility
There is no ALTER CONVERSION statement in the SQL standard.

See Also
CREATE CONVERSION, DROP CONVERSION

1420

ALTER DATABASE
ALTER DATABASE — change a database

Synopsis
ALTER DATABASE name [[WITH] option [...]]

where option can be:

 ALLOW_CONNECTIONS allowconn
 CONNECTION LIMIT connlimit
 IS_TEMPLATE istemplate

ALTER DATABASE name RENAME TO new_name

ALTER DATABASE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name REFRESH COLLATION VERSION

ALTER DATABASE name SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET configuration_parameter FROM CURRENT
ALTER DATABASE name RESET configuration_parameter
ALTER DATABASE name RESET ALL

Description
ALTER DATABASE changes the attributes of a database.

The first form changes certain per-database settings. (See below for details.) Only the database owner
or a superuser can change these settings.

The second form changes the name of the database. Only the database owner or a superuser can rename
a database; non-superuser owners must also have the CREATEDB privilege. The current database cannot
be renamed. (Connect to a different database if you need to do that.)

The third form changes the owner of the database. To alter the owner, you must be able to SET ROLE to
the new owning role, and you must have the CREATEDB privilege. (Note that superusers have all these
privileges automatically.)

The fourth form changes the default tablespace of the database. Only the database owner or a superuser
can do this; you must also have create privilege for the new tablespace. This command physically moves
any tables or indexes in the database's old default tablespace to the new tablespace. The new default
tablespace must be empty for this database, and no one can be connected to the database. Tables and
indexes in non-default tablespaces are unaffected. The method used to copy files to the new tablespace
is affected by the file_copy_method setting.

The remaining forms change the session default for a run-time configuration variable for a PostgreSQL
database. Whenever a new session is subsequently started in that database, the specified value becomes
the session default value. The database-specific default overrides whatever setting is present in post-
gresql.conf or has been received from the postgres command line. Only the database owner or a su-
peruser can change the session defaults for a database. Certain variables cannot be set this way, or can
only be set by a superuser.

1421

ALTER DATABASE

Parameters
name

The name of the database whose attributes are to be altered.

allowconn

If false then no one can connect to this database.

connlimit

How many concurrent connections can be made to this database. -1 means no limit.

istemplate

If true, then this database can be cloned by any user with CREATEDB privileges; if false, then only
superusers or the owner of the database can clone it.

new_name

The new name of the database.

new_owner

The new owner of the database.

new_tablespace

The new default tablespace of the database.

This form of the command cannot be executed inside a transaction block.

REFRESH COLLATION VERSION

Update the database collation version. See Notes for background.

configuration_parameter
value

Set this database's session default for the specified configuration parameter to the given value. If
value is DEFAULT or, equivalently, RESET is used, the database-specific setting is removed, so the sys-
tem-wide default setting will be inherited in new sessions. Use RESET ALL to clear all database-spe-
cific settings. SET FROM CURRENT saves the session's current value of the parameter as the data-
base-specific value.

See SET and Chapter 19 for more information about allowed parameter names and values.

Notes
It is also possible to tie a session default to a specific role rather than to a database; see ALTER ROLE.
Role-specific settings override database-specific ones if there is a conflict.

Examples
To disable index scans by default in the database test:

ALTER DATABASE test SET enable_indexscan TO off;

Compatibility
The ALTER DATABASE statement is a PostgreSQL extension.

See Also
CREATE DATABASE, DROP DATABASE, SET, CREATE TABLESPACE

1422

ALTER DEFAULT PRIVILEGES
ALTER DEFAULT PRIVILEGES — define default access privileges

Synopsis
ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER |
 MAINTAIN }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | CREATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SCHEMAS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECTS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER |
 MAINTAIN }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

1423

ALTER DEFAULT PRIVILEGES

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | CREATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SCHEMAS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECTS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Description
ALTER DEFAULT PRIVILEGES allows you to set the privileges that will be applied to objects created in the
future. (It does not affect privileges assigned to already-existing objects.) Privileges can be set globally
(i.e., for all objects created in the current database), or just for objects created in specified schemas.

While you can change your own default privileges and the defaults of roles that you are a member of, at
object creation time, new object permissions are only affected by the default privileges of the current
role, and are not inherited from any roles in which the current role is a member.

As explained in Section 5.8, the default privileges for any object type normally grant all grantable per-
missions to the object owner, and may grant some privileges to PUBLIC as well. However, this behavior
can be changed by altering the global default privileges with ALTER DEFAULT PRIVILEGES.

Currently, only the privileges for schemas, tables (including views and foreign tables), sequences, func-
tions, types (including domains), and large objects can be altered. For this command, functions in-
clude aggregates and procedures. The words FUNCTIONS and ROUTINES are equivalent in this command.
(ROUTINES is preferred going forward as the standard term for functions and procedures taken together.
In earlier PostgreSQL releases, only the word FUNCTIONS was allowed. It is not possible to set default
privileges for functions and procedures separately.)

Default privileges that are specified per-schema are added to whatever the global default privileges are
for the particular object type. This means you cannot revoke privileges per-schema if they are granted
globally (either by default, or according to a previous ALTER DEFAULT PRIVILEGES command that did
not specify a schema). Per-schema REVOKE is only useful to reverse the effects of a previous per-schema
GRANT.

Parameters
target_role

Change default privileges for objects created by the target_role, or the current role if unspecified.

1424

ALTER DEFAULT PRIVILEGES

schema_name

The name of an existing schema. If specified, the default privileges are altered for objects later
created in that schema. If IN SCHEMA is omitted, the global default privileges are altered. IN SCHEMA
is not allowed when setting privileges for schemas and large objects, since schemas can't be nested
and large objects don't belong to a schema.

role_name

The name of an existing role to grant or revoke privileges for. This parameter, and all the other
parameters in abbreviated_grant_or_revoke, act as described under GRANT or REVOKE, except
that one is setting permissions for a whole class of objects rather than specific named objects.

Notes
Use psql's \ddp command to obtain information about existing assignments of default privileges. The
meaning of the privilege display is the same as explained for \dp in Section 5.8.

If you wish to drop a role for which the default privileges have been altered, it is necessary to reverse
the changes in its default privileges or use DROP OWNED BY to get rid of the default privileges entry for
the role.

Examples
Grant SELECT privilege to everyone for all tables (and views) you subsequently create in schema
myschema, and allow role webuser to INSERT into them too:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO webuser;

Undo the above, so that subsequently-created tables won't have any more permissions than normal:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES FROM PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES FROM webuser;

Remove the public EXECUTE permission that is normally granted on functions, for all functions subse-
quently created by role admin:

ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

Note however that you cannot accomplish that effect with a command limited to a single schema. This
command has no effect, unless it is undoing a matching GRANT:

ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

That's because per-schema default privileges can only add privileges to the global setting, not remove
privileges granted by it.

Compatibility
There is no ALTER DEFAULT PRIVILEGES statement in the SQL standard.

See Also
GRANT, REVOKE

1425

ALTER DOMAIN
ALTER DOMAIN — change the definition of a domain

Synopsis
ALTER DOMAIN name
 { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name
 { SET | DROP } NOT NULL
ALTER DOMAIN name
 ADD domain_constraint [NOT VALID]
ALTER DOMAIN name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
ALTER DOMAIN name
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER DOMAIN name
 VALIDATE CONSTRAINT constraint_name
ALTER DOMAIN name
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER DOMAIN name
 RENAME TO new_name
ALTER DOMAIN name
 SET SCHEMA new_schema

where domain_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | CHECK (expression) }

Description
ALTER DOMAIN changes the definition of an existing domain. There are several sub-forms:

SET/DROP DEFAULT
These forms set or remove the default value for a domain. Note that defaults only apply to subsequent
INSERT commands; they do not affect rows already in a table using the domain.

SET/DROP NOT NULL
These forms change whether a domain is marked to allow NULL values or to reject NULL values.
You can only SET NOT NULL when the columns using the domain contain no null values.

ADD domain_constraint [NOT VALID]

This form adds a new constraint to a domain. When a new constraint is added to a domain, all columns
using that domain will be checked against the newly added constraint. These checks can be sup-
pressed by adding the new constraint using the NOT VALID option; the constraint can later be made
valid using ALTER DOMAIN ... VALIDATE CONSTRAINT. Newly inserted or updated rows are always
checked against all constraints, even those marked NOT VALID. NOT VALID is only accepted for CHECK
constraints.

DROP CONSTRAINT [IF EXISTS]

This form drops constraints on a domain. If IF EXISTS is specified and the constraint does not exist,
no error is thrown. In this case a notice is issued instead.

RENAME CONSTRAINT

This form changes the name of a constraint on a domain.

1426

ALTER DOMAIN

VALIDATE CONSTRAINT

This form validates a constraint previously added as NOT VALID, that is, it verifies that all values in
table columns of the domain type satisfy the specified constraint.

OWNER

This form changes the owner of the domain to the specified user.

RENAME

This form changes the name of the domain.

SET SCHEMA

This form changes the schema of the domain. Any constraints associated with the domain are moved
into the new schema as well.

You must own the domain to use ALTER DOMAIN. To change the schema of a domain, you must also have
CREATE privilege on the new schema. To alter the owner, you must be able to SET ROLE to the new owning
role, and that role must have CREATE privilege on the domain's schema. (These restrictions enforce that
altering the owner doesn't do anything you couldn't do by dropping and recreating the domain. However,
a superuser can alter ownership of any domain anyway.)

Parameters
name

The name (possibly schema-qualified) of an existing domain to alter.

domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop or rename.

NOT VALID

Do not verify existing stored data for constraint validity.

CASCADE

Automatically drop objects that depend on the constraint, and in turn all objects that depend on
those objects (see Section 5.15).

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default behavior.

new_name

The new name for the domain.

new_constraint_name

The new name for the constraint.

new_owner

The user name of the new owner of the domain.

new_schema

The new schema for the domain.

1427

ALTER DOMAIN

Notes
Although ALTER DOMAIN ADD CONSTRAINT attempts to verify that existing stored data satisfies the new
constraint, this check is not bulletproof, because the command cannot “see” table rows that are newly
inserted or updated and not yet committed. If there is a hazard that concurrent operations might insert
bad data, the way to proceed is to add the constraint using the NOT VALID option, commit that command,
wait until all transactions started before that commit have finished, and then issue ALTER DOMAIN VALI-
DATE CONSTRAINT to search for data violating the constraint. This method is reliable because once the
constraint is committed, all new transactions are guaranteed to enforce it against new values of the
domain type.

Currently, ALTER DOMAIN ADD CONSTRAINT, ALTER DOMAIN VALIDATE CONSTRAINT, and ALTER DOMAIN
SET NOT NULL will fail if the named domain or any derived domain is used within a container-type column
(a composite, array, or range column) in any table in the database. They should eventually be improved
to be able to verify the new constraint for such nested values.

Examples
To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To rename a check constraint on a domain:

ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;

To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility
ALTER DOMAIN conforms to the SQL standard, except for the OWNER, RENAME, SET SCHEMA, and VALIDATE
CONSTRAINT variants, which are PostgreSQL extensions. The NOT VALID clause of the ADD CONSTRAINT
variant is also a PostgreSQL extension.

See Also
CREATE DOMAIN, DROP DOMAIN

1428

ALTER EVENT TRIGGER
ALTER EVENT TRIGGER — change the definition of an event trigger

Synopsis
ALTER EVENT TRIGGER name DISABLE
ALTER EVENT TRIGGER name ENABLE [REPLICA | ALWAYS]
ALTER EVENT TRIGGER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER EVENT TRIGGER name RENAME TO new_name

Description
ALTER EVENT TRIGGER changes properties of an existing event trigger.

You must be superuser to alter an event trigger.

Parameters
name

The name of an existing trigger to alter.

new_owner

The user name of the new owner of the event trigger.

new_name

The new name of the event trigger.

DISABLE/ENABLE [REPLICA | ALWAYS]
These forms configure the firing of event triggers. A disabled trigger is still known to the system,
but is not executed when its triggering event occurs. See also session_replication_role.

Compatibility
There is no ALTER EVENT TRIGGER statement in the SQL standard.

See Also
CREATE EVENT TRIGGER, DROP EVENT TRIGGER

1429

ALTER EXTENSION
ALTER EXTENSION — change the definition of an extension

Synopsis
ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

where member_object is:

 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 CONVERSION object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TYPE object_name |
 VIEW object_name

and aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
ALTER EXTENSION changes the definition of an installed extension. There are several subforms:

UPDATE

This form updates the extension to a newer version. The extension must supply a suitable update
script (or series of scripts) that can modify the currently-installed version into the requested version.

1430

ALTER EXTENSION

SET SCHEMA

This form moves the extension's objects into another schema. The extension has to be relocatable
for this command to succeed.

ADD member_object

This form adds an existing object to the extension. This is mainly useful in extension update scripts.
The object will subsequently be treated as a member of the extension; notably, it can only be dropped
by dropping the extension.

DROP member_object

This form removes a member object from the extension. This is mainly useful in extension update
scripts. The object is not dropped, only disassociated from the extension.

See Section 36.17 for more information about these operations.

You must own the extension to use ALTER EXTENSION. The ADD/DROP forms require ownership of the
added/dropped object as well.

Parameters
name

The name of an installed extension.

new_version

The desired new version of the extension. This can be written as either an identifier or a string literal.
If not specified, ALTER EXTENSION UPDATE attempts to update to whatever is shown as the default
version in the extension's control file.

new_schema

The new schema for the extension.

object_name
aggregate_name
function_name
operator_name
procedure_name
routine_name

The name of an object to be added to or removed from the extension. Names of tables, aggregates,
domains, foreign tables, functions, operators, operator classes, operator families, procedures, rou-
tines, sequences, text search objects, types, and views can be schema-qualified.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If omitted,
the default is IN. Note that ALTER EXTENSION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is sufficient to
list the IN, INOUT, and VARIADIC arguments.

1431

ALTER EXTENSION

argname

The name of a function, procedure, or aggregate argument. Note that ALTER EXTENSION does not
actually pay any attention to argument names, since only the argument data types are needed to
determine the function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for the missing
argument of a prefix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

Examples
To update the hstore extension to version 2.0:

ALTER EXTENSION hstore UPDATE TO '2.0';

To change the schema of the hstore extension to utils:

ALTER EXTENSION hstore SET SCHEMA utils;

To add an existing function to the hstore extension:

ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement, hstore);

Compatibility
ALTER EXTENSION is a PostgreSQL extension.

See Also
CREATE EXTENSION, DROP EXTENSION

1432

ALTER FOREIGN DATA WRAPPER
ALTER FOREIGN DATA WRAPPER — change the definition of a foreign-data wrapper

Synopsis
ALTER FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER FOREIGN DATA WRAPPER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

Description
ALTER FOREIGN DATA WRAPPER changes the definition of a foreign-data wrapper. The first form of the
command changes the support functions or the generic options of the foreign-data wrapper (at least one
clause is required). The second form changes the owner of the foreign-data wrapper.

Only superusers can alter foreign-data wrappers. Additionally, only superusers can own foreign-data
wrappers.

Parameters
name

The name of an existing foreign-data wrapper.

HANDLER handler_function

Specifies a new handler function for the foreign-data wrapper.

NO HANDLER

This is used to specify that the foreign-data wrapper should no longer have a handler function.

Note that foreign tables that use a foreign-data wrapper with no handler cannot be accessed.

VALIDATOR validator_function

Specifies a new validator function for the foreign-data wrapper.

Note that it is possible that pre-existing options of the foreign-data wrapper, or of dependent servers,
user mappings, or foreign tables, are invalid according to the new validator. PostgreSQL does not
check for this. It is up to the user to make sure that these options are correct before using the
modified foreign-data wrapper. However, any options specified in this ALTER FOREIGN DATA WRAPPER
command will be checked using the new validator.

NO VALIDATOR

This is used to specify that the foreign-data wrapper should no longer have a validator function.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign-data wrapper. ADD, SET, and DROP specify the action to be performed.
ADD is assumed if no operation is explicitly specified. Option names must be unique; names and values
are also validated using the foreign data wrapper's validator function, if any.

new_owner

The user name of the new owner of the foreign-data wrapper.

1433

ALTER FOREIGN DATA WRAPPER

new_name

The new name for the foreign-data wrapper.

Examples
Change a foreign-data wrapper dbi, add option foo, drop bar:

ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo '1', DROP bar);

Change the foreign-data wrapper dbi validator to bob.myvalidator:

ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;

Compatibility
ALTER FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), except that the HANDLER, VALIDA-
TOR, OWNER TO, and RENAME clauses are extensions.

See Also
CREATE FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER

1434

ALTER FOREIGN TABLE
ALTER FOREIGN TABLE — change the definition of a foreign table

Synopsis
ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER FOREIGN TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

 ADD [COLUMN] column_name data_type [COLLATE collation] [column_constraint
 [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN |
 DEFAULT }
 ALTER [COLUMN] column_name OPTIONS ([ADD | SET | DROP] option ['value']
 [, ...])
 ADD table_constraint [NOT VALID]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 SET WITHOUT OIDS
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER FOREIGN TABLE changes the definition of an existing foreign table. There are several subforms:
ADD COLUMN

This form adds a new column to the foreign table, using the same syntax as CREATE FOREIGN TABLE.
Unlike the case when adding a column to a regular table, nothing happens to the underlying storage:
this action simply declares that some new column is now accessible through the foreign table.

DROP COLUMN [IF EXISTS]

This form drops a column from a foreign table. You will need to say CASCADE if anything outside the
table depends on the column; for example, views. If IF EXISTS is specified and the column does not
exist, no error is thrown. In this case a notice is issued instead.

1435

ALTER FOREIGN TABLE

SET DATA TYPE

This form changes the type of a column of a foreign table. Again, this has no effect on any underlying
storage: this action simply changes the type that PostgreSQL believes the column to have.

SET/DROP DEFAULT
These forms set or remove the default value for a column. Default values only apply in subsequent
INSERT or UPDATE commands; they do not cause rows already in the table to change.

SET/DROP NOT NULL
Mark a column as allowing, or not allowing, null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. See the
similar form of ALTER TABLE for more details.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. See the similar form of ALTER TABLE for more details.

SET STORAGE

This form sets the storage mode for a column. See the similar form of ALTER TABLE for more details.
Note that the storage mode has no effect unless the table's foreign-data wrapper chooses to pay
attention to it.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a foreign table, using the same syntax as CREATE FOREIGN TABLE.
Currently only CHECK and NOT NULL constraints are supported.

Unlike the case when adding a constraint to a regular table, nothing is done to verify the constraint
is correct; rather, this action simply declares that some new condition should be assumed to hold
for all rows in the foreign table. (See the discussion in CREATE FOREIGN TABLE.) If the constraint
is marked NOT VALID (allowed only for the CHECK case), then it isn't assumed to hold, but is only
recorded for possible future use.

VALIDATE CONSTRAINT

This form marks as valid a constraint that was previously marked as NOT VALID. No action is taken
to verify the constraint, but future queries will assume that it holds.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a foreign table. If IF EXISTS is specified and the constraint
does not exist, no error is thrown. In this case a notice is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER
These forms configure the firing of trigger(s) belonging to the foreign table. See the similar form of
ALTER TABLE for more details.

SET WITHOUT OIDS

Backward compatibility syntax for removing the oid system column. As oid system columns cannot
be added anymore, this never has an effect.

INHERIT parent_table

This form adds the target foreign table as a new child of the specified parent table. See the similar
form of ALTER TABLE for more details.

1436

ALTER FOREIGN TABLE

NO INHERIT parent_table

This form removes the target foreign table from the list of children of the specified parent table.

OWNER

This form changes the owner of the foreign table to the specified user.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign table or one of its columns. ADD, SET, and DROP specify the action to
be performed. ADD is assumed if no operation is explicitly specified. Duplicate option names are not
allowed (although it's OK for a table option and a column option to have the same name). Option
names and values are also validated using the foreign data wrapper library.

RENAME

The RENAME forms change the name of a foreign table or the name of an individual column in a foreign
table.

SET SCHEMA

This form moves the foreign table into another schema.

All the actions except RENAME and SET SCHEMA can be combined into a list of multiple alterations to apply
in parallel. For example, it is possible to add several columns and/or alter the type of several columns
in a single command.

If the command is written as ALTER FOREIGN TABLE IF EXISTS ... and the foreign table does not exist,
no error is thrown. A notice is issued in this case.

You must own the table to use ALTER FOREIGN TABLE. To change the schema of a foreign table, you must
also have CREATE privilege on the new schema. To alter the owner, you must be able to SET ROLE to the
new owning role, and that role must have CREATE privilege on the table's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the table.
However, a superuser can alter ownership of any table anyway.) To add a column or alter a column type,
you must also have USAGE privilege on the data type.

Parameters
name

The name (possibly schema-qualified) of an existing foreign table to alter. If ONLY is specified before
the table name, only that table is altered. If ONLY is not specified, the table and all its descendant
tables (if any) are altered. Optionally, * can be specified after the table name to explicitly indicate
that descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the foreign table.

1437

ALTER FOREIGN TABLE

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default be-
havior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the foreign table. (This requires superuser privilege if
any of the triggers are internally generated triggers. The core system does not add such triggers to
foreign tables, but add-on code could do so.)

USER

Disable or enable all triggers belonging to the foreign table except for internally generated triggers.

parent_table

A parent table to associate or de-associate with this foreign table.

new_owner

The user name of the new owner of the table.

new_schema

The name of the schema to which the table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

Consistency with the foreign server is not checked when a column is added or removed with ADD COLUMN
or DROP COLUMN, a NOT NULL or CHECK constraint is added, or a column type is changed with SET DATA
TYPE. It is the user's responsibility to ensure that the table definition matches the remote side.

Refer to CREATE FOREIGN TABLE for a further description of valid parameters.

Examples
To mark a column as not-null:

ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;

To change options of a foreign table:

ALTER FOREIGN TABLE myschema.distributors OPTIONS (ADD opt1 'value', SET opt2 'value2',
 DROP opt3);

Compatibility
The forms ADD, DROP, and SET DATA TYPE conform with the SQL standard. The other forms are Post-
greSQL extensions of the SQL standard. Also, the ability to specify more than one manipulation in a
single ALTER FOREIGN TABLE command is an extension.

1438

ALTER FOREIGN TABLE

ALTER FOREIGN TABLE DROP COLUMN can be used to drop the only column of a foreign table, leaving a
zero-column table. This is an extension of SQL, which disallows zero-column foreign tables.

See Also
CREATE FOREIGN TABLE, DROP FOREIGN TABLE

1439

ALTER FUNCTION
ALTER FUNCTION — change the definition of a function

Synopsis
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 IMMUTABLE | STABLE | VOLATILE
 [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SUPPORT support_function
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function's schema, you must also have
CREATE privilege on the new schema. To alter the owner, you must be able to SET ROLE to the new owning
role, and that role must have CREATE privilege on the function's schema. (These restrictions enforce
that altering the owner doesn't do anything you couldn't do by dropping and recreating the function.
However, a superuser can alter ownership of any function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing function. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that ALTER
FUNCTION does not actually pay any attention to OUT arguments, since only the input arguments are
needed to determine the function's identity. So it is sufficient to list the IN, INOUT, and VARIADIC
arguments.

argname

The name of an argument. Note that ALTER FUNCTION does not actually pay any attention to argument
names, since only the argument data types are needed to determine the function's identity.

1440

ALTER FUNCTION

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

new_name

The new name of the function.

new_owner

The new owner of the function. Note that if the function is marked SECURITY DEFINER, it will subse-
quently execute as the new owner.

new_schema

The new schema for the function.

DEPENDS ON EXTENSION extension_name
NO DEPENDS ON EXTENSION extension_name

This form marks the function as dependent on the extension, or no longer dependent on that exten-
sion if NO is specified. A function that's marked as dependent on an extension is dropped when the
extension is dropped, even if CASCADE is not specified. A function can depend upon multiple exten-
sions, and will be dropped when any one of those extensions is dropped.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some or all of its
arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes the function so that it is not
invoked if any of its arguments are null; instead, a null result is assumed automatically. See CREATE
FUNCTION for more information.

IMMUTABLE
STABLE
VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION for details.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is ignored for SQL
conformance. See CREATE FUNCTION for more information about this capability.

PARALLEL

Change whether the function is deemed safe for parallelism. See CREATE FUNCTION for details.

LEAKPROOF

Change whether the function is considered leakproof or not. See CREATE FUNCTION for more in-
formation about this capability.

COST execution_cost
Change the estimated execution cost of the function. See CREATE FUNCTION for more information.

ROWS result_rows
Change the estimated number of rows returned by a set-returning function. See CREATE FUNCTION
for more information.

SUPPORT support_function
Set or change the planner support function to use for this function. See Section 36.11 for details.
You must be superuser to use this option.

1441

ALTER FUNCTION

This option cannot be used to remove the support function altogether, since it must name a new
support function. Use CREATE OR REPLACE FUNCTION if you need to do that.

configuration_parameter
value

Add or change the assignment to be made to a configuration parameter when the function is called.
If value is DEFAULT or, equivalently, RESET is used, the function-local setting is removed, so that the
function executes with the value present in its environment. Use RESET ALL to clear all function-local
settings. SET FROM CURRENT saves the value of the parameter that is current when ALTER FUNCTION
is executed as the value to be applied when the function is entered.

See SET and Chapter 19 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the function sqrt for type integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;

To change the schema of the function sqrt for type integer to maths:

ALTER FUNCTION sqrt(integer) SET SCHEMA maths;

To mark the function sqrt for type integer as being dependent on the extension mathlib:

ALTER FUNCTION sqrt(integer) DEPENDS ON EXTENSION mathlib;

To adjust the search path that is automatically set for a function:

ALTER FUNCTION check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a function:

ALTER FUNCTION check_password(text) RESET search_path;

The function will now execute with whatever search path is used by its caller.

Compatibility
This statement is partially compatible with the ALTER FUNCTION statement in the SQL standard. The
standard allows more properties of a function to be modified, but does not provide the ability to rename
a function, make a function a security definer, attach configuration parameter values to a function, or
change the owner, schema, or volatility of a function. The standard also requires the RESTRICT key word,
which is optional in PostgreSQL.

See Also
CREATE FUNCTION, DROP FUNCTION, ALTER PROCEDURE, ALTER ROUTINE

1442

ALTER GROUP
ALTER GROUP — change role name or membership

Synopsis
ALTER GROUP role_specification ADD USER user_name [, ...]
ALTER GROUP role_specification DROP USER user_name [, ...]

where role_specification can be:

 role_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

ALTER GROUP group_name RENAME TO new_name

Description
ALTER GROUP changes the attributes of a user group. This is an obsolete command, though still accepted
for backwards compatibility, because groups (and users too) have been superseded by the more general
concept of roles.

The first two variants add users to a group or remove them from a group. (Any role can play the part of
either a “user” or a “group” for this purpose.) These variants are effectively equivalent to granting or
revoking membership in the role named as the “group”; so the preferred way to do this is to use GRANT or
REVOKE. Note that GRANT and REVOKE have additional options which are not available with this command,
such as the ability to grant and revoke ADMIN OPTION, and the ability to specify the grantor.

The third variant changes the name of the group. This is exactly equivalent to renaming the role with
ALTER ROLE.

Parameters
group_name

The name of the group (role) to modify.

user_name

Users (roles) that are to be added to or removed from the group. The users must already exist; ALTER
GROUP does not create or drop users.

new_name

The new name of the group.

Examples
Add users to a group:

ALTER GROUP staff ADD USER karl, john;

Remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility
There is no ALTER GROUP statement in the SQL standard.

1443

ALTER GROUP

See Also
GRANT, REVOKE, ALTER ROLE

1444

ALTER INDEX
ALTER INDEX — change the definition of an index

Synopsis
ALTER INDEX [IF EXISTS] name RENAME TO new_name
ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name
ALTER INDEX name ATTACH PARTITION index_name
ALTER INDEX name [NO] DEPENDS ON EXTENSION extension_name
ALTER INDEX [IF EXISTS] name SET (storage_parameter [= value] [, ...])
ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])
ALTER INDEX [IF EXISTS] name ALTER [COLUMN] column_number
 SET STATISTICS integer
ALTER INDEX ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

Description
ALTER INDEX changes the definition of an existing index. There are several subforms described below.
Note that the lock level required may differ for each subform. An ACCESS EXCLUSIVE lock is held unless
explicitly noted. When multiple subcommands are listed, the lock held will be the strictest one required
from any subcommand.
RENAME

The RENAME form changes the name of the index. If the index is associated with a table constraint
(either UNIQUE, PRIMARY KEY, or EXCLUDE), the constraint is renamed as well. There is no effect on
the stored data.

Renaming an index acquires a SHARE UPDATE EXCLUSIVE lock.

SET TABLESPACE

This form changes the index's tablespace to the specified tablespace and moves the data file(s) as-
sociated with the index to the new tablespace. To change the tablespace of an index, you must own
the index and have CREATE privilege on the new tablespace. All indexes in the current database in
a tablespace can be moved by using the ALL IN TABLESPACE form, which will lock all indexes to be
moved and then move each one. This form also supports OWNED BY, which will only move indexes
owned by the roles specified. If the NOWAIT option is specified then the command will fail if it is
unable to acquire all of the locks required immediately. Note that system catalogs will not be moved
by this command, use ALTER DATABASE or explicit ALTER INDEX invocations instead if desired. See
also CREATE TABLESPACE.

ATTACH PARTITION index_name

Causes the named index (possibly schema-qualified) to become attached to the altered index. The
named index must be on a partition of the table containing the index being altered, and have an equiv-
alent definition. An attached index cannot be dropped by itself, and will automatically be dropped
if its parent index is dropped.

DEPENDS ON EXTENSION extension_name
NO DEPENDS ON EXTENSION extension_name

This form marks the index as dependent on the extension, or no longer dependent on that extension
if NO is specified. An index that's marked as dependent on an extension is automatically dropped
when the extension is dropped.

SET (storage_parameter [= value] [, ...])

This form changes one or more index-method-specific storage parameters for the index. See CREATE
INDEX for details on the available parameters. Note that the index contents will not be modified

1445

ALTER INDEX

immediately by this command; depending on the parameter you might need to rebuild the index with
REINDEX to get the desired effects.

RESET (storage_parameter [, ...])

This form resets one or more index-method-specific storage parameters to their defaults. As with
SET, a REINDEX might be needed to update the index entirely.

ALTER [COLUMN] column_number SET STATISTICS integer

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations, though
can be used only on index columns that are defined as an expression. Since expressions lack a unique
name, we refer to them using the ordinal number of the index column. The target can be set in the
range 0 to 10000; alternatively, set it to -1 to revert to using the system default statistics target
(default_statistics_target). For more information on the use of statistics by the PostgreSQL query
planner, refer to Section 14.2.

Parameters
IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

column_number

The ordinal number refers to the ordinal (left-to-right) position of the index column.

name

The name (possibly schema-qualified) of an existing index to alter.

new_name

The new name for the index.

tablespace_name

The tablespace to which the index will be moved.

extension_name

The name of the extension that the index is to depend on.

storage_parameter

The name of an index-method-specific storage parameter.

value

The new value for an index-method-specific storage parameter. This might be a number or a word
depending on the parameter.

Notes
These operations are also possible using ALTER TABLE. ALTER INDEX is in fact just an alias for the forms
of ALTER TABLE that apply to indexes.

There was formerly an ALTER INDEX OWNER variant, but this is now ignored (with a warning). An index
cannot have an owner different from its table's owner. Changing the table's owner automatically changes
the index as well.

Changing any part of a system catalog index is not permitted.

Examples
To rename an existing index:

1446

ALTER INDEX

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index's fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;

Set the statistics-gathering target for an expression index:

CREATE INDEX coord_idx ON measured (x, y, (z + t));
ALTER INDEX coord_idx ALTER COLUMN 3 SET STATISTICS 1000;

Compatibility
ALTER INDEX is a PostgreSQL extension.

See Also
CREATE INDEX, REINDEX

1447

ALTER LANGUAGE
ALTER LANGUAGE — change the definition of a procedural language

Synopsis
ALTER [PROCEDURAL] LANGUAGE name RENAME TO new_name
ALTER [PROCEDURAL] LANGUAGE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }

Description
ALTER LANGUAGE changes the definition of a procedural language. The only functionality is to rename the
language or assign a new owner. You must be superuser or owner of the language to use ALTER LANGUAGE.

Parameters
name

Name of a language

new_name

The new name of the language

new_owner

The new owner of the language

Compatibility
There is no ALTER LANGUAGE statement in the SQL standard.

See Also
CREATE LANGUAGE, DROP LANGUAGE

1448

ALTER LARGE OBJECT
ALTER LARGE OBJECT — change the definition of a large object

Synopsis
ALTER LARGE OBJECT large_object_oid OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER
 | SESSION_USER }

Description
ALTER LARGE OBJECT changes the definition of a large object.

You must own the large object to use ALTER LARGE OBJECT. To alter the owner, you must also be able to
SET ROLE to the new owning role. (However, a superuser can alter any large object anyway.) Currently,
the only functionality is to assign a new owner, so both restrictions always apply.

Parameters
large_object_oid

OID of the large object to be altered

new_owner

The new owner of the large object

Compatibility
There is no ALTER LARGE OBJECT statement in the SQL standard.

See Also
Chapter 33

1449

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW — change the definition of a materialized view

Synopsis
ALTER MATERIALIZED VIEW [IF EXISTS] name
 action [, ...]
ALTER MATERIALIZED VIEW name
 [NO] DEPENDS ON EXTENSION extension_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME TO new_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN |
 DEFAULT }
 ALTER [COLUMN] column_name SET COMPRESSION compression_method
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET ACCESS METHOD new_access_method
 SET TABLESPACE new_tablespace
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description
ALTER MATERIALIZED VIEW changes various auxiliary properties of an existing materialized view.

You must own the materialized view to use ALTER MATERIALIZED VIEW. To change a materialized view's
schema, you must also have CREATE privilege on the new schema. To alter the owner, you must be able
to SET ROLE to the new owning role, and that role must have CREATE privilege on the materialized
view's schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do
by dropping and recreating the materialized view. However, a superuser can alter ownership of any
view anyway.)

The statement subforms and actions available for ALTER MATERIALIZED VIEW are a subset of those avail-
able for ALTER TABLE, and have the same meaning when used for materialized views. See the descrip-
tions for ALTER TABLE for details.

Parameters
name

The name (optionally schema-qualified) of an existing materialized view.

column_name

Name of an existing column.

1450

ALTER MATERIALIZED VIEW

extension_name

The name of the extension that the materialized view is to depend on (or no longer dependent on,
if NO is specified). A materialized view that's marked as dependent on an extension is automatically
dropped when the extension is dropped.

new_column_name

New name for an existing column.

new_owner

The user name of the new owner of the materialized view.

new_name

The new name for the materialized view.

new_schema

The new schema for the materialized view.

Examples
To rename the materialized view foo to bar:

ALTER MATERIALIZED VIEW foo RENAME TO bar;

Compatibility
ALTER MATERIALIZED VIEW is a PostgreSQL extension.

See Also
CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW

1451

ALTER OPERATOR
ALTER OPERATOR — change the definition of an operator

Synopsis
ALTER OPERATOR name ({ left_type | NONE } , right_type)
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR name ({ left_type | NONE } , right_type)
 SET SCHEMA new_schema

ALTER OPERATOR name ({ left_type | NONE } , right_type)
 SET ({ RESTRICT = { res_proc | NONE }
 | JOIN = { join_proc | NONE }
 | COMMUTATOR = com_op
 | NEGATOR = neg_op
 | HASHES
 | MERGES
 } [, ...])

Description
ALTER OPERATOR changes the definition of an operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must be able to SET ROLE to the
new owning role, and that role must have CREATE privilege on the operator's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the
operator. However, a superuser can alter ownership of any operator anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand.

new_owner

The new owner of the operator.

new_schema

The new schema for the operator.

res_proc

The restriction selectivity estimator function for this operator; write NONE to remove existing se-
lectivity estimator.

join_proc

The join selectivity estimator function for this operator; write NONE to remove existing selectivity
estimator.

1452

ALTER OPERATOR

com_op

The commutator of this operator. Can only be changed if the operator does not have an existing
commutator.

neg_op

The negator of this operator. Can only be changed if the operator does not have an existing negator.

HASHES

Indicates this operator can support a hash join. Can only be enabled and not disabled.

MERGES

Indicates this operator can support a merge join. Can only be enabled and not disabled.

Notes
Refer to Section 36.14 and Section 36.15 for further information.

Since commutators come in pairs that are commutators of each other, ALTER OPERATOR SET COMMUTATOR
will also set the commutator of the com_op to be the target operator. Likewise, ALTER OPERATOR SET
NEGATOR will also set the negator of the neg_op to be the target operator. Therefore, you must own the
commutator or negator operator as well as the target operator.

Examples
Change the owner of a custom operator a @@ b for type text:

ALTER OPERATOR @@ (text, text) OWNER TO joe;

Change the restriction and join selectivity estimator functions of a custom operator a && b for type int[]:

ALTER OPERATOR && (int[], int[]) SET (RESTRICT = _int_contsel, JOIN =
 _int_contjoinsel);

Mark the && operator as being its own commutator:

ALTER OPERATOR && (int[], int[]) SET (COMMUTATOR = &&);

Compatibility
There is no ALTER OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, DROP OPERATOR

1453

ALTER OPERATOR CLASS
ALTER OPERATOR CLASS — change the definition of an operator class

Synopsis
ALTER OPERATOR CLASS name USING index_method
 RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR CLASS name USING index_method
 SET SCHEMA new_schema

Description
ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner, you must be able
to SET ROLE to the new owning role, and that role must have CREATE privilege on the operator class's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by
dropping and recreating the operator class. However, a superuser can alter ownership of any operator
class anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

new_name

The new name of the operator class.

new_owner

The new owner of the operator class.

new_schema

The new schema for the operator class.

Compatibility
There is no ALTER OPERATOR CLASS statement in the SQL standard.

See Also
CREATE OPERATOR CLASS, DROP OPERATOR CLASS, ALTER OPERATOR FAMILY

1454

ALTER OPERATOR FAMILY
ALTER OPERATOR FAMILY — change the definition of an operator family

Synopsis
ALTER OPERATOR FAMILY name USING index_method ADD
 { OPERATOR strategy_number operator_name (op_type, op_type)
 [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])]
 function_name [(argument_type [, ...])]
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method DROP
 { OPERATOR strategy_number (op_type [, op_type])
 | FUNCTION support_number (op_type [, op_type])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method
 RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR FAMILY name USING index_method
 SET SCHEMA new_schema

Description
ALTER OPERATOR FAMILY changes the definition of an operator family. You can add operators and support
functions to the family, remove them from the family, or change the family's name or owner.

When operators and support functions are added to a family with ALTER OPERATOR FAMILY, they are
not part of any specific operator class within the family, but are just “loose” within the family. This
indicates that these operators and functions are compatible with the family's semantics, but are not
required for correct functioning of any specific index. (Operators and functions that are so required
should be declared as part of an operator class, instead; see CREATE OPERATOR CLASS.) PostgreSQL
will allow loose members of a family to be dropped from the family at any time, but members of an
operator class cannot be dropped without dropping the whole class and any indexes that depend on it.
Typically, single-data-type operators and functions are part of operator classes because they are needed
to support an index on that specific data type, while cross-data-type operators and functions are made
loose members of the family.

You must be a superuser to use ALTER OPERATOR FAMILY. (This restriction is made because an erroneous
operator family definition could confuse or even crash the server.)

ALTER OPERATOR FAMILY does not presently check whether the operator family definition includes all the
operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user's responsibility to define a valid operator family.

Refer to Section 36.16 for further information.

Parameters
name

The name (optionally schema-qualified) of an existing operator family.

1455

ALTER OPERATOR FAMILY

index_method

The name of the index method this operator family is for.

strategy_number

The index method's strategy number for an operator associated with the operator family.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator family.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a prefix operator.
Unlike the comparable syntax in CREATE OPERATOR CLASS, the operand data types must always be
specified.

In an ADD FUNCTION clause, the operand data type(s) the function is intended to support, if different
from the input data type(s) of the function. For B-tree comparison functions and hash functions it is
not necessary to specify op_type since the function's input data type(s) are always the correct ones
to use. For B-tree sort support functions, B-Tree equal image functions, and all functions in GiST,
SP-GiST and GIN operator classes, it is necessary to specify the operand data type(s) the function
is to be used with.

In a DROP FUNCTION clause, the operand data type(s) the function is intended to support must be
specified.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support function number for a function associated with the operator family.

function_name

The name (optionally schema-qualified) of a function that is an index method support function for
the operator family. If no argument list is specified, the name must be unique in its schema.

argument_type

The parameter data type(s) of the function.

new_name

The new name of the operator family.

new_owner

The new owner of the operator family.

new_schema

The new schema for the operator family.

The OPERATOR and FUNCTION clauses can appear in any order.

Notes
Notice that the DROP syntax only specifies the “slot” in the operator family, by strategy or support number
and input data type(s). The name of the operator or function occupying the slot is not mentioned. Also,
for DROP FUNCTION the type(s) to specify are the input data type(s) the function is intended to support;

1456

ALTER OPERATOR FAMILY

for GiST, SP-GiST and GIN indexes this might have nothing to do with the actual input argument types
of the function.

Because the index machinery does not check access permissions on functions before using them, includ-
ing a function or operator in an operator family is tantamount to granting public execute permission on
it. This is usually not an issue for the sorts of functions that are useful in an operator family.

The operators should not be defined by SQL functions. An SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Examples
The following example command adds cross-data-type operators and support functions to an operator
family that already contains B-tree operator classes for data types int4 and int2.

ALTER OPERATOR FAMILY integer_ops USING btree ADD

 -- int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ;

To remove these entries again:

ALTER OPERATOR FAMILY integer_ops USING btree DROP

 -- int4 vs int2
 OPERATOR 1 (int4, int2) ,
 OPERATOR 2 (int4, int2) ,
 OPERATOR 3 (int4, int2) ,
 OPERATOR 4 (int4, int2) ,
 OPERATOR 5 (int4, int2) ,
 FUNCTION 1 (int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 (int2, int4) ,
 OPERATOR 2 (int2, int4) ,
 OPERATOR 3 (int2, int4) ,
 OPERATOR 4 (int2, int4) ,
 OPERATOR 5 (int2, int4) ,
 FUNCTION 1 (int2, int4) ;

Compatibility
There is no ALTER OPERATOR FAMILY statement in the SQL standard.

See Also
CREATE OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER OPER-
ATOR CLASS, DROP OPERATOR CLASS

1457

ALTER POLICY
ALTER POLICY — change the definition of a row-level security policy

Synopsis
ALTER POLICY name ON table_name RENAME TO new_name

ALTER POLICY name ON table_name
 [TO { role_name | PUBLIC | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description
ALTER POLICY changes the definition of an existing row-level security policy. Note that ALTER POLICY
only allows the set of roles to which the policy applies and the USING and WITH CHECK expressions to be
modified. To change other properties of a policy, such as the command to which it applies or whether it
is permissive or restrictive, the policy must be dropped and recreated.

To use ALTER POLICY, you must own the table that the policy applies to.

In the second form of ALTER POLICY, the role list, using_expression, and check_expression are re-
placed independently if specified. When one of those clauses is omitted, the corresponding part of the
policy is unchanged.

Parameters
name

The name of an existing policy to alter.

table_name

The name (optionally schema-qualified) of the table that the policy is on.

new_name

The new name for the policy.

role_name

The role(s) to which the policy applies. Multiple roles can be specified at one time. To apply the policy
to all roles, use PUBLIC.

using_expression

The USING expression for the policy. See CREATE POLICY for details.

check_expression

The WITH CHECK expression for the policy. See CREATE POLICY for details.

Compatibility
ALTER POLICY is a PostgreSQL extension.

See Also
CREATE POLICY, DROP POLICY

1458

ALTER PROCEDURE
ALTER PROCEDURE — change the definition of a procedure

Synopsis
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER PROCEDURE changes the definition of a procedure.

You must own the procedure to use ALTER PROCEDURE. To change a procedure's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must be able to SET ROLE to the new
owning role, and that role must have CREATE privilege on the procedure's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the
procedure. However, a superuser can alter ownership of any procedure anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing procedure. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that ALTER PROCEDURE does not actually pay any attention to argu-
ment names, since only the argument data types are used to determine the procedure's identity.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any. See DROP PRO-
CEDURE for the details of how the procedure is looked up using the argument data type(s).

new_name

The new name of the procedure.

1459

ALTER PROCEDURE

new_owner

The new owner of the procedure. Note that if the procedure is marked SECURITY DEFINER, it will
subsequently execute as the new owner.

new_schema

The new schema for the procedure.

extension_name

This form marks the procedure as dependent on the extension, or no longer dependent on the ex-
tension if NO is specified. A procedure that's marked as dependent on an extension is dropped when
the extension is dropped, even if cascade is not specified. A procedure can depend upon multiple
extensions, and will be dropped when any one of those extensions is dropped.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the procedure is a security definer or not. The key word EXTERNAL is ignored for
SQL conformance. See CREATE PROCEDURE for more information about this capability.

configuration_parameter
value

Add or change the assignment to be made to a configuration parameter when the procedure is called.
If value is DEFAULT or, equivalently, RESET is used, the procedure-local setting is removed, so that
the procedure executes with the value present in its environment. Use RESET ALL to clear all proce-
dure-local settings. SET FROM CURRENT saves the value of the parameter that is current when ALTER
PROCEDURE is executed as the value to be applied when the procedure is entered.

See SET and Chapter 19 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the procedure insert_data with two arguments of type integer to insert_record:

ALTER PROCEDURE insert_data(integer, integer) RENAME TO insert_record;

To change the owner of the procedure insert_data with two arguments of type integer to joe:

ALTER PROCEDURE insert_data(integer, integer) OWNER TO joe;

To change the schema of the procedure insert_data with two arguments of type integer to accounting:

ALTER PROCEDURE insert_data(integer, integer) SET SCHEMA accounting;

To mark the procedure insert_data(integer, integer) as being dependent on the extension myext:

ALTER PROCEDURE insert_data(integer, integer) DEPENDS ON EXTENSION myext;

To adjust the search path that is automatically set for a procedure:

ALTER PROCEDURE check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a procedure:

ALTER PROCEDURE check_password(text) RESET search_path;

The procedure will now execute with whatever search path is used by its caller.

1460

ALTER PROCEDURE

Compatibility
This statement is partially compatible with the ALTER PROCEDURE statement in the SQL standard. The
standard allows more properties of a procedure to be modified, but does not provide the ability to rename
a procedure, make a procedure a security definer, attach configuration parameter values to a procedure,
or change the owner, schema, or volatility of a procedure. The standard also requires the RESTRICT key
word, which is optional in PostgreSQL.

See Also
CREATE PROCEDURE, DROP PROCEDURE, ALTER FUNCTION, ALTER ROUTINE

1461

ALTER PUBLICATION
ALTER PUBLICATION — change the definition of a publication

Synopsis
ALTER PUBLICATION name ADD publication_object [, ...]
ALTER PUBLICATION name SET publication_object [, ...]
ALTER PUBLICATION name DROP publication_object [, ...]
ALTER PUBLICATION name SET (publication_parameter [= value] [, ...])
ALTER PUBLICATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER PUBLICATION name RENAME TO new_name

where publication_object is one of:

 TABLE [ONLY] table_name [*] [(column_name [, ...])] [WHERE (expression
)] [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

Description
The command ALTER PUBLICATION can change the attributes of a publication.

The first three variants change which tables/schemas are part of the publication. The SET clause will
replace the list of tables/schemas in the publication with the specified list; the existing tables/schemas
that were present in the publication will be removed. The ADD and DROP clauses will add and remove
one or more tables/schemas from the publication. Note that adding tables/schemas to a publication that
is already subscribed to will require an ALTER SUBSCRIPTION ... REFRESH PUBLICATION action on
the subscribing side in order to become effective. Note also that DROP TABLES IN SCHEMA will not drop
any schema tables that were specified using FOR TABLE/ ADD TABLE, and the combination of DROP with
a WHERE clause is not allowed.

The fourth variant of this command listed in the synopsis can change all of the publication properties
specified in CREATE PUBLICATION. Properties not mentioned in the command retain their previous
settings.

The remaining variants change the owner and the name of the publication.

You must own the publication to use ALTER PUBLICATION. Adding a table to a publication additionally
requires owning that table. The ADD TABLES IN SCHEMA and SET TABLES IN SCHEMA to a publication
requires the invoking user to be a superuser. To alter the owner, you must be able to SET ROLE to the
new owning role, and that role must have CREATE privilege on the database. Also, the new owner of a
FOR ALL TABLES or FOR TABLES IN SCHEMA publication must be a superuser. However, a superuser can
change the ownership of a publication regardless of these restrictions.

Adding/Setting any schema when the publication also publishes a table with a column list, and vice versa
is not supported.

Parameters
name

The name of an existing publication whose definition is to be altered.

table_name

Name of an existing table. If ONLY is specified before the table name, only that table is affected. If
ONLY is not specified, the table and all its descendant tables (if any) are affected. Optionally, * can
be specified after the table name to explicitly indicate that descendant tables are included.

1462

ALTER PUBLICATION

Optionally, a column list can be specified. See CREATE PUBLICATION for details. Note that a sub-
scription having several publications in which the same table has been published with different col-
umn lists is not supported. See Warning: Combining Column Lists from Multiple Publications for
details of potential problems when altering column lists.

If the optional WHERE clause is specified, rows for which the expression evaluates to false or null
will not be published. Note that parentheses are required around the expression. The expression is
evaluated with the role used for the replication connection.

schema_name

Name of an existing schema.

SET (publication_parameter [= value] [, ...])

This clause alters publication parameters originally set by CREATE PUBLICATION. See there for
more information.

Caution
Altering the publish_via_partition_root parameter can lead to data loss or duplication at
the subscriber because it changes the identity and schema of the published tables. Note this
happens only when a partition root table is specified as the replication target.

This problem can be avoided by refraining from modifying partition leaf tables after the ALTER
PUBLICATION ... SET until the ALTER SUBSCRIPTION ... REFRESH PUBLICATION is executed
and by only refreshing using the copy_data = off option.

new_owner

The user name of the new owner of the publication.

new_name

The new name for the publication.

Examples
Change the publication to publish only deletes and updates:

ALTER PUBLICATION noinsert SET (publish = 'update, delete');

Add some tables to the publication:

ALTER PUBLICATION mypublication ADD TABLE users (user_id, firstname), departments;

Change the set of columns published for a table:

ALTER PUBLICATION mypublication SET TABLE users (user_id, firstname, lastname), TABLE
 departments;

Add schemas marketing and sales to the publication sales_publication:

ALTER PUBLICATION sales_publication ADD TABLES IN SCHEMA marketing, sales;

Add tables users, departments and schema production to the publication production_publication:

ALTER PUBLICATION production_publication ADD TABLE users, departments, TABLES IN SCHEMA
 production;

Compatibility
ALTER PUBLICATION is a PostgreSQL extension.

1463

ALTER PUBLICATION

See Also
CREATE PUBLICATION, DROP PUBLICATION, CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1464

ALTER ROLE
ALTER ROLE — change a database role

Synopsis
ALTER ROLE role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name] RESET ALL

where role_specification can be:

 role_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description
ALTER ROLE changes the attributes of a PostgreSQL role.

The first variant of this command listed in the synopsis can change many of the role attributes that
can be specified in CREATE ROLE. (All the possible attributes are covered, except that there are no
options for adding or removing memberships; use GRANT and REVOKE for that.) Attributes not mentioned
in the command retain their previous settings. Database superusers can change any of these settings for
any role, except for changing the SUPERUSER property for the bootstrap superuser. Non-superuser roles
having CREATEROLE privilege can change most of these properties, but only for non-superuser and non-
replication roles for which they have been granted ADMIN OPTION. Non-superusers cannot change the
SUPERUSER property and can change the CREATEDB, REPLICATION, and BYPASSRLS properties only if they
possess the corresponding property themselves. Ordinary roles can only change their own password.

The second variant changes the name of the role. Database superusers can rename any role. Roles
having CREATEROLE privilege can rename non-superuser roles for which they have been granted ADMIN
OPTION. The current session user cannot be renamed. (Connect as a different user if you need to do that.)
Because MD5-encrypted passwords use the role name as cryptographic salt, renaming a role clears its
password if the password is MD5-encrypted.

1465

ALTER ROLE

The remaining variants change a role's session default for a configuration variable, either for all data-
bases or, when the IN DATABASE clause is specified, only for sessions in the named database. If ALL is
specified instead of a role name, this changes the setting for all roles. Using ALL with IN DATABASE is
effectively the same as using the command ALTER DATABASE ... SET

Whenever the role subsequently starts a new session, the specified value becomes the session default,
overriding whatever setting is present in postgresql.conf or has been received from the postgres
command line. This only happens at login time; executing SET ROLE or SET SESSION AUTHORIZATION
does not cause new configuration values to be set. Settings set for all databases are overridden by
database-specific settings attached to a role. Settings for specific databases or specific roles override
settings for all roles.

Superusers can change anyone's session defaults. Roles having CREATEROLE privilege can change de-
faults for non-superuser roles for which they have been granted ADMIN OPTION. Ordinary roles can only
set defaults for themselves. Certain configuration variables cannot be set this way, or can only be set if
a superuser issues the command. Only superusers can change a setting for all roles in all databases.

Parameters
name

The name of the role whose attributes are to be altered.

CURRENT_ROLE
CURRENT_USER

Alter the current user instead of an explicitly identified role.

SESSION_USER

Alter the current session user instead of an explicitly identified role.

SUPERUSER
NOSUPERUSER
CREATEDB
NOCREATEDB
CREATEROLE
NOCREATEROLE
INHERIT
NOINHERIT
LOGIN
NOLOGIN
REPLICATION
NOREPLICATION
BYPASSRLS
NOBYPASSRLS
CONNECTION LIMIT connlimit
[ENCRYPTED] PASSWORD 'password'
PASSWORD NULL
VALID UNTIL 'timestamp'

These clauses alter attributes originally set by CREATE ROLE. For more information, see the CREATE
ROLE reference page.

new_name

The new name of the role.

database_name

The name of the database the configuration variable should be set in.

1466

ALTER ROLE

configuration_parameter
value

Set this role's session default for the specified configuration parameter to the given value. If value
is DEFAULT or, equivalently, RESET is used, the role-specific variable setting is removed, so the role
will inherit the system-wide default setting in new sessions. Use RESET ALL to clear all role-specific
settings. SET FROM CURRENT saves the session's current value of the parameter as the role-specific
value. If IN DATABASE is specified, the configuration parameter is set or removed for the given role
and database only.

Role-specific variable settings take effect only at login; SET ROLE and SET SESSION AUTHORIZATION
do not process role-specific variable settings.

See SET and Chapter 19 for more information about allowed parameter names and values.

Notes
Use CREATE ROLE to add new roles, and DROP ROLE to remove a role.

ALTER ROLE cannot change a role's memberships. Use GRANT and REVOKE to do that.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client's command history
or the server log. psql contains a command \password that can be used to change a role's password
without exposing the cleartext password.

It is also possible to tie a session default to a specific database rather than to a role; see ALTER DATA-
BASE. If there is a conflict, database-role-specific settings override role-specific ones, which in turn
override database-specific ones.

Examples
Change a role's password:

ALTER ROLE davide WITH PASSWORD 'hu8jmn3';

Remove a role's password:

ALTER ROLE davide WITH PASSWORD NULL;

Change a password expiration date, specifying that the password should expire at midday on 4th May
2015 using the time zone which is one hour ahead of UTC:

ALTER ROLE chris VALID UNTIL 'May 4 12:00:00 2015 +1';

Make a password valid forever:

ALTER ROLE fred VALID UNTIL 'infinity';

Give a role the ability to manage other roles and create new databases:

ALTER ROLE miriam CREATEROLE CREATEDB;

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE worker_bee SET maintenance_work_mem = 100000;

Give a role a non-default, database-specific setting of the client_min_messages parameter:

ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;

Compatibility
The ALTER ROLE statement is a PostgreSQL extension.

1467

ALTER ROLE

See Also
CREATE ROLE, DROP ROLE, ALTER DATABASE, SET

1468

ALTER ROUTINE
ALTER ROUTINE — change the definition of a routine

Synopsis
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 IMMUTABLE | STABLE | VOLATILE
 [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER ROUTINE changes the definition of a routine, which can be an aggregate function, a normal func-
tion, or a procedure. See under ALTER AGGREGATE, ALTER FUNCTION, and ALTER PROCEDURE for
the description of the parameters, more examples, and further details.

Examples
To rename the routine foo for type integer to foobar:

ALTER ROUTINE foo(integer) RENAME TO foobar;

This command will work independent of whether foo is an aggregate, function, or procedure.

Compatibility
This statement is partially compatible with the ALTER ROUTINE statement in the SQL standard. See
under ALTER FUNCTION and ALTER PROCEDURE for more details. Allowing routine names to refer
to aggregate functions is a PostgreSQL extension.

See Also
ALTER AGGREGATE, ALTER FUNCTION, ALTER PROCEDURE, DROP ROUTINE

Note that there is no CREATE ROUTINE command.

1469

ALTER RULE
ALTER RULE — change the definition of a rule

Synopsis
ALTER RULE name ON table_name RENAME TO new_name

Description
ALTER RULE changes properties of an existing rule. Currently, the only available action is to change the
rule's name.

To use ALTER RULE, you must own the table or view that the rule applies to.

Parameters
name

The name of an existing rule to alter.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

new_name

The new name for the rule.

Examples
To rename an existing rule:

ALTER RULE notify_all ON emp RENAME TO notify_me;

Compatibility
ALTER RULE is a PostgreSQL language extension, as is the entire query rewrite system.

See Also
CREATE RULE, DROP RULE

1470

ALTER SCHEMA
ALTER SCHEMA — change the definition of a schema

Synopsis
ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description
ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also have the CREATE
privilege for the database. To alter the owner, you must be able to SET ROLE to the new owning role,
and that role must have the CREATE privilege for the database. (Note that superusers have all these
privileges automatically.)

Parameters
name

The name of an existing schema.

new_name

The new name of the schema. The new name cannot begin with pg_, as such names are reserved
for system schemas.

new_owner

The new owner of the schema.

Compatibility
There is no ALTER SCHEMA statement in the SQL standard.

See Also
CREATE SCHEMA, DROP SCHEMA

1471

ALTER SEQUENCE
ALTER SEQUENCE — change the definition of a sequence generator

Synopsis
ALTER SEQUENCE [IF EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [[NO] CYCLE]
 [START [WITH] start]
 [RESTART [[WITH] restart]]
 [CACHE cache]
 [OWNED BY { table_name.column_name | NONE }]
ALTER SEQUENCE [IF EXISTS] name SET { LOGGED | UNLOGGED }
ALTER SEQUENCE [IF EXISTS] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name
ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameters not specif-
ically set in the ALTER SEQUENCE command retain their prior settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence's schema, you must also have
CREATE privilege on the new schema. To alter the owner, you must be able to SET ROLE to the new owning
role, and that role must have CREATE privilege on the sequence's schema. (These restrictions enforce
that altering the owner doesn't do anything you couldn't do by dropping and recreating the sequence.
However, a superuser can alter ownership of any sequence anyway.)

Parameters
name

The name (optionally schema-qualified) of a sequence to be altered.

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

data_type

The optional clause AS data_type changes the data type of the sequence. Valid types are smallint,
integer, and bigint.

Changing the data type automatically changes the minimum and maximum values of the sequence if
and only if the previous minimum and maximum values were the minimum or maximum value of the
old data type (in other words, if the sequence had been created using NO MINVALUE or NO MAXVALUE,
implicitly or explicitly). Otherwise, the minimum and maximum values are preserved, unless new
values are given as part of the same command. If the minimum and maximum values do not fit into
the new data type, an error will be generated.

increment

The clause INCREMENT BY increment is optional. A positive value will make an ascending sequence,
a negative one a descending sequence. If unspecified, the old increment value will be maintained.

1472

ALTER SEQUENCE

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate. If
NO MINVALUE is specified, the defaults of 1 and the minimum value of the data type for ascending and
descending sequences, respectively, will be used. If neither option is specified, the current minimum
value will be maintained.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If NO
MAXVALUE is specified, the defaults of the maximum value of the data type and -1 for ascending and
descending sequences, respectively, will be used. If neither option is specified, the current maximum
value will be maintained.

CYCLE

The optional CYCLE key word can be used to enable the sequence to wrap around when the maxvalue
or minvalue has been reached by an ascending or descending sequence respectively. If the limit is
reached, the next number generated will be the minvalue or maxvalue, respectively.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval after the sequence has reached
its maximum value will return an error. If neither CYCLE or NO CYCLE are specified, the old cycle
behavior will be maintained.

start

The optional clause START WITH start changes the recorded start value of the sequence. This has no
effect on the current sequence value; it simply sets the value that future ALTER SEQUENCE RESTART
commands will use.

restart

The optional clause RESTART [WITH restart] changes the current value of the sequence. This is
similar to calling the setval function with is_called = false: the specified value will be returned
by the next call of nextval. Writing RESTART with no restart value is equivalent to supplying the
start value that was recorded by CREATE SEQUENCE or last set by ALTER SEQUENCE START WITH.

In contrast to a setval call, a RESTART operation on a sequence is transactional and blocks concurrent
transactions from obtaining numbers from the same sequence. If that's not the desired mode of
operation, setval should be used.

cache

The clause CACHE cache enables sequence numbers to be preallocated and stored in memory for
faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache). If
unspecified, the old cache value will be maintained.

SET { LOGGED | UNLOGGED }

This form changes the sequence from unlogged to logged or vice-versa (see CREATE SEQUENCE).
It cannot be applied to a temporary sequence.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that
if that column (or its whole table) is dropped, the sequence will be automatically dropped as well. If
specified, this association replaces any previously specified association for the sequence. The spec-
ified table must have the same owner and be in the same schema as the sequence. Specifying OWNED
BY NONE removes any existing association, making the sequence “free-standing”.

1473

ALTER SEQUENCE

new_owner

The user name of the new owner of the sequence.

new_name

The new name for the sequence.

new_schema

The new schema for the sequence.

Notes
ALTER SEQUENCE will not immediately affect nextval results in backends, other than the current one,
that have preallocated (cached) sequence values. They will use up all cached values prior to noticing the
changed sequence generation parameters. The current backend will be affected immediately.

ALTER SEQUENCE does not affect the currval status for the sequence. (Before PostgreSQL 8.3, it some-
times did.)

ALTER SEQUENCE blocks concurrent nextval, currval, lastval, and setval calls.

For historical reasons, ALTER TABLE can be used with sequences too; but the only variants of ALTER
TABLE that are allowed with sequences are equivalent to the forms shown above.

Examples
Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility
ALTER SEQUENCE conforms to the SQL standard, except for the AS, START WITH, OWNED BY, OWNER TO,
RENAME TO, and SET SCHEMA clauses, which are PostgreSQL extensions.

See Also
CREATE SEQUENCE, DROP SEQUENCE

1474

ALTER SERVER
ALTER SERVER — change the definition of a foreign server

Synopsis
ALTER SERVER name [VERSION 'new_version']
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER SERVER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SERVER name RENAME TO new_name

Description
ALTER SERVER changes the definition of a foreign server. The first form changes the server version string
or the generic options of the server (at least one clause is required). The second form changes the owner
of the server.

To alter the server you must be the owner of the server. Additionally to alter the owner, you must be
able to SET ROLE to the new owning role, and you must have USAGE privilege on the server's foreign-data
wrapper. (Note that superusers satisfy all these criteria automatically.)

Parameters
name

The name of an existing server.

new_version

New server version.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the server. ADD, SET, and DROP specify the action to be performed. ADD is assumed
if no operation is explicitly specified. Option names must be unique; names and values are also
validated using the server's foreign-data wrapper library.

new_owner

The user name of the new owner of the foreign server.

new_name

The new name for the foreign server.

Examples
Alter server foo, add connection options:

ALTER SERVER foo OPTIONS (host 'foo', dbname 'foodb');

Alter server foo, change version, change host option:

ALTER SERVER foo VERSION '8.4' OPTIONS (SET host 'baz');

Compatibility
ALTER SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The OWNER TO and RENAME forms are PostgreSQL
extensions.

See Also
CREATE SERVER, DROP SERVER

1475

ALTER STATISTICS
ALTER STATISTICS — change the definition of an extended statistics object

Synopsis
ALTER STATISTICS name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER STATISTICS name RENAME TO new_name
ALTER STATISTICS name SET SCHEMA new_schema
ALTER STATISTICS name SET STATISTICS { new_target | DEFAULT }

Description
ALTER STATISTICS changes the parameters of an existing extended statistics object. Any parameters
not specifically set in the ALTER STATISTICS command retain their prior settings.

You must own the statistics object to use ALTER STATISTICS. To change a statistics object's schema,
you must also have CREATE privilege on the new schema. To alter the owner, you must be able to SET
ROLE to the new owning role, and that role must have CREATE privilege on the statistics object's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping
and recreating the statistics object. However, a superuser can alter ownership of any statistics object
anyway.)

Parameters
name

The name (optionally schema-qualified) of the statistics object to be altered.

new_owner

The user name of the new owner of the statistics object.

new_name

The new name for the statistics object.

new_schema

The new schema for the statistics object.

new_target

The statistic-gathering target for this statistics object for subsequent ANALYZE operations. The target
can be set in the range 0 to 10000. Set it to DEFAULT to revert to using the system default statistics
target (default_statistics_target). (Setting to a value of -1 is an obsolete way spelling to get the same
outcome.) For more information on the use of statistics by the PostgreSQL query planner, refer to
Section 14.2.

Compatibility
There is no ALTER STATISTICS command in the SQL standard.

See Also
CREATE STATISTICS, DROP STATISTICS

1476

ALTER SUBSCRIPTION
ALTER SUBSCRIPTION — change the definition of a subscription

Synopsis
ALTER SUBSCRIPTION name CONNECTION 'conninfo'
ALTER SUBSCRIPTION name SET PUBLICATION publication_name [, ...] [WITH
 (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name ADD PUBLICATION publication_name [, ...] [WITH
 (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name DROP PUBLICATION publication_name [, ...] [WITH
 (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name REFRESH PUBLICATION [WITH (refresh_option [= value]
 [, ...])]
ALTER SUBSCRIPTION name ENABLE
ALTER SUBSCRIPTION name DISABLE
ALTER SUBSCRIPTION name SET (subscription_parameter [= value] [, ...])
ALTER SUBSCRIPTION name SKIP (skip_option = value)
ALTER SUBSCRIPTION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER SUBSCRIPTION name RENAME TO new_name

Description
ALTER SUBSCRIPTION can change most of the subscription properties that can be specified in CREATE
SUBSCRIPTION.

You must own the subscription to use ALTER SUBSCRIPTION. To rename a subscription or alter the owner,
you must have CREATE permission on the database. In addition, to alter the owner, you must be able to
SET ROLE to the new owning role. If the subscription has password_required=false, only superusers
can modify it.

When refreshing a publication we remove the relations that are no longer part of the publication and
we also remove the table synchronization slots if there are any. It is necessary to remove these slots
so that the resources allocated for the subscription on the remote host are released. If due to network
breakdown or some other error, PostgreSQL is unable to remove the slots, an error will be reported. To
proceed in this situation, the user either needs to retry the operation or disassociate the slot from the
subscription and drop the subscription as explained in DROP SUBSCRIPTION.

Commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION, ALTER SUBSCRIPTION ... {SET|ADD|
DROP} PUBLICATION ... with refresh option as true, ALTER SUBSCRIPTION ... SET (failover =
true|false) and ALTER SUBSCRIPTION ... SET (two_phase = false) cannot be executed inside a
transaction block.

Commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and ALTER SUBSCRIPTION ... {SET|ADD|
DROP} PUBLICATION ... with refresh option as true also cannot be executed when the subscription
has two_phase commit enabled, unless copy_data is false. See column subtwophasestate of pg_sub-
scription to know the actual two-phase state.

Parameters
name

The name of a subscription whose properties are to be altered.

CONNECTION 'conninfo'

This clause replaces the connection string originally set by CREATE SUBSCRIPTION. See there for
more information.

1477

ALTER SUBSCRIPTION

SET PUBLICATION publication_name
ADD PUBLICATION publication_name
DROP PUBLICATION publication_name

These forms change the list of subscribed publications. SET replaces the entire list of publications
with a new list, ADD adds additional publications to the list of publications, and DROP removes the
publications from the list of publications. We allow non-existent publications to be specified in ADD and
SET variants so that users can add those later. See CREATE SUBSCRIPTION for more information.
By default, this command will also act like REFRESH PUBLICATION.

publication_option specifies additional options for this operation. The supported options are:
refresh (boolean)

When false, the command will not try to refresh table information. REFRESH PUBLICATION should
then be executed separately. The default is true.

Additionally, the options described under REFRESH PUBLICATION may be specified, to control the
implicit refresh operation.

REFRESH PUBLICATION

Fetch missing table information from publisher. This will start replication of tables that were added
to the subscribed-to publications since CREATE SUBSCRIPTION or the last invocation of REFRESH
PUBLICATION.

refresh_option specifies additional options for the refresh operation. The supported options are:
copy_data (boolean)

Specifies whether to copy pre-existing data in the publications that are being subscribed to when
the replication starts. The default is true.

Previously subscribed tables are not copied, even if a table's row filter WHERE clause has since
been modified.

See Notes for details of how copy_data = true can interact with the origin parameter.

See the binary parameter of CREATE SUBSCRIPTION for details about copying pre-existing data
in binary format.

ENABLE

Enables a previously disabled subscription, starting the logical replication worker at the end of the
transaction.

DISABLE

Disables a running subscription, stopping the logical replication worker at the end of the transaction.

SET (subscription_parameter [= value] [, ...])

This clause alters parameters originally set by CREATE SUBSCRIPTION. See there for more informa-
tion. The parameters that can be altered are slot_name, synchronous_commit, binary, streaming,
disable_on_error, password_required, run_as_owner, origin, failover, and two_phase. Only a
superuser can set password_required = false.

When altering the slot_name, the failover and two_phase property values of the named slot may
differ from the counterpart failover and two_phase parameters specified in the subscription. When
creating the slot, ensure the slot properties failover and two_phase match their counterpart para-
meters of the subscription. Otherwise, the slot on the publisher may behave differently from what
these subscription options say: for example, the slot on the publisher could either be synced to the
standbys even when the subscription's failover option is disabled or could be disabled for sync even
when the subscription's failover option is enabled.

1478

ALTER SUBSCRIPTION

The failover and two_phase parameters can only be altered when the subscription is disabled.

When altering two_phase from true to false, the backend process reports an error if any prepared
transactions done by the logical replication worker (from when two_phase parameter was still true)
are found. You can resolve prepared transactions on the publisher node, or manually roll back them
on the subscriber, and then try again. The transactions prepared by logical replication worker cor-
responding to a particular subscription have the following pattern: “pg_gid_%u_%u” (parameters:
subscription oid, remote transaction id xid). To resolve such transactions manually, you need to roll
back all the prepared transactions with corresponding subscription IDs in their names. Applications
can check pg_prepared_xacts to find the required prepared transactions. After the two_phase op-
tion is changed from true to false, the publisher will replicate the transactions again when they
are committed.

SKIP (skip_option = value)

Skips applying all changes of the remote transaction. If incoming data violates any constraints, logical
replication will stop until it is resolved. By using the ALTER SUBSCRIPTION ... SKIP command, the
logical replication worker skips all data modification changes within the transaction. This option has
no effect on the transactions that are already prepared by enabling two_phase on the subscriber.
After the logical replication worker successfully skips the transaction or finishes a transaction, the
LSN (stored in pg_subscription.subskiplsn) is cleared. See Section 29.7 for the details of logical
replication conflicts.

skip_option specifies options for this operation. The supported option is:

lsn (pg_lsn)
Specifies the finish LSN of the remote transaction whose changes are to be skipped by the logical
replication worker. The finish LSN is the LSN at which the transaction is either committed or
prepared. Skipping individual subtransactions is not supported. Setting NONE resets the LSN.

new_owner

The user name of the new owner of the subscription.

new_name

The new name for the subscription.

When specifying a parameter of type boolean, the = value part can be omitted, which is equivalent to
specifying TRUE.

Examples
Change the publication subscribed by a subscription to insert_only:

ALTER SUBSCRIPTION mysub SET PUBLICATION insert_only;

Disable (stop) the subscription:

ALTER SUBSCRIPTION mysub DISABLE;

Compatibility
ALTER SUBSCRIPTION is a PostgreSQL extension.

See Also
CREATE SUBSCRIPTION, DROP SUBSCRIPTION, CREATE PUBLICATION, ALTER PUBLICATION

1479

ALTER SYSTEM
ALTER SYSTEM — change a server configuration parameter

Synopsis
ALTER SYSTEM SET configuration_parameter { TO | = } { value [, ...] | DEFAULT }

ALTER SYSTEM RESET configuration_parameter
ALTER SYSTEM RESET ALL

Description
ALTER SYSTEM is used for changing server configuration parameters across the entire database cluster.
It can be more convenient than the traditional method of manually editing the postgresql.conf file.
ALTER SYSTEM writes the given parameter setting to the postgresql.auto.conf file, which is read in
addition to postgresql.conf. Setting a parameter to DEFAULT, or using the RESET variant, removes that
configuration entry from the postgresql.auto.conf file. Use RESET ALL to remove all such configuration
entries.

Values set with ALTER SYSTEM will be effective after the next server configuration reload, or after the next
server restart in the case of parameters that can only be changed at server start. A server configuration
reload can be commanded by calling the SQL function pg_reload_conf(), running pg_ctl reload, or
sending a SIGHUP signal to the main server process.

Only superusers and users granted ALTER SYSTEM privilege on a parameter can change it using ALTER
SYSTEM. Also, since this command acts directly on the file system and cannot be rolled back, it is not
allowed inside a transaction block or function.

Parameters
configuration_parameter

Name of a settable configuration parameter. Available parameters are documented in Chapter 19.

value

New value of the parameter. Values can be specified as string constants, identifiers, numbers, or
comma-separated lists of these, as appropriate for the particular parameter. Values that are neither
numbers nor valid identifiers must be quoted. DEFAULT can be written to specify removing the para-
meter and its value from postgresql.auto.conf.

For some list-accepting parameters, quoted values will produce double-quoted output to preserve
whitespace and commas; for others, double-quotes must be used inside single-quoted strings to get
this effect.

Notes
This command can't be used to set data_directory, allow_alter_system, nor parameters that are not al-
lowed in postgresql.conf (e.g., preset options).

See Section 19.1 for other ways to set the parameters.

ALTER SYSTEM can be disabled by setting allow_alter_system to off, but this is not a security mechanism
(as explained in detail in the documentation for this parameter).

Examples
Set the wal_level:

1480

ALTER SYSTEM

ALTER SYSTEM SET wal_level = replica;

Undo that, restoring whatever setting was effective in postgresql.conf:

ALTER SYSTEM RESET wal_level;

Compatibility
The ALTER SYSTEM statement is a PostgreSQL extension.

See Also
SET, SHOW

1481

ALTER TABLE
ALTER TABLE — change the definition of a table

Synopsis
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]
ALTER TABLE [IF EXISTS] name
 ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
ALTER TABLE [IF EXISTS] name
 DETACH PARTITION partition_name [CONCURRENTLY | FINALIZE]

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type [COLLATE collation]
 [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
 [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET EXPRESSION AS (expression)
 ALTER [COLUMN] column_name DROP EXPRESSION [IF EXISTS]
 ALTER [COLUMN] column_name ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
 [(sequence_options)]
 ALTER [COLUMN] column_name { SET GENERATED { ALWAYS | BY DEFAULT } |
 SET sequence_option | RESTART [[WITH] restart] } [...]
 ALTER [COLUMN] column_name DROP IDENTITY [IF EXISTS]
 ALTER [COLUMN] column_name SET STATISTICS { integer | DEFAULT }
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN |
 DEFAULT }
 ALTER [COLUMN] column_name SET COMPRESSION compression_method
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 ALTER CONSTRAINT constraint_name [DEFERRABLE | NOT DEFERRABLE] [INITIALLY
 DEFERRED | INITIALLY IMMEDIATE] [ENFORCED | NOT ENFORCED]
 ALTER CONSTRAINT constraint_name [INHERIT | NO INHERIT]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name

1482

ALTER TABLE

 DISABLE RULE rewrite_rule_name
 ENABLE RULE rewrite_rule_name
 ENABLE REPLICA RULE rewrite_rule_name
 ENABLE ALWAYS RULE rewrite_rule_name
 DISABLE ROW LEVEL SECURITY
 ENABLE ROW LEVEL SECURITY
 FORCE ROW LEVEL SECURITY
 NO FORCE ROW LEVEL SECURITY
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET ACCESS METHOD { new_access_method | DEFAULT }
 SET TABLESPACE new_tablespace
 SET { LOGGED | UNLOGGED }
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
 REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

and column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL [NO INHERIT] |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) [STORED | VIRTUAL] |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE [NULLS [NOT] DISTINCT] index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE] [ENFORCED
 | NOT ENFORCED]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 NOT NULL column_name [NO INHERIT] |
 UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...] [, column_name WITHOUT
 OVERLAPS]) index_parameters |
 PRIMARY KEY (column_name [, ...] [, column_name WITHOUT
 OVERLAPS]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |

1483

ALTER TABLE

 FOREIGN KEY (column_name [, ...] [, PERIOD column_name]) REFERENCES reftable
 [(refcolumn [, ...] [, PERIOD refcolumn])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON
 UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE] [ENFORCED
 | NOT ENFORCED]

and table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [COLLATE collation] [opclass [(opclass_parameter
 = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }]

referential_action in a FOREIGN KEY/REFERENCES constraint is:

{ NO ACTION | RESTRICT | CASCADE | SET NULL [(column_name [, ...])] | SET DEFAULT
 [(column_name [, ...])] }

Description
ALTER TABLE changes the definition of an existing table. There are several subforms described below.
Note that the lock level required may differ for each subform. An ACCESS EXCLUSIVE lock is acquired
unless explicitly noted. When multiple subcommands are given, the lock acquired will be the strictest
one required by any subcommand.

ADD COLUMN [IF NOT EXISTS]

This form adds a new column to the table, using the same syntax as CREATE TABLE. If IF NOT EXISTS
is specified and a column already exists with this name, no error is thrown.

DROP COLUMN [IF EXISTS]

This form drops a column from a table. Indexes and table constraints involving the column will be
automatically dropped as well. Multivariate statistics referencing the dropped column will also be
removed if the removal of the column would cause the statistics to contain data for only a single col-
umn. You will need to say CASCADE if anything outside the table depends on the column, for example,
foreign key references or views. If IF EXISTS is specified and the column does not exist, no error
is thrown. In this case a notice is issued instead.

SET DATA TYPE

This form changes the type of a column of a table. Indexes and simple table constraints involving
the column will be automatically converted to use the new column type by reparsing the originally
supplied expression. The optional COLLATE clause specifies a collation for the new column; if omitted,
the collation is the default for the new column type. The optional USING clause specifies how to
compute the new column value from the old; if omitted, the default conversion is the same as an
assignment cast from old data type to new. A USING clause must be provided if there is no implicit
or assignment cast from old to new type.

1484

ALTER TABLE

When this form is used, the column's statistics are removed, so running ANALYZE on the table af-
terwards is recommended. For a virtual generated column, ANALYZE is not necessary because such
columns never have statistics.

SET/DROP DEFAULT
These forms set or remove the default value for a column (where removal is equivalent to setting
the default value to NULL). The new default value will only apply in subsequent INSERT or UPDATE
commands; it does not cause rows already in the table to change.

SET/DROP NOT NULL
These forms change whether a column is marked to allow null values or to reject null values.

SET NOT NULL may only be applied to a column provided none of the records in the table contain a
NULL value for the column. Ordinarily this is checked during the ALTER TABLE by scanning the entire
table, unless NOT VALID is specified; however, if a valid CHECK constraint exists (and is not dropped
in the same command) which proves no NULL can exist, then the table scan is skipped. If a column
has an invalid not-null constraint, SET NOT NULL validates it.

If this table is a partition, one cannot perform DROP NOT NULL on a column if it is marked NOT NULL
in the parent table. To drop the NOT NULL constraint from all the partitions, perform DROP NOT NULL
on the parent table. Even if there is no NOT NULL constraint on the parent, such a constraint can still
be added to individual partitions, if desired; that is, the children can disallow nulls even if the parent
allows them, but not the other way around. It is also possible to drop the NOT NULL constraint from
ONLY the parent table, which does not remove it from the children.

SET EXPRESSION AS

This form replaces the expression of a generated column. Existing data in a stored generated column
is rewritten and all the future changes will apply the new generation expression.

When this form is used on a stored generated column, its statistics are removed, so running ANALYZE
on the table afterwards is recommended. For a virtual generated column, ANALYZE is not necessary
because such columns never have statistics.

DROP EXPRESSION [IF EXISTS]

This form turns a stored generated column into a normal base column. Existing data in the columns
is retained, but future changes will no longer apply the generation expression.

This form is currently only supported for stored generated columns (not virtual ones).

If DROP EXPRESSION IF EXISTS is specified and the column is not a generated column, no error is
thrown. In this case a notice is issued instead.

ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
SET GENERATED { ALWAYS | BY DEFAULT }
DROP IDENTITY [IF EXISTS]

These forms change whether a column is an identity column or change the generation attribute of
an existing identity column. See CREATE TABLE for details. Like SET DEFAULT, these forms only affect
the behavior of subsequent INSERT and UPDATE commands; they do not cause rows already in the
table to change.

If DROP IDENTITY IF EXISTS is specified and the column is not an identity column, no error is thrown.
In this case a notice is issued instead.

SET sequence_option
RESTART

These forms alter the sequence that underlies an existing identity column. sequence_option is an
option supported by ALTER SEQUENCE such as INCREMENT BY.

1485

ALTER TABLE

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. The
target can be set in the range 0 to 10000. Set it to DEFAULT to revert to using the system default
statistics target (default_statistics_target). (Setting to a value of -1 is an obsolete way spelling to get
the same outcome.) For more information on the use of statistics by the PostgreSQL query planner,
refer to Section 14.2.

SET STATISTICS acquires a SHARE UPDATE EXCLUSIVE lock.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. Currently, the only defined per-attribute options are
n_distinct and n_distinct_inherited, which override the number-of-distinct-values estimates
made by subsequent ANALYZE operations. n_distinct affects the statistics for the table itself, while
n_distinct_inherited affects the statistics gathered for the table plus its inheritance children.
When set to a positive value, ANALYZE will assume that the column contains exactly the specified
number of distinct nonnull values. When set to a negative value, which must be greater than or equal
to -1, ANALYZE will assume that the number of distinct nonnull values in the column is linear in the
size of the table; the exact count is to be computed by multiplying the estimated table size by the
absolute value of the given number. For example, a value of -1 implies that all values in the column
are distinct, while a value of -0.5 implies that each value appears twice on the average. This can be
useful when the size of the table changes over time, since the multiplication by the number of rows in
the table is not performed until query planning time. Specify a value of 0 to revert to estimating the
number of distinct values normally. For more information on the use of statistics by the PostgreSQL
query planner, refer to Section 14.2.

Changing per-attribute options acquires a SHARE UPDATE EXCLUSIVE lock.

SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }

This form sets the storage mode for a column. This controls whether this column is held inline or in
a secondary TOAST table, and whether the data should be compressed or not. PLAIN must be used
for fixed-length values such as integer and is inline, uncompressed. MAIN is for inline, compressible
data. EXTERNAL is for external, uncompressed data, and EXTENDED is for external, compressed data.
Writing DEFAULT sets the storage mode to the default mode for the column's data type. EXTENDED is
the default for most data types that support non-PLAIN storage. Use of EXTERNAL will make substring
operations on very large text and bytea values run faster, at the penalty of increased storage space.
Note that ALTER TABLE ... SET STORAGE doesn't itself change anything in the table; it just sets the
strategy to be pursued during future table updates. See Section 66.2 for more information.

SET COMPRESSION compression_method

This form sets the compression method for a column, determining how values inserted in future will
be compressed (if the storage mode permits compression at all). This does not cause the table to
be rewritten, so existing data may still be compressed with other compression methods. If the table
is restored with pg_restore, then all values are rewritten with the configured compression method.
However, when data is inserted from another relation (for example, by INSERT ... SELECT), values
from the source table are not necessarily detoasted, so any previously compressed data may retain
its existing compression method, rather than being recompressed with the compression method of
the target column. The supported compression methods are pglz and lz4. (lz4 is available only if --
with-lz4 was used when building PostgreSQL.) In addition, compression_method can be default,
which selects the default behavior of consulting the default_toast_compression setting at the time of
data insertion to determine the method to use.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a table using the same constraint syntax as CREATE TABLE, plus
the option NOT VALID, which is currently only allowed for foreign-key, CHECK, and not-null constraints.

1486

ALTER TABLE

Normally, this form will cause a scan of the table to verify that all existing rows in the table satisfy
the new constraint. But if the NOT VALID option is used, this potentially-lengthy scan is skipped. The
constraint will still be applied against subsequent inserts or updates (that is, they'll fail unless there
is a matching row in the referenced table, in the case of foreign keys, or they'll fail unless the new
row matches the specified check condition). But the database will not assume that the constraint
holds for all rows in the table, until it is validated by using the VALIDATE CONSTRAINT option. See
Notes below for more information about using the NOT VALID option.

Although most forms of ADD table_constraint require an ACCESS EXCLUSIVE lock, ADD FOREIGN KEY
requires only a SHARE ROW EXCLUSIVE lock. Note that ADD FOREIGN KEY also acquires a SHARE ROW
EXCLUSIVE lock on the referenced table, in addition to the lock on the table on which the constraint
is declared.

Additional restrictions apply when unique or primary key constraints are added to partitioned tables;
see CREATE TABLE.

ADD table_constraint_using_index

This form adds a new PRIMARY KEY or UNIQUE constraint to a table based on an existing unique index.
All the columns of the index will be included in the constraint.

The index cannot have expression columns nor be a partial index. Also, it must be a b-tree index
with default sort ordering. These restrictions ensure that the index is equivalent to one that would
be built by a regular ADD PRIMARY KEY or ADD UNIQUE command.

If PRIMARY KEY is specified, and the index's columns are not already marked NOT NULL, then this
command will attempt to do ALTER COLUMN SET NOT NULL against each such column. That requires
a full table scan to verify the column(s) contain no nulls. In all other cases, this is a fast operation.

If a constraint name is provided then the index will be renamed to match the constraint name. Oth-
erwise the constraint will be named the same as the index.

After this command is executed, the index is “owned” by the constraint, in the same way as if the
index had been built by a regular ADD PRIMARY KEY or ADD UNIQUE command. In particular, dropping
the constraint will make the index disappear too.

This form is not currently supported on partitioned tables.

Note
Adding a constraint using an existing index can be helpful in situations where a new constraint
needs to be added without blocking table updates for a long time. To do that, create the index
using CREATE UNIQUE INDEX CONCURRENTLY, and then convert it to a constraint using this
syntax. See the example below.

ALTER CONSTRAINT

This form alters the attributes of a constraint that was previously created. Currently only foreign key
constraints may be altered in this fashion, but see below.

ALTER CONSTRAINT ... INHERIT
ALTER CONSTRAINT ... NO INHERIT

These forms modify a inheritable constraint so that it becomes not inheritable, or vice-versa. Only
not-null constraints may be altered in this fashion at present. In addition to changing the inheritability
status of the constraint, in the case where a non-inheritable constraint is being marked inheritable,
if the table has children, an equivalent constraint will be added to them. If marking an inheritable
constraint as non-inheritable on a table with children, then the corresponding constraint on children
will be marked as no longer inherited, but not removed.

1487

ALTER TABLE

VALIDATE CONSTRAINT

This form validates a foreign key, check, or not-null constraint that was previously created as NOT
VALID, by scanning the table to ensure there are no rows for which the constraint is not satisfied.
If the constraint was set to NOT ENFORCED, an error is thrown. Nothing happens if the constraint is
already marked valid. (See Notes below for an explanation of the usefulness of this command.)

This command acquires a SHARE UPDATE EXCLUSIVE lock.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a table, along with any index underlying the constraint.
If IF EXISTS is specified and the constraint does not exist, no error is thrown. In this case a notice
is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the table. A disabled trigger is still known
to the system, but is not executed when its triggering event occurs. (For a deferred trigger, the
enable status is checked when the event occurs, not when the trigger function is actually executed.)
One can disable or enable a single trigger specified by name, or all triggers on the table, or only user
triggers (this option excludes internally generated constraint triggers, such as those that are used
to implement foreign key constraints or deferrable uniqueness and exclusion constraints). Disabling
or enabling internally generated constraint triggers requires superuser privileges; it should be done
with caution since of course the integrity of the constraint cannot be guaranteed if the triggers are
not executed.

The trigger firing mechanism is also affected by the configuration variable session_replication_role.
Simply enabled triggers (the default) will fire when the replication role is “origin” (the default) or
“local”. Triggers configured as ENABLE REPLICA will only fire if the session is in “replica” mode, and
triggers configured as ENABLE ALWAYS will fire regardless of the current replication role.

The effect of this mechanism is that in the default configuration, triggers do not fire on replicas.
This is useful because if a trigger is used on the origin to propagate data between tables, then the
replication system will also replicate the propagated data; so the trigger should not fire a second
time on the replica, because that would lead to duplication. However, if a trigger is used for another
purpose such as creating external alerts, then it might be appropriate to set it to ENABLE ALWAYS so
that it is also fired on replicas.

When this command is applied to a partitioned table, the states of corresponding clone triggers in
the partitions are updated too, unless ONLY is specified.

This command acquires a SHARE ROW EXCLUSIVE lock.

DISABLE/ENABLE [REPLICA | ALWAYS] RULE

These forms configure the firing of rewrite rules belonging to the table. A disabled rule is still known
to the system, but is not applied during query rewriting. The semantics are as for disabled/enabled
triggers. This configuration is ignored for ON SELECT rules, which are always applied in order to keep
views working even if the current session is in a non-default replication role.

The rule firing mechanism is also affected by the configuration variable session_replication_role,
analogous to triggers as described above.

DISABLE/ENABLE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table. If enabled and
no policies exist for the table, then a default-deny policy is applied. Note that policies can exist for
a table even if row-level security is disabled. In this case, the policies will not be applied and the
policies will be ignored. See also CREATE POLICY.

1488

ALTER TABLE

NO FORCE/FORCE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table when the user
is the table owner. If enabled, row-level security policies will be applied when the user is the table
owner. If disabled (the default) then row-level security will not be applied when the user is the table
owner. See also CREATE POLICY.

CLUSTER ON

This form selects the default index for future CLUSTER operations. It does not actually re-cluster the
table.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITHOUT CLUSTER

This form removes the most recently used CLUSTER index specification from the table. This affects
future cluster operations that don't specify an index.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITHOUT OIDS

Backward-compatible syntax for removing the oid system column. As oid system columns cannot be
added anymore, this never has an effect.

SET ACCESS METHOD

This form changes the access method of the table by rewriting it using the indicated access method;
specifying DEFAULT selects the access method set as the default_table_access_method configuration
parameter. See Chapter 62 for more information.

When applied to a partitioned table, there is no data to rewrite, but partitions created afterwards will
default to the given access method unless overridden by a USING clause. Specifying DEFAULT removes
a previous value, causing future partitions to default to default_table_access_method.

SET TABLESPACE

This form changes the table's tablespace to the specified tablespace and moves the data file(s) as-
sociated with the table to the new tablespace. Indexes on the table, if any, are not moved; but they
can be moved separately with additional SET TABLESPACE commands. When applied to a partitioned
table, nothing is moved, but any partitions created afterwards with CREATE TABLE PARTITION OF
will use that tablespace, unless overridden by a TABLESPACE clause.

All tables in the current database in a tablespace can be moved by using the ALL IN TABLESPACE form,
which will lock all tables to be moved first and then move each one. This form also supports OWNED
BY, which will only move tables owned by the roles specified. If the NOWAIT option is specified then
the command will fail if it is unable to acquire all of the locks required immediately. Note that system
catalogs are not moved by this command; use ALTER DATABASE or explicit ALTER TABLE invocations
instead if desired. The information_schema relations are not considered part of the system catalogs
and will be moved. See also CREATE TABLESPACE.

SET { LOGGED | UNLOGGED }

This form changes the table from unlogged to logged or vice-versa (see UNLOGGED). It cannot be
applied to a temporary table.

This also changes the persistence of any sequences linked to the table (for identity or serial columns).
However, it is also possible to change the persistence of such sequences separately.

This form is not supported for partitioned tables.

1489

ALTER TABLE

SET (storage_parameter [= value] [, ...])

This form changes one or more storage parameters for the table. See Storage Parameters in the
CREATE TABLE documentation for details on the available parameters. Note that the table contents
will not be modified immediately by this command; depending on the parameter you might need to
rewrite the table to get the desired effects. That can be done with VACUUM FULL, CLUSTER or one of
the forms of ALTER TABLE that forces a table rewrite. For planner related parameters, changes will
take effect from the next time the table is locked so currently executing queries will not be affected.

SHARE UPDATE EXCLUSIVE lock will be taken for fillfactor, toast and autovacuum storage parameters,
as well as the planner parameter parallel_workers.

RESET (storage_parameter [, ...])

This form resets one or more storage parameters to their defaults. As with SET, a table rewrite might
be needed to update the table entirely.

INHERIT parent_table

This form adds the target table as a new child of the specified parent table. Subsequently, queries
against the parent will include records of the target table. To be added as a child, the target table
must already contain all the same columns as the parent (it could have additional columns, too). The
columns must have matching data types.

In addition, all CHECK and NOT NULL constraints on the parent must also exist on the child, except
those marked non-inheritable (that is, created with ALTER TABLE ... ADD CONSTRAINT ... NO
INHERIT), which are ignored. All child-table constraints matched must not be marked non-inheritable.
Currently UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints are not considered, but this might
change in the future.

NO INHERIT parent_table

This form removes the target table from the list of children of the specified parent table. Queries
against the parent table will no longer include records drawn from the target table.

OF type_name

This form links the table to a composite type as though CREATE TABLE OF had formed it. The table's
list of column names and types must precisely match that of the composite type. The table must
not inherit from any other table. These restrictions ensure that CREATE TABLE OF would permit an
equivalent table definition.

NOT OF

This form dissociates a typed table from its type.

OWNER TO

This form changes the owner of the table, sequence, view, materialized view, or foreign table to the
specified user.

REPLICA IDENTITY

This form changes the information which is written to the write-ahead log to identify rows which are
updated or deleted. In most cases, the old value of each column is only logged if it differs from the
new value; however, if the old value is stored externally, it is always logged regardless of whether it
changed. This option has no effect except when logical replication is in use.

DEFAULT

Records the old values of the columns of the primary key. This is the default for non-system tables.
When there is no primary key, the behavior is the same as NOTHING.

1490

ALTER TABLE

USING INDEX index_name

Records the old values of the columns covered by the named index, that must be unique, not
partial, not deferrable, and include only columns marked NOT NULL. If this index is dropped, the
behavior is the same as NOTHING.

FULL

Records the old values of all columns in the row.

NOTHING

Records no information about the old row. This is the default for system tables.

RENAME

The RENAME forms change the name of a table (or an index, sequence, view, materialized view, or
foreign table), the name of an individual column in a table, or the name of a constraint of the table.
When renaming a constraint that has an underlying index, the index is renamed as well. There is
no effect on the stored data.

SET SCHEMA

This form moves the table into another schema. Associated indexes, constraints, and sequences
owned by table columns are moved as well.

ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }

This form attaches an existing table (which might itself be partitioned) as a partition of the target
table. The table can be attached as a partition for specific values using FOR VALUES or as a default
partition by using DEFAULT. For each index in the target table, a corresponding one will be created
in the attached table; or, if an equivalent index already exists, it will be attached to the target table's
index, as if ALTER INDEX ATTACH PARTITION had been executed. Note that if the existing table is a
foreign table, it is currently not allowed to attach the table as a partition of the target table if there
are UNIQUE indexes on the target table. (See also CREATE FOREIGN TABLE.) For each user-defined
row-level trigger that exists in the target table, a corresponding one is created in the attached table.

A partition using FOR VALUES uses same syntax for partition_bound_spec as CREATE TABLE. The
partition bound specification must correspond to the partitioning strategy and partition key of the
target table. The table to be attached must have all the same columns as the target table and no
more; moreover, the column types must also match. Also, it must have all the NOT NULL and CHECK
constraints of the target table, not marked NO INHERIT. Currently FOREIGN KEY constraints are
not considered. UNIQUE and PRIMARY KEY constraints from the parent table will be created in the
partition, if they don't already exist.

If the new partition is a regular table, a full table scan is performed to check that existing rows in
the table do not violate the partition constraint. It is possible to avoid this scan by adding a valid
CHECK constraint to the table that allows only rows satisfying the desired partition constraint before
running this command. The CHECK constraint will be used to determine that the table need not be
scanned to validate the partition constraint. This does not work, however, if any of the partition keys
is an expression and the partition does not accept NULL values. If attaching a list partition that will
not accept NULL values, also add a NOT NULL constraint to the partition key column, unless it's an
expression.

If the new partition is a foreign table, nothing is done to verify that all the rows in the foreign table
obey the partition constraint. (See the discussion in CREATE FOREIGN TABLE about constraints on
the foreign table.)

When a table has a default partition, defining a new partition changes the partition constraint for
the default partition. The default partition can't contain any rows that would need to be moved to
the new partition, and will be scanned to verify that none are present. This scan, like the scan of the

1491

ALTER TABLE

new partition, can be avoided if an appropriate CHECK constraint is present. Also like the scan of the
new partition, it is always skipped when the default partition is a foreign table.

Attaching a partition acquires a SHARE UPDATE EXCLUSIVE lock on the parent table, in addition to
the ACCESS EXCLUSIVE locks on the table being attached and on the default partition (if any).

Further locks must also be held on all sub-partitions if the table being attached is itself a partitioned
table. Likewise if the default partition is itself a partitioned table. The locking of the sub-partitions
can be avoided by adding a CHECK constraint as described in Section 5.12.2.2.

DETACH PARTITION partition_name [CONCURRENTLY | FINALIZE]

This form detaches the specified partition of the target table. The detached partition continues to
exist as a standalone table, but no longer has any ties to the table from which it was detached. Any
indexes that were attached to the target table's indexes are detached. Any triggers that were created
as clones of those in the target table are removed. SHARE lock is obtained on any tables that reference
this partitioned table in foreign key constraints.

If CONCURRENTLY is specified, it runs using a reduced lock level to avoid blocking other sessions that
might be accessing the partitioned table. In this mode, two transactions are used internally. During
the first transaction, a SHARE UPDATE EXCLUSIVE lock is taken on both parent table and partition,
and the partition is marked as undergoing detach; at that point, the transaction is committed and
all other transactions using the partitioned table are waited for. Once all those transactions have
completed, the second transaction acquires SHARE UPDATE EXCLUSIVE on the partitioned table and
ACCESS EXCLUSIVE on the partition, and the detach process completes. A CHECK constraint that dupli-
cates the partition constraint is added to the partition. CONCURRENTLY cannot be run in a transaction
block and is not allowed if the partitioned table contains a default partition.

If FINALIZE is specified, a previous DETACH CONCURRENTLY invocation that was canceled or interrupt-
ed is completed. At most one partition in a partitioned table can be pending detach at a time.

All the forms of ALTER TABLE that act on a single table, except RENAME, SET SCHEMA, ATTACH PARTITION,
and DETACH PARTITION can be combined into a list of multiple alterations to be applied together. For
example, it is possible to add several columns and/or alter the type of several columns in a single com-
mand. This is particularly useful with large tables, since only one pass over the table need be made.

You must own the table to use ALTER TABLE. To change the schema or tablespace of a table, you must
also have CREATE privilege on the new schema or tablespace. To add the table as a new child of a parent
table, you must own the parent table as well. Also, to attach a table as a new partition of the table, you
must own the table being attached. To alter the owner, you must be able to SET ROLE to the new owning
role, and that role must have CREATE privilege on the table's schema. (These restrictions enforce that
altering the owner doesn't do anything you couldn't do by dropping and recreating the table. However,
a superuser can alter ownership of any table anyway.) To add a column or alter a column type or use
the OF clause, you must also have USAGE privilege on the data type.

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing table to alter. If ONLY is specified before the
table name, only that table is altered. If ONLY is not specified, the table and all its descendant tables
(if any) are altered. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

column_name

Name of a new or existing column.

1492

ALTER TABLE

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the table.

constraint_name

Name of a new or existing constraint.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default be-
havior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the table. (This requires superuser privilege if any of
the triggers are internally generated constraint triggers, such as those that are used to implement
foreign key constraints or deferrable uniqueness and exclusion constraints.)

USER

Disable or enable all triggers belonging to the table except for internally generated constraint trig-
gers, such as those that are used to implement foreign key constraints or deferrable uniqueness and
exclusion constraints.

index_name

The name of an existing index.

storage_parameter

The name of a table storage parameter.

value

The new value for a table storage parameter. This might be a number or a word depending on the
parameter.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The user name of the new owner of the table.

new_access_method

The name of the access method to which the table will be converted.

1493

ALTER TABLE

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

partition_name

The name of the table to attach as a new partition or to detach from this table.

partition_bound_spec

The partition bound specification for a new partition. Refer to CREATE TABLE for more details on
the syntax of the same.

Notes
The key word COLUMN is noise and can be omitted.

When a column is added with ADD COLUMN and a non-volatile DEFAULT is specified, the default value is
evaluated at the time of the statement and the result stored in the table's metadata, where it will be
returned when any existing rows are accessed. The value will be only applied when the table is rewritten,
making the ALTER TABLE very fast even on large tables. If no column constraints are specified, NULL is
used as the DEFAULT. In neither case is a rewrite of the table required.

Adding a column with a volatile DEFAULT (e.g., clock_timestamp()), a stored generated column, an
identity column, or a column with a domain data type that has constraints will cause the entire table and
its indexes to be rewritten. Adding a virtual generated column never requires a rewrite.

Changing the type of an existing column will normally cause the entire table and its indexes to be rewrit-
ten. As an exception, when changing the type of an existing column, if the USING clause does not change
the column contents and the old type is either binary coercible to the new type or an unconstrained
domain over the new type, a table rewrite is not needed. However, indexes will still be rebuilt unless
the system can verify that the new index would be logically equivalent to the existing one. For example,
if the collation for a column has been changed, an index rebuild is required because the new sort order
might be different. However, in the absence of a collation change, a column can be changed from text
to varchar (or vice versa) without rebuilding the indexes because these data types sort identically.

Table and/or index rebuilds may take a significant amount of time for a large table, and will temporarily
require as much as double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet
the constraint, but does not require a table rewrite. If a CHECK constraint is added as NOT ENFORCED,
no verification will be performed.

Similarly, when attaching a new partition it may be scanned to verify that existing rows meet the partition
constraint.

The main reason for providing the option to specify multiple changes in a single ALTER TABLE is that
multiple table scans or rewrites can thereby be combined into a single pass over the table.

Scanning a large table to verify new foreign-key, check, or not-null constraints can take a long time,
and other updates to the table are locked out until the ALTER TABLE ADD CONSTRAINT command is
committed. The main purpose of the NOT VALID constraint option is to reduce the impact of adding a
constraint on concurrent updates. With NOT VALID, the ADD CONSTRAINT command does not scan the
table and can be committed immediately. After that, a VALIDATE CONSTRAINT command can be issued to
verify that existing rows satisfy the constraint. The validation step does not need to lock out concurrent
updates, since it knows that other transactions will be enforcing the constraint for rows that they insert
or update; only pre-existing rows need to be checked. Hence, validation acquires only a SHARE UPDATE
EXCLUSIVE lock on the table being altered. (If the constraint is a foreign key then a ROW SHARE lock is

1494

ALTER TABLE

also required on the table referenced by the constraint.) In addition to improving concurrency, it can be
useful to use NOT VALID and VALIDATE CONSTRAINT in cases where the table is known to contain pre-
existing violations. Once the constraint is in place, no new violations can be inserted, and the existing
problems can be corrected at leisure until VALIDATE CONSTRAINT finally succeeds.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL
operations. Subsequent insert and update operations in the table will store a null value for the column.
Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your table, as
the space occupied by the dropped column is not reclaimed. The space will be reclaimed over time as
existing rows are updated.

To force immediate reclamation of space occupied by a dropped column, you can execute one of the
forms of ALTER TABLE that performs a rewrite of the whole table. This results in reconstructing each
row with the dropped column replaced by a null value.

The rewriting forms of ALTER TABLE are not MVCC-safe. After a table rewrite, the table will appear
empty to concurrent transactions, if they are using a snapshot taken before the rewrite occurred. See
Section 13.6 for more details.

The USING option of SET DATA TYPE can actually specify any expression involving the old values of the
row; that is, it can refer to other columns as well as the one being converted. This allows very general
conversions to be done with the SET DATA TYPE syntax. Because of this flexibility, the USING expression
is not applied to the column's default value (if any); the result might not be a constant expression as
required for a default. This means that when there is no implicit or assignment cast from old to new
type, SET DATA TYPE might fail to convert the default even though a USING clause is supplied. In such
cases, drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use SET DEFAULT to add
a suitable new default. Similar considerations apply to indexes and constraints involving the column.

If a table has any descendant tables, it is not permitted to add, rename, or change the type of a column in
the parent table without doing the same to the descendants. This ensures that the descendants always
have columns matching the parent. Similarly, a CHECK constraint cannot be renamed in the parent with-
out also renaming it in all descendants, so that CHECK constraints also match between the parent and
its descendants. (That restriction does not apply to index-based constraints, however.) Also, because
selecting from the parent also selects from its descendants, a constraint on the parent cannot be marked
valid unless it is also marked valid for those descendants. In all of these cases, ALTER TABLE ONLY will
be rejected.

A recursive DROP COLUMN operation will remove a descendant table's column only if the descendant does
not inherit that column from any other parents and never had an independent definition of the column.
A nonrecursive DROP COLUMN (i.e., ALTER TABLE ONLY ... DROP COLUMN) never removes any descendant
columns, but instead marks them as independently defined rather than inherited. A nonrecursive DROP
COLUMN command will fail for a partitioned table, because all partitions of a table must have the same
columns as the partitioning root.

The actions for identity columns (ADD GENERATED, SET etc., DROP IDENTITY), as well as the actions
CLUSTER, OWNER, and TABLESPACE never recurse to descendant tables; that is, they always act as though
ONLY were specified. Actions affecting trigger states recurse to partitions of partitioned tables (unless
ONLY is specified), but never to traditional-inheritance descendants. Adding a constraint recurses only
for CHECK constraints that are not marked NO INHERIT.

Changing any part of a system catalog table is not permitted.

Refer to CREATE TABLE for a further description of valid parameters. Chapter 5 has further information
on inheritance.

Examples
To add a column of type varchar to a table:
ALTER TABLE distributors ADD COLUMN address varchar(30);

1495

ALTER TABLE

That will cause all existing rows in the table to be filled with null values for the new column.

To add a column with a non-null default:

ALTER TABLE measurements
 ADD COLUMN mtime timestamp with time zone DEFAULT now();

Existing rows will be filled with the current time as the value of the new column, and then new rows
will receive the time of their insertion.

To add a column and fill it with a value different from the default to be used later:

ALTER TABLE transactions
 ADD COLUMN status varchar(30) DEFAULT 'old',
 ALTER COLUMN status SET default 'current';

Existing rows will be filled with old, but then the default for subsequent commands will be current. The
effects are the same as if the two sub-commands had been issued in separate ALTER TABLE commands.

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

To change the types of two existing columns in one operation:

ALTER TABLE distributors
 ALTER COLUMN address TYPE varchar(80),
 ALTER COLUMN name TYPE varchar(100);

To change an integer column containing Unix timestamps to timestamp with time zone via a USING
clause:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second';

The same, when the column has a default expression that won't automatically cast to the new data type:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp DROP DEFAULT,
 ALTER COLUMN foo_timestamp TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second',
 ALTER COLUMN foo_timestamp SET DEFAULT now();

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

To remove a not-null constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

To add a check constraint to a table and all its children:

1496

ALTER TABLE

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5) NO
 INHERIT;

(The check constraint will not be inherited by future children, either.)

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

To remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

(The check constraint remains in place for any child tables.)

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES
 addresses (address);

To add a foreign key constraint to a table with the least impact on other work:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES
 addresses (address) NOT VALID;
ALTER TABLE distributors VALIDATE CONSTRAINT distfk;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zipcode);

To add an automatically named primary key constraint to a table, noting that a table can only ever have
one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

To move a table to a different tablespace:

ALTER TABLE distributors SET TABLESPACE fasttablespace;

To move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

To recreate a primary key constraint, without blocking updates while the index is rebuilt:

CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,
 ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX dist_id_temp_idx;

To attach a partition to a range-partitioned table:

ALTER TABLE measurement
 ATTACH PARTITION measurement_y2016m07 FOR VALUES FROM ('2016-07-01') TO
 ('2016-08-01');

To attach a partition to a list-partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_ab FOR VALUES IN ('a', 'b');

To attach a partition to a hash-partitioned table:

ALTER TABLE orders
 ATTACH PARTITION orders_p4 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

1497

ALTER TABLE

To attach a default partition to a partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_partdef DEFAULT;

To detach a partition from a partitioned table:

ALTER TABLE measurement
 DETACH PARTITION measurement_y2015m12;

Compatibility
The forms ADD [COLUMN], DROP [COLUMN], DROP IDENTITY, RESTART, SET DEFAULT, SET DATA TYPE
(without USING), SET GENERATED, and SET sequence_option conform with the SQL standard. The form
ADD table_constraint conforms with the SQL standard when the USING INDEX and NOT VALID clauses
are omitted and the constraint type is one of CHECK, UNIQUE, PRIMARY KEY, or REFERENCES. The other forms
are PostgreSQL extensions of the SQL standard. Also, the ability to specify more than one manipulation
in a single ALTER TABLE command is an extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving a zero-column table.
This is an extension of SQL, which disallows zero-column tables.

See Also
CREATE TABLE

1498

ALTER TABLESPACE
ALTER TABLESPACE — change the definition of a tablespace

Synopsis
ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER TABLESPACE name SET (tablespace_option = value [, ...])
ALTER TABLESPACE name RESET (tablespace_option [, ...])

Description
ALTER TABLESPACE can be used to change the definition of a tablespace.

You must own the tablespace to change the definition of a tablespace. To alter the owner, you must also
be able to SET ROLE to the new owning role. (Note that superusers have these privileges automatically.)

Parameters
name

The name of an existing tablespace.

new_name

The new name of the tablespace. The new name cannot begin with pg_, as such names are reserved
for system tablespaces.

new_owner

The new owner of the tablespace.

tablespace_option

A tablespace parameter to be set or reset. Currently, the only available parameters are se-
q_page_cost, random_page_cost, effective_io_concurrency and maintenance_io_concurrency.
Setting these values for a particular tablespace will override the planner's usual estimate of the cost
of reading pages from tables in that tablespace, and how many concurrent I/Os are issued, as estab-
lished by the configuration parameters of the same name (see seq_page_cost, random_page_cost,
effective_io_concurrency, maintenance_io_concurrency). This may be useful if one tablespace is lo-
cated on a disk which is faster or slower than the remainder of the I/O subsystem.

Examples
Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility
There is no ALTER TABLESPACE statement in the SQL standard.

See Also
CREATE TABLESPACE, DROP TABLESPACE

1499

ALTER TEXT SEARCH CONFIGURATION
ALTER TEXT SEARCH CONFIGURATION — change the definition of a text search configuration

Synopsis
ALTER TEXT SEARCH CONFIGURATION name
 ADD MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER
 | SESSION_USER }
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH CONFIGURATION changes the definition of a text search configuration. You can modify
its mappings from token types to dictionaries, or change the configuration's name or owner.

You must be the owner of the configuration to use ALTER TEXT SEARCH CONFIGURATION.

Parameters
name

The name (optionally schema-qualified) of an existing text search configuration.

token_type

The name of a token type that is emitted by the configuration's parser.

dictionary_name

The name of a text search dictionary to be consulted for the specified token type(s). If multiple
dictionaries are listed, they are consulted in the specified order.

old_dictionary

The name of a text search dictionary to be replaced in the mapping.

new_dictionary

The name of a text search dictionary to be substituted for old_dictionary.

new_name

The new name of the text search configuration.

new_owner

The new owner of the text search configuration.

new_schema

The new schema for the text search configuration.

1500

ALTER TEXT SEARCH
CONFIGURATION

The ADD MAPPING FOR form installs a list of dictionaries to be consulted for the specified token type(s);
it is an error if there is already a mapping for any of the token types. The ALTER MAPPING FOR form does
the same, but first removing any existing mapping for those token types. The ALTER MAPPING REPLACE
forms substitute new_dictionary for old_dictionary anywhere the latter appears. This is done for only
the specified token types when FOR appears, or for all mappings of the configuration when it doesn't.
The DROP MAPPING form removes all dictionaries for the specified token type(s), causing tokens of those
types to be ignored by the text search configuration. It is an error if there is no mapping for the token
types, unless IF EXISTS appears.

Examples
The following example replaces the english dictionary with the swedish dictionary anywhere that eng-
lish is used within my_config.

ALTER TEXT SEARCH CONFIGURATION my_config
 ALTER MAPPING REPLACE english WITH swedish;

Compatibility
There is no ALTER TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
CREATE TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1501

ALTER TEXT SEARCH DICTIONARY
ALTER TEXT SEARCH DICTIONARY — change the definition of a text search dictionary

Synopsis
ALTER TEXT SEARCH DICTIONARY name (
 option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH DICTIONARY changes the definition of a text search dictionary. You can change the
dictionary's template-specific options, or change the dictionary's name or owner.

You must be the owner of the dictionary to use ALTER TEXT SEARCH DICTIONARY.

Parameters
name

The name (optionally schema-qualified) of an existing text search dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The new value to use for a template-specific option. If the equal sign and value are omitted, then any
previous setting for the option is removed from the dictionary, allowing the default to be used.

new_name

The new name of the text search dictionary.

new_owner

The new owner of the text search dictionary.

new_schema

The new schema for the text search dictionary.

Template-specific options can appear in any order.

Examples
The following example command changes the stopword list for a Snowball-based dictionary. Other pa-
rameters remain unchanged.

ALTER TEXT SEARCH DICTIONARY my_dict (StopWords = newrussian);

The following example command changes the language option to dutch, and removes the stopword
option entirely.

ALTER TEXT SEARCH DICTIONARY my_dict (language = dutch, StopWords);

1502

ALTER TEXT SEARCH DICTIONARY

The following example command “updates” the dictionary's definition without actually changing any-
thing.

ALTER TEXT SEARCH DICTIONARY my_dict (dummy);

(The reason this works is that the option removal code doesn't complain if there is no such option.)
This trick is useful when changing configuration files for the dictionary: the ALTER will force existing
database sessions to re-read the configuration files, which otherwise they would never do if they had
read them earlier.

Compatibility
There is no ALTER TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
CREATE TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1503

ALTER TEXT SEARCH PARSER
ALTER TEXT SEARCH PARSER — change the definition of a text search parser

Synopsis
ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH PARSER changes the definition of a text search parser. Currently, the only supported
functionality is to change the parser's name.

You must be a superuser to use ALTER TEXT SEARCH PARSER.

Parameters
name

The name (optionally schema-qualified) of an existing text search parser.

new_name

The new name of the text search parser.

new_schema

The new schema for the text search parser.

Compatibility
There is no ALTER TEXT SEARCH PARSER statement in the SQL standard.

See Also
CREATE TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1504

ALTER TEXT SEARCH TEMPLATE
ALTER TEXT SEARCH TEMPLATE — change the definition of a text search template

Synopsis
ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH TEMPLATE changes the definition of a text search template. Currently, the only
supported functionality is to change the template's name.

You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters
name

The name (optionally schema-qualified) of an existing text search template.

new_name

The new name of the text search template.

new_schema

The new schema for the text search template.

Compatibility
There is no ALTER TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1505

ALTER TRIGGER
ALTER TRIGGER — change the definition of a trigger

Synopsis
ALTER TRIGGER name ON table_name RENAME TO new_name
ALTER TRIGGER name ON table_name [NO] DEPENDS ON EXTENSION extension_name

Description
ALTER TRIGGER changes properties of an existing trigger.

The RENAME clause changes the name of the given trigger without otherwise changing the trigger defi-
nition. If the table that the trigger is on is a partitioned table, then corresponding clone triggers in the
partitions are renamed too.

The DEPENDS ON EXTENSION clause marks the trigger as dependent on an extension, such that if the
extension is dropped, the trigger will automatically be dropped as well.

You must own the table on which the trigger acts to be allowed to change its properties.

Parameters
name

The name of an existing trigger to alter.

table_name

The name of the table on which this trigger acts.

new_name

The new name for the trigger.

extension_name

The name of the extension that the trigger is to depend on (or no longer dependent on, if NO is
specified). A trigger that's marked as dependent on an extension is automatically dropped when the
extension is dropped.

Notes
The ability to temporarily enable or disable a trigger is provided by ALTER TABLE, not by ALTER TRIGGER,
because ALTER TRIGGER has no convenient way to express the option of enabling or disabling all of a
table's triggers at once.

Examples
To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

To mark a trigger as being dependent on an extension:

ALTER TRIGGER emp_stamp ON emp DEPENDS ON EXTENSION emplib;

Compatibility
ALTER TRIGGER is a PostgreSQL extension of the SQL standard.

1506

ALTER TRIGGER

See Also
ALTER TABLE

1507

ALTER TYPE
ALTER TYPE — change the definition of a type

Synopsis
ALTER TYPE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [CASCADE |
 RESTRICT]
ALTER TYPE name action [, ...]
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE |
 AFTER } neighbor_enum_value]
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value
ALTER TYPE name SET (property = value [, ...])

where action is one of:

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE | RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type [COLLATE collation]
 [CASCADE | RESTRICT]

Description
ALTER TYPE changes the definition of an existing type. There are several subforms:
OWNER

This form changes the owner of the type.

RENAME

This form changes the name of the type.

SET SCHEMA

This form moves the type into another schema.

RENAME ATTRIBUTE

This form is only usable with composite types. It changes the name of an individual attribute of the
type.

ADD ATTRIBUTE

This form adds a new attribute to a composite type, using the same syntax as CREATE TYPE.

DROP ATTRIBUTE [IF EXISTS]

This form drops an attribute from a composite type. If IF EXISTS is specified and the attribute does
not exist, no error is thrown. In this case a notice is issued instead.

ALTER ATTRIBUTE ... SET DATA TYPE

This form changes the type of an attribute of a composite type.

ADD VALUE [IF NOT EXISTS] [BEFORE | AFTER]

This form adds a new value to an enum type. The new value's place in the enum's ordering can be
specified as being BEFORE or AFTER one of the existing values. Otherwise, the new item is added at
the end of the list of values.

1508

ALTER TYPE

If IF NOT EXISTS is specified, it is not an error if the type already contains the new value: a notice is
issued but no other action is taken. Otherwise, an error will occur if the new value is already present.

RENAME VALUE

This form renames a value of an enum type. The value's place in the enum's ordering is not affected.
An error will occur if the specified value is not present or the new name is already present.

SET (property = value [, ...])

This form is only applicable to base types. It allows adjustment of a subset of the base-type properties
that can be set in CREATE TYPE. Specifically, these properties can be changed:

• RECEIVE can be set to the name of a binary input function, or NONE to remove the type's binary
input function. Using this option requires superuser privilege.

• SEND can be set to the name of a binary output function, or NONE to remove the type's binary
output function. Using this option requires superuser privilege.

• TYPMOD_IN can be set to the name of a type modifier input function, or NONE to remove the
type's type modifier input function. Using this option requires superuser privilege.

• TYPMOD_OUT can be set to the name of a type modifier output function, or NONE to remove the
type's type modifier output function. Using this option requires superuser privilege.

• ANALYZE can be set to the name of a type-specific statistics collection function, or NONE to re-
move the type's statistics collection function. Using this option requires superuser privilege.

• SUBSCRIPT can be set to the name of a type-specific subscripting handler function, or NONE to re-
move the type's subscripting handler function. Using this option requires superuser privilege.

• STORAGEcan be set to plain, extended, external, or main (see Section 66.2 for more informa-
tion about what these mean). However, changing from plain to another setting requires supe-
ruser privilege (because it requires that the type's C functions all be TOAST-ready), and chang-
ing to plain from another setting is not allowed at all (since the type may already have TOAST-
ed values present in the database). Note that changing this option doesn't by itself change any
stored data, it just sets the default TOAST strategy to be used for table columns created in the
future. See ALTER TABLE to change the TOAST strategy for existing table columns.

See CREATE TYPE for more details about these type properties. Note that where appropriate, a
change in these properties for a base type will be propagated automatically to domains based on
that type.

The ADD ATTRIBUTE, DROP ATTRIBUTE, and ALTER ATTRIBUTE actions can be combined into a list of
multiple alterations to apply in parallel. For example, it is possible to add several attributes and/or alter
the type of several attributes in a single command.

You must own the type to use ALTER TYPE. To change the schema of a type, you must also have CREATE
privilege on the new schema. To alter the owner, you must be able to SET ROLE to the new owning
role, and that role must have CREATE privilege on the type's schema. (These restrictions enforce that
altering the owner doesn't do anything you couldn't do by dropping and recreating the type. However,
a superuser can alter ownership of any type anyway.) To add an attribute or alter an attribute type, you
must also have USAGE privilege on the attribute's data type.

Parameters
name

The name (possibly schema-qualified) of an existing type to alter.

new_name

The new name for the type.

1509

ALTER TYPE

new_owner

The user name of the new owner of the type.

new_schema

The new schema for the type.

attribute_name

The name of the attribute to add, alter, or drop.

new_attribute_name

The new name of the attribute to be renamed.

data_type

The data type of the attribute to add, or the new type of the attribute to alter.

new_enum_value

The new value to be added to an enum type's list of values, or the new name to be given to an existing
value. Like all enum literals, it needs to be quoted.

neighbor_enum_value

The existing enum value that the new value should be added immediately before or after in the enum
type's sort ordering. Like all enum literals, it needs to be quoted.

existing_enum_value

The existing enum value that should be renamed. Like all enum literals, it needs to be quoted.

property

The name of a base-type property to be modified; see above for possible values.

CASCADE

Automatically propagate the operation to typed tables of the type being altered, and their descen-
dants.

RESTRICT

Refuse the operation if the type being altered is the type of a typed table. This is the default.

Notes
If ALTER TYPE ... ADD VALUE (the form that adds a new value to an enum type) is executed inside a
transaction block, the new value cannot be used until after the transaction has been committed.

Comparisons involving an added enum value will sometimes be slower than comparisons involving only
original members of the enum type. This will usually only occur if BEFORE or AFTER is used to set the new
value's sort position somewhere other than at the end of the list. However, sometimes it will happen
even though the new value is added at the end (this occurs if the OID counter “wrapped around” since
the original creation of the enum type). The slowdown is usually insignificant; but if it matters, optimal
performance can be regained by dropping and recreating the enum type, or by dumping and restoring
the database.

Examples
To rename a data type:
ALTER TYPE electronic_mail RENAME TO email;

To change the owner of the type email to joe:

1510

ALTER TYPE

ALTER TYPE email OWNER TO joe;

To change the schema of the type email to customers:

ALTER TYPE email SET SCHEMA customers;

To add a new attribute to a composite type:

ALTER TYPE compfoo ADD ATTRIBUTE f3 int;

To add a new value to an enum type in a particular sort position:

ALTER TYPE colors ADD VALUE 'orange' AFTER 'red';

To rename an enum value:

ALTER TYPE colors RENAME VALUE 'purple' TO 'mauve';

To create binary I/O functions for an existing base type:

CREATE FUNCTION mytypesend(mytype) RETURNS bytea ...;
CREATE FUNCTION mytyperecv(internal, oid, integer) RETURNS mytype ...;
ALTER TYPE mytype SET (
 SEND = mytypesend,
 RECEIVE = mytyperecv
);

Compatibility
The variants to add and drop attributes are part of the SQL standard; the other variants are PostgreSQL
extensions.

See Also
CREATE TYPE, DROP TYPE

1511

ALTER USER
ALTER USER — change a database role

Synopsis
ALTER USER role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER USER name RENAME TO new_name

ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER USER { role_specification | ALL } [IN DATABASE database_name] RESET ALL

where role_specification can be:

 role_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description
ALTER USER is now an alias for ALTER ROLE.

Compatibility
The ALTER USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
ALTER ROLE

1512

ALTER USER MAPPING
ALTER USER MAPPING — change the definition of a user mapping

Synopsis
ALTER USER MAPPING FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | SESSION_USER
 | PUBLIC }
 SERVER server_name
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER USER MAPPING changes the definition of a user mapping.

The owner of a foreign server can alter user mappings for that server for any user. Also, a user can alter
a user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
user_name

User name of the mapping. CURRENT_ROLE, CURRENT_USER, and USER match the name of the current
user. PUBLIC is used to match all present and future user names in the system.

server_name

Server name of the user mapping.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the user mapping. The new options override any previously specified options. ADD,
SET, and DROP specify the action to be performed. ADD is assumed if no operation is explicitly specified.
Option names must be unique; options are also validated by the server's foreign-data wrapper.

Examples
Change the password for user mapping bob, server foo:

ALTER USER MAPPING FOR bob SERVER foo OPTIONS (SET password 'public');

Compatibility
ALTER USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). There is a subtle syntax issue: The stan-
dard omits the FOR key word. Since both CREATE USER MAPPING and DROP USER MAPPING use FOR in
analogous positions, and IBM DB2 (being the other major SQL/MED implementation) also requires it
for ALTER USER MAPPING, PostgreSQL diverges from the standard here in the interest of consistency
and interoperability.

See Also
CREATE USER MAPPING, DROP USER MAPPING

1513

ALTER VIEW
ALTER VIEW — change the definition of a view

Synopsis
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET DEFAULT expression
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT
ALTER VIEW [IF EXISTS] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column_name TO new_column_name
ALTER VIEW [IF EXISTS] name RENAME TO new_name
ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema
ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value] [, ...])
ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description
ALTER VIEW changes various auxiliary properties of a view. (If you want to modify the view's defining
query, use CREATE OR REPLACE VIEW.)

You must own the view to use ALTER VIEW. To change a view's schema, you must also have CREATE
privilege on the new schema. To alter the owner, you must be able to SET ROLE to the new owning
role, and that role must have CREATE privilege on the view's schema. (These restrictions enforce that
altering the owner doesn't do anything you couldn't do by dropping and recreating the view. However,
a superuser can alter ownership of any view anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing view.

column_name

Name of an existing column.

new_column_name

New name for an existing column.

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

SET/DROP DEFAULT
These forms set or remove the default value for a column. A view column's default value is substituted
into any INSERT or UPDATE command whose target is the view, before applying any rules or triggers for
the view. The view's default will therefore take precedence over any default values from underlying
relations.

new_owner

The user name of the new owner of the view.

new_name

The new name for the view.

new_schema

The new schema for the view.

1514

ALTER VIEW

SET (view_option_name [= view_option_value] [, ...])
RESET (view_option_name [, ...])

Sets or resets a view option. Currently supported options are:

check_option (enum)

Changes the check option of the view. The value must be local or cascaded.

security_barrier (boolean)
Changes the security-barrier property of the view. The value must be a Boolean value, such as
true or false.

security_invoker (boolean)
Changes the security-invoker property of the view. The value must be a Boolean value, such as
true or false.

Notes
For historical reasons, ALTER TABLE can be used with views too; but the only variants of ALTER TABLE
that are allowed with views are equivalent to the ones shown above.

Examples
To rename the view foo to bar:

ALTER VIEW foo RENAME TO bar;

To attach a default column value to an updatable view:

CREATE TABLE base_table (id int, ts timestamptz);
CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1); -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2); -- ts will receive the current time

Compatibility
ALTER VIEW is a PostgreSQL extension of the SQL standard.

See Also
CREATE VIEW, DROP VIEW

1515

ANALYZE
ANALYZE — collect statistics about a database

Synopsis
ANALYZE [(option [, ...])] [table_and_columns [, ...]]

where option can be one of:

 VERBOSE [boolean]
 SKIP_LOCKED [boolean]
 BUFFER_USAGE_LIMIT size

and table_and_columns is:

 [ONLY] table_name [*] [(column_name [, ...])]

Description
ANALYZE collects statistics about the contents of tables in the database, and stores the results in the
pg_statistic system catalog. Subsequently, the query planner uses these statistics to help determine
the most efficient execution plans for queries.

Without a table_and_columns list, ANALYZE processes every table and materialized view in the current
database that the current user has permission to analyze. With a list, ANALYZE processes only those
table(s). It is further possible to give a list of column names for a table, in which case only the statistics
for those columns are collected.

Parameters
VERBOSE

Enables display of progress messages at INFO level.

SKIP_LOCKED

Specifies that ANALYZE should not wait for any conflicting locks to be released when beginning work
on a relation: if a relation cannot be locked immediately without waiting, the relation is skipped.
Note that even with this option, ANALYZE may still block when opening the relation's indexes or when
acquiring sample rows from partitions, table inheritance children, and some types of foreign tables.
Also, while ANALYZE ordinarily processes all partitions of specified partitioned tables, this option will
cause ANALYZE to skip all partitions if there is a conflicting lock on the partitioned table.

BUFFER_USAGE_LIMIT

Specifies the Buffer Access Strategy ring buffer size for ANALYZE. This size is used to calculate the
number of shared buffers which will be reused as part of this strategy. 0 disables use of a Buffer
Access Strategy. When this option is not specified, ANALYZE uses the value from vacuum_buffer_us-
age_limit. Higher settings can allow ANALYZE to run more quickly, but having too large a setting may
cause too many other useful pages to be evicted from shared buffers. The minimum value is 128 kB
and the maximum value is 16 GB.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

1516

ANALYZE

size

Specifies an amount of memory in kilobytes. Sizes may also be specified as a string containing
the numerical size followed by any one of the following memory units: B (bytes), kB (kilobytes), MB
(megabytes), GB (gigabytes), or TB (terabytes).

table_name

The name (possibly schema-qualified) of a specific table to analyze. If omitted, all regular tables,
partitioned tables, and materialized views in the current database are analyzed (but not foreign
tables). If ONLY is specified before the table name, only that table is analyzed. If ONLY is not specified,
the table and all its inheritance child tables or partitions (if any) are analyzed. Optionally, * can be
specified after the table name to explicitly indicate that inheritance child tables (or partitions) are
to be analyzed.

column_name

The name of a specific column to analyze. Defaults to all columns.

Outputs
When VERBOSE is specified, ANALYZE emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
To analyze a table, one must ordinarily have the MAINTAIN privilege on the table. However, database
owners are allowed to analyze all tables in their databases, except shared catalogs. ANALYZE will skip
over any tables that the calling user does not have permission to analyze.

Foreign tables are analyzed only when explicitly selected. Not all foreign data wrappers support ANALYZE.
If the table's wrapper does not support ANALYZE, the command prints a warning and does nothing.

In the default PostgreSQL configuration, the autovacuum daemon (see Section 24.1.6) takes care of
automatic analyzing of tables when they are first loaded with data, and as they change throughout
regular operation. When autovacuum is disabled, it is a good idea to run ANALYZE periodically, or just
after making major changes in the contents of a table. Accurate statistics will help the planner to choose
the most appropriate query plan, and thereby improve the speed of query processing. A common strategy
for read-mostly databases is to run VACUUM and ANALYZE once a day during a low-usage time of day. (This
will not be sufficient if there is heavy update activity.)

While ANALYZE is running, the search_path is temporarily changed to pg_catalog, pg_temp.

ANALYZE requires only a read lock on the target table, so it can run in parallel with other non-DDL activity
on the table.

The statistics collected by ANALYZE usually include a list of some of the most common values in each
column and a histogram showing the approximate data distribution in each column. One or both of these
can be omitted if ANALYZE deems them uninteresting (for example, in a unique-key column, there are no
common values) or if the column data type does not support the appropriate operators. There is more
information about the statistics in Chapter 24.

For large tables, ANALYZE takes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note, however, that
the statistics are only approximate, and will change slightly each time ANALYZE is run, even if the actual
table contents did not change. This might result in small changes in the planner's estimated costs shown
by EXPLAIN. In rare situations, this non-determinism will cause the planner's choices of query plans
to change after ANALYZE is run. To avoid this, raise the amount of statistics collected by ANALYZE, as
described below.

The extent of analysis can be controlled by adjusting the default_statistics_target configuration variable,
or on a column-by-column basis by setting the per-column statistics target with ALTER TABLE ... AL-

1517

ANALYZE

TER COLUMN ... SET STATISTICS. The target value sets the maximum number of entries in the most-
common-value list and the maximum number of bins in the histogram. The default target value is 100,
but this can be adjusted up or down to trade off accuracy of planner estimates against the time taken for
ANALYZE and the amount of space occupied in pg_statistic. In particular, setting the statistics target
to zero disables collection of statistics for that column. It might be useful to do that for columns that
are never used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries, since the planner will
have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and
space needed to do ANALYZE.

One of the values estimated by ANALYZE is the number of distinct values that appear in each column.
Because only a subset of the rows are examined, this estimate can sometimes be quite inaccurate, even
with the largest possible statistics target. If this inaccuracy leads to bad query plans, a more accurate
value can be determined manually and then installed with ALTER TABLE ... ALTER COLUMN ... SET
(n_distinct = ...).

If the table being analyzed has inheritance children, ANALYZE gathers two sets of statistics: one on the
rows of the parent table only, and a second including rows of both the parent table and all of its children.
This second set of statistics is needed when planning queries that process the inheritance tree as a
whole. The autovacuum daemon, however, will only consider inserts or updates on the parent table itself
when deciding whether to trigger an automatic analyze for that table. If that table is rarely inserted into
or updated, the inheritance statistics will not be up to date unless you run ANALYZE manually. By default,
ANALYZE will also recursively collect and update the statistics for each inheritance child table. The ONLY
keyword may be used to disable this.

For partitioned tables, ANALYZE gathers statistics by sampling rows from all partitions. By default, AN-
ALYZE will also recursively collect and update the statistics for each partition. The ONLY keyword may
be used to disable this.

The autovacuum daemon does not process partitioned tables, nor does it process inheritance parents if
only the children are ever modified. It is usually necessary to periodically run a manual ANALYZE to keep
the statistics of the table hierarchy up to date.

If any child tables or partitions are foreign tables whose foreign data wrappers do not support ANALYZE,
those tables are ignored while gathering inheritance statistics.

If the table being analyzed is completely empty, ANALYZE will not record new statistics for that table.
Any existing statistics will be retained.

Each backend running ANALYZE will report its progress in the pg_stat_progress_analyze view. See
Section 27.4.1 for details.

Compatibility
There is no ANALYZE statement in the SQL standard.

The following syntax was used before PostgreSQL version 11 and is still supported:

ANALYZE [VERBOSE] [table_and_columns [, ...]]

See Also
VACUUM, vacuumdb, Section 19.10.2, Section 24.1.6, Section 27.4.1

1518

BEGIN
BEGIN — start a transaction block

Synopsis
BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
BEGIN initiates a transaction block, that is, all statements after a BEGIN command will be executed in a
single transaction until an explicit COMMIT or ROLLBACK is given. By default (without BEGIN), PostgreSQL
executes transactions in “autocommit” mode, that is, each statement is executed in its own transaction
and a commit is implicitly performed at the end of the statement (if execution was successful, otherwise
a rollback is done).

Statements are executed more quickly in a transaction block, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful
to ensure consistency when making several related changes: other sessions will be unable to see the
intermediate states wherein not all the related updates have been done.

If the isolation level, read/write mode, or deferrable mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Refer to SET TRANSACTION for information on the meaning of the other parameters to this statement.

Notes
START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning message. The state of the
transaction is not affected. To nest transactions within a transaction block, use savepoints (see SAVE-
POINT).

For reasons of backwards compatibility, the commas between successive transaction_modes can be
omitted.

Examples
To begin a transaction block:

BEGIN;

1519

BEGIN

Compatibility
BEGIN is a PostgreSQL language extension. It is equivalent to the SQL-standard command START
TRANSACTION, whose reference page contains additional compatibility information.

The DEFERRABLE transaction_mode is a PostgreSQL language extension.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL. You are advised to
be careful about the transaction semantics when porting database applications.

See Also
COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT

1520

CALL
CALL — invoke a procedure

Synopsis
CALL name ([argument] [, ...])

Description
CALL executes a procedure.

If the procedure has any output parameters, then a result row will be returned, containing the values
of those parameters.

Parameters
name

The name (optionally schema-qualified) of the procedure.

argument

An argument expression for the procedure call.

Arguments can include parameter names, using the syntax name => value. This works the same as
in ordinary function calls; see Section 4.3 for details.

Arguments must be supplied for all procedure parameters that lack defaults, including OUT parame-
ters. However, arguments matching OUT parameters are not evaluated, so it's customary to just write
NULL for them. (Writing something else for an OUT parameter might cause compatibility problems
with future PostgreSQL versions.)

Notes
The user must have EXECUTE privilege on the procedure in order to be allowed to invoke it.

To call a function (not a procedure), use SELECT instead.

If CALL is executed in a transaction block, then the called procedure cannot execute transaction control
statements. Transaction control statements are only allowed if CALL is executed in its own transaction.

PL/pgSQL handles output parameters in CALL commands differently; see Section 41.6.3.

Examples
CALL do_db_maintenance();

Compatibility
CALL conforms to the SQL standard, except for the handling of output parameters. The standard says
that users should write variables to receive the values of output parameters.

See Also
CREATE PROCEDURE

1521

CHECKPOINT
CHECKPOINT — force a write-ahead log checkpoint

Synopsis
CHECKPOINT

Description
A checkpoint is a point in the write-ahead log sequence at which all data files have been updated to
reflect the information in the log. All data files will be flushed to disk. Refer to Section 28.5 for more
details about what happens during a checkpoint.

The CHECKPOINT command forces an immediate checkpoint when the command is issued, without waiting
for a regular checkpoint scheduled by the system (controlled by the settings in Section 19.5.2). CHECK-
POINT is not intended for use during normal operation.

If executed during recovery, the CHECKPOINT command will force a restartpoint (see Section 28.5) rather
than writing a new checkpoint.

Only superusers or users with the privileges of the pg_checkpoint role can call CHECKPOINT.

Compatibility
The CHECKPOINT command is a PostgreSQL language extension.

1522

CLOSE
CLOSE — close a cursor

Synopsis
CLOSE { name | ALL }

Description
CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated by COMMIT or ROLL-
BACK. A holdable cursor is implicitly closed if the transaction that created it aborts via ROLLBACK. If the
creating transaction successfully commits, the holdable cursor remains open until an explicit CLOSE is
executed, or the client disconnects.

Parameters
name

The name of an open cursor to close.

ALL

Close all open cursors.

Notes
PostgreSQL does not have an explicit OPEN cursor statement; a cursor is considered open when it is
declared. Use the DECLARE statement to declare a cursor.

You can see all available cursors by querying the pg_cursors system view.

If a cursor is closed after a savepoint which is later rolled back, the CLOSE is not rolled back; that is,
the cursor remains closed.

Examples
Close the cursor liahona:

CLOSE liahona;

Compatibility
CLOSE is fully conforming with the SQL standard. CLOSE ALL is a PostgreSQL extension.

See Also
DECLARE, FETCH, MOVE

1523

CLUSTER
CLUSTER — cluster a table according to an index

Synopsis
CLUSTER [(option [, ...])] [table_name [USING index_name]]

where option can be one of:

 VERBOSE [boolean]

Description
CLUSTER instructs PostgreSQL to cluster the table specified by table_name based on the index specified
by index_name. The index must already have been defined on table_name.

When a table is clustered, it is physically reordered based on the index information. Clustering is a
one-time operation: when the table is subsequently updated, the changes are not clustered. That is,
no attempt is made to store new or updated rows according to their index order. (If one wishes, one
can periodically recluster by issuing the command again. Also, setting the table's fillfactor storage
parameter to less than 100% can aid in preserving cluster ordering during updates, since updated rows
are kept on the same page if enough space is available there.)

When a table is clustered, PostgreSQL remembers which index it was clustered by. The form CLUSTER
table_name reclusters the table using the same index as before. You can also use the CLUSTER or SET
WITHOUT CLUSTER forms of ALTER TABLE to set the index to be used for future cluster operations, or to
clear any previous setting.

CLUSTER without a table_name reclusters all the previously-clustered tables in the current database that
the calling user has privileges for. This form of CLUSTER cannot be executed inside a transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This prevents any other
database operations (both reads and writes) from operating on the table until the CLUSTER is finished.

Parameters
table_name

The name (possibly schema-qualified) of a table.

index_name

The name of an index.

VERBOSE

Prints a progress report as each table is clustered at INFO level.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

Notes
To cluster a table, one must have the MAINTAIN privilege on the table.

In cases where you are accessing single rows randomly within a table, the actual order of the data in the
table is unimportant. However, if you tend to access some data more than others, and there is an index

1524

CLUSTER

that groups them together, you will benefit from using CLUSTER. If you are requesting a range of indexed
values from a table, or a single indexed value that has multiple rows that match, CLUSTER will help
because once the index identifies the table page for the first row that matches, all other rows that match
are probably already on the same table page, and so you save disk accesses and speed up the query.

CLUSTER can re-sort the table using either an index scan on the specified index, or (if the index is a b-
tree) a sequential scan followed by sorting. It will attempt to choose the method that will be faster, based
on planner cost parameters and available statistical information.

While CLUSTER is running, the search_path is temporarily changed to pg_catalog, pg_temp.

When an index scan is used, a temporary copy of the table is created that contains the table data in the
index order. Temporary copies of each index on the table are created as well. Therefore, you need free
space on disk at least equal to the sum of the table size and the index sizes.

When a sequential scan and sort is used, a temporary sort file is also created, so that the peak temporary
space requirement is as much as double the table size, plus the index sizes. This method is often faster
than the index scan method, but if the disk space requirement is intolerable, you can disable this choice
by temporarily setting enable_sort to off.

It is advisable to set maintenance_work_mem to a reasonably large value (but not more than the amount
of RAM you can dedicate to the CLUSTER operation) before clustering.

Because the planner records statistics about the ordering of tables, it is advisable to run ANALYZE on the
newly clustered table. Otherwise, the planner might make poor choices of query plans.

Because CLUSTER remembers which indexes are clustered, one can cluster the tables one wants clustered
manually the first time, then set up a periodic maintenance script that executes CLUSTER without any
parameters, so that the desired tables are periodically reclustered.

Each backend running CLUSTER will report its progress in the pg_stat_progress_cluster view. See
Section 27.4.2 for details.

Clustering a partitioned table clusters each of its partitions using the partition of the specified partitioned
index. When clustering a partitioned table, the index may not be omitted. CLUSTER on a partitioned table
cannot be executed inside a transaction block.

Examples
Cluster the table employees on the basis of its index employees_ind:

CLUSTER employees USING employees_ind;

Cluster the employees table using the same index that was used before:

CLUSTER employees;

Cluster all tables in the database that have previously been clustered:

CLUSTER;

Compatibility
There is no CLUSTER statement in the SQL standard.

The following syntax was used before PostgreSQL 17 and is still supported:

CLUSTER [VERBOSE] [table_name [USING index_name]]

The following syntax was used before PostgreSQL 8.3 and is still supported:

CLUSTER index_name ON table_name

1525

CLUSTER

See Also
clusterdb, Section 27.4.2

1526

COMMENT
COMMENT — define or change the comment of an object

Synopsis
COMMENT ON
{
 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 COLUMN relation_name.column_name |
 CONSTRAINT constraint_name ON table_name |
 CONSTRAINT constraint_name ON DOMAIN domain_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 POLICY policy_name ON table_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 STATISTICS object_name |
 SUBSCRIPTION object_name |
 TABLE object_name |
 TABLESPACE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name
} IS { string_literal | NULL }

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |

1527

COMMENT

[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
COMMENT stores a comment about a database object.

Only one comment string is stored for each object, so to modify a comment, issue a new COMMENT com-
mand for the same object. To remove a comment, write NULL in place of the text string. Comments are
automatically dropped when their object is dropped.

A SHARE UPDATE EXCLUSIVE lock is acquired on the object to be commented.

For most kinds of object, only the object's owner can set the comment. Roles don't have owners, so
the rule for COMMENT ON ROLE is that you must be superuser to comment on a superuser role, or have
the CREATEROLE privilege and have been granted ADMIN OPTION on the target role. Likewise, access
methods don't have owners either; you must be superuser to comment on an access method. Of course,
a superuser can comment on anything.

Comments can be viewed using psql's \d family of commands. Other user interfaces to retrieve comments
can be built atop the same built-in functions that psql uses, namely obj_description, col_description,
and shobj_description (see Table 9.82).

Parameters
object_name
relation_name.column_name
aggregate_name
constraint_name
function_name
operator_name
policy_name
procedure_name
routine_name
rule_name
trigger_name

The name of the object to be commented. Names of objects that reside in schemas (tables, functions,
etc.) can be schema-qualified. When commenting on a column, relation_name must refer to a table,
view, composite type, or foreign table.

table_name
domain_name

When creating a comment on a constraint, a trigger, a rule or a policy these parameters specify the
name of the table or domain on which that object is defined.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If omitted,
the default is IN. Note that COMMENT does not actually pay any attention to OUT arguments, since only
the input arguments are needed to determine the function's identity. So it is sufficient to list the IN,
INOUT, and VARIADIC arguments.

1528

COMMENT

argname

The name of a function, procedure, or aggregate argument. Note that COMMENT does not actually pay
any attention to argument names, since only the argument data types are needed to determine the
function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

large_object_oid

The OID of the large object.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for the missing
argument of a prefix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

string_literal

The new comment contents, written as a string literal.

NULL

Write NULL to drop the comment.

Notes
There is presently no security mechanism for viewing comments: any user connected to a database can
see all the comments for objects in that database. For shared objects such as databases, roles, and
tablespaces, comments are stored globally so any user connected to any database in the cluster can see
all the comments for shared objects. Therefore, don't put security-critical information in comments.

Examples
Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Some more examples:

COMMENT ON ACCESS METHOD gin IS 'GIN index access method';
COMMENT ON AGGREGATE my_aggregate (double precision) IS 'Computes sample variance';
COMMENT ON CAST (text AS int4) IS 'Allow casts from text to int4';
COMMENT ON COLLATION "fr_CA" IS 'Canadian French';
COMMENT ON COLUMN my_table.my_column IS 'Employee ID number';
COMMENT ON CONVERSION my_conv IS 'Conversion to UTF8';
COMMENT ON CONSTRAINT bar_col_cons ON bar IS 'Constrains column col';

1529

COMMENT

COMMENT ON CONSTRAINT dom_col_constr ON DOMAIN dom IS 'Constrains col of domain';
COMMENT ON DATABASE my_database IS 'Development Database';
COMMENT ON DOMAIN my_domain IS 'Email Address Domain';
COMMENT ON EVENT TRIGGER abort_ddl IS 'Aborts all DDL commands';
COMMENT ON EXTENSION hstore IS 'implements the hstore data type';
COMMENT ON FOREIGN DATA WRAPPER mywrapper IS 'my foreign data wrapper';
COMMENT ON FOREIGN TABLE my_foreign_table IS 'Employee Information in other database';
COMMENT ON FUNCTION my_function (timestamp) IS 'Returns Roman Numeral';
COMMENT ON INDEX my_index IS 'Enforces uniqueness on employee ID';
COMMENT ON LANGUAGE plpython IS 'Python support for stored procedures';
COMMENT ON LARGE OBJECT 346344 IS 'Planning document';
COMMENT ON MATERIALIZED VIEW my_matview IS 'Summary of order history';
COMMENT ON OPERATOR ^ (text, text) IS 'Performs intersection of two texts';
COMMENT ON OPERATOR - (NONE, integer) IS 'Unary minus';
COMMENT ON OPERATOR CLASS int4ops USING btree IS '4 byte integer operators for btrees';
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS 'all integer operators for
 btrees';
COMMENT ON POLICY my_policy ON mytable IS 'Filter rows by users';
COMMENT ON PROCEDURE my_proc (integer, integer) IS 'Runs a report';
COMMENT ON PUBLICATION alltables IS 'Publishes all operations on all tables';
COMMENT ON ROLE my_role IS 'Administration group for finance tables';
COMMENT ON ROUTINE my_routine (integer, integer) IS 'Runs a routine (which is a
 function or procedure)';
COMMENT ON RULE my_rule ON my_table IS 'Logs updates of employee records';
COMMENT ON SCHEMA my_schema IS 'Departmental data';
COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys';
COMMENT ON SERVER myserver IS 'my foreign server';
COMMENT ON STATISTICS my_statistics IS 'Improves planner row estimations';
COMMENT ON SUBSCRIPTION alltables IS 'Subscription for all operations on all tables';
COMMENT ON TABLE my_schema.my_table IS 'Employee Information';
COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes';
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word filtering';
COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for Swedish language';
COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words';
COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer';
COMMENT ON TRANSFORM FOR hstore LANGUAGE plpython3u IS 'Transform between hstore and
 Python dict';
COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI';
COMMENT ON TYPE complex IS 'Complex number data type';
COMMENT ON VIEW my_view IS 'View of departmental costs';

Compatibility
There is no COMMENT command in the SQL standard.

1530

COMMIT
COMMIT — commit the current transaction

Synopsis
COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
COMMIT commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction charac-
teristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes
Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a warning message.
COMMIT AND CHAIN when not inside a transaction is an error.

Examples
To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility
The command COMMIT conforms to the SQL standard. The form COMMIT TRANSACTION is a PostgreSQL
extension.

See Also
BEGIN, ROLLBACK

1531

COMMIT PREPARED
COMMIT PREPARED — commit a transaction that was earlier prepared for two-phase commit

Synopsis
COMMIT PREPARED transaction_id

Description
COMMIT PREPARED commits a transaction that is in prepared state.

Parameters
transaction_id

The transaction identifier of the transaction that is to be committed.

Notes
To commit a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is committed
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Commit the transaction identified by the transaction identifier foobar:

COMMIT PREPARED 'foobar';

Compatibility
COMMIT PREPARED is a PostgreSQL extension. It is intended for use by external transaction management
systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those systems
is not standardized.

See Also
PREPARE TRANSACTION, ROLLBACK PREPARED

1532

COPY
COPY — copy data between a file and a table

Synopsis
COPY table_name [(column_name [, ...])]
 FROM { 'filename' | PROGRAM 'command' | STDIN }
 [[WITH] (option [, ...])]
 [WHERE condition]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | PROGRAM 'command' | STDOUT }
 [[WITH] (option [, ...])]

where option can be one of:

 FORMAT format_name
 FREEZE [boolean]
 DELIMITER 'delimiter_character'
 NULL 'null_string'
 DEFAULT 'default_string'
 HEADER [boolean | MATCH]
 QUOTE 'quote_character'
 ESCAPE 'escape_character'
 FORCE_QUOTE { (column_name [, ...]) | * }
 FORCE_NOT_NULL { (column_name [, ...]) | * }
 FORCE_NULL { (column_name [, ...]) | * }
 ON_ERROR error_action
 REJECT_LIMIT maxerror
 ENCODING 'encoding_name'
 LOG_VERBOSITY verbosity

Description
COPY moves data between PostgreSQL tables and standard file-system files. COPY TO copies the contents
of a table to a file, while COPY FROM copies data from a file to a table (appending the data to whatever is
in the table already). COPY TO can also copy the results of a SELECT query.

If a column list is specified, COPY TO copies only the data in the specified columns to the file. For COPY
FROM, each field in the file is inserted, in order, into the specified column. Table columns not specified
in the COPY FROM column list will receive their default values.

COPY with a file name instructs the PostgreSQL server to directly read from or write to a file. The file
must be accessible by the PostgreSQL user (the user ID the server runs as) and the name must be
specified from the viewpoint of the server. When PROGRAM is specified, the server executes the given
command and reads from the standard output of the program, or writes to the standard input of the
program. The command must be specified from the viewpoint of the server, and be executable by the
PostgreSQL user. When STDIN or STDOUT is specified, data is transmitted via the connection between
the client and the server.

Each backend running COPY will report its progress in the pg_stat_progress_copy view. See Sec-
tion 27.4.3 for details.

By default, COPY will fail if it encounters an error during processing. For use cases where a best-effort
attempt at loading the entire file is desired, the ON_ERROR clause can be used to specify some other
behavior.

1533

COPY

Parameters
table_name

The name (optionally schema-qualified) of an existing table.

column_name

An optional list of columns to be copied. If no column list is specified, all columns of the table except
generated columns will be copied.

query

A SELECT, VALUES, INSERT, UPDATE, DELETE, or MERGE command whose results are to be copied. Note
that parentheses are required around the query.

For INSERT, UPDATE, DELETE, and MERGE queries a RETURNING clause must be provided, and the target
relation must not have a conditional rule, nor an ALSO rule, nor an INSTEAD rule that expands to
multiple statements.

filename

The path name of the input or output file. An input file name can be an absolute or relative path, but
an output file name must be an absolute path. Windows users might need to use an E'' string and
double any backslashes used in the path name.

PROGRAM

A command to execute. In COPY FROM, the input is read from standard output of the command, and
in COPY TO, the output is written to the standard input of the command.

Note that the command is invoked by the shell, so if you need to pass any arguments that come from
an untrusted source, you must be careful to strip or escape any special characters that might have
a special meaning for the shell. For security reasons, it is best to use a fixed command string, or at
least avoid including any user input in it.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

FORMAT

Selects the data format to be read or written: text, csv (Comma Separated Values), or binary. The
default is text. See File Formats below for details.

FREEZE

Requests copying the data with rows already frozen, just as they would be after running the VACUUM
FREEZE command. This is intended as a performance option for initial data loading. Rows will be
frozen only if the table being loaded has been created or truncated in the current subtransaction,
there are no cursors open and there are no older snapshots held by this transaction. It is currently
not possible to perform a COPY FREEZE on a partitioned table or foreign table. This option is only
allowed in COPY FROM.

Note that all other sessions will immediately be able to see the data once it has been successfully
loaded. This violates the normal rules of MVCC visibility and users should be aware of the potential
problems this might cause.

1534

COPY

DELIMITER

Specifies the character that separates columns within each row (line) of the file. The default is a
tab character in text format, a comma in CSV format. This must be a single one-byte character. This
option is not allowed when using binary format.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in text format, and
an unquoted empty string in CSV format. You might prefer an empty string even in text format for
cases where you don't want to distinguish nulls from empty strings. This option is not allowed when
using binary format.

Note
When using COPY FROM, any data item that matches this string will be stored as a null value,
so you should make sure that you use the same string as you used with COPY TO.

DEFAULT

Specifies the string that represents a default value. Each time the string is found in the input file,
the default value of the corresponding column will be used. This option is allowed only in COPY FROM,
and only when not using binary format.

HEADER

Specifies that the file contains a header line with the names of each column in the file. On output,
the first line contains the column names from the table. On input, the first line is discarded when
this option is set to true (or equivalent Boolean value). If this option is set to MATCH, the number and
names of the columns in the header line must match the actual column names of the table, in order;
otherwise an error is raised. This option is not allowed when using binary format. The MATCH option
is only valid for COPY FROM commands.

QUOTE

Specifies the quoting character to be used when a data value is quoted. The default is double-quote.
This must be a single one-byte character. This option is allowed only when using CSV format.

ESCAPE

Specifies the character that should appear before a data character that matches the QUOTE value. The
default is the same as the QUOTE value (so that the quoting character is doubled if it appears in the
data). This must be a single one-byte character. This option is allowed only when using CSV format.

FORCE_QUOTE

Forces quoting to be used for all non-NULL values in each specified column. NULL output is never
quoted. If * is specified, non-NULL values will be quoted in all columns. This option is allowed only
in COPY TO, and only when using CSV format.

FORCE_NOT_NULL

Do not match the specified columns' values against the null string. In the default case where the null
string is empty, this means that empty values will be read as zero-length strings rather than nulls,
even when they are not quoted. If * is specified, the option will be applied to all columns. This option
is allowed only in COPY FROM, and only when using CSV format.

FORCE_NULL

Match the specified columns' values against the null string, even if it has been quoted, and if a match
is found set the value to NULL. In the default case where the null string is empty, this converts a
quoted empty string into NULL. If * is specified, the option will be applied to all columns. This option
is allowed only in COPY FROM, and only when using CSV format.

1535

COPY

ON_ERROR

Specifies how to behave when encountering an error converting a column's input value into its data
type. An error_action value of stop means fail the command, while ignore means discard the input
row and continue with the next one. The default is stop.

The ignore option is applicable only for COPY FROM when the FORMAT is text or csv.

A NOTICE message containing the ignored row count is emitted at the end of the COPY FROM if at least
one row was discarded. When LOG_VERBOSITY option is set to verbose, a NOTICE message containing
the line of the input file and the column name whose input conversion has failed is emitted for each
discarded row. When it is set to silent, no message is emitted regarding ignored rows.

REJECT_LIMIT

Specifies the maximum number of errors tolerated while converting a column's input value to its
data type, when ON_ERROR is set to ignore. If the input causes more errors than the specified value,
the COPY command fails, even with ON_ERROR set to ignore. This clause must be used with ON_ER-
ROR=ignore and maxerror must be positive bigint. If not specified, ON_ERROR=ignore allows an
unlimited number of errors, meaning COPY will skip all erroneous data.

ENCODING

Specifies that the file is encoded in the encoding_name. If this option is omitted, the current client
encoding is used. See the Notes below for more details.

LOG_VERBOSITY

Specifies the amount of messages emitted by a COPY command: default, verbose, or silent. If
verbose is specified, additional messages are emitted during processing. silent suppresses both
verbose and default messages.

This is currently used in COPY FROM command when ON_ERROR option is set to ignore.

WHERE

The optional WHERE clause has the general form

WHERE condition

where condition is any expression that evaluates to a result of type boolean. Any row that does not
satisfy this condition will not be inserted to the table. A row satisfies the condition if it returns true
when the actual row values are substituted for any variable references.

Currently, subqueries are not allowed in WHERE expressions, and the evaluation does not see any
changes made by the COPY itself (this matters when the expression contains calls to VOLATILE func-
tions).

Outputs
On successful completion, a COPY command returns a command tag of the form

COPY count

The count is the number of rows copied.

Note
psql will print this command tag only if the command was not COPY ... TO STDOUT, or the equiv-
alent psql meta-command \copy ... to stdout. This is to prevent confusing the command tag
with the data that was just printed.

1536

COPY

Notes
COPY TO can be used with plain tables and populated materialized views. For example, COPY table TO
copies the same rows as SELECT * FROM ONLY table. However it doesn't directly support other relation
types, such as partitioned tables, inheritance child tables, or views. To copy all rows from such relations,
use COPY (SELECT * FROM table) TO.

COPY FROM can be used with plain, foreign, or partitioned tables or with views that have INSTEAD OF
INSERT triggers.

You must have select privilege on the table whose values are read by COPY TO, and insert privilege on
the table into which values are inserted by COPY FROM. It is sufficient to have column privileges on the
column(s) listed in the command.

If row-level security is enabled for the table, the relevant SELECT policies will apply to COPY table TO
statements. Currently, COPY FROM is not supported for tables with row-level security. Use equivalent
INSERT statements instead.

Files named in a COPY command are read or written directly by the server, not by the client application.
Therefore, they must reside on or be accessible to the database server machine, not the client. They
must be accessible to and readable or writable by the PostgreSQL user (the user ID the server runs as),
not the client. Similarly, the command specified with PROGRAM is executed directly by the server, not by
the client application, must be executable by the PostgreSQL user. COPY naming a file or command is
only allowed to database superusers or users who are granted one of the roles pg_read_server_files,
pg_write_server_files, or pg_execute_server_program, since it allows reading or writing any file or
running a program that the server has privileges to access.

Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM STDIN or COPY TO STDOUT,
and then fetches/stores the data in a file accessible to the psql client. Thus, file accessibility and access
rights depend on the client rather than the server when \copy is used.

It is recommended that the file name used in COPY always be specified as an absolute path. This is
enforced by the server in the case of COPY TO, but for COPY FROM you do have the option of reading from
a file specified by a relative path. The path will be interpreted relative to the working directory of the
server process (normally the cluster's data directory), not the client's working directory.

Executing a command with PROGRAM might be restricted by the operating system's access control mech-
anisms, such as SELinux.

COPY FROM will invoke any triggers and check constraints on the destination table. However, it will not
invoke rules.

For identity columns, the COPY FROM command will always write the column values provided in the input
data, like the INSERT option OVERRIDING SYSTEM VALUE.

COPY input and output is affected by DateStyle. To ensure portability to other PostgreSQL installations
that might use non-default DateStyle settings, DateStyle should be set to ISO before using COPY TO. It
is also a good idea to avoid dumping data with IntervalStyle set to sql_standard, because negative
interval values might be misinterpreted by a server that has a different setting for IntervalStyle.

Input data is interpreted according to ENCODING option or the current client encoding, and output data
is encoded in ENCODING or the current client encoding, even if the data does not pass through the client
but is read from or written to a file directly by the server.

The COPY FROM command physically inserts input rows into the table as it progresses. If the command
fails, these rows are left in a deleted state; these rows will not be visible, but still occupy disk space. This
might amount to considerable wasted disk space if the failure happened well into a large copy operation.
VACUUM should be used to recover the wasted space.

1537

COPY

FORCE_NULL and FORCE_NOT_NULL can be used simultaneously on the same column. This results in con-
verting quoted null strings to null values and unquoted null strings to empty strings.

File Formats
Text Format

When the text format is used, the data read or written is a text file with one line per table row. Columns
in a row are separated by the delimiter character. The column values themselves are strings generated
by the output function, or acceptable to the input function, of each attribute's data type. The specified
null string is used in place of columns that are null. COPY FROM will raise an error if any line of the input
file contains more or fewer columns than are expected.

End of data can be represented by a line containing just backslash-period (\.). An end-of-data marker
is not necessary when reading from a file, since the end of file serves perfectly well; in that context this
provision exists only for backward compatibility. However, psql uses \. to terminate a COPY FROM STDIN
operation (that is, reading in-line COPY data in an SQL script). In that context the rule is needed to be
able to end the operation before the end of the script.

Backslash characters (\) can be used in the COPY data to quote data characters that might otherwise
be taken as row or column delimiters. In particular, the following characters must be preceded by a
backslash if they appear as part of a column value: backslash itself, newline, carriage return, and the
current delimiter character.

The specified null string is sent by COPY TO without adding any backslashes; conversely, COPY FROM
matches the input against the null string before removing backslashes. Therefore, a null string such as
\N cannot be confused with the actual data value \N (which would be represented as \\N).

The following special backslash sequences are recognized by COPY FROM:

Sequence Represents
\b Backspace (ASCII 8)
\f Form feed (ASCII 12)
\n Newline (ASCII 10)
\r Carriage return (ASCII 13)
\t Tab (ASCII 9)
\v Vertical tab (ASCII 11)
\digits Backslash followed by one to three octal digits

specifies the byte with that numeric code
\xdigits Backslash x followed by one or two hex digits

specifies the byte with that numeric code

Presently, COPY TO will never emit an octal or hex-digits backslash sequence, but it does use the other
sequences listed above for those control characters.

Any other backslashed character that is not mentioned in the above table will be taken to represent itself.
However, beware of adding backslashes unnecessarily, since that might accidentally produce a string
matching the end-of-data marker (\.) or the null string (\N by default). These strings will be recognized
before any other backslash processing is done.

It is strongly recommended that applications generating COPY data convert data newlines and carriage
returns to the \n and \r sequences respectively. At present it is possible to represent a data carriage
return by a backslash and carriage return, and to represent a data newline by a backslash and newline.
However, these representations might not be accepted in future releases. They are also highly vulnerable
to corruption if the COPY file is transferred across different machines (for example, from Unix to Windows
or vice versa).

1538

COPY

All backslash sequences are interpreted after encoding conversion. The bytes specified with the octal
and hex-digit backslash sequences must form valid characters in the database encoding.

COPY TO will terminate each row with a Unix-style newline (“\n”). Servers running on Microsoft Windows
instead output carriage return/newline (“\r\n”), but only for COPY to a server file; for consistency across
platforms, COPY TO STDOUT always sends “\n” regardless of server platform. COPY FROM can handle lines
ending with newlines, carriage returns, or carriage return/newlines. To reduce the risk of error due to
un-backslashed newlines or carriage returns that were meant as data, COPY FROM will complain if the
line endings in the input are not all alike.

CSV Format
This format option is used for importing and exporting the Comma- Separated Value (CSV) file format
used by many other programs, such as spreadsheets. Instead of the escaping rules used by PostgreSQL's
standard text format, it produces and recognizes the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value contains the delimiter
character, the QUOTE character, the NULL string, a carriage return, or line feed character, then the whole
value is prefixed and suffixed by the QUOTE character, and any occurrence within the value of a QUOTE
character or the ESCAPE character is preceded by the escape character. You can also use FORCE_QUOTE
to force quotes when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty string. PostgreSQL's
COPY handles this by quoting. A NULL is output as the NULL parameter string and is not quoted, while a
non-NULL value matching the NULL parameter string is quoted. For example, with the default settings,
a NULL is written as an unquoted empty string, while an empty string data value is written with double
quotes (""). Reading values follows similar rules. You can use FORCE_NOT_NULL to prevent NULL input
comparisons for specific columns. You can also use FORCE_NULL to convert quoted null string data values
to NULL.

Because backslash is not a special character in the CSV format, the end-of-data marker used in text mode
(\.) is not normally treated as special when reading CSV data. An exception is that psql will terminate
a COPY FROM STDIN operation (that is, reading in-line COPY data in an SQL script) at a line containing
only \., whether it is text or CSV mode.

Note
PostgreSQL versions before v18 always recognized unquoted \. as an end-of-data marker, even
when reading from a separate file. For compatibility with older versions, COPY TO will quote \.
when it's alone on a line, even though this is no longer necessary.

Note
In CSV format, all characters are significant. A quoted value surrounded by white space, or any
characters other than DELIMITER, will include those characters. This can cause errors if you im-
port data from a system that pads CSV lines with white space out to some fixed width. If such
a situation arises you might need to preprocess the CSV file to remove the trailing white space,
before importing the data into PostgreSQL.

Note
CSV format will both recognize and produce CSV files with quoted values containing embedded
carriage returns and line feeds. Thus the files are not strictly one line per table row like text-
format files.

1539

COPY

Note
Many programs produce strange and occasionally perverse CSV files, so the file format is more a
convention than a standard. Thus you might encounter some files that cannot be imported using
this mechanism, and COPY might produce files that other programs cannot process.

Binary Format
The binary format option causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the text and CSV formats, but a binary-format file is less portable across machine
architectures and PostgreSQL versions. Also, the binary format is very data type specific; for example
it will not work to output binary data from a smallint column and read it into an integer column, even
though that would work fine in text format.

The binary file format consists of a file header, zero or more tuples containing the row data, and a file
trailer. Headers and data are in network byte order.

Note
PostgreSQL releases before 7.4 used a different binary file format.

File Header
The file header consists of 15 bytes of fixed fields, followed by a variable-length header extension area.
The fixed fields are:
Signature

11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte is a required part of the signature.
(The signature is designed to allow easy identification of files that have been munged by a non-8-bit-
clean transfer. This signature will be changed by end-of-line-translation filters, dropped zero bytes,
dropped high bits, or parity changes.)

Flags field
32-bit integer bit mask to denote important aspects of the file format. Bits are numbered from 0
(LSB) to 31 (MSB). Note that this field is stored in network byte order (most significant byte first), as
are all the integer fields used in the file format. Bits 16–31 are reserved to denote critical file format
issues; a reader should abort if it finds an unexpected bit set in this range. Bits 0–15 are reserved to
signal backwards-compatible format issues; a reader should simply ignore any unexpected bits set
in this range. Currently only one flag bit is defined, and the rest must be zero:
Bit 16

If 1, OIDs are included in the data; if 0, not. Oid system columns are not supported in PostgreSQL
anymore, but the format still contains the indicator.

Header extension area length
32-bit integer, length in bytes of remainder of header, not including self. Currently, this is zero, and
the first tuple follows immediately. Future changes to the format might allow additional data to be
present in the header. A reader should silently skip over any header extension data it does not know
what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field
is not intended to tell readers what is in the extension area. Specific design of header extension contents
is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

1540

COPY

Tuples

Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently, all tuples
in a table will have the same count, but that might not always be true.) Then, repeated for each field
in the tuple, there is a 32-bit length word followed by that many bytes of field data. (The length word
does not include itself, and can be zero.) As a special case, -1 indicates a NULL field value. No value
bytes follow in the NULL case.

There is no alignment padding or any other extra data between fields.

Presently, all data values in a binary-format file are assumed to be in binary format (format code one).
It is anticipated that a future extension might add a header field that allows per-column format codes
to be specified.

To determine the appropriate binary format for the actual tuple data you should consult the PostgreSQL
source, in particular the *send and *recv functions for each column's data type (typically these functions
are found in the src/backend/utils/adt/ directory of the source distribution).

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal
field except that it's not included in the field-count. Note that oid system columns are not supported in
current versions of PostgreSQL.

File Trailer

The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished from a tuple's
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Examples
The following example copies a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT (DELIMITER '|');

To copy data from a file into the country table:

COPY country FROM '/usr1/proj/bray/sql/country_data';

To copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO '/usr1/proj/bray/sql/
a_list_countries.copy';

To copy into a compressed file, you can pipe the output through an external compression program:

COPY country TO PROGRAM 'gzip > /usr1/proj/bray/sql/country_data.gz';

Here is a sample of data suitable for copying into a table from STDIN:

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE

Note that the white space on each line is actually a tab character.

The following is the same data, output in binary format. The data is shown after filtering through the
Unix utility od -c. The table has three columns; the first has type char(2), the second has type text,
and the third has type integer. All the rows have a null value in the third column.

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013 A

1541

COPY

0000040 F G H A N I S T A N 377 377 377 377 \0 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z I
0000200 M B A B W E 377 377 377 377 377 377

Compatibility
There is no COPY statement in the SQL standard.

The following syntax was used before PostgreSQL version 9.0 and is still supported:

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | STDIN }
 [[WITH]
 [BINARY]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null_string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote_character']
 [ESCAPE [AS] 'escape_character']
 [FORCE NOT NULL column_name [, ...]]]]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | STDOUT }
 [[WITH]
 [BINARY]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null_string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote_character']
 [ESCAPE [AS] 'escape_character']
 [FORCE QUOTE { column_name [, ...] | * }]]]

Note that in this syntax, BINARY and CSV are treated as independent keywords, not as arguments of a
FORMAT option.

The following syntax was used before PostgreSQL version 7.3 and is still supported:

COPY [BINARY] table_name
 FROM { 'filename' | STDIN }
 [[USING] DELIMITERS 'delimiter_character']
 [WITH NULL AS 'null_string']

COPY [BINARY] table_name
 TO { 'filename' | STDOUT }
 [[USING] DELIMITERS 'delimiter_character']
 [WITH NULL AS 'null_string']

See Also
Section 27.4.3

1542

CREATE ACCESS METHOD
CREATE ACCESS METHOD — define a new access method

Synopsis
CREATE ACCESS METHOD name
 TYPE access_method_type
 HANDLER handler_function

Description
CREATE ACCESS METHOD creates a new access method.

The access method name must be unique within the database.

Only superusers can define new access methods.

Parameters
name

The name of the access method to be created.

access_method_type

This clause specifies the type of access method to define. Only TABLE and INDEX are supported at
present.

handler_function

handler_function is the name (possibly schema-qualified) of a previously registered function that
represents the access method. The handler function must be declared to take a single argument of
type internal, and its return type depends on the type of access method; for TABLE access methods,
it must be table_am_handler and for INDEX access methods, it must be index_am_handler. The C-
level API that the handler function must implement varies depending on the type of access method.
The table access method API is described in Chapter 62 and the index access method API is described
in Chapter 63.

Examples
Create an index access method heptree with handler function heptree_handler:

CREATE ACCESS METHOD heptree TYPE INDEX HANDLER heptree_handler;

Compatibility
CREATE ACCESS METHOD is a PostgreSQL extension.

See Also
DROP ACCESS METHOD, CREATE OPERATOR CLASS, CREATE OPERATOR FAMILY

1543

CREATE AGGREGATE
CREATE AGGREGATE — define a new aggregate function

Synopsis
CREATE [OR REPLACE] AGGREGATE name ([argmode] [argname] arg_data_type
 [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
)

CREATE [OR REPLACE] AGGREGATE name ([[argmode] [argname] arg_data_type
 [, ...]]
 ORDER BY [argmode] [argname] arg_data_type [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, INITCOND = initial_condition]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
 [, HYPOTHETICAL]
)

or the old syntax

CREATE [OR REPLACE] AGGREGATE name (
 BASETYPE = base_type,
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]

1544

CREATE AGGREGATE

 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

Description
CREATE AGGREGATE defines a new aggregate function. CREATE OR REPLACE AGGREGATE will either define
a new aggregate function or replace an existing definition. Some basic and commonly-used aggregate
functions are included with the distribution; they are documented in Section 9.21. If one defines new
types or needs an aggregate function not already provided, then CREATE AGGREGATE can be used to
provide the desired features.

When replacing an existing definition, the argument types, result type, and number of direct arguments
may not be changed. Also, the new definition must be of the same kind (ordinary aggregate, ordered-set
aggregate, or hypothetical-set aggregate) as the old one.

If a schema name is given (for example, CREATE AGGREGATE myschema.myagg ...) then the aggregate
function is created in the specified schema. Otherwise it is created in the current schema.

An aggregate function is identified by its name and input data type(s). Two aggregates in the same
schema can have the same name if they operate on different input types. The name and input data type(s)
of an aggregate must also be distinct from the name and input data type(s) of every ordinary function
in the same schema. This behavior is identical to overloading of ordinary function names (see CREATE
FUNCTION).

A simple aggregate function is made from one or two ordinary functions: a state transition function
sfunc, and an optional final calculation function ffunc. These are used as follows:

sfunc(internal-state, next-data-values) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value

PostgreSQL creates a temporary variable of data type stype to hold the current internal state of the
aggregate. At each input row, the aggregate argument value(s) are calculated and the state transition
function is invoked with the current state value and the new argument value(s) to calculate a new internal
state value. After all the rows have been processed, the final function is invoked once to calculate the
aggregate's return value. If there is no final function then the ending state value is returned as-is.

An aggregate function can provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a value of type text, but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts
out null.

If the state transition function is declared “strict”, then it cannot be called with null inputs. With such a
transition function, aggregate execution behaves as follows. Rows with any null input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is null, then
at the first row with all-nonnull input values, the first argument value replaces the state value, and the
transition function is invoked at each subsequent row with all-nonnull input values. This is handy for
implementing aggregates like max. Note that this behavior is only available when state_data_type is
the same as the first arg_data_type. When these types are different, you must supply a nonnull initial
condition or use a nonstrict transition function.

1545

CREATE AGGREGATE

If the state transition function is not strict, then it will be called unconditionally at each input row, and
must deal with null inputs and null state values for itself. This allows the aggregate author to have full
control over the aggregate's handling of null values.

If the final function is declared “strict”, then it will not be called when the ending state value is null;
instead a null result will be returned automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning a null value. For example, the final
function for avg returns null when it sees there were zero input rows.

Sometimes it is useful to declare the final function as taking not just the state value, but extra parameters
corresponding to the aggregate's input values. The main reason for doing this is if the final function
is polymorphic and the state value's data type would be inadequate to pin down the result type. These
extra parameters are always passed as NULL (and so the final function must not be strict when the
FINALFUNC_EXTRA option is used), but nonetheless they are valid parameters. The final function could
for example make use of get_fn_expr_argtype to identify the actual argument type in the current call.

An aggregate can optionally support moving-aggregate mode, as described in Section 36.12.1. This re-
quires specifying the MSFUNC, MINVFUNC, and MSTYPE parameters, and optionally the MSSPACE, MFINAL-
FUNC, MFINALFUNC_EXTRA, MFINALFUNC_MODIFY, and MINITCOND parameters. Except for MINVFUNC, these
parameters work like the corresponding simple-aggregate parameters without M; they define a separate
implementation of the aggregate that includes an inverse transition function.

The syntax with ORDER BY in the parameter list creates a special type of aggregate called an ordered-set
aggregate; or if HYPOTHETICAL is specified, then a hypothetical-set aggregate is created. These aggre-
gates operate over groups of sorted values in order-dependent ways, so that specification of an input
sort order is an essential part of a call. Also, they can have direct arguments, which are arguments that
are evaluated only once per aggregation rather than once per input row. Hypothetical-set aggregates
are a subclass of ordered-set aggregates in which some of the direct arguments are required to match,
in number and data types, the aggregated argument columns. This allows the values of those direct
arguments to be added to the collection of aggregate-input rows as an additional “hypothetical” row.

An aggregate can optionally support partial aggregation, as described in Section 36.12.4. This requires
specifying the COMBINEFUNC parameter. If the state_data_type is internal, it's usually also appropriate
to provide the SERIALFUNC and DESERIALFUNC parameters so that parallel aggregation is possible. Note
that the aggregate must also be marked PARALLEL SAFE to enable parallel aggregation.

Aggregates that behave like MIN or MAX can sometimes be optimized by looking into an index instead of
scanning every input row. If this aggregate can be so optimized, indicate it by specifying a sort operator.
The basic requirement is that the aggregate must yield the first element in the sort ordering induced
by the operator; in other words:

SELECT agg(col) FROM tab;

must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

Further assumptions are that the aggregate ignores null inputs, and that it delivers a null result if and
only if there were no non-null inputs. Ordinarily, a data type's < operator is the proper sort operator
for MIN, and > is the proper sort operator for MAX. Note that the optimization will never actually take
effect unless the specified operator is the “less than” or “greater than” strategy member of a B-tree
index operator class.

To be able to create an aggregate function, you must have USAGE privilege on the argument types, the
state type(s), and the return type, as well as EXECUTE privilege on the supporting functions.

Parameters
name

The name (optionally schema-qualified) of the aggregate function to create.

1546

CREATE AGGREGATE

argmode

The mode of an argument: IN or VARIADIC. (Aggregate functions do not support OUT arguments.) If
omitted, the default is IN. Only the last argument can be marked VARIADIC.

argname

The name of an argument. This is currently only useful for documentation purposes. If omitted, the
argument has no name.

arg_data_type

An input data type on which this aggregate function operates. To create a zero-argument aggregate
function, write * in place of the list of argument specifications. (An example of such an aggregate
is count(*).)

base_type

In the old syntax for CREATE AGGREGATE, the input data type is specified by a basetype parameter
rather than being written next to the aggregate name. Note that this syntax allows only one input
parameter. To define a zero-argument aggregate function with this syntax, specify the basetype as
"ANY" (not *). Ordered-set aggregates cannot be defined with the old syntax.

sfunc

The name of the state transition function to be called for each input row. For a normal N-argument
aggregate function, the sfunc must take N+1 arguments, the first being of type state_data_type
and the rest matching the declared input data type(s) of the aggregate. The function must return
a value of type state_data_type. This function takes the current state value and the current input
data value(s), and returns the next state value.

For ordered-set (including hypothetical-set) aggregates, the state transition function receives only
the current state value and the aggregated arguments, not the direct arguments. Otherwise it is
the same.

state_data_type

The data type for the aggregate's state value.

state_data_size

The approximate average size (in bytes) of the aggregate's state value. If this parameter is omitted
or is zero, a default estimate is used based on the state_data_type. The planner uses this value to
estimate the memory required for a grouped aggregate query.

ffunc

The name of the final function called to compute the aggregate's result after all input rows have
been traversed. For a normal aggregate, this function must take a single argument of type state_da-
ta_type. The return data type of the aggregate is defined as the return type of this function. If ffunc
is not specified, then the ending state value is used as the aggregate's result, and the return type
is state_data_type.

For ordered-set (including hypothetical-set) aggregates, the final function receives not only the final
state value, but also the values of all the direct arguments.

If FINALFUNC_EXTRA is specified, then in addition to the final state value and any direct arguments,
the final function receives extra NULL values corresponding to the aggregate's regular (aggregated)
arguments. This is mainly useful to allow correct resolution of the aggregate result type when a
polymorphic aggregate is being defined.

FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
This option specifies whether the final function is a pure function that does not modify its arguments.
READ_ONLY indicates it does not; the other two values indicate that it may change the transition state

1547

CREATE AGGREGATE

value. See Notes below for more detail. The default is READ_ONLY, except for ordered-set aggregates,
for which the default is READ_WRITE.

combinefunc

The combinefunc function may optionally be specified to allow the aggregate function to support par-
tial aggregation. If provided, the combinefunc must combine two state_data_type values, each con-
taining the result of aggregation over some subset of the input values, to produce a new state_da-
ta_type that represents the result of aggregating over both sets of inputs. This function can be
thought of as an sfunc, where instead of acting upon an individual input row and adding it to the
running aggregate state, it adds another aggregate state to the running state.

The combinefunc must be declared as taking two arguments of the state_data_type and returning
a value of the state_data_type. Optionally this function may be “strict”. In this case the function
will not be called when either of the input states are null; the other state will be taken as the correct
result.

For aggregate functions whose state_data_type is internal, the combinefunc must not be strict.
In this case the combinefunc must ensure that null states are handled correctly and that the state
being returned is properly stored in the aggregate memory context.

serialfunc

An aggregate function whose state_data_type is internal can participate in parallel aggregation
only if it has a serialfunc function, which must serialize the aggregate state into a bytea value for
transmission to another process. This function must take a single argument of type internal and
return type bytea. A corresponding deserialfunc is also required.

deserialfunc

Deserialize a previously serialized aggregate state back into state_data_type. This function must
take two arguments of types bytea and internal, and produce a result of type internal. (Note: the
second, internal argument is unused, but is required for type safety reasons.)

initial_condition

The initial setting for the state value. This must be a string constant in the form accepted for the
data type state_data_type. If not specified, the state value starts out null.

msfunc

The name of the forward state transition function to be called for each input row in moving-aggregate
mode. This is exactly like the regular transition function, except that its first argument and result
are of type mstate_data_type, which might be different from state_data_type.

minvfunc

The name of the inverse state transition function to be used in moving-aggregate mode. This function
has the same argument and result types as msfunc, but it is used to remove a value from the current
aggregate state, rather than add a value to it. The inverse transition function must have the same
strictness attribute as the forward state transition function.

mstate_data_type

The data type for the aggregate's state value, when using moving-aggregate mode.

mstate_data_size

The approximate average size (in bytes) of the aggregate's state value, when using moving-aggregate
mode. This works the same as state_data_size.

mffunc

The name of the final function called to compute the aggregate's result after all input rows have
been traversed, when using moving-aggregate mode. This works the same as ffunc, except that

1548

CREATE AGGREGATE

its first argument's type is mstate_data_type and extra dummy arguments are specified by writing
MFINALFUNC_EXTRA. The aggregate result type determined by mffunc or mstate_data_type must
match that determined by the aggregate's regular implementation.

MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
This option is like FINALFUNC_MODIFY, but it describes the behavior of the moving-aggregate final
function.

minitial_condition

The initial setting for the state value, when using moving-aggregate mode. This works the same as
initial_condition.

sort_operator

The associated sort operator for a MIN- or MAX-like aggregate. This is just an operator name (possibly
schema-qualified). The operator is assumed to have the same input data types as the aggregate
(which must be a single-argument normal aggregate).

PARALLEL = { SAFE | RESTRICTED | UNSAFE }
The meanings of PARALLEL SAFE, PARALLEL RESTRICTED, and PARALLEL UNSAFE are the same as in
CREATE FUNCTION. An aggregate will not be considered for parallelization if it is marked PARALLEL
UNSAFE (which is the default!) or PARALLEL RESTRICTED. Note that the parallel-safety markings of the
aggregate's support functions are not consulted by the planner, only the marking of the aggregate
itself.

HYPOTHETICAL

For ordered-set aggregates only, this flag specifies that the aggregate arguments are to be processed
according to the requirements for hypothetical-set aggregates: that is, the last few direct arguments
must match the data types of the aggregated (WITHIN GROUP) arguments. The HYPOTHETICAL flag
has no effect on run-time behavior, only on parse-time resolution of the data types and collations of
the aggregate's arguments.

The parameters of CREATE AGGREGATE can be written in any order, not just the order illustrated above.

Notes
In parameters that specify support function names, you can write a schema name if needed, for example
SFUNC = public.sum. Do not write argument types there, however — the argument types of the support
functions are determined from other parameters.

Ordinarily, PostgreSQL functions are expected to be true functions that do not modify their input values.
However, an aggregate transition function, when used in the context of an aggregate, is allowed to cheat
and modify its transition-state argument in place. This can provide substantial performance benefits
compared to making a fresh copy of the transition state each time.

Likewise, while an aggregate final function is normally expected not to modify its input values, sometimes
it is impractical to avoid modifying the transition-state argument. Such behavior must be declared using
the FINALFUNC_MODIFY parameter. The READ_WRITE value indicates that the final function modifies the
transition state in unspecified ways. This value prevents use of the aggregate as a window function,
and it also prevents merging of transition states for aggregate calls that share the same input values
and transition functions. The SHAREABLE value indicates that the transition function cannot be applied
after the final function, but multiple final-function calls can be performed on the ending transition state
value. This value prevents use of the aggregate as a window function, but it allows merging of transition
states. (That is, the optimization of interest here is not applying the same final function repeatedly, but
applying different final functions to the same ending transition state value. This is allowed as long as
none of the final functions are marked READ_WRITE.)

If an aggregate supports moving-aggregate mode, it will improve calculation efficiency when the aggre-
gate is used as a window function for a window with moving frame start (that is, a frame start mode other

1549

CREATE AGGREGATE

than UNBOUNDED PRECEDING). Conceptually, the forward transition function adds input values to the ag-
gregate's state when they enter the window frame from the bottom, and the inverse transition function
removes them again when they leave the frame at the top. So, when values are removed, they are always
removed in the same order they were added. Whenever the inverse transition function is invoked, it will
thus receive the earliest added but not yet removed argument value(s). The inverse transition function
can assume that at least one row will remain in the current state after it removes the oldest row. (When
this would not be the case, the window function mechanism simply starts a fresh aggregation, rather
than using the inverse transition function.)

The forward transition function for moving-aggregate mode is not allowed to return NULL as the new
state value. If the inverse transition function returns NULL, this is taken as an indication that the inverse
function cannot reverse the state calculation for this particular input, and so the aggregate calculation
will be redone from scratch for the current frame starting position. This convention allows moving-ag-
gregate mode to be used in situations where there are some infrequent cases that are impractical to
reverse out of the running state value.

If no moving-aggregate implementation is supplied, the aggregate can still be used with moving frames,
but PostgreSQL will recompute the whole aggregation whenever the start of the frame moves. Note that
whether or not the aggregate supports moving-aggregate mode, PostgreSQL can handle a moving frame
end without recalculation; this is done by continuing to add new values to the aggregate's state. This is
why use of an aggregate as a window function requires that the final function be read-only: it must not
damage the aggregate's state value, so that the aggregation can be continued even after an aggregate
result value has been obtained for one set of frame boundaries.

The syntax for ordered-set aggregates allows VARIADIC to be specified for both the last direct parame-
ter and the last aggregated (WITHIN GROUP) parameter. However, the current implementation restricts
use of VARIADIC in two ways. First, ordered-set aggregates can only use VARIADIC "any", not other
variadic array types. Second, if the last direct parameter is VARIADIC "any", then there can be only one
aggregated parameter and it must also be VARIADIC "any". (In the representation used in the system
catalogs, these two parameters are merged into a single VARIADIC "any" item, since pg_proc cannot
represent functions with more than one VARIADIC parameter.) If the aggregate is a hypothetical-set ag-
gregate, the direct arguments that match the VARIADIC "any" parameter are the hypothetical ones;
any preceding parameters represent additional direct arguments that are not constrained to match the
aggregated arguments.

Currently, ordered-set aggregates do not need to support moving-aggregate mode, since they cannot
be used as window functions.

Partial (including parallel) aggregation is currently not supported for ordered-set aggregates. Also, it
will never be used for aggregate calls that include DISTINCT or ORDER BY clauses, since those semantics
cannot be supported during partial aggregation.

Examples
See Section 36.12.

Compatibility
CREATE AGGREGATE is a PostgreSQL language extension. The SQL standard does not provide for user-
defined aggregate functions.

See Also
ALTER AGGREGATE, DROP AGGREGATE

1550

CREATE CAST
CREATE CAST — define a new cast

Synopsis
CREATE CAST (source_type AS target_type)
 WITH FUNCTION function_name [(argument_type [, ...])]
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

Description
CREATE CAST defines a new cast. A cast specifies how to perform a conversion between two data types.
For example,

SELECT CAST(42 AS float8);

converts the integer constant 42 to type float8 by invoking a previously specified function, in this case
float8(int4). (If no suitable cast has been defined, the conversion fails.)

Two types can be binary coercible, which means that the conversion can be performed “for free” without
invoking any function. This requires that corresponding values use the same internal representation.
For instance, the types text and varchar are binary coercible both ways. Binary coercibility is not
necessarily a symmetric relationship. For example, the cast from xml to text can be performed for free
in the present implementation, but the reverse direction requires a function that performs at least a
syntax check. (Two types that are binary coercible both ways are also referred to as binary compatible.)

You can define a cast as an I/O conversion cast by using the WITH INOUT syntax. An I/O conversion cast
is performed by invoking the output function of the source data type, and passing the resulting string to
the input function of the target data type. In many common cases, this feature avoids the need to write a
separate cast function for conversion. An I/O conversion cast acts the same as a regular function-based
cast; only the implementation is different.

By default, a cast can be invoked only by an explicit cast request, that is an explicit CAST(x AS typename)
or x::typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning a value to a column
of the target data type. For example, supposing that foo.f1 is a column of type text, then:

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from type integer to type text is marked AS ASSIGNMENT, otherwise not. (We
generally use the term assignment cast to describe this kind of cast.)

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context, whether assignment
or internally in an expression. (We generally use the term implicit cast to describe this kind of cast.)
For example, consider this query:

SELECT 2 + 4.0;

The parser initially marks the constants as being of type integer and numeric respectively. There is
no integer + numeric operator in the system catalogs, but there is a numeric + numeric operator. The

1551

CREATE CAST

query will therefore succeed if a cast from integer to numeric is available and is marked AS IMPLICIT
— which in fact it is. The parser will apply the implicit cast and resolve the query as if it had been written

SELECT CAST (2 AS numeric) + 4.0;

Now, the catalogs also provide a cast from numeric to integer. If that cast were marked AS IMPLICIT —
which it is not — then the parser would be faced with choosing between the above interpretation and the
alternative of casting the numeric constant to integer and applying the integer + integer operator.
Lacking any knowledge of which choice to prefer, it would give up and declare the query ambiguous. The
fact that only one of the two casts is implicit is the way in which we teach the parser to prefer resolution
of a mixed numeric-and-integer expression as numeric; there is no built-in knowledge about that.

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting paths
can cause PostgreSQL to choose surprising interpretations of commands, or to be unable to resolve
commands at all because there are multiple possible interpretations. A good rule of thumb is to make
a cast implicitly invokable only for information-preserving transformations between types in the same
general type category. For example, the cast from int2 to int4 can reasonably be implicit, but the cast
from float8 to int4 should probably be assignment-only. Cross-type-category casts, such as text to
int4, are best made explicit-only.

Note
Sometimes it is necessary for usability or standards-compliance reasons to provide multiple im-
plicit casts among a set of types, resulting in ambiguity that cannot be avoided as above. The pars-
er has a fallback heuristic based on type categories and preferred types that can help to provide
desired behavior in such cases. See CREATE TYPE for more information.

To be able to create a cast, you must own the source or the target data type and have USAGE privilege
on the other type. To create a binary-coercible cast, you must be superuser. (This restriction is made
because an erroneous binary-coercible cast conversion can easily crash the server.)

Parameters
source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

function_name[(argument_type [, ...])]

The function used to perform the cast. The function name can be schema-qualified. If it is not, the
function will be looked up in the schema search path. The function's result data type must match
the target type of the cast. Its arguments are discussed below. If no argument list is specified, the
function name must be unique in its schema.

WITHOUT FUNCTION

Indicates that the source type is binary-coercible to the target type, so no function is required to
perform the cast.

WITH INOUT

Indicates that the cast is an I/O conversion cast, performed by invoking the output function of the
source data type, and passing the resulting string to the input function of the target data type.

AS ASSIGNMENT

Indicates that the cast can be invoked implicitly in assignment contexts.

1552

CREATE CAST

AS IMPLICIT

Indicates that the cast can be invoked implicitly in any context.

Cast implementation functions can have one to three arguments. The first argument type must be iden-
tical to or binary-coercible from the cast's source type. The second argument, if present, must be type
integer; it receives the type modifier associated with the destination type, or -1 if there is none. The
third argument, if present, must be type boolean; it receives true if the cast is an explicit cast, false
otherwise. (Bizarrely, the SQL standard demands different behaviors for explicit and implicit casts in
some cases. This argument is supplied for functions that must implement such casts. It is not recom-
mended that you design your own data types so that this matters.)

The return type of a cast function must be identical to or binary-coercible to the cast's target type.

Ordinarily a cast must have different source and target data types. However, it is allowed to declare
a cast with identical source and target types if it has a cast implementation function with more than
one argument. This is used to represent type-specific length coercion functions in the system catalogs.
The named function is used to coerce a value of the type to the type modifier value given by its second
argument.

When a cast has different source and target types and a function that takes more than one argument,
it supports converting from one type to another and applying a length coercion in a single step. When
no such entry is available, coercion to a type that uses a type modifier involves two cast steps, one to
convert between data types and a second to apply the modifier.

A cast to or from a domain type currently has no effect. Casting to or from a domain uses the casts
associated with its underlying type.

Notes
Use DROP CAST to remove user-defined casts.

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

It is normally not necessary to create casts between user-defined types and the standard string types
(text, varchar, and char(n), as well as user-defined types that are defined to be in the string category).
PostgreSQL provides automatic I/O conversion casts for that. The automatic casts to string types are
treated as assignment casts, while the automatic casts from string types are explicit-only. You can over-
ride this behavior by declaring your own cast to replace an automatic cast, but usually the only reason
to do so is if you want the conversion to be more easily invokable than the standard assignment-only or
explicit-only setting. Another possible reason is that you want the conversion to behave differently from
the type's I/O function; but that is sufficiently surprising that you should think twice about whether it's
a good idea. (A small number of the built-in types do indeed have different behaviors for conversions,
mostly because of requirements of the SQL standard.)

While not required, it is recommended that you continue to follow this old convention of naming cast
implementation functions after the target data type. Many users are used to being able to cast data types
using a function-style notation, that is typename(x). This notation is in fact nothing more nor less than a
call of the cast implementation function; it is not specially treated as a cast. If your conversion functions
are not named to support this convention then you will have surprised users. Since PostgreSQL allows
overloading of the same function name with different argument types, there is no difficulty in having
multiple conversion functions from different types that all use the target type's name.

Note
Actually the preceding paragraph is an oversimplification: there are two cases in which a func-
tion-call construct will be treated as a cast request without having matched it to an actual function.
If a function call name(x) does not exactly match any existing function, but name is the name of a

1553

CREATE CAST

data type and pg_cast provides a binary-coercible cast to this type from the type of x, then the call
will be construed as a binary-coercible cast. This exception is made so that binary-coercible casts
can be invoked using functional syntax, even though they lack any function. Likewise, if there is
no pg_cast entry but the cast would be to or from a string type, the call will be construed as an I/O
conversion cast. This exception allows I/O conversion casts to be invoked using functional syntax.

Note
There is also an exception to the exception: I/O conversion casts from composite types to string
types cannot be invoked using functional syntax, but must be written in explicit cast syntax (ei-
ther CAST or :: notation). This exception was added because after the introduction of automati-
cally-provided I/O conversion casts, it was found too easy to accidentally invoke such a cast when
a function or column reference was intended.

Examples
To create an assignment cast from type bigint to type int4 using the function int4(bigint):

CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;

(This cast is already predefined in the system.)

Compatibility
The CREATE CAST command conforms to the SQL standard, except that SQL does not make provisions for
binary-coercible types or extra arguments to implementation functions. AS IMPLICIT is a PostgreSQL
extension, too.

See Also
CREATE FUNCTION, CREATE TYPE, DROP CAST

1554

CREATE COLLATION
CREATE COLLATION — define a new collation

Synopsis
CREATE COLLATION [IF NOT EXISTS] name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype,]
 [PROVIDER = provider,]
 [DETERMINISTIC = boolean,]
 [RULES = rules,]
 [VERSION = version]
)
CREATE COLLATION [IF NOT EXISTS] name FROM existing_collation

Description
CREATE COLLATION defines a new collation using the specified operating system locale settings, or by
copying an existing collation.

To be able to create a collation, you must have CREATE privilege on the destination schema.

Parameters
IF NOT EXISTS

Do not throw an error if a collation with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing collation is anything like the one that would
have been created.

name

The name of the collation. The collation name can be schema-qualified. If it is not, the collation is
defined in the current schema. The collation name must be unique within that schema. (The system
catalogs can contain collations with the same name for other encodings, but these are ignored if the
database encoding does not match.)

locale

The locale name for this collation. See Section 23.2.2.3.1 and Section 23.2.2.3.2 for details.

If provider is libc, this is a shortcut for setting LC_COLLATE and LC_CTYPE at once. If you specify
locale, you cannot specify either of those parameters.

If provider is builtin, then locale must be specified and set to either C, C.UTF-8 or PG_UNI-
CODE_FAST.

lc_collate

If provider is libc, use the specified operating system locale for the LC_COLLATE locale category.

lc_ctype

If provider is libc, use the specified operating system locale for the LC_CTYPE locale category.

provider

Specifies the provider to use for locale services associated with this collation. Possible values are
builtin, icu(if the server was built with ICU support) or libc. libc is the default. See Section 23.1.4
for details.

1555

CREATE COLLATION

DETERMINISTIC

Specifies whether the collation should use deterministic comparisons. The default is true. A deter-
ministic comparison considers strings that are not byte-wise equal to be unequal even if they are
considered logically equal by the comparison. PostgreSQL breaks ties using a byte-wise comparison.
Comparison that is not deterministic can make the collation be, say, case- or accent-insensitive. For
that, you need to choose an appropriate LOCALE setting and set the collation to not deterministic here.

Nondeterministic collations are only supported with the ICU provider.

rules

Specifies additional collation rules to customize the behavior of the collation. This is supported for
ICU only. See Section 23.2.3.4 for details.

version

Specifies the version string to store with the collation. Normally, this should be omitted, which will
cause the version to be computed from the actual version of the collation as provided by the operating
system. This option is intended to be used by pg_upgrade for copying the version from an existing
installation.

See also ALTER COLLATION for how to handle collation version mismatches.

existing_collation

The name of an existing collation to copy. The new collation will have the same properties as the
existing one, but it will be an independent object.

Notes
CREATE COLLATION takes a SHARE ROW EXCLUSIVE lock, which is self-conflicting, on the pg_collation
system catalog, so only one CREATE COLLATION command can run at a time.

Use DROP COLLATION to remove user-defined collations.

See Section 23.2.2.3 for more information on how to create collations.

When using the libc collation provider, the locale must be applicable to the current database encoding.
See CREATE DATABASE for the precise rules.

Examples
To create a collation from the operating system locale fr_FR.utf8 (assuming the current database en-
coding is UTF8):

CREATE COLLATION french (locale = 'fr_FR.utf8');

To create a collation using the ICU provider using German phone book sort order:

CREATE COLLATION german_phonebook (provider = icu, locale = 'de-u-co-phonebk');

To create a collation using the ICU provider, based on the root ICU locale, with custom rules:

CREATE COLLATION custom (provider = icu, locale = 'und', rules = '&V << w <<< W');

See Section 23.2.3.4 for further details and examples on the rules syntax.

To create a collation from an existing collation:

CREATE COLLATION german FROM "de_DE";

This can be convenient to be able to use operating-system-independent collation names in applications.

1556

CREATE COLLATION

Compatibility
There is a CREATE COLLATION statement in the SQL standard, but it is limited to copying an existing
collation. The syntax to create a new collation is a PostgreSQL extension.

See Also
ALTER COLLATION, DROP COLLATION

1557

CREATE CONVERSION
CREATE CONVERSION — define a new encoding conversion

Synopsis
CREATE [DEFAULT] CONVERSION name
 FOR source_encoding TO dest_encoding FROM function_name

Description
CREATE CONVERSION defines a new conversion between two character set encodings.

Conversions that are marked DEFAULT can be used for automatic encoding conversion between client
and server. To support that usage, two conversions, from encoding A to B and from encoding B to A,
must be defined.

To be able to create a conversion, you must have EXECUTE privilege on the function and CREATE privilege
on the destination schema.

Parameters
DEFAULT

The DEFAULT clause indicates that this conversion is the default for this particular source to destina-
tion encoding. There should be only one default encoding in a schema for the encoding pair.

name

The name of the conversion. The conversion name can be schema-qualified. If it is not, the conversion
is defined in the current schema. The conversion name must be unique within a schema.

source_encoding

The source encoding name.

dest_encoding

The destination encoding name.

function_name

The function used to perform the conversion. The function name can be schema-qualified. If it is not,
the function will be looked up in the path.

The function must have the following signature:
conv_proc(
 integer, -- source encoding ID
 integer, -- destination encoding ID
 cstring, -- source string (null terminated C string)
 internal, -- destination (fill with a null terminated C string)
 integer, -- source string length
 boolean -- if true, don't throw an error if conversion fails
) RETURNS integer;

The return value is the number of source bytes that were successfully converted. If the last argument
is false, the function must throw an error on invalid input, and the return value is always equal to
the source string length.

Notes
Neither the source nor the destination encoding can be SQL_ASCII, as the server's behavior for cases
involving the SQL_ASCII “encoding” is hard-wired.

1558

CREATE CONVERSION

Use DROP CONVERSION to remove user-defined conversions.

The privileges required to create a conversion might be changed in a future release.

Examples
To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility
CREATE CONVERSION is a PostgreSQL extension. There is no CREATE CONVERSION statement in the SQL
standard, but a CREATE TRANSLATION statement that is very similar in purpose and syntax.

See Also
ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION

1559

CREATE DATABASE
CREATE DATABASE — create a new database

Synopsis
CREATE DATABASE name
 [WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [STRATEGY [=] strategy]
 [LOCALE [=] locale]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [BUILTIN_LOCALE [=] builtin_locale]
 [ICU_LOCALE [=] icu_locale]
 [ICU_RULES [=] icu_rules]
 [LOCALE_PROVIDER [=] locale_provider]
 [COLLATION_VERSION = collation_version]
 [TABLESPACE [=] tablespace_name]
 [ALLOW_CONNECTIONS [=] allowconn]
 [CONNECTION LIMIT [=] connlimit]
 [IS_TEMPLATE [=] istemplate]
 [OID [=] oid]

Description
CREATE DATABASE creates a new PostgreSQL database.

To create a database, you must be a superuser or have the special CREATEDB privilege. See CREATE
ROLE.

By default, the new database will be created by cloning the standard system database template1. A
different template can be specified by writing TEMPLATE name. In particular, by writing TEMPLATE tem-
plate0, you can create a pristine database (one where no user-defined objects exist and where the sys-
tem objects have not been altered) containing only the standard objects predefined by your version of
PostgreSQL. This is useful if you wish to avoid copying any installation-local objects that might have
been added to template1.

Parameters
name

The name of a database to create.

user_name

The role name of the user who will own the new database, or DEFAULT to use the default (namely,
the user executing the command). To create a database owned by another role, you must be able
to SET ROLE to that role.

template

The name of the template from which to create the new database, or DEFAULT to use the default
template (template1).

encoding

Character set encoding to use in the new database. Specify a string constant (e.g., 'SQL_ASCII'),
or an integer encoding number, or DEFAULT to use the default encoding (namely, the encoding of

1560

CREATE DATABASE

the template database). The character sets supported by the PostgreSQL server are described in
Section 23.3.1. See below for additional restrictions.

strategy

Strategy to be used in creating the new database. If the WAL_LOG strategy is used, the database will
be copied block by block and each block will be separately written to the write-ahead log. This is the
most efficient strategy in cases where the template database is small, and therefore it is the default.
The older FILE_COPY strategy is also available. This strategy writes a small record to the write-ahead
log for each tablespace used by the target database. Each such record represents copying an entire
directory to a new location at the filesystem level. While this does reduce the write-ahead log volume
substantially, especially if the template database is large, it also forces the system to perform a
checkpoint both before and after the creation of the new database. In some situations, this may have
a noticeable negative impact on overall system performance. The FILE_COPY strategy is affected by
the file_copy_method setting.

locale

Sets the default collation order and character classification in the new database. Collation affects
the sort order applied to strings, e.g., in queries with ORDER BY, as well as the order used in indexes
on text columns. Character classification affects the categorization of characters, e.g., lower, upper,
and digit. Also sets the associated aspects of the operating system environment, LC_COLLATE and
LC_CTYPE. The default is the same setting as the template database. See Section 23.2.2.3.1 and
Section 23.2.2.3.2 for details.

Can be overridden by setting lc_collate, lc_ctype, builtin_locale, or icu_locale individually.

If locale_provider is builtin, then locale or builtin_locale must be specified and set to either
C, C.UTF-8, or PG_UNICODE_FAST.

Tip
The other locale settings lc_messages, lc_monetary, lc_numeric, and lc_time are not fixed per
database and are not set by this command. If you want to make them the default for a specific
database, you can use ALTER DATABASE ... SET.

lc_collate

Sets LC_COLLATE in the database server's operating system environment. The default is the setting
of locale if specified, otherwise the same setting as the template database. See below for additional
restrictions.

If locale_provider is libc, also sets the default collation order to use in the new database, over-
riding the setting locale.

lc_ctype

Sets LC_CTYPE in the database server's operating system environment. The default is the setting of
locale if specified, otherwise the same setting as the template database. See below for additional
restrictions.

If locale_provider is libc, also sets the default character classification to use in the new database,
overriding the setting locale.

builtin_locale

Specifies the builtin provider locale for the database default collation order and character classifica-
tion, overriding the setting locale. The locale provider must be builtin. The default is the setting
of locale if specified; otherwise the same setting as the template database.

1561

CREATE DATABASE

The locales available for the builtin provider are C, C.UTF-8 and PG_UNICODE_FAST.

icu_locale

Specifies the ICU locale (see Section 23.2.2.3.2) for the database default collation order and charac-
ter classification, overriding the setting locale. The locale provider must be ICU. The default is the
setting of locale if specified; otherwise the same setting as the template database.

icu_rules

Specifies additional collation rules to customize the behavior of the default collation of this database.
This is supported for ICU only. See Section 23.2.3.4 for details.

locale_provider

Specifies the provider to use for the default collation in this database. Possible values are builtin,
icu(if the server was built with ICU support) or libc. By default, the provider is the same as that
of the template. See Section 23.1.4 for details.

collation_version

Specifies the collation version string to store with the database. Normally, this should be omitted,
which will cause the version to be computed from the actual version of the database collation as
provided by the operating system. This option is intended to be used by pg_upgrade for copying the
version from an existing installation.

See also ALTER DATABASE for how to handle database collation version mismatches.

tablespace_name

The name of the tablespace that will be associated with the new database, or DEFAULT to use the
template database's tablespace. This tablespace will be the default tablespace used for objects cre-
ated in this database. See CREATE TABLESPACE for more information.

allowconn

If false then no one can connect to this database. The default is true, allowing connections (except
as restricted by other mechanisms, such as GRANT/REVOKE CONNECT).

connlimit

How many concurrent connections can be made to this database. -1 (the default) means no limit.

istemplate

If true, then this database can be cloned by any user with CREATEDB privileges; if false (the default),
then only superusers or the owner of the database can clone it.

oid

The object identifier to be used for the new database. If this parameter is not specified, PostgreSQL
will choose a suitable OID automatically. This parameter is primarily intended for internal use by
pg_upgrade, and only pg_upgrade can specify a value less than 16384.

Optional parameters can be written in any order, not only the order illustrated above.

Notes
CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient
permissions on the data directory, a full disk, or other file system problems.

Use DROP DATABASE to remove a database.

1562

CREATE DATABASE

The program createdb is a wrapper program around this command, provided for convenience.

Database-level configuration parameters (set via ALTER DATABASE) and database-level permissions (set
via GRANT) are not copied from the template database.

Although it is possible to copy a database other than template1 by specifying its name as the template,
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that no
other sessions can be connected to the template database while it is being copied. CREATE DATABASE will
fail if any other connection exists when it starts; otherwise, new connections to the template database
are locked out until CREATE DATABASE completes. See Section 22.3 for more information.

The character set encoding specified for the new database must be compatible with the chosen locale
settings (LC_COLLATE and LC_CTYPE). If the locale is C (or equivalently POSIX), then all encodings are
allowed, but for other locale settings there is only one encoding that will work properly. (On Windows,
however, UTF-8 encoding can be used with any locale.) CREATE DATABASE will allow superusers to specify
SQL_ASCII encoding regardless of the locale settings, but this choice is deprecated and may result in
misbehavior of character-string functions if data that is not encoding-compatible with the locale is stored
in the database.

The encoding and locale settings must match those of the template database, except when template0
is used as template. This is because other databases might contain data that does not match the speci-
fied encoding, or might contain indexes whose sort ordering is affected by LC_COLLATE and LC_CTYPE.
Copying such data would result in a database that is corrupt according to the new settings. template0,
however, is known to not contain any data or indexes that would be affected.

There is currently no option to use a database locale with nondeterministic comparisons (see CREATE
COLLATION for an explanation). If this is needed, then per-column collations would need to be used.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the database, it is possible that both will fail.
Also, the limit is not enforced against superusers or background worker processes.

Examples
To create a new database:

CREATE DATABASE lusiadas;

To create a database sales owned by user salesapp with a default tablespace of salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music with a different locale:

CREATE DATABASE music
 LOCALE 'sv_SE.utf8'
 TEMPLATE template0;

In this example, the TEMPLATE template0 clause is required if the specified locale is different from the
one in template1. (If it is not, then specifying the locale explicitly is redundant.)

To create a database music2 with a different locale and a different character set encoding:

CREATE DATABASE music2
 LOCALE 'sv_SE.iso885915'
 ENCODING LATIN9
 TEMPLATE template0;

The specified locale and encoding settings must match, or an error will be reported.

Note that locale names are specific to the operating system, so that the above commands might not work
in the same way everywhere.

1563

CREATE DATABASE

Compatibility
There is no CREATE DATABASE statement in the SQL standard. Databases are equivalent to catalogs,
whose creation is implementation-defined.

See Also
ALTER DATABASE, DROP DATABASE

1564

CREATE DOMAIN
CREATE DOMAIN — define a new domain

Synopsis
CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [domain_constraint [...]]

where domain_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Description
CREATE DOMAIN creates a new domain. A domain is essentially a data type with optional constraints
(restrictions on the allowed set of values). The user who defines a domain becomes its owner.

If a schema name is given (for example, CREATE DOMAIN myschema.mydomain ...) then the domain is
created in the specified schema. Otherwise it is created in the current schema. The domain name must
be unique among the types and domains existing in its schema.

Domains are useful for abstracting common constraints on fields into a single location for maintenance.
For example, several tables might contain email address columns, all requiring the same CHECK con-
straint to verify the address syntax. Define a domain rather than setting up each table's constraint in-
dividually.

To be able to create a domain, you must have USAGE privilege on the underlying type.

Parameters
name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This can include array specifiers.

collation

An optional collation for the domain. If no collation is specified, the domain has the same collation
behavior as its underlying data type. The underlying type must be collatable if COLLATE is specified.

DEFAULT expression

The DEFAULT clause specifies a default value for columns of the domain data type. The value is any
variable-free expression (but subqueries are not allowed). The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default value is
the null value.

The default expression will be used in any insert operation that does not specify a value for the
column. If a default value is defined for a particular column, it overrides any default associated with
the domain. In turn, the domain default overrides any default value associated with the underlying
data type.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.

1565

CREATE DOMAIN

NOT NULL

Values of this domain are prevented from being null (but see notes below).

NULL

Values of this domain are allowed to be null. This is the default.

This clause is only intended for compatibility with nonstandard SQL databases. Its use is discouraged
in new applications.

CHECK (expression)

CHECK clauses specify integrity constraints or tests which values of the domain must satisfy. Each
constraint must be an expression producing a Boolean result. It should use the key word VALUE
to refer to the value being tested. Expressions evaluating to TRUE or UNKNOWN succeed. If the
expression produces a FALSE result, an error is reported and the value is not allowed to be converted
to the domain type.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than VALUE.

When a domain has multiple CHECK constraints, they will be tested in alphabetical order by name.
(PostgreSQL versions before 9.5 did not honor any particular firing order for CHECK constraints.)

Notes
Domain constraints, particularly NOT NULL, are checked when converting a value to the domain type. It
is possible for a column that is nominally of the domain type to read as null despite there being such a
constraint. For example, this can happen in an outer-join query, if the domain column is on the nullable
side of the outer join. A more subtle example is
INSERT INTO tab (domcol) VALUES ((SELECT domcol FROM tab WHERE false));

The empty scalar sub-SELECT will produce a null value that is considered to be of the domain type, so
no further constraint checking is applied to it, and the insertion will succeed.

It is very difficult to avoid such problems, because of SQL's general assumption that a null value is a valid
value of every data type. Best practice therefore is to design a domain's constraints so that a null value
is allowed, and then to apply column NOT NULL constraints to columns of the domain type as needed,
rather than directly to the domain type.

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will always give the
same result for the same input value. This assumption is what justifies examining CHECK constraints only
when a value is first converted to be of a domain type, and not at other times. (This is essentially the
same as the treatment of table CHECK constraints, as described in Section 5.5.1.)

An example of a common way to break this assumption is to reference a user-defined function in a CHECK
expression, and then change the behavior of that function. PostgreSQL does not disallow that, but it
will not notice if there are stored values of the domain type that now violate the CHECK constraint. That
would cause a subsequent database dump and restore to fail. The recommended way to handle such a
change is to drop the constraint (using ALTER DOMAIN), adjust the function definition, and re-add the
constraint, thereby rechecking it against stored data.

It's also good practice to ensure that domain CHECK expressions will not throw errors.

Examples
This example creates the us_postal_code data type and then uses the type in a table definition. A regular
expression test is used to verify that the value looks like a valid US postal code:
CREATE DOMAIN us_postal_code AS TEXT
CHECK(
 VALUE ~ '^\d{5}$'

1566

CREATE DOMAIN

OR VALUE ~ '^\d{5}-\d{4}$'
);

CREATE TABLE us_snail_addy (
 address_id SERIAL PRIMARY KEY,
 street1 TEXT NOT NULL,
 street2 TEXT,
 street3 TEXT,
 city TEXT NOT NULL,
 postal us_postal_code NOT NULL
);

Compatibility
The command CREATE DOMAIN conforms to the SQL standard.

The syntax NOT NULL in this command is a PostgreSQL extension. (A standard-conforming way to write
the same for non-composite data types would be CHECK (VALUE IS NOT NULL). However, per the sec-
tion called “Notes”, such constraints are best avoided in practice anyway.) The NULL “constraint” is a
PostgreSQL extension (see also Compatibility).

See Also
ALTER DOMAIN, DROP DOMAIN

1567

CREATE EVENT TRIGGER
CREATE EVENT TRIGGER — define a new event trigger

Synopsis
CREATE EVENT TRIGGER name
 ON event
 [WHEN filter_variable IN (filter_value [, ...]) [AND ...]]
 EXECUTE { FUNCTION | PROCEDURE } function_name()

Description
CREATE EVENT TRIGGER creates a new event trigger. Whenever the designated event occurs and the
WHEN condition associated with the trigger, if any, is satisfied, the trigger function will be executed. For a
general introduction to event triggers, see Chapter 38. The user who creates an event trigger becomes
its owner.

Parameters
name

The name to give the new trigger. This name must be unique within the database.

event

The name of the event that triggers a call to the given function. See Section 38.1 for more information
on event names.

filter_variable

The name of a variable used to filter events. This makes it possible to restrict the firing of the trigger
to a subset of the cases in which it is supported. Currently the only supported filter_variable is
TAG.

filter_value

A list of values for the associated filter_variable for which the trigger should fire. For TAG, this
means a list of command tags (e.g., 'DROP FUNCTION').

function_name

A user-supplied function that is declared as taking no argument and returning type event_trigger.

In the syntax of CREATE EVENT TRIGGER, the keywords FUNCTION and PROCEDURE are equivalent, but
the referenced function must in any case be a function, not a procedure. The use of the keyword
PROCEDURE here is historical and deprecated.

Notes
Only superusers can create event triggers.

Event triggers are disabled in single-user mode (see postgres) as well as when event_triggers is set to
false. If an erroneous event trigger disables the database so much that you can't even drop the trigger,
restart with event_triggers set to false to temporarily disable event triggers, or in single-user mode,
and you'll be able to do that.

Examples
Forbid the execution of any DDL command:

1568

CREATE EVENT TRIGGER

CREATE OR REPLACE FUNCTION abort_any_command()
 RETURNS event_trigger
 LANGUAGE plpgsql
 AS $$
BEGIN
 RAISE EXCEPTION 'command % is disabled', tg_tag;
END;
$$;

CREATE EVENT TRIGGER abort_ddl ON ddl_command_start
 EXECUTE FUNCTION abort_any_command();

Compatibility
There is no CREATE EVENT TRIGGER statement in the SQL standard.

See Also
ALTER EVENT TRIGGER, DROP EVENT TRIGGER, CREATE FUNCTION

1569

CREATE EXTENSION
CREATE EXTENSION — install an extension

Synopsis
CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [CASCADE]

Description
CREATE EXTENSION loads a new extension into the current database. There must not be an extension of
the same name already loaded.

Loading an extension essentially amounts to running the extension's script file. The script will typically
create new SQL objects such as functions, data types, operators and index support methods. CREATE
EXTENSION additionally records the identities of all the created objects, so that they can be dropped
again if DROP EXTENSION is issued.

The user who runs CREATE EXTENSION becomes the owner of the extension for purposes of later privilege
checks, and normally also becomes the owner of any objects created by the extension's script.

Loading an extension ordinarily requires the same privileges that would be required to create its com-
ponent objects. For many extensions this means superuser privileges are needed. However, if the exten-
sion is marked trusted in its control file, then it can be installed by any user who has CREATE privilege
on the current database. In this case the extension object itself will be owned by the calling user, but
the contained objects will be owned by the bootstrap superuser (unless the extension's script explicitly
assigns them to the calling user). This configuration gives the calling user the right to drop the exten-
sion, but not to modify individual objects within it.

Parameters
IF NOT EXISTS

Do not throw an error if an extension with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing extension is anything like the one that would
have been created from the currently-available script file.

extension_name

The name of the extension to be installed. PostgreSQL will create the extension using details from the
file extension_name.control, found via the server's extension control path (set by extension_con-
trol_path.)

schema_name

The name of the schema in which to install the extension's objects, given that the extension allows its
contents to be relocated. The named schema must already exist. If not specified, and the extension's
control file does not specify a schema either, the current default object creation schema is used.

If the extension specifies a schema parameter in its control file, then that schema cannot be over-
ridden with a SCHEMA clause. Normally, an error will be raised if a SCHEMA clause is given and it
conflicts with the extension's schema parameter. However, if the CASCADE clause is also given, then
schema_name is ignored when it conflicts. The given schema_name will be used for installation of any
needed extensions that do not specify schema in their control files.

Remember that the extension itself is not considered to be within any schema: extensions have un-
qualified names that must be unique database-wide. But objects belonging to the extension can be
within schemas.

1570

CREATE EXTENSION

version

The version of the extension to install. This can be written as either an identifier or a string literal.
The default version is whatever is specified in the extension's control file.

CASCADE

Automatically install any extensions that this extension depends on that are not already installed.
Their dependencies are likewise automatically installed, recursively. The SCHEMA clause, if given,
applies to all extensions that get installed this way. Other options of the statement are not applied to
automatically-installed extensions; in particular, their default versions are always selected.

Notes
Before you can use CREATE EXTENSION to load an extension into a database, the extension's supporting
files must be installed. Information about installing the extensions supplied with PostgreSQL can be
found in Additional Supplied Modules.

The extensions currently available for loading can be identified from the pg_available_extensions or
pg_available_extension_versions system views.

Caution
Installing an extension as superuser requires trusting that the extension's author wrote the ex-
tension installation script in a secure fashion. It is not terribly difficult for a malicious user to
create trojan-horse objects that will compromise later execution of a carelessly-written extension
script, allowing that user to acquire superuser privileges. However, trojan-horse objects are only
hazardous if they are in the search_path during script execution, meaning that they are in the
extension's installation target schema or in the schema of some extension it depends on. There-
fore, a good rule of thumb when dealing with extensions whose scripts have not been carefully
vetted is to install them only into schemas for which CREATE privilege has not been and will not
be granted to any untrusted users. Likewise for any extensions they depend on.

The extensions supplied with PostgreSQL are believed to be secure against installation-time at-
tacks of this sort, except for a few that depend on other extensions. As stated in the documenta-
tion for those extensions, they should be installed into secure schemas, or installed into the same
schemas as the extensions they depend on, or both.

For information about writing new extensions, see Section 36.17.

Examples
Install the hstore extension into the current database, placing its objects in schema addons:

CREATE EXTENSION hstore SCHEMA addons;

Another way to accomplish the same thing:

SET search_path = addons;
CREATE EXTENSION hstore;

Compatibility
CREATE EXTENSION is a PostgreSQL extension.

See Also
ALTER EXTENSION, DROP EXTENSION

1571

CREATE FOREIGN DATA WRAPPER
CREATE FOREIGN DATA WRAPPER — define a new foreign-data wrapper

Synopsis
CREATE FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS (option 'value' [, ...])]

Description
CREATE FOREIGN DATA WRAPPER creates a new foreign-data wrapper. The user who defines a foreign-data
wrapper becomes its owner.

The foreign-data wrapper name must be unique within the database.

Only superusers can create foreign-data wrappers.

Parameters
name

The name of the foreign-data wrapper to be created.

HANDLER handler_function

handler_function is the name of a previously registered function that will be called to retrieve the
execution functions for foreign tables. The handler function must take no arguments, and its return
type must be fdw_handler.

It is possible to create a foreign-data wrapper with no handler function, but foreign tables using such
a wrapper can only be declared, not accessed.

VALIDATOR validator_function

validator_function is the name of a previously registered function that will be called to check
the generic options given to the foreign-data wrapper, as well as options for foreign servers, user
mappings and foreign tables using the foreign-data wrapper. If no validator function or NO VALIDATOR
is specified, then options will not be checked at creation time. (Foreign-data wrappers will possibly
ignore or reject invalid option specifications at run time, depending on the implementation.) The
validator function must take two arguments: one of type text[], which will contain the array of
options as stored in the system catalogs, and one of type oid, which will be the OID of the system
catalog containing the options. The return type is ignored; the function should report invalid options
using the ereport(ERROR) function.

OPTIONS (option 'value' [, ...])

This clause specifies options for the new foreign-data wrapper. The allowed option names and values
are specific to each foreign data wrapper and are validated using the foreign-data wrapper's validator
function. Option names must be unique.

Notes
PostgreSQL's foreign-data functionality is still under active development. Optimization of queries is
primitive (and mostly left to the wrapper, too). Thus, there is considerable room for future performance
improvements.

Examples
Create a useless foreign-data wrapper dummy:

1572

CREATE FOREIGN DATA WRAPPER

CREATE FOREIGN DATA WRAPPER dummy;

Create a foreign-data wrapper file with handler function file_fdw_handler:

CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

Create a foreign-data wrapper mywrapper with some options:

CREATE FOREIGN DATA WRAPPER mywrapper
 OPTIONS (debug 'true');

Compatibility
CREATE FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), with the exception that the
HANDLER and VALIDATOR clauses are extensions and the standard clauses LIBRARY and LANGUAGE are not
implemented in PostgreSQL.

Note, however, that the SQL/MED functionality as a whole is not yet conforming.

See Also
ALTER FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE

1573

CREATE FOREIGN TABLE
CREATE FOREIGN TABLE — define a new foreign table

Synopsis
CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [OPTIONS (option 'value' [, ...])] [COLLATE collation]
 [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
{ FOR VALUES partition_bound_spec | DEFAULT }
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL [NO INHERIT] |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) [STORED | VIRTUAL] }
[ENFORCED | NOT ENFORCED]

and table_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL column_name [NO INHERIT] |
 CHECK (expression) [NO INHERIT] }
[ENFORCED | NOT ENFORCED]

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS | GENERATED | STATISTICS
 | ALL }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

1574

CREATE FOREIGN TABLE

Description
CREATE FOREIGN TABLE creates a new foreign table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE FOREIGN TABLE myschema.mytable ...) then the table
is created in the specified schema. Otherwise it is created in the current schema. The name of the foreign
table must be distinct from the name of any other relation (table, sequence, index, view, materialized
view, or foreign table) in the same schema.

CREATE FOREIGN TABLE also automatically creates a data type that represents the composite type cor-
responding to one row of the foreign table. Therefore, foreign tables cannot have the same name as any
existing data type in the same schema.

If PARTITION OF clause is specified then the table is created as a partition of parent_table with specified
bounds.

To be able to create a foreign table, you must have USAGE privilege on the foreign server, as well as
USAGE privilege on all column types used in the table.

Parameters
IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have
been created.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by PostgreSQL, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If not
specified, the column data type's default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new foreign table automatically
inherits all columns. Parent tables can be plain tables or foreign tables. See the similar form of
CREATE TABLE for more details.

PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }

This form can be used to create the foreign table as partition of the given parent table with specified
partition bound values. See the similar form of CREATE TABLE for more details. Note that it is currently
not allowed to create the foreign table as a partition of the parent table if there are UNIQUE indexes
on the parent table. (See also ALTER TABLE ATTACH PARTITION.)

LIKE source_table [like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all column names,
their data types, and their not-null constraints.

1575

CREATE FOREIGN TABLE

Unlike INHERITS, the new table and original table are completely decoupled after creation is com-
plete. Changes to the original table will not be applied to the new table, and it is not possible to
include data of the new table in scans of the original table.

Also unlike INHERITS, columns and constraints copied by LIKE are not merged with similarly named
columns and constraints. If the same name is specified explicitly or in another LIKE clause, an error
is signaled.

The optional like_option clauses specify which additional properties of the original table to copy.
Specifying INCLUDING copies the property, specifying EXCLUDING omits the property. EXCLUDING is
the default. If multiple specifications are made for the same kind of object, the last one is used. The
available options are:
INCLUDING COMMENTS

Comments for the copied columns and constraints will be copied. The default behavior is to ex-
clude comments, resulting in the copied columns and constraints in the new table having no
comments.

INCLUDING CONSTRAINTS

CHECK constraints will be copied. No distinction is made between column constraints and table
constraints. Not-null constraints are always copied to the new table.

INCLUDING DEFAULTS

Default expressions for the copied column definitions will be copied. Otherwise, default expres-
sions are not copied, resulting in the copied columns in the new table having null defaults. Note
that copying defaults that call database-modification functions, such as nextval, may create a
functional linkage between the original and new tables.

INCLUDING GENERATED

Any generation expressions of copied column definitions will be copied. By default, new columns
will be regular base columns.

INCLUDING STATISTICS

Extended statistics are copied to the new table.

INCLUDING ALL

INCLUDING ALL is an abbreviated form selecting all the available individual options. (It could be
useful to write individual EXCLUDING clauses after INCLUDING ALL to select all but some specific
options.)

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used to com-
municate helpful constraint information to client applications. (Double-quotes are needed to specify
constraint names that contain spaces.) If a constraint name is not specified, the system generates
a name.

NOT NULL [NO INHERIT]
The column is not allowed to contain null values.

A constraint marked with NO INHERIT will not propagate to child tables.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged
in new applications.

1576

CREATE FOREIGN TABLE

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which each row in the foreign
table is expected to satisfy; that is, the expression should produce TRUE or UNKNOWN, never FALSE,
for all rows in the foreign table. A check constraint specified as a column constraint should reference
that column's value only, while an expression appearing in a table constraint can reference multiple
columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of
the current row. The system column tableoid may be referenced, but not any other system column.

A constraint marked with NO INHERIT will not propagate to child tables.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (subqueries and cross-references to other columns
in the current table are not allowed). The data type of the default expression must match the data
type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

GENERATED ALWAYS AS (generation_expr) [STORED | VIRTUAL]

This clause creates the column as a generated column. The column cannot be written to, and when
read the result of the specified expression will be returned.

When VIRTUAL is specified, the column will be computed when it is read. (The foreign-data wrapper
will see it as a null value in new rows and may choose to store it as a null value or ignore it alto-
gether.) When STORED is specified, the column will be computed on write. (The computed value will
be presented to the foreign-data wrapper for storage and must be returned on reading.) VIRTUAL
is the default.

The generation expression can refer to other columns in the table, but not other generated columns.
Any functions and operators used must be immutable. References to other tables are not allowed.

server_name

The name of an existing foreign server to use for the foreign table. For details on defining a server,
see CREATE SERVER.

OPTIONS (option 'value' [, ...])

Options to be associated with the new foreign table or one of its columns. The allowed option names
and values are specific to each foreign data wrapper and are validated using the foreign-data wrap-
per's validator function. Duplicate option names are not allowed (although it's OK for a table option
and a column option to have the same name).

Notes
Constraints on foreign tables (such as CHECK or NOT NULL clauses) are not enforced by the core Post-
greSQL system, and most foreign data wrappers do not attempt to enforce them either; that is, the con-
straint is simply assumed to hold true. There would be little point in such enforcement since it would
only apply to rows inserted or updated via the foreign table, and not to rows modified by other means,
such as directly on the remote server. Instead, a constraint attached to a foreign table should represent
a constraint that is being enforced by the remote server.

Some special-purpose foreign data wrappers might be the only access mechanism for the data they
access, and in that case it might be appropriate for the foreign data wrapper itself to perform constraint
enforcement. But you should not assume that a wrapper does that unless its documentation says so.

1577

CREATE FOREIGN TABLE

Although PostgreSQL does not attempt to enforce constraints on foreign tables, it does assume that they
are correct for purposes of query optimization. If there are rows visible in the foreign table that do not
satisfy a declared constraint, queries on the table might produce errors or incorrect answers. It is the
user's responsibility to ensure that the constraint definition matches reality.

Caution
When a foreign table is used as a partition of a partitioned table, there is an implicit constraint
that its contents must satisfy the partitioning rule. Again, it is the user's responsibility to ensure
that that is true, which is best done by installing a matching constraint on the remote server.

Within a partitioned table containing foreign-table partitions, an UPDATE that changes the partition key
value can cause a row to be moved from a local partition to a foreign-table partition, provided the for-
eign data wrapper supports tuple routing. However, it is not currently possible to move a row from a
foreign-table partition to another partition. An UPDATE that would require doing that will fail due to the
partitioning constraint, assuming that that is properly enforced by the remote server.

Similar considerations apply to generated columns. Stored generated columns are computed on insert
or update on the local PostgreSQL server and handed to the foreign-data wrapper for writing out to
the foreign data store, but it is not enforced that a query of the foreign table returns values for stored
generated columns that are consistent with the generation expression. Again, this might result in incor-
rect query results.

Examples
Create foreign table films, which will be accessed through the server film_server:

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
)
SERVER film_server;

Create foreign table measurement_y2016m07, which will be accessed through the server server_07, as
a partition of the range partitioned table measurement:

CREATE FOREIGN TABLE measurement_y2016m07
 PARTITION OF measurement FOR VALUES FROM ('2016-07-01') TO ('2016-08-01')
 SERVER server_07;

Compatibility
The CREATE FOREIGN TABLE command largely conforms to the SQL standard; however, much as with
CREATE TABLE, NULL constraints and zero-column foreign tables are permitted. The ability to specify
column default values is also a PostgreSQL extension. Table inheritance, in the form defined by Post-
greSQL, is nonstandard. The LIKE clause, as supported in this command, is nonstandard.

See Also
ALTER FOREIGN TABLE, DROP FOREIGN TABLE, CREATE TABLE, CREATE SERVER, IMPORT
FOREIGN SCHEMA

1578

CREATE FUNCTION
CREATE FUNCTION — define a new function

Synopsis
CREATE [OR REPLACE] FUNCTION
 name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr]
 [, ...]])
 [RETURNS rettype
 | RETURNS TABLE (column_name column_type [, ...])]
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | WINDOW
 | { IMMUTABLE | STABLE | VOLATILE }
 | [NOT] LEAKPROOF
 | { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT }
 | { [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER }
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SUPPORT support_function
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 | sql_body
 } ...

Description
CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will either create a new function,
or replace an existing definition. To be able to define a function, the user must have the USAGE privilege
on the language.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created
in the current schema. The name of the new function must not match any existing function or procedure
with the same input argument types in the same schema. However, functions and procedures of different
argument types can share a name (this is called overloading).

To replace the current definition of an existing function, use CREATE OR REPLACE FUNCTION. It is not
possible to change the name or argument types of a function this way (if you tried, you would actually
be creating a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change the
return type of an existing function. To do that, you must drop and recreate the function. (When using
OUT parameters, that means you cannot change the types of any OUT parameters except by dropping
the function.)

When CREATE OR REPLACE FUNCTION is used to replace an existing function, the ownership and permis-
sions of the function do not change. All other function properties are assigned the values specified or
implied in the command. You must own the function to replace it (this includes being a member of the
owning role).

If you drop and then recreate a function, the new function is not the same entity as the old; you will
have to drop existing rules, views, triggers, etc. that refer to the old function. Use CREATE OR REPLACE
FUNCTION to change a function definition without breaking objects that refer to the function. Also, ALTER
FUNCTION can be used to change most of the auxiliary properties of an existing function.

The user that creates the function becomes the owner of the function.

1579

CREATE FUNCTION

To be able to create a function, you must have USAGE privilege on the argument types and the return type.

Refer to Section 36.3 for further information on writing functions.

Parameters
name

The name (optionally schema-qualified) of the function to create.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Only OUT argu-
ments can follow a VARIADIC one. Also, OUT and INOUT arguments cannot be used together with the
RETURNS TABLE notation.

argname

The name of an argument. Some languages (including SQL and PL/pgSQL) let you use the name in
the function body. For other languages the name of an input argument is just extra documentation,
so far as the function itself is concerned; but you can use input argument names when calling a
function to improve readability (see Section 4.3). In any case, the name of an output argument is
significant, because it defines the column name in the result row type. (If you omit the name for an
output argument, the system will choose a default column name.)

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any. The argument types
can be base, composite, or domain types, or can reference the type of a table column.

Depending on the implementation language it might also be allowed to specify “pseudo-types” such
as cstring. Pseudo-types indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this feature
can sometimes help make a function independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. Only input (including INOUT) parameters can have
a default value. All input parameters following a parameter with a default value must have default
values as well.

rettype

The return data type (optionally schema-qualified). The return type can be a base, composite, or
domain type, or can reference the type of a table column. Depending on the implementation language
it might also be allowed to specify “pseudo-types” such as cstring. If the function is not supposed
to return a value, specify void as the return type.

When there are OUT or INOUT parameters, the RETURNS clause can be omitted. If present, it must
agree with the result type implied by the output parameters: RECORD if there are multiple output
parameters, or the same type as the single output parameter.

The SETOF modifier indicates that the function will return a set of items, rather than a single item.

The type of a column is referenced by writing table_name.column_name%TYPE.

column_name

The name of an output column in the RETURNS TABLE syntax. This is effectively another way of de-
claring a named OUT parameter, except that RETURNS TABLE also implies RETURNS SETOF.

1580

CREATE FUNCTION

column_type

The data type of an output column in the RETURNS TABLE syntax.

lang_name

The name of the language that the function is implemented in. It can be sql, c, internal, or the name
of a user-defined procedural language, e.g., plpgsql. The default is sql if sql_body is specified.
Enclosing the name in single quotes is deprecated and requires matching case.

TRANSFORM { FOR TYPE type_name } [, ...] }

Lists which transforms a call to the function should apply. Transforms convert between SQL types
and language-specific data types; see CREATE TRANSFORM. Procedural language implementations
usually have hardcoded knowledge of the built-in types, so those don't need to be listed here. If
a procedural language implementation does not know how to handle a type and no transform is
supplied, it will fall back to a default behavior for converting data types, but this depends on the
implementation.

WINDOW

WINDOW indicates that the function is a window function rather than a plain function. This is currently
only useful for functions written in C. The WINDOW attribute cannot be changed when replacing an
existing function definition.

IMMUTABLE
STABLE
VOLATILE

These attributes inform the query optimizer about the behavior of the function. At most one choice
can be specified. If none of these appear, VOLATILE is the default assumption.

IMMUTABLE indicates that the function cannot modify the database and always returns the same result
when given the same argument values; that is, it does not do database lookups or otherwise use
information not directly present in its argument list. If this option is given, any call of the function
with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table scan
it will consistently return the same result for the same argument values, but that its result could
change across SQL statements. This is the appropriate selection for functions whose results depend
on database lookups, parameter variables (such as the current time zone), etc. (It is inappropriate
for AFTER triggers that wish to query rows modified by the current command.) Also note that the
current_timestamp family of functions qualify as stable, since their values do not change within a
transaction.

VOLATILE indicates that the function value can change even within a single table scan, so no opti-
mizations can be made. Relatively few database functions are volatile in this sense; some examples
are random(), currval(), timeofday(). But note that any function that has side-effects must be
classified volatile, even if its result is quite predictable, to prevent calls from being optimized away;
an example is setval().

For additional details see Section 36.7.

LEAKPROOF

LEAKPROOF indicates that the function has no side effects. It reveals no information about its argu-
ments other than by its return value. For example, a function which throws an error message for
some argument values but not others, or which includes the argument values in any error message,
is not leakproof. This affects how the system executes queries against views created with the secu-
rity_barrier option or tables with row level security enabled. The system will enforce conditions
from security policies and security barrier views before any user-supplied conditions from the query
itself that contain non-leakproof functions, in order to prevent the inadvertent exposure of data.

1581

CREATE FUNCTION

Functions and operators marked as leakproof are assumed to be trustworthy, and may be executed
before conditions from security policies and security barrier views. In addition, functions which do
not take arguments or which are not passed any arguments from the security barrier view or table
do not have to be marked as leakproof to be executed before security conditions. See CREATE VIEW
and Section 39.5. This option can only be set by the superuser.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called normally when some
of its arguments are null. It is then the function author's responsibility to check for null values if
necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the function always returns null whenever
any of its arguments are null. If this parameter is specified, the function is not executed when there
are null arguments; instead a null result is assumed automatically.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the function is to be executed with the privileges of the user that
calls it. That is the default. SECURITY DEFINER specifies that the function is to be executed with the
privileges of the user that owns it. For information on how to write SECURITY DEFINER functions
safely, see below.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL, this
feature applies to all functions not only external ones.

PARALLEL

PARALLEL UNSAFE indicates that the function can't be executed in parallel mode; the presence of
such a function in an SQL statement forces a serial execution plan. This is the default. PARALLEL
RESTRICTED indicates that the function can be executed in parallel mode, but only in the parallel
group leader process. PARALLEL SAFE indicates that the function is safe to run in parallel mode
without restriction, including in parallel worker processes.

Functions should be labeled parallel unsafe if they modify any database state, change the transaction
state (other than by using a subtransaction for error recovery), access sequences (e.g., by calling
currval) or make persistent changes to settings. They should be labeled parallel restricted if they
access temporary tables, client connection state, cursors, prepared statements, or miscellaneous
backend-local state which the system cannot synchronize in parallel mode (e.g., setseed cannot be
executed other than by the group leader because a change made by another process would not be
reflected in the leader). In general, if a function is labeled as being safe when it is restricted or unsafe,
or if it is labeled as being restricted when it is in fact unsafe, it may throw errors or produce wrong
answers when used in a parallel query. C-language functions could in theory exhibit totally undefined
behavior if mislabeled, since there is no way for the system to protect itself against arbitrary C code,
but in most likely cases the result will be no worse than for any other function. If in doubt, functions
should be labeled as UNSAFE, which is the default.

COST execution_cost
A positive number giving the estimated execution cost for the function, in units of cpu_operator_cost.
If the function returns a set, this is the cost per returned row. If the cost is not specified, 1 unit is
assumed for C-language and internal functions, and 100 units for functions in all other languages.
Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows
A positive number giving the estimated number of rows that the planner should expect the function
to return. This is only allowed when the function is declared to return a set. The default assumption
is 1000 rows.

1582

CREATE FUNCTION

SUPPORT support_function
The name (optionally schema-qualified) of a planner support function to use for this function. See
Section 36.11 for details. You must be superuser to use this option.

configuration_parameter
value

The SET clause causes the specified configuration parameter to be set to the specified value when the
function is entered, and then restored to its prior value when the function exits. SET FROM CURRENT
saves the value of the parameter that is current when CREATE FUNCTION is executed as the value to
be applied when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside
the function for the same variable are restricted to the function: the configuration parameter's prior
value is still restored at function exit. However, an ordinary SET command (without LOCAL) overrides
the SET clause, much as it would do for a previous SET LOCAL command: the effects of such a command
will persist after function exit, unless the current transaction is rolled back.

See SET and Chapter 19 for more information about allowed parameter names and values.

definition

A string constant defining the function; the meaning depends on the language. It can be an internal
function name, the path to an object file, an SQL command, or text in a procedural language.

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the function definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the function definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language functions when the function
name in the C language source code is not the same as the name of the SQL function. The string
obj_file is the name of the shared library file containing the compiled C function, and is interpreted
as for the LOAD command. The string link_symbol is the function's link symbol, that is, the name
of the function in the C language source code. If the link symbol is omitted, it is assumed to be the
same as the name of the SQL function being defined. The C names of all functions must be different,
so you must give overloaded C functions different C names (for example, use the argument types
as part of the C names).

When repeated CREATE FUNCTION calls refer to the same object file, the file is only loaded once per
session. To unload and reload the file (perhaps during development), start a new session.

sql_body

The body of a LANGUAGE SQL function. This can either be a single statement

RETURN expression

or a block

BEGIN ATOMIC
 statement;
 statement;
 ...
 statement;
END

This is similar to writing the text of the function body as a string constant (see definition above),
but there are some differences: This form only works for LANGUAGE SQL, the string constant form
works for all languages. This form is parsed at function definition time, the string constant form is
parsed at execution time; therefore this form cannot support polymorphic argument types and other

1583

CREATE FUNCTION

constructs that are not resolvable at function definition time. This form tracks dependencies between
the function and objects used in the function body, so DROP ... CASCADE will work correctly, whereas
the form using string literals may leave dangling functions. Finally, this form is more compatible with
the SQL standard and other SQL implementations.

Overloading
PostgreSQL allows function overloading; that is, the same name can be used for several different func-
tions so long as they have distinct input argument types. Whether or not you use it, this capability entails
security precautions when calling functions in databases where some users mistrust other users; see
Section 10.3.

Two functions are considered the same if they have the same names and input argument types, ignoring
any OUT parameters. Thus for example these declarations conflict:
CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...

Functions that have different argument type lists will not be considered to conflict at creation time, but
if defaults are provided they might conflict in use. For example, consider
CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...

A call foo(10) will fail due to the ambiguity about which function should be called.

Notes
The full SQL type syntax is allowed for declaring a function's arguments and return value. However,
parenthesized type modifiers (e.g., the precision field for type numeric) are discarded by CREATE FUNC-
TION. Thus for example CREATE FUNCTION foo (varchar(10)) ... is exactly the same as CREATE FUNC-
TION foo (varchar)

When replacing an existing function with CREATE OR REPLACE FUNCTION, there are restrictions on chang-
ing parameter names. You cannot change the name already assigned to any input parameter (although
you can add names to parameters that had none before). If there is more than one output parameter,
you cannot change the names of the output parameters, because that would change the column names
of the anonymous composite type that describes the function's result. These restrictions are made to
ensure that existing calls of the function do not stop working when it is replaced.

If a function is declared STRICT with a VARIADIC argument, the strictness check tests that the variadic
array as a whole is non-null. The function will still be called if the array has null elements.

Examples
Add two integers using an SQL function:
CREATE FUNCTION add(integer, integer) RETURNS integer
 AS 'select $1 + $2;'
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT;

The same function written in a more SQL-conforming style, using argument names and an unquoted
body:
CREATE FUNCTION add(a integer, b integer) RETURNS integer
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT
 RETURN a + b;

Increment an integer, making use of an argument name, in PL/pgSQL:

1584

CREATE FUNCTION

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
 BEGIN
 RETURN i + 1;
 END;
$$ LANGUAGE plpgsql;

Return a record containing multiple output parameters:
CREATE FUNCTION dup(in int, out f1 int, out f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:
CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

Another way to return multiple columns is to use a TABLE function:
CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

However, a TABLE function is different from the preceding examples, because it actually returns a set
of records, not just one record.

Writing SECURITY DEFINER Functions Safely
Because a SECURITY DEFINER function is executed with the privileges of the user that owns it, care
is needed to ensure that the function cannot be misused. For security, search_path should be set to
exclude any schemas writable by untrusted users. This prevents malicious users from creating objects
(e.g., tables, functions, and operators) that mask objects intended to be used by the function. Particularly
important in this regard is the temporary-table schema, which is searched first by default, and is normally
writable by anyone. A secure arrangement can be obtained by forcing the temporary schema to be
searched last. To do this, write pg_tempas the last entry in search_path. This function illustrates safe
usage:
CREATE FUNCTION check_password(uname TEXT, pass TEXT)
RETURNS BOOLEAN AS $$
DECLARE passed BOOLEAN;
BEGIN
 SELECT (pwd = $2) INTO passed
 FROM pwds
 WHERE username = $1;

 RETURN passed;
END;
$$ LANGUAGE plpgsql
 SECURITY DEFINER
 -- Set a secure search_path: trusted schema(s), then 'pg_temp'.
 SET search_path = admin, pg_temp;

This function's intention is to access a table admin.pwds. But without the SET clause, or with a SET clause
mentioning only admin, the function could be subverted by creating a temporary table named pwds.

1585

CREATE FUNCTION

If the security definer function intends to create roles, and if it is running as a non-superuser, create-
role_self_grant should also be set to a known value using the SET clause.

Another point to keep in mind is that by default, execute privilege is granted to PUBLIC for newly created
functions (see Section 5.8 for more information). Frequently you will wish to restrict use of a security
definer function to only some users. To do that, you must revoke the default PUBLIC privileges and then
grant execute privilege selectively. To avoid having a window where the new function is accessible to
all, create it and set the privileges within a single transaction. For example:

BEGIN;
CREATE FUNCTION check_password(uname TEXT, pass TEXT) ... SECURITY DEFINER;
REVOKE ALL ON FUNCTION check_password(uname TEXT, pass TEXT) FROM PUBLIC;
GRANT EXECUTE ON FUNCTION check_password(uname TEXT, pass TEXT) TO admins;
COMMIT;

Compatibility
A CREATE FUNCTION command is defined in the SQL standard. The PostgreSQL implementation can be
used in a compatible way but has many extensions. Conversely, the SQL standard specifies a number of
optional features that are not implemented in PostgreSQL.

The following are important compatibility issues:
• OR REPLACE is a PostgreSQL extension.
• For compatibility with some other database systems, argmode can be written either before or after

argname. But only the first way is standard-compliant.
• For parameter defaults, the SQL standard specifies only the syntax with the DEFAULT key word. The

syntax with = is used in T-SQL and Firebird.
• The SETOF modifier is a PostgreSQL extension.
• Only SQL is standardized as a language.
• All other attributes except CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT are not stan-

dardized.
• For the body of LANGUAGE SQL functions, the SQL standard only specifies the sql_body form.

Simple LANGUAGE SQL functions can be written in a way that is both standard-conforming and portable
to other implementations. More complex functions using advanced features, optimization attributes, or
other languages will necessarily be specific to PostgreSQL in a significant way.

See Also
ALTER FUNCTION, DROP FUNCTION, GRANT, LOAD, REVOKE

1586

CREATE GROUP
CREATE GROUP — define a new database role

Synopsis
CREATE GROUP name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE GROUP is now an alias for CREATE ROLE.

Compatibility
There is no CREATE GROUP statement in the SQL standard.

See Also
CREATE ROLE

1587

CREATE INDEX
CREATE INDEX — define a new index

Synopsis
CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name] ON
 [ONLY] table_name [USING method]
 ({ column_name | (expression) } [COLLATE collation] [opclass
 [(opclass_parameter = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }]
 [, ...])
 [INCLUDE (column_name [, ...])]
 [NULLS [NOT] DISTINCT]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate]

Description
CREATE INDEX constructs an index on the specified column(s) of the specified relation, which can be
a table or a materialized view. Indexes are primarily used to enhance database performance (though
inappropriate use can result in slower performance).

The key field(s) for the index are specified as column names, or alternatively as expressions written in
parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row.
This feature can be used to obtain fast access to data based on some transformation of the basic data.
For example, an index computed on upper(col) would allow the clause WHERE upper(col) = 'JIM'
to use an index.

PostgreSQL provides the index methods B-tree, hash, GiST, SP-GiST, GIN, and BRIN. Users can also
define their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is more useful for indexing than the rest of the
table. For example, if you have a table that contains both billed and unbilled orders where the unbilled
orders take up a small fraction of the total table and yet that is an often used section, you can improve
performance by creating an index on just that portion. Another possible application is to use WHERE with
UNIQUE to enforce uniqueness over a subset of a table. See Section 11.8 for more discussion.

The expression used in the WHERE clause can refer only to columns of the underlying table, but it can use
all columns, not just the ones being indexed. Presently, subqueries and aggregate expressions are also
forbidden in WHERE. The same restrictions apply to index fields that are expressions.

All functions and operators used in an index definition must be “immutable”, that is, their results must
depend only on their arguments and never on any outside influence (such as the contents of another
table or the current time). This restriction ensures that the behavior of the index is well-defined. To use a
user-defined function in an index expression or WHERE clause, remember to mark the function immutable
when you create it.

Parameters
UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data already
exist) and each time data is added. Attempts to insert or update data which would result in duplicate
entries will generate an error.

1588

CREATE INDEX

Additional restrictions apply when unique indexes are applied to partitioned tables; see CREATE
TABLE.

CONCURRENTLY

When this option is used, PostgreSQL will build the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table; whereas a standard index build locks out writes
(but not reads) on the table until it's done. There are several caveats to be aware of when using this
option — see Building Indexes Concurrently below.

For temporary tables, CREATE INDEX is always non-concurrent, as no other session can access them,
and non-concurrent index creation is cheaper.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing index is anything like the one that would have been
created. Index name is required when IF NOT EXISTS is specified.

INCLUDE

The optional INCLUDE clause specifies a list of columns which will be included in the index as non-key
columns. A non-key column cannot be used in an index scan search qualification, and it is disregarded
for purposes of any uniqueness or exclusion constraint enforced by the index. However, an index-only
scan can return the contents of non-key columns without having to visit the index's table, since they
are available directly from the index entry. Thus, addition of non-key columns allows index-only scans
to be used for queries that otherwise could not use them.

It's wise to be conservative about adding non-key columns to an index, especially wide columns. If
an index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any
case, non-key columns duplicate data from the index's table and bloat the size of the index, thus
potentially slowing searches. Furthermore, B-tree deduplication is never used with indexes that have
a non-key column.

Columns listed in the INCLUDE clause don't need appropriate operator classes; the clause can include
columns whose data types don't have operator classes defined for a given access method.

Expressions are not supported as included columns since they cannot be used in index-only scans.

Currently, the B-tree, GiST and SP-GiST index access methods support this feature. In these indexes,
the values of columns listed in the INCLUDE clause are included in leaf tuples which correspond to
heap tuples, but are not included in upper-level index entries used for tree navigation.

name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table. The name of the index must be distinct from the
name of any other relation (table, sequence, index, view, materialized view, or foreign table) in that
schema. If the name is omitted, PostgreSQL chooses a suitable name based on the parent table's
name and the indexed column name(s).

ONLY

Indicates not to recurse creating indexes on partitions, if the table is partitioned. The default is to
recurse.

table_name

The name (possibly schema-qualified) of the table to be indexed.

method

The name of the index method to be used. Choices are btree, hash, gist, spgist, gin, brin, or user-
installed access methods like bloom. The default method is btree.

1589

CREATE INDEX

column_name

The name of a column of the table.

expression

An expression based on one or more columns of the table. The expression usually must be written
with surrounding parentheses, as shown in the syntax. However, the parentheses can be omitted if
the expression has the form of a function call.

collation

The name of the collation to use for the index. By default, the index uses the collation declared for
the column to be indexed or the result collation of the expression to be indexed. Indexes with non-
default collations can be useful for queries that involve expressions using non-default collations.

opclass

The name of an operator class. See below for details.

opclass_parameter

The name of an operator class parameter. See below for details.

ASC

Specifies ascending sort order (which is the default).

DESC

Specifies descending sort order.

NULLS FIRST

Specifies that nulls sort before non-nulls. This is the default when DESC is specified.

NULLS LAST

Specifies that nulls sort after non-nulls. This is the default when DESC is not specified.

NULLS DISTINCT
NULLS NOT DISTINCT

Specifies whether for a unique index, null values should be considered distinct (not equal). The
default is that they are distinct, so that a unique index could contain multiple null values in a column.

storage_parameter

The name of an index-method-specific storage parameter. See Index Storage Parameters below for
details.

tablespace_name

The tablespace in which to create the index. If not specified, default_tablespace is consulted, or
temp_tablespaces for indexes on temporary tables.

predicate

The constraint expression for a partial index.

Index Storage Parameters
The optional WITH clause specifies storage parameters for the index. Each index method has its own set
of allowed storage parameters.

The B-tree, hash, GiST and SP-GiST index methods all accept this parameter:

1590

CREATE INDEX

fillfactor (integer)

Controls how full the index method will try to pack index pages. For B-trees, leaf pages are filled to
this percentage during initial index builds, and also when extending the index at the right (adding
new largest key values). If pages subsequently become completely full, they will be split, leading to
fragmentation of the on-disk index structure. B-trees use a default fillfactor of 90, but any integer
value from 10 to 100 can be selected.

B-tree indexes on tables where many inserts and/or updates are anticipated can benefit from lower
fillfactor settings at CREATE INDEX time (following bulk loading into the table). Values in the range of
50 - 90 can usefully “smooth out” the rate of page splits during the early life of the B-tree index (low-
ering fillfactor like this may even lower the absolute number of page splits, though this effect is highly
workload dependent). The B-tree bottom-up index deletion technique described in Section 65.1.4.2
is dependent on having some “extra” space on pages to store “extra” tuple versions, and so can be
affected by fillfactor (though the effect is usually not significant).

In other specific cases it might be useful to increase fillfactor to 100 at CREATE INDEX time as a way
of maximizing space utilization. You should only consider this when you are completely sure that the
table is static (i.e. that it will never be affected by either inserts or updates). A fillfactor setting of
100 otherwise risks harming performance: even a few updates or inserts will cause a sudden flood
of page splits.

The other index methods use fillfactor in different but roughly analogous ways; the default fillfactor
varies between methods.

B-tree indexes additionally accept this parameter:

deduplicate_items (boolean)

Controls usage of the B-tree deduplication technique described in Section 65.1.4.3. Set to ON or OFF
to enable or disable the optimization. (Alternative spellings of ON and OFF are allowed as described
in Section 19.1.) The default is ON.

Note
Turning deduplicate_items off via ALTER INDEX prevents future insertions from triggering
deduplication, but does not in itself make existing posting list tuples use the standard tuple
representation.

GiST indexes additionally accept this parameter:

buffering (enum)

Controls whether the buffered build technique described in Section 65.2.4.1 is used to build the
index. With OFF buffering is disabled, with ON it is enabled, and with AUTO it is initially disabled, but is
turned on on-the-fly once the index size reaches effective_cache_size. The default is AUTO. Note that
if sorted build is possible, it will be used instead of buffered build unless buffering=ON is specified.

GIN indexes accept these parameters:

fastupdate (boolean)

Controls usage of the fast update technique described in Section 65.4.4.1. ON enables fast update,
OFF disables it. The default is ON.

Note
Turning fastupdate off via ALTER INDEX prevents future insertions from going into the list of
pending index entries, but does not in itself flush existing entries. You might want to VACUUM

1591

CREATE INDEX

the table or call the gin_clean_pending_list function afterward to ensure the pending list
is emptied.

gin_pending_list_limit (integer)
Overrides the global setting of gin_pending_list_limit for this index. This value is specified in kilo-
bytes.

BRIN indexes accept these parameters:

pages_per_range (integer)
Defines the number of table blocks that make up one block range for each entry of a BRIN index (see
Section 65.5.1 for more details). The default is 128.

autosummarize (boolean)
Defines whether a summarization run is queued for the previous page range whenever an insertion
is detected on the next one (see Section 65.5.1.1 for more details). The default is off.

Building Indexes Concurrently
Creating an index can interfere with regular operation of a database. Normally PostgreSQL locks the
table to be indexed against writes and performs the entire index build with a single scan of the table.
Other transactions can still read the table, but if they try to insert, update, or delete rows in the table
they will block until the index build is finished. This could have a severe effect if the system is a live
production database. Very large tables can take many hours to be indexed, and even for smaller tables,
an index build can lock out writers for periods that are unacceptably long for a production system.

PostgreSQL supports building indexes without locking out writes. This method is invoked by specifying
the CONCURRENTLY option of CREATE INDEX. When this option is used, PostgreSQL must perform two
scans of the table, and in addition it must wait for all existing transactions that could potentially modify
or use the index to terminate. Thus this method requires more total work than a standard index build
and takes significantly longer to complete. However, since it allows normal operations to continue while
the index is built, this method is useful for adding new indexes in a production environment. Of course,
the extra CPU and I/O load imposed by the index creation might slow other operations.

In a concurrent index build, the index is actually entered as an “invalid” index into the system catalogs in
one transaction, then two table scans occur in two more transactions. Before each table scan, the index
build must wait for existing transactions that have modified the table to terminate. After the second
scan, the index build must wait for any transactions that have a snapshot (see Chapter 13) predating the
second scan to terminate, including transactions used by any phase of concurrent index builds on other
tables, if the indexes involved are partial or have columns that are not simple column references. Then
finally the index can be marked “valid” and ready for use, and the CREATE INDEX command terminates.
Even then, however, the index may not be immediately usable for queries: in the worst case, it cannot
be used as long as transactions exist that predate the start of the index build.

If a problem arises while scanning the table, such as a deadlock or a uniqueness violation in a unique
index, the CREATE INDEX command will fail but leave behind an “invalid” index. This index will be ignored
for querying purposes because it might be incomplete; however it will still consume update overhead.
The psql \d command will report such an index as INVALID:
postgres=# \d tab
 Table "public.tab"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 col | integer | | |
Indexes:
 "idx" btree (col) INVALID

The recommended recovery method in such cases is to drop the index and try again to perform CREATE
INDEX CONCURRENTLY. (Another possibility is to rebuild the index with REINDEX INDEX CONCURRENTLY).

1592

CREATE INDEX

Another caveat when building a unique index concurrently is that the uniqueness constraint is already
being enforced against other transactions when the second table scan begins. This means that constraint
violations could be reported in other queries prior to the index becoming available for use, or even in
cases where the index build eventually fails. Also, if a failure does occur in the second scan, the “invalid”
index continues to enforce its uniqueness constraint afterwards.

Concurrent builds of expression indexes and partial indexes are supported. Errors occurring in the eval-
uation of these expressions could cause behavior similar to that described above for unique constraint
violations.

Regular index builds permit other regular index builds on the same table to occur simultaneously, but
only one concurrent index build can occur on a table at a time. In either case, schema modification of
the table is not allowed while the index is being built. Another difference is that a regular CREATE INDEX
command can be performed within a transaction block, but CREATE INDEX CONCURRENTLY cannot.

Concurrent builds for indexes on partitioned tables are currently not supported. However, you may
concurrently build the index on each partition individually and then finally create the partitioned index
non-concurrently in order to reduce the time where writes to the partitioned table will be locked out. In
this case, building the partitioned index is a metadata only operation.

Notes
See Chapter 11 for information about when indexes can be used, when they are not used, and in which
particular situations they can be useful.

Currently, only the B-tree, GiST, GIN, and BRIN index methods support multiple-key-column indexes.
Whether there can be multiple key columns is independent of whether INCLUDE columns can be added
to the index. Indexes can have up to 32 columns, including INCLUDE columns. (This limit can be altered
when building PostgreSQL.) Only B-tree currently supports unique indexes.

An operator class with optional parameters can be specified for each column of an index. The opera-
tor class identifies the operators to be used by the index for that column. For example, a B-tree index
on four-byte integers would use the int4_ops class; this operator class includes comparison functions
for four-byte integers. In practice the default operator class for the column's data type is usually suffi-
cient. The main point of having operator classes is that for some data types, there could be more than
one meaningful ordering. For example, we might want to sort a complex-number data type either by
absolute value or by real part. We could do this by defining two operator classes for the data type and
then selecting the proper class when creating an index. More information about operator classes is in
Section 11.10 and in Section 36.16.

When CREATE INDEX is invoked on a partitioned table, the default behavior is to recurse to all partitions to
ensure they all have matching indexes. Each partition is first checked to determine whether an equivalent
index already exists, and if so, that index will become attached as a partition index to the index being
created, which will become its parent index. If no matching index exists, a new index will be created
and automatically attached; the name of the new index in each partition will be determined as if no
index name had been specified in the command. If the ONLY option is specified, no recursion is done,
and the index is marked invalid. (ALTER INDEX ... ATTACH PARTITION marks the index valid, once
all partitions acquire matching indexes.) Note, however, that any partition that is created in the future
using CREATE TABLE ... PARTITION OF will automatically have a matching index, regardless of whether
ONLY is specified.

For index methods that support ordered scans (currently, only B-tree), the optional clauses ASC, DESC,
NULLS FIRST, and/or NULLS LAST can be specified to modify the sort ordering of the index. Since an or-
dered index can be scanned either forward or backward, it is not normally useful to create a single-col-
umn DESC index — that sort ordering is already available with a regular index. The value of these options
is that multicolumn indexes can be created that match the sort ordering requested by a mixed-ordering
query, such as SELECT ... ORDER BY x ASC, y DESC. The NULLS options are useful if you need to
support “nulls sort low” behavior, rather than the default “nulls sort high”, in queries that depend on
indexes to avoid sorting steps.

1593

CREATE INDEX

The system regularly collects statistics on all of a table's columns. Newly-created non-expression indexes
can immediately use these statistics to determine an index's usefulness. For new expression indexes, it is
necessary to run ANALYZE or wait for the autovacuum daemon to analyze the table to generate statistics
for these indexes.

While CREATE INDEX is running, the search_path is temporarily changed to pg_catalog, pg_temp.

For most index methods, the speed of creating an index is dependent on the setting of mainte-
nance_work_mem. Larger values will reduce the time needed for index creation, so long as you don't
make it larger than the amount of memory really available, which would drive the machine into swapping.

PostgreSQL can build indexes while leveraging multiple CPUs in order to process the table rows faster.
This feature is known as parallel index build. For index methods that support building indexes in parallel
(currently, B-tree, GIN, and BRIN), maintenance_work_mem specifies the maximum amount of memory
that can be used by each index build operation as a whole, regardless of how many worker processes
were started. Generally, a cost model automatically determines how many worker processes should be
requested, if any.

Parallel index builds may benefit from increasing maintenance_work_mem where an equivalent serial
index build will see little or no benefit. Note that maintenance_work_mem may influence the number of
worker processes requested, since parallel workers must have at least a 32MB share of the total main-
tenance_work_mem budget. There must also be a remaining 32MB share for the leader process. Increas-
ing max_parallel_maintenance_workers may allow more workers to be used, which will reduce the time
needed for index creation, so long as the index build is not already I/O bound. Of course, there should
also be sufficient CPU capacity that would otherwise lie idle.

Setting a value for parallel_workers via ALTER TABLE directly controls how many parallel worker
processes will be requested by a CREATE INDEX against the table. This bypasses the cost model com-
pletely, and prevents maintenance_work_mem from affecting how many parallel workers are requested.
Setting parallel_workers to 0 via ALTER TABLE will disable parallel index builds on the table in all cases.

Tip
You might want to reset parallel_workers after setting it as part of tuning an index build. This
avoids inadvertent changes to query plans, since parallel_workers affects all parallel table scans.

While CREATE INDEX with the CONCURRENTLY option supports parallel builds without special restrictions,
only the first table scan is actually performed in parallel.

Use DROP INDEX to remove an index.

Like any long-running transaction, CREATE INDEX on a table can affect which tuples can be removed by
concurrent VACUUM on any other table.

Prior releases of PostgreSQL also had an R-tree index method. This method has been removed because
it had no significant advantages over the GiST method. If USING rtree is specified, CREATE INDEX will
interpret it as USING gist, to simplify conversion of old databases to GiST.

Each backend running CREATE INDEX will report its progress in the pg_stat_progress_create_index
view. See Section 27.4.4 for details.

Examples
To create a unique B-tree index on the column title in the table films:
CREATE UNIQUE INDEX title_idx ON films (title);

To create a unique B-tree index on the column title with included columns director and rating in
the table films:

1594

CREATE INDEX

CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director, rating);

To create a B-Tree index with deduplication disabled:

CREATE INDEX title_idx ON films (title) WITH (deduplicate_items = off);

To create an index on the expression lower(title), allowing efficient case-insensitive searches:

CREATE INDEX ON films ((lower(title)));

(In this example we have chosen to omit the index name, so the system will choose a name, typically
films_lower_idx.)

To create an index with non-default collation:

CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");

To create an index with non-default sort ordering of nulls:

CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);

To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);

To create a GIN index with fast updates disabled:

CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH (fastupdate = off);

To create an index on the column code in the table films and have the index reside in the tablespace
indexspace:

CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;

To create a GiST index on a point attribute so that we can efficiently use box operators on the result
of the conversion function:

CREATE INDEX pointloc
 ON points USING gist (box(location,location));
SELECT * FROM points
 WHERE box(location,location) && '(0,0),(1,1)'::box;

To create an index without locking out writes to the table:

CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);

Compatibility
CREATE INDEX is a PostgreSQL language extension. There are no provisions for indexes in the SQL
standard.

See Also
ALTER INDEX, DROP INDEX, REINDEX, Section 27.4.4

1595

CREATE LANGUAGE
CREATE LANGUAGE — define a new procedural language

Synopsis
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler] [VALIDATOR valfunction]
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name

Description
CREATE LANGUAGE registers a new procedural language with a PostgreSQL database. Subsequently,
functions and procedures can be defined in this new language.

CREATE LANGUAGE effectively associates the language name with handler function(s) that are responsible
for executing functions written in the language. Refer to Chapter 57 for more information about language
handlers.

CREATE OR REPLACE LANGUAGE will either create a new language, or replace an existing definition. If
the language already exists, its parameters are updated according to the command, but the language's
ownership and permissions settings do not change, and any existing functions written in the language
are assumed to still be valid.

One must have the PostgreSQL superuser privilege to register a new language or change an existing
language's parameters. However, once the language is created it is valid to assign ownership of it to a
non-superuser, who may then drop it, change its permissions, rename it, or assign it to a new owner.
(Do not, however, assign ownership of the underlying C functions to a non-superuser; that would create
a privilege escalation path for that user.)

The form of CREATE LANGUAGE that does not supply any handler function is obsolete. For backwards
compatibility with old dump files, it is interpreted as CREATE EXTENSION. That will work if the language
has been packaged into an extension of the same name, which is the conventional way to set up proce-
dural languages.

Parameters
TRUSTED

TRUSTED specifies that the language does not grant access to data that the user would not otherwise
have. If this key word is omitted when registering the language, only users with the PostgreSQL
superuser privilege can use this language to create new functions.

PROCEDURAL

This is a noise word.

name

The name of the new procedural language. The name must be unique among the languages in the
database.

HANDLER call_handler

call_handler is the name of a previously registered function that will be called to execute the pro-
cedural language's functions. The call handler for a procedural language must be written in a com-
piled language such as C with version 1 call convention and registered with PostgreSQL as a function
taking no arguments and returning the language_handler type, a placeholder type that is simply
used to identify the function as a call handler.

1596

CREATE LANGUAGE

INLINE inline_handler

inline_handler is the name of a previously registered function that will be called to execute an
anonymous code block (DO command) in this language. If no inline_handler function is specified,
the language does not support anonymous code blocks. The handler function must take one argument
of type internal, which will be the DO command's internal representation, and it will typically return
void. The return value of the handler is ignored.

VALIDATOR valfunction

valfunction is the name of a previously registered function that will be called when a new function
in the language is created, to validate the new function. If no validator function is specified, then a
new function will not be checked when it is created. The validator function must take one argument
of type oid, which will be the OID of the to-be-created function, and will typically return void.

A validator function would typically inspect the function body for syntactical correctness, but it can
also look at other properties of the function, for example if the language cannot handle certain argu-
ment types. To signal an error, the validator function should use the ereport() function. The return
value of the function is ignored.

Notes
Use DROP LANGUAGE to drop procedural languages.

The system catalog pg_language (see Section 52.29) records information about the currently installed
languages. Also, the psql command \dL lists the installed languages.

To create functions in a procedural language, a user must have the USAGE privilege for the language. By
default, USAGE is granted to PUBLIC (i.e., everyone) for trusted languages. This can be revoked if desired.

Procedural languages are local to individual databases. However, a language can be installed into the
template1 database, which will cause it to be available automatically in all subsequently-created data-
bases.

Examples
A minimal sequence for creating a new procedural language is:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
 AS '$libdir/plsample'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

Typically that would be written in an extension's creation script, and users would do this to install the
extension:

CREATE EXTENSION plsample;

Compatibility
CREATE LANGUAGE is a PostgreSQL extension.

See Also
ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE, GRANT, REVOKE

1597

CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW — define a new materialized view

Synopsis
CREATE MATERIALIZED VIEW [IF NOT EXISTS] table_name
 [(column_name [, ...])]
 [USING method]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description
CREATE MATERIALIZED VIEW defines a materialized view of a query. The query is executed and used to
populate the view at the time the command is issued (unless WITH NO DATA is used) and may be refreshed
later using REFRESH MATERIALIZED VIEW.

CREATE MATERIALIZED VIEW is similar to CREATE TABLE AS, except that it also remembers the query
used to initialize the view, so that it can be refreshed later upon demand. A materialized view has many
of the same properties as a table, but there is no support for temporary materialized views.

CREATE MATERIALIZED VIEW requires CREATE privilege on the schema used for the materialized view.

Parameters
IF NOT EXISTS

Do not throw an error if a materialized view with the same name already exists. A notice is issued
in this case. Note that there is no guarantee that the existing materialized view is anything like the
one that would have been created.

table_name

The name (optionally schema-qualified) of the materialized view to be created. The name must be
distinct from the name of any other relation (table, sequence, index, view, materialized view, or
foreign table) in the same schema.

column_name

The name of a column in the new materialized view. If column names are not provided, they are taken
from the output column names of the query.

USING method

This optional clause specifies the table access method to use to store the contents for the new ma-
terialized view; the method needs be an access method of type TABLE. See Chapter 62 for more
information. If this option is not specified, the default table access method is chosen for the new
materialized view. See default_table_access_method for more information.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new materialized view; see Storage Para-
meters in the CREATE TABLE documentation for more information. All parameters supported for
CREATE TABLE are also supported for CREATE MATERIALIZED VIEW. See CREATE TABLE for more
information.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new materialized view is to be
created. If not specified, default_tablespace is consulted.

1598

CREATE MATERIALIZED VIEW

query

A SELECT, TABLE, or VALUES command. This query will run within a security-restricted operation; in
particular, calls to functions that themselves create temporary tables will fail. Also, while the query
is running, the search_path is temporarily changed to pg_catalog, pg_temp.

WITH [NO] DATA

This clause specifies whether or not the materialized view should be populated at creation time.
If not, the materialized view will be flagged as unscannable and cannot be queried until REFRESH
MATERIALIZED VIEW is used.

Compatibility
CREATE MATERIALIZED VIEW is a PostgreSQL extension.

See Also
ALTER MATERIALIZED VIEW, CREATE TABLE AS, CREATE VIEW, DROP MATERIALIZED VIEW, RE-
FRESH MATERIALIZED VIEW

1599

CREATE OPERATOR
CREATE OPERATOR — define a new operator

Synopsis
CREATE OPERATOR name (
 {FUNCTION|PROCEDURE} = function_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
)

Description
CREATE OPERATOR defines a new operator, name. The user who defines an operator becomes its owner.
If a schema name is given then the operator is created in the specified schema. Otherwise it is created
in the current schema.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:
+ - * / < > = ~ ! @ # % ^ & | ` ?
There are a few restrictions on your choice of name:
• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a

comment.
• A multicharacter operator name cannot end in + or -, unless the name also contains at least one of

these characters:
~ ! @ # % ^ & | ` ?
For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to
parse SQL-compliant commands without requiring spaces between tokens.

• The symbol => is reserved by the SQL grammar, so it cannot be used as an operator name.

The operator != is mapped to <> on input, so these two names are always equivalent.

For binary operators, both LEFTARG and RIGHTARG must be defined. For prefix operators only RIGHTARG
should be defined. The function_name function must have been previously defined using CREATE FUNC-
TION and must be defined to accept the correct number of arguments (either one or two) of the indicated
types.

In the syntax of CREATE OPERATOR, the keywords FUNCTION and PROCEDURE are equivalent, but the ref-
erenced function must in any case be a function, not a procedure. The use of the keyword PROCEDURE
here is historical and deprecated.

The other clauses specify optional operator optimization attributes. Their meaning is detailed in Sec-
tion 36.15.

To be able to create an operator, you must have USAGE privilege on the argument types and the return
type, as well as EXECUTE privilege on the underlying function. If a commutator or negator operator is
specified, you must own those operators.

Parameters
name

The name of the operator to be defined. See above for allowable characters. The name can be schema-
qualified, for example CREATE OPERATOR myschema.+ (...). If not, then the operator is created in

1600

CREATE OPERATOR

the current schema. Two operators in the same schema can have the same name if they operate on
different data types. This is called overloading.

function_name

The function used to implement this operator.

left_type

The data type of the operator's left operand, if any. This option would be omitted for a prefix operator.

right_type

The data type of the operator's right operand.

com_op

The commutator of this operator.

neg_op

The negator of this operator.

res_proc

The restriction selectivity estimator function for this operator.

join_proc

The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

MERGES

Indicates this operator can support a merge join.

To give a schema-qualified operator name in com_op or the other optional arguments, use the OPERATOR()
syntax, for example:

COMMUTATOR = OPERATOR(myschema.===) ,

Notes
Refer to Section 36.14 and Section 36.15 for further information.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven't defined yet? There are three solutions to this problem:

• One way is to omit the COMMUTATOR clause in the first operator that you define, and then provide
one in the second operator's definition. Since PostgreSQL knows that commutative operators come
in pairs, when it sees the second definition it will automatically go back and fill in the missing COM-
MUTATOR clause in the first definition.

• Another, more straightforward way is just to include COMMUTATOR clauses in both definitions. When
PostgreSQL processes the first definition and realizes that COMMUTATOR refers to a nonexistent oper-
ator, the system will make a dummy entry for that operator in the system catalog. This dummy en-
try will have valid data only for the operator name, left and right operand types, and owner, since
that's all that PostgreSQL can deduce at this point. The first operator's catalog entry will link to
this dummy entry. Later, when you define the second operator, the system updates the dummy en-
try with the additional information from the second definition. If you try to use the dummy operator
before it's been filled in, you'll just get an error message.

1601

CREATE OPERATOR

• Alternatively, both operators can be defined without COMMUTATOR clauses and then ALTER OPERATOR
can be used to set their commutator links. It's sufficient to ALTER either one of the pair.

In all three cases, you must own both operators in order to mark them as commutators.

Pairs of negator operators can be defined using the same methods as for commutator pairs.

It is not possible to specify an operator's lexical precedence in CREATE OPERATOR, because the parser's
precedence behavior is hard-wired. See Section 4.1.6 for precedence details.

The obsolete options SORT1, SORT2, LTCMP, and GTCMP were formerly used to specify the names of sort
operators associated with a merge-joinable operator. This is no longer necessary, since information
about associated operators is found by looking at B-tree operator families instead. If one of these options
is given, it is ignored except for implicitly setting MERGES true.

Use DROP OPERATOR to delete user-defined operators from a database. Use ALTER OPERATOR to modify
operators in a database.

Examples
The following command defines a new operator, area-equality, for the data type box:

CREATE OPERATOR === (
 LEFTARG = box,
 RIGHTARG = box,
 FUNCTION = area_equal_function,
 COMMUTATOR = ===,
 NEGATOR = !==,
 RESTRICT = area_restriction_function,
 JOIN = area_join_function,
 HASHES, MERGES
);

Compatibility
CREATE OPERATOR is a PostgreSQL extension. There are no provisions for user-defined operators in the
SQL standard.

See Also
ALTER OPERATOR, CREATE OPERATOR CLASS, DROP OPERATOR

1602

CREATE OPERATOR CLASS
CREATE OPERATOR CLASS — define a new operator class

Synopsis
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)] [FOR SEARCH | FOR
 ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])] function_name
 (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description
CREATE OPERATOR CLASS creates a new operator class. An operator class defines how a particular data
type can be used with an index. The operator class specifies that certain operators will fill particular roles
or “strategies” for this data type and this index method. The operator class also specifies the support
functions to be used by the index method when the operator class is selected for an index column. All
the operators and functions used by an operator class must be defined before the operator class can
be created.

If a schema name is given then the operator class is created in the specified schema. Otherwise it is
created in the current schema. Two operator classes in the same schema can have the same name only
if they are for different index methods.

The user who defines an operator class becomes its owner. Presently, the creating user must be a su-
peruser. (This restriction is made because an erroneous operator class definition could confuse or even
crash the server.)

CREATE OPERATOR CLASS does not presently check whether the operator class definition includes all the
operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user's responsibility to define a valid operator class.

Related operator classes can be grouped into operator families. To add a new operator class to an existing
family, specify the FAMILY option in CREATE OPERATOR CLASS. Without this option, the new class is placed
into a family named the same as the new class (creating that family if it doesn't already exist).

Refer to Section 36.16 for further information.

Parameters
name

The name of the operator class to be created. The name can be schema-qualified.

DEFAULT

If present, the operator class will become the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for.

1603

CREATE OPERATOR CLASS

family_name

The name of the existing operator family to add this operator class to. If not specified, a family named
the same as the operator class is used (creating it, if it doesn't already exist).

strategy_number

The index method's strategy number for an operator associated with the operator class.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator class.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a prefix operator.
The operand data types can be omitted in the normal case where they are the same as the operator
class's data type.

In a FUNCTION clause, the operand data type(s) the function is intended to support, if different from
the input data type(s) of the function (for B-tree comparison functions and hash functions) or the
class's data type (for B-tree sort support functions, B-tree equal image functions, and all functions in
GiST, SP-GiST, GIN and BRIN operator classes). These defaults are correct, and so op_type need not
be specified in FUNCTION clauses, except for the case of a B-tree sort support function that is meant
to support cross-data-type comparisons.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support function number for a function associated with the operator class.

function_name

The name (optionally schema-qualified) of a function that is an index method support function for
the operator class.

argument_type

The parameter data type(s) of the function.

storage_type

The data type actually stored in the index. Normally this is the same as the column data type, but
some index methods (currently GiST, GIN, SP-GiST and BRIN) allow it to be different. The STORAGE
clause must be omitted unless the index method allows a different type to be used. If the column
data_type is specified as anyarray, the storage_type can be declared as anyelement to indicate
that the index entries are members of the element type belonging to the actual array type that each
particular index is created for.

The OPERATOR, FUNCTION, and STORAGE clauses can appear in any order.

Notes
Because the index machinery does not check access permissions on functions before using them, includ-
ing a function or operator in an operator class is tantamount to granting public execute permission on
it. This is usually not an issue for the sorts of functions that are useful in an operator class.

The operators should not be defined by SQL functions. An SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

1604

CREATE OPERATOR CLASS

Examples
The following example command defines a GiST index operator class for the data type _int4 (array of
int4). See the intarray module for the complete example.

CREATE OPERATOR CLASS gist__int_ops
 DEFAULT FOR TYPE _int4 USING gist AS
 OPERATOR 3 &&,
 OPERATOR 6 = (anyarray, anyarray),
 OPERATOR 7 @>,
 OPERATOR 8 <@,
 OPERATOR 20 @@ (_int4, query_int),
 FUNCTION 1 g_int_consistent (internal, _int4, smallint, oid,
 internal),
 FUNCTION 2 g_int_union (internal, internal),
 FUNCTION 3 g_int_compress (internal),
 FUNCTION 4 g_int_decompress (internal),
 FUNCTION 5 g_int_penalty (internal, internal, internal),
 FUNCTION 6 g_int_picksplit (internal, internal),
 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility
CREATE OPERATOR CLASS is a PostgreSQL extension. There is no CREATE OPERATOR CLASS statement
in the SQL standard.

See Also
ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE OPERATOR FAMILY, ALTER OPERA-
TOR FAMILY

1605

CREATE OPERATOR FAMILY
CREATE OPERATOR FAMILY — define a new operator family

Synopsis
CREATE OPERATOR FAMILY name USING index_method

Description
CREATE OPERATOR FAMILY creates a new operator family. An operator family defines a collection of re-
lated operator classes, and perhaps some additional operators and support functions that are compati-
ble with these operator classes but not essential for the functioning of any individual index. (Operators
and functions that are essential to indexes should be grouped within the relevant operator class, rather
than being “loose” in the operator family. Typically, single-data-type operators are bound to operator
classes, while cross-data-type operators can be loose in an operator family containing operator classes
for both data types.)

The new operator family is initially empty. It should be populated by issuing subsequent CREATE OP-
ERATOR CLASS commands to add contained operator classes, and optionally ALTER OPERATOR FAMILY
commands to add “loose” operators and their corresponding support functions.

If a schema name is given then the operator family is created in the specified schema. Otherwise it is
created in the current schema. Two operator families in the same schema can have the same name only
if they are for different index methods.

The user who defines an operator family becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator family definition could confuse or
even crash the server.)

Refer to Section 36.16 for further information.

Parameters
name

The name of the operator family to be created. The name can be schema-qualified.

index_method

The name of the index method this operator family is for.

Compatibility
CREATE OPERATOR FAMILY is a PostgreSQL extension. There is no CREATE OPERATOR FAMILY statement
in the SQL standard.

See Also
ALTER OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER OPERA-
TOR CLASS, DROP OPERATOR CLASS

1606

CREATE POLICY
CREATE POLICY — define a new row-level security policy for a table

Synopsis
CREATE POLICY name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
 [TO { role_name | PUBLIC | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description
The CREATE POLICY command defines a new row-level security policy for a table. Note that row-level
security must be enabled on the table (using ALTER TABLE ... ENABLE ROW LEVEL SECURITY) in order
for created policies to be applied.

A policy grants the permission to select, insert, update, or delete rows that match the relevant policy
expression. Existing table rows are checked against the expression specified in USING, while new rows
that would be created via INSERT or UPDATE are checked against the expression specified in WITH CHECK.
When a USING expression returns true for a given row then that row is visible to the user, while if false
or null is returned then the row is not visible. When a WITH CHECK expression returns true for a row then
that row is inserted or updated, while if false or null is returned then an error occurs.

For INSERT, UPDATE, and MERGE statements, WITH CHECK expressions are enforced after BEFORE triggers
are fired, and before any actual data modifications are made. Thus a BEFORE ROW trigger may modify
the data to be inserted, affecting the result of the security policy check. WITH CHECK expressions are
enforced before any other constraints.

Policy names are per-table. Therefore, one policy name can be used for many different tables and have
a definition for each table which is appropriate to that table.

Policies can be applied for specific commands or for specific roles. The default for newly created policies
is that they apply for all commands and roles, unless otherwise specified. Multiple policies may apply to
a single command; see below for more details. Table 300 summarizes how the different types of policy
apply to specific commands.

For policies that can have both USING and WITH CHECK expressions (ALL and UPDATE), if no WITH CHECK
expression is defined, then the USING expression will be used both to determine which rows are visible
(normal USING case) and which new rows will be allowed to be added (WITH CHECK case).

If row-level security is enabled for a table, but no applicable policies exist, a “default deny” policy is
assumed, so that no rows will be visible or updatable.

Parameters
name

The name of the policy to be created. This must be distinct from the name of any other policy for
the table.

table_name

The name (optionally schema-qualified) of the table the policy applies to.

PERMISSIVE

Specify that the policy is to be created as a permissive policy. All permissive policies which are
applicable to a given query will be combined together using the Boolean “OR” operator. By creating

1607

CREATE POLICY

permissive policies, administrators can add to the set of records which can be accessed. Policies are
permissive by default.

RESTRICTIVE

Specify that the policy is to be created as a restrictive policy. All restrictive policies which are ap-
plicable to a given query will be combined together using the Boolean “AND” operator. By creating
restrictive policies, administrators can reduce the set of records which can be accessed as all re-
strictive policies must be passed for each record.

Note that there needs to be at least one permissive policy to grant access to records before restrictive
policies can be usefully used to reduce that access. If only restrictive policies exist, then no records
will be accessible. When a mix of permissive and restrictive policies are present, a record is only
accessible if at least one of the permissive policies passes, in addition to all the restrictive policies.

command

The command to which the policy applies. Valid options are ALL, SELECT, INSERT, UPDATE, and DELETE.
ALL is the default. See below for specifics regarding how these are applied.

role_name

The role(s) to which the policy is to be applied. The default is PUBLIC, which will apply the policy
to all roles.

using_expression

Any SQL conditional expression (returning boolean). The conditional expression cannot contain any
aggregate or window functions. This expression will be added to queries that refer to the table if
row-level security is enabled. Rows for which the expression returns true will be visible. Any rows
for which the expression returns false or null will not be visible to the user (in a SELECT), and will
not be available for modification (in an UPDATE or DELETE). Such rows are silently suppressed; no
error is reported.

check_expression

Any SQL conditional expression (returning boolean). The conditional expression cannot contain any
aggregate or window functions. This expression will be used in INSERT and UPDATE queries against
the table if row-level security is enabled. Only rows for which the expression evaluates to true will
be allowed. An error will be thrown if the expression evaluates to false or null for any of the records
inserted or any of the records that result from the update. Note that the check_expression is eval-
uated against the proposed new contents of the row, not the original contents.

Per-Command Policies
ALL

Using ALL for a policy means that it will apply to all commands, regardless of the type of command.
If an ALL policy exists and more specific policies exist, then both the ALL policy and the more specific
policy (or policies) will be applied. Additionally, ALL policies will be applied to both the selection
side of a query and the modification side, using the USING expression for both cases if only a USING
expression has been defined.

As an example, if an UPDATE is issued, then the ALL policy will be applicable both to what the UPDATE
will be able to select as rows to be updated (applying the USING expression), and to the resulting
updated rows, to check if they are permitted to be added to the table (applying the WITH CHECK ex-
pression, if defined, and the USING expression otherwise). If an INSERT or UPDATE command attempts
to add rows to the table that do not pass the ALL policy's WITH CHECK expression, the entire command
will be aborted.

SELECT

Using SELECT for a policy means that it will apply to SELECT queries and whenever SELECT permissions
are required on the relation the policy is defined for. The result is that only those records from the

1608

CREATE POLICY

relation that pass the SELECT policy will be returned during a SELECT query, and that queries that
require SELECT permissions, such as UPDATE, will also only see those records that are allowed by
the SELECT policy. A SELECT policy cannot have a WITH CHECK expression, as it only applies in cases
where records are being retrieved from the relation.

INSERT

Using INSERT for a policy means that it will apply to INSERT commands and MERGE commands that
contain INSERT actions. Rows being inserted that do not pass this policy will result in a policy viola-
tion error, and the entire INSERT command will be aborted. An INSERT policy cannot have a USING
expression, as it only applies in cases where records are being added to the relation.

Note that INSERT with ON CONFLICT DO UPDATE checks INSERT policies' WITH CHECK expressions only
for rows appended to the relation by the INSERT path.

UPDATE

Using UPDATE for a policy means that it will apply to UPDATE, SELECT FOR UPDATE and SELECT FOR
SHARE commands, as well as auxiliary ON CONFLICT DO UPDATE clauses of INSERT commands. MERGE
commands containing UPDATE actions are affected as well. Since UPDATE involves pulling an existing
record and replacing it with a new modified record, UPDATE policies accept both a USING expression
and a WITH CHECK expression. The USING expression determines which records the UPDATE command
will see to operate against, while the WITH CHECK expression defines which modified rows are allowed
to be stored back into the relation.

Any rows whose updated values do not pass the WITH CHECK expression will cause an error, and the
entire command will be aborted. If only a USING clause is specified, then that clause will be used for
both USING and WITH CHECK cases.

Typically an UPDATE command also needs to read data from columns in the relation being updated
(e.g., in a WHERE clause or a RETURNING clause, or in an expression on the right hand side of the
SET clause). In this case, SELECT rights are also required on the relation being updated, and the
appropriate SELECT or ALL policies will be applied in addition to the UPDATE policies. Thus the user
must have access to the row(s) being updated through a SELECT or ALL policy in addition to being
granted permission to update the row(s) via an UPDATE or ALL policy.

When an INSERT command has an auxiliary ON CONFLICT DO UPDATE clause, if the UPDATE path is
taken, the row to be updated is first checked against the USING expressions of any UPDATE policies,
and then the new updated row is checked against the WITH CHECK expressions. Note, however, that
unlike a standalone UPDATE command, if the existing row does not pass the USING expressions, an
error will be thrown (the UPDATE path will never be silently avoided).

DELETE

Using DELETE for a policy means that it will apply to DELETE commands. Only rows that pass this
policy will be seen by a DELETE command. There can be rows that are visible through a SELECT that
are not available for deletion, if they do not pass the USING expression for the DELETE policy.

In most cases a DELETE command also needs to read data from columns in the relation that it is
deleting from (e.g., in a WHERE clause or a RETURNING clause). In this case, SELECT rights are also
required on the relation, and the appropriate SELECT or ALL policies will be applied in addition to the
DELETE policies. Thus the user must have access to the row(s) being deleted through a SELECT or ALL
policy in addition to being granted permission to delete the row(s) via a DELETE or ALL policy.

A DELETE policy cannot have a WITH CHECK expression, as it only applies in cases where records are
being deleted from the relation, so that there is no new row to check.

1609

CREATE POLICY

Table 300. Policies Applied by Command Type

SELECT/ALL
policy

INSERT/ALL
policy

UPDATE/ALL policy DELETE/ALL
policy

Command

USING expres-
sion

WITH CHECK
expression

USING expres-
sion

WITH CHECK
expression

USING expres-
sion

SELECT Existing row — — — —
SELECT FOR
UPDATE/SHARE

Existing row — Existing row — —

INSERT /
MERGE ...
THEN INSERT

— New row — — —

INSERT ...
RETURNING

New row a New row — — —

UPDATE /
MERGE ...
THEN UPDATE

Existing & new
rows a

— Existing row New row —

DELETE Existing row a — — — Existing row
ON CONFLICT
DO UPDATE

Existing & new
rows

— Existing row New row —

a If read access is required to the existing or new row (for example, a WHERE or RETURNING clause that refers to columns from the relation).

Application of Multiple Policies
When multiple policies of different command types apply to the same command (for example, SELECT
and UPDATE policies applied to an UPDATE command), then the user must have both types of permissions
(for example, permission to select rows from the relation as well as permission to update them). Thus
the expressions for one type of policy are combined with the expressions for the other type of policy
using the AND operator.

When multiple policies of the same command type apply to the same command, then there must be at
least one PERMISSIVE policy granting access to the relation, and all of the RESTRICTIVE policies must
pass. Thus all the PERMISSIVE policy expressions are combined using OR, all the RESTRICTIVE policy
expressions are combined using AND, and the results are combined using AND. If there are no PERMISSIVE
policies, then access is denied.

Note that, for the purposes of combining multiple policies, ALL policies are treated as having the same
type as whichever other type of policy is being applied.

For example, in an UPDATE command requiring both SELECT and UPDATE permissions, if there are multiple
applicable policies of each type, they will be combined as follows:

expression from RESTRICTIVE SELECT/ALL policy 1
AND
expression from RESTRICTIVE SELECT/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE SELECT/ALL policy 1
 OR
 expression from PERMISSIVE SELECT/ALL policy 2
 OR
 ...
)
AND

1610

CREATE POLICY

expression from RESTRICTIVE UPDATE/ALL policy 1
AND
expression from RESTRICTIVE UPDATE/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE UPDATE/ALL policy 1
 OR
 expression from PERMISSIVE UPDATE/ALL policy 2
 OR
 ...
)

Notes
You must be the owner of a table to create or change policies for it.

While policies will be applied for explicit queries against tables in the database, they are not applied
when the system is performing internal referential integrity checks or validating constraints. This means
there are indirect ways to determine that a given value exists. An example of this is attempting to insert
a duplicate value into a column that is a primary key or has a unique constraint. If the insert fails then
the user can infer that the value already exists. (This example assumes that the user is permitted by
policy to insert records which they are not allowed to see.) Another example is where a user is allowed
to insert into a table which references another, otherwise hidden table. Existence can be determined by
the user inserting values into the referencing table, where success would indicate that the value exists
in the referenced table. These issues can be addressed by carefully crafting policies to prevent users
from being able to insert, delete, or update records at all which might possibly indicate a value they
are not otherwise able to see, or by using generated values (e.g., surrogate keys) instead of keys with
external meanings.

Generally, the system will enforce filter conditions imposed using security policies prior to qualifications
that appear in user queries, in order to prevent inadvertent exposure of the protected data to user-
defined functions which might not be trustworthy. However, functions and operators marked by the
system (or the system administrator) as LEAKPROOF may be evaluated before policy expressions, as they
are assumed to be trustworthy.

Since policy expressions are added to the user's query directly, they will be run with the rights of the
user running the overall query. Therefore, users who are using a given policy must be able to access any
tables or functions referenced in the expression or they will simply receive a permission denied error
when attempting to query the table that has row-level security enabled. This does not change how views
work, however. As with normal queries and views, permission checks and policies for the tables which
are referenced by a view will use the view owner's rights and any policies which apply to the view owner,
except if the view is defined using the security_invoker option (see CREATE VIEW).

No separate policy exists for MERGE. Instead, the policies defined for SELECT, INSERT, UPDATE, and DELETE
are applied while executing MERGE, depending on the actions that are performed.

Additional discussion and practical examples can be found in Section 5.9.

Compatibility
CREATE POLICY is a PostgreSQL extension.

See Also
ALTER POLICY, DROP POLICY, ALTER TABLE

1611

CREATE PROCEDURE
CREATE PROCEDURE — define a new procedure

Synopsis
CREATE [OR REPLACE] PROCEDURE
 name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr]
 [, ...]])
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 | sql_body
 } ...

Description
CREATE PROCEDURE defines a new procedure. CREATE OR REPLACE PROCEDURE will either create a new
procedure, or replace an existing definition. To be able to define a procedure, the user must have the
USAGE privilege on the language.

If a schema name is included, then the procedure is created in the specified schema. Otherwise it is
created in the current schema. The name of the new procedure must not match any existing procedure
or function with the same input argument types in the same schema. However, procedures and functions
of different argument types can share a name (this is called overloading).

To replace the current definition of an existing procedure, use CREATE OR REPLACE PROCEDURE. It is not
possible to change the name or argument types of a procedure this way (if you tried, you would actually
be creating a new, distinct procedure).

When CREATE OR REPLACE PROCEDURE is used to replace an existing procedure, the ownership and
permissions of the procedure do not change. All other procedure properties are assigned the values
specified or implied in the command. You must own the procedure to replace it (this includes being a
member of the owning role).

The user that creates the procedure becomes the owner of the procedure.

To be able to create a procedure, you must have USAGE privilege on the argument types.

Refer to Section 36.4 for further information on writing procedures.

Parameters
name

The name (optionally schema-qualified) of the procedure to create.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN.

argname

The name of an argument.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any. The argument
types can be base, composite, or domain types, or can reference the type of a table column.

1612

CREATE PROCEDURE

Depending on the implementation language it might also be allowed to specify “pseudo-types” such
as cstring. Pseudo-types indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this feature
can sometimes help make a procedure independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. All input parameters following a parameter with
a default value must have default values as well.

lang_name

The name of the language that the procedure is implemented in. It can be sql, c, internal, or the
name of a user-defined procedural language, e.g., plpgsql. The default is sql if sql_body is specified.
Enclosing the name in single quotes is deprecated and requires matching case.

TRANSFORM { FOR TYPE type_name } [, ...] }

Lists which transforms a call to the procedure should apply. Transforms convert between SQL types
and language-specific data types; see CREATE TRANSFORM. Procedural language implementations
usually have hardcoded knowledge of the built-in types, so those don't need to be listed here. If
a procedural language implementation does not know how to handle a type and no transform is
supplied, it will fall back to a default behavior for converting data types, but this depends on the
implementation.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the procedure is to be executed with the privileges of the user that
calls it. That is the default. SECURITY DEFINER specifies that the procedure is to be executed with
the privileges of the user that owns it.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL, this
feature applies to all procedures not only external ones.

A SECURITY DEFINER procedure cannot execute transaction control statements (for example, COMMIT
and ROLLBACK, depending on the language).

configuration_parameter
value

The SET clause causes the specified configuration parameter to be set to the specified value when
the procedure is entered, and then restored to its prior value when the procedure exits. SET FROM
CURRENT saves the value of the parameter that is current when CREATE PROCEDURE is executed as the
value to be applied when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed inside
the procedure for the same variable are restricted to the procedure: the configuration parameter's
prior value is still restored at procedure exit. However, an ordinary SET command (without LOCAL)
overrides the SET clause, much as it would do for a previous SET LOCAL command: the effects of such
a command will persist after procedure exit, unless the current transaction is rolled back.

If a SET clause is attached to a procedure, then that procedure cannot execute transaction control
statements (for example, COMMIT and ROLLBACK, depending on the language).

See SET and Chapter 19 for more information about allowed parameter names and values.

definition

A string constant defining the procedure; the meaning depends on the language. It can be an internal
procedure name, the path to an object file, an SQL command, or text in a procedural language.

1613

CREATE PROCEDURE

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the procedure definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the procedure definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language procedures when the proce-
dure name in the C language source code is not the same as the name of the SQL procedure. The
string obj_file is the name of the shared library file containing the compiled C procedure, and is
interpreted as for the LOAD command. The string link_symbol is the procedure's link symbol, that is,
the name of the procedure in the C language source code. If the link symbol is omitted, it is assumed
to be the same as the name of the SQL procedure being defined.

When repeated CREATE PROCEDURE calls refer to the same object file, the file is only loaded once per
session. To unload and reload the file (perhaps during development), start a new session.

sql_body

The body of a LANGUAGE SQL procedure. This should be a block

BEGIN ATOMIC
 statement;
 statement;
 ...
 statement;
END

This is similar to writing the text of the procedure body as a string constant (see definition above),
but there are some differences: This form only works for LANGUAGE SQL, the string constant form
works for all languages. This form is parsed at procedure definition time, the string constant form
is parsed at execution time; therefore this form cannot support polymorphic argument types and
other constructs that are not resolvable at procedure definition time. This form tracks dependencies
between the procedure and objects used in the procedure body, so DROP ... CASCADE will work
correctly, whereas the form using string literals may leave dangling procedures. Finally, this form is
more compatible with the SQL standard and other SQL implementations.

Notes
See CREATE FUNCTION for more details on function creation that also apply to procedures.

Use CALL to execute a procedure.

Examples
CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
AS $$
INSERT INTO tbl VALUES (a);
INSERT INTO tbl VALUES (b);
$$;

or

CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
BEGIN ATOMIC
 INSERT INTO tbl VALUES (a);
 INSERT INTO tbl VALUES (b);
END;

and call like this:

CALL insert_data(1, 2);

1614

CREATE PROCEDURE

Compatibility
A CREATE PROCEDURE command is defined in the SQL standard. The PostgreSQL implementation can be
used in a compatible way but has many extensions. For details see also CREATE FUNCTION.

See Also
ALTER PROCEDURE, DROP PROCEDURE, CALL, CREATE FUNCTION

1615

CREATE PUBLICATION
CREATE PUBLICATION — define a new publication

Synopsis
CREATE PUBLICATION name
 [FOR ALL TABLES
 | FOR publication_object [, ...]]
 [WITH (publication_parameter [= value] [, ...])]

where publication_object is one of:

 TABLE [ONLY] table_name [*] [(column_name [, ...])] [WHERE (expression
)] [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

Description
CREATE PUBLICATION adds a new publication into the current database. The publication name must be
distinct from the name of any existing publication in the current database.

A publication is essentially a group of tables whose data changes are intended to be replicated through
logical replication. See Section 29.1 for details about how publications fit into the logical replication
setup.

Parameters
name

The name of the new publication.

FOR TABLE

Specifies a list of tables to add to the publication. If ONLY is specified before the table name, only
that table is added to the publication. If ONLY is not specified, the table and all its descendant tables
(if any) are added. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included. This does not apply to a partitioned table, however. The partitions
of a partitioned table are always implicitly considered part of the publication, so they are never
explicitly added to the publication.

If the optional WHERE clause is specified, it defines a row filter expression. Rows for which the ex-
pression evaluates to false or null will not be published. Note that parentheses are required around
the expression. It has no effect on TRUNCATE commands.

When a column list is specified, only the named columns are replicated. The column list can contain
stored generated columns as well. If the column list is omitted, the publication will replicate all non-
generated columns (including any added in the future) by default. Stored generated columns can
also be replicated if publish_generated_columns is set to stored. Specifying a column list has no
effect on TRUNCATE commands. See Section 29.5 for details about column lists.

Only persistent base tables and partitioned tables can be part of a publication. Temporary tables,
unlogged tables, foreign tables, materialized views, and regular views cannot be part of a publication.

Specifying a column list when the publication also publishes FOR TABLES IN SCHEMA is not supported.

When a partitioned table is added to a publication, all of its existing and future partitions are implicitly
considered to be part of the publication. So, even operations that are performed directly on a partition
are also published via publications that its ancestors are part of.

1616

CREATE PUBLICATION

FOR ALL TABLES

Marks the publication as one that replicates changes for all tables in the database, including tables
created in the future.

FOR TABLES IN SCHEMA

Marks the publication as one that replicates changes for all tables in the specified list of schemas,
including tables created in the future.

Specifying a schema when the publication also publishes a table with a column list is not supported.

Only persistent base tables and partitioned tables present in the schema will be included as part of
the publication. Temporary tables, unlogged tables, foreign tables, materialized views, and regular
views from the schema will not be part of the publication.

When a partitioned table is published via schema level publication, all of its existing and future
partitions are implicitly considered to be part of the publication, regardless of whether they are from
the publication schema or not. So, even operations that are performed directly on a partition are also
published via publications that its ancestors are part of.

WITH (publication_parameter [= value] [, ...])

This clause specifies optional parameters for a publication. The following parameters are supported:

publish (string)
This parameter determines which DML operations will be published by the new publication to the
subscribers. The value is comma-separated list of operations. The allowed operations are insert,
update, delete, and truncate. The default is to publish all actions, and so the default value for
this option is 'insert, update, delete, truncate'.

This parameter only affects DML operations. In particular, the initial data synchronization (see
Section 29.9.1) for logical replication does not take this parameter into account when copying
existing table data.

publish_generated_columns (enum)
Specifies whether the generated columns present in the tables associated with the publication
should be replicated. Possible values are none and stored.

The default is none meaning the generated columns present in the tables associated with publi-
cation will not be replicated.

If set to stored, the stored generated columns present in the tables associated with publication
will be replicated.

Note
If the subscriber is from a release prior to 18, then initial table synchronization won't copy
generated columns even if parameter publish_generated_columns is stored in the pub-
lisher.

See Section 29.6 for more details about logical replication of generated columns.

publish_via_partition_root (boolean)
This parameter determines whether changes in a partitioned table (or on its partitions) contained
in the publication will be published using the identity and schema of the partitioned table rather
than that of the individual partitions that are actually changed; the latter is the default. Enabling
this allows the changes to be replicated into a non-partitioned table or a partitioned table con-
sisting of a different set of partitions.

1617

CREATE PUBLICATION

There can be a case where a subscription combines multiple publications. If a partitioned table
is published by any subscribed publications which set publish_via_partition_root = true,
changes on this partitioned table (or on its partitions) will be published using the identity and
schema of this partitioned table rather than that of the individual partitions.

This parameter also affects how row filters and column lists are chosen for partitions; see below
for details.

If this is enabled, TRUNCATE operations performed directly on partitions are not replicated.

When specifying a parameter of type boolean, the = value part can be omitted, which is equivalent to
specifying TRUE.

Notes
If FOR TABLE, FOR ALL TABLES or FOR TABLES IN SCHEMA are not specified, then the publication starts
out with an empty set of tables. That is useful if tables or schemas are to be added later.

The creation of a publication does not start replication. It only defines a grouping and filtering logic
for future subscribers.

To create a publication, the invoking user must have the CREATE privilege for the current database. (Of
course, superusers bypass this check.)

To add a table to a publication, the invoking user must have ownership rights on the table. The FOR ALL
TABLES and FOR TABLES IN SCHEMA clauses require the invoking user to be a superuser.

The tables added to a publication that publishes UPDATE and/or DELETE operations must have REPLICA
IDENTITY defined. Otherwise those operations will be disallowed on those tables.

Any column list must include the REPLICA IDENTITY columns in order for UPDATE or DELETE operations to
be published. There are no column list restrictions if the publication publishes only INSERT operations.

A row filter expression (i.e., the WHERE clause) must contain only columns that are covered by the REPLICA
IDENTITY, in order for UPDATE and DELETE operations to be published. For publication of INSERT opera-
tions, any column may be used in the WHERE expression. The row filter allows simple expressions that
don't have user-defined functions, user-defined operators, user-defined types, user-defined collations,
non-immutable built-in functions, or references to system columns.

The generated columns that are part of REPLICA IDENTITY must be published explicitly either by listing
them in the column list or by enabling the publish_generated_columns option, in order for UPDATE and
DELETE operations to be published.

The row filter on a table becomes redundant if FOR TABLES IN SCHEMA is specified and the table belongs
to the referred schema.

For published partitioned tables, the row filter for each partition is taken from the published partitioned
table if the publication parameter publish_via_partition_root is true, or from the partition itself if it
is false (the default). See Section 29.4 for details about row filters. Similarly, for published partitioned
tables, the column list for each partition is taken from the published partitioned table if the publication
parameter publish_via_partition_root is true, or from the partition itself if it is false.

For an INSERT ... ON CONFLICT command, the publication will publish the operation that results from
the command. Depending on the outcome, it may be published as either INSERT or UPDATE, or it may
not be published at all.

For a MERGE command, the publication will publish an INSERT, UPDATE, or DELETE for each row inserted,
updated, or deleted.

ATTACHing a table into a partition tree whose root is published using a publication with publish_vi-
a_partition_root set to true does not result in the table's existing contents being replicated.

1618

CREATE PUBLICATION

COPY ... FROM commands are published as INSERT operations.

DDL operations are not published.

The WHERE clause expression is executed with the role used for the replication connection.

Examples
Create a publication that publishes all changes in two tables:

CREATE PUBLICATION mypublication FOR TABLE users, departments;

Create a publication that publishes all changes from active departments:

CREATE PUBLICATION active_departments FOR TABLE departments WHERE (active IS TRUE);

Create a publication that publishes all changes in all tables:

CREATE PUBLICATION alltables FOR ALL TABLES;

Create a publication that only publishes INSERT operations in one table:

CREATE PUBLICATION insert_only FOR TABLE mydata
 WITH (publish = 'insert');

Create a publication that publishes all changes for tables users, departments and all changes for all the
tables present in the schema production:

CREATE PUBLICATION production_publication FOR TABLE users, departments, TABLES IN
 SCHEMA production;

Create a publication that publishes all changes for all the tables present in the schemas marketing and
sales:

CREATE PUBLICATION sales_publication FOR TABLES IN SCHEMA marketing, sales;

Create a publication that publishes all changes for table users, but replicates only columns user_id
and firstname:

CREATE PUBLICATION users_filtered FOR TABLE users (user_id, firstname);

Compatibility
CREATE PUBLICATION is a PostgreSQL extension.

See Also
ALTER PUBLICATION, DROP PUBLICATION, CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1619

CREATE ROLE
CREATE ROLE — define a new database role

Synopsis
CREATE ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | SYSID uid

Description
CREATE ROLE adds a new role to a PostgreSQL database cluster. A role is an entity that can own database
objects and have database privileges; a role can be considered a “user”, a “group”, or both depending on
how it is used. Refer to Chapter 21 and Chapter 20 for information about managing users and authenti-
cation. You must have CREATEROLE privilege or be a database superuser to use this command.

Note that roles are defined at the database cluster level, and so are valid in all databases in the cluster.

During role creation it is possible to immediately assign the newly created role to be a member of an
existing role, and also assign existing roles to be members of the newly created role. The rules for which
initial role membership options are enabled are described below in the IN ROLE, ROLE, and ADMIN clauses.
The GRANT command has fine-grained option control during membership creation, and the ability to
modify these options after the new role is created.

Parameters
name

The name of the new role.

SUPERUSER
NOSUPERUSER

These clauses determine whether the new role is a “superuser”, who can override all access restric-
tions within the database. Superuser status is dangerous and should be used only when really need-
ed. You must yourself be a superuser to create a new superuser. If not specified, NOSUPERUSER is
the default.

CREATEDB
NOCREATEDB

These clauses define a role's ability to create databases. If CREATEDB is specified, the role being
defined will be allowed to create new databases. Specifying NOCREATEDB will deny a role the ability

1620

CREATE ROLE

to create databases. If not specified, NOCREATEDB is the default. Only superuser roles or roles with
CREATEDB can specify CREATEDB.

CREATEROLE
NOCREATEROLE

These clauses determine whether a role will be permitted to create, alter, drop, comment on, and
change the security label for other roles. See role creation for more details about what capabilities
are conferred by this privilege. If not specified, NOCREATEROLE is the default.

INHERIT
NOINHERIT

This affects the membership inheritance status when this role is added as a member of another role,
both in this and future commands. Specifically, it controls the inheritance status of memberships
added with this command using the IN ROLE clause, and in later commands using the ROLE clause.
It is also used as the default inheritance status when adding this role as a member using the GRANT
command. If not specified, INHERIT is the default.

In PostgreSQL versions before 16, inheritance was a role-level attribute that controlled all runtime
membership checks for that role.

LOGIN
NOLOGIN

These clauses determine whether a role is allowed to log in; that is, whether the role can be given
as the initial session authorization name during client connection. A role having the LOGIN attribute
can be thought of as a user. Roles without this attribute are useful for managing database privileges,
but are not users in the usual sense of the word. If not specified, NOLOGIN is the default, except when
CREATE ROLE is invoked through its alternative spelling CREATE USER.

REPLICATION
NOREPLICATION

These clauses determine whether a role is a replication role. A role must have this attribute (or be
a superuser) in order to be able to connect to the server in replication mode (physical or logical
replication) and in order to be able to create or drop replication slots. A role having the REPLICATION
attribute is a very highly privileged role, and should only be used on roles actually used for replica-
tion. If not specified, NOREPLICATION is the default. Only superuser roles or roles with REPLICATION
can specify REPLICATION.

BYPASSRLS
NOBYPASSRLS

These clauses determine whether a role bypasses every row-level security (RLS) policy. NOBYPASSRLS
is the default. Only superuser roles or roles with BYPASSRLS can specify BYPASSRLS.

Note that pg_dump will set row_security to OFF by default, to ensure all contents of a table are
dumped out. If the user running pg_dump does not have appropriate permissions, an error will be
returned. However, superusers and the owner of the table being dumped always bypass RLS.

CONNECTION LIMIT connlimit
If role can log in, this specifies how many concurrent connections the role can make. -1 (the default)
means no limit. Note that only normal connections are counted towards this limit. Neither prepared
transactions nor background worker connections are counted towards this limit.

[ENCRYPTED] PASSWORD 'password'
PASSWORD NULL

Sets the role's password. (A password is only of use for roles having the LOGIN attribute, but you
can nonetheless define one for roles without it.) If you do not plan to use password authentication
you can omit this option. If no password is specified, the password will be set to null and password

1621

CREATE ROLE

authentication will always fail for that user. A null password can optionally be written explicitly as
PASSWORD NULL.

Note
Specifying an empty string will also set the password to null, but that was not the case before
PostgreSQL version 10. In earlier versions, an empty string could be used, or not, depending
on the authentication method and the exact version, and libpq would refuse to use it in any
case. To avoid the ambiguity, specifying an empty string should be avoided.

The password is always stored encrypted in the system catalogs. The ENCRYPTED keyword has no
effect, but is accepted for backwards compatibility. The method of encryption is determined by the
configuration parameter password_encryption. If the presented password string is already in MD5-
encrypted or SCRAM-encrypted format, then it is stored as-is regardless of password_encryption
(since the system cannot decrypt the specified encrypted password string, to encrypt it in a different
format). This allows reloading of encrypted passwords during dump/restore.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future release
of PostgreSQL. Refer to Section 20.5 for details about migrating to another password type.

VALID UNTIL 'timestamp'
The VALID UNTIL clause sets a date and time after which the role's password is no longer valid. If
this clause is omitted the password will be valid for all time.

IN ROLE role_name
The IN ROLE clause causes the new role to be automatically added as a member of the specified
existing roles. The new membership will have the SET option enabled and the ADMIN option disabled.
The INHERIT option will be enabled unless the NOINHERIT option is specified.

ROLE role_name
The ROLE clause causes one or more specified existing roles to be automatically added as members,
with the SET option enabled. This in effect makes the new role a “group”. Roles named in this clause
with the role-level INHERIT attribute will have the INHERIT option enabled in the new membership.
New memberships will have the ADMIN option disabled.

ADMIN role_name
The ADMIN clause has the same effect as ROLE, but the named roles are added as members of the new
role with ADMIN enabled, giving them the right to grant membership in the new role to others.

SYSID uid
The SYSID clause is ignored, but is accepted for backwards compatibility.

Notes
Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. All the attributes
specified by CREATE ROLE can be modified by later ALTER ROLE commands.

The preferred way to add and remove members of roles that are being used as groups is to use GRANT
and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the role per se. In par-
ticular, the expiration time is not enforced when logging in using a non-password-based authentication
method.

1622

CREATE ROLE

The role attributes defined here are non-inheritable, i.e., being a member of a role with, e.g., CREATEDB
will not allow the member to create new databases even if the membership grant has the INHERIT option.
Of course, if the membership grant has the SET option the member role would be able to SET ROLE to
the createdb role and then create a new database.

The membership grants created by the IN ROLE, ROLE, and ADMIN clauses have the role executing this
command as the grantor.

The INHERIT attribute is the default for reasons of backwards compatibility: in prior releases of Post-
greSQL, users always had access to all privileges of groups they were members of. However, NOINHERIT
provides a closer match to the semantics specified in the SQL standard.

PostgreSQL includes a program createuser that has the same functionality as CREATE ROLE (in fact, it
calls this command) but can be run from the command shell.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the role, it is possible that both will fail. Also,
the limit is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client's command history
or the server log. The command createuser, however, transmits the password encrypted. Also, psql
contains a command \password that can be used to safely change the password later.

Examples
Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

Create a role with a password:

CREATE USER davide WITH PASSWORD 'jw8s0F4';

(CREATE USER is the same as CREATE ROLE except that it implies LOGIN.)

Create a role with a password that is valid until the end of 2004. After one second has ticked in 2005,
the password is no longer valid.

CREATE ROLE miriam WITH LOGIN PASSWORD 'jw8s0F4' VALID UNTIL '2005-01-01';

Create a role that can create databases and manage roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Compatibility
The CREATE ROLE statement is in the SQL standard, but the standard only requires the syntax

CREATE ROLE name [WITH ADMIN role_name]

Multiple initial administrators, and all the other options of CREATE ROLE, are PostgreSQL extensions.

The SQL standard defines the concepts of users and roles, but it regards them as distinct concepts and
leaves all commands defining users to be specified by each database implementation. In PostgreSQL
we have chosen to unify users and roles into a single kind of entity. Roles therefore have many more
optional attributes than they do in the standard.

The behavior specified by the SQL standard is most closely approximated creating SQL-standard users
as PostgreSQL roles with the NOINHERIT option, and SQL-standard roles as PostgreSQL roles with the
INHERIT option.

The USER clause has the same behavior as ROLE but has been deprecated:

1623

CREATE ROLE

USER role_name [, ...]

The IN GROUP clause has the same behavior as IN ROLE but has been deprecated:

IN GROUP role_name [, ...]

See Also
SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, createuser, createrole_self_grant

1624

CREATE RULE
CREATE RULE — define a new rewrite rule

Synopsis
CREATE [OR REPLACE] RULE name AS ON event
 TO table_name [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

where event can be one of:

 SELECT | INSERT | UPDATE | DELETE

Description
CREATE RULE defines a new rule applying to a specified table or view. CREATE OR REPLACE RULE will
either create a new rule, or replace an existing rule of the same name for the same table.

The PostgreSQL rule system allows one to define an alternative action to be performed on insertions,
updates, or deletions in database tables. Roughly speaking, a rule causes additional commands to be
executed when a given command on a given table is executed. Alternatively, an INSTEAD rule can replace
a given command by another, or cause a command not to be executed at all. Rules are used to implement
SQL views as well. It is important to realize that a rule is really a command transformation mechanism,
or command macro. The transformation happens before the execution of the command starts. If you
actually want an operation that fires independently for each physical row, you probably want to use a
trigger, not a rule. More information about the rules system is in Chapter 39.

Presently, ON SELECT rules can only be attached to views. Such a rule must be named "_RETURN", must
be an unconditional INSTEAD rule, and must have an action that consists of a single SELECT command.
This command defines the visible contents of the view. (The view itself is basically a dummy table with
no storage.) It's best to regard such a rule as an implementation detail. While a view can be redefined
via CREATE OR REPLACE RULE "_RETURN" AS ..., it's better style to use CREATE OR REPLACE VIEW.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON DELETE rules
(or any subset of those that's sufficient for your purposes) to replace update actions on the view with
appropriate updates on other tables. If you want to support INSERT RETURNING and so on, then be sure
to put a suitable RETURNING clause into each of these rules.

There is a catch if you try to use conditional rules for complex view updates: there must be an uncon-
ditional INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not
INSTEAD, then the system will still reject attempts to perform the update action, because it thinks it
might end up trying to perform the action on the dummy table of the view in some cases. If you want
to handle all the useful cases in conditional rules, add an unconditional DO INSTEAD NOTHING rule to
ensure that the system understands it will never be called on to update the dummy table. Then make
the conditional rules non-INSTEAD; in the cases where they are applied, they add to the default INSTEAD
NOTHING action. (This method does not currently work to support RETURNING queries, however.)

Note
A view that is simple enough to be automatically updatable (see CREATE VIEW) does not require
a user-created rule in order to be updatable. While you can create an explicit rule anyway, the
automatic update transformation will generally outperform an explicit rule.

Another alternative worth considering is to use INSTEAD OF triggers (see CREATE TRIGGER) in
place of rules.

1625

CREATE RULE

Parameters
name

The name of a rule to create. This must be distinct from the name of any other rule for the same
table. Multiple rules on the same table and same event type are applied in alphabetical name order.

event

The event is one of SELECT, INSERT, UPDATE, or DELETE. Note that an INSERT containing an ON CON-
FLICT clause cannot be used on tables that have either INSERT or UPDATE rules. Consider using an
updatable view instead.

table_name

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returning boolean). The condition expression cannot refer to any
tables except NEW and OLD, and cannot contain aggregate functions.

INSTEAD

INSTEAD indicates that the commands should be executed instead of the original command.

ALSO

ALSO indicates that the commands should be executed in addition to the original command.

If neither ALSO nor INSTEAD is specified, ALSO is the default.

command

The command or commands that make up the rule action. Valid commands are SELECT, INSERT,
UPDATE, DELETE, or NOTIFY.

Within condition and command, the special table names NEW and OLD can be used to refer to values in the
referenced table. NEW is valid in ON INSERT and ON UPDATE rules to refer to the new row being inserted
or updated. OLD is valid in ON UPDATE and ON DELETE rules to refer to the existing row being updated
or deleted.

Notes
You must be the owner of a table to create or change rules for it.

In a rule for INSERT, UPDATE, or DELETE on a view, you can add a RETURNING clause that emits the view's
columns. This clause will be used to compute the outputs if the rule is triggered by an INSERT RETURNING,
UPDATE RETURNING, or DELETE RETURNING command respectively. When the rule is triggered by a com-
mand without RETURNING, the rule's RETURNING clause will be ignored. The current implementation al-
lows only unconditional INSTEAD rules to contain RETURNING; furthermore there can be at most one RE-
TURNING clause among all the rules for the same event. (This ensures that there is only one candidate
RETURNING clause to be used to compute the results.) RETURNING queries on the view will be rejected if
there is no RETURNING clause in any available rule.

It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by PostgreSQL, the SELECT command would cause PostgreSQL to report
an error because of recursive expansion of a rule:

CREATE RULE "_RETURN" AS
 ON SELECT TO t1
 DO INSTEAD
 SELECT * FROM t2;

1626

CREATE RULE

CREATE RULE "_RETURN" AS
 ON SELECT TO t2
 DO INSTEAD
 SELECT * FROM t1;

SELECT * FROM t1;

Presently, if a rule action contains a NOTIFY command, the NOTIFY command will be executed uncondi-
tionally, that is, the NOTIFY will be issued even if there are not any rows that the rule should apply to.
For example, in:

CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

UPDATE mytable SET name = 'foo' WHERE id = 42;

one NOTIFY event will be sent during the UPDATE, whether or not there are any rows that match the
condition id = 42. This is an implementation restriction that might be fixed in future releases.

Compatibility
CREATE RULE is a PostgreSQL language extension, as is the entire query rewrite system.

See Also
ALTER RULE, DROP RULE

1627

CREATE SCHEMA
CREATE SCHEMA — define a new schema

Synopsis
CREATE SCHEMA schema_name [AUTHORIZATION role_specification] [schema_element
 [...]]
CREATE SCHEMA AUTHORIZATION role_specification [schema_element [...]]
CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION role_specification]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role_specification can be:

 user_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description
CREATE SCHEMA enters a new schema into the current database. The schema name must be distinct from
the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and oper-
ators) whose names can duplicate those of other objects existing in other schemas. Named objects are
accessed either by “qualifying” their names with the schema name as a prefix, or by setting a search path
that includes the desired schema(s). A CREATE command specifying an unqualified object name creates
the object in the current schema (the one at the front of the search path, which can be determined with
the function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if the AUTHORIZATION clause is used, all the created objects will be owned by that user.

Parameters
schema_name

The name of a schema to be created. If this is omitted, the user_name is used as the schema name.
The name cannot begin with pg_, as such names are reserved for system schemas.

user_name

The role name of the user who will own the new schema. If omitted, defaults to the user executing
the command. To create a schema owned by another role, you must be able to SET ROLE to that role.

schema_element

An SQL statement defining an object to be created within the schema. Currently, only CREATE TABLE,
CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE TRIGGER and GRANT are accepted as clauses
within CREATE SCHEMA. Other kinds of objects may be created in separate commands after the schema
is created.

IF NOT EXISTS

Do nothing (except issuing a notice) if a schema with the same name already exists. schema_element
subcommands cannot be included when this option is used.

1628

CREATE SCHEMA

Notes
To create a schema, the invoking user must have the CREATE privilege for the current database. (Of
course, superusers bypass this check.)

Examples
Create a schema:

CREATE SCHEMA myschema;

Create a schema for user joe; the schema will also be named joe:

CREATE SCHEMA AUTHORIZATION joe;

Create a schema named test that will be owned by user joe, unless there already is a schema named
test. (It does not matter whether joe owns the pre-existing schema.)

CREATE SCHEMA IF NOT EXISTS test AUTHORIZATION joe;

Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
 CREATE TABLE films (title text, release date, awards text[])
 CREATE VIEW winners AS
 SELECT title, release FROM films WHERE awards IS NOT NULL;

Notice that the individual subcommands do not end with semicolons.

The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS
 SELECT title, release FROM hollywood.films WHERE awards IS NOT NULL;

Compatibility
The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as well as more subcom-
mand types than are presently accepted by PostgreSQL.

The SQL standard specifies that the subcommands in CREATE SCHEMA can appear in any order. The
present PostgreSQL implementation does not handle all cases of forward references in subcommands;
it might sometimes be necessary to reorder the subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within it. PostgreSQL
allows schemas to contain objects owned by users other than the schema owner. This can happen only if
the schema owner grants the CREATE privilege on their schema to someone else, or a superuser chooses
to create objects in it.

The IF NOT EXISTS option is a PostgreSQL extension.

See Also
ALTER SCHEMA, DROP SCHEMA

1629

CREATE SEQUENCE
CREATE SEQUENCE — define a new sequence generator

Synopsis
CREATE [{ TEMPORARY | TEMP } | UNLOGGED] SEQUENCE [IF NOT EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [[NO] CYCLE]
 [START [WITH] start]
 [CACHE cache]
 [OWNED BY { table_name.column_name | NONE }]

Description
CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing a
new special single-row table with the name name. The generator will be owned by the user issuing the
command.

If a schema name is given then the sequence is created in the specified schema. Otherwise it is created
in the current schema. Temporary sequences exist in a special schema, so a schema name cannot be
given when creating a temporary sequence. The sequence name must be distinct from the name of any
other relation (table, sequence, index, view, materialized view, or foreign table) in the same schema.

After a sequence is created, you use the functions nextval, currval, and setval to operate on the
sequence. These functions are documented in Section 9.17.

Although you cannot update a sequence directly, you can use a query like:
SELECT * FROM name;

to examine the parameters and current state of a sequence. In particular, the last_value field of the
sequence shows the last value allocated by any session. (Of course, this value might be obsolete by the
time it's printed, if other sessions are actively doing nextval calls.)

Parameters
TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session) while
the temporary sequence exists, unless they are referenced with schema-qualified names.

UNLOGGED

If specified, the sequence is created as an unlogged sequence. Changes to unlogged sequences are
not written to the write-ahead log. They are not crash-safe: an unlogged sequence is automatically
reset to its initial state after a crash or unclean shutdown. Unlogged sequences are also not replicated
to standby servers.

Unlike unlogged tables, unlogged sequences do not offer a significant performance advantage. This
option is mainly intended for sequences associated with unlogged tables via identity columns or
serial columns. In those cases, it usually wouldn't make sense to have the sequence WAL-logged and
replicated but not its associated table.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the sequence that would
have been created — it might not even be a sequence.

1630

CREATE SEQUENCE

name

The name (optionally schema-qualified) of the sequence to be created.

data_type

The optional clause AS data_type specifies the data type of the sequence. Valid types are smallint,
integer, and bigint. bigint is the default. The data type determines the default minimum and
maximum values of the sequence.

increment

The optional clause INCREMENT BY increment specifies which value is added to the current sequence
value to create a new value. A positive value will make an ascending sequence, a negative one a
descending sequence. The default value is 1.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate.
If this clause is not supplied or NO MINVALUE is specified, then defaults will be used. The default
for an ascending sequence is 1. The default for a descending sequence is the minimum value of the
data type.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If this
clause is not supplied or NO MAXVALUE is specified, then default values will be used. The default for an
ascending sequence is the maximum value of the data type. The default for a descending sequence
is -1.

CYCLE
NO CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been
reached by an ascending or descending sequence respectively. If the limit is reached, the next num-
ber generated will be the minvalue or maxvalue, respectively.

If NO CYCLE is specified, any calls to nextval after the sequence has reached its maximum value will
return an error. If neither CYCLE or NO CYCLE are specified, NO CYCLE is the default.

start

The optional clause START WITH start allows the sequence to begin anywhere. The default starting
value is minvalue for ascending sequences and maxvalue for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallocated and
stored in memory for faster access. The minimum value is 1 (only one value can be generated at a
time, i.e., no cache), and this is also the default.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that
if that column (or its whole table) is dropped, the sequence will be automatically dropped as well.
The specified table must have the same owner and be in the same schema as the sequence. OWNED
BY NONE, the default, specifies that there is no such association.

Notes
Use DROP SEQUENCE to remove a sequence.

1631

CREATE SEQUENCE

Sequences are based on bigint arithmetic, so the range cannot exceed the range of an eight-byte integer
(-9223372036854775808 to 9223372036854775807).

Because nextval and setval calls are never rolled back, sequence objects cannot be used if “gapless”
assignment of sequence numbers is needed. It is possible to build gapless assignment by using exclusive
locking of a table containing a counter; but this solution is much more expensive than sequence objects,
especially if many transactions need sequence numbers concurrently.

Unexpected results might be obtained if a cache setting greater than one is used for a sequence object
that will be used concurrently by multiple sessions. Each session will allocate and cache successive se-
quence values during one access to the sequence object and increase the sequence object's last_value
accordingly. Then, the next cache-1 uses of nextval within that session simply return the preallocated
values without touching the sequence object. So, any numbers allocated but not used within a session
will be lost when that session ends, resulting in “holes” in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values
might be generated out of sequence when all the sessions are considered. For example, with a cache
setting of 10, session A might reserve values 1..10 and return nextval=1, then session B might reserve
values 11..20 and return nextval=11 before session A has generated nextval=2. Thus, with a cache
setting of one it is safe to assume that nextval values are generated sequentially; with a cache setting
greater than one you should only assume that the nextval values are all distinct, not that they are
generated purely sequentially. Also, last_value will reflect the latest value reserved by any session,
whether or not it has yet been returned by nextval.

Another consideration is that a setval executed on such a sequence will not be noticed by other sessions
until they have used up any preallocated values they have cached.

Examples
Create an ascending sequence called serial, starting at 101:
CREATE SEQUENCE serial START 101;

Select the next number from this sequence:
SELECT nextval('serial');

 nextval

 101

Select the next number from this sequence:
SELECT nextval('serial');

 nextval

 102

Use this sequence in an INSERT command:
INSERT INTO distributors VALUES (nextval('serial'), 'nothing');

Update the sequence value after a COPY FROM:
BEGIN;
COPY distributors FROM 'input_file';
SELECT setval('serial', max(id)) FROM distributors;
END;

Compatibility
CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

1632

CREATE SEQUENCE

• Obtaining the next value is done using the nextval() function instead of the standard's NEXT VAL-
UE FOR expression.

• The OWNED BY clause is a PostgreSQL extension.

See Also
ALTER SEQUENCE, DROP SEQUENCE

1633

CREATE SERVER
CREATE SERVER — define a new foreign server

Synopsis
CREATE SERVER [IF NOT EXISTS] server_name [TYPE 'server_type'] [VERSION
 'server_version']
 FOREIGN DATA WRAPPER fdw_name
 [OPTIONS (option 'value' [, ...])]

Description
CREATE SERVER defines a new foreign server. The user who defines the server becomes its owner.

A foreign server typically encapsulates connection information that a foreign-data wrapper uses to ac-
cess an external data resource. Additional user-specific connection information may be specified by
means of user mappings.

The server name must be unique within the database.

Creating a server requires USAGE privilege on the foreign-data wrapper being used.

Parameters
IF NOT EXISTS

Do not throw an error if a server with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing server is anything like the one that would have
been created.

server_name

The name of the foreign server to be created.

server_type

Optional server type, potentially useful to foreign-data wrappers.

server_version

Optional server version, potentially useful to foreign-data wrappers.

fdw_name

The name of the foreign-data wrapper that manages the server.

OPTIONS (option 'value' [, ...])

This clause specifies the options for the server. The options typically define the connection details of
the server, but the actual names and values are dependent on the server's foreign-data wrapper.

Notes
When using the dblink module, a foreign server's name can be used as an argument of the dblink_connect
function to indicate the connection parameters. It is necessary to have the USAGE privilege on the foreign
server to be able to use it in this way.

If the foreign server supports sort pushdown, it is necessary for it to have the same sort ordering as
the local server.

1634

CREATE SERVER

Examples
Create a server myserver that uses the foreign-data wrapper postgres_fdw:

CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'foo', dbname
 'foodb', port '5432');

See postgres_fdw for more details.

Compatibility
CREATE SERVER conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER SERVER, DROP SERVER, CREATE FOREIGN DATA WRAPPER, CREATE FOREIGN TABLE, CRE-
ATE USER MAPPING

1635

CREATE STATISTICS
CREATE STATISTICS — define extended statistics

Synopsis
CREATE STATISTICS [[IF NOT EXISTS] statistics_name]
 ON (expression)
 FROM table_name

CREATE STATISTICS [[IF NOT EXISTS] statistics_name]
 [(statistics_kind [, ...])]
 ON { column_name | (expression) }, { column_name | (expression) } [, ...]
 FROM table_name

Description
CREATE STATISTICS will create a new extended statistics object tracking data about the specified table,
foreign table or materialized view. The statistics object will be created in the current database and will
be owned by the user issuing the command.

The CREATE STATISTICS command has two basic forms. The first form allows univariate statistics for a
single expression to be collected, providing benefits similar to an expression index without the overhead
of index maintenance. This form does not allow the statistics kind to be specified, since the various
statistics kinds refer only to multivariate statistics. The second form of the command allows multivariate
statistics on multiple columns and/or expressions to be collected, optionally specifying which statistics
kinds to include. This form will also automatically cause univariate statistics to be collected on any
expressions included in the list.

If a schema name is given (for example, CREATE STATISTICS myschema.mystat ...) then the statistics
object is created in the specified schema. Otherwise it is created in the current schema. If given, the
name of the statistics object must be distinct from the name of any other statistics object in the same
schema.

Parameters
IF NOT EXISTS

Do not throw an error if a statistics object with the same name already exists. A notice is issued in
this case. Note that only the name of the statistics object is considered here, not the details of its
definition. Statistics name is required when IF NOT EXISTS is specified.

statistics_name

The name (optionally schema-qualified) of the statistics object to be created. If the name is omit-
ted, PostgreSQL chooses a suitable name based on the parent table's name and the defined column
name(s) and/or expression(s).

statistics_kind

A multivariate statistics kind to be computed in this statistics object. Currently supported kinds are
ndistinct, which enables n-distinct statistics, dependencies, which enables functional dependency
statistics, and mcv which enables most-common values lists. If this clause is omitted, all supported
statistics kinds are included in the statistics object. Univariate expression statistics are built auto-
matically if the statistics definition includes any complex expressions rather than just simple column
references. For more information, see Section 14.2.2 and Section 69.2.

column_name

The name of a table column to be covered by the computed statistics. This is only allowed when
building multivariate statistics. At least two column names or expressions must be specified, and
their order is not significant.

1636

CREATE STATISTICS

expression

An expression to be covered by the computed statistics. This may be used to build univariate statistics
on a single expression, or as part of a list of multiple column names and/or expressions to build
multivariate statistics. In the latter case, separate univariate statistics are built automatically for
each expression in the list.

table_name

The name (optionally schema-qualified) of the table containing the column(s) the statistics are com-
puted on; see ANALYZE for an explanation of the handling of inheritance and partitions.

Notes
You must be the owner of a table to create a statistics object reading it. Once created, however, the
ownership of the statistics object is independent of the underlying table(s).

Expression statistics are per-expression and are similar to creating an index on the expression, except
that they avoid the overhead of index maintenance. Expression statistics are built automatically for each
expression in the statistics object definition.

Extended statistics are not currently used by the planner for selectivity estimations made for table joins.
This limitation will likely be removed in a future version of PostgreSQL.

Examples
Create table t1 with two functionally dependent columns, i.e., knowledge of a value in the first column
is sufficient for determining the value in the other column. Then functional dependency statistics are
built on those columns:
CREATE TABLE t1 (
 a int,
 b int
);

INSERT INTO t1 SELECT i/100, i/500
 FROM generate_series(1,1000000) s(i);

ANALYZE t1;

-- the number of matching rows will be drastically underestimated:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

CREATE STATISTICS s1 (dependencies) ON a, b FROM t1;

ANALYZE t1;

-- now the row count estimate is more accurate:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

Without functional-dependency statistics, the planner would assume that the two WHERE conditions are
independent, and would multiply their selectivities together to arrive at a much-too-small row count
estimate. With such statistics, the planner recognizes that the WHERE conditions are redundant and does
not underestimate the row count.

Create table t2 with two perfectly correlated columns (containing identical data), and an MCV list on
those columns:
CREATE TABLE t2 (
 a int,
 b int
);

1637

CREATE STATISTICS

INSERT INTO t2 SELECT mod(i,100), mod(i,100)
 FROM generate_series(1,1000000) s(i);

CREATE STATISTICS s2 (mcv) ON a, b FROM t2;

ANALYZE t2;

-- valid combination (found in MCV)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 1);

-- invalid combination (not found in MCV)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 2);

The MCV list gives the planner more detailed information about the specific values that commonly appear
in the table, as well as an upper bound on the selectivities of combinations of values that do not appear
in the table, allowing it to generate better estimates in both cases.

Create table t3 with a single timestamp column, and run queries using expressions on that column.
Without extended statistics, the planner has no information about the data distribution for the expres-
sions, and uses default estimates. The planner also does not realize that the value of the date truncated
to the month is fully determined by the value of the date truncated to the day. Then expression and
ndistinct statistics are built on those two expressions:

CREATE TABLE t3 (
 a timestamp
);

INSERT INTO t3 SELECT i FROM generate_series('2020-01-01'::timestamp,
 '2020-12-31'::timestamp,
 '1 minute'::interval) s(i);

ANALYZE t3;

-- the number of matching rows will be drastically underestimated:
EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('month', a) = '2020-01-01'::timestamp;

EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('day', a) BETWEEN '2020-01-01'::timestamp
 AND '2020-06-30'::timestamp;

EXPLAIN ANALYZE SELECT date_trunc('month', a), date_trunc('day', a)
 FROM t3 GROUP BY 1, 2;

-- build ndistinct statistics on the pair of expressions (per-expression
-- statistics are built automatically)
CREATE STATISTICS s3 (ndistinct) ON date_trunc('month', a), date_trunc('day', a) FROM
 t3;

ANALYZE t3;

-- now the row count estimates are more accurate:
EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('month', a) = '2020-01-01'::timestamp;

EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('day', a) BETWEEN '2020-01-01'::timestamp
 AND '2020-06-30'::timestamp;

1638

CREATE STATISTICS

EXPLAIN ANALYZE SELECT date_trunc('month', a), date_trunc('day', a)
 FROM t3 GROUP BY 1, 2;

Without expression and ndistinct statistics, the planner has no information about the number of distinct
values for the expressions, and has to rely on default estimates. The equality and range conditions are
assumed to have 0.5% selectivity, and the number of distinct values in the expression is assumed to be
the same as for the column (i.e. unique). This results in a significant underestimate of the row count
in the first two queries. Moreover, the planner has no information about the relationship between the
expressions, so it assumes the two WHERE and GROUP BY conditions are independent, and multiplies their
selectivities together to arrive at a severe overestimate of the group count in the aggregate query. This
is further exacerbated by the lack of accurate statistics for the expressions, forcing the planner to use a
default ndistinct estimate for the expression derived from ndistinct for the column. With such statistics,
the planner recognizes that the conditions are correlated, and arrives at much more accurate estimates.

Compatibility
There is no CREATE STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS, DROP STATISTICS

1639

CREATE SUBSCRIPTION
CREATE SUBSCRIPTION — define a new subscription

Synopsis
CREATE SUBSCRIPTION subscription_name
 CONNECTION 'conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

Description
CREATE SUBSCRIPTION adds a new logical-replication subscription. The user that creates a subscription
becomes the owner of the subscription. The subscription name must be distinct from the name of any
existing subscription in the current database.

A subscription represents a replication connection to the publisher. Hence, in addition to adding defin-
itions in the local catalogs, this command normally creates a replication slot on the publisher.

A logical replication worker will be started to replicate data for the new subscription at the commit of
the transaction where this command is run, unless the subscription is initially disabled.

To be able to create a subscription, you must have the privileges of the pg_create_subscription role,
as well as CREATE privileges on the current database.

Additional information about subscriptions and logical replication as a whole is available at Section 29.2
and Chapter 29.

Parameters
subscription_name

The name of the new subscription.

CONNECTION 'conninfo'

The libpq connection string defining how to connect to the publisher database. For details see Sec-
tion 32.1.1.

PUBLICATION publication_name [, ...]

Names of the publications on the publisher to subscribe to.

WITH (subscription_parameter [= value] [, ...])

This clause specifies optional parameters for a subscription.

The following parameters control what happens during subscription creation:

connect (boolean)

Specifies whether the CREATE SUBSCRIPTION command should connect to the publisher at all. The
default is true. Setting this to false will force the values of create_slot, enabled and copy_data
to false. (You cannot combine setting connect to false with setting create_slot, enabled, or
copy_data to true.)

Since no connection is made when this option is false, no tables are subscribed. To initiate
replication, you must manually create the replication slot, enable the failover if required, enable
the subscription, and refresh the subscription. See Section 29.2.3 for examples.

1640

CREATE SUBSCRIPTION

create_slot (boolean)

Specifies whether the command should create the replication slot on the publisher. The default
is true.

If set to false, you are responsible for creating the publisher's slot in some other way. See Sec-
tion 29.2.3 for examples.

enabled (boolean)

Specifies whether the subscription should be actively replicating or whether it should just be set
up but not started yet. The default is true.

slot_name (string)

Name of the publisher's replication slot to use. The default is to use the name of the subscription
for the slot name.

Setting slot_name to NONE means there will be no replication slot associated with the subscrip-
tion. Such subscriptions must also have both enabled and create_slot set to false. Use this
when you will be creating the replication slot later manually. See Section 29.2.3 for examples.

When setting slot_name to a valid name and create_slot to false, the failover property value
of the named slot may differ from the counterpart failover parameter specified in the subscrip-
tion. Always ensure the slot property failover matches the counterpart parameter of the sub-
scription and vice versa. Otherwise, the slot on the publisher may behave differently from what
these subscription options say: for example, the slot on the publisher could either be synced to
the standbys even when the subscription's failover option is disabled or could be disabled for
sync even when the subscription's failover option is enabled.

The following parameters control the subscription's replication behavior after it has been created:

binary (boolean)

Specifies whether the subscription will request the publisher to send the data in binary format
(as opposed to text). The default is false. Any initial table synchronization copy (see copy_da-
ta) also uses the same format. Binary format can be faster than the text format, but it is less
portable across machine architectures and PostgreSQL versions. Binary format is very data type
specific; for example, it will not allow copying from a smallint column to an integer column,
even though that would work fine in text format. Even when this option is enabled, only data
types having binary send and receive functions will be transferred in binary. Note that the initial
synchronization requires all data types to have binary send and receive functions, otherwise the
synchronization will fail (see CREATE TYPE for more about send/receive functions).

When doing cross-version replication, it could be that the publisher has a binary send function
for some data type, but the subscriber lacks a binary receive function for that type. In such a
case, data transfer will fail, and the binary option cannot be used.

If the publisher is a PostgreSQL version before 16, then any initial table synchronization will use
text format even if binary = true.

copy_data (boolean)

Specifies whether to copy pre-existing data in the publications that are being subscribed to when
the replication starts. The default is true.

If the publications contain WHERE clauses, it will affect what data is copied. Refer to the Notes
for details.

See Notes for details of how copy_data = true can interact with the origin parameter.

1641

CREATE SUBSCRIPTION

streaming (enum)
Specifies whether to enable streaming of in-progress transactions for this subscription. The de-
fault value is parallel, meaning incoming changes are directly applied via one of the parallel
apply workers, if available. If no parallel apply worker is free to handle streaming transactions
then the changes are written to temporary files and applied after the transaction is committed.
Note that if an error happens in a parallel apply worker, the finish LSN of the remote transaction
might not be reported in the server log.

Caution
There is a risk of deadlock when the schemas of the publisher and subscriber differ, al-
though such cases are rare. The apply worker is equipped to retry these transactions au-
tomatically.

If set to on, the incoming changes are written to temporary files and then applied only after the
transaction is committed on the publisher and received by the subscriber.

If set to off, all transactions are fully decoded on the publisher and only then sent to the sub-
scriber as a whole.

synchronous_commit (enum)
The value of this parameter overrides the synchronous_commit setting within this subscription's
apply worker processes. The default value is off.

It is safe to use off for logical replication: If the subscriber loses transactions because of missing
synchronization, the data will be sent again from the publisher.

A different setting might be appropriate when doing synchronous logical replication. The logi-
cal replication workers report the positions of writes and flushes to the publisher, and when us-
ing synchronous replication, the publisher will wait for the actual flush. This means that setting
synchronous_commit for the subscriber to off when the subscription is used for synchronous
replication might increase the latency for COMMIT on the publisher. In this scenario, it can be
advantageous to set synchronous_commit to local or higher.

two_phase (boolean)
Specifies whether two-phase commit is enabled for this subscription. The default is false.

When two-phase commit is enabled, prepared transactions are sent to the subscriber at the time
of PREPARE TRANSACTION, and are processed as two-phase transactions on the subscriber too.
Otherwise, prepared transactions are sent to the subscriber only when committed, and are then
processed immediately by the subscriber.

The implementation of two-phase commit requires that replication has successfully finished the
initial table synchronization phase. So even when two_phase is enabled for a subscription, the
internal two-phase state remains temporarily “pending” until the initialization phase completes.
See column subtwophasestate of pg_subscription to know the actual two-phase state.

disable_on_error (boolean)
Specifies whether the subscription should be automatically disabled if any errors are detected
by subscription workers during data replication from the publisher. The default is false.

password_required (boolean)
If set to true, connections to the publisher made as a result of this subscription must use password
authentication and the password must be specified as a part of the connection string. This setting
is ignored when the subscription is owned by a superuser. The default is true. Only superusers
can set this value to false.

1642

CREATE SUBSCRIPTION

run_as_owner (boolean)
If true, all replication actions are performed as the subscription owner. If false, replication work-
ers will perform actions on each table as the owner of that table. The latter configuration is gen-
erally much more secure; for details, see Section 29.11. The default is false.

origin (string)
Specifies whether the subscription will request the publisher to only send changes that don't have
an origin or send changes regardless of origin. Setting origin to none means that the subscription
will request the publisher to only send changes that don't have an origin. Setting origin to any
means that the publisher sends changes regardless of their origin. The default is any.

See Notes for details of how copy_data = true can interact with the origin parameter.

failover (boolean)
Specifies whether the replication slots associated with the subscription are enabled to be synced
to the standbys so that logical replication can be resumed from the new primary after failover.
The default is false.

When specifying a parameter of type boolean, the = value part can be omitted, which is equivalent to
specifying TRUE.

Notes
See Section 29.11 for details on how to configure access control between the subscription and the pub-
lication instance.

When creating a replication slot (the default behavior), CREATE SUBSCRIPTION cannot be executed inside
a transaction block.

Creating a subscription that connects to the same database cluster (for example, to replicate between
databases in the same cluster or to replicate within the same database) will only succeed if the replica-
tion slot is not created as part of the same command. Otherwise, the CREATE SUBSCRIPTION call will
hang. To make this work, create the replication slot separately (using the function pg_create_logi-
cal_replication_slot with the plugin name pgoutput) and create the subscription using the parame-
ter create_slot = false. See Section 29.2.3 for examples. This is an implementation restriction that
might be lifted in a future release.

If any table in the publication has a WHERE clause, rows for which the expression evaluates to false or
NULL will not be published. If the subscription has several publications in which the same table has been
published with different WHERE clauses, a row will be published if any of the expressions (referring to
that publish operation) are satisfied. In the case of different WHERE clauses, if one of the publications has
no WHERE clause (referring to that publish operation) or the publication is declared as FOR ALL TABLES or
FOR TABLES IN SCHEMA, rows are always published regardless of the definition of the other expressions.
If the subscriber is a PostgreSQL version before 15, then any row filtering is ignored during the initial
data synchronization phase. For this case, the user might want to consider deleting any initially copied
data that would be incompatible with subsequent filtering. Because initial data synchronization does not
take into account the publication publish parameter when copying existing table data, some rows may
be copied that would not be replicated using DML. See Section 29.2.2 for examples.

Subscriptions having several publications in which the same table has been published with different
column lists are not supported.

We allow non-existent publications to be specified so that users can add those later. This means pg_sub-
scription can have non-existent publications.

When using a subscription parameter combination of copy_data = true and origin = NONE, the initial
sync table data is copied directly from the publisher, meaning that knowledge of the true origin of
that data is not possible. If the publisher also has subscriptions then the copied table data might have

1643

CREATE SUBSCRIPTION

originated from further upstream. This scenario is detected and a WARNING is logged to the user, but the
warning is only an indication of a potential problem; it is the user's responsibility to make the necessary
checks to ensure the copied data origins are really as wanted or not.

To find which tables might potentially include non-local origins (due to other subscriptions created on
the publisher) try this SQL query:

substitute <pub-names> below with your publication name(s) to be queried
SELECT DISTINCT PT.schemaname, PT.tablename
FROM pg_publication_tables PT
 JOIN pg_class C ON (C.relname = PT.tablename)
 JOIN pg_namespace N ON (N.nspname = PT.schemaname),
 pg_subscription_rel PS
WHERE C.relnamespace = N.oid AND
 (PS.srrelid = C.oid OR
 C.oid IN (SELECT relid FROM pg_partition_ancestors(PS.srrelid) UNION
 SELECT relid FROM pg_partition_tree(PS.srrelid))) AND
 PT.pubname IN (<pub-names>);

Examples
Create a subscription to a remote server that replicates tables in the publications mypublication and
insert_only and starts replicating immediately on commit:

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
 PUBLICATION mypublication, insert_only;

Create a subscription to a remote server that replicates tables in the insert_only publication and does
not start replicating until enabled at a later time.

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
 PUBLICATION insert_only
 WITH (enabled = false);

Compatibility
CREATE SUBSCRIPTION is a PostgreSQL extension.

See Also
ALTER SUBSCRIPTION, DROP SUBSCRIPTION, CREATE PUBLICATION, ALTER PUBLICATION

1644

CREATE TABLE
CREATE TABLE — define a new table

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name ([
 { column_name data_type [STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }]
 [COMPRESSION compression_method] [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
 [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name
 OF type_name [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
 [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] { FOR VALUES partition_bound_spec | DEFAULT }
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
 [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL [NO INHERIT] |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |

1645

CREATE TABLE

 GENERATED ALWAYS AS (generation_expr) [STORED | VIRTUAL] |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE [NULLS [NOT] DISTINCT] index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE] [ENFORCED
 | NOT ENFORCED]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 NOT NULL column_name [NO INHERIT] |
 UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...] [, column_name WITHOUT
 OVERLAPS]) index_parameters |
 PRIMARY KEY (column_name [, ...] [, column_name WITHOUT
 OVERLAPS]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...] [, PERIOD column_name]) REFERENCES reftable
 [(refcolumn [, ...] [, PERIOD refcolumn])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON
 UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE] [ENFORCED
 | NOT ENFORCED]

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | COMPRESSION | CONSTRAINTS | DEFAULTS | GENERATED
 | IDENTITY | INDEXES | STATISTICS | STORAGE | ALL }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [COLLATE collation] [opclass [(opclass_parameter
 = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }]

referential_action in a FOREIGN KEY/REFERENCES constraint is:

{ NO ACTION | RESTRICT | CASCADE | SET NULL [(column_name [, ...])] | SET DEFAULT
 [(column_name [, ...])] }

1646

CREATE TABLE

Description
CREATE TABLE will create a new, initially empty table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the table is created
in the specified schema. Otherwise it is created in the current schema. Temporary tables exist in a
special schema, so a schema name cannot be given when creating a temporary table. The name of the
table must be distinct from the name of any other relation (table, sequence, index, view, materialized
view, or foreign table) in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same name as any existing data type in the
same schema.

The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid
values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column constraint
is defined as part of a column definition. A table constraint definition is not tied to a particular column,
and it can encompass more than one column. Every column constraint can also be written as a table
constraint; a column constraint is only a notational convenience for use when the constraint only affects
one column.

To be able to create a table, you must have USAGE privilege on all column types or the type in the OF
clause, respectively.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session, or optionally at the end of the current transaction (see ON COMMIT below). The
default search_path includes the temporary schema first and so identically named existing permanent
tables are not chosen for new plans while the temporary table exists, unless they are referenced with
schema-qualified names. Any indexes created on a temporary table are automatically temporary as
well.

The autovacuum daemon cannot access and therefore cannot vacuum or analyze temporary tables.
For this reason, appropriate vacuum and analyze operations should be performed via session SQL
commands. For example, if a temporary table is going to be used in complex queries, it is wise to run
ANALYZE on the temporary table after it is populated.

Optionally, GLOBAL or LOCAL can be written before TEMPORARY or TEMP. This presently makes no dif-
ference in PostgreSQL and is deprecated; see Compatibility below.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables is not written
to the write-ahead log (see Chapter 28), which makes them considerably faster than ordinary tables.
However, they are not crash-safe: an unlogged table is automatically truncated after a crash or
unclean shutdown. The contents of an unlogged table are also not replicated to standby servers. Any
indexes created on an unlogged table are automatically unlogged as well.

If this is specified, any sequences created together with the unlogged table (for identity or serial
columns) are also created as unlogged.

This form is not supported for partitioned tables.

1647

CREATE TABLE

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have
been created.

table_name

The name (optionally schema-qualified) of the table to be created.

OF type_name

Creates a typed table, which takes its structure from the specified stand-alone composite type (that
is, one created using CREATE TYPE) though it still produces a new composite type as well. The table
will have a dependency on the referenced type, meaning that cascaded alter and drop actions on
that type will propagate to the table.

A typed table always has the same column names and data types as the type it is derived from, so you
cannot specify additional columns. But the CREATE TABLE command can add defaults and constraints
to the table, as well as specify storage parameters.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by PostgreSQL, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If not
specified, the column data type's default collation is used.

STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }

This form sets the storage mode for the column. This controls whether this column is held inline or
in a secondary TOAST table, and whether the data should be compressed or not. PLAIN must be used
for fixed-length values such as integer and is inline, uncompressed. MAIN is for inline, compressible
data. EXTERNAL is for external, uncompressed data, and EXTENDED is for external, compressed data.
Writing DEFAULT sets the storage mode to the default mode for the column's data type. EXTENDED is
the default for most data types that support non-PLAIN storage. Use of EXTERNAL will make substring
operations on very large text and bytea values run faster, at the penalty of increased storage space.
See Section 66.2 for more information.

COMPRESSION compression_method

The COMPRESSION clause sets the compression method for the column. Compression is supported
only for variable-width data types, and is used only when the column's storage mode is main or
extended. (See ALTER TABLE for information on column storage modes.) Setting this property for
a partitioned table has no direct effect, because such tables have no storage of their own, but the
configured value will be inherited by newly-created partitions. The supported compression methods
are pglz and lz4. (lz4 is available only if --with-lz4 was used when building PostgreSQL.) In
addition, compression_method can be default to explicitly specify the default behavior, which is to
consult the default_toast_compression setting at the time of data insertion to determine the method
to use.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new table automatically inherits
all columns. Parent tables can be plain tables or foreign tables.

1648

CREATE TABLE

Use of INHERITS creates a persistent relationship between the new child table and its parent table(s).
Schema modifications to the parent(s) normally propagate to children as well, and by default the
data of the child table is included in scans of the parent(s).

If the same column name exists in more than one parent table, an error is reported unless the data
types of the columns match in each of the parent tables. If there is no conflict, then the duplicate
columns are merged to form a single column in the new table. If the column name list of the new
table contains a column name that is also inherited, the data type must likewise match the inherited
column(s), and the column definitions are merged into one. If the new table explicitly specifies a
default value for the column, this default overrides any defaults from inherited declarations of the
column. Otherwise, any parents that specify default values for the column must all specify the same
default, or an error will be reported.

CHECK constraints are merged in essentially the same way as columns: if multiple parent tables and/
or the new table definition contain identically-named CHECK constraints, these constraints must all
have the same check expression, or an error will be reported. Constraints having the same name
and expression will be merged into one copy. A constraint marked NO INHERIT in a parent will not be
considered. Notice that an unnamed CHECK constraint in the new table will never be merged, since
a unique name will always be chosen for it.

Column STORAGE settings are also copied from parent tables.

If a column in the parent table is an identity column, that property is not inherited. A column in the
child table can be declared identity column if desired.

PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) } [opclass] [, ...])

The optional PARTITION BY clause specifies a strategy of partitioning the table. The table thus created
is called a partitioned table. The parenthesized list of columns or expressions forms the partition
key for the table. When using range or hash partitioning, the partition key can include multiple
columns or expressions (up to 32, but this limit can be altered when building PostgreSQL), but for
list partitioning, the partition key must consist of a single column or expression.

Range and list partitioning require a btree operator class, while hash partitioning requires a hash
operator class. If no operator class is specified explicitly, the default operator class of the appropriate
type will be used; if no default operator class exists, an error will be raised. When hash partitioning
is used, the operator class used must implement support function 2 (see Section 36.16.3 for details).

A partitioned table is divided into sub-tables (called partitions), which are created using separate
CREATE TABLE commands. The partitioned table is itself empty. A data row inserted into the table is
routed to a partition based on the value of columns or expressions in the partition key. If no existing
partition matches the values in the new row, an error will be reported.

See Section 5.12 for more discussion on table partitioning.

PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }

Creates the table as a partition of the specified parent table. The table can be created either as a
partition for specific values using FOR VALUES or as a default partition using DEFAULT. Any indexes,
constraints and user-defined row-level triggers that exist in the parent table are cloned on the new
partition.

The partition_bound_spec must correspond to the partitioning method and partition key of the
parent table, and must not overlap with any existing partition of that parent. The form with IN is
used for list partitioning, the form with FROM and TO is used for range partitioning, and the form with
WITH is used for hash partitioning.

partition_bound_expr is any variable-free expression (subqueries, window functions, aggregate
functions, and set-returning functions are not allowed). Its data type must match the data type of the

1649

CREATE TABLE

corresponding partition key column. The expression is evaluated once at table creation time, so it
can even contain volatile expressions such as CURRENT_TIMESTAMP.

When creating a list partition, NULL can be specified to signify that the partition allows the partition
key column to be null. However, there cannot be more than one such list partition for a given parent
table. NULL cannot be specified for range partitions.

When creating a range partition, the lower bound specified with FROM is an inclusive bound, whereas
the upper bound specified with TO is an exclusive bound. That is, the values specified in the FROM
list are valid values of the corresponding partition key columns for this partition, whereas those in
the TO list are not. Note that this statement must be understood according to the rules of row-wise
comparison (Section 9.25.5). For example, given PARTITION BY RANGE (x,y), a partition bound FROM
(1, 2) TO (3, 4) allows x=1 with any y>=2, x=2 with any non-null y, and x=3 with any y<4.

The special values MINVALUE and MAXVALUE may be used when creating a range partition to indicate
that there is no lower or upper bound on the column's value. For example, a partition defined using
FROM (MINVALUE) TO (10) allows any values less than 10, and a partition defined using FROM (10)
TO (MAXVALUE) allows any values greater than or equal to 10.

When creating a range partition involving more than one column, it can also make sense to use
MAXVALUE as part of the lower bound, and MINVALUE as part of the upper bound. For example, a
partition defined using FROM (0, MAXVALUE) TO (10, MAXVALUE) allows any rows where the first
partition key column is greater than 0 and less than or equal to 10. Similarly, a partition defined
using FROM ('a', MINVALUE) TO ('b', MINVALUE) allows any rows where the first partition key
column starts with "a".

Note that if MINVALUE or MAXVALUE is used for one column of a partitioning bound, the same value
must be used for all subsequent columns. For example, (10, MINVALUE, 0) is not a valid bound; you
should write (10, MINVALUE, MINVALUE).

Also note that some element types, such as timestamp, have a notion of "infinity", which is just an-
other value that can be stored. This is different from MINVALUE and MAXVALUE, which are not real val-
ues that can be stored, but rather they are ways of saying that the value is unbounded. MAXVALUE can
be thought of as being greater than any other value, including "infinity" and MINVALUE as being less
than any other value, including "minus infinity". Thus the range FROM ('infinity') TO (MAXVALUE)
is not an empty range; it allows precisely one value to be stored — "infinity".

If DEFAULT is specified, the table will be created as the default partition of the parent table. This
option is not available for hash-partitioned tables. A partition key value not fitting into any other
partition of the given parent will be routed to the default partition.

When a table has an existing DEFAULT partition and a new partition is added to it, the default partition
must be scanned to verify that it does not contain any rows which properly belong in the new partition.
If the default partition contains a large number of rows, this may be slow. The scan will be skipped
if the default partition is a foreign table or if it has a constraint which proves that it cannot contain
rows which should be placed in the new partition.

When creating a hash partition, a modulus and remainder must be specified. The modulus must be a
positive integer, and the remainder must be a non-negative integer less than the modulus. Typically,
when initially setting up a hash-partitioned table, you should choose a modulus equal to the number of
partitions and assign every table the same modulus and a different remainder (see examples, below).
However, it is not required that every partition have the same modulus, only that every modulus
which occurs among the partitions of a hash-partitioned table is a factor of the next larger modulus.
This allows the number of partitions to be increased incrementally without needing to move all the
data at once. For example, suppose you have a hash-partitioned table with 8 partitions, each of which
has modulus 8, but find it necessary to increase the number of partitions to 16. You can detach one
of the modulus-8 partitions, create two new modulus-16 partitions covering the same portion of the
key space (one with a remainder equal to the remainder of the detached partition, and the other with
a remainder equal to that value plus 8), and repopulate them with data. You can then repeat this --

1650

CREATE TABLE

perhaps at a later time -- for each modulus-8 partition until none remain. While this may still involve
a large amount of data movement at each step, it is still better than having to create a whole new
table and move all the data at once.

A partition must have the same column names and types as the partitioned table to which it belongs.
Modifications to the column names or types of a partitioned table will automatically propagate to
all partitions. CHECK constraints will be inherited automatically by every partition, but an individual
partition may specify additional CHECK constraints; additional constraints with the same name and
condition as in the parent will be merged with the parent constraint. Defaults may be specified
separately for each partition. But note that a partition's default value is not applied when inserting
a tuple through a partitioned table.

Rows inserted into a partitioned table will be automatically routed to the correct partition. If no
suitable partition exists, an error will occur.

Operations such as TRUNCATE which normally affect a table and all of its inheritance children will
cascade to all partitions, but may also be performed on an individual partition.

Note that creating a partition using PARTITION OF requires taking an ACCESS EXCLUSIVE lock on the
parent partitioned table. Likewise, dropping a partition with DROP TABLE requires taking an ACCESS
EXCLUSIVE lock on the parent table. It is possible to use ALTER TABLE ATTACH/DETACH PARTITION to
perform these operations with a weaker lock, thus reducing interference with concurrent operations
on the partitioned table.

LIKE source_table [like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all column names,
their data types, and their not-null constraints.

Unlike INHERITS, the new table and original table are completely decoupled after creation is com-
plete. Changes to the original table will not be applied to the new table, and it is not possible to
include data of the new table in scans of the original table.

Also unlike INHERITS, columns and constraints copied by LIKE are not merged with similarly named
columns and constraints. If the same name is specified explicitly or in another LIKE clause, an error
is signaled.

The optional like_option clauses specify which additional properties of the original table to copy.
Specifying INCLUDING copies the property, specifying EXCLUDING omits the property. EXCLUDING is
the default. If multiple specifications are made for the same kind of object, the last one is used. The
available options are:

INCLUDING COMMENTS

Comments for the copied columns, constraints, and indexes will be copied. The default behavior
is to exclude comments, resulting in the copied columns and constraints in the new table having
no comments.

INCLUDING COMPRESSION

Compression method of the columns will be copied. The default behavior is to exclude compres-
sion methods, resulting in columns having the default compression method.

INCLUDING CONSTRAINTS

CHECK constraints will be copied. No distinction is made between column constraints and table
constraints. Not-null constraints are always copied to the new table.

INCLUDING DEFAULTS

Default expressions for the copied column definitions will be copied. Otherwise, default expres-
sions are not copied, resulting in the copied columns in the new table having null defaults. Note

1651

CREATE TABLE

that copying defaults that call database-modification functions, such as nextval, may create a
functional linkage between the original and new tables.

INCLUDING GENERATED

Any generation expressions as well as the stored/virtual choice of copied column definitions will
be copied. By default, new columns will be regular base columns.

INCLUDING IDENTITY

Any identity specifications of copied column definitions will be copied. A new sequence is created
for each identity column of the new table, separate from the sequences associated with the old
table.

INCLUDING INDEXES

Indexes, PRIMARY KEY, UNIQUE, and EXCLUDE constraints on the original table will be created on
the new table. Names for the new indexes and constraints are chosen according to the default
rules, regardless of how the originals were named. (This behavior avoids possible duplicate-name
failures for the new indexes.)

INCLUDING STATISTICS

Extended statistics are copied to the new table.

INCLUDING STORAGE

STORAGE settings for the copied column definitions will be copied. The default behavior is to
exclude STORAGE settings, resulting in the copied columns in the new table having type-specific
default settings. For more on STORAGE settings, see Section 66.2.

INCLUDING ALL

INCLUDING ALL is an abbreviated form selecting all the available individual options. (It could be
useful to write individual EXCLUDING clauses after INCLUDING ALL to select all but some specific
options.)

The LIKE clause can also be used to copy column definitions from views, foreign tables, or composite
types. Inapplicable options (e.g., INCLUDING INDEXES from a view) are ignored.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used to com-
municate helpful constraint information to client applications. (Double-quotes are needed to specify
constraint names that contain spaces.) If a constraint name is not specified, the system generates
a name.

NOT NULL [NO INHERIT]

The column is not allowed to contain null values.

A constraint marked with NO INHERIT will not propagate to child tables.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged
in new applications.

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which new or updated rows must
satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE or UNKNOWN
succeed. Should any row of an insert or update operation produce a FALSE result, an error exception

1652

CREATE TABLE

is raised and the insert or update does not alter the database. A check constraint specified as a
column constraint should reference that column's value only, while an expression appearing in a
table constraint can reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns
of the current row (see Section 5.5.1). The system column tableoid may be referenced, but not any
other system column.

A constraint marked with NO INHERIT will not propagate to child tables.

When a table has multiple CHECK constraints, they will be tested for each row in alphabetical order
by name, after checking NOT NULL constraints. (PostgreSQL versions before 9.5 did not honor any
particular firing order for CHECK constraints.)

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (in particular, cross-references to other columns in
the current table are not allowed). Subqueries are not allowed either. The data type of the default
expression must match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

GENERATED ALWAYS AS (generation_expr) [STORED | VIRTUAL]

This clause creates the column as a generated column. The column cannot be written to, and when
read the result of the specified expression will be returned.

When VIRTUAL is specified, the column will be computed when it is read, and it will not occupy any
storage. When STORED is specified, the column will be computed on write and will be stored on disk.
VIRTUAL is the default.

The generation expression can refer to other columns in the table, but not other generated columns.
Any functions and operators used must be immutable. References to other tables are not allowed.

A virtual generated column cannot have a user-defined type, and the generation expression of a
virtual generated column must not reference user-defined functions or types, that is, it can only use
built-in functions or types. This applies also indirectly, such as for functions or types that underlie
operators or casts. (This restriction does not exist for stored generated columns.)

GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)]

This clause creates the column as an identity column. It will have an implicit sequence attached to
it and in newly-inserted rows the column will automatically have values from the sequence assigned
to it. Such a column is implicitly NOT NULL.

The clauses ALWAYS and BY DEFAULT determine how explicitly user-specified values are handled in
INSERT and UPDATE commands.

In an INSERT command, if ALWAYS is selected, a user-specified value is only accepted if the INSERT
statement specifies OVERRIDING SYSTEM VALUE. If BY DEFAULT is selected, then the user-specified
value takes precedence. See INSERT for details. (In the COPY command, user-specified values are
always used regardless of this setting.)

In an UPDATE command, if ALWAYS is selected, any update of the column to any value other than
DEFAULT will be rejected. If BY DEFAULT is selected, the column can be updated normally. (There is
no OVERRIDING clause for the UPDATE command.)

The optional sequence_options clause can be used to override the parameters of the sequence. The
available options include those shown for CREATE SEQUENCE, plus SEQUENCE NAME name, LOGGED,
and UNLOGGED, which allow selection of the name and persistence level of the sequence. Without

1653

CREATE TABLE

SEQUENCE NAME, the system chooses an unused name for the sequence. Without LOGGED or UNLOGGED,
the sequence will have the same persistence level as the table.

UNIQUE [NULLS [NOT] DISTINCT] (column constraint)
UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...] [, column_name WITHOUT OVERLAPS])
[INCLUDE (column_name [, ...])] (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table can contain only
unique values. The behavior of a unique table constraint is the same as that of a unique column
constraint, with the additional capability to span multiple columns. The constraint therefore enforces
that any two rows must differ in at least one of these columns.

If the WITHOUT OVERLAPS option is specified for the last column, then that column is checked for
overlaps instead of equality. In that case, the other columns of the constraint will allow duplicates
so long as the duplicates don't overlap in the WITHOUT OVERLAPS column. (This is sometimes called
a temporal key, if the column is a range of dates or timestamps, but PostgreSQL allows ranges over
any base type.) In effect, such a constraint is enforced with an EXCLUDE constraint rather than a
UNIQUE constraint. So for example UNIQUE (id, valid_at WITHOUT OVERLAPS) behaves like EXCLUDE
USING GIST (id WITH =, valid_at WITH &&). The WITHOUT OVERLAPS column must have a range or
multirange type. Empty ranges/multiranges are not permitted. The non-WITHOUT OVERLAPS columns
of the constraint can be any type that can be compared for equality in a GiST index. By default, only
range types are supported, but you can use other types by adding the btree_gist extension (which
is the expected way to use this feature).

For the purpose of a unique constraint, null values are not considered equal, unless NULLS NOT
DISTINCT is specified.

Each unique constraint should name a set of columns that is different from the set of columns named
by any other unique or primary key constraint defined for the table. (Otherwise, redundant unique
constraints will be discarded.)

When establishing a unique constraint for a multi-level partition hierarchy, all the columns in the
partition key of the target partitioned table, as well as those of all its descendant partitioned tables,
must be included in the constraint definition.

Adding a unique constraint will automatically create a unique btree index on the column or group of
columns used in the constraint. But if the constraint includes a WITHOUT OVERLAPS clause, it will use
a GiST index. The created index has the same name as the unique constraint.

The optional INCLUDE clause adds to that index one or more columns that are simply “payload”:
uniqueness is not enforced on them, and the index cannot be searched on the basis of those columns.
However they can be retrieved by an index-only scan. Note that although the constraint is not en-
forced on included columns, it still depends on them. Consequently, some operations on such columns
(e.g., DROP COLUMN) can cause cascaded constraint and index deletion.

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...] [, column_name WITHOUT OVERLAPS]) [INCLUDE (
column_name [, ...])] (table constraint)

The PRIMARY KEY constraint specifies that a column or columns of a table can contain only unique
(non-duplicate), nonnull values. Only one primary key can be specified for a table, whether as a
column constraint or a table constraint.

The primary key constraint should name a set of columns that is different from the set of columns
named by any unique constraint defined for the same table. (Otherwise, the unique constraint is
redundant and will be discarded.)

PRIMARY KEY enforces the same data constraints as a combination of UNIQUE and NOT NULL. Howev-
er, identifying a set of columns as the primary key also provides metadata about the design of the
schema, since a primary key implies that other tables can rely on this set of columns as a unique
identifier for rows.

1654

CREATE TABLE

When placed on a partitioned table, PRIMARY KEY constraints share the restrictions previously de-
scribed for UNIQUE constraints.

Adding a PRIMARY KEY constraint will automatically create a unique btree index on the column or
group of columns used in the constraint, or GiST if WITHOUT OVERLAPS was specified.

The optional INCLUDE clause adds to that index one or more columns that are simply “payload”:
uniqueness is not enforced on them, and the index cannot be searched on the basis of those columns.
However they can be retrieved by an index-only scan. Note that although the constraint is not en-
forced on included columns, it still depends on them. Consequently, some operations on such columns
(e.g., DROP COLUMN) can cause cascaded constraint and index deletion.

EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_parameters
[WHERE (predicate)]

The EXCLUDE clause defines an exclusion constraint, which guarantees that if any two rows are com-
pared on the specified column(s) or expression(s) using the specified operator(s), not all of these
comparisons will return TRUE. If all of the specified operators test for equality, this is equivalent to
a UNIQUE constraint, although an ordinary unique constraint will be faster. However, exclusion con-
straints can specify constraints that are more general than simple equality. For example, you can
specify a constraint that no two rows in the table contain overlapping circles (see Section 8.8) by
using the && operator. The operator(s) are required to be commutative.

Exclusion constraints are implemented using an index that has the same name as the constraint, so
each specified operator must be associated with an appropriate operator class (see Section 11.10)
for the index access method index_method. Each exclude_element defines a column of the index,
so it can optionally specify a collation, an operator class, operator class parameters, and/or ordering
options; these are described fully under CREATE INDEX.

The access method must support amgettuple (see Chapter 63); at present this means GIN cannot
be used. Although it's allowed, there is little point in using B-tree or hash indexes with an exclusion
constraint, because this does nothing that an ordinary unique constraint doesn't do better. So in
practice the access method will always be GiST or SP-GiST.

The predicate allows you to specify an exclusion constraint on a subset of the table; internally this
creates a partial index. Note that parentheses are required around the predicate.

When establishing an exclusion constraint for a multi-level partition hierarchy, all the columns in the
partition key of the target partitioned table, as well as those of all its descendant partitioned tables,
must be included in the constraint definition. Additionally, those columns must be compared using
the equality operator. These restrictions ensure that potentially-conflicting rows will exist in the
same partition. The constraint may also refer to other columns which are not a part of any partition
key, which can be compared using any appropriate operator.

REFERENCES reftable [(refcolumn)] [MATCH matchtype] [ON DELETE referential_action
] [ON UPDATE referential_action] (column constraint)
FOREIGN KEY (column_name [, ...] [, PERIOD column_name]) REFERENCES reftable [(
refcolumn [, ...] [, PERIOD refcolumn])] [MATCH matchtype] [ON DELETE referen-
tial_action] [ON UPDATE referential_action] (table constraint)

These clauses specify a foreign key constraint, which requires that a group of one or more columns
of the new table must only contain values that match values in the referenced column(s) of some row
of the referenced table. If the refcolumn list is omitted, the primary key of the reftable is used.
Otherwise, the refcolumn list must refer to the columns of a non-deferrable unique or primary key
constraint or be the columns of a non-partial unique index.

If the last column is marked with PERIOD, it is treated in a special way. While the non-PERIOD columns
are compared for equality (and there must be at least one of them), the PERIOD column is not. In-
stead, the constraint is considered satisfied if the referenced table has matching records (based on
the non-PERIOD parts of the key) whose combined PERIOD values completely cover the referencing

1655

CREATE TABLE

record's. In other words, the reference must have a referent for its entire duration. This column must
be a range or multirange type. In addition, the referenced table must have a primary key or unique
constraint declared with WITHOUT OVERLAPS. Finally, if the foreign key has a PERIOD column_name
specification the corresponding refcolumn, if present, must also be marked PERIOD. If the refcolumn
clause is omitted, and thus the reftable's primary key constraint chosen, the primary key must have
its final column marked WITHOUT OVERLAPS.

For each pair of referencing and referenced column, if they are of a collatable data type, then the
collations must either be both deterministic or else both the same. This ensures that both columns
have a consistent notion of equality.

The user must have REFERENCES permission on the referenced table (either the whole table, or the
specific referenced columns). The addition of a foreign key constraint requires a SHARE ROW EX-
CLUSIVE lock on the referenced table. Note that foreign key constraints cannot be defined between
temporary tables and permanent tables.

A value inserted into the referencing column(s) is matched against the values of the referenced table
and referenced columns using the given match type. There are three match types: MATCH FULL,
MATCH PARTIAL, and MATCH SIMPLE (which is the default). MATCH FULL will not allow one column of a
multicolumn foreign key to be null unless all foreign key columns are null; if they are all null, the row
is not required to have a match in the referenced table. MATCH SIMPLE allows any of the foreign key
columns to be null; if any of them are null, the row is not required to have a match in the referenced
table. MATCH PARTIAL is not yet implemented. (Of course, NOT NULL constraints can be applied to the
referencing column(s) to prevent these cases from arising.)

In addition, when the data in the referenced columns is changed, certain actions are performed on the
data in this table's columns. The ON DELETE clause specifies the action to perform when a referenced
row in the referenced table is being deleted. Likewise, the ON UPDATE clause specifies the action to
perform when a referenced column in the referenced table is being updated to a new value. If the
row is updated, but the referenced column is not actually changed, no action is done. Referential
actions are executed as part of the data changing command, even if the constraint is deferred. There
are the following possible actions for each clause:

NO ACTION

Produce an error if the deletion or update would create a foreign key constraint violation. If the
constraint is deferred, this error will be produced at constraint check time if there still exist any
referencing rows. This is the default action.

RESTRICT

Produce an error if a row to be deleted or updated matches a row in the referencing table. This
prevents the action even if the state after the action would not violate the foreign key constraint.
In particular, it prevents updates of referenced rows to values that are distinct but compare as
equal. (But it does not prevent “no-op” updates that update a column to the same value.)

In a temporal foreign key, this option is not supported.

CASCADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s)
to the new values of the referenced columns, respectively.

In a temporal foreign key, this option is not supported.

SET NULL [(column_name [, ...])]

Set all of the referencing columns, or a specified subset of the referencing columns, to null. A
subset of columns can only be specified for ON DELETE actions.

In a temporal foreign key, this option is not supported.

1656

CREATE TABLE

SET DEFAULT [(column_name [, ...])]

Set all of the referencing columns, or a specified subset of the referencing columns, to their
default values. A subset of columns can only be specified for ON DELETE actions. (There must be
a row in the referenced table matching the default values, if they are not null, or the operation
will fail.)

In a temporal foreign key, this option is not supported.

If the referenced column(s) are changed frequently, it might be wise to add an index to the referenc-
ing column(s) so that referential actions associated with the foreign key constraint can be performed
more efficiently.

DEFERRABLE
NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will be
checked immediately after every command. Checking of constraints that are deferrable can be post-
poned until the end of the transaction (using the SET CONSTRAINTS command). NOT DEFERRABLE is
the default. Currently, only UNIQUE, PRIMARY KEY, EXCLUDE, and REFERENCES (foreign key) constraints
accept this clause. NOT NULL and CHECK constraints are not deferrable. Note that deferrable con-
straints cannot be used as conflict arbitrators in an INSERT statement that includes an ON CONFLICT
DO UPDATE clause.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is the default. If the
constraint is INITIALLY DEFERRED, it is checked only at the end of the transaction. The constraint
check time can be altered with the SET CONSTRAINTS command.

ENFORCED
NOT ENFORCED

When the constraint is ENFORCED, then the database system will ensure that the constraint is satisfied,
by checking the constraint at appropriate times (after each statement or at the end of the transaction,
as appropriate). That is the default. If the constraint is NOT ENFORCED, the database system will not
check the constraint. It is then up to the application code to ensure that the constraints are satisfied.
The database system might still assume that the data actually satisfies the constraint for optimization
decisions where this does not affect the correctness of the result.

NOT ENFORCED constraints can be useful as documentation if the actual checking of the constraint
at run time is too expensive.

This is currently only supported for foreign key and CHECK constraints.

USING method

This optional clause specifies the table access method to use to store the contents for the new table;
the method needs be an access method of type TABLE. See Chapter 62 for more information. If this
option is not specified, the default table access method is chosen for the new table. See default_ta-
ble_access_method for more information.

When creating a partition, the table access method is the access method of its partitioned table, if set.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for a table or index; see Storage Parameters
below for more information. For backward-compatibility the WITH clause for a table can also in-
clude OIDS=FALSE to specify that rows of the new table should not contain OIDs (object identifiers),
OIDS=TRUE is not supported anymore.

1657

CREATE TABLE

WITHOUT OIDS

This is backward-compatible syntax for declaring a table WITHOUT OIDS, creating a table WITH OIDS
is not supported anymore.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON COMMIT.
The three options are:
PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit. When used on a partitioned table, this is not
cascaded to its partitions.

DROP

The temporary table will be dropped at the end of the current transaction block. When used
on a partitioned table, this action drops its partitions and when used on tables with inheritance
children, it drops the dependent children.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If not
specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary. For parti-
tioned tables, since no storage is required for the table itself, the tablespace specified overrides de-
fault_tablespace as the default tablespace to use for any newly created partitions when no other
tablespace is explicitly specified.

USING INDEX TABLESPACE tablespace_name

This clause allows selection of the tablespace in which the index associated with a UNIQUE, PRIMARY
KEY, or EXCLUDE constraint will be created. If not specified, default_tablespace is consulted, or tem-
p_tablespaces if the table is temporary.

Storage Parameters
The WITH clause can specify storage parameters for tables, and for indexes associated with a UNIQUE,
PRIMARY KEY, or EXCLUDE constraint. Storage parameters for indexes are documented in CREATE INDEX.
The storage parameters currently available for tables are listed below. For many of these parameters,
as shown, there is an additional parameter with the same name prefixed with toast., which controls
the behavior of the table's secondary TOAST table, if any (see Section 66.2 for more information about
TOAST). If a table parameter value is set and the equivalent toast. parameter is not, the TOAST table
will use the table's parameter value. Specifying these parameters for partitioned tables is not supported,
but you may specify them for individual leaf partitions.

fillfactor (integer)
The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.
When a smaller fillfactor is specified, INSERT operations pack table pages only to the indicated per-
centage; the remaining space on each page is reserved for updating rows on that page. This gives
UPDATE a chance to place the updated copy of a row on the same page as the original, which is more
efficient than placing it on a different page, and makes heap-only tuple updates more likely. For a
table whose entries are never updated, complete packing is the best choice, but in heavily updated
tables smaller fillfactors are appropriate. This parameter cannot be set for TOAST tables.

toast_tuple_target (integer)
The toast_tuple_target specifies the minimum tuple length required before we try to compress and/
or move long column values into TOAST tables, and is also the target length we try to reduce the

1658

CREATE TABLE

length below once toasting begins. This affects columns marked as External (for move), Main (for
compression), or Extended (for both) and applies only to new tuples. There is no effect on existing
rows. By default this parameter is set to allow at least 4 tuples per block, which with the default
block size will be 2040 bytes. Valid values are between 128 bytes and the (block size - header), by
default 8160 bytes. Changing this value may not be useful for very short or very long rows. Note that
the default setting is often close to optimal, and it is possible that setting this parameter could have
negative effects in some cases. This parameter cannot be set for TOAST tables.

parallel_workers (integer)
This sets the number of workers that should be used to assist a parallel scan of this table. If not set,
the system will determine a value based on the relation size. The actual number of workers chosen
by the planner or by utility statements that use parallel scans may be less, for example due to the
setting of max_worker_processes.

autovacuum_enabled, toast.autovacuum_enabled (boolean)
Enables or disables the autovacuum daemon for a particular table. If true, the autovacuum daemon
will perform automatic VACUUM and/or ANALYZE operations on this table following the rules discussed
in Section 24.1.6. If false, this table will not be autovacuumed, except to prevent transaction ID
wraparound. See Section 24.1.5 for more about wraparound prevention. Note that the autovacuum
daemon does not run at all (except to prevent transaction ID wraparound) if the autovacuum para-
meter is false; setting individual tables' storage parameters does not override that. Therefore there
is seldom much point in explicitly setting this storage parameter to true, only to false.

vacuum_index_cleanup, toast.vacuum_index_cleanup (enum)

Forces or disables index cleanup when VACUUM is run on this table. The default value is AUTO. With
OFF, index cleanup is disabled, with ON it is enabled, and with AUTO a decision is made dynamically,
each time VACUUM runs. The dynamic behavior allows VACUUM to avoid needlessly scanning indexes
to remove very few dead tuples. Forcibly disabling all index cleanup can speed up VACUUM very sig-
nificantly, but may also lead to severely bloated indexes if table modifications are frequent. The IN-
DEX_CLEANUP parameter of VACUUM, if specified, overrides the value of this option.

vacuum_truncate, toast.vacuum_truncate (boolean)

Per-table value for vacuum_truncate parameter. The TRUNCATE parameter of VACUUM, if specified,
overrides the value of this option.

autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)
Per-table value for autovacuum_vacuum_threshold parameter.

autovacuum_vacuum_max_threshold, toast.autovacuum_vacuum_max_threshold (integer)
Per-table value for autovacuum_vacuum_max_threshold parameter.

autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor (floating point)
Per-table value for autovacuum_vacuum_scale_factor parameter.

autovacuum_vacuum_insert_threshold, toast.autovacuum_vacuum_insert_threshold (integer)
Per-table value for autovacuum_vacuum_insert_threshold parameter. The special value of -1 may be
used to disable insert vacuums on the table.

autovacuum_vacuum_insert_scale_factor, toast.autovacuum_vacuum_insert_scale_factor
(floating point)

Per-table value for autovacuum_vacuum_insert_scale_factor parameter.

autovacuum_analyze_threshold (integer)
Per-table value for autovacuum_analyze_threshold parameter.

1659

CREATE TABLE

autovacuum_analyze_scale_factor (floating point)

Per-table value for autovacuum_analyze_scale_factor parameter.

autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay (floating point)

Per-table value for autovacuum_vacuum_cost_delay parameter.

autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit (integer)

Per-table value for autovacuum_vacuum_cost_limit parameter.

autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)

Per-table value for vacuum_freeze_min_age parameter. Note that autovacuum will ignore per-ta-
ble autovacuum_freeze_min_age parameters that are larger than half the system-wide autovacu-
um_freeze_max_age setting.

autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)

Per-table value for autovacuum_freeze_max_age parameter. Note that autovacuum will ignore per-
table autovacuum_freeze_max_age parameters that are larger than the system-wide setting (it can
only be set smaller).

autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)

Per-table value for vacuum_freeze_table_age parameter.

autovacuum_multixact_freeze_min_age, toast.autovacuum_multixact_freeze_min_age (integer)

Per-table value for vacuum_multixact_freeze_min_age parameter. Note that autovacuum will ignore
per-table autovacuum_multixact_freeze_min_age parameters that are larger than half the sys-
tem-wide autovacuum_multixact_freeze_max_age setting.

autovacuum_multixact_freeze_max_age, toast.autovacuum_multixact_freeze_max_age (integer)

Per-table value for autovacuum_multixact_freeze_max_age parameter. Note that autovacuum will
ignore per-table autovacuum_multixact_freeze_max_age parameters that are larger than the sys-
tem-wide setting (it can only be set smaller).

autovacuum_multixact_freeze_table_age, toast.autovacuum_multixact_freeze_table_age (inte-
ger)

Per-table value for vacuum_multixact_freeze_table_age parameter.

log_autovacuum_min_duration, toast.log_autovacuum_min_duration (integer)

Per-table value for log_autovacuum_min_duration parameter.

vacuum_max_eager_freeze_failure_rate, toast.vacuum_max_eager_freeze_failure_rate (float-
ing point)

Per-table value for vacuum_max_eager_freeze_failure_rate parameter.

user_catalog_table (boolean)

Declare the table as an additional catalog table for purposes of logical replication. See Section 47.6.2
for details. This parameter cannot be set for TOAST tables.

Notes
PostgreSQL automatically creates an index for each unique constraint and primary key constraint to
enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns. (See
CREATE INDEX for more information.)

1660

CREATE TABLE

Unique constraints and primary keys are not inherited in the current implementation. This makes the
combination of inheritance and unique constraints rather dysfunctional.

A table cannot have more than 1600 columns. (In practice, the effective limit is usually lower because
of tuple-length constraints.)

Examples
Create table films and table distributors:

CREATE TABLE films (
 code char(5) CONSTRAINT firstkey PRIMARY KEY,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
);

CREATE TABLE distributors (
 did integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
 name varchar(40) NOT NULL CHECK (name <> '')
);

Create a table with a 2-dimensional array:

CREATE TABLE array_int (
 vector int[][]
);

Define a unique table constraint for the table films. Unique table constraints can be defined on one or
more columns of the table:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT production UNIQUE(date_prod)
);

Define a check column constraint:

CREATE TABLE distributors (
 did integer CHECK (did > 100),
 name varchar(40)
);

Define a check table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 CONSTRAINT con1 CHECK (did > 100 AND name <> '')
);

Define a primary key table constraint for the table films:

CREATE TABLE films (
 code char(5),

1661

CREATE TABLE

 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

Define a primary key constraint for table distributors. The following two examples are equivalent, the
first using the table constraint syntax, the second the column constraint syntax:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did integer PRIMARY KEY,
 name varchar(40)
);

Assign a literal constant default value for the column name, arrange for the default value of column did
to be generated by selecting the next value of a sequence object, and make the default value of modtime
be the time at which the row is inserted:

CREATE TABLE distributors (
 name varchar(40) DEFAULT 'Luso Films',
 did integer DEFAULT nextval('distributors_serial'),
 modtime timestamp DEFAULT current_timestamp
);

Define two NOT NULL column constraints on the table distributors, one of which is explicitly given
a name:

CREATE TABLE distributors (
 did integer CONSTRAINT no_null NOT NULL,
 name varchar(40) NOT NULL
);

Define a unique constraint for the name column:

CREATE TABLE distributors (
 did integer,
 name varchar(40) UNIQUE
);

The same, specified as a table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name)
);

Create the same table, specifying 70% fill factor for both the table and its unique index:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name) WITH (fillfactor=70)
)

1662

CREATE TABLE

WITH (fillfactor=70);

Create table circles with an exclusion constraint that prevents any two circles from overlapping:

CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

Create table cinemas in tablespace diskvol1:

CREATE TABLE cinemas (
 id serial,
 name text,
 location text
) TABLESPACE diskvol1;

Create a composite type and a typed table:

CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
 PRIMARY KEY (name),
 salary WITH OPTIONS DEFAULT 1000
);

Create a range partitioned table:

CREATE TABLE measurement (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

Create a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_year_month (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM logdate));

Create a list partitioned table:

CREATE TABLE cities (
 city_id bigserial not null,
 name text not null,
 population bigint
) PARTITION BY LIST (left(lower(name), 1));

Create a hash partitioned table:

CREATE TABLE orders (
 order_id bigint not null,
 cust_id bigint not null,
 status text
) PARTITION BY HASH (order_id);

Create partition of a range partitioned table:

CREATE TABLE measurement_y2016m07
 PARTITION OF measurement (
 unitsales DEFAULT 0

1663

CREATE TABLE

) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');

Create a few partitions of a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_ym_older
 PARTITION OF measurement_year_month
 FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11);

CREATE TABLE measurement_ym_y2016m11
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 11) TO (2016, 12);

CREATE TABLE measurement_ym_y2016m12
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 12) TO (2017, 01);

CREATE TABLE measurement_ym_y2017m01
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2017, 01) TO (2017, 02);

Create partition of a list partitioned table:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b');

Create partition of a list partitioned table that is itself further partitioned and then add a partition to it:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population);

CREATE TABLE cities_ab_10000_to_100000
 PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);

Create partitions of a hash partitioned table:

CREATE TABLE orders_p1 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE orders_p2 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE orders_p3 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE orders_p4 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

Create a default partition:

CREATE TABLE cities_partdef
 PARTITION OF cities DEFAULT;

Compatibility
The CREATE TABLE command conforms to the SQL standard, with exceptions listed below.

Temporary Tables
Although the syntax of CREATE TEMPORARY TABLE resembles that of the SQL standard, the effect is not
the same. In the standard, temporary tables are defined just once and automatically exist (starting with
empty contents) in every session that needs them. PostgreSQL instead requires each session to issue

1664

CREATE TABLE

its own CREATE TEMPORARY TABLE command for each temporary table to be used. This allows different
sessions to use the same temporary table name for different purposes, whereas the standard's approach
constrains all instances of a given temporary table name to have the same table structure.

The standard's definition of the behavior of temporary tables is widely ignored. PostgreSQL's behavior
on this point is similar to that of several other SQL databases.

The SQL standard also distinguishes between global and local temporary tables, where a local temporary
table has a separate set of contents for each SQL module within each session, though its definition is
still shared across sessions. Since PostgreSQL does not support SQL modules, this distinction is not
relevant in PostgreSQL.

For compatibility's sake, PostgreSQL will accept the GLOBAL and LOCAL keywords in a temporary table
declaration, but they currently have no effect. Use of these keywords is discouraged, since future ver-
sions of PostgreSQL might adopt a more standard-compliant interpretation of their meaning.

The ON COMMIT clause for temporary tables also resembles the SQL standard, but has some differences.
If the ON COMMIT clause is omitted, SQL specifies that the default behavior is ON COMMIT DELETE ROWS.
However, the default behavior in PostgreSQL is ON COMMIT PRESERVE ROWS. The ON COMMIT DROP option
does not exist in SQL.

Non-Deferred Uniqueness Constraints
When a UNIQUE or PRIMARY KEY constraint is not deferrable, PostgreSQL checks for uniqueness immedi-
ately whenever a row is inserted or modified. The SQL standard says that uniqueness should be enforced
only at the end of the statement; this makes a difference when, for example, a single command updates
multiple key values. To obtain standard-compliant behavior, declare the constraint as DEFERRABLE but
not deferred (i.e., INITIALLY IMMEDIATE). Be aware that this can be significantly slower than immediate
uniqueness checking.

Column Check Constraints
The SQL standard says that CHECK column constraints can only refer to the column they apply to; only
CHECK table constraints can refer to multiple columns. PostgreSQL does not enforce this restriction; it
treats column and table check constraints alike.

EXCLUDE Constraint
The EXCLUDE constraint type is a PostgreSQL extension.

Foreign Key Constraints
The ability to specify column lists in the foreign key actions SET DEFAULT and SET NULL is a PostgreSQL
extension.

It is a PostgreSQL extension that a foreign key constraint may reference columns of a unique index
instead of columns of a primary key or unique constraint.

NULL “Constraint”
The NULL “constraint” (actually a non-constraint) is a PostgreSQL extension to the SQL standard that
is included for compatibility with some other database systems (and for symmetry with the NOT NULL
constraint). Since it is the default for any column, its presence is simply noise.

Constraint Naming
The SQL standard says that table and domain constraints must have names that are unique across the
schema containing the table or domain. PostgreSQL is laxer: it only requires constraint names to be
unique across the constraints attached to a particular table or domain. However, this extra freedom
does not exist for index-based constraints (UNIQUE, PRIMARY KEY, and EXCLUDE constraints), because
the associated index is named the same as the constraint, and index names must be unique across all
relations within the same schema.

1665

CREATE TABLE

Inheritance
Multiple inheritance via the INHERITS clause is a PostgreSQL language extension. SQL:1999 and later
define single inheritance using a different syntax and different semantics. SQL:1999-style inheritance
is not yet supported by PostgreSQL.

Zero-Column Tables
PostgreSQL allows a table of no columns to be created (for example, CREATE TABLE foo();). This is
an extension from the SQL standard, which does not allow zero-column tables. Zero-column tables are
not in themselves very useful, but disallowing them creates odd special cases for ALTER TABLE DROP
COLUMN, so it seems cleaner to ignore this spec restriction.

Multiple Identity Columns
PostgreSQL allows a table to have more than one identity column. The standard specifies that a table
can have at most one identity column. This is relaxed mainly to give more flexibility for doing schema
changes or migrations. Note that the INSERT command supports only one override clause that applies to
the entire statement, so having multiple identity columns with different behaviors is not well supported.

Generated Columns
The options STORED and VIRTUAL are not standard but are also used by other SQL implementations. The
SQL standard does not specify the storage of generated columns.

LIKE Clause
While a LIKE clause exists in the SQL standard, many of the options that PostgreSQL accepts for it are
not in the standard, and some of the standard's options are not implemented by PostgreSQL.

WITH Clause
The WITH clause is a PostgreSQL extension; storage parameters are not in the standard.

Tablespaces
The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clauses TABLESPACE and
USING INDEX TABLESPACE are extensions.

Typed Tables
Typed tables implement a subset of the SQL standard. According to the standard, a typed table has
columns corresponding to the underlying composite type as well as one other column that is the “self-
referencing column”. PostgreSQL does not support self-referencing columns explicitly.

PARTITION BY Clause
The PARTITION BY clause is a PostgreSQL extension.

PARTITION OF Clause
The PARTITION OF clause is a PostgreSQL extension.

See Also
ALTER TABLE, DROP TABLE, CREATE TABLE AS, CREATE TABLESPACE, CREATE TYPE

1666

CREATE TABLE AS
CREATE TABLE AS — define a new table from the results of a query

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name
 [(column_name [, ...])]
 [USING method]
 [WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description
CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table columns
have the names and data types associated with the output columns of the SELECT (except that you can
override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it creates
a new table and evaluates the query just once to fill the new table initially. The new table will not track
subsequent changes to the source tables of the query. In contrast, a view re-evaluates its defining SELECT
statement whenever it is queried.

CREATE TABLE AS requires CREATE privilege on the schema used for the table.

Parameters
GLOBAL or LOCAL

Ignored for compatibility. Use of these keywords is deprecated; refer to CREATE TABLE for details.

TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists; simply issue a notice and leave
the table unmodified.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they are taken from the
output column names of the query.

USING method

This optional clause specifies the table access method to use to store the contents for the new table;
the method needs be an access method of type TABLE. See Chapter 62 for more information. If this

1667

CREATE TABLE AS

option is not specified, the default table access method is chosen for the new table. See default_ta-
ble_access_method for more information.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new table; see Storage Parameters in the
CREATE TABLE documentation for more information. For backward-compatibility the WITH clause
for a table can also include OIDS=FALSE to specify that rows of the new table should contain no OIDs
(object identifiers), OIDS=TRUE is not supported anymore.

WITHOUT OIDS

This is backward-compatible syntax for declaring a table WITHOUT OIDS, creating a table WITH OIDS
is not supported anymore.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON COMMIT.
The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If not
specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

query

A SELECT, TABLE, or VALUES command, or an EXECUTE command that runs a prepared SELECT, TABLE,
or VALUES query.

WITH [NO] DATA

This clause specifies whether or not the data produced by the query should be copied into the new
table. If not, only the table structure is copied. The default is to copy the data.

Notes
This command is functionally similar to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT INTO syntax. Furthermore, CREATE TABLE AS offers a superset
of the functionality offered by SELECT INTO.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS
 SELECT * FROM films WHERE date_prod >= '2002-01-01';

To copy a table completely, the short form using the TABLE command can also be used:

CREATE TABLE films2 AS
 TABLE films;

1668

CREATE TABLE AS

Create a new temporary table films_recent, consisting of only recent entries from the table films,
using a prepared statement. The new table will be dropped at commit:

PREPARE recentfilms(date) AS
 SELECT * FROM films WHERE date_prod > $1;
CREATE TEMP TABLE films_recent ON COMMIT DROP AS
 EXECUTE recentfilms('2002-01-01');

Compatibility
CREATE TABLE AS conforms to the SQL standard. The following are nonstandard extensions:
• The standard requires parentheses around the subquery clause; in PostgreSQL, these parentheses

are optional.
• In the standard, the WITH [NO] DATA clause is required; in PostgreSQL it is optional.
• PostgreSQL handles temporary tables in a way rather different from the standard; see CREATE TA-

BLE for details.
• The WITH clause is a PostgreSQL extension; storage parameters are not in the standard.
• The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clause TABLESPACE

is an extension.

See Also
CREATE MATERIALIZED VIEW, CREATE TABLE, EXECUTE, SELECT, SELECT INTO, VALUES

1669

CREATE TABLESPACE
CREATE TABLESPACE — define a new tablespace

Synopsis
CREATE TABLESPACE tablespace_name
 [OWNER { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }]
 LOCATION 'directory'
 [WITH (tablespace_option = value [, ...])]

Description
CREATE TABLESPACE registers a new cluster-wide tablespace. The tablespace name must be distinct from
the name of any existing tablespace in the database cluster.

A tablespace allows superusers to define an alternative location on the file system where the data files
containing database objects (such as tables and indexes) can reside.

A user with appropriate privileges can pass tablespace_name to CREATE DATABASE, CREATE TABLE, CRE-
ATE INDEX or ADD CONSTRAINT to have the data files for these objects stored within the specified table-
space.

Warning
A tablespace cannot be used independently of the cluster in which it is defined; see Section 22.6.

Parameters
tablespace_name

The name of a tablespace to be created. The name cannot begin with pg_, as such names are reserved
for system tablespaces.

user_name

The name of the user who will own the tablespace. If omitted, defaults to the user executing the
command. Only superusers can create tablespaces, but they can assign ownership of tablespaces
to non-superusers.

directory

The directory that will be used for the tablespace. The directory must exist (CREATE TABLESPACE will
not create it), should be empty, and must be owned by the PostgreSQL system user. The directory
must be specified by an absolute path name.

tablespace_option

A tablespace parameter to be set or reset. Currently, the only available parameters are se-
q_page_cost, random_page_cost, effective_io_concurrency and maintenance_io_concurrency.
Setting these values for a particular tablespace will override the planner's usual estimate of the cost
of reading pages from tables in that tablespace, and how many concurrent I/Os are issued, as estab-
lished by the configuration parameters of the same name (see seq_page_cost, random_page_cost,
effective_io_concurrency, maintenance_io_concurrency). This may be useful if one tablespace is lo-
cated on a disk which is faster or slower than the remainder of the I/O subsystem.

Notes
CREATE TABLESPACE cannot be executed inside a transaction block.

1670

CREATE TABLESPACE

Examples
To create a tablespace dbspace at file system location /data/dbs, first create the directory using oper-
ating system facilities and set the correct ownership:

mkdir /data/dbs
chown postgres:postgres /data/dbs

Then issue the tablespace creation command inside PostgreSQL:

CREATE TABLESPACE dbspace LOCATION '/data/dbs';

To create a tablespace owned by a different database user, use a command like this:

CREATE TABLESPACE indexspace OWNER genevieve LOCATION '/data/indexes';

Compatibility
CREATE TABLESPACE is a PostgreSQL extension.

See Also
CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER TABLESPACE

1671

CREATE TEXT SEARCH CONFIGURATION
CREATE TEXT SEARCH CONFIGURATION — define a new text search configuration

Synopsis
CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |
 COPY = source_config
)

Description
CREATE TEXT SEARCH CONFIGURATION creates a new text search configuration. A text search configura-
tion specifies a text search parser that can divide a string into tokens, plus dictionaries that can be used
to determine which tokens are of interest for searching.

If only the parser is specified, then the new text search configuration initially has no mappings from
token types to dictionaries, and therefore will ignore all words. Subsequent ALTER TEXT SEARCH CON-
FIGURATION commands must be used to create mappings to make the configuration useful. Alternatively,
an existing text search configuration can be copied.

If a schema name is given then the text search configuration is created in the specified schema. Other-
wise it is created in the current schema.

The user who defines a text search configuration becomes its owner.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search configuration to be created. The name can be schema-qualified.

parser_name

The name of the text search parser to use for this configuration.

source_config

The name of an existing text search configuration to copy.

Notes
The PARSER and COPY options are mutually exclusive, because when an existing configuration is copied,
its parser selection is copied too.

Compatibility
There is no CREATE TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1672

CREATE TEXT SEARCH DICTIONARY
CREATE TEXT SEARCH DICTIONARY — define a new text search dictionary

Synopsis
CREATE TEXT SEARCH DICTIONARY name (
 TEMPLATE = template
 [, option = value [, ...]]
)

Description
CREATE TEXT SEARCH DICTIONARY creates a new text search dictionary. A text search dictionary specifies
a way of recognizing interesting or uninteresting words for searching. A dictionary depends on a text
search template, which specifies the functions that actually perform the work. Typically the dictionary
provides some options that control the detailed behavior of the template's functions.

If a schema name is given then the text search dictionary is created in the specified schema. Otherwise
it is created in the current schema.

The user who defines a text search dictionary becomes its owner.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search dictionary to be created. The name can be schema-qualified.

template

The name of the text search template that will define the basic behavior of this dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The value to use for a template-specific option. If the value is not a simple identifier or number, it
must be quoted (but you can always quote it, if you wish).

The options can appear in any order.

Examples
The following example command creates a Snowball-based dictionary with a nonstandard list of stop
words.

CREATE TEXT SEARCH DICTIONARY my_russian (
 template = snowball,
 language = russian,
 stopwords = myrussian
);

Compatibility
There is no CREATE TEXT SEARCH DICTIONARY statement in the SQL standard.

1673

CREATE TEXT
SEARCH DICTIONARY

See Also
ALTER TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1674

CREATE TEXT SEARCH PARSER
CREATE TEXT SEARCH PARSER — define a new text search parser

Synopsis
CREATE TEXT SEARCH PARSER name (
 START = start_function ,
 GETTOKEN = gettoken_function ,
 END = end_function ,
 LEXTYPES = lextypes_function
 [, HEADLINE = headline_function]
)

Description
CREATE TEXT SEARCH PARSER creates a new text search parser. A text search parser defines a method
for splitting a text string into tokens and assigning types (categories) to the tokens. A parser is not
particularly useful by itself, but must be bound into a text search configuration along with some text
search dictionaries to be used for searching.

If a schema name is given then the text search parser is created in the specified schema. Otherwise it
is created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH PARSER. (This restriction is made because an
erroneous text search parser definition could confuse or even crash the server.)

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search parser to be created. The name can be schema-qualified.

start_function

The name of the start function for the parser.

gettoken_function

The name of the get-next-token function for the parser.

end_function

The name of the end function for the parser.

lextypes_function

The name of the lextypes function for the parser (a function that returns information about the set
of token types it produces).

headline_function

The name of the headline function for the parser (a function that summarizes a set of tokens).

The function names can be schema-qualified if necessary. Argument types are not given, since the ar-
gument list for each type of function is predetermined. All except the headline function are required.

The arguments can appear in any order, not only the one shown above.

1675

CREATE TEXT SEARCH PARSER

Compatibility
There is no CREATE TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1676

CREATE TEXT SEARCH TEMPLATE
CREATE TEXT SEARCH TEMPLATE — define a new text search template

Synopsis
CREATE TEXT SEARCH TEMPLATE name (
 [INIT = init_function ,]
 LEXIZE = lexize_function
)

Description
CREATE TEXT SEARCH TEMPLATE creates a new text search template. Text search templates define the
functions that implement text search dictionaries. A template is not useful by itself, but must be instan-
tiated as a dictionary to be used. The dictionary typically specifies parameters to be given to the tem-
plate functions.

If a schema name is given then the text search template is created in the specified schema. Otherwise
it is created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH TEMPLATE. This restriction is made because an
erroneous text search template definition could confuse or even crash the server. The reason for sep-
arating templates from dictionaries is that a template encapsulates the “unsafe” aspects of defining a
dictionary. The parameters that can be set when defining a dictionary are safe for unprivileged users to
set, and so creating a dictionary need not be a privileged operation.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search template to be created. The name can be schema-qualified.

init_function

The name of the init function for the template.

lexize_function

The name of the lexize function for the template.

The function names can be schema-qualified if necessary. Argument types are not given, since the argu-
ment list for each type of function is predetermined. The lexize function is required, but the init function
is optional.

The arguments can appear in any order, not only the one shown above.

Compatibility
There is no CREATE TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1677

CREATE TRANSFORM
CREATE TRANSFORM — define a new transform

Synopsis
CREATE [OR REPLACE] TRANSFORM FOR type_name LANGUAGE lang_name (
 FROM SQL WITH FUNCTION from_sql_function_name [(argument_type [, ...])],
 TO SQL WITH FUNCTION to_sql_function_name [(argument_type [, ...])]
);

Description
CREATE TRANSFORM defines a new transform. CREATE OR REPLACE TRANSFORM will either create a new
transform, or replace an existing definition.

A transform specifies how to adapt a data type to a procedural language. For example, when writing a
function in PL/Python using the hstore type, PL/Python has no prior knowledge how to present hstore
values in the Python environment. Language implementations usually default to using the text repre-
sentation, but that is inconvenient when, for example, an associative array or a list would be more ap-
propriate.

A transform specifies two functions:
• A “from SQL” function that converts the type from the SQL environment to the language. This func-

tion will be invoked on the arguments of a function written in the language.
• A “to SQL” function that converts the type from the language to the SQL environment. This function

will be invoked on the return value of a function written in the language.
It is not necessary to provide both of these functions. If one is not specified, the language-specific default
behavior will be used if necessary. (To prevent a transformation in a certain direction from happening
at all, you could also write a transform function that always errors out.)

To be able to create a transform, you must own and have USAGE privilege on the type, have USAGE privilege
on the language, and own and have EXECUTE privilege on the from-SQL and to-SQL functions, if specified.

Parameters
type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

from_sql_function_name[(argument_type [, ...])]

The name of the function for converting the type from the SQL environment to the language. It
must take one argument of type internal and return type internal. The actual argument will be of
the type for the transform, and the function should be coded as if it were. (But it is not allowed to
declare an SQL-level function returning internal without at least one argument of type internal.)
The actual return value will be something specific to the language implementation. If no argument
list is specified, the function name must be unique in its schema.

to_sql_function_name[(argument_type [, ...])]

The name of the function for converting the type from the language to the SQL environment. It must
take one argument of type internal and return the type that is the type for the transform. The actual
argument value will be something specific to the language implementation. If no argument list is
specified, the function name must be unique in its schema.

1678

CREATE TRANSFORM

Notes
Use DROP TRANSFORM to remove transforms.

Examples
To create a transform for type hstore and language plpython3u, first set up the type and the language:

CREATE TYPE hstore ...;

CREATE EXTENSION plpython3u;

Then create the necessary functions:

CREATE FUNCTION hstore_to_plpython(val internal) RETURNS internal
LANGUAGE C STRICT IMMUTABLE
AS ...;

CREATE FUNCTION plpython_to_hstore(val internal) RETURNS hstore
LANGUAGE C STRICT IMMUTABLE
AS ...;

And finally create the transform to connect them all together:

CREATE TRANSFORM FOR hstore LANGUAGE plpython3u (
 FROM SQL WITH FUNCTION hstore_to_plpython(internal),
 TO SQL WITH FUNCTION plpython_to_hstore(internal)
);

In practice, these commands would be wrapped up in an extension.

The contrib section contains a number of extensions that provide transforms, which can serve as re-
al-world examples.

Compatibility
This form of CREATE TRANSFORM is a PostgreSQL extension. There is a CREATE TRANSFORM command in
the SQL standard, but it is for adapting data types to client languages. That usage is not supported by
PostgreSQL.

See Also
CREATE FUNCTION, CREATE LANGUAGE, CREATE TYPE, DROP TRANSFORM

1679

CREATE TRIGGER
CREATE TRIGGER — define a new trigger

Synopsis
CREATE [OR REPLACE] [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF }
 { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
 [REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

where event can be one of:

 INSERT
 UPDATE [OF column_name [, ...]]
 DELETE
 TRUNCATE

Description
CREATE TRIGGER creates a new trigger. CREATE OR REPLACE TRIGGER will either create a new trigger,
or replace an existing trigger. The trigger will be associated with the specified table, view, or foreign
table and will execute the specified function function_name when certain operations are performed on
that table.

To replace the current definition of an existing trigger, use CREATE OR REPLACE TRIGGER, specifying the
existing trigger's name and parent table. All other properties are replaced.

The trigger can be specified to fire before the operation is attempted on a row (before constraints are
checked and the INSERT, UPDATE, or DELETE is attempted); or after the operation has completed (after
constraints are checked and the INSERT, UPDATE, or DELETE has completed); or instead of the operation
(in the case of inserts, updates or deletes on a view). If the trigger fires before or instead of the event,
the trigger can skip the operation for the current row, or change the row being inserted (for INSERT and
UPDATE operations only). If the trigger fires after the event, all changes, including the effects of other
triggers, are “visible” to the trigger.

A trigger that is marked FOR EACH ROW is called once for every row that the operation modifies. For
example, a DELETE that affects 10 rows will cause any ON DELETE triggers on the target relation to be
called 10 separate times, once for each deleted row. In contrast, a trigger that is marked FOR EACH
STATEMENT only executes once for any given operation, regardless of how many rows it modifies (in
particular, an operation that modifies zero rows will still result in the execution of any applicable FOR
EACH STATEMENT triggers).

Triggers that are specified to fire INSTEAD OF the trigger event must be marked FOR EACH ROW, and can
only be defined on views. BEFORE and AFTER triggers on a view must be marked as FOR EACH STATEMENT.

In addition, triggers may be defined to fire for TRUNCATE, though only FOR EACH STATEMENT.

The following table summarizes which types of triggers may be used on tables, views, and foreign tables:

When Event Row-level Statement-level
BEFORE INSERT/UPDATE/DELETE Tables and for-

eign tables
Tables, views,

 and foreign tables

1680

CREATE TRIGGER

When Event Row-level Statement-level
TRUNCATE — Tables and for-

eign tables
INSERT/UPDATE/DELETE Tables and for-

eign tables
Tables, views,

 and foreign tables
AFTER

TRUNCATE — Tables and for-
eign tables

INSERT/UPDATE/DELETE Views —INSTEAD OF

TRUNCATE — —

Also, a trigger definition can specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values
of columns of the row. Statement-level triggers can also have WHEN conditions, although the feature is
not so useful for them since the condition cannot refer to any values in the table.

If multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical
order by name.

When the CONSTRAINT option is specified, this command creates a constraint trigger. This is the same
as a regular trigger except that the timing of the trigger firing can be adjusted using SET CONSTRAINTS.
Constraint triggers must be AFTER ROW triggers on plain tables (not foreign tables). They can be fired ei-
ther at the end of the statement causing the triggering event, or at the end of the containing transaction;
in the latter case they are said to be deferred. A pending deferred-trigger firing can also be forced to
happen immediately by using SET CONSTRAINTS. Constraint triggers are expected to raise an exception
when the constraints they implement are violated.

The REFERENCING option enables collection of transition relations, which are row sets that include all of
the rows inserted, deleted, or modified by the current SQL statement. This feature lets the trigger see a
global view of what the statement did, not just one row at a time. This option is only allowed for an AFTER
trigger on a plain table (not a foreign table). The trigger should not be a constraint trigger. Also, if the
trigger is an UPDATE trigger, it must not specify a column_name list when using this option. OLD TABLE
may only be specified once, and only for a trigger that can fire on UPDATE or DELETE; it creates a transition
relation containing the before-images of all rows updated or deleted by the statement. Similarly, NEW
TABLE may only be specified once, and only for a trigger that can fire on UPDATE or INSERT; it creates a
transition relation containing the after-images of all rows updated or inserted by the statement.

SELECT does not modify any rows so you cannot create SELECT triggers. Rules and views may provide
workable solutions to problems that seem to need SELECT triggers.

Refer to Chapter 37 for more information about triggers.

Parameters
name

The name to give the new trigger. This must be distinct from the name of any other trigger for the
same table. The name cannot be schema-qualified — the trigger inherits the schema of its table. For
a constraint trigger, this is also the name to use when modifying the trigger's behavior using SET
CONSTRAINTS.

BEFORE
AFTER
INSTEAD OF

Determines whether the function is called before, after, or instead of the event. A constraint trigger
can only be specified as AFTER.

1681

CREATE TRIGGER

event

One of INSERT, UPDATE, DELETE, or TRUNCATE; this specifies the event that will fire the trigger. Multiple
events can be specified using OR, except when transition relations are requested.

For UPDATE events, it is possible to specify a list of columns using this syntax:

UPDATE OF column_name1 [, column_name2 ...]

The trigger will only fire if at least one of the listed columns is mentioned as a target of the UPDATE
command or if one of the listed columns is a generated column that depends on a column that is
the target of the UPDATE.

INSTEAD OF UPDATE events do not allow a list of columns. A column list cannot be specified when
requesting transition relations, either.

table_name

The name (optionally schema-qualified) of the table, view, or foreign table the trigger is for.

referenced_table_name

The (possibly schema-qualified) name of another table referenced by the constraint. This option is
used for foreign-key constraints and is not recommended for general use. This can only be specified
for constraint triggers.

DEFERRABLE
NOT DEFERRABLE
INITIALLY IMMEDIATE
INITIALLY DEFERRED

The default timing of the trigger. See the CREATE TABLE documentation for details of these con-
straint options. This can only be specified for constraint triggers.

REFERENCING

This keyword immediately precedes the declaration of one or two relation names that provide access
to the transition relations of the triggering statement.

OLD TABLE
NEW TABLE

This clause indicates whether the following relation name is for the before-image transition relation
or the after-image transition relation.

transition_relation_name

The (unqualified) name to be used within the trigger for this transition relation.

FOR EACH ROW
FOR EACH STATEMENT

This specifies whether the trigger function should be fired once for every row affected by the trigger
event, or just once per SQL statement. If neither is specified, FOR EACH STATEMENT is the default.
Constraint triggers can only be specified FOR EACH ROW.

condition

A Boolean expression that determines whether the trigger function will actually be executed. If WHEN
is specified, the function will only be called if the condition returns true. In FOR EACH ROW triggers,
the WHEN condition can refer to columns of the old and/or new row values by writing OLD.column_name
or NEW.column_name respectively. Of course, INSERT triggers cannot refer to OLD and DELETE triggers
cannot refer to NEW.

1682

CREATE TRIGGER

INSTEAD OF triggers do not support WHEN conditions.

Currently, WHEN expressions cannot contain subqueries.

Note that for constraint triggers, evaluation of the WHEN condition is not deferred, but occurs imme-
diately after the row update operation is performed. If the condition does not evaluate to true then
the trigger is not queued for deferred execution.

function_name

A user-supplied function that is declared as taking no arguments and returning type trigger, which
is executed when the trigger fires.

In the syntax of CREATE TRIGGER, the keywords FUNCTION and PROCEDURE are equivalent, but the ref-
erenced function must in any case be a function, not a procedure. The use of the keyword PROCEDURE
here is historical and deprecated.

arguments

An optional comma-separated list of arguments to be provided to the function when the trigger
is executed. The arguments are literal string constants. Simple names and numeric constants can
be written here, too, but they will all be converted to strings. Please check the description of the
implementation language of the trigger function to find out how these arguments can be accessed
within the function; it might be different from normal function arguments.

Notes
To create or replace a trigger on a table, the user must have the TRIGGER privilege on the table. The user
must also have EXECUTE privilege on the trigger function.

Use DROP TRIGGER to remove a trigger.

Creating a row-level trigger on a partitioned table will cause an identical “clone” trigger to be created on
each of its existing partitions; and any partitions created or attached later will have an identical trigger,
too. If there is a conflictingly-named trigger on a child partition already, an error occurs unless CREATE
OR REPLACE TRIGGER is used, in which case that trigger is replaced with a clone trigger. When a partition
is detached from its parent, its clone triggers are removed.

A column-specific trigger (one defined using the UPDATE OF column_name syntax) will fire when any of
its columns are listed as targets in the UPDATE command's SET list. It is possible for a column's value
to change even when the trigger is not fired, because changes made to the row's contents by BEFORE
UPDATE triggers are not considered. Conversely, a command such as UPDATE ... SET x = x ... will
fire a trigger on column x, even though the column's value did not change.

In a BEFORE trigger, the WHEN condition is evaluated just before the function is or would be executed,
so using WHEN is not materially different from testing the same condition at the beginning of the trigger
function. Note in particular that the NEW row seen by the condition is the current value, as possibly
modified by earlier triggers. Also, a BEFORE trigger's WHEN condition is not allowed to examine the system
columns of the NEW row (such as ctid), because those won't have been set yet.

In an AFTER trigger, the WHEN condition is evaluated just after the row update occurs, and it determines
whether an event is queued to fire the trigger at the end of statement. So when an AFTER trigger's WHEN
condition does not return true, it is not necessary to queue an event nor to re-fetch the row at end of
statement. This can result in significant speedups in statements that modify many rows, if the trigger
only needs to be fired for a few of the rows.

In some cases it is possible for a single SQL command to fire more than one kind of trigger. For instance
an INSERT with an ON CONFLICT DO UPDATE clause may cause both insert and update operations, so it
will fire both kinds of triggers as needed. The transition relations supplied to triggers are specific to
their event type; thus an INSERT trigger will see only the inserted rows, while an UPDATE trigger will
see only the updated rows.

1683

CREATE TRIGGER

Row updates or deletions caused by foreign-key enforcement actions, such as ON UPDATE CASCADE or ON
DELETE SET NULL, are treated as part of the SQL command that caused them (note that such actions are
never deferred). Relevant triggers on the affected table will be fired, so that this provides another way in
which an SQL command might fire triggers not directly matching its type. In simple cases, triggers that
request transition relations will see all changes caused in their table by a single original SQL command
as a single transition relation. However, there are cases in which the presence of an AFTER ROW trigger
that requests transition relations will cause the foreign-key enforcement actions triggered by a single
SQL command to be split into multiple steps, each with its own transition relation(s). In such cases,
any statement-level triggers that are present will be fired once per creation of a transition relation set,
ensuring that the triggers see each affected row in a transition relation once and only once.

Statement-level triggers on a view are fired only if the action on the view is handled by a row-level
INSTEAD OF trigger. If the action is handled by an INSTEAD rule, then whatever statements are emitted
by the rule are executed in place of the original statement naming the view, so that the triggers that will
be fired are those on tables named in the replacement statements. Similarly, if the view is automatically
updatable, then the action is handled by automatically rewriting the statement into an action on the
view's base table, so that the base table's statement-level triggers are the ones that are fired.

Modifying a partitioned table or a table with inheritance children fires statement-level triggers attached
to the explicitly named table, but not statement-level triggers for its partitions or child tables. In contrast,
row-level triggers are fired on the rows in affected partitions or child tables, even if they are not explicitly
named in the query. If a statement-level trigger has been defined with transition relations named by a
REFERENCING clause, then before and after images of rows are visible from all affected partitions or child
tables. In the case of inheritance children, the row images include only columns that are present in the
table that the trigger is attached to.

Currently, row-level triggers with transition relations cannot be defined on partitions or inheritance
child tables. Also, triggers on partitioned tables may not be INSTEAD OF.

Currently, the OR REPLACE option is not supported for constraint triggers.

Replacing an existing trigger within a transaction that has already performed updating actions on the
trigger's table is not recommended. Trigger firing decisions, or portions of firing decisions, that have
already been made will not be reconsidered, so the effects could be surprising.

There are a few built-in trigger functions that can be used to solve common problems without having
to write your own trigger code; see Section 9.29.

Examples
Execute the function check_account_update whenever a row of the table accounts is about to be up-
dated:

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

Modify that trigger definition to only execute the function if column balance is specified as a target in
the UPDATE command:

CREATE OR REPLACE TRIGGER check_update
 BEFORE UPDATE OF balance ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

This form only executes the function if column balance has in fact changed value:

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW

1684

CREATE TRIGGER

 WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
 EXECUTE FUNCTION check_account_update();

Call a function to log updates of accounts, but only if something changed:

CREATE TRIGGER log_update
 AFTER UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.* IS DISTINCT FROM NEW.*)
 EXECUTE FUNCTION log_account_update();

Execute the function view_insert_row for each row to insert rows into the tables underlying a view:

CREATE TRIGGER view_insert
 INSTEAD OF INSERT ON my_view
 FOR EACH ROW
 EXECUTE FUNCTION view_insert_row();

Execute the function check_transfer_balances_to_zero for each statement to confirm that the trans-
fer rows offset to a net of zero:

CREATE TRIGGER transfer_insert
 AFTER INSERT ON transfer
 REFERENCING NEW TABLE AS inserted
 FOR EACH STATEMENT
 EXECUTE FUNCTION check_transfer_balances_to_zero();

Execute the function check_matching_pairs for each row to confirm that changes are made to matching
pairs at the same time (by the same statement):

CREATE TRIGGER paired_items_update
 AFTER UPDATE ON paired_items
 REFERENCING NEW TABLE AS newtab OLD TABLE AS oldtab
 FOR EACH ROW
 EXECUTE FUNCTION check_matching_pairs();

Section 37.4 contains a complete example of a trigger function written in C.

Compatibility
The CREATE TRIGGER statement in PostgreSQL implements a subset of the SQL standard. The following
functionalities are currently missing:
• While transition table names for AFTER triggers are specified using the REFERENCING clause in the

standard way, the row variables used in FOR EACH ROW triggers may not be specified in a REFER-
ENCING clause. They are available in a manner that is dependent on the language in which the trig-
ger function is written, but is fixed for any one language. Some languages effectively behave as
though there is a REFERENCING clause containing OLD ROW AS OLD NEW ROW AS NEW.

• The standard allows transition tables to be used with column-specific UPDATE triggers, but then the
set of rows that should be visible in the transition tables depends on the trigger's column list. This
is not currently implemented by PostgreSQL.

• PostgreSQL only allows the execution of a user-defined function for the triggered action. The stan-
dard allows the execution of a number of other SQL commands, such as CREATE TABLE, as the trig-
gered action. This limitation is not hard to work around by creating a user-defined function that ex-
ecutes the desired commands.

SQL specifies that multiple triggers should be fired in time-of-creation order. PostgreSQL uses name
order, which was judged to be more convenient.

SQL specifies that BEFORE DELETE triggers on cascaded deletes fire after the cascaded DELETE completes.
The PostgreSQL behavior is for BEFORE DELETE to always fire before the delete action, even a cascading
one. This is considered more consistent. There is also nonstandard behavior if BEFORE triggers modify

1685

CREATE TRIGGER

rows or prevent updates during an update that is caused by a referential action. This can lead to con-
straint violations or stored data that does not honor the referential constraint.

The ability to specify multiple actions for a single trigger using OR is a PostgreSQL extension of the SQL
standard.

The ability to fire triggers for TRUNCATE is a PostgreSQL extension of the SQL standard, as is the ability
to define statement-level triggers on views.

CREATE CONSTRAINT TRIGGER is a PostgreSQL extension of the SQL standard. So is the OR REPLACE
option.

See Also
ALTER TRIGGER, DROP TRIGGER, CREATE FUNCTION, SET CONSTRAINTS

1686

CREATE TYPE
CREATE TYPE — define a new data type

Synopsis
CREATE TYPE name AS
 ([attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
 [, MULTIRANGE_TYPE_NAME = multirange_type_name]
)

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, ANALYZE = analyze_function]
 [, SUBSCRIPT = subscript_function]
 [, INTERNALLENGTH = { internallength | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type]
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
)

CREATE TYPE name

Description
CREATE TYPE registers a new data type for use in the current database. The user who defines a type
becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in
the current schema. The type name must be distinct from the name of any existing type or domain in
the same schema. (Because tables have associated data types, the type name must also be distinct from
the name of any existing table in the same schema.)

There are five forms of CREATE TYPE, as shown in the syntax synopsis above. They respectively create
a composite type, an enum type, a range type, a base type, or a shell type. The first four of these are

1687

CREATE TYPE

discussed in turn below. A shell type is simply a placeholder for a type to be defined later; it is created
by issuing CREATE TYPE with no parameters except for the type name. Shell types are needed as forward
references when creating range types and base types, as discussed in those sections.

Composite Types
The first form of CREATE TYPE creates a composite type. The composite type is specified by a list of
attribute names and data types. An attribute's collation can be specified too, if its data type is collatable.
A composite type is essentially the same as the row type of a table, but using CREATE TYPE avoids the
need to create an actual table when all that is wanted is to define a type. A stand-alone composite type
is useful, for example, as the argument or return type of a function.

To be able to create a composite type, you must have USAGE privilege on all attribute types.

Enumerated Types
The second form of CREATE TYPE creates an enumerated (enum) type, as described in Section 8.7. Enum
types take a list of quoted labels, each of which must be less than NAMEDATALEN bytes long (64 bytes in
a standard PostgreSQL build). (It is possible to create an enumerated type with zero labels, but such a
type cannot be used to hold values before at least one label is added using ALTER TYPE.)

Range Types
The third form of CREATE TYPE creates a new range type, as described in Section 8.17.

The range type's subtype can be any type with an associated b-tree operator class (to determine the
ordering of values for the range type). Normally the subtype's default b-tree operator class is used to
determine ordering; to use a non-default operator class, specify its name with subtype_opclass. If the
subtype is collatable, and you want to use a non-default collation in the range's ordering, specify the
desired collation with the collation option.

The optional canonical function must take one argument of the range type being defined, and return
a value of the same type. This is used to convert range values to a canonical form, when applicable.
See Section 8.17.8 for more information. Creating a canonical function is a bit tricky, since it must
be defined before the range type can be declared. To do this, you must first create a shell type, which
is a placeholder type that has no properties except a name and an owner. This is done by issuing the
command CREATE TYPE name, with no additional parameters. Then the function can be declared using
the shell type as argument and result, and finally the range type can be declared using the same name.
This automatically replaces the shell type entry with a valid range type.

The optional subtype_diff function must take two values of the subtype type as argument, and return
a double precision value representing the difference between the two given values. While this is
optional, providing it allows much greater efficiency of GiST indexes on columns of the range type. See
Section 8.17.8 for more information.

The optional multirange_type_name parameter specifies the name of the corresponding multirange
type. If not specified, this name is chosen automatically as follows. If the range type name contains the
substring range, then the multirange type name is formed by replacement of the range substring with
multirange in the range type name. Otherwise, the multirange type name is formed by appending a
_multirange suffix to the range type name.

Base Types
The fourth form of CREATE TYPE creates a new base type (scalar type). To create a new base type, you
must be a superuser. (This restriction is made because an erroneous type definition could confuse or
even crash the server.)

The parameters can appear in any order, not only that illustrated above, and most are optional. You
must register two or more functions (using CREATE FUNCTION) before defining the type. The support
functions input_function and output_function are required, while the functions receive_function,

1688

CREATE TYPE

send_function, type_modifier_input_function, type_modifier_output_function, analyze_func-
tion, and subscript_function are optional. Generally these functions have to be coded in C or another
low-level language.

The input_function converts the type's external textual representation to the internal representation
used by the operators and functions defined for the type. output_function performs the reverse trans-
formation. The input function can be declared as taking one argument of type cstring, or as taking
three arguments of types cstring, oid, integer. The first argument is the input text as a C string, the
second argument is the type's own OID (except for array types, which instead receive their element
type's OID), and the third is the typmod of the destination column, if known (-1 will be passed if not). The
input function must return a value of the data type itself. Usually, an input function should be declared
STRICT; if it is not, it will be called with a NULL first parameter when reading a NULL input value.
The function must still return NULL in this case, unless it raises an error. (This case is mainly meant to
support domain input functions, which might need to reject NULL inputs.) The output function must be
declared as taking one argument of the new data type. The output function must return type cstring.
Output functions are not invoked for NULL values.

The optional receive_function converts the type's external binary representation to the internal rep-
resentation. If this function is not supplied, the type cannot participate in binary input. The binary rep-
resentation should be chosen to be cheap to convert to internal form, while being reasonably portable.
(For example, the standard integer data types use network byte order as the external binary representa-
tion, while the internal representation is in the machine's native byte order.) The receive function should
perform adequate checking to ensure that the value is valid. The receive function can be declared as
taking one argument of type internal, or as taking three arguments of types internal, oid, integer.
The first argument is a pointer to a StringInfo buffer holding the received byte string; the optional
arguments are the same as for the text input function. The receive function must return a value of the
data type itself. Usually, a receive function should be declared STRICT; if it is not, it will be called with
a NULL first parameter when reading a NULL input value. The function must still return NULL in this
case, unless it raises an error. (This case is mainly meant to support domain receive functions, which
might need to reject NULL inputs.) Similarly, the optional send_function converts from the internal
representation to the external binary representation. If this function is not supplied, the type cannot
participate in binary output. The send function must be declared as taking one argument of the new data
type. The send function must return type bytea. Send functions are not invoked for NULL values.

You should at this point be wondering how the input and output functions can be declared to have results
or arguments of the new type, when they have to be created before the new type can be created. The
answer is that the type should first be defined as a shell type, which is a placeholder type that has no
properties except a name and an owner. This is done by issuing the command CREATE TYPE name, with
no additional parameters. Then the C I/O functions can be defined referencing the shell type. Finally,
CREATE TYPE with a full definition replaces the shell entry with a complete, valid type definition, after
which the new type can be used normally.

The optional type_modifier_input_function and type_modifier_output_function are needed if the
type supports modifiers, that is optional constraints attached to a type declaration, such as char(5) or
numeric(30,2). PostgreSQL allows user-defined types to take one or more simple constants or identi-
fiers as modifiers. However, this information must be capable of being packed into a single non-nega-
tive integer value for storage in the system catalogs. The type_modifier_input_function is passed the
declared modifier(s) in the form of a cstring array. It must check the values for validity (throwing an
error if they are wrong), and if they are correct, return a single non-negative integer value that will be
stored as the column “typmod”. Type modifiers will be rejected if the type does not have a type_modi-
fier_input_function. The type_modifier_output_function converts the internal integer typmod val-
ue back to the correct form for user display. It must return a cstring value that is the exact string to
append to the type name; for example numeric's function might return (30,2). It is allowed to omit the
type_modifier_output_function, in which case the default display format is just the stored typmod
integer value enclosed in parentheses.

The optional analyze_function performs type-specific statistics collection for columns of the data type.
By default, ANALYZE will attempt to gather statistics using the type's “equals” and “less-than” operators,

1689

CREATE TYPE

if there is a default b-tree operator class for the type. For non-scalar types this behavior is likely to be
unsuitable, so it can be overridden by specifying a custom analysis function. The analysis function must
be declared to take a single argument of type internal, and return a boolean result. The detailed API
for analysis functions appears in src/include/commands/vacuum.h.

The optional subscript_function allows the data type to be subscripted in SQL commands. Specifying
this function does not cause the type to be considered a “true” array type; for example, it will not be a
candidate for the result type of ARRAY[] constructs. But if subscripting a value of the type is a natural
notation for extracting data from it, then a subscript_function can be written to define what that
means. The subscript function must be declared to take a single argument of type internal, and return
an internal result, which is a pointer to a struct of methods (functions) that implement subscripting.
The detailed API for subscript functions appears in src/include/nodes/subscripting.h. It may also be
useful to read the array implementation in src/backend/utils/adt/arraysubs.c, or the simpler code
in contrib/hstore/hstore_subs.c. Additional information appears in Array Types below.

While the details of the new type's internal representation are only known to the I/O functions and other
functions you create to work with the type, there are several properties of the internal representation
that must be declared to PostgreSQL. Foremost of these is internallength. Base data types can be
fixed-length, in which case internallength is a positive integer, or variable-length, indicated by setting
internallength to VARIABLE. (Internally, this is represented by setting typlen to -1.) The internal rep-
resentation of all variable-length types must start with a 4-byte integer giving the total length of this
value of the type. (Note that the length field is often encoded, as described in Section 66.2; it's unwise
to access it directly.)

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by value, rather than
by reference. Types passed by value must be fixed-length, and their internal representation cannot be
larger than the size of the Datum type (4 bytes on some machines, 8 bytes on others).

The alignment parameter specifies the storage alignment required for the data type. The allowed values
equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have an
alignment of at least 4, since they necessarily contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data types. (Only plain
is allowed for fixed-length types.) plain specifies that data of the type will always be stored in-line and
not compressed. extended specifies that the system will first try to compress a long data value, and will
move the value out of the main table row if it's still too long. external allows the value to be moved out
of the main table, but the system will not try to compress it. main allows compression, but discourages
moving the value out of the main table. (Data items with this storage strategy might still be moved out
of the main table if there is no other way to make a row fit, but they will be kept in the main table
preferentially over extended and external items.)

All storage values other than plain imply that the functions of the data type can handle values that have
been toasted, as described in Section 66.2 and Section 36.13.1. The specific other value given merely
determines the default TOAST storage strategy for columns of a toastable data type; users can pick other
strategies for individual columns using ALTER TABLE SET STORAGE.

The like_type parameter provides an alternative method for specifying the basic representation prop-
erties of a data type: copy them from some existing type. The values of internallength, passedbyvalue,
alignment, and storage are copied from the named type. (It is possible, though usually undesirable, to
override some of these values by specifying them along with the LIKE clause.) Specifying representation
this way is especially useful when the low-level implementation of the new type “piggybacks” on an
existing type in some fashion.

The category and preferred parameters can be used to help control which implicit cast will be applied
in ambiguous situations. Each data type belongs to a category named by a single ASCII character, and
each type is either “preferred” or not within its category. The parser will prefer casting to preferred types
(but only from other types within the same category) when this rule is helpful in resolving overloaded
functions or operators. For more details see Chapter 10. For types that have no implicit casts to or from

1690

CREATE TYPE

any other types, it is sufficient to leave these settings at the defaults. However, for a group of related
types that have implicit casts, it is often helpful to mark them all as belonging to a category and select
one or two of the “most general” types as being preferred within the category. The category parameter
is especially useful when adding a user-defined type to an existing built-in category, such as the numeric
or string types. However, it is also possible to create new entirely-user-defined type categories. Select
any ASCII character other than an upper-case letter to name such a category.

A default value can be specified, in case a user wants columns of the data type to default to something
other than the null value. Specify the default with the DEFAULT key word. (Such a default can be over-
ridden by an explicit DEFAULT clause attached to a particular column.)

To indicate that a type is a fixed-length array type, specify the type of the array elements using the
ELEMENT key word. For example, to define an array of 4-byte integers (int4), specify ELEMENT = int4.
For more details, see Array Types below.

To indicate the delimiter to be used between values in the external representation of arrays of this type,
delimiter can be set to a specific character. The default delimiter is the comma (,). Note that the
delimiter is associated with the array element type, not the array type itself.

If the optional Boolean parameter collatable is true, column definitions and expressions of the type
may carry collation information through use of the COLLATE clause. It is up to the implementations of the
functions operating on the type to actually make use of the collation information; this does not happen
automatically merely by marking the type collatable.

Array Types
Whenever a user-defined type is created, PostgreSQL automatically creates an associated array type,
whose name consists of the element type's name prepended with an underscore, and truncated if neces-
sary to keep it less than NAMEDATALEN bytes long. (If the name so generated collides with an existing type
name, the process is repeated until a non-colliding name is found.) This implicitly-created array type is
variable length and uses the built-in input and output functions array_in and array_out. Furthermore,
this type is what the system uses for constructs such as ARRAY[] over the user-defined type. The array
type tracks any changes in its element type's owner or schema, and is dropped if the element type is.

You might reasonably ask why there is an ELEMENT option, if the system makes the correct array type
automatically. The main case where it's useful to use ELEMENT is when you are making a fixed-length
type that happens to be internally an array of a number of identical things, and you want to allow these
things to be accessed directly by subscripting, in addition to whatever operations you plan to provide for
the type as a whole. For example, type point is represented as just two floating-point numbers, which
can be accessed using point[0] and point[1]. Note that this facility only works for fixed-length types
whose internal form is exactly a sequence of identical fixed-length fields. For historical reasons (i.e., this
is clearly wrong but it's far too late to change it), subscripting of fixed-length array types starts from
zero, rather than from one as for variable-length arrays.

Specifying the SUBSCRIPT option allows a data type to be subscripted, even though the system does not
otherwise regard it as an array type. The behavior just described for fixed-length arrays is actually im-
plemented by the SUBSCRIPT handler function raw_array_subscript_handler, which is used automati-
cally if you specify ELEMENT for a fixed-length type without also writing SUBSCRIPT.

When specifying a custom SUBSCRIPT function, it is not necessary to specify ELEMENT unless the
SUBSCRIPT handler function needs to consult typelem to find out what to return. Be aware that specifying
ELEMENT causes the system to assume that the new type contains, or is somehow physically dependent
on, the element type; thus for example changing properties of the element type won't be allowed if there
are any columns of the dependent type.

Parameters
name

The name (optionally schema-qualified) of a type to be created.

1691

CREATE TYPE

attribute_name

The name of an attribute (column) for the composite type.

data_type

The name of an existing data type to become a column of the composite type.

collation

The name of an existing collation to be associated with a column of a composite type, or with a range
type.

label

A string literal representing the textual label associated with one value of an enum type.

subtype

The name of the element type that the range type will represent ranges of.

subtype_operator_class

The name of a b-tree operator class for the subtype.

canonical_function

The name of the canonicalization function for the range type.

subtype_diff_function

The name of a difference function for the subtype.

multirange_type_name

The name of the corresponding multirange type.

input_function

The name of a function that converts data from the type's external textual form to its internal form.

output_function

The name of a function that converts data from the type's internal form to its external textual form.

receive_function

The name of a function that converts data from the type's external binary form to its internal form.

send_function

The name of a function that converts data from the type's internal form to its external binary form.

type_modifier_input_function

The name of a function that converts an array of modifier(s) for the type into internal form.

type_modifier_output_function

The name of a function that converts the internal form of the type's modifier(s) to external textual
form.

analyze_function

The name of a function that performs statistical analysis for the data type.

subscript_function

The name of a function that defines what subscripting a value of the data type does.

1692

CREATE TYPE

internallength

A numeric constant that specifies the length in bytes of the new type's internal representation. The
default assumption is that it is variable-length.

alignment

The storage alignment requirement of the data type. If specified, it must be char, int2, int4, or
double; the default is int4.

storage

The storage strategy for the data type. If specified, must be plain, external, extended, or main;
the default is plain.

like_type

The name of an existing data type that the new type will have the same representation as. The
values of internallength, passedbyvalue, alignment, and storage are copied from that type, unless
overridden by explicit specification elsewhere in this CREATE TYPE command.

category

The category code (a single ASCII character) for this type. The default is 'U' for “user-defined type”.
Other standard category codes can be found in Table 52.65. You may also choose other ASCII char-
acters in order to create custom categories.

preferred

True if this type is a preferred type within its type category, else false. The default is false. Be very
careful about creating a new preferred type within an existing type category, as this could cause
surprising changes in behavior.

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

collatable

True if this type's operations can use collation information. The default is false.

Notes
Because there are no restrictions on use of a data type once it's been created, creating a base type or
range type is tantamount to granting public execute permission on the functions mentioned in the type
definition. This is usually not an issue for the sorts of functions that are useful in a type definition. But
you might want to think twice before designing a type in a way that would require “secret” information
to be used while converting it to or from external form.

Before PostgreSQL version 8.3, the name of a generated array type was always exactly the element
type's name with one underscore character (_) prepended. (Type names were therefore restricted in
length to one fewer character than other names.) While this is still usually the case, the array type name
may vary from this in case of maximum-length names or collisions with user type names that begin
with underscore. Writing code that depends on this convention is therefore deprecated. Instead, use
pg_type.typarray to locate the array type associated with a given type.

It may be advisable to avoid using type and table names that begin with underscore. While the server
will change generated array type names to avoid collisions with user-given names, there is still risk

1693

CREATE TYPE

of confusion, particularly with old client software that may assume that type names beginning with
underscores always represent arrays.

Before PostgreSQL version 8.2, the shell-type creation syntax CREATE TYPE name did not exist. The way
to create a new base type was to create its input function first. In this approach, PostgreSQL will first see
the name of the new data type as the return type of the input function. The shell type is implicitly created
in this situation, and then it can be referenced in the definitions of the remaining I/O functions. This
approach still works, but is deprecated and might be disallowed in some future release. Also, to avoid
accidentally cluttering the catalogs with shell types as a result of simple typos in function definitions, a
shell type will only be made this way when the input function is written in C.

In PostgreSQL version 16 and later, it is desirable for base types' input functions to return “soft” errors
using the new errsave()/ereturn() mechanism, rather than throwing ereport() exceptions as in pre-
vious versions. See src/backend/utils/fmgr/README for more information.

Examples
This example creates a composite type and uses it in a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
 SELECT fooid, fooname FROM foo
$$ LANGUAGE SQL;

This example creates an enumerated type and uses it in a table definition:

CREATE TYPE bug_status AS ENUM ('new', 'open', 'closed');

CREATE TABLE bug (
 id serial,
 description text,
 status bug_status
);

This example creates a range type:

CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff = float8mi);

This example creates the base data type box and then uses the type in a table definition:

CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function
);

CREATE TABLE myboxes (
 id integer,
 description box
);

If the internal structure of box were an array of four float4 elements, we might instead use:

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,

1694

CREATE TYPE

 OUTPUT = my_box_out_function,
 ELEMENT = float4
);

which would allow a box value's component numbers to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (
 INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE
);
CREATE TABLE big_objs (
 id integer,
 obj bigobj
);

More examples, including suitable input and output functions, are in Section 36.13.

Compatibility
The first form of the CREATE TYPE command, which creates a composite type, conforms to the SQL
standard. The other forms are PostgreSQL extensions. The CREATE TYPE statement in the SQL standard
also defines other forms that are not implemented in PostgreSQL.

The ability to create a composite type with zero attributes is a PostgreSQL-specific deviation from the
standard (analogous to the same case in CREATE TABLE).

See Also
ALTER TYPE, CREATE DOMAIN, CREATE FUNCTION, DROP TYPE

1695

CREATE USER
CREATE USER — define a new database role

Synopsis
CREATE USER name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE USER is now an alias for CREATE ROLE. The only difference is that when the command is spelled
CREATE USER, LOGIN is assumed by default, whereas NOLOGIN is assumed when the command is spelled
CREATE ROLE.

Compatibility
The CREATE USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
CREATE ROLE

1696

CREATE USER MAPPING
CREATE USER MAPPING — define a new mapping of a user to a foreign server

Synopsis
CREATE USER MAPPING [IF NOT EXISTS] FOR { user_name | USER | CURRENT_ROLE |
 CURRENT_USER | PUBLIC }
 SERVER server_name
 [OPTIONS (option 'value' [, ...])]

Description
CREATE USER MAPPING defines a mapping of a user to a foreign server. A user mapping typically encap-
sulates connection information that a foreign-data wrapper uses together with the information encap-
sulated by a foreign server to access an external data resource.

The owner of a foreign server can create user mappings for that server for any user. Also, a user can
create a user mapping for their own user name if USAGE privilege on the server has been granted to
the user.

Parameters
IF NOT EXISTS

Do not throw an error if a mapping of the given user to the given foreign server already exists.
A notice is issued in this case. Note that there is no guarantee that the existing user mapping is
anything like the one that would have been created.

user_name

The name of an existing user that is mapped to foreign server. CURRENT_ROLE, CURRENT_USER, and
USER match the name of the current user. When PUBLIC is specified, a so-called public mapping is
created that is used when no user-specific mapping is applicable.

server_name

The name of an existing server for which the user mapping is to be created.

OPTIONS (option 'value' [, ...])

This clause specifies the options of the user mapping. The options typically define the actual user
name and password of the mapping. Option names must be unique. The allowed option names and
values are specific to the server's foreign-data wrapper.

Examples
Create a user mapping for user bob, server foo:

CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user 'bob', password 'secret');

Compatibility
CREATE USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER USER MAPPING, DROP USER MAPPING, CREATE FOREIGN DATA WRAPPER, CREATE SERV-
ER

1697

CREATE VIEW
CREATE VIEW — define a new view

Synopsis
CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name
 [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Description
CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run
every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced. The
new query must generate the same columns that were generated by the existing view query (that is, the
same column names in the same order and with the same data types), but it may add additional columns
to the end of the list. The calculations giving rise to the output columns may be completely different.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the view is created in
the specified schema. Otherwise it is created in the current schema. Temporary views exist in a special
schema, so a schema name cannot be given when creating a temporary view. The name of the view
must be distinct from the name of any other relation (table, sequence, index, view, materialized view,
or foreign table) in the same schema.

Parameters
TEMPORARY or TEMP

If specified, the view is created as a temporary view. Temporary views are automatically dropped
at the end of the current session. Existing permanent relations with the same name are not visible
to the current session while the temporary view exists, unless they are referenced with schema-
qualified names.

If any of the tables referenced by the view are temporary, the view is created as a temporary view
(whether TEMPORARY is specified or not).

RECURSIVE

Creates a recursive view. The syntax

CREATE RECURSIVE VIEW [schema .] view_name (column_names) AS SELECT ...;

is equivalent to

CREATE VIEW [schema .] view_name AS WITH RECURSIVE view_name (column_names) AS
 (SELECT ...) SELECT column_names FROM view_name;

A view column name list must be specified for a recursive view.

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names are
deduced from the query.

1698

CREATE VIEW

WITH (view_option_name [= view_option_value] [, ...])

This clause specifies optional parameters for a view; the following parameters are supported:

check_option (enum)

This parameter may be either local or cascaded, and is equivalent to specifying WITH [CASCADED
| LOCAL] CHECK OPTION (see below).

security_barrier (boolean)

This should be used if the view is intended to provide row-level security. See Section 39.5 for
full details.

security_invoker (boolean)

This option causes the underlying base relations to be checked against the privileges of the user
of the view rather than the view owner. See the notes below for full details.

All of the above options can be changed on existing views using ALTER VIEW.

query

A SELECT or VALUES command which will provide the columns and rows of the view.

WITH [CASCADED | LOCAL] CHECK OPTION

This option controls the behavior of automatically updatable views. When this option is specified,
INSERT, UPDATE, and MERGE commands on the view will be checked to ensure that new rows satisfy
the view-defining condition (that is, the new rows are checked to ensure that they are visible through
the view). If they are not, the update will be rejected. If the CHECK OPTION is not specified, INSERT,
UPDATE, and MERGE commands on the view are allowed to create rows that are not visible through
the view. The following check options are supported:

LOCAL

New rows are only checked against the conditions defined directly in the view itself. Any con-
ditions defined on underlying base views are not checked (unless they also specify the CHECK
OPTION).

CASCADED

New rows are checked against the conditions of the view and all underlying base views. If the
CHECK OPTION is specified, and neither LOCAL nor CASCADED is specified, then CASCADED is as-
sumed.

The CHECK OPTION may not be used with RECURSIVE views.

Note that the CHECK OPTION is only supported on views that are automatically updatable, and do not
have INSTEAD OF triggers or INSTEAD rules. If an automatically updatable view is defined on top of
a base view that has INSTEAD OF triggers, then the LOCAL CHECK OPTION may be used to check the
conditions on the automatically updatable view, but the conditions on the base view with INSTEAD OF
triggers will not be checked (a cascaded check option will not cascade down to a trigger-updatable
view, and any check options defined directly on a trigger-updatable view will be ignored). If the view
or any of its base relations has an INSTEAD rule that causes the INSERT or UPDATE command to be
rewritten, then all check options will be ignored in the rewritten query, including any checks from
automatically updatable views defined on top of the relation with the INSTEAD rule. MERGE is not
supported if the view or any of its base relations have rules.

Notes
Use the DROP VIEW statement to drop views.

1699

CREATE VIEW

Be careful that the names and types of the view's columns will be assigned the way you want. For
example:
CREATE VIEW vista AS SELECT 'Hello World';

is bad form because the column name defaults to ?column?; also, the column data type defaults to text,
which might not be what you wanted. Better style for a string literal in a view's result is something like:
CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

By default, access to the underlying base relations referenced in the view is determined by the permis-
sions of the view owner. In some cases, this can be used to provide secure but restricted access to the
underlying tables. However, not all views are secure against tampering; see Section 39.5 for details.

If the view has the security_invoker property set to true, access to the underlying base relations is
determined by the permissions of the user executing the query, rather than the view owner. Thus, the
user of a security invoker view must have the relevant permissions on the view and its underlying base
relations.

If any of the underlying base relations is a security invoker view, it will be treated as if it had been
accessed directly from the original query. Thus, a security invoker view will always check its underlying
base relations using the permissions of the current user, even if it is accessed from a view without the
security_invoker property.

If any of the underlying base relations has row-level security enabled, then by default, the row-level
security policies of the view owner are applied, and access to any additional relations referred to by those
policies is determined by the permissions of the view owner. However, if the view has security_invoker
set to true, then the policies and permissions of the invoking user are used instead, as if the base
relations had been referenced directly from the query using the view.

Functions called in the view are treated the same as if they had been called directly from the query
using the view. Therefore, the user of a view must have permissions to call all functions used by the
view. Functions in the view are executed with the privileges of the user executing the query or the
function owner, depending on whether the functions are defined as SECURITY INVOKER or SECURITY
DEFINER. Thus, for example, calling CURRENT_USER directly in a view will always return the invoking user,
not the view owner. This is not affected by the view's security_invoker setting, and so a view with
security_invoker set to false is not equivalent to a SECURITY DEFINER function and those concepts
should not be confused.

The user creating or replacing a view must have USAGE privileges on any schemas referred to in the
view query, in order to look up the referenced objects in those schemas. Note, however, that this lookup
only happens when the view is created or replaced. Therefore, the user of the view only requires the
USAGE privilege on the schema containing the view, not on the schemas referred to in the view query,
even for a security invoker view.

When CREATE OR REPLACE VIEW is used on an existing view, only the view's defining SELECT rule, plus
any WITH (...) parameters and its CHECK OPTION are changed. Other view properties, including
ownership, permissions, and non-SELECT rules, remain unchanged. You must own the view to replace
it (this includes being a member of the owning role).

Updatable Views
Simple views are automatically updatable: the system will allow INSERT, UPDATE, DELETE, and MERGE
statements to be used on the view in the same way as on a regular table. A view is automatically updatable
if it satisfies all of the following conditions:
• The view must have exactly one entry in its FROM list, which must be a table or another updatable

view.
• The view definition must not contain WITH, DISTINCT, GROUP BY, HAVING, LIMIT, or OFFSET clauses

at the top level.
• The view definition must not contain set operations (UNION, INTERSECT or EXCEPT) at the top level.

1700

CREATE VIEW

• The view's select list must not contain any aggregates, window functions or set-returning functions.

An automatically updatable view may contain a mix of updatable and non-updatable columns. A column
is updatable if it is a simple reference to an updatable column of the underlying base relation; otherwise
the column is read-only, and an error will be raised if an INSERT, UPDATE, or MERGE statement attempts
to assign a value to it.

If the view is automatically updatable the system will convert any INSERT, UPDATE, DELETE, or MERGE
statement on the view into the corresponding statement on the underlying base relation. INSERT state-
ments that have an ON CONFLICT UPDATE clause are fully supported.

If an automatically updatable view contains a WHERE condition, the condition restricts which rows of
the base relation are available to be modified by UPDATE, DELETE, and MERGE statements on the view.
However, an UPDATE or MERGE is allowed to change a row so that it no longer satisfies the WHERE condition,
and thus is no longer visible through the view. Similarly, an INSERT or MERGE command can potentially
insert base-relation rows that do not satisfy the WHERE condition and thus are not visible through the
view (ON CONFLICT UPDATE may similarly affect an existing row not visible through the view). The CHECK
OPTION may be used to prevent INSERT, UPDATE, and MERGE commands from creating such rows that are
not visible through the view.

If an automatically updatable view is marked with the security_barrier property then all the view's
WHERE conditions (and any conditions using operators which are marked as LEAKPROOF) will always be
evaluated before any conditions that a user of the view has added. See Section 39.5 for full details. Note
that, due to this, rows which are not ultimately returned (because they do not pass the user's WHERE
conditions) may still end up being locked. EXPLAIN can be used to see which conditions are applied at
the relation level (and therefore do not lock rows) and which are not.

A more complex view that does not satisfy all these conditions is read-only by default: the system will
not allow an INSERT, UPDATE, DELETE, or MERGE on the view. You can get the effect of an updatable view
by creating INSTEAD OF triggers on the view, which must convert attempted inserts, etc. on the view into
appropriate actions on other tables. For more information see CREATE TRIGGER. Another possibility is
to create rules (see CREATE RULE), but in practice triggers are easier to understand and use correctly.
Also note that MERGE is not supported on relations with rules.

Note that the user performing the insert, update or delete on the view must have the corresponding
insert, update or delete privilege on the view. In addition, by default, the view's owner must have the
relevant privileges on the underlying base relations, whereas the user performing the update does not
need any permissions on the underlying base relations (see Section 39.5). However, if the view has
security_invoker set to true, the user performing the update, rather than the view owner, must have
the relevant privileges on the underlying base relations.

Examples
Create a view consisting of all comedy films:

CREATE VIEW comedies AS
 SELECT *
 FROM films
 WHERE kind = 'Comedy';

This will create a view containing the columns that are in the film table at the time of view creation.
Though * was used to create the view, columns added later to the table will not be part of the view.

Create a view with LOCAL CHECK OPTION:

CREATE VIEW universal_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'U'
 WITH LOCAL CHECK OPTION;

1701

CREATE VIEW

This will create a view based on the comedies view, showing only films with kind = 'Comedy' and
classification = 'U'. Any attempt to INSERT or UPDATE a row in the view will be rejected if the new
row doesn't have classification = 'U', but the film kind will not be checked.

Create a view with CASCADED CHECK OPTION:

CREATE VIEW pg_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'PG'
 WITH CASCADED CHECK OPTION;

This will create a view that checks both the kind and classification of new rows.

Create a view with a mix of updatable and non-updatable columns:

CREATE VIEW comedies AS
 SELECT f.*,
 country_code_to_name(f.country_code) AS country,
 (SELECT avg(r.rating)
 FROM user_ratings r
 WHERE r.film_id = f.id) AS avg_rating
 FROM films f
 WHERE f.kind = 'Comedy';

This view will support INSERT, UPDATE and DELETE. All the columns from the films table will be updatable,
whereas the computed columns country and avg_rating will be read-only.

Create a recursive view consisting of the numbers from 1 to 100:

CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
 VALUES (1)
UNION ALL
 SELECT n+1 FROM nums_1_100 WHERE n < 100;

Notice that although the recursive view's name is schema-qualified in this CREATE, its internal self-ref-
erence is not schema-qualified. This is because the implicitly-created CTE's name cannot be schema-
qualified.

Compatibility
CREATE OR REPLACE VIEW is a PostgreSQL language extension. So is the concept of a temporary view.
The WITH (...) clause is an extension as well, as are security barrier views and security invoker views.

See Also
ALTER VIEW, DROP VIEW, CREATE MATERIALIZED VIEW

1702

DEALLOCATE
DEALLOCATE — deallocate a prepared statement

Synopsis
DEALLOCATE [PREPARE] { name | ALL }

Description
DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not explicitly deallocate
a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters
PREPARE

This key word is ignored.

name

The name of the prepared statement to deallocate.

ALL

Deallocate all prepared statements.

Compatibility
The SQL standard includes a DEALLOCATE statement, but it is only for use in embedded SQL.

See Also
EXECUTE, PREPARE

1703

DECLARE
DECLARE — define a cursor

Synopsis
DECLARE name [BINARY] [ASENSITIVE | INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description
DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a time
out of a larger query. After the cursor is created, rows are fetched from it using FETCH.

Note
This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 41.7.

Parameters
name

The name of the cursor to be created. This must be different from any other active cursor name in
the session.

BINARY

Causes the cursor to return data in binary rather than in text format.

ASENSITIVE
INSENSITIVE

Cursor sensitivity determines whether changes to the data underlying the cursor, done in the same
transaction, after the cursor has been declared, are visible in the cursor. INSENSITIVE means they
are not visible, ASENSITIVE means the behavior is implementation-dependent. A third behavior,
SENSITIVE, meaning that such changes are visible in the cursor, is not available in PostgreSQL. In
PostgreSQL, all cursors are insensitive; so these key words have no effect and are only accepted for
compatibility with the SQL standard.

Specifying INSENSITIVE together with FOR UPDATE or FOR SHARE is an error.

SCROLL
NO SCROLL

SCROLL specifies that the cursor can be used to retrieve rows in a nonsequential fashion (e.g., back-
ward). Depending upon the complexity of the query's execution plan, specifying SCROLL might impose
a performance penalty on the query's execution time. NO SCROLL specifies that the cursor cannot be
used to retrieve rows in a nonsequential fashion. The default is to allow scrolling in some cases; this
is not the same as specifying SCROLL. See Notes below for details.

WITH HOLD
WITHOUT HOLD

WITH HOLD specifies that the cursor can continue to be used after the transaction that created it suc-
cessfully commits. WITHOUT HOLD specifies that the cursor cannot be used outside of the transaction
that created it. If neither WITHOUT HOLD nor WITH HOLD is specified, WITHOUT HOLD is the default.

1704

DECLARE

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

The key words ASENSITIVE, BINARY, INSENSITIVE, and SCROLL can appear in any order.

Notes
Normal cursors return data in text format, the same as a SELECT would produce. The BINARY option
specifies that the cursor should return data in binary format. This reduces conversion effort for both
the server and client, at the cost of more programmer effort to deal with platform-dependent binary
data formats. As an example, if a query returns a value of one from an integer column, you would get a
string of 1 with a default cursor, whereas with a binary cursor you would get a 4-byte field containing
the internal representation of the value (in big-endian byte order).

Binary cursors should be used carefully. Many applications, including psql, are not prepared to handle
binary cursors and expect data to come back in the text format.

Note
When the client application uses the “extended query” protocol to issue a FETCH command, the
Bind protocol message specifies whether data is to be retrieved in text or binary format. This
choice overrides the way that the cursor is defined. The concept of a binary cursor as such is thus
obsolete when using extended query protocol — any cursor can be treated as either text or binary.

Unless WITH HOLD is specified, the cursor created by this command can only be used within the current
transaction. Thus, DECLARE without WITH HOLD is useless outside a transaction block: the cursor would
survive only to the completion of the statement. Therefore PostgreSQL reports an error if such a com-
mand is used outside a transaction block. Use BEGIN and COMMIT (or ROLLBACK) to define a transaction
block.

If WITH HOLD is specified and the transaction that created the cursor successfully commits, the cursor can
continue to be accessed by subsequent transactions in the same session. (But if the creating transaction
is aborted, the cursor is removed.) A cursor created with WITH HOLD is closed when an explicit CLOSE
command is issued on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain available for subsequent
transactions.

WITH HOLD may not be specified when the query includes FOR UPDATE or FOR SHARE.

The SCROLL option should be specified when defining a cursor that will be used to fetch backwards. This
is required by the SQL standard. However, for compatibility with earlier versions, PostgreSQL will allow
backward fetches without SCROLL, if the cursor's query plan is simple enough that no extra overhead is
needed to support it. However, application developers are advised not to rely on using backward fetches
from a cursor that has not been created with SCROLL. If NO SCROLL is specified, then backward fetches
are disallowed in any case.

Backward fetches are also disallowed when the query includes FOR UPDATE or FOR SHARE; therefore
SCROLL may not be specified in this case.

Caution
Scrollable cursors may give unexpected results if they invoke any volatile functions (see Sec-
tion 36.7). When a previously fetched row is re-fetched, the functions might be re-executed, per-
haps leading to results different from the first time. It's best to specify NO SCROLL for a query
involving volatile functions. If that is not practical, one workaround is to declare the cursor SCROLL
WITH HOLD and commit the transaction before reading any rows from it. This will force the entire

1705

DECLARE

output of the cursor to be materialized in temporary storage, so that volatile functions are execut-
ed exactly once for each row.

If the cursor's query includes FOR UPDATE or FOR SHARE, then returned rows are locked at the time they
are first fetched, in the same way as for a regular SELECT command with these options. In addition, the
returned rows will be the most up-to-date versions.

Caution
It is generally recommended to use FOR UPDATE if the cursor is intended to be used with UPDATE ...
WHERE CURRENT OF or DELETE ... WHERE CURRENT OF. Using FOR UPDATE prevents other sessions
from changing the rows between the time they are fetched and the time they are updated. Without
FOR UPDATE, a subsequent WHERE CURRENT OF command will have no effect if the row was changed
since the cursor was created.

Another reason to use FOR UPDATE is that without it, a subsequent WHERE CURRENT OF might
fail if the cursor query does not meet the SQL standard's rules for being “simply updatable” (in
particular, the cursor must reference just one table and not use grouping or ORDER BY). Cursors
that are not simply updatable might work, or might not, depending on plan choice details; so in
the worst case, an application might work in testing and then fail in production. If FOR UPDATE is
specified, the cursor is guaranteed to be updatable.

The main reason not to use FOR UPDATE with WHERE CURRENT OF is if you need the cursor to be
scrollable, or to be isolated from concurrent updates (that is, continue to show the old data). If
this is a requirement, pay close heed to the caveats shown above.

The SQL standard only makes provisions for cursors in embedded SQL. The PostgreSQL server does
not implement an OPEN statement for cursors; a cursor is considered to be open when it is declared.
However, ECPG, the embedded SQL preprocessor for PostgreSQL, supports the standard SQL cursor
conventions, including those involving DECLARE and OPEN statements.

The server data structure underlying an open cursor is called a portal. Portal names are exposed in the
client protocol: a client can fetch rows directly from an open portal, if it knows the portal name. When
creating a cursor with DECLARE, the portal name is the same as the cursor name.

You can see all available cursors by querying the pg_cursors system view.

Examples
To declare a cursor:

DECLARE liahona CURSOR FOR SELECT * FROM films;

See FETCH for more examples of cursor usage.

Compatibility
The SQL standard allows cursors only in embedded SQL and in modules. PostgreSQL permits cursors
to be used interactively.

According to the SQL standard, changes made to insensitive cursors by UPDATE ... WHERE CURRENT OF
and DELETE ... WHERE CURRENT OF statements are visible in that same cursor. PostgreSQL treats these
statements like all other data changing statements in that they are not visible in insensitive cursors.

Binary cursors are a PostgreSQL extension.

See Also
CLOSE, FETCH, MOVE

1706

DELETE
DELETE — delete rows of a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table_name [*] [[AS] alias]
 [USING from_item [, ...]]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING [WITH ({ OLD | NEW } AS output_alias [, ...])]
 { * | output_expression [[AS] output_name] } [, ...]]

Description
DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent,
the effect is to delete all rows in the table. The result is a valid, but empty table.

Tip
TRUNCATE provides a faster mechanism to remove all rows from a table.

There are two ways to delete rows in a table using information contained in other tables in the database:
using sub-selects, or specifying additional tables in the USING clause. Which technique is more appro-
priate depends on the specific circumstances.

The optional RETURNING clause causes DELETE to compute and return value(s) based on each row actually
deleted. Any expression using the table's columns, and/or columns of other tables mentioned in USING,
can be computed. The syntax of the RETURNING list is identical to that of the output list of SELECT.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT privilege for any
table in the USING clause or whose values are read in the condition.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
DELETE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to delete rows from. If ONLY is specified before the
table name, matching rows are deleted from the named table only. If ONLY is not specified, matching
rows are also deleted from any tables inheriting from the named table. Optionally, * can be specified
after the table name to explicitly indicate that descendant tables are included.

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given DELETE FROM foo AS f, the remainder of the DELETE statement
must refer to this table as f not foo.

from_item

A table expression allowing columns from other tables to appear in the WHERE condition. This uses
the same syntax as the FROM clause of a SELECT statement; for example, an alias for the table name
can be specified. Do not repeat the target table as a from_item unless you wish to set up a self-join
(in which case it must appear with an alias in the from_item).

1707

DELETE

condition

An expression that returns a value of type boolean. Only rows for which this expression returns true
will be deleted.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be deleted is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the DELETE's
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_alias

An optional substitute name for OLD or NEW rows in the RETURNING list.

By default, old values from the target table can be returned by writing OLD.column_name or OLD.*,
and new values can be returned by writing NEW.column_name or NEW.*. When an alias is provided,
these names are hidden and the old or new rows must be referred to using the alias. For example
RETURNING WITH (OLD AS o, NEW AS n) o.*, n.*.

output_expression

An expression to be computed and returned by the DELETE command after each row is deleted. The
expression can use any column names of the table named by table_name or table(s) listed in USING.
Write * to return all columns.

A column name or * may be qualified using OLD or NEW, or the corresponding output_alias for OLD
or NEW, to cause old or new values to be returned. An unqualified column name, or *, or a column
name or * qualified using the target table name or alias will return old values.

For a simple DELETE, all new values will be NULL. However, if an ON DELETE rule causes an INSERT
or UPDATE to be executed instead, the new values may be non-NULL.

output_name

A name to use for a returned column.

Outputs
On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. Note that the number may be less than the number of rows
that matched the condition when deletes were suppressed by a BEFORE DELETE trigger. If count is 0,
no rows were deleted by the query (this is not considered an error).

If the DELETE command contains a RETURNING clause, the result will be similar to that of a SELECT state-
ment containing the columns and values defined in the RETURNING list, computed over the row(s) deleted
by the command.

Notes
PostgreSQL lets you reference columns of other tables in the WHERE condition by specifying the other
tables in the USING clause. For example, to delete all films produced by a given producer, one can do:

DELETE FROM films USING producers
 WHERE producer_id = producers.id AND producers.name = 'foo';

What is essentially happening here is a join between films and producers, with all successfully joined
films rows being marked for deletion. This syntax is not standard. A more standard way to do it is:

DELETE FROM films

1708

DELETE

 WHERE producer_id IN (SELECT id FROM producers WHERE name = 'foo');

In some cases the join style is easier to write or faster to execute than the sub-select style.

Examples
Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

Clear the table films:

DELETE FROM films;

Delete completed tasks, returning full details of the deleted rows:

DELETE FROM tasks WHERE status = 'DONE' RETURNING *;

Delete the row of tasks on which the cursor c_tasks is currently positioned:

DELETE FROM tasks WHERE CURRENT OF c_tasks;

While there is no LIMIT clause for DELETE, it is possible to get a similar effect using the same method
described in the documentation of UPDATE:

WITH delete_batch AS (
 SELECT l.ctid FROM user_logs AS l
 WHERE l.status = 'archived'
 ORDER BY l.creation_date
 FOR UPDATE
 LIMIT 10000
)
DELETE FROM user_logs AS dl
 USING delete_batch AS del
 WHERE dl.ctid = del.ctid;

Compatibility
This command conforms to the SQL standard, except that the USING and RETURNING clauses are Post-
greSQL extensions, as is the ability to use WITH with DELETE.

See Also
TRUNCATE

1709

DISCARD
DISCARD — discard session state

Synopsis
DISCARD { ALL | PLANS | SEQUENCES | TEMPORARY | TEMP }

Description
DISCARD releases internal resources associated with a database session. This command is useful for
partially or fully resetting the session's state. There are several subcommands to release different types
of resources; the DISCARD ALL variant subsumes all the others, and also resets additional state.

Parameters
PLANS

Releases all cached query plans, forcing re-planning to occur the next time the associated prepared
statement is used.

SEQUENCES

Discards all cached sequence-related state, including currval()/lastval() information and any pre-
allocated sequence values that have not yet been returned by nextval(). (See CREATE SEQUENCE
for a description of preallocated sequence values.)

TEMPORARY or TEMP
Drops all temporary tables created in the current session.

ALL

Releases all temporary resources associated with the current session and resets the session to its
initial state. Currently, this has the same effect as executing the following sequence of statements:

CLOSE ALL;
SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
UNLISTEN *;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD TEMP;
DISCARD SEQUENCES;

Notes
DISCARD ALL cannot be executed inside a transaction block.

Compatibility
DISCARD is a PostgreSQL extension.

1710

DO
DO — execute an anonymous code block

Synopsis
DO [LANGUAGE lang_name] code

Description
DO executes an anonymous code block, or in other words a transient anonymous function in a procedural
language.

The code block is treated as though it were the body of a function with no parameters, returning void.
It is parsed and executed a single time.

The optional LANGUAGE clause can be written either before or after the code block.

Parameters
code

The procedural language code to be executed. This must be specified as a string literal, just as in
CREATE FUNCTION. Use of a dollar-quoted literal is recommended.

lang_name

The name of the procedural language the code is written in. If omitted, the default is plpgsql.

Notes
The procedural language to be used must already have been installed into the current database by means
of CREATE EXTENSION. plpgsql is installed by default, but other languages are not.

The user must have USAGE privilege for the procedural language, or must be a superuser if the language
is untrusted. This is the same privilege requirement as for creating a function in the language.

If DO is executed in a transaction block, then the procedure code cannot execute transaction control
statements. Transaction control statements are only allowed if DO is executed in its own transaction.

Examples
Grant all privileges on all views in schema public to role webuser:

DO $$DECLARE r record;
BEGIN
 FOR r IN SELECT table_schema, table_name FROM information_schema.tables
 WHERE table_type = 'VIEW' AND table_schema = 'public'
 LOOP
 EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.' ||
 quote_ident(r.table_name) || ' TO webuser';
 END LOOP;
END$$;

Compatibility
There is no DO statement in the SQL standard.

See Also
CREATE LANGUAGE

1711

DROP ACCESS METHOD
DROP ACCESS METHOD — remove an access method

Synopsis
DROP ACCESS METHOD [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP ACCESS METHOD removes an existing access method. Only superusers can drop access methods.

Parameters
IF EXISTS

Do not throw an error if the access method does not exist. A notice is issued in this case.

name

The name of an existing access method.

CASCADE

Automatically drop objects that depend on the access method (such as operator classes, operator
families, and indexes), and in turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the access method if any objects depend on it. This is the default.

Examples
Drop the access method heptree:

DROP ACCESS METHOD heptree;

Compatibility
DROP ACCESS METHOD is a PostgreSQL extension.

See Also
CREATE ACCESS METHOD

1712

DROP AGGREGATE
DROP AGGREGATE — remove an aggregate function

Synopsis
DROP AGGREGATE [IF EXISTS] name (aggregate_signature) [, ...] [CASCADE |
 RESTRICT]

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
DROP AGGREGATE removes an existing aggregate function. To execute this command the current user
must be the owner of the aggregate function.

Parameters
IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that DROP AGGREGATE does not actually pay any attention to argument
names, since only the argument data types are needed to determine the aggregate function's identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument aggre-
gate function, write * in place of the list of argument specifications. To reference an ordered-set
aggregate function, write ORDER BY between the direct and aggregated argument specifications.

CASCADE

Automatically drop objects that depend on the aggregate function (such as views using it), and in
turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Notes
Alternative syntaxes for referencing ordered-set aggregates are described under ALTER AGGREGATE.

Examples
To remove the aggregate function myavg for type integer:

1713

DROP AGGREGATE

DROP AGGREGATE myavg(integer);

To remove the hypothetical-set aggregate function myrank, which takes an arbitrary list of ordering
columns and a matching list of direct arguments:

DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");

To remove multiple aggregate functions in one command:

DROP AGGREGATE myavg(integer), myavg(bigint);

Compatibility
There is no DROP AGGREGATE statement in the SQL standard.

See Also
ALTER AGGREGATE, CREATE AGGREGATE

1714

DROP CAST
DROP CAST — remove a cast

Synopsis
DROP CAST [IF EXISTS] (source_type AS target_type) [CASCADE | RESTRICT]

Description
DROP CAST removes a previously defined cast.

To be able to drop a cast, you must own the source or the target data type. These are the same privileges
that are required to create a cast.

Parameters
IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on casts.

Examples
To drop the cast from type text to type int:

DROP CAST (text AS int);

Compatibility
The DROP CAST command conforms to the SQL standard.

See Also
CREATE CAST

1715

DROP COLLATION
DROP COLLATION — remove a collation

Synopsis
DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP COLLATION removes a previously defined collation. To be able to drop a collation, you must own
the collation.

Parameters
IF EXISTS

Do not throw an error if the collation does not exist. A notice is issued in this case.

name

The name of the collation. The collation name can be schema-qualified.

CASCADE

Automatically drop objects that depend on the collation, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the collation if any objects depend on it. This is the default.

Examples
To drop the collation named german:

DROP COLLATION german;

Compatibility
The DROP COLLATION command conforms to the SQL standard, apart from the IF EXISTS option, which
is a PostgreSQL extension.

See Also
ALTER COLLATION, CREATE COLLATION

1716

DROP CONVERSION
DROP CONVERSION — remove a conversion

Synopsis
DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP CONVERSION removes a previously defined conversion. To be able to drop a conversion, you must
own the conversion.

Parameters
IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name

The name of the conversion. The conversion name can be schema-qualified.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on conversions.

Examples
To drop the conversion named myname:

DROP CONVERSION myname;

Compatibility
There is no DROP CONVERSION statement in the SQL standard, but a DROP TRANSLATION statement that
goes along with the CREATE TRANSLATION statement that is similar to the CREATE CONVERSION statement
in PostgreSQL.

See Also
ALTER CONVERSION, CREATE CONVERSION

1717

DROP DATABASE
DROP DATABASE — remove a database

Synopsis
DROP DATABASE [IF EXISTS] name [[WITH] (option [, ...])]

where option can be:

 FORCE

Description
DROP DATABASE drops a database. It removes the catalog entries for the database and deletes the direc-
tory containing the data. It can only be executed by the database owner. It cannot be executed while
you are connected to the target database. (Connect to postgres or any other database to issue this
command.) Also, if anyone else is connected to the target database, this command will fail unless you
use the FORCE option described below.

DROP DATABASE cannot be undone. Use it with care!

Parameters
IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name

The name of the database to remove.

FORCE

Attempt to terminate all existing connections to the target database. It doesn't terminate if prepared
transactions, active logical replication slots or subscriptions are present in the target database.

This terminates background worker connections and connections that the current user has permis-
sion to terminate with pg_terminate_backend, described in Section 9.28.2. If connections would
remain, this command will fail.

Notes
DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it might be more con-
venient to use the program dropdb instead, which is a wrapper around this command.

Compatibility
There is no DROP DATABASE statement in the SQL standard.

See Also
CREATE DATABASE

1718

DROP DOMAIN
DROP DOMAIN — remove a domain

Synopsis
DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP DOMAIN removes a domain. Only the owner of a domain can remove it.

Parameters
IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns), and in turn all objects
that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples
To remove the domain box:

DROP DOMAIN box;

Compatibility
This command conforms to the SQL standard, except for the IF EXISTS option, which is a PostgreSQL
extension.

See Also
CREATE DOMAIN, ALTER DOMAIN

1719

DROP EVENT TRIGGER
DROP EVENT TRIGGER — remove an event trigger

Synopsis
DROP EVENT TRIGGER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP EVENT TRIGGER removes an existing event trigger. To execute this command, the current user
must be the owner of the event trigger.

Parameters
IF EXISTS

Do not throw an error if the event trigger does not exist. A notice is issued in this case.

name

The name of the event trigger to remove.

CASCADE

Automatically drop objects that depend on the trigger, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger snitch:

DROP EVENT TRIGGER snitch;

Compatibility
There is no DROP EVENT TRIGGER statement in the SQL standard.

See Also
CREATE EVENT TRIGGER, ALTER EVENT TRIGGER

1720

DROP EXTENSION
DROP EXTENSION — remove an extension

Synopsis
DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP EXTENSION removes extensions from the database. Dropping an extension causes its member ob-
jects, and other explicitly dependent routines (see ALTER ROUTINE, the DEPENDS ON EXTENSION ex-
tension_name action), to be dropped as well.

You must own the extension to use DROP EXTENSION.

Parameters
IF EXISTS

Do not throw an error if the extension does not exist. A notice is issued in this case.

name

The name of an installed extension.

CASCADE

Automatically drop objects that depend on the extension, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

This option prevents the specified extensions from being dropped if other objects, besides these
extensions, their members, and their explicitly dependent routines, depend on them. This is the
default.

Examples
To remove the extension hstore from the current database:

DROP EXTENSION hstore;

This command will fail if any of hstore's objects are in use in the database, for example if any tables have
columns of the hstore type. Add the CASCADE option to forcibly remove those dependent objects as well.

Compatibility
DROP EXTENSION is a PostgreSQL extension.

See Also
CREATE EXTENSION, ALTER EXTENSION

1721

DROP FOREIGN DATA WRAPPER
DROP FOREIGN DATA WRAPPER — remove a foreign-data wrapper

Synopsis
DROP FOREIGN DATA WRAPPER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN DATA WRAPPER removes an existing foreign-data wrapper. To execute this command, the
current user must be the owner of the foreign-data wrapper.

Parameters
IF EXISTS

Do not throw an error if the foreign-data wrapper does not exist. A notice is issued in this case.

name

The name of an existing foreign-data wrapper.

CASCADE

Automatically drop objects that depend on the foreign-data wrapper (such as foreign tables and
servers), and in turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the foreign-data wrapper if any objects depend on it. This is the default.

Examples
Drop the foreign-data wrapper dbi:

DROP FOREIGN DATA WRAPPER dbi;

Compatibility
DROP FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a
PostgreSQL extension.

See Also
CREATE FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER

1722

DROP FOREIGN TABLE
DROP FOREIGN TABLE — remove a foreign table

Synopsis
DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN TABLE removes a foreign table. Only the owner of a foreign table can remove it.

Parameters
IF EXISTS

Do not throw an error if the foreign table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the foreign table to drop.

CASCADE

Automatically drop objects that depend on the foreign table (such as views), and in turn all objects
that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the foreign table if any objects depend on it. This is the default.

Examples
To destroy two foreign tables, films and distributors:

DROP FOREIGN TABLE films, distributors;

Compatibility
This command conforms to ISO/IEC 9075-9 (SQL/MED), except that the standard only allows one for-
eign table to be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL
extension.

See Also
ALTER FOREIGN TABLE, CREATE FOREIGN TABLE

1723

DROP FUNCTION
DROP FUNCTION — remove a function

Synopsis
DROP FUNCTION [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])]
 [, ...]
 [CASCADE | RESTRICT]

Description
DROP FUNCTION removes the definition of an existing function. To execute this command the user must be
the owner of the function. The argument types to the function must be specified, since several different
functions can exist with the same name and different argument lists.

Parameters
IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that DROP
FUNCTION does not actually pay any attention to OUT arguments, since only the input arguments are
needed to determine the function's identity. So it is sufficient to list the IN, INOUT, and VARIADIC
arguments.

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention to argument
names, since only the argument data types are needed to determine the function's identity.

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers), and in turn
all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

Examples
This command removes the square root function:

DROP FUNCTION sqrt(integer);

Drop multiple functions in one command:

DROP FUNCTION sqrt(integer), sqrt(bigint);

If the function name is unique in its schema, it can be referred to without an argument list:

1724

DROP FUNCTION

DROP FUNCTION update_employee_salaries;

Note that this is different from

DROP FUNCTION update_employee_salaries();

which refers to a function with zero arguments, whereas the first variant can refer to a function with
any number of arguments, including zero, as long as the name is unique.

Compatibility
This command conforms to the SQL standard, with these PostgreSQL extensions:
• The standard only allows one function to be dropped per command.
• The IF EXISTS option
• The ability to specify argument modes and names

See Also
CREATE FUNCTION, ALTER FUNCTION, DROP PROCEDURE, DROP ROUTINE

1725

DROP GROUP
DROP GROUP — remove a database role

Synopsis
DROP GROUP [IF EXISTS] name [, ...]

Description
DROP GROUP is now an alias for DROP ROLE.

Compatibility
There is no DROP GROUP statement in the SQL standard.

See Also
DROP ROLE

1726

DROP INDEX
DROP INDEX — remove an index

Synopsis
DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP INDEX drops an existing index from the database system. To execute this command you must be
the owner of the index.

Parameters
CONCURRENTLY

Drop the index without locking out concurrent selects, inserts, updates, and deletes on the index's
table. A normal DROP INDEX acquires an ACCESS EXCLUSIVE lock on the table, blocking other accesses
until the index drop can be completed. With this option, the command instead waits until conflicting
transactions have completed.

There are several caveats to be aware of when using this option. Only one index name can be spec-
ified, and the CASCADE option is not supported. (Thus, an index that supports a UNIQUE or PRIMARY
KEY constraint cannot be dropped this way.) Also, regular DROP INDEX commands can be performed
within a transaction block, but DROP INDEX CONCURRENTLY cannot. Lastly, indexes on partitioned
tables cannot be dropped using this option.

For temporary tables, DROP INDEX is always non-concurrent, as no other session can access them,
and non-concurrent index drop is cheaper.

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an index to remove.

CASCADE

Automatically drop objects that depend on the index, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples
This command will remove the index title_idx:

DROP INDEX title_idx;

Compatibility
DROP INDEX is a PostgreSQL language extension. There are no provisions for indexes in the SQL standard.

See Also
CREATE INDEX

1727

DROP LANGUAGE
DROP LANGUAGE — remove a procedural language

Synopsis
DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP LANGUAGE removes the definition of a previously registered procedural language. You must be a
superuser or the owner of the language to use DROP LANGUAGE.

Note
As of PostgreSQL 9.1, most procedural languages have been made into “extensions”, and should
therefore be removed with DROP EXTENSION not DROP LANGUAGE.

Parameters
IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name

The name of an existing procedural language.

CASCADE

Automatically drop objects that depend on the language (such as functions in the language), and in
turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples
This command removes the procedural language plsample:

DROP LANGUAGE plsample;

Compatibility
There is no DROP LANGUAGE statement in the SQL standard.

See Also
ALTER LANGUAGE, CREATE LANGUAGE

1728

DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW — remove a materialized view

Synopsis
DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP MATERIALIZED VIEW drops an existing materialized view. To execute this command you must be
the owner of the materialized view.

Parameters
IF EXISTS

Do not throw an error if the materialized view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the materialized view to remove.

CASCADE

Automatically drop objects that depend on the materialized view (such as other materialized views,
or regular views), and in turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the materialized view if any objects depend on it. This is the default.

Examples
This command will remove the materialized view called order_summary:

DROP MATERIALIZED VIEW order_summary;

Compatibility
DROP MATERIALIZED VIEW is a PostgreSQL extension.

See Also
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW

1729

DROP OPERATOR
DROP OPERATOR — remove an operator

Synopsis
DROP OPERATOR [IF EXISTS] name ({ left_type | NONE } , right_type) [, ...]
 [CASCADE | RESTRICT]

Description
DROP OPERATOR drops an existing operator from the database system. To execute this command you must
be the owner of the operator.

Parameters
IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand.

CASCADE

Automatically drop objects that depend on the operator (such as views using it), and in turn all objects
that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples
Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the bitwise-complement prefix operator ~b for type bit:

DROP OPERATOR ~ (none, bit);

Remove multiple operators in one command:

DROP OPERATOR ~ (none, bit), ^ (integer, integer);

Compatibility
There is no DROP OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, ALTER OPERATOR

1730

DROP OPERATOR CLASS
DROP OPERATOR CLASS — remove an operator class

Synopsis
DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR CLASS drops an existing operator class. To execute this command you must be the owner
of the operator class.

DROP OPERATOR CLASS does not drop any of the operators or functions referenced by the class. If there are
any indexes depending on the operator class, you will need to specify CASCADE for the drop to complete.

Parameters
IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class (such as indexes), and in turn all objects
that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Notes
DROP OPERATOR CLASS will not drop the operator family containing the class, even if there is nothing else
left in the family (in particular, in the case where the family was implicitly created by CREATE OPERATOR
CLASS). An empty operator family is harmless, but for the sake of tidiness you might wish to remove the
family with DROP OPERATOR FAMILY; or perhaps better, use DROP OPERATOR FAMILY in the first place.

Examples
Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator class. Add CASCADE
to drop such indexes along with the operator class.

Compatibility
There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, CREATE OPERATOR CLASS, DROP OPERATOR FAMILY

1731

DROP OPERATOR FAMILY
DROP OPERATOR FAMILY — remove an operator family

Synopsis
DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR FAMILY drops an existing operator family. To execute this command you must be the
owner of the operator family.

DROP OPERATOR FAMILY includes dropping any operator classes contained in the family, but it does not
drop any of the operators or functions referenced by the family. If there are any indexes depending on
operator classes within the family, you will need to specify CASCADE for the drop to complete.

Parameters
IF EXISTS

Do not throw an error if the operator family does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index access method the operator family is for.

CASCADE

Automatically drop objects that depend on the operator family, and in turn all objects that depend
on those objects (see Section 5.15).

RESTRICT

Refuse to drop the operator family if any objects depend on it. This is the default.

Examples
Remove the B-tree operator family float_ops:

DROP OPERATOR FAMILY float_ops USING btree;

This command will not succeed if there are any existing indexes that use operator classes within the
family. Add CASCADE to drop such indexes along with the operator family.

Compatibility
There is no DROP OPERATOR FAMILY statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, CREATE OPERATOR FAMILY, ALTER OPERATOR CLASS, CREATE OPER-
ATOR CLASS, DROP OPERATOR CLASS

1732

DROP OWNED
DROP OWNED — remove database objects owned by a database role

Synopsis
DROP OWNED BY { name | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...] [CASCADE |
 RESTRICT]

Description
DROP OWNED drops all the objects within the current database that are owned by one of the specified
roles. Any privileges granted to the given roles on objects in the current database or on shared objects
(databases, tablespaces, configuration parameters) will also be revoked.

Parameters
name

The name of a role whose objects will be dropped, and whose privileges will be revoked.

CASCADE

Automatically drop objects that depend on the affected objects, and in turn all objects that depend
on those objects (see Section 5.15).

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on one of the affected
objects. This is the default.

Notes
DROP OWNED is often used to prepare for the removal of one or more roles. Because DROP OWNED only
affects the objects in the current database, it is usually necessary to execute this command in each
database that contains objects owned by a role that is to be removed.

Using the CASCADE option might make the command recurse to objects owned by other users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all the database objects
owned by one or more roles. However, REASSIGN OWNED does not deal with privileges for other objects.

Databases and tablespaces owned by the role(s) will not be removed.

See Section 21.4 for more discussion.

Compatibility
The DROP OWNED command is a PostgreSQL extension.

See Also
REASSIGN OWNED, DROP ROLE

1733

DROP POLICY
DROP POLICY — remove a row-level security policy from a table

Synopsis
DROP POLICY [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP POLICY removes the specified policy from the table. Note that if the last policy is removed for a
table and the table still has row-level security enabled via ALTER TABLE, then the default-deny policy will
be used. ALTER TABLE ... DISABLE ROW LEVEL SECURITY can be used to disable row-level security for
a table, whether policies for the table exist or not.

Parameters
IF EXISTS

Do not throw an error if the policy does not exist. A notice is issued in this case.

name

The name of the policy to drop.

table_name

The name (optionally schema-qualified) of the table that the policy is on.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on policies.

Examples
To drop the policy called p1 on the table named my_table:

DROP POLICY p1 ON my_table;

Compatibility
DROP POLICY is a PostgreSQL extension.

See Also
CREATE POLICY, ALTER POLICY

1734

DROP PROCEDURE
DROP PROCEDURE — remove a procedure

Synopsis
DROP PROCEDURE [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])]
 [, ...]
 [CASCADE | RESTRICT]

Description
DROP PROCEDURE removes the definition of one or more existing procedures. To execute this command
the user must be the owner of the procedure(s). The argument types to the procedure(s) usually must be
specified, since several different procedures can exist with the same name and different argument lists.

Parameters
IF EXISTS

Do not throw an error if the procedure does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing procedure.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN (but see below).

argname

The name of an argument. Note that DROP PROCEDURE does not actually pay any attention to argument
names, since only the argument data types are used to determine the procedure's identity.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any. See below for
details.

CASCADE

Automatically drop objects that depend on the procedure, and in turn all objects that depend on
those objects (see Section 5.15).

RESTRICT

Refuse to drop the procedure if any objects depend on it. This is the default.

Notes
If there is only one procedure of the given name, the argument list can be omitted. Omit the parentheses
too in this case.

In PostgreSQL, it's sufficient to list the input (including INOUT) arguments, because no two routines of
the same name are allowed to share the same input-argument list. Moreover, the DROP command will not
actually check that you wrote the types of OUT arguments correctly; so any arguments that are explicitly
marked OUT are just noise. But writing them is recommendable for consistency with the corresponding
CREATE command.

For compatibility with the SQL standard, it is also allowed to write all the argument data types (including
those of OUT arguments) without any argmode markers. When this is done, the types of the procedure's

1735

DROP PROCEDURE

OUT argument(s) will be verified against the command. This provision creates an ambiguity, in that when
the argument list contains no argmode markers, it's unclear which rule is intended. The DROP command
will attempt the lookup both ways, and will throw an error if two different procedures are found. To
avoid the risk of such ambiguity, it's recommendable to write IN markers explicitly rather than letting
them be defaulted, thus forcing the traditional PostgreSQL interpretation to be used.

The lookup rules just explained are also used by other commands that act on existing procedures, such
as ALTER PROCEDURE and COMMENT ON PROCEDURE.

Examples
If there is only one procedure do_db_maintenance, this command is sufficient to drop it:

DROP PROCEDURE do_db_maintenance;

Given this procedure definition:

CREATE PROCEDURE do_db_maintenance(IN target_schema text, OUT results text) ...

any one of these commands would work to drop it:

DROP PROCEDURE do_db_maintenance(IN target_schema text, OUT results text);
DROP PROCEDURE do_db_maintenance(IN text, OUT text);
DROP PROCEDURE do_db_maintenance(IN text);
DROP PROCEDURE do_db_maintenance(text);
DROP PROCEDURE do_db_maintenance(text, text); -- potentially ambiguous

However, the last example would be ambiguous if there is also, say,

CREATE PROCEDURE do_db_maintenance(IN target_schema text, IN options text) ...

Compatibility
This command conforms to the SQL standard, with these PostgreSQL extensions:
• The standard only allows one procedure to be dropped per command.
• The IF EXISTS option is an extension.
• The ability to specify argument modes and names is an extension, and the lookup rules differ when

modes are given.

See Also
CREATE PROCEDURE, ALTER PROCEDURE, DROP FUNCTION, DROP ROUTINE

1736

DROP PUBLICATION
DROP PUBLICATION — remove a publication

Synopsis
DROP PUBLICATION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP PUBLICATION removes an existing publication from the database.

A publication can only be dropped by its owner or a superuser.

Parameters
IF EXISTS

Do not throw an error if the publication does not exist. A notice is issued in this case.

name

The name of an existing publication.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on publications.

Examples
Drop a publication:

DROP PUBLICATION mypublication;

Compatibility
DROP PUBLICATION is a PostgreSQL extension.

See Also
CREATE PUBLICATION, ALTER PUBLICATION

1737

DROP ROLE
DROP ROLE — remove a database role

Synopsis
DROP ROLE [IF EXISTS] name [, ...]

Description
DROP ROLE removes the specified role(s). To drop a superuser role, you must be a superuser yourself;
to drop non-superuser roles, you must have CREATEROLE privilege and have been granted ADMIN OPTION
on the role.

A role cannot be removed if it is still referenced in any database of the cluster; an error will be raised
if so. Before dropping the role, you must drop all the objects it owns (or reassign their ownership) and
revoke any privileges the role has been granted on other objects. The REASSIGN OWNED and DROP OWNED
commands can be useful for this purpose; see Section 21.4 for more discussion.

However, it is not necessary to remove role memberships involving the role; DROP ROLE automatically
revokes any memberships of the target role in other roles, and of other roles in the target role. The other
roles are not dropped nor otherwise affected.

Parameters
IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of the role to remove.

Notes
PostgreSQL includes a program dropuser that has the same functionality as this command (in fact, it
calls this command) but can be run from the command shell.

Examples
To drop a role:

DROP ROLE jonathan;

Compatibility
The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a time, and it specifies
different privilege requirements than PostgreSQL uses.

See Also
CREATE ROLE, ALTER ROLE, SET ROLE

1738

DROP ROUTINE
DROP ROUTINE — remove a routine

Synopsis
DROP ROUTINE [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])]
 [, ...]
 [CASCADE | RESTRICT]

Description
DROP ROUTINE removes the definition of one or more existing routines. The term “routine” includes ag-
gregate functions, normal functions, and procedures. See under DROP AGGREGATE, DROP FUNCTION,
and DROP PROCEDURE for the description of the parameters, more examples, and further details.

Notes
The lookup rules used by DROP ROUTINE are fundamentally the same as for DROP PROCEDURE; in particular,
DROP ROUTINE shares that command's behavior of considering an argument list that has no argmode
markers to be possibly using the SQL standard's definition that OUT arguments are included in the list.
(DROP AGGREGATE and DROP FUNCTION do not do that.)

In some cases where the same name is shared by routines of different kinds, it is possible for DROP
ROUTINE to fail with an ambiguity error when a more specific command (DROP FUNCTION, etc.) would
work. Specifying the argument type list more carefully will also resolve such problems.

These lookup rules are also used by other commands that act on existing routines, such as ALTER ROUTINE
and COMMENT ON ROUTINE.

Examples
To drop the routine foo for type integer:

DROP ROUTINE foo(integer);

This command will work independent of whether foo is an aggregate, function, or procedure.

Compatibility
This command conforms to the SQL standard, with these PostgreSQL extensions:
• The standard only allows one routine to be dropped per command.
• The IF EXISTS option is an extension.
• The ability to specify argument modes and names is an extension, and the lookup rules differ when

modes are given.
• User-definable aggregate functions are an extension.

See Also
DROP AGGREGATE, DROP FUNCTION, DROP PROCEDURE, ALTER ROUTINE

Note that there is no CREATE ROUTINE command.

1739

DROP RULE
DROP RULE — remove a rewrite rule

Synopsis
DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP RULE drops a rewrite rule.

Parameters
IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name

The name of the rule to drop.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples
To drop the rewrite rule newrule:

DROP RULE newrule ON mytable;

Compatibility
DROP RULE is a PostgreSQL language extension, as is the entire query rewrite system.

See Also
CREATE RULE, ALTER RULE

1740

DROP SCHEMA
DROP SCHEMA — remove a schema

Synopsis
DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SCHEMA removes schemas from the database.

A schema can only be dropped by its owner or a superuser. Note that the owner can drop the schema
(and thereby all contained objects) even if they do not own some of the objects within the schema.

Parameters
IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name

The name of a schema.

CASCADE

Automatically drop objects (tables, functions, etc.) that are contained in the schema, and in turn all
objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Notes
Using the CASCADE option might make the command remove objects in other schemas besides the one(s)
named.

Examples
To remove schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility
DROP SCHEMA is fully conforming with the SQL standard, except that the standard only allows one schema
to be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
ALTER SCHEMA, CREATE SCHEMA

1741

DROP SEQUENCE
DROP SEQUENCE — remove a sequence

Synopsis
DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SEQUENCE removes sequence number generators. A sequence can only be dropped by its owner
or a superuser.

Parameters
IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of a sequence.

CASCADE

Automatically drop objects that depend on the sequence, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples
To remove the sequence serial:

DROP SEQUENCE serial;

Compatibility
DROP SEQUENCE conforms to the SQL standard, except that the standard only allows one sequence to be
dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
CREATE SEQUENCE, ALTER SEQUENCE

1742

DROP SERVER
DROP SERVER — remove a foreign server descriptor

Synopsis
DROP SERVER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SERVER removes an existing foreign server descriptor. To execute this command, the current user
must be the owner of the server.

Parameters
IF EXISTS

Do not throw an error if the server does not exist. A notice is issued in this case.

name

The name of an existing server.

CASCADE

Automatically drop objects that depend on the server (such as user mappings), and in turn all objects
that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the server if any objects depend on it. This is the default.

Examples
Drop a server foo if it exists:

DROP SERVER IF EXISTS foo;

Compatibility
DROP SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a PostgreSQL extension.

See Also
CREATE SERVER, ALTER SERVER

1743

DROP STATISTICS
DROP STATISTICS — remove extended statistics

Synopsis
DROP STATISTICS [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP STATISTICS removes statistics object(s) from the database. Only the statistics object's owner, the
schema owner, or a superuser can drop a statistics object.

Parameters
IF EXISTS

Do not throw an error if the statistics object does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the statistics object to drop.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on statistics.

Examples
To destroy two statistics objects in different schemas, without failing if they don't exist:

DROP STATISTICS IF EXISTS
 accounting.users_uid_creation,
 public.grants_user_role;

Compatibility
There is no DROP STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS, CREATE STATISTICS

1744

DROP SUBSCRIPTION
DROP SUBSCRIPTION — remove a subscription

Synopsis
DROP SUBSCRIPTION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP SUBSCRIPTION removes a subscription from the database cluster.

To execute this command the user must be the owner of the subscription.

DROP SUBSCRIPTION cannot be executed inside a transaction block if the subscription is associated with
a replication slot. (You can use ALTER SUBSCRIPTION to unset the slot.)

Parameters
name

The name of a subscription to be dropped.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on subscriptions.

Notes
When dropping a subscription that is associated with a replication slot on the remote host (the normal
state), DROP SUBSCRIPTION will connect to the remote host and try to drop the replication slot (and any
remaining table synchronization slots) as part of its operation. This is necessary so that the resources
allocated for the subscription on the remote host are released. If this fails, either because the remote
host is not reachable or because the remote replication slot cannot be dropped or does not exist or never
existed, the DROP SUBSCRIPTION command will fail. To proceed in this situation, first disable the sub-
scription by executing ALTER SUBSCRIPTION ... DISABLE, and then disassociate it from the replication
slot by executing ALTER SUBSCRIPTION ... SET (slot_name = NONE). After that, DROP SUBSCRIPTION
will no longer attempt any actions on a remote host. Note that if the remote replication slot still exists,
it (and any related table synchronization slots) should then be dropped manually; otherwise it/they will
continue to reserve WAL and might eventually cause the disk to fill up. See also Section 29.2.1.

If a subscription is associated with a replication slot, then DROP SUBSCRIPTION cannot be executed inside
a transaction block.

Examples
Drop a subscription:

DROP SUBSCRIPTION mysub;

Compatibility
DROP SUBSCRIPTION is a PostgreSQL extension.

See Also
CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1745

DROP TABLE
DROP TABLE — remove a table

Synopsis
DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TABLE removes tables from the database. Only the table owner, the schema owner, and superuser
can drop a table. To empty a table of rows without destroying the table, use DELETE or TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.
However, to drop a table that is referenced by a view or a foreign-key constraint of another table, CASCADE
must be specified. (CASCADE will remove a dependent view entirely, but in the foreign-key case it will
only remove the foreign-key constraint, not the other table entirely.)

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the table to drop.

CASCADE

Automatically drop objects that depend on the table (such as views), and in turn all objects that
depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples
To destroy two tables, films and distributors:

DROP TABLE films, distributors;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one table to be
dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
ALTER TABLE, CREATE TABLE

1746

DROP TABLESPACE
DROP TABLESPACE — remove a tablespace

Synopsis
DROP TABLESPACE [IF EXISTS] name

Description
DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all data-
base objects before it can be dropped. It is possible that objects in other databases might still reside in
the tablespace even if no objects in the current database are using the tablespace. Also, if the tablespace
is listed in the temp_tablespaces setting of any active session, the DROP might fail due to temporary files
residing in the tablespace.

Parameters
IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

name

The name of a tablespace.

Notes
DROP TABLESPACE cannot be executed inside a transaction block.

Examples
To remove tablespace mystuff from the system:

DROP TABLESPACE mystuff;

Compatibility
DROP TABLESPACE is a PostgreSQL extension.

See Also
CREATE TABLESPACE, ALTER TABLESPACE

1747

DROP TEXT SEARCH CONFIGURATION
DROP TEXT SEARCH CONFIGURATION — remove a text search configuration

Synopsis
DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH CONFIGURATION drops an existing text search configuration. To execute this command
you must be the owner of the configuration.

Parameters
IF EXISTS

Do not throw an error if the text search configuration does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search configuration.

CASCADE

Automatically drop objects that depend on the text search configuration, and in turn all objects that
depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the text search configuration if any objects depend on it. This is the default.

Examples
Remove the text search configuration my_english:

DROP TEXT SEARCH CONFIGURATION my_english;

This command will not succeed if there are any existing indexes that reference the configuration in
to_tsvector calls. Add CASCADE to drop such indexes along with the text search configuration.

Compatibility
There is no DROP TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION

1748

DROP TEXT SEARCH DICTIONARY
DROP TEXT SEARCH DICTIONARY — remove a text search dictionary

Synopsis
DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH DICTIONARY drops an existing text search dictionary. To execute this command you
must be the owner of the dictionary.

Parameters
IF EXISTS

Do not throw an error if the text search dictionary does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search dictionary.

CASCADE

Automatically drop objects that depend on the text search dictionary, and in turn all objects that
depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the text search dictionary if any objects depend on it. This is the default.

Examples
Remove the text search dictionary english:

DROP TEXT SEARCH DICTIONARY english;

This command will not succeed if there are any existing text search configurations that use the dictio-
nary. Add CASCADE to drop such configurations along with the dictionary.

Compatibility
There is no DROP TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY

1749

DROP TEXT SEARCH PARSER
DROP TEXT SEARCH PARSER — remove a text search parser

Synopsis
DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH PARSER drops an existing text search parser. You must be a superuser to use this
command.

Parameters
IF EXISTS

Do not throw an error if the text search parser does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search parser.

CASCADE

Automatically drop objects that depend on the text search parser, and in turn all objects that depend
on those objects (see Section 5.15).

RESTRICT

Refuse to drop the text search parser if any objects depend on it. This is the default.

Examples
Remove the text search parser my_parser:

DROP TEXT SEARCH PARSER my_parser;

This command will not succeed if there are any existing text search configurations that use the parser.
Add CASCADE to drop such configurations along with the parser.

Compatibility
There is no DROP TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER

1750

DROP TEXT SEARCH TEMPLATE
DROP TEXT SEARCH TEMPLATE — remove a text search template

Synopsis
DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH TEMPLATE drops an existing text search template. You must be a superuser to use
this command.

Parameters
IF EXISTS

Do not throw an error if the text search template does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search template.

CASCADE

Automatically drop objects that depend on the text search template, and in turn all objects that
depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the text search template if any objects depend on it. This is the default.

Examples
Remove the text search template thesaurus:

DROP TEXT SEARCH TEMPLATE thesaurus;

This command will not succeed if there are any existing text search dictionaries that use the template.
Add CASCADE to drop such dictionaries along with the template.

Compatibility
There is no DROP TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE

1751

DROP TRANSFORM
DROP TRANSFORM — remove a transform

Synopsis
DROP TRANSFORM [IF EXISTS] FOR type_name LANGUAGE lang_name [CASCADE | RESTRICT]

Description
DROP TRANSFORM removes a previously defined transform.

To be able to drop a transform, you must own the type and the language. These are the same privileges
that are required to create a transform.

Parameters
IF EXISTS

Do not throw an error if the transform does not exist. A notice is issued in this case.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

CASCADE

Automatically drop objects that depend on the transform, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the transform if any objects depend on it. This is the default.

Examples
To drop the transform for type hstore and language plpython3u:

DROP TRANSFORM FOR hstore LANGUAGE plpython3u;

Compatibility
This form of DROP TRANSFORM is a PostgreSQL extension. See CREATE TRANSFORM for details.

See Also
CREATE TRANSFORM

1752

DROP TRIGGER
DROP TRIGGER — remove a trigger

Synopsis
DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP TRIGGER removes an existing trigger definition. To execute this command, the current user must
be the owner of the table for which the trigger is defined.

Parameters
IF EXISTS

Do not throw an error if the trigger does not exist. A notice is issued in this case.

name

The name of the trigger to remove.

table_name

The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger, and in turn all objects that depend on those
objects (see Section 5.15).

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger if_dist_exists on the table films:

DROP TRIGGER if_dist_exists ON films;

Compatibility
The DROP TRIGGER statement in PostgreSQL is incompatible with the SQL standard. In the SQL standard,
trigger names are not local to tables, so the command is simply DROP TRIGGER name.

See Also
CREATE TRIGGER

1753

DROP TYPE
DROP TYPE — remove a data type

Synopsis
DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TYPE removes a user-defined data type. Only the owner of a type can remove it.

Parameters
IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns, functions, and operators),
and in turn all objects that depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples
To remove the data type box:

DROP TYPE box;

Compatibility
This command is similar to the corresponding command in the SQL standard, apart from the IF EXISTS
option, which is a PostgreSQL extension. But note that much of the CREATE TYPE command and the data
type extension mechanisms in PostgreSQL differ from the SQL standard.

See Also
ALTER TYPE, CREATE TYPE

1754

DROP USER
DROP USER — remove a database role

Synopsis
DROP USER [IF EXISTS] name [, ...]

Description
DROP USER is simply an alternate spelling of DROP ROLE.

Compatibility
The DROP USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
DROP ROLE

1755

DROP USER MAPPING
DROP USER MAPPING — remove a user mapping for a foreign server

Synopsis
DROP USER MAPPING [IF EXISTS] FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER |
 PUBLIC } SERVER server_name

Description
DROP USER MAPPING removes an existing user mapping from foreign server.

The owner of a foreign server can drop user mappings for that server for any user. Also, a user can drop
a user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
IF EXISTS

Do not throw an error if the user mapping does not exist. A notice is issued in this case.

user_name

User name of the mapping. CURRENT_ROLE, CURRENT_USER, and USER match the name of the current
user. PUBLIC is used to match all present and future user names in the system.

server_name

Server name of the user mapping.

Examples
Drop a user mapping bob, server foo if it exists:

DROP USER MAPPING IF EXISTS FOR bob SERVER foo;

Compatibility
DROP USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a PostgreSQL
extension.

See Also
CREATE USER MAPPING, ALTER USER MAPPING

1756

DROP VIEW
DROP VIEW — remove a view

Synopsis
DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP VIEW drops an existing view. To execute this command you must be the owner of the view.

Parameters
IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views), and in turn all objects that
depend on those objects (see Section 5.15).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples
This command will remove the view called kinds:

DROP VIEW kinds;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one view to be
dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
ALTER VIEW, CREATE VIEW

1757

END
END — commit the current transaction

Synopsis
END [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
END commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs. This command is a PostgreSQL extension that is
equivalent to COMMIT.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction charac-
teristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes
Use ROLLBACK to abort a transaction.

Issuing END when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

END;

Compatibility
END is a PostgreSQL extension that provides functionality equivalent to COMMIT, which is specified in
the SQL standard.

See Also
BEGIN, COMMIT, ROLLBACK

1758

EXECUTE
EXECUTE — execute a prepared statement

Synopsis
EXECUTE name [(parameter [, ...])]

Description
EXECUTE is used to execute a previously prepared statement. Since prepared statements only exist for the
duration of a session, the prepared statement must have been created by a PREPARE statement executed
earlier in the current session.

If the PREPARE statement that created the statement specified some parameters, a compatible set of
parameters must be passed to the EXECUTE statement, or else an error is raised. Note that (unlike func-
tions) prepared statements are not overloaded based on the type or number of their parameters; the
name of a prepared statement must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters
name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an expression yielding a
value that is compatible with the data type of this parameter, as was determined when the prepared
statement was created.

Outputs
The command tag returned by EXECUTE is that of the prepared statement, and not EXECUTE.

Examples
Examples are given in Examples in the PREPARE documentation.

Compatibility
The SQL standard includes an EXECUTE statement, but it is only for use in embedded SQL. This version
of the EXECUTE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, PREPARE

1759

EXPLAIN
EXPLAIN — show the execution plan of a statement

Synopsis
EXPLAIN [(option [, ...])] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 SETTINGS [boolean]
 GENERIC_PLAN [boolean]
 BUFFERS [boolean]
 SERIALIZE [{ NONE | TEXT | BINARY }]
 WAL [boolean]
 TIMING [boolean]
 SUMMARY [boolean]
 MEMORY [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

Description
This command displays the execution plan that the PostgreSQL planner generates for the supplied state-
ment. The execution plan shows how the table(s) referenced by the statement will be scanned — by plain
sequential scan, index scan, etc. — and if multiple tables are referenced, what join algorithms will be
used to bring together the required rows from each input table.

The most critical part of the display is the estimated statement execution cost, which is the planner's
guess at how long it will take to run the statement (measured in cost units that are arbitrary, but con-
ventionally mean disk page fetches). Actually two numbers are shown: the start-up cost before the first
row can be returned, and the total cost to return all the rows. For most queries the total cost is what
matters, but in contexts such as a subquery in EXISTS, the planner will choose the smallest start-up cost
instead of the smallest total cost (since the executor will stop after getting one row, anyway). Also, if you
limit the number of rows to return with a LIMIT clause, the planner makes an appropriate interpolation
between the endpoint costs to estimate which plan is really the cheapest.

The ANALYZE option causes the statement to be actually executed, not only planned. Then actual run
time statistics are added to the display, including the total elapsed time expended within each plan node
(in milliseconds) and the total number of rows it actually returned. This is useful for seeing whether the
planner's estimates are close to reality.

Important
Keep in mind that the statement is actually executed when the ANALYZE option is used. Although
EXPLAIN will discard any output that a SELECT would return, other side effects of the statement will
happen as usual. If you wish to use EXPLAIN ANALYZE on an INSERT, UPDATE, DELETE, MERGE, CREATE
TABLE AS, or EXECUTE statement without letting the command affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;

1760

EXPLAIN

Parameters
ANALYZE

Carry out the command and show actual run times and other statistics. This parameter defaults to
FALSE.

VERBOSE

Display additional information regarding the plan. Specifically, include the output column list for
each node in the plan tree, schema-qualify table and function names, always label variables in ex-
pressions with their range table alias, and always print the name of each trigger for which statis-
tics are displayed. The query identifier will also be displayed if one has been computed, see com-
pute_query_id for more details. This parameter defaults to FALSE.

COSTS

Include information on the estimated startup and total cost of each plan node, as well as the estimated
number of rows and the estimated width of each row. This parameter defaults to TRUE.

SETTINGS

Include information on configuration parameters. Specifically, include options affecting query plan-
ning with value different from the built-in default value. This parameter defaults to FALSE.

GENERIC_PLAN

Allow the statement to contain parameter placeholders like $1, and generate a generic plan that does
not depend on the values of those parameters. See PREPARE for details about generic plans and the
types of statement that support parameters. This parameter cannot be used together with ANALYZE.
It defaults to FALSE.

BUFFERS

Include information on buffer usage. Specifically, include the number of shared blocks hit, read, dirt-
ied, and written, the number of local blocks hit, read, dirtied, and written, the number of temp blocks
read and written, and the time spent reading and writing data file blocks, local blocks and tempo-
rary file blocks (in milliseconds) if track_io_timing is enabled. A hit means that a read was avoided
because the block was found already in cache when needed. Shared blocks contain data from regular
tables and indexes; local blocks contain data from temporary tables and indexes; while temporary
blocks contain short-term working data used in sorts, hashes, Materialize plan nodes, and similar
cases. The number of blocks dirtied indicates the number of previously unmodified blocks that were
changed by this query; while the number of blocks written indicates the number of previously-dirtied
blocks evicted from cache by this backend during query processing. The number of blocks shown for
an upper-level node includes those used by all its child nodes. In text format, only non-zero values
are printed. Buffers information is automatically included when ANALYZE is used.

SERIALIZE

Include information on the cost of serializing the query's output data, that is converting it to text or
binary format to send to the client. This can be a significant part of the time required for regular
execution of the query, if the datatype output functions are expensive or if TOASTed values must
be fetched from out-of-line storage. EXPLAIN's default behavior, SERIALIZE NONE, does not perform
these conversions. If SERIALIZE TEXT or SERIALIZE BINARY is specified, the appropriate conversions
are performed, and the time spent doing so is measured (unless TIMING OFF is specified). If the
BUFFERS option is also specified, then any buffer accesses involved in the conversions are counted
too. In no case, however, will EXPLAIN actually send the resulting data to the client; hence network
transmission costs cannot be investigated this way. Serialization may only be enabled when ANALYZE
is also enabled. If SERIALIZE is written without an argument, TEXT is assumed.

WAL

Include information on WAL record generation. Specifically, include the number of records, number
of full page images (fpi), the amount of WAL generated in bytes and the number of times the WAL

1761

EXPLAIN

buffers became full. In text format, only non-zero values are printed. This parameter may only be
used when ANALYZE is also enabled. It defaults to FALSE.

TIMING

Include actual startup time and time spent in each node in the output. The overhead of repeatedly
reading the system clock can slow down the query significantly on some systems, so it may be useful
to set this parameter to FALSE when only actual row counts, and not exact times, are needed. Run
time of the entire statement is always measured, even when node-level timing is turned off with this
option. This parameter may only be used when ANALYZE is also enabled. It defaults to TRUE.

SUMMARY

Include summary information (e.g., totaled timing information) after the query plan. Summary infor-
mation is included by default when ANALYZE is used but otherwise is not included by default, but can
be enabled using this option. Planning time in EXPLAIN EXECUTE includes the time required to fetch
the plan from the cache and the time required for re-planning, if necessary.

MEMORY

Include information on memory consumption by the query planning phase. Specifically, include the
precise amount of storage used by planner in-memory structures, as well as total memory considering
allocation overhead. This parameter defaults to FALSE.

FORMAT

Specify the output format, which can be TEXT, XML, JSON, or YAML. Non-text output contains the
same information as the text output format, but is easier for programs to parse. This parameter
defaults to TEXT.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

statement

Any SELECT, INSERT, UPDATE, DELETE, MERGE, VALUES, EXECUTE, DECLARE, CREATE TABLE AS, or CREATE
MATERIALIZED VIEW AS statement, whose execution plan you wish to see.

Outputs
The command's result is a textual description of the plan selected for the statement, optionally annotated
with execution statistics. Section 14.1 describes the information provided.

Notes
In order to allow the PostgreSQL query planner to make reasonably informed decisions when optimizing
queries, the pg_statistic data should be up-to-date for all tables used in the query. Normally the auto-
vacuum daemon will take care of that automatically. But if a table has recently had substantial changes
in its contents, you might need to do a manual ANALYZE rather than wait for autovacuum to catch up
with the changes.

In order to measure the run-time cost of each node in the execution plan, the current implementation
of EXPLAIN ANALYZE adds profiling overhead to query execution. As a result, running EXPLAIN ANALYZE
on a query can sometimes take significantly longer than executing the query normally. The amount of
overhead depends on the nature of the query, as well as the platform being used. The worst case occurs
for plan nodes that in themselves require very little time per execution, and on machines that have
relatively slow operating system calls for obtaining the time of day.

Examples
To show the plan for a simple query on a table with a single integer column and 10000 rows:

1762

EXPLAIN

EXPLAIN SELECT * FROM foo;

 QUERY PLAN

 Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(1 row)

Here is the same query, with JSON output formatting:

EXPLAIN (FORMAT JSON) SELECT * FROM foo;
 QUERY PLAN

 [+
 { +
 "Plan": { +
 "Node Type": "Seq Scan",+
 "Relation Name": "foo", +
 "Alias": "foo", +
 "Startup Cost": 0.00, +
 "Total Cost": 155.00, +
 "Plan Rows": 10000, +
 "Plan Width": 4 +
 } +
 } +
]
(1 row)

If there is an index and we use a query with an indexable WHERE condition, EXPLAIN might show a different
plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;

 QUERY PLAN
--
 Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
 Index Cond: (i = 4)
(2 rows)

Here is the same query, but in YAML format:

EXPLAIN (FORMAT YAML) SELECT * FROM foo WHERE i='4';
 QUERY PLAN

 - Plan: +
 Node Type: "Index Scan" +
 Scan Direction: "Forward"+
 Index Name: "fi" +
 Relation Name: "foo" +
 Alias: "foo" +
 Startup Cost: 0.00 +
 Total Cost: 5.98 +
 Plan Rows: 1 +
 Plan Width: 4 +
 Index Cond: "(i = 4)"
(1 row)

XML format is left as an exercise for the reader.

Here is the same plan with cost estimates suppressed:

EXPLAIN (COSTS FALSE) SELECT * FROM foo WHERE i = 4;

1763

EXPLAIN

 QUERY PLAN

 Index Scan using fi on foo
 Index Cond: (i = 4)
(2 rows)

Here is an example of a query plan for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

 QUERY PLAN

 Aggregate (cost=23.93..23.93 rows=1 width=4)
 -> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
 Index Cond: (i < 10)
(3 rows)

Here is an example of using EXPLAIN EXECUTE to display the execution plan for a prepared query:

PREPARE query(int, int) AS SELECT sum(bar) FROM test
 WHERE id > $1 AND id < $2
 GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

 QUERY PLAN

--
 HashAggregate (cost=10.77..10.87 rows=10 width=12) (actual time=0.043..0.044
 rows=10.00 loops=1)
 Group Key: foo
 Batches: 1 Memory Usage: 24kB
 Buffers: shared hit=4
 -> Index Scan using test_pkey on test (cost=0.29..10.27 rows=99 width=8) (actual
 time=0.009..0.025 rows=99.00 loops=1)
 Index Cond: ((id > 100) AND (id < 200))
 Index Searches: 1
 Buffers: shared hit=4
 Planning Time: 0.244 ms
 Execution Time: 0.073 ms
(10 rows)

Of course, the specific numbers shown here depend on the actual contents of the tables involved. Also
note that the numbers, and even the selected query strategy, might vary between PostgreSQL releases
due to planner improvements. In addition, the ANALYZE command uses random sampling to estimate
data statistics; therefore, it is possible for cost estimates to change after a fresh run of ANALYZE, even
if the actual distribution of data in the table has not changed.

Notice that the previous example showed a “custom” plan for the specific parameter values given in
EXECUTE. We might also wish to see the generic plan for a parameterized query, which can be done with
GENERIC_PLAN:

EXPLAIN (GENERIC_PLAN)
 SELECT sum(bar) FROM test
 WHERE id > $1 AND id < $2
 GROUP BY foo;

 QUERY PLAN

1764

EXPLAIN

 HashAggregate (cost=26.79..26.89 rows=10 width=12)
 Group Key: foo
 -> Index Scan using test_pkey on test (cost=0.29..24.29 rows=500 width=8)
 Index Cond: ((id > $1) AND (id < $2))
(4 rows)

In this case the parser correctly inferred that $1 and $2 should have the same data type as id, so the lack
of parameter type information from PREPARE was not a problem. In other cases it might be necessary to
explicitly specify types for the parameter symbols, which can be done by casting them, for example:

EXPLAIN (GENERIC_PLAN)
 SELECT sum(bar) FROM test
 WHERE id > $1::integer AND id < $2::integer
 GROUP BY foo;

Compatibility
There is no EXPLAIN statement defined in the SQL standard.

The following syntax was used before PostgreSQL version 9.0 and is still supported:

EXPLAIN [ANALYZE] [VERBOSE] statement

Note that in this syntax, the options must be specified in exactly the order shown.

See Also
ANALYZE

1765

FETCH
FETCH — retrieve rows from a query using a cursor

Synopsis
FETCH [direction] [FROM | IN] cursor_name

where direction can be one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description
FETCH retrieves rows using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position can be before the first
row of the query result, on any particular row of the result, or after the last row of the result. When
created, a cursor is positioned before the first row. After fetching some rows, the cursor is positioned
on the row most recently retrieved. If FETCH runs off the end of the available rows then the cursor is left
positioned after the last row, or before the first row if fetching backward. FETCH ALL or FETCH BACKWARD
ALL will always leave the cursor positioned after the last row or before the first row.

The forms NEXT, PRIOR, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving the cursor
appropriately. If there is no such row, an empty result is returned, and the cursor is left positioned before
the first row or after the last row as appropriate.

The forms using FORWARD and BACKWARD retrieve the indicated number of rows moving in the forward or
backward direction, leaving the cursor positioned on the last-returned row (or after/before all rows, if
the count exceeds the number of rows available).

RELATIVE 0, FORWARD 0, and BACKWARD 0 all request fetching the current row without moving the cursor,
that is, re-fetching the most recently fetched row. This will succeed unless the cursor is positioned before
the first row or after the last row; in which case, no row is returned.

Note
This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 41.7.3.

Parameters
direction

direction defines the fetch direction and number of rows to fetch. It can be one of the following:

1766

FETCH

NEXT

Fetch the next row. This is the default if direction is omitted.

PRIOR

Fetch the prior row.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1).

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count

Fetch the count'th row of the query, or the abs(count)'th row from the end if count is negative.
Position before first row or after last row if count is out of range; in particular, ABSOLUTE 0
positions before the first row.

RELATIVE count

Fetch the count'th succeeding row, or the abs(count)'th prior row if count is negative. RELATIVE
0 re-fetches the current row, if any.

count

Fetch the next count rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count

Fetch the next count rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

BACKWARD

Fetch the prior row (same as PRIOR).

BACKWARD count

Fetch the prior count rows (scanning backwards). BACKWARD 0 re-fetches the current row.

BACKWARD ALL

Fetch all prior rows (scanning backwards).

count

count is a possibly-signed integer constant, determining the location or number of rows to fetch.
For FORWARD and BACKWARD cases, specifying a negative count is equivalent to changing the sense
of FORWARD and BACKWARD.

cursor_name

An open cursor's name.

1767

FETCH

Outputs
On successful completion, a FETCH command returns a command tag of the form
FETCH count

The count is the number of rows fetched (possibly zero). Note that in psql, the command tag will not
actually be displayed, since psql displays the fetched rows instead.

Notes
The cursor should be declared with the SCROLL option if one intends to use any variants of FETCH other
than FETCH NEXT or FETCH FORWARD with a positive count. For simple queries PostgreSQL will allow
backwards fetch from cursors not declared with SCROLL, but this behavior is best not relied on. If the
cursor is declared with NO SCROLL, no backward fetches are allowed.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative move: the under-
lying implementation must traverse all the intermediate rows anyway. Negative absolute fetches are
even worse: the query must be read to the end to find the last row, and then traversed backward from
there. However, rewinding to the start of the query (as with FETCH ABSOLUTE 0) is fast.

DECLARE is used to define a cursor. Use MOVE to change cursor position without retrieving data.

Examples
The following example traverses a table using a cursor:
BEGIN WORK;

-- Set up a cursor:
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor liahona:
FETCH FORWARD 5 FROM liahona;

 code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch the previous row:
FETCH PRIOR FROM liahona;

 code | title | did | date_prod | kind | len
-------+---------+-----+------------+--------+-------
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- Close the cursor and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
The SQL standard defines FETCH for use in embedded SQL only. The variant of FETCH described here
returns the data as if it were a SELECT result rather than placing it in host variables. Other than this
point, FETCH is fully upward-compatible with the SQL standard.

The FETCH forms involving FORWARD and BACKWARD, as well as the forms FETCH count and FETCH ALL, in
which FORWARD is implicit, are PostgreSQL extensions.

1768

FETCH

The SQL standard allows only FROM preceding the cursor name; the option to use IN, or to leave them
out altogether, is an extension.

See Also
CLOSE, DECLARE, MOVE

1769

GRANT
GRANT — define access privileges

Synopsis
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER |
 MAINTAIN }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } routine_name [([[argmode] [arg_name
] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

1770

GRANT

 [GRANTED BY role_specification]

GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { SET | ALTER SYSTEM } [, ...] | ALL [PRIVILEGES] }
 ON PARAMETER configuration_parameter [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT role_name [, ...] TO role_specification [, ...]
 [WITH { ADMIN | INHERIT | SET } { OPTION | TRUE | FALSE }]
 [GRANTED BY role_specification]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description
The GRANT command has two basic variants: one that grants privileges on a database object (table, col-
umn, view, foreign table, sequence, database, foreign-data wrapper, foreign server, function, procedure,
procedural language, large object, configuration parameter, schema, tablespace, or type), and one that
grants membership in a role. These variants are similar in many ways, but they are different enough
to be described separately.

GRANT on Database Objects
This variant of the GRANT command gives specific privileges on a database object to one or more roles.
These privileges are added to those already granted, if any.

The key word PUBLIC indicates that the privileges are to be granted to all roles, including those that
might be created later. PUBLIC can be thought of as an implicitly defined group that always includes all
roles. Any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege can in turn grant it to others. Without
a grant option, the recipient cannot do that. Grant options cannot be granted to PUBLIC.

1771

GRANT

If GRANTED BY is specified, the specified grantor must be the current user. This clause is currently present
in this form only for SQL compatibility.

There is no need to grant privileges to the owner of an object (usually the user that created it), as the
owner has all privileges by default. (The owner could, however, choose to revoke some of their own
privileges for safety.)

The right to drop an object, or to alter its definition in any way, is not treated as a grantable privilege; it
is inherent in the owner, and cannot be granted or revoked. (However, a similar effect can be obtained
by granting or revoking membership in the role that owns the object; see below.) The owner implicitly
has all grant options for the object, too.

The possible privileges are:
SELECT
INSERT
UPDATE
DELETE
TRUNCATE
REFERENCES
TRIGGER
CREATE
CONNECT
TEMPORARY
EXECUTE
USAGE
SET
ALTER SYSTEM
MAINTAIN

Specific types of privileges, as defined in Section 5.8.

TEMP

Alternative spelling for TEMPORARY.

ALL PRIVILEGES

Grant all of the privileges available for the object's type. The PRIVILEGES key word is optional in
PostgreSQL, though it is required by strict SQL.

The FUNCTION syntax works for plain functions, aggregate functions, and window functions, but not
for procedures; use PROCEDURE for those. Alternatively, use ROUTINE to refer to a function, aggregate
function, window function, or procedure regardless of its precise type.

There is also an option to grant privileges on all objects of the same type within one or more schemas. This
functionality is currently supported only for tables, sequences, functions, and procedures. ALL TABLES
also affects views and foreign tables, just like the specific-object GRANT command. ALL FUNCTIONS also
affects aggregate and window functions, but not procedures, again just like the specific-object GRANT
command. Use ALL ROUTINES to include procedures.

GRANT on Roles
This variant of the GRANT command grants membership in a role to one or more other roles, and the
modification of membership options SET, INHERIT, and ADMIN; see Section 21.3 for details. Membership
in a role is significant because it potentially allows access to the privileges granted to a role to each
of its members, and potentially also the ability to make changes to the role itself. However, the actual
permissions conferred depend on the options associated with the grant. To modify that options of an
existing membership, simply specify the membership with updated option values.

Each of the options described below can be set to either TRUE or FALSE. The keyword OPTION is accepted
as a synonym for TRUE, so that WITH ADMIN OPTION is a synonym for WITH ADMIN TRUE. When altering
an existing membership the omission of an option results in the current value being retained.

1772

GRANT

The ADMIN option allows the member to in turn grant membership in the role to others, and revoke
membership in the role as well. Without the admin option, ordinary users cannot do that. A role is not
considered to hold WITH ADMIN OPTION on itself. Database superusers can grant or revoke membership
in any role to anyone. This option defaults to FALSE.

The INHERIT option controls the inheritance status of the new membership; see Section 21.3 for details
on inheritance. If it is set to TRUE, it causes the new member to inherit from the granted role. If set
to FALSE, the new member does not inherit. If unspecified when creating a new role membership, this
defaults to the inheritance attribute of the new member.

The SET option, if it is set to TRUE, allows the member to change to the granted role using the SET ROLE
command. If a role is an indirect member of another role, it can use SET ROLE to change to that role only
if there is a chain of grants each of which has SET TRUE. This option defaults to TRUE.

To create an object owned by another role or give ownership of an existing object to another role, you
must have the ability to SET ROLE to that role; otherwise, commands such as ALTER ... OWNER TO or
CREATE DATABASE ... OWNER will fail. However, a user who inherits the privileges of a role but does not
have the ability to SET ROLE to that role may be able to obtain full access to the role by manipulating
existing objects owned by that role (e.g. they could redefine an existing function to act as a Trojan horse).
Therefore, if a role's privileges are to be inherited but should not be accessible via SET ROLE, it should
not own any SQL objects.

If GRANTED BY is specified, the grant is recorded as having been done by the specified role. A user can
only attribute a grant to another role if they possess the privileges of that role. The role recorded as
the grantor must have ADMIN OPTION on the target role, unless it is the bootstrap superuser. When a
grant is recorded as having a grantor other than the bootstrap superuser, it depends on the grantor
continuing to possess ADMIN OPTION on the role; so, if ADMIN OPTION is revoked, dependent grants must
be revoked as well.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC. Note also that this
form of the command does not allow the noise word GROUP in role_specification.

Notes
The REVOKE command is used to revoke access privileges.

Since PostgreSQL 8.1, the concepts of users and groups have been unified into a single kind of entity
called a role. It is therefore no longer necessary to use the keyword GROUP to identify whether a grantee
is a user or a group. GROUP is still allowed in the command, but it is a noise word.

A user may perform SELECT, INSERT, etc. on a column if they hold that privilege for either the specific
column or its whole table. Granting the privilege at the table level and then revoking it for one column
will not do what one might wish: the table-level grant is unaffected by a column-level operation.

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail out-
right if the user has no privileges whatsoever on the object. As long as some privilege is available, the
command will proceed, but it will grant only those privileges for which the user has grant options. The
GRANT ALL PRIVILEGES forms will issue a warning message if no grant options are held, while the other
forms will issue a warning if grant options for any of the privileges specifically named in the command
are not held. (In principle these statements apply to the object owner as well, but since the owner is
always treated as holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege settings.
This is comparable to the rights of root in a Unix system. As with root, it's unwise to operate as a
superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command
will appear to have been granted by the object owner. (For role membership, the membership appears
to have been granted by the bootstrap superuser.)

1773

GRANT

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a member
of the role that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on
the object. In this case the privileges will be recorded as having been granted by the role that actually
owns the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1,
of which role u1 is a member, then u1 can grant privileges on t1 to u2, but those privileges will appear
to have been granted directly by g1. Any other member of role g1 could revoke them later.

If the role executing GRANT holds the required privileges indirectly via more than one role membership
path, it is unspecified which containing role will be recorded as having done the grant. In such cases it
is best practice to use SET ROLE to become the specific role you want to do the GRANT as.

Granting permission on a table does not automatically extend permissions to any sequences used by the
table, including sequences tied to SERIAL columns. Permissions on sequences must be set separately.

See Section 5.8 for more information about specific privilege types, as well as how to inspect objects'
privileges.

Examples
Grant insert privilege to all users on table films:
GRANT INSERT ON films TO PUBLIC;

Grant all available privileges to user manuel on view kinds:
GRANT ALL PRIVILEGES ON kinds TO manuel;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of
kinds, when executed by someone else it will only grant those permissions for which the someone else
has grant options.

Grant membership in role admins to user joe:
GRANT admins TO joe;

Compatibility
According to the SQL standard, the PRIVILEGES key word in ALL PRIVILEGES is required. The SQL
standard does not support setting the privileges on more than one object per command.

PostgreSQL allows an object owner to revoke their own ordinary privileges: for example, a table owner
can make the table read-only to themselves by revoking their own INSERT, UPDATE, DELETE, and TRUNCATE
privileges. This is not possible according to the SQL standard. The reason is that PostgreSQL treats
the owner's privileges as having been granted by the owner to themselves; therefore they can revoke
them too. In the SQL standard, the owner's privileges are granted by an assumed entity “_SYSTEM”.
Not being “_SYSTEM”, the owner cannot revoke these rights.

According to the SQL standard, grant options can be granted to PUBLIC; PostgreSQL only supports
granting grant options to roles.

The SQL standard allows the GRANTED BY option to specify only CURRENT_USER or CURRENT_ROLE. The
other variants are PostgreSQL extensions.

The SQL standard provides for a USAGE privilege on other kinds of objects: character sets, collations,
translations.

In the SQL standard, sequences only have a USAGE privilege, which controls the use of the NEXT VALUE
FOR expression, which is equivalent to the function nextval in PostgreSQL. The sequence privileges
SELECT and UPDATE are PostgreSQL extensions. The application of the sequence USAGE privilege to the
currval function is also a PostgreSQL extension (as is the function itself).

Privileges on databases, tablespaces, schemas, languages, and configuration parameters are Post-
greSQL extensions.

1774

GRANT

See Also
REVOKE, ALTER DEFAULT PRIVILEGES

1775

IMPORT FOREIGN SCHEMA
IMPORT FOREIGN SCHEMA — import table definitions from a foreign server

Synopsis
IMPORT FOREIGN SCHEMA remote_schema
 [{ LIMIT TO | EXCEPT } (table_name [, ...])]
 FROM SERVER server_name
 INTO local_schema
 [OPTIONS (option 'value' [, ...])]

Description
IMPORT FOREIGN SCHEMA creates foreign tables that represent tables existing on a foreign server. The
new foreign tables will be owned by the user issuing the command and are created with the correct
column definitions and options to match the remote tables.

By default, all tables and views existing in a particular schema on the foreign server are imported.
Optionally, the list of tables can be limited to a specified subset, or specific tables can be excluded. The
new foreign tables are all created in the target schema, which must already exist.

To use IMPORT FOREIGN SCHEMA, the user must have USAGE privilege on the foreign server, as well as
CREATE privilege on the target schema.

Parameters
remote_schema

The remote schema to import from. The specific meaning of a remote schema depends on the foreign
data wrapper in use.

LIMIT TO (table_name [, ...])

Import only foreign tables matching one of the given table names. Other tables existing in the foreign
schema will be ignored.

EXCEPT (table_name [, ...])

Exclude specified foreign tables from the import. All tables existing in the foreign schema will be
imported except the ones listed here.

server_name

The foreign server to import from.

local_schema

The schema in which the imported foreign tables will be created.

OPTIONS (option 'value' [, ...])

Options to be used during the import. The allowed option names and values are specific to each
foreign data wrapper.

Examples
Import table definitions from a remote schema foreign_films on server film_server, creating the
foreign tables in local schema films:

IMPORT FOREIGN SCHEMA foreign_films
 FROM SERVER film_server INTO films;

1776

IMPORT FOREIGN SCHEMA

As above, but import only the two tables actors and directors (if they exist):

IMPORT FOREIGN SCHEMA foreign_films LIMIT TO (actors, directors)
 FROM SERVER film_server INTO films;

Compatibility
The IMPORT FOREIGN SCHEMA command conforms to the SQL standard, except that the OPTIONS clause
is a PostgreSQL extension.

See Also
CREATE FOREIGN TABLE, CREATE SERVER

1777

INSERT
INSERT — create new rows in a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table_name [AS alias] [(column_name [, ...])]
 [OVERRIDING { SYSTEM | USER } VALUE]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) [, ...] | query }
 [ON CONFLICT [conflict_target] conflict_action]
 [RETURNING [WITH ({ OLD | NEW } AS output_alias [, ...])]
 { * | output_expression [[AS] output_name] } [, ...]]

where conflict_target can be one of:

 ({ index_column_name | (index_expression) } [COLLATE collation] [opclass]
 [, ...]) [WHERE index_predicate]
 ON CONSTRAINT constraint_name

and conflict_action is one of:

 DO NOTHING
 DO UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT }
 [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [WHERE condition]

Description
INSERT inserts new rows into a table. One can insert one or more rows specified by value expressions,
or zero or more rows resulting from a query.

The target column names can be listed in any order. If no list of column names is given at all, the default
is all the columns of the table in their declared order; or the first N column names, if there are only N
columns supplied by the VALUES clause or query. The values supplied by the VALUES clause or query are
associated with the explicit or implicit column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a default value, either
its declared default value or null if there is none.

If the expression for any column is not of the correct data type, automatic type conversion will be at-
tempted.

INSERT into tables that lack unique indexes will not be blocked by concurrent activity. Tables with unique
indexes might block if concurrent sessions perform actions that lock or modify rows matching the unique
index values being inserted; the details are covered in Section 63.5. ON CONFLICT can be used to specify
an alternative action to raising a unique constraint or exclusion constraint violation error. (See ON
CONFLICT Clause below.)

The optional RETURNING clause causes INSERT to compute and return value(s) based on each row actually
inserted (or updated, if an ON CONFLICT DO UPDATE clause was used). This is primarily useful for obtaining
values that were supplied by defaults, such as a serial sequence number. However, any expression using
the table's columns is allowed. The syntax of the RETURNING list is identical to that of the output list of
SELECT. Only rows that were successfully inserted or updated will be returned. For example, if a row

1778

INSERT

was locked but not updated because an ON CONFLICT DO UPDATE ... WHERE clause condition was not
satisfied, the row will not be returned.

You must have INSERT privilege on a table in order to insert into it. If ON CONFLICT DO UPDATE is present,
UPDATE privilege on the table is also required.

If a column list is specified, you only need INSERT privilege on the listed columns. Similarly, when ON
CONFLICT DO UPDATE is specified, you only need UPDATE privilege on the column(s) that are listed to be
updated. However, ON CONFLICT DO UPDATE also requires SELECT privilege on any column whose values
are read in the ON CONFLICT DO UPDATE expressions or condition.

Use of the RETURNING clause requires SELECT privilege on all columns mentioned in RETURNING. If you
use the query clause to insert rows from a query, you of course need to have SELECT privilege on any
table or column used in the query.

Parameters

Inserting
This section covers parameters that may be used when only inserting new rows. Parameters exclusively
used with the ON CONFLICT clause are described separately.

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
INSERT query. See Section 7.8 and SELECT for details.

It is possible for the query (SELECT statement) to also contain a WITH clause. In such a case both
sets of with_query can be referenced within the query, but the second one takes precedence since
it is more closely nested.

table_name

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for table_name. When an alias is provided, it completely hides the actual name of
the table. This is particularly useful when ON CONFLICT DO UPDATE targets a table named excluded,
since that will otherwise be taken as the name of the special table representing the row proposed
for insertion.

column_name

The name of a column in the table named by table_name. The column name can be qualified with a
subfield name or array subscript, if needed. (Inserting into only some fields of a composite column
leaves the other fields null.) When referencing a column with ON CONFLICT DO UPDATE, do not include
the table's name in the specification of a target column. For example, INSERT INTO table_name ...
ON CONFLICT DO UPDATE SET table_name.col = 1 is invalid (this follows the general behavior
for UPDATE).

OVERRIDING SYSTEM VALUE

If this clause is specified, then any values supplied for identity columns will override the default
sequence-generated values.

For an identity column defined as GENERATED ALWAYS, it is an error to insert an explicit value (other
than DEFAULT) without specifying either OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE. (For
an identity column defined as GENERATED BY DEFAULT, OVERRIDING SYSTEM VALUE is the normal
behavior and specifying it does nothing, but PostgreSQL allows it as an extension.)

1779

INSERT

OVERRIDING USER VALUE

If this clause is specified, then any values supplied for identity columns are ignored and the default
sequence-generated values are applied.

This clause is useful for example when copying values between tables. Writing INSERT INTO tbl2
OVERRIDING USER VALUE SELECT * FROM tbl1 will copy from tbl1 all columns that are not identity
columns in tbl2 while values for the identity columns in tbl2 will be generated by the sequences
associated with tbl2.

DEFAULT VALUES

All columns will be filled with their default values, as if DEFAULT were explicitly specified for each
column. (An OVERRIDING clause is not permitted in this form.)

expression

An expression or value to assign to the corresponding column.

DEFAULT

The corresponding column will be filled with its default value. An identity column will be filled with a
new value generated by the associated sequence. For a generated column, specifying this is permit-
ted but merely specifies the normal behavior of computing the column from its generation expression.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT statement
for a description of the syntax.

output_alias

An optional substitute name for OLD or NEW rows in the RETURNING list.

By default, old values from the target table can be returned by writing OLD.column_name or OLD.*,
and new values can be returned by writing NEW.column_name or NEW.*. When an alias is provided,
these names are hidden and the old or new rows must be referred to using the alias. For example
RETURNING WITH (OLD AS o, NEW AS n) o.*, n.*.

output_expression

An expression to be computed and returned by the INSERT command after each row is inserted or
updated. The expression can use any column names of the table named by table_name. Write * to
return all columns of the inserted or updated row(s).

A column name or * may be qualified using OLD or NEW, or the corresponding output_alias for OLD
or NEW, to cause old or new values to be returned. An unqualified column name, or *, or a column
name or * qualified using the target table name or alias will return new values.

For a simple INSERT, all old values will be NULL. However, for an INSERT with an ON CONFLICT DO
UPDATE clause, the old values may be non-NULL.

output_name

A name to use for a returned column.

ON CONFLICT Clause
The optional ON CONFLICT clause specifies an alternative action to raising a unique violation or exclusion
constraint violation error. For each individual row proposed for insertion, either the insertion proceeds,
or, if an arbiter constraint or index specified by conflict_target is violated, the alternative conflic-
t_action is taken. ON CONFLICT DO NOTHING simply avoids inserting a row as its alternative action.
ON CONFLICT DO UPDATE updates the existing row that conflicts with the row proposed for insertion
as its alternative action.

1780

INSERT

conflict_target can perform unique index inference. When performing inference, it consists of one or
more index_column_name columns and/or index_expression expressions, and an optional index_pred-
icate. All table_name unique indexes that, without regard to order, contain exactly the conflict_tar-
get-specified columns/expressions are inferred (chosen) as arbiter indexes. If an index_predicate is
specified, it must, as a further requirement for inference, satisfy arbiter indexes. Note that this means
a non-partial unique index (a unique index without a predicate) will be inferred (and thus used by ON
CONFLICT) if such an index satisfying every other criteria is available. If an attempt at inference is un-
successful, an error is raised.

ON CONFLICT DO UPDATE guarantees an atomic INSERT or UPDATE outcome; provided there is no indepen-
dent error, one of those two outcomes is guaranteed, even under high concurrency. This is also known
as UPSERT — “UPDATE or INSERT”.

conflict_target

Specifies which conflicts ON CONFLICT takes the alternative action on by choosing arbiter indexes. Ei-
ther performs unique index inference, or names a constraint explicitly. For ON CONFLICT DO NOTHING,
it is optional to specify a conflict_target; when omitted, conflicts with all usable constraints (and
unique indexes) are handled. For ON CONFLICT DO UPDATE, a conflict_target must be provided.

conflict_action

conflict_action specifies an alternative ON CONFLICT action. It can be either DO NOTHING, or a
DO UPDATE clause specifying the exact details of the UPDATE action to be performed in case of a
conflict. The SET and WHERE clauses in ON CONFLICT DO UPDATE have access to the existing row
using the table's name (or an alias), and to the row proposed for insertion using the special excluded
table. SELECT privilege is required on any column in the target table where corresponding excluded
columns are read.

Note that the effects of all per-row BEFORE INSERT triggers are reflected in excluded values, since
those effects may have contributed to the row being excluded from insertion.

index_column_name

The name of a table_name column. Used to infer arbiter indexes. Follows CREATE INDEX format.
SELECT privilege on index_column_name is required.

index_expression

Similar to index_column_name, but used to infer expressions on table_name columns appearing with-
in index definitions (not simple columns). Follows CREATE INDEX format. SELECT privilege on any
column appearing within index_expression is required.

collation

When specified, mandates that corresponding index_column_name or index_expression use a par-
ticular collation in order to be matched during inference. Typically this is omitted, as collations usu-
ally do not affect whether or not a constraint violation occurs. Follows CREATE INDEX format.

opclass

When specified, mandates that corresponding index_column_name or index_expression use partic-
ular operator class in order to be matched during inference. Typically this is omitted, as the equality
semantics are often equivalent across a type's operator classes anyway, or because it's sufficient
to trust that the defined unique indexes have the pertinent definition of equality. Follows CREATE
INDEX format.

index_predicate

Used to allow inference of partial unique indexes. Any indexes that satisfy the predicate (which need
not actually be partial indexes) can be inferred. Follows CREATE INDEX format. SELECT privilege on
any column appearing within index_predicate is required.

1781

INSERT

constraint_name

Explicitly specifies an arbiter constraint by name, rather than inferring a constraint or index.

condition

An expression that returns a value of type boolean. Only rows for which this expression returns true
will be updated, although all rows will be locked when the ON CONFLICT DO UPDATE action is taken.
Note that condition is evaluated last, after a conflict has been identified as a candidate to update.

Note that exclusion constraints are not supported as arbiters with ON CONFLICT DO UPDATE. In all cases,
only NOT DEFERRABLE constraints and unique indexes are supported as arbiters.

INSERT with an ON CONFLICT DO UPDATE clause is a “deterministic” statement. This means that the
command will not be allowed to affect any single existing row more than once; a cardinality violation
error will be raised when this situation arises. Rows proposed for insertion should not duplicate each
other in terms of attributes constrained by an arbiter index or constraint.

Note that it is currently not supported for the ON CONFLICT DO UPDATE clause of an INSERT applied
to a partitioned table to update the partition key of a conflicting row such that it requires the row be
moved to a new partition.

Tip
It is often preferable to use unique index inference rather than naming a constraint directly using
ON CONFLICT ON CONSTRAINT constraint_name. Inference will continue to work correctly when
the underlying index is replaced by another more or less equivalent index in an overlapping way,
for example when using CREATE UNIQUE INDEX ... CONCURRENTLY before dropping the index
being replaced.

Outputs
On successful completion, an INSERT command returns a command tag of the form
INSERT oid count

The count is the number of rows inserted or updated. oid is always 0 (it used to be the OID assigned to
the inserted row if count was exactly one and the target table was declared WITH OIDS and 0 otherwise,
but creating a table WITH OIDS is not supported anymore).

If the INSERT command contains a RETURNING clause, the result will be similar to that of a SELECT state-
ment containing the columns and values defined in the RETURNING list, computed over the row(s) insert-
ed or updated by the command.

Notes
If the specified table is a partitioned table, each row is routed to the appropriate partition and inserted
into it. If the specified table is a partition, an error will occur if one of the input rows violates the partition
constraint.

You may also wish to consider using MERGE, since that allows mixing INSERT, UPDATE, and DELETE within
a single statement. See MERGE.

Examples
Insert a single row into table films:
INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, '1971-07-13', 'Comedy', '82 minutes');

In this example, the len column is omitted and therefore it will have the default value:

1782

INSERT

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

This example uses the DEFAULT clause for the date columns rather than specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes');
INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama');

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

This example inserts some rows into table films from a table tmp_films with the same column layout
as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < '2004-05-07';

This example inserts into array columns:

-- Create an empty 3x3 gameboard for noughts-and-crosses
INSERT INTO tictactoe (game, board[1:3][1:3])
 VALUES (1, '{{" "," "," "},{" "," "," "},{" "," "," "}}');
-- The subscripts in the above example aren't really needed
INSERT INTO tictactoe (game, board)
 VALUES (2, '{{X," "," "},{" ",O," "},{" ",X," "}}');

Insert a single row into table distributors, returning the sequence number generated by the DEFAULT
clause:

INSERT INTO distributors (did, dname) VALUES (DEFAULT, 'XYZ Widgets')
 RETURNING did;

Increment the sales count of the salesperson who manages the account for Acme Corporation, and record
the whole updated row along with current time in a log table:

WITH upd AS (
 UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation')
 RETURNING *
)
INSERT INTO employees_log SELECT *, current_timestamp FROM upd;

Insert or update new distributors as appropriate. Assumes a unique index has been defined that con-
strains values appearing in the did column. Note that the special excluded table is used to reference
values originally proposed for insertion:

INSERT INTO distributors (did, dname)
 VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')
 ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname;

Insert or update new distributors as above, returning information about any existing values that were
updated, together with the new data inserted. Note that the returned values for old_did and old_dname
will be NULL for non-conflicting rows:

INSERT INTO distributors (did, dname)
 VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')

1783

INSERT

 ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname
 RETURNING old.did AS old_did, old.dname AS old_dname,
 new.did AS new_did, new.dname AS new_dname;

Insert a distributor, or do nothing for rows proposed for insertion when an existing, excluded row (a row
with a matching constrained column or columns after before row insert triggers fire) exists. Example
assumes a unique index has been defined that constrains values appearing in the did column:

INSERT INTO distributors (did, dname) VALUES (7, 'Redline GmbH')
 ON CONFLICT (did) DO NOTHING;

Insert or update new distributors as appropriate. Example assumes a unique index has been defined that
constrains values appearing in the did column. WHERE clause is used to limit the rows actually updated
(any existing row not updated will still be locked, though):

-- Don't update existing distributors based in a certain ZIP code
INSERT INTO distributors AS d (did, dname) VALUES (8, 'Anvil Distribution')
 ON CONFLICT (did) DO UPDATE
 SET dname = EXCLUDED.dname || ' (formerly ' || d.dname || ')'
 WHERE d.zipcode <> '21201';

-- Name a constraint directly in the statement (uses associated
-- index to arbitrate taking the DO NOTHING action)
INSERT INTO distributors (did, dname) VALUES (9, 'Antwerp Design')
 ON CONFLICT ON CONSTRAINT distributors_pkey DO NOTHING;

Insert new distributor if possible; otherwise DO NOTHING. Example assumes a unique index has been
defined that constrains values appearing in the did column on a subset of rows where the is_active
Boolean column evaluates to true:

-- This statement could infer a partial unique index on "did"
-- with a predicate of "WHERE is_active", but it could also
-- just use a regular unique constraint on "did"
INSERT INTO distributors (did, dname) VALUES (10, 'Conrad International')
 ON CONFLICT (did) WHERE is_active DO NOTHING;

Compatibility
INSERT conforms to the SQL standard, except that the RETURNING clause is a PostgreSQL extension, as
is the ability to use WITH with INSERT, and the ability to specify an alternative action with ON CONFLICT.
Also, the case in which a column name list is omitted, but not all the columns are filled from the VALUES
clause or query, is disallowed by the standard. If you prefer a more SQL standard conforming statement
than ON CONFLICT, see MERGE.

The SQL standard specifies that OVERRIDING SYSTEM VALUE can only be specified if an identity column
that is generated always exists. PostgreSQL allows the clause in any case and ignores it if it is not
applicable.

Possible limitations of the query clause are documented under SELECT.

1784

LISTEN
LISTEN — listen for a notification

Synopsis
LISTEN channel

Description
LISTEN registers the current session as a listener on the notification channel named channel. If the
current session is already registered as a listener for this notification channel, nothing is done.

Whenever the command NOTIFY channel is invoked, either by this session or another one connected
to the same database, all the sessions currently listening on that notification channel are notified, and
each will in turn notify its connected client application.

A session can be unregistered for a given notification channel with the UNLISTEN command. A session's
listen registrations are automatically cleared when the session ends.

The method a client application must use to detect notification events depends on which PostgreSQL
application programming interface it uses. With the libpq library, the application issues LISTEN as an
ordinary SQL command, and then must periodically call the function PQnotifies to find out whether any
notification events have been received. Other interfaces such as libpgtcl provide higher-level methods for
handling notify events; indeed, with libpgtcl the application programmer should not even issue LISTEN
or UNLISTEN directly. See the documentation for the interface you are using for more details.

Parameters
channel

Name of a notification channel (any identifier).

Notes
LISTEN takes effect at transaction commit. If LISTEN or UNLISTEN is executed within a transaction that
later rolls back, the set of notification channels being listened to is unchanged.

A transaction that has executed LISTEN cannot be prepared for two-phase commit.

There is a race condition when first setting up a listening session: if concurrently-committing transac-
tions are sending notify events, exactly which of those will the newly listening session receive? The
answer is that the session will receive all events committed after an instant during the transaction's
commit step. But that is slightly later than any database state that the transaction could have observed
in queries. This leads to the following rule for using LISTEN: first execute (and commit!) that command,
then in a new transaction inspect the database state as needed by the application logic, then rely on noti-
fications to find out about subsequent changes to the database state. The first few received notifications
might refer to updates already observed in the initial database inspection, but this is usually harmless.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

1785

LISTEN

Compatibility
There is no LISTEN statement in the SQL standard.

See Also
NOTIFY, UNLISTEN, max_notify_queue_pages

1786

LOAD
LOAD — load a shared library file

Synopsis
LOAD 'filename'

Description
This command loads a shared library file into the PostgreSQL server's address space. If the file has
been loaded already, the command does nothing. Shared library files that contain C functions are auto-
matically loaded whenever one of their functions is called. Therefore, an explicit LOAD is usually only
needed to load a library that modifies the server's behavior through “hooks” rather than providing a
set of functions.

The library file name is typically given as just a bare file name, which is sought in the server's library
search path (set by dynamic_library_path). Alternatively it can be given as a full path name. In either
case the platform's standard shared library file name extension may be omitted. See Section 36.10.1 for
more information on this topic.

Non-superusers can only apply LOAD to library files located in $libdir/plugins/ — the specified file-
name must begin with exactly that string. (It is the database administrator's responsibility to ensure that
only “safe” libraries are installed there.)

Compatibility
LOAD is a PostgreSQL extension.

See Also
CREATE FUNCTION

1787

LOCK
LOCK — lock a table

Synopsis
LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description
LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAIT is specified, LOCK TABLE does not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for the
remainder of the current transaction. (There is no UNLOCK TABLE command; locks are always released
at transaction end.)

When a view is locked, all relations appearing in the view definition query are also locked recursively
with the same lock mode.

When acquiring locks automatically for commands that reference tables, PostgreSQL always uses the
least restrictive lock mode possible. LOCK TABLE provides for cases when you might need more restrictive
locking. For example, suppose an application runs a transaction at the READ COMMITTED isolation level
and needs to ensure that data in a table remains stable for the duration of the transaction. To achieve
this you could obtain SHARE lock mode over the table before querying. This will prevent concurrent data
changes and ensure subsequent reads of the table see a stable view of committed data, because SHARE
lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN
SHARE MODE statement will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or
roll back. Thus, once you obtain the lock, there are no uncommitted writes outstanding; furthermore
none can begin until you release the lock.

To achieve a similar effect when running a transaction at the REPEATABLE READ or SERIALIZABLE isola-
tion level, you have to execute the LOCK TABLE statement before executing any SELECT or data modifi-
cation statement. A REPEATABLE READ or SERIALIZABLE transaction's view of data will be frozen when
its first SELECT or data modification statement begins. A LOCK TABLE later in the transaction will still
prevent concurrent writes — but it won't ensure that what the transaction reads corresponds to the
latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW
EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one transaction of this type runs at a
time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode, and then be
unable to also acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that a transaction's
own locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds SHARE mode —
but not if anyone else holds SHARE mode.) To avoid deadlocks, make sure all transactions acquire locks
on the same objects in the same order, and if multiple lock modes are involved for a single object, then
transactions should always acquire the most restrictive mode first.

More information about the lock modes and locking strategies can be found in Section 13.3.

Parameters
name

The name (optionally schema-qualified) of an existing table to lock. If ONLY is specified before the
table name, only that table is locked. If ONLY is not specified, the table and all its descendant tables

1788

LOCK

(if any) are locked. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b;. The tables are
locked one-by-one in the order specified in the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with. Lock modes are described in Sec-
tion 13.3.

If no lock mode is specified, then ACCESS EXCLUSIVE, the most restrictive mode, is used.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if the specified
lock(s) cannot be acquired immediately without waiting, the transaction is aborted.

Notes
To lock a table, the user must have the right privilege for the specified lockmode. If the user has MAINTAIN,
UPDATE, DELETE, or TRUNCATE privileges on the table, any lockmode is permitted. If the user has INSERT
privileges on the table, ROW EXCLUSIVE MODE (or a less-conflicting mode as described in Section 13.3) is
permitted. If a user has SELECT privileges on the table, ACCESS SHARE MODE is permitted.

The user performing the lock on the view must have the corresponding privilege on the view. In addition,
by default, the view's owner must have the relevant privileges on the underlying base relations, whereas
the user performing the lock does not need any permissions on the underlying base relations. However,
if the view has security_invoker set to true (see CREATE VIEW), the user performing the lock, rather
than the view owner, must have the relevant privileges on the underlying base relations.

LOCK TABLE is useless outside a transaction block: the lock would remain held only to the completion of
the statement. Therefore PostgreSQL reports an error if LOCK is used outside a transaction block. Use
BEGIN and COMMIT (or ROLLBACK) to define a transaction block.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers.
These mode names should generally be read as indicating the intention of the user to acquire row-level
locks within the locked table. Also, ROW EXCLUSIVE mode is a shareable table lock. Keep in mind that all
the lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the rules
about which modes conflict with which. For information on how to acquire an actual row-level lock, see
Section 13.3.2 and The Locking Clause in the SELECT documentation.

Examples
Obtain a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
 WHERE name = 'Star Wars: Episode I - The Phantom Menace';
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, 'GREAT! I was waiting for it for so long!');
COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);

1789

LOCK

DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility
There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION to specify concurrency
levels on transactions. PostgreSQL supports that too; see SET TRANSACTION for details.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock modes, the PostgreSQL
lock modes and the LOCK TABLE syntax are compatible with those present in Oracle.

1790

MERGE
MERGE — conditionally insert, update, or delete rows of a table

Synopsis
[WITH with_query [, ...]]
MERGE INTO [ONLY] target_table_name [*] [[AS] target_alias]
 USING data_source ON join_condition
 when_clause [...]
 [RETURNING [WITH ({ OLD | NEW } AS output_alias [, ...])]
 { * | output_expression [[AS] output_name] } [, ...]]

where data_source is:

 { [ONLY] source_table_name [*] | (source_query) } [[AS] source_alias]

and when_clause is:

 { WHEN MATCHED [AND condition] THEN { merge_update | merge_delete | DO NOTHING }
 |
 WHEN NOT MATCHED BY SOURCE [AND condition] THEN { merge_update | merge_delete |
 DO NOTHING } |
 WHEN NOT MATCHED [BY TARGET] [AND condition] THEN { merge_insert | DO
 NOTHING } }

and merge_insert is:

 INSERT [(column_name [, ...])]
 [OVERRIDING { SYSTEM | USER } VALUE]
 { VALUES ({ expression | DEFAULT } [, ...]) | DEFAULT VALUES }

and merge_update is:

 UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...])
 |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]

and merge_delete is:

 DELETE

Description
MERGE performs actions that modify rows in the target table identified as target_table_name, using the
data_source. MERGE provides a single SQL statement that can conditionally INSERT, UPDATE or DELETE
rows, a task that would otherwise require multiple procedural language statements.

First, the MERGE command performs a join from data_source to the target table producing zero or more
candidate change rows. For each candidate change row, the status of MATCHED, NOT MATCHED BY SOURCE,
or NOT MATCHED [BY TARGET] is set just once, after which WHEN clauses are evaluated in the order
specified. For each candidate change row, the first clause to evaluate as true is executed. No more than
one WHEN clause is executed for any candidate change row.

MERGE actions have the same effect as regular UPDATE, INSERT, or DELETE commands of the same names.
The syntax of those commands is different, notably that there is no WHERE clause and no table name is

1791

MERGE

specified. All actions refer to the target table, though modifications to other tables may be made using
triggers.

When DO NOTHING is specified, the source row is skipped. Since actions are evaluated in their specified
order, DO NOTHING can be handy to skip non-interesting source rows before more fine-grained handling.

The optional RETURNING clause causes MERGE to compute and return value(s) based on each row inserted,
updated, or deleted. Any expression using the source or target table's columns, or the merge_action()
function can be computed. By default, when an INSERT or UPDATE action is performed, the new values
of the target table's columns are used, and when a DELETE is performed, the old values of the target
table's columns are used, but it is also possible to explicitly request old and new values. The syntax of
the RETURNING list is identical to that of the output list of SELECT.

There is no separate MERGE privilege. If you specify an update action, you must have the UPDATE privilege
on the column(s) of the target table that are referred to in the SET clause. If you specify an insert action,
you must have the INSERT privilege on the target table. If you specify a delete action, you must have
the DELETE privilege on the target table. If you specify a DO NOTHING action, you must have the SELECT
privilege on at least one column of the target table. You will also need SELECT privilege on any column(s)
of the data_source and of the target table referred to in any condition (including join_condition) or
expression. Privileges are tested once at statement start and are checked whether or not particular
WHEN clauses are executed.

MERGE is not supported if the target table is a materialized view, foreign table, or if it has any rules
defined on it.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
MERGE query. See Section 7.8 and SELECT for details. Note that WITH RECURSIVE is not supported
by MERGE.

target_table_name

The name (optionally schema-qualified) of the target table or view to merge into. If ONLY is specified
before a table name, matching rows are updated or deleted in the named table only. If ONLY is not
specified, matching rows are also updated or deleted in any tables inheriting from the named table.
Optionally, * can be specified after the table name to explicitly indicate that descendant tables are
included. The ONLY keyword and * option do not affect insert actions, which always insert into the
named table only.

If target_table_name is a view, it must either be automatically updatable with no INSTEAD OF trig-
gers, or it must have INSTEAD OF triggers for every type of action (INSERT, UPDATE, and DELETE)
specified in the WHEN clauses. Views with rules are not supported.

target_alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given MERGE INTO foo AS f, the remainder of the MERGE statement must
refer to this table as f not foo.

source_table_name

The name (optionally schema-qualified) of the source table, view, or transition table. If ONLY is spec-
ified before the table name, matching rows are included from the named table only. If ONLY is not
specified, matching rows are also included from any tables inheriting from the named table. Option-
ally, * can be specified after the table name to explicitly indicate that descendant tables are included.

source_query

A query (SELECT statement or VALUES statement) that supplies the rows to be merged into the target
table. Refer to the SELECT statement or VALUES statement for a description of the syntax.

1792

MERGE

source_alias

A substitute name for the data source. When an alias is provided, it completely hides the actual name
of the table or the fact that a query was issued.

join_condition

join_condition is an expression resulting in a value of type boolean (similar to a WHERE clause) that
specifies which rows in the data_source match rows in the target table.

Warning
Only columns from the target table that attempt to match data_source rows should appear
in join_condition. join_condition subexpressions that only reference the target table's
columns can affect which action is taken, often in surprising ways.

If both WHEN NOT MATCHED BY SOURCE and WHEN NOT MATCHED [BY TARGET] clauses are
specified, the MERGE command will perform a FULL join between data_source and the target
table. For this to work, at least one join_condition subexpression must use an operator that
can support a hash join, or all of the subexpressions must use operators that can support a
merge join.

when_clause

At least one WHEN clause is required.

The WHEN clause may specify WHEN MATCHED, WHEN NOT MATCHED BY SOURCE, or WHEN NOT MATCHED
[BY TARGET]. Note that the SQL standard only defines WHEN MATCHED and WHEN NOT MATCHED (which
is defined to mean no matching target row). WHEN NOT MATCHED BY SOURCE is an extension to the
SQL standard, as is the option to append BY TARGET to WHEN NOT MATCHED, to make its meaning
more explicit.

If the WHEN clause specifies WHEN MATCHED and the candidate change row matches a row in the da-
ta_source to a row in the target table, the WHEN clause is executed if the condition is absent or
it evaluates to true.

If the WHEN clause specifies WHEN NOT MATCHED BY SOURCE and the candidate change row represents
a row in the target table that does not match a row in the data_source, the WHEN clause is executed
if the condition is absent or it evaluates to true.

If the WHEN clause specifies WHEN NOT MATCHED [BY TARGET] and the candidate change row represents
a row in the data_source that does not match a row in the target table, the WHEN clause is executed
if the condition is absent or it evaluates to true.

condition

An expression that returns a value of type boolean. If this expression for a WHEN clause returns true,
then the action for that clause is executed for that row.

A condition on a WHEN MATCHED clause can refer to columns in both the source and the target relations.
A condition on a WHEN NOT MATCHED BY SOURCE clause can only refer to columns from the target
relation, since by definition there is no matching source row. A condition on a WHEN NOT MATCHED
[BY TARGET] clause can only refer to columns from the source relation, since by definition there is
no matching target row. Only the system attributes from the target table are accessible.

merge_insert

The specification of an INSERT action that inserts one row into the target table. The target column
names can be listed in any order. If no list of column names is given at all, the default is all the
columns of the table in their declared order.

1793

MERGE

Each column not present in the explicit or implicit column list will be filled with a default value, either
its declared default value or null if there is none.

If the target table is a partitioned table, each row is routed to the appropriate partition and inserted
into it. If the target table is a partition, an error will occur if any input row violates the partition
constraint.

Column names may not be specified more than once. INSERT actions cannot contain sub-selects.

Only one VALUES clause can be specified. The VALUES clause can only refer to columns from the source
relation, since by definition there is no matching target row.

merge_update

The specification of an UPDATE action that updates the current row of the target table. Column names
may not be specified more than once.

Neither a table name nor a WHERE clause are allowed.

merge_delete

Specifies a DELETE action that deletes the current row of the target table. Do not include the table
name or any other clauses, as you would normally do with a DELETE command.

column_name

The name of a column in the target table. The column name can be qualified with a subfield name
or array subscript, if needed. (Inserting into only some fields of a composite column leaves the other
fields null.) Do not include the table's name in the specification of a target column.

OVERRIDING SYSTEM VALUE

Without this clause, it is an error to specify an explicit value (other than DEFAULT) for an identity
column defined as GENERATED ALWAYS. This clause overrides that restriction.

OVERRIDING USER VALUE

If this clause is specified, then any values supplied for identity columns defined as GENERATED BY
DEFAULT are ignored and the default sequence-generated values are applied.

DEFAULT VALUES

All columns will be filled with their default values. (An OVERRIDING clause is not permitted in this
form.)

expression

An expression to assign to the column. If used in a WHEN MATCHED clause, the expression can use
values from the original row in the target table, and values from the data_source row. If used in a
WHEN NOT MATCHED BY SOURCE clause, the expression can only use values from the original row in
the target table. If used in a WHEN NOT MATCHED [BY TARGET] clause, the expression can only use
values from the data_source row.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has been
assigned to it).

sub-SELECT

A SELECT sub-query that produces as many output columns as are listed in the parenthesized column
list preceding it. The sub-query must yield no more than one row when executed. If it yields one row,
its column values are assigned to the target columns; if it yields no rows, NULL values are assigned
to the target columns. If used in a WHEN MATCHED clause, the sub-query can refer to values from the

1794

MERGE

original row in the target table, and values from the data_source row. If used in a WHEN NOT MATCHED
BY SOURCE clause, the sub-query can only refer to values from the original row in the target table.

output_alias

An optional substitute name for OLD or NEW rows in the RETURNING list.

By default, old values from the target table can be returned by writing OLD.column_name or OLD.*,
and new values can be returned by writing NEW.column_name or NEW.*. When an alias is provided,
these names are hidden and the old or new rows must be referred to using the alias. For example
RETURNING WITH (OLD AS o, NEW AS n) o.*, n.*.

output_expression

An expression to be computed and returned by the MERGE command after each row is changed
(whether inserted, updated, or deleted). The expression can use any columns of the source or target
tables, or the merge_action() function to return additional information about the action executed.

Writing * will return all columns from the source table, followed by all columns from the target table.
Often this will lead to a lot of duplication, since it is common for the source and target tables to
have a lot of the same columns. This can be avoided by qualifying the * with the name or alias of
the source or target table.

A column name or * may also be qualified using OLD or NEW, or the corresponding output_alias for
OLD or NEW, to cause old or new values from the target table to be returned. An unqualified column
name from the target table, or a column name or * qualified using the target table name or alias will
return new values for INSERT and UPDATE actions, and old values for DELETE actions.

output_name

A name to use for a returned column.

Outputs
On successful completion, a MERGE command returns a command tag of the form
MERGE total_count

The total_count is the total number of rows changed (whether inserted, updated, or deleted). If to-
tal_count is 0, no rows were changed in any way.

If the MERGE command contains a RETURNING clause, the result will be similar to that of a SELECT statement
containing the columns and values defined in the RETURNING list, computed over the row(s) inserted,
updated, or deleted by the command.

Notes
The following steps take place during the execution of MERGE.
1. Perform any BEFORE STATEMENT triggers for all actions specified, whether or not their WHEN clauses

match.
2. Perform a join from source to target table. The resulting query will be optimized normally and will

produce a set of candidate change rows. For each candidate change row,
a. Evaluate whether each row is MATCHED, NOT MATCHED BY SOURCE, or NOT MATCHED [BY TARGET].
b. Test each WHEN condition in the order specified until one returns true.
c. When a condition returns true, perform the following actions:

i. Perform any BEFORE ROW triggers that fire for the action's event type.
ii. Perform the specified action, invoking any check constraints on the target table.
iii. Perform any AFTER ROW triggers that fire for the action's event type.

1795

MERGE

If the target relation is a view with INSTEAD OF ROW triggers for the action's event type, they are
used to perform the action instead.

3. Perform any AFTER STATEMENT triggers for actions specified, whether or not they actually occur. This
is similar to the behavior of an UPDATE statement that modifies no rows.

In summary, statement triggers for an event type (say, INSERT) will be fired whenever we specify an
action of that kind. In contrast, row-level triggers will fire only for the specific event type being executed.
So a MERGE command might fire statement triggers for both UPDATE and INSERT, even though only UPDATE
row triggers were fired.

You should ensure that the join produces at most one candidate change row for each target row. In
other words, a target row shouldn't join to more than one data source row. If it does, then only one of
the candidate change rows will be used to modify the target row; later attempts to modify the row will
cause an error. This can also occur if row triggers make changes to the target table and the rows so
modified are then subsequently also modified by MERGE. If the repeated action is an INSERT, this will
cause a uniqueness violation, while a repeated UPDATE or DELETE will cause a cardinality violation; the
latter behavior is required by the SQL standard. This differs from historical PostgreSQL behavior of
joins in UPDATE and DELETE statements where second and subsequent attempts to modify the same row
are simply ignored.

If a WHEN clause omits an AND sub-clause, it becomes the final reachable clause of that kind (MATCHED,
NOT MATCHED BY SOURCE, or NOT MATCHED [BY TARGET]). If a later WHEN clause of that kind is specified it
would be provably unreachable and an error is raised. If no final reachable clause is specified of either
kind, it is possible that no action will be taken for a candidate change row.

The order in which rows are generated from the data source is indeterminate by default. A source_query
can be used to specify a consistent ordering, if required, which might be needed to avoid deadlocks
between concurrent transactions.

When MERGE is run concurrently with other commands that modify the target table, the usual transaction
isolation rules apply; see Section 13.2 for an explanation on the behavior at each isolation level. You
may also wish to consider using INSERT ... ON CONFLICT as an alternative statement which offers the
ability to run an UPDATE if a concurrent INSERT occurs. There are a variety of differences and restrictions
between the two statement types and they are not interchangeable.

Examples
Perform maintenance on customer_accounts based upon new recent_transactions.
MERGE INTO customer_account ca
USING recent_transactions t
ON t.customer_id = ca.customer_id
WHEN MATCHED THEN
 UPDATE SET balance = balance + transaction_value
WHEN NOT MATCHED THEN
 INSERT (customer_id, balance)
 VALUES (t.customer_id, t.transaction_value);

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead
update the stock count of the existing item. Don't allow entries that have zero stock. Return details of
all changes made.
MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
 INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
 UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN

1796

MERGE

 DELETE
RETURNING merge_action(), w.winename, old.stock AS old_stock, new.stock AS new_stock;

The wine_stock_changes table might be, for example, a temporary table recently loaded into the data-
base.

Update wines based on a replacement wine list, inserting rows for any new stock, updating modified
stock entries, and deleting any wines not present in the new list.

MERGE INTO wines w
USING new_wine_list s
ON s.winename = w.winename
WHEN NOT MATCHED BY TARGET THEN
 INSERT VALUES(s.winename, s.stock)
WHEN MATCHED AND w.stock != s.stock THEN
 UPDATE SET stock = s.stock
WHEN NOT MATCHED BY SOURCE THEN
 DELETE;

Compatibility
This command conforms to the SQL standard.

The WITH clause, BY SOURCE and BY TARGET qualifiers to WHEN NOT MATCHED, DO NOTHING action, and
RETURNING clause are extensions to the SQL standard.

1797

MOVE
MOVE — position a cursor

Synopsis
MOVE [direction] [FROM | IN] cursor_name

where direction can be one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description
MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only positions the cursor and does not return rows.

The parameters for the MOVE command are identical to those of the FETCH command; refer to FETCH
for details on syntax and usage.

Outputs
On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters would have returned
(possibly zero).

Examples
BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Skip the first 5 rows:
MOVE FORWARD 5 IN liahona;
MOVE 5

-- Fetch the 6th row from the cursor liahona:
FETCH 1 FROM liahona;
 code | title | did | date_prod | kind | len
-------+--------+-----+------------+--------+-------
 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)

1798

MOVE

-- Close the cursor liahona and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
There is no MOVE statement in the SQL standard.

See Also
CLOSE, DECLARE, FETCH

1799

NOTIFY
NOTIFY — generate a notification

Synopsis
NOTIFY channel [, payload]

Description
The NOTIFY command sends a notification event together with an optional “payload” string to each client
application that has previously executed LISTEN channel for the specified channel name in the current
database. Notifications are visible to all users.

NOTIFY provides a simple interprocess communication mechanism for a collection of processes accessing
the same PostgreSQL database. A payload string can be sent along with the notification, and higher-level
mechanisms for passing structured data can be built by using tables in the database to pass additional
data from notifier to listener(s).

The information passed to the client for a notification event includes the notification channel name, the
notifying session's server process PID, and the payload string, which is an empty string if it has not
been specified.

It is up to the database designer to define the channel names that will be used in a given database
and what each one means. Commonly, the channel name is the same as the name of some table in the
database, and the notify event essentially means, “I changed this table, take a look at it to see what's
new”. But no such association is enforced by the NOTIFY and LISTEN commands. For example, a database
designer could use several different channel names to signal different sorts of changes to a single table.
Alternatively, the payload string could be used to differentiate various cases.

When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put the NOTIFY in a statement trigger that is triggered by table updates. In this way,
notification happens automatically when the table is changed, and the application programmer cannot
accidentally forget to do it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed inside
a transaction, the notify events are not delivered until and unless the transaction is committed. This is
appropriate, since if the transaction is aborted, all the commands within it have had no effect, including
NOTIFY. But it can be disconcerting if one is expecting the notification events to be delivered immedi-
ately. Secondly, if a listening session receives a notification signal while it is within a transaction, the
notification event will not be delivered to its connected client until just after the transaction is complet-
ed (either committed or aborted). Again, the reasoning is that if a notification were delivered within a
transaction that was later aborted, one would want the notification to be undone somehow — but the
server cannot “take back” a notification once it has sent it to the client. So notification events are only
delivered between transactions. The upshot of this is that applications using NOTIFY for real-time sig-
naling should try to keep their transactions short.

If the same channel name is signaled multiple times with identical payload strings within the same
transaction, only one instance of the notification event is delivered to listeners. On the other hand,
notifications with distinct payload strings will always be delivered as distinct notifications. Similarly,
notifications from different transactions will never get folded into one notification. Except for dropping
later instances of duplicate notifications, NOTIFY guarantees that notifications from the same transaction
get delivered in the order they were sent. It is also guaranteed that messages from different transactions
are delivered in the order in which the transactions committed.

It is common for a client that executes NOTIFY to be listening on the same notification channel itself.
In that case it will get back a notification event, just like all the other listening sessions. Depending on
the application logic, this could result in useless work, for example, reading a database table to find the

1800

NOTIFY

same updates that that session just wrote out. It is possible to avoid such extra work by noticing whether
the notifying session's server process PID (supplied in the notification event message) is the same as
one's own session's PID (available from libpq). When they are the same, the notification event is one's
own work bouncing back, and can be ignored.

Parameters
channel

Name of the notification channel to be signaled (any identifier).

payload

The “payload” string to be communicated along with the notification. This must be specified as a
simple string literal. In the default configuration it must be shorter than 8000 bytes. (If binary data
or large amounts of information need to be communicated, it's best to put it in a database table and
send the key of the record.)

Notes
There is a queue that holds notifications that have been sent but not yet processed by all listening
sessions. If this queue becomes full, transactions calling NOTIFY will fail at commit. The queue is quite
large (8GB in a standard installation) and should be sufficiently sized for almost every use case. However,
no cleanup can take place if a session executes LISTEN and then enters a transaction for a very long
time. Once the queue is half full you will see warnings in the log file pointing you to the session that
is preventing cleanup. In this case you should make sure that this session ends its current transaction
so that cleanup can proceed.

The function pg_notification_queue_usage returns the fraction of the queue that is currently occupied
by pending notifications. See Section 9.27 for more information.

A transaction that has executed NOTIFY cannot be prepared for two-phase commit.

pg_notify
To send a notification you can also use the function pg_notify(text, text). The function takes the
channel name as the first argument and the payload as the second. The function is much easier to use
than the NOTIFY command if you need to work with non-constant channel names and payloads.

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.
NOTIFY virtual, 'This is the payload';
Asynchronous notification "virtual" with payload "This is the payload" received from
 server process with PID 8448.

LISTEN foo;
SELECT pg_notify('fo' || 'o', 'pay' || 'load');
Asynchronous notification "foo" with payload "payload" received from server process
 with PID 14728.

Compatibility
There is no NOTIFY statement in the SQL standard.

See Also
LISTEN, UNLISTEN, max_notify_queue_pages

1801

PREPARE
PREPARE — prepare a statement for execution

Synopsis
PREPARE name [(data_type [, ...])] AS statement

Description
PREPARE creates a prepared statement. A prepared statement is a server-side object that can be used
to optimize performance. When the PREPARE statement is executed, the specified statement is parsed,
analyzed, and rewritten. When an EXECUTE command is subsequently issued, the prepared statement is
planned and executed. This division of labor avoids repetitive parse analysis work, while allowing the
execution plan to depend on the specific parameter values supplied.

Prepared statements can take parameters: values that are substituted into the statement when it is ex-
ecuted. When creating the prepared statement, refer to parameters by position, using $1, $2, etc. A cor-
responding list of parameter data types can optionally be specified. When a parameter's data type is not
specified or is declared as unknown, the type is inferred from the context in which the parameter is first
referenced (if possible). When executing the statement, specify the actual values for these parameters
in the EXECUTE statement. Refer to EXECUTE for more information about that.

Prepared statements only last for the duration of the current database session. When the session ends,
the prepared statement is forgotten, so it must be recreated before being used again. This also means
that a single prepared statement cannot be used by multiple simultaneous database clients; howev-
er, each client can create their own prepared statement to use. Prepared statements can be manually
cleaned up using the DEALLOCATE command.

Prepared statements potentially have the largest performance advantage when a single session is being
used to execute a large number of similar statements. The performance difference will be particularly
significant if the statements are complex to plan or rewrite, e.g., if the query involves a join of many
tables or requires the application of several rules. If the statement is relatively simple to plan and rewrite
but relatively expensive to execute, the performance advantage of prepared statements will be less
noticeable.

Parameters
name

An arbitrary name given to this particular prepared statement. It must be unique within a single
session and is subsequently used to execute or deallocate a previously prepared statement.

data_type

The data type of a parameter to the prepared statement. If the data type of a particular parameter
is unspecified or is specified as unknown, it will be inferred from the context in which the parameter
is first referenced. To refer to the parameters in the prepared statement itself, use $1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, DELETE, MERGE, or VALUES statement.

Notes
A prepared statement can be executed with either a generic plan or a custom plan. A generic plan is the
same across all executions, while a custom plan is generated for a specific execution using the parameter
values given in that call. Use of a generic plan avoids planning overhead, but in some situations a custom
plan will be much more efficient to execute because the planner can make use of knowledge of the
parameter values. (Of course, if the prepared statement has no parameters, then this is moot and a
generic plan is always used.)

1802

PREPARE

By default (that is, when plan_cache_mode is set to auto), the server will automatically choose whether
to use a generic or custom plan for a prepared statement that has parameters. The current rule for
this is that the first five executions are done with custom plans and the average estimated cost of those
plans is calculated. Then a generic plan is created and its estimated cost is compared to the average
custom-plan cost. Subsequent executions use the generic plan if its cost is not so much higher than the
average custom-plan cost as to make repeated replanning seem preferable.

This heuristic can be overridden, forcing the server to use either generic or custom plans, by setting
plan_cache_mode to force_generic_plan or force_custom_plan respectively. This setting is primarily
useful if the generic plan's cost estimate is badly off for some reason, allowing it to be chosen even
though its actual cost is much more than that of a custom plan.

To examine the query plan PostgreSQL is using for a prepared statement, use EXPLAIN, for example

EXPLAIN EXECUTE name(parameter_values);

If a generic plan is in use, it will contain parameter symbols $n, while a custom plan will have the supplied
parameter values substituted into it.

For more information on query planning and the statistics collected by PostgreSQL for that purpose,
see the ANALYZE documentation.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of
the statement, PostgreSQL will force re-analysis and re-planning of the statement before using it when-
ever database objects used in the statement have undergone definitional (DDL) changes or their plan-
ner statistics have been updated since the previous use of the prepared statement. Also, if the val-
ue of search_path changes from one use to the next, the statement will be re-parsed using the new
search_path. (This latter behavior is new as of PostgreSQL 9.3.) These rules make use of a prepared
statement semantically almost equivalent to re-submitting the same query text over and over, but with
a performance benefit if no object definitions are changed, especially if the best plan remains the same
across uses. An example of a case where the semantic equivalence is not perfect is that if the statement
refers to a table by an unqualified name, and then a new table of the same name is created in a schema
appearing earlier in the search_path, no automatic re-parse will occur since no object used in the state-
ment changed. However, if some other change forces a re-parse, the new table will be referenced in
subsequent uses.

You can see all prepared statements available in the session by querying the pg_prepared_statements
system view.

Examples
Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS
 INSERT INTO foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Create a prepared statement for a SELECT statement, and then execute it:

PREPARE usrrptplan (int) AS
 SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
 AND l.date = $2;
EXECUTE usrrptplan(1, current_date);

In this example, the data type of the second parameter is not specified, so it is inferred from the context
in which $2 is used.

Compatibility
The SQL standard includes a PREPARE statement, but it is only for use in embedded SQL. This version
of the PREPARE statement also uses a somewhat different syntax.

1803

PREPARE

See Also
DEALLOCATE, EXECUTE

1804

PREPARE TRANSACTION
PREPARE TRANSACTION — prepare the current transaction for two-phase commit

Synopsis
PREPARE TRANSACTION transaction_id

Description
PREPARE TRANSACTION prepares the current transaction for two-phase commit. After this command, the
transaction is no longer associated with the current session; instead, its state is fully stored on disk, and
there is a very high probability that it can be committed successfully, even if a database crash occurs
before the commit is requested.

Once prepared, a transaction can later be committed or rolled back with COMMIT PREPARED or ROLLBACK
PREPARED, respectively. Those commands can be issued from any session, not only the one that executed
the original transaction.

From the point of view of the issuing session, PREPARE TRANSACTION is not unlike a ROLLBACK command:
after executing it, there is no active current transaction, and the effects of the prepared transaction are
no longer visible. (The effects will become visible again if the transaction is committed.)

If the PREPARE TRANSACTION command fails for any reason, it becomes a ROLLBACK: the current trans-
action is canceled.

Parameters
transaction_id

An arbitrary identifier that later identifies this transaction for COMMIT PREPARED or ROLLBACK PRE-
PARED. The identifier must be written as a string literal, and must be less than 200 bytes long. It must
not be the same as the identifier used for any currently prepared transaction.

Notes
PREPARE TRANSACTION is not intended for use in applications or interactive sessions. Its purpose is to
allow an external transaction manager to perform atomic global transactions across multiple databases
or other transactional resources. Unless you're writing a transaction manager, you probably shouldn't
be using PREPARE TRANSACTION.

This command must be used inside a transaction block. Use BEGIN to start one.

It is not currently allowed to PREPARE a transaction that has executed any operations involving tempo-
rary tables or the session's temporary namespace, created any cursors WITH HOLD, or executed LISTEN,
UNLISTEN, or NOTIFY. Those features are too tightly tied to the current session to be useful in a trans-
action to be prepared.

If the transaction modified any run-time parameters with SET (without the LOCAL option), those effects
persist after PREPARE TRANSACTION, and will not be affected by any later COMMIT PREPARED or ROLLBACK
PREPARED. Thus, in this one respect PREPARE TRANSACTION acts more like COMMIT than ROLLBACK.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Caution
It is unwise to leave transactions in the prepared state for a long time. This will interfere with the
ability of VACUUM to reclaim storage, and in extreme cases could cause the database to shut down

1805

PREPARE TRANSACTION

to prevent transaction ID wraparound (see Section 24.1.5). Keep in mind also that the transaction
continues to hold whatever locks it held. The intended usage of the feature is that a prepared
transaction will normally be committed or rolled back as soon as an external transaction manager
has verified that other databases are also prepared to commit.

If you have not set up an external transaction manager to track prepared transactions and ensure
they get closed out promptly, it is best to keep the prepared-transaction feature disabled by setting
max_prepared_transactions to zero. This will prevent accidental creation of prepared transactions
that might then be forgotten and eventually cause problems.

Examples
Prepare the current transaction for two-phase commit, using foobar as the transaction identifier:

PREPARE TRANSACTION 'foobar';

Compatibility
PREPARE TRANSACTION is a PostgreSQL extension. It is intended for use by external transaction manage-
ment systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those
systems is not standardized.

See Also
COMMIT PREPARED, ROLLBACK PREPARED

1806

REASSIGN OWNED
REASSIGN OWNED — change the ownership of database objects owned by a database role

Synopsis
REASSIGN OWNED BY { old_role | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]
 TO { new_role | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description
REASSIGN OWNED instructs the system to change the ownership of database objects owned by any of the
old_roles to new_role.

Parameters
old_role

The name of a role. The ownership of all the objects within the current database, and of all shared
objects (databases, tablespaces), owned by this role will be reassigned to new_role.

new_role

The name of the role that will be made the new owner of the affected objects.

Notes
REASSIGN OWNED is often used to prepare for the removal of one or more roles. Because REASSIGN OWNED
does not affect objects within other databases, it is usually necessary to execute this command in each
database that contains objects owned by a role that is to be removed.

REASSIGN OWNED requires membership on both the source role(s) and the target role.

The DROP OWNED command is an alternative that simply drops all the database objects owned by one
or more roles.

The REASSIGN OWNED command does not affect any privileges granted to the old_roles on objects that
are not owned by them. Likewise, it does not affect default privileges created with ALTER DEFAULT
PRIVILEGES. Use DROP OWNED to revoke such privileges.

See Section 21.4 for more discussion.

Compatibility
The REASSIGN OWNED command is a PostgreSQL extension.

See Also
DROP OWNED, DROP ROLE, ALTER DATABASE

1807

REFRESH MATERIALIZED VIEW
REFRESH MATERIALIZED VIEW — replace the contents of a materialized view

Synopsis
REFRESH MATERIALIZED VIEW [CONCURRENTLY] name
 [WITH [NO] DATA]

Description
REFRESH MATERIALIZED VIEW completely replaces the contents of a materialized view. To execute this
command you must have the MAINTAIN privilege on the materialized view. The old contents are discarded.
If WITH DATA is specified (or defaults) the backing query is executed to provide the new data, and the
materialized view is left in a scannable state. If WITH NO DATA is specified no new data is generated and
the materialized view is left in an unscannable state.

CONCURRENTLY and WITH NO DATA may not be specified together.

Parameters
CONCURRENTLY

Refresh the materialized view without locking out concurrent selects on the materialized view. With-
out this option a refresh which affects a lot of rows will tend to use fewer resources and complete
more quickly, but could block other connections which are trying to read from the materialized view.
This option may be faster in cases where a small number of rows are affected.

This option is only allowed if there is at least one UNIQUE index on the materialized view which uses
only column names and includes all rows; that is, it must not be an expression index or include a
WHERE clause.

This option can only be used when the materialized view is already populated.

Even with this option only one REFRESH at a time may run against any one materialized view.

name

The name (optionally schema-qualified) of the materialized view to refresh.

Notes
If there is an ORDER BY clause in the materialized view's defining query, the original contents of the
materialized view will be ordered that way; but REFRESH MATERIALIZED VIEW does not guarantee to
preserve that ordering.

While REFRESH MATERIALIZED VIEW is running, the search_path is temporarily changed to pg_catalog,
pg_temp.

Examples
This command will replace the contents of the materialized view called order_summary using the query
from the materialized view's definition, and leave it in a scannable state:

REFRESH MATERIALIZED VIEW order_summary;

This command will free storage associated with the materialized view annual_statistics_basis and
leave it in an unscannable state:

REFRESH MATERIALIZED VIEW annual_statistics_basis WITH NO DATA;

1808

REFRESH MATERIALIZED VIEW

Compatibility
REFRESH MATERIALIZED VIEW is a PostgreSQL extension.

See Also
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, DROP MATERIALIZED VIEW

1809

REINDEX
REINDEX — rebuild indexes

Synopsis
REINDEX [(option [, ...])] { INDEX | TABLE | SCHEMA } [CONCURRENTLY] name
REINDEX [(option [, ...])] { DATABASE | SYSTEM } [CONCURRENTLY] [name]

where option can be one of:

 CONCURRENTLY [boolean]
 TABLESPACE new_tablespace
 VERBOSE [boolean]

Description
REINDEX rebuilds an index using the data stored in the index's table, replacing the old copy of the index.
There are several scenarios in which to use REINDEX:

• An index has become corrupted, and no longer contains valid data. Although in theory this should
never happen, in practice indexes can become corrupted due to software bugs or hardware fail-
ures. REINDEX provides a recovery method.

• An index has become “bloated”, that is it contains many empty or nearly-empty pages. This can oc-
cur with B-tree indexes in PostgreSQL under certain uncommon access patterns. REINDEX provides
a way to reduce the space consumption of the index by writing a new version of the index without
the dead pages. See Section 24.2 for more information.

• You have altered a storage parameter (such as fillfactor) for an index, and wish to ensure that the
change has taken full effect.

• If an index build fails with the CONCURRENTLY option, this index is left as “invalid”. Such indexes are
useless but it can be convenient to use REINDEX to rebuild them. Note that only REINDEX INDEX is
able to perform a concurrent build on an invalid index.

Parameters
INDEX

Recreate the specified index. This form of REINDEX cannot be executed inside a transaction block
when used with a partitioned index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary “TOAST” table, that is rein-
dexed as well. This form of REINDEX cannot be executed inside a transaction block when used with
a partitioned table.

SCHEMA

Recreate all indexes of the specified schema. If a table of this schema has a secondary “TOAST”
table, that is reindexed as well. Indexes on shared system catalogs are also processed. This form of
REINDEX cannot be executed inside a transaction block.

DATABASE

Recreate all indexes within the current database, except system catalogs. Indexes on system catalogs
are not processed. This form of REINDEX cannot be executed inside a transaction block.

1810

REINDEX

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on shared system cata-
logs are included. Indexes on user tables are not processed. This form of REINDEX cannot be executed
inside a transaction block.

name

The name of the specific index, table, or database to be reindexed. Index and table names can be
schema-qualified. Presently, REINDEX DATABASE and REINDEX SYSTEM can only reindex the current
database. Their parameter is optional, and it must match the current database's name.

CONCURRENTLY

When this option is used, PostgreSQL will rebuild the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table; whereas a standard index rebuild locks out
writes (but not reads) on the table until it's done. There are several caveats to be aware of when
using this option — see Rebuilding Indexes Concurrently below.

For temporary tables, REINDEX is always non-concurrent, as no other session can access them, and
non-concurrent reindex is cheaper.

TABLESPACE

Specifies that indexes will be rebuilt on a new tablespace.

VERBOSE

Prints a progress report as each index is reindexed at INFO level.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

new_tablespace

The tablespace where indexes will be rebuilt.

Notes
If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes
on the table, using REINDEX INDEX or REINDEX TABLE.

Things are more difficult if you need to recover from corruption of an index on a system table. In this
case it's important for the system to not have used any of the suspect indexes itself. (Indeed, in this sort
of scenario you might find that server processes are crashing immediately at start-up, due to reliance on
the corrupted indexes.) To recover safely, the server must be started with the -P option, which prevents
it from using indexes for system catalog lookups.

One way to do this is to shut down the server and start a single-user PostgreSQL server with the -P
option included on its command line. Then, REINDEX DATABASE, REINDEX SYSTEM, REINDEX TABLE, or
REINDEX INDEX can be issued, depending on how much you want to reconstruct. If in doubt, use REINDEX
SYSTEM to select reconstruction of all system indexes in the database. Then quit the single-user server
session and restart the regular server. See the postgres reference page for more information about how
to interact with the single-user server interface.

Alternatively, a regular server session can be started with -P included in its command line options.
The method for doing this varies across clients, but in all libpq-based clients, it is possible to set the
PGOPTIONS environment variable to -P before starting the client. Note that while this method does not

1811

REINDEX

require locking out other clients, it might still be wise to prevent other users from connecting to the
damaged database until repairs have been completed.

REINDEX is similar to a drop and recreate of the index in that the index contents are rebuilt from scratch.
However, the locking considerations are rather different. REINDEX locks out writes but not reads of the
index's parent table. It also takes an ACCESS EXCLUSIVE lock on the specific index being processed,
which will block reads that attempt to use that index. In particular, the query planner tries to take an
ACCESS SHARE lock on every index of the table, regardless of the query, and so REINDEX blocks virtually
any queries except for some prepared queries whose plan has been cached and which don't use this
very index. In contrast, DROP INDEX momentarily takes an ACCESS EXCLUSIVE lock on the parent table,
blocking both writes and reads. The subsequent CREATE INDEX locks out writes but not reads; since the
index is not there, no read will attempt to use it, meaning that there will be no blocking but reads might
be forced into expensive sequential scans.

While REINDEX is running, the search_path is temporarily changed to pg_catalog, pg_temp.

Reindexing a single index or table requires having the MAINTAIN privilege on the table. Note that while
REINDEX on a partitioned index or table requires having the MAINTAIN privilege on the partitioned ta-
ble, such commands skip the privilege checks when processing the individual partitions. Reindexing a
schema or database requires being the owner of that schema or database or having privileges of the
pg_maintain role. Note specifically that it's thus possible for non-superusers to rebuild indexes of ta-
bles owned by other users. However, as a special exception, REINDEX DATABASE, REINDEX SCHEMA, and
REINDEX SYSTEM will skip indexes on shared catalogs unless the user has the MAINTAIN privilege on the
catalog.

Reindexing partitioned indexes or partitioned tables is supported with REINDEX INDEX or REINDEX TABLE,
respectively. Each partition of the specified partitioned relation is reindexed in a separate transaction.
Those commands cannot be used inside a transaction block when working on a partitioned table or index.

When using the TABLESPACE clause with REINDEX on a partitioned index or table, only the tablespace
references of the leaf partitions are updated. As partitioned indexes are not updated, it is recommended
to separately use ALTER TABLE ONLY on them so as any new partitions attached inherit the new table-
space. On failure, it may not have moved all the indexes to the new tablespace. Re-running the command
will rebuild all the leaf partitions and move previously-unprocessed indexes to the new tablespace.

If SCHEMA, DATABASE or SYSTEM is used with TABLESPACE, system relations are skipped and a single
WARNING will be generated. Indexes on TOAST tables are rebuilt, but not moved to the new tablespace.

Rebuilding Indexes Concurrently
Rebuilding an index can interfere with regular operation of a database. Normally PostgreSQL locks the
table whose index is rebuilt against writes and performs the entire index build with a single scan of the
table. Other transactions can still read the table, but if they try to insert, update, or delete rows in the
table they will block until the index rebuild is finished. This could have a severe effect if the system is
a live production database. Very large tables can take many hours to be indexed, and even for smaller
tables, an index rebuild can lock out writers for periods that are unacceptably long for a production
system.

PostgreSQL supports rebuilding indexes with minimum locking of writes. This method is invoked by
specifying the CONCURRENTLY option of REINDEX. When this option is used, PostgreSQL must perform
two scans of the table for each index that needs to be rebuilt and wait for termination of all existing
transactions that could potentially use the index. This method requires more total work than a standard
index rebuild and takes significantly longer to complete as it needs to wait for unfinished transactions
that might modify the index. However, since it allows normal operations to continue while the index is
being rebuilt, this method is useful for rebuilding indexes in a production environment. Of course, the
extra CPU, memory and I/O load imposed by the index rebuild may slow down other operations.

The following steps occur in a concurrent reindex. Each step is run in a separate transaction. If there
are multiple indexes to be rebuilt, then each step loops through all the indexes before moving to the
next step.

1812

REINDEX

1. A new transient index definition is added to the catalog pg_index. This definition will be used to
replace the old index. A SHARE UPDATE EXCLUSIVE lock at session level is taken on the indexes being
reindexed as well as their associated tables to prevent any schema modification while processing.

2. A first pass to build the index is done for each new index. Once the index is built, its flag pg_in-
dex.indisready is switched to “true” to make it ready for inserts, making it visible to other sessions
once the transaction that performed the build is finished. This step is done in a separate transaction
for each index.

3. Then a second pass is performed to add tuples that were added while the first pass was running. This
step is also done in a separate transaction for each index.

4. All the constraints that refer to the index are changed to refer to the new index definition, and the
names of the indexes are changed. At this point, pg_index.indisvalid is switched to “true” for
the new index and to “false” for the old, and a cache invalidation is done causing all sessions that
referenced the old index to be invalidated.

5. The old indexes have pg_index.indisready switched to “false” to prevent any new tuple insertions,
after waiting for running queries that might reference the old index to complete.

6. The old indexes are dropped. The SHARE UPDATE EXCLUSIVE session locks for the indexes and the
table are released.

If a problem arises while rebuilding the indexes, such as a uniqueness violation in a unique index, the
REINDEX command will fail but leave behind an “invalid” new index in addition to the pre-existing one.
This index will be ignored for querying purposes because it might be incomplete; however it will still
consume update overhead. The psql \d command will report such an index as INVALID:
postgres=# \d tab
 Table "public.tab"
 Column | Type | Modifiers
--------+---------+-----------
 col | integer |
Indexes:
 "idx" btree (col)
 "idx_ccnew" btree (col) INVALID

If the index marked INVALID is suffixed _ccnew, then it corresponds to the transient index created during
the concurrent operation, and the recommended recovery method is to drop it using DROP INDEX, then
attempt REINDEX CONCURRENTLY again. If the invalid index is instead suffixed _ccold, it corresponds to
the original index which could not be dropped; the recommended recovery method is to just drop said
index, since the rebuild proper has been successful. A nonzero number may be appended to the suffix
of the invalid index names to keep them unique, like _ccnew1, _ccold2, etc.

Regular index builds permit other regular index builds on the same table to occur simultaneously, but
only one concurrent index build can occur on a table at a time. In both cases, no other types of schema
modification on the table are allowed meanwhile. Another difference is that a regular REINDEX TABLE
or REINDEX INDEX command can be performed within a transaction block, but REINDEX CONCURRENTLY
cannot.

Like any long-running transaction, REINDEX on a table can affect which tuples can be removed by con-
current VACUUM on any other table.

REINDEX SYSTEM does not support CONCURRENTLY since system catalogs cannot be reindexed concurrent-
ly.

Furthermore, indexes for exclusion constraints cannot be reindexed concurrently. If such an index is
named directly in this command, an error is raised. If a table or database with exclusion constraint
indexes is reindexed concurrently, those indexes will be skipped. (It is possible to reindex such indexes
without the CONCURRENTLY option.)

Each backend running REINDEX will report its progress in the pg_stat_progress_create_index view.
See Section 27.4.4 for details.

1813

REINDEX

Examples
Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Rebuild all indexes in a particular database, without trusting the system indexes to be valid already:

$ export PGOPTIONS="-P"
$ psql broken_db
...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q

Rebuild indexes for a table, without blocking read and write operations on involved relations while
reindexing is in progress:

REINDEX TABLE CONCURRENTLY my_broken_table;

Compatibility
There is no REINDEX command in the SQL standard.

See Also
CREATE INDEX, DROP INDEX, reindexdb, Section 27.4.4

1814

RELEASE SAVEPOINT
RELEASE SAVEPOINT — release a previously defined savepoint

Synopsis
RELEASE [SAVEPOINT] savepoint_name

Description
RELEASE SAVEPOINT releases the named savepoint and all active savepoints that were created after the
named savepoint, and frees their resources. All changes made since the creation of the savepoint that
didn't already get rolled back are merged into the transaction or savepoint that was active when the
named savepoint was created. Changes made after RELEASE SAVEPOINT will also be part of this active
transaction or savepoint.

Parameters
savepoint_name

The name of the savepoint to release.

Notes
Specifying a savepoint name that was not previously defined is an error.

It is not possible to release a savepoint when the transaction is in an aborted state; to do that, use
ROLLBACK TO SAVEPOINT.

If multiple savepoints have the same name, only the most recently defined unreleased one is released.
Repeated commands will release progressively older savepoints.

Examples
To establish and later release a savepoint:
BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

A more complex example with multiple nested subtransactions:
BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT sp1;
 INSERT INTO table1 VALUES (2);
 SAVEPOINT sp2;
 INSERT INTO table1 VALUES (3);
 RELEASE SAVEPOINT sp2;
 INSERT INTO table1 VALUES (4))); -- generates an error

In this example, the application requests the release of the savepoint sp2, which inserted 3. This changes
the insert's transaction context to sp1. When the statement attempting to insert value 4 generates an
error, the insertion of 2 and 4 are lost because they are in the same, now-rolled back savepoint, and value
3 is in the same transaction context. The application can now only choose one of these two commands,
since all other commands will be ignored:

1815

RELEASE SAVEPOINT

ROLLBACK;
ROLLBACK TO SAVEPOINT sp1;

Choosing ROLLBACK will abort everything, including value 1, whereas ROLLBACK TO SAVEPOINT sp1 will
retain value 1 and allow the transaction to continue.

Compatibility
This command conforms to the SQL standard. The standard specifies that the key word SAVEPOINT is
mandatory, but PostgreSQL allows it to be omitted.

See Also
BEGIN, COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT, SAVEPOINT

1816

RESET
RESET — restore the value of a run-time parameter to the default value

Synopsis
RESET configuration_parameter
RESET ALL

Description
RESET restores run-time parameters to their default values. RESET is an alternative spelling for

SET configuration_parameter TO DEFAULT

Refer to SET for details.

The default value is defined as the value that the parameter would have had, if no SET had ever been
issued for it in the current session. The actual source of this value might be a compiled-in default, the
configuration file, command-line options, or per-database or per-user default settings. This is subtly
different from defining it as “the value that the parameter had at session start”, because if the value
came from the configuration file, it will be reset to whatever is specified by the configuration file now.
See Chapter 19 for details.

The transactional behavior of RESET is the same as SET: its effects will be undone by transaction rollback.

Parameters
configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 19 and
on the SET reference page.

ALL

Resets all settable run-time parameters to default values.

Examples
Set the timezone configuration variable to its default value:

RESET timezone;

Compatibility
RESET is a PostgreSQL extension.

See Also
SET, SHOW

1817

REVOKE
REVOKE — remove access privileges

Synopsis
REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER |
 MAINTAIN }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]

1818

REVOKE

 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } function_name [([[argmode] [arg_name
] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SET | ALTER SYSTEM } [, ...] | ALL [PRIVILEGES] }
 ON PARAMETER configuration_parameter [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [{ ADMIN | INHERIT | SET } OPTION FOR]
 role_name [, ...] FROM role_specification [, ...]
 [GRANTED BY role_specification]

1819

REVOKE

 [CASCADE | RESTRICT]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description
The REVOKE command revokes previously granted privileges from one or more roles. The key word PUBLIC
refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it, privileges granted
to any role it is presently a member of, and privileges granted to PUBLIC. Thus, for example, revoking
SELECT privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege on the
object: those who have it granted directly or via another role will still have it. Similarly, revoking SELECT
from a user might not prevent that user from using SELECT if PUBLIC or another membership role still
has SELECT rights.

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked, not the privilege
itself. Otherwise, both the privilege and the grant option are revoked.

If a user holds a privilege with grant option and has granted it to other users then the privileges held
by those other users are called dependent privileges. If the privilege or the grant option held by the
first user is being revoked and dependent privileges exist, those dependent privileges are also revoked
if CASCADE is specified; if it is not, the revoke action will fail. This recursive revocation only affects
privileges that were granted through a chain of users that is traceable to the user that is the subject of
this REVOKE command. Thus, the affected users might effectively keep the privilege if it was also granted
through other users.

When revoking privileges on a table, the corresponding column privileges (if any) are automatically
revoked on each column of the table, as well. On the other hand, if a role has been granted privileges
on a table, then revoking the same privileges from individual columns will have no effect.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION, but the behavior is
similar. Note that, in releases prior to PostgreSQL 16, dependent privileges were not tracked for grants
of role membership, and thus CASCADE had no effect for role membership. This is no longer the case.
Note also that this form of the command does not allow the noise word GROUP in role_specification.

Just as ADMIN OPTION can be removed from an existing role grant, it is also possible to revoke INHERIT
OPTION or SET OPTION. This is equivalent to setting the value of the corresponding option to FALSE.

Notes
A user can only revoke privileges that were granted directly by that user. If, for example, user A has
granted a privilege with grant option to user B, and user B has in turn granted it to user C, then user A
cannot revoke the privilege directly from C. Instead, user A could revoke the grant option from user B
and use the CASCADE option so that the privilege is in turn revoked from user C. For another example,
if both A and B have granted the same privilege to C, A can revoke their own grant but not B's grant,
so C will still effectively have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command will fail out-
right if the user has no privileges whatsoever on the object. As long as some privilege is available, the
command will proceed, but it will revoke only those privileges for which the user has grant options. The

1820

REVOKE

REVOKE ALL PRIVILEGES forms will issue a warning message if no grant options are held, while the other
forms will issue a warning if grant options for any of the privileges specifically named in the command
are not held. (In principle these statements apply to the object owner as well, but since the owner is
always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. (Since roles do not have owners, in the case of a GRANT of
role membership, the command is performed as though it were issued by the bootstrap superuser.) Since
all privileges ultimately come from the object owner (possibly indirectly via chains of grant options), it is
possible for a superuser to revoke all privileges, but this might require use of CASCADE as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role
that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on the object. In
this case the command is performed as though it were issued by the containing role that actually owns
the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1, of
which role u1 is a member, then u1 can revoke privileges on t1 that are recorded as being granted by
g1. This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role membership path, it is
unspecified which containing role will be used to perform the command. In such cases it is best practice
to use SET ROLE to become the specific role you want to do the REVOKE as. Failure to do so might lead
to revoking privileges other than the ones you intended, or not revoking anything at all.

See Section 5.8 for more information about specific privilege types, as well as how to inspect objects'
privileges.

Examples
Revoke insert privilege for the public on table films:

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from user manuel on view kinds:

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility
The compatibility notes of the GRANT command apply analogously to REVOKE. The keyword RESTRICT or
CASCADE is required according to the standard, but PostgreSQL assumes RESTRICT by default.

See Also
GRANT, ALTER DEFAULT PRIVILEGES

1821

ROLLBACK
ROLLBACK — abort the current transaction

Synopsis
ROLLBACK [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new (not aborted) transaction is immediately started with the same
transaction characteristics (see SET TRANSACTION) as the just finished one. Otherwise, no new
transaction is started.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK outside of a transaction block emits a warning and otherwise has no effect. ROLLBACK
AND CHAIN outside of a transaction block is an error.

Examples
To abort all changes:

ROLLBACK;

Compatibility
The command ROLLBACK conforms to the SQL standard. The form ROLLBACK TRANSACTION is a PostgreSQL
extension.

See Also
BEGIN, COMMIT, ROLLBACK TO SAVEPOINT

1822

ROLLBACK PREPARED
ROLLBACK PREPARED — cancel a transaction that was earlier prepared for two-phase commit

Synopsis
ROLLBACK PREPARED transaction_id

Description
ROLLBACK PREPARED rolls back a transaction that is in prepared state.

Parameters
transaction_id

The transaction identifier of the transaction that is to be rolled back.

Notes
To roll back a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is rolled back
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Roll back the transaction identified by the transaction identifier foobar:

ROLLBACK PREPARED 'foobar';

Compatibility
ROLLBACK PREPARED is a PostgreSQL extension. It is intended for use by external transaction manage-
ment systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those
systems is not standardized.

See Also
PREPARE TRANSACTION, COMMIT PREPARED

1823

ROLLBACK TO SAVEPOINT
ROLLBACK TO SAVEPOINT — roll back to a savepoint

Synopsis
ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description
Roll back all commands that were executed after the savepoint was established and then start a new
subtransaction at the same transaction level. The savepoint remains valid and can be rolled back to
again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the named save-
point.

Parameters
savepoint_name

The savepoint to roll back to.

Notes
Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of commands executed
after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any cursor that is opened
inside a savepoint will be closed when the savepoint is rolled back. If a previously opened cursor is
affected by a FETCH or MOVE command inside a savepoint that is later rolled back, the cursor remains
at the position that FETCH left it pointing to (that is, the cursor motion caused by FETCH is not rolled
back). Closing a cursor is not undone by rolling back, either. However, other side-effects caused by the
cursor's query (such as side-effects of volatile functions called by the query) are rolled back if they occur
during a savepoint that is later rolled back. A cursor whose execution causes a transaction to abort is
put in a cannot-execute state, so while the transaction can be restored using ROLLBACK TO SAVEPOINT,
the cursor can no longer be used.

Examples
To undo the effects of the commands executed after my_savepoint was established:
ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by savepoint rollback:
BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?

 1

ROLLBACK TO SAVEPOINT foo;

1824

ROLLBACK TO SAVEPOINT

FETCH 1 FROM foo;
 ?column?

 2

COMMIT;

Compatibility
The SQL standard specifies that the key word SAVEPOINT is mandatory, but PostgreSQL and Oracle allow
it to be omitted. SQL allows only WORK, not TRANSACTION, as a noise word after ROLLBACK. Also, SQL has
an optional clause AND [NO] CHAIN which is not currently supported by PostgreSQL. Otherwise, this
command conforms to the SQL standard.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, SAVEPOINT

1825

SAVEPOINT
SAVEPOINT — define a new savepoint within the current transaction

Synopsis
SAVEPOINT savepoint_name

Description
SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters
savepoint_name

The name to give to the new savepoint. If savepoints with the same name already exist, they will be
inaccessible until newer identically-named savepoints are released.

Notes
Use ROLLBACK TO to rollback to a savepoint. Use RELEASE SAVEPOINT to destroy a savepoint, keeping
the effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples
To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

To use a single savepoint name:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);

1826

SAVEPOINT

 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);

 -- rollback to the second savepoint
 ROLLBACK TO SAVEPOINT my_savepoint;
 SELECT * FROM table1; -- shows rows 1 and 2

 -- release the second savepoint
 RELEASE SAVEPOINT my_savepoint;

 -- rollback to the first savepoint
 ROLLBACK TO SAVEPOINT my_savepoint;
 SELECT * FROM table1; -- shows only row 1
COMMIT;

The above transaction shows row 3 being rolled back first, then row 2.

Compatibility
SQL requires a savepoint to be destroyed automatically when another savepoint with the same name
is established. In PostgreSQL, the old savepoint is kept, though only the more recent one will be used
when rolling back or releasing. (Releasing the newer savepoint with RELEASE SAVEPOINT will cause the
older one to again become accessible to ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise,
SAVEPOINT is fully SQL conforming.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, ROLLBACK TO SAVEPOINT

1827

SECURITY LABEL
SECURITY LABEL — define or change a security label applied to an object

Synopsis
SECURITY LABEL [FOR provider] ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 DATABASE object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SUBSCRIPTION object_name |
 TABLESPACE object_name |
 TYPE object_name |
 VIEW object_name
} IS { string_literal | NULL }

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
SECURITY LABEL applies a security label to a database object. An arbitrary number of security labels,
one per label provider, can be associated with a given database object. Label providers are loadable
modules which register themselves by using the function register_label_provider.

Note
register_label_provider is not an SQL function; it can only be called from C code loaded into
the backend.

The label provider determines whether a given label is valid and whether it is permissible to assign that
label to a given object. The meaning of a given label is likewise at the discretion of the label provider.
PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them. In practice, this facility is intended to allow integration
with label-based mandatory access control (MAC) systems such as SELinux. Such systems make all
access control decisions based on object labels, rather than traditional discretionary access control
(DAC) concepts such as users and groups.

1828

SECURITY LABEL

You must own the database object to use SECURITY LABEL.

Parameters
object_name
table_name.column_name
aggregate_name
function_name
procedure_name
routine_name

The name of the object to be labeled. Names of objects that reside in schemas (tables, functions,
etc.) can be schema-qualified.

provider

The name of the provider with which this label is to be associated. The named provider must be
loaded and must consent to the proposed labeling operation. If exactly one provider is loaded, the
provider name may be omitted for brevity.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If omitted,
the default is IN. Note that SECURITY LABEL does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is sufficient to
list the IN, INOUT, and VARIADIC arguments.

argname

The name of a function, procedure, or aggregate argument. Note that SECURITY LABEL does not
actually pay any attention to argument names, since only the argument data types are needed to
determine the function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

large_object_oid

The OID of the large object.

PROCEDURAL

This is a noise word.

string_literal

The new setting of the security label, written as a string literal.

NULL

Write NULL to drop the security label.

Examples
The following example shows how the security label of a table could be set or changed:

SECURITY LABEL FOR selinux ON TABLE mytable IS 'system_u:object_r:sepgsql_table_t:s0';

To remove the label:

SECURITY LABEL FOR selinux ON TABLE mytable IS NULL;

Compatibility
There is no SECURITY LABEL command in the SQL standard.

1829

SECURITY LABEL

See Also
sepgsql, src/test/modules/dummy_seclabel

1830

SELECT
SELECT, TABLE, WITH — retrieve rows from a table or view

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [{ * | expression [[AS] output_name] } [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }]
 [FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF from_reference [, ...]]
 [NOWAIT | SKIP LOCKED] [...]]

where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
 [TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed
)]]
 [LATERAL] (select) [[AS] alias [(column_alias [, ...])]]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition
 [, ...])
 [LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])
 [LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS
 (column_definition [, ...])] [, ...])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 from_item join_type from_item { ON join_condition | USING (join_column [, ...])
 [AS join_using_alias] }
 from_item NATURAL join_type from_item
 from_item CROSS JOIN from_item

and grouping_element can be one of:

 ()
 expression
 (expression [, ...])
 ROLLUP ({ expression | (expression [, ...]) } [, ...])
 CUBE ({ expression | (expression [, ...]) } [, ...])
 GROUPING SETS (grouping_element [, ...])

and with_query is:

 with_query_name [(column_name [, ...])] AS [[NOT] MATERIALIZED] (select
 | values | insert | update | delete | merge)

1831

SELECT

 [SEARCH { BREADTH | DEPTH } FIRST BY column_name [, ...]
 SET search_seq_col_name]
 [CYCLE column_name [, ...] SET cycle_mark_col_name [TO cycle_mark_value
 DEFAULT cycle_mark_default] USING cycle_path_col_name]

TABLE [ONLY] table_name [*]

Description
SELECT retrieves rows from zero or more tables. The general processing of SELECT is as follows:
1. All queries in the WITH list are computed. These effectively serve as temporary tables that can be

referenced in the FROM list. A WITH query that is referenced more than once in FROM is computed only
once, unless specified otherwise with NOT MATERIALIZED. (See WITH Clause below.)

2. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.)
If more than one element is specified in the FROM list, they are cross-joined together. (See FROM
Clause below.)

3. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the
output. (See WHERE Clause below.)

4. If the GROUP BY clause is specified, or if there are aggregate function calls, the output is combined
into groups of rows that match on one or more values, and the results of aggregate functions are
computed. If the HAVING clause is present, it eliminates groups that do not satisfy the given condition.
(See GROUP BY Clause and HAVING Clause below.) Although query output columns are nominally
computed in the next step, they can also be referenced (by name or ordinal number) in the GROUP
BY clause.

5. The actual output rows are computed using the SELECT output expressions for each selected row or
row group. (See SELECT List below.)

6. SELECT DISTINCT eliminates duplicate rows from the result. SELECT DISTINCT ON eliminates rows
that match on all the specified expressions. SELECT ALL (the default) will return all candidate rows,
including duplicates. (See DISTINCT Clause below.)

7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one SELECT statement
can be combined to form a single result set. The UNION operator returns all rows that are in one or
both of the result sets. The INTERSECT operator returns all rows that are strictly in both result sets.
The EXCEPT operator returns the rows that are in the first result set but not in the second. In all
three cases, duplicate rows are eliminated unless ALL is specified. The noise word DISTINCT can be
added to explicitly specify eliminating duplicate rows. Notice that DISTINCT is the default behavior
here, even though ALL is the default for SELECT itself. (See UNION Clause, INTERSECT Clause, and
EXCEPT Clause below.)

8. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY is
not given, the rows are returned in whatever order the system finds fastest to produce. (See ORDER
BY Clause below.)

9. If the LIMIT (or FETCH FIRST) or OFFSET clause is specified, the SELECT statement only returns a
subset of the result rows. (See LIMIT Clause below.)

10.If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE or FOR KEY SHARE is specified, the SELECT statement
locks the selected rows against concurrent updates. (See The Locking Clause below.)

You must have SELECT privilege on each column used in a SELECT command. The use of FOR NO KEY
UPDATE, FOR UPDATE, FOR SHARE or FOR KEY SHARE requires UPDATE privilege as well (for at least one
column of each table so selected).

Parameters
WITH Clause

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
primary query. The subqueries effectively act as temporary tables or views for the duration of the primary

1832

SELECT

query. Each subquery can be a SELECT, TABLE, VALUES, INSERT, UPDATE, DELETE, or MERGE statement.
When writing a data-modifying statement (INSERT, UPDATE, DELETE, or MERGE) in WITH, it is usual to
include a RETURNING clause. It is the output of RETURNING, not the underlying table that the statement
modifies, that forms the temporary table that is read by the primary query. If RETURNING is omitted,
the statement is still executed, but it produces no output so it cannot be referenced as a table by the
primary query.

A name (without schema qualification) must be specified for each WITH query. Optionally, a list of column
names can be specified; if this is omitted, the column names are inferred from the subquery.

If RECURSIVE is specified, it allows a SELECT subquery to reference itself by name. Such a subquery must
have the form
non_recursive_term UNION [ALL | DISTINCT] recursive_term

where the recursive self-reference must appear on the right-hand side of the UNION. Only one recursive
self-reference is permitted per query. Recursive data-modifying statements are not supported, but you
can use the results of a recursive SELECT query in a data-modifying statement. See Section 7.8 for an
example.

Another effect of RECURSIVE is that WITH queries need not be ordered: a query can reference another
one that is later in the list. (However, circular references, or mutual recursion, are not implemented.)
Without RECURSIVE, WITH queries can only reference sibling WITH queries that are earlier in the WITH list.

When there are multiple queries in the WITH clause, RECURSIVE should be written only once, immediately
after WITH. It applies to all queries in the WITH clause, though it has no effect on queries that do not use
recursion or forward references.

The optional SEARCH clause computes a search sequence column that can be used for ordering the results
of a recursive query in either breadth-first or depth-first order. The supplied column name list specifies
the row key that is to be used for keeping track of visited rows. A column named search_seq_col_name
will be added to the result column list of the WITH query. This column can be ordered by in the outer
query to achieve the respective ordering. See Section 7.8.2.1 for examples.

The optional CYCLE clause is used to detect cycles in recursive queries. The supplied column name
list specifies the row key that is to be used for keeping track of visited rows. A column named cy-
cle_mark_col_name will be added to the result column list of the WITH query. This column will be set
to cycle_mark_value when a cycle has been detected, else to cycle_mark_default. Furthermore, pro-
cessing of the recursive union will stop when a cycle has been detected. cycle_mark_value and cy-
cle_mark_default must be constants and they must be coercible to a common data type, and the data
type must have an inequality operator. (The SQL standard requires that they be Boolean constants or
character strings, but PostgreSQL does not require that.) By default, TRUE and FALSE (of type boolean)
are used. Furthermore, a column named cycle_path_col_name will be added to the result column list of
the WITH query. This column is used internally for tracking visited rows. See Section 7.8.2.2 for examples.

Both the SEARCH and the CYCLE clause are only valid for recursive WITH queries. The with_query must be
a UNION (or UNION ALL) of two SELECT (or equivalent) commands (no nested UNIONs). If both clauses are
used, the column added by the SEARCH clause appears before the columns added by the CYCLE clause.

The primary query and the WITH queries are all (notionally) executed at the same time. This implies that
the effects of a data-modifying statement in WITH cannot be seen from other parts of the query, other
than by reading its RETURNING output. If two such data-modifying statements attempt to modify the same
row, the results are unspecified.

A key property of WITH queries is that they are normally evaluated only once per execution of the primary
query, even if the primary query refers to them more than once. In particular, data-modifying statements
are guaranteed to be executed once and only once, regardless of whether the primary query reads all
or any of their output.

However, a WITH query can be marked NOT MATERIALIZED to remove this guarantee. In that case, the
WITH query can be folded into the primary query much as though it were a simple sub-SELECT in the

1833

SELECT

primary query's FROM clause. This results in duplicate computations if the primary query refers to that
WITH query more than once; but if each such use requires only a few rows of the WITH query's total
output, NOT MATERIALIZED can provide a net savings by allowing the queries to be optimized jointly. NOT
MATERIALIZED is ignored if it is attached to a WITH query that is recursive or is not side-effect-free (i.e.,
is not a plain SELECT containing no volatile functions).

By default, a side-effect-free WITH query is folded into the primary query if it is used exactly once in the
primary query's FROM clause. This allows joint optimization of the two query levels in situations where
that should be semantically invisible. However, such folding can be prevented by marking the WITH query
as MATERIALIZED. That might be useful, for example, if the WITH query is being used as an optimization
fence to prevent the planner from choosing a bad plan. PostgreSQL versions before v12 never did such
folding, so queries written for older versions might rely on WITH to act as an optimization fence.

See Section 7.8 for additional information.

FROM Clause
The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified,
the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions are
added (via WHERE) to restrict the returned rows to a small subset of the Cartesian product.

The FROM clause can contain the following elements:
table_name

The name (optionally schema-qualified) of an existing table or view. If ONLY is specified before the
table name, only that table is scanned. If ONLY is not specified, the table and all its descendant tables
(if any) are scanned. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). When an alias is provided,
it completely hides the actual name of the table or function; for example given FROM foo AS f, the
remainder of the SELECT must refer to this FROM item as f not foo. If an alias is written, a column
alias list can also be written to provide substitute names for one or more columns of the table.

TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]

A TABLESAMPLE clause after a table_name indicates that the specified sampling_method should be
used to retrieve a subset of the rows in that table. This sampling precedes the application of any other
filters such as WHERE clauses. The standard PostgreSQL distribution includes two sampling methods,
BERNOULLI and SYSTEM, and other sampling methods can be installed in the database via extensions.

The BERNOULLI and SYSTEM sampling methods each accept a single argument which is the fraction
of the table to sample, expressed as a percentage between 0 and 100. This argument can be any
real-valued expression. (Other sampling methods might accept more or different arguments.) These
two methods each return a randomly-chosen sample of the table that will contain approximately the
specified percentage of the table's rows. The BERNOULLI method scans the whole table and selects
or ignores individual rows independently with the specified probability. The SYSTEM method does
block-level sampling with each block having the specified chance of being selected; all rows in each
selected block are returned. The SYSTEM method is significantly faster than the BERNOULLI method
when small sampling percentages are specified, but it may return a less-random sample of the table
as a result of clustering effects.

The optional REPEATABLE clause specifies a seed number or expression to use for generating random
numbers within the sampling method. The seed value can be any non-null floating-point value. Two
queries that specify the same seed and argument values will select the same sample of the table, if
the table has not been changed meanwhile. But different seed values will usually produce different
samples. If REPEATABLE is not given then a new random sample is selected for each query, based

1834

SELECT

upon a system-generated seed. Note that some add-on sampling methods do not accept REPEATABLE,
and will always produce new samples on each use.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a tem-
porary table for the duration of this single SELECT command. Note that the sub-SELECT must be sur-
rounded by parentheses, and an alias can be provided in the same way as for a table. A VALUES com-
mand can also be used here.

with_query_name

A WITH query is referenced by writing its name, just as though the query's name were a table name.
(In fact, the WITH query hides any real table of the same name for the purposes of the primary query.
If necessary, you can refer to a real table of the same name by schema-qualifying the table's name.)
An alias can be provided in the same way as for a table.

function_name

Function calls can appear in the FROM clause. (This is especially useful for functions that return
result sets, but any function can be used.) This acts as though the function's output were created
as a temporary table for the duration of this single SELECT command. If the function's result type is
composite (including the case of a function with multiple OUT parameters), each attribute becomes
a separate column in the implicit table.

When the optional WITH ORDINALITY clause is added to the function call, an additional column of
type bigint will be appended to the function's result column(s). This column numbers the rows of
the function's result set, starting from 1. By default, this column is named ordinality.

An alias can be provided in the same way as for a table. If an alias is written, a column alias list can
also be written to provide substitute names for one or more attributes of the function's composite
return type, including the ordinality column if present.

Multiple function calls can be combined into a single FROM-clause item by surrounding them with ROWS
FROM(...). The output of such an item is the concatenation of the first row from each function, then
the second row from each function, etc. If some of the functions produce fewer rows than others,
null values are substituted for the missing data, so that the total number of rows returned is always
the same as for the function that produced the most rows.

If the function has been defined as returning the record data type, then an alias or the key word
AS must be present, followed by a column definition list in the form (column_name data_type
[, ...]). The column definition list must match the actual number and types of columns returned
by the function.

When using the ROWS FROM(...) syntax, if one of the functions requires a column definition list,
it's preferred to put the column definition list after the function call inside ROWS FROM(...). A
column definition list can be placed after the ROWS FROM(...) construct only if there's just a single
function and no WITH ORDINALITY clause.

To use ORDINALITY together with a column definition list, you must use the ROWS FROM(...) syntax
and put the column definition list inside ROWS FROM(...).

join_type

One of
• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

1835

SELECT

For the INNER and OUTER join types, a join condition must be specified, namely exactly one of ON
join_condition, USING (join_column [, ...]), or NATURAL. See below for the meaning.

A JOIN clause combines two FROM items, which for convenience we will refer to as “tables”, though
in reality they can be any type of FROM item. Use parentheses if necessary to determine the order of
nesting. In the absence of parentheses, JOINs nest left-to-right. In any case JOIN binds more tightly
than the commas separating FROM-list items. All the JOIN options are just a notational convenience,
since they do nothing you couldn't do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that pass
its join condition), plus one copy of each row in the left-hand table for which there was no right-hand
row that passed the join condition. This left-hand row is extended to the full width of the joined table
by inserting null values for the right-hand columns. Note that only the JOIN clause's own condition
is considered while deciding which rows have matches. Outer conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched right-
hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right tables.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row (ex-
tended with nulls on the right), plus one row for each unmatched right-hand row (extended with
nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type boolean (similar to a WHERE clause) that
specifies which rows in a join are considered to match.

USING (join_column [, ...]) [AS join_using_alias]

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a = right_table.a AND
left_table.b = right_table.b Also, USING implies that only one of each pair of equivalent
columns will be included in the join output, not both.

If a join_using_alias name is specified, it provides a table alias for the join columns. Only the join
columns listed in the USING clause are addressable by this name. Unlike a regular alias, this does
not hide the names of the joined tables from the rest of the query. Also unlike a regular alias, you
cannot write a column alias list — the output names of the join columns are the same as they appear
in the USING list.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have matching
names. If there are no common column names, NATURAL is equivalent to ON TRUE.

CROSS JOIN

CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that is, no rows are removed by qualification.
They produce a simple Cartesian product, the same result as you get from listing the two tables at
the top level of FROM, but restricted by the join condition (if any).

LATERAL

The LATERAL key word can precede a sub-SELECT FROM item. This allows the sub-SELECT to refer to
columns of FROM items that appear before it in the FROM list. (Without LATERAL, each sub-SELECT is
evaluated independently and so cannot cross-reference any other FROM item.)

LATERAL can also precede a function-call FROM item, but in this case it is a noise word, because the
function expression can refer to earlier FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

1836

SELECT

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row
of the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items pro-
viding the columns, the LATERAL item is evaluated using that row or row set's values of the columns.
The resulting row(s) are joined as usual with the rows they were computed from. This is repeated
for each row or set of rows from the column source table(s).

The column source table(s) must be INNER or LEFT joined to the LATERAL item, else there would not
be a well-defined set of rows from which to compute each set of rows for the LATERAL item. Thus,
although a construct such as X RIGHT JOIN LATERAL Y is syntactically valid, it is not actually allowed
for Y to reference X.

WHERE Clause
The optional WHERE clause has the general form
WHERE condition

where condition is any expression that evaluates to a result of type boolean. Any row that does not
satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns true
when the actual row values are substituted for any variable references.

GROUP BY Clause
The optional GROUP BY clause has the general form
GROUP BY [ALL | DISTINCT] grouping_element [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the grouped
expressions. An expression used inside a grouping_element can be an input column name, or the name
or ordinal number of an output column (SELECT list item), or an arbitrary expression formed from in-
put-column values. In case of ambiguity, a GROUP BY name will be interpreted as an input-column name
rather than an output column name.

If any of GROUPING SETS, ROLLUP or CUBE are present as grouping elements, then the GROUP BY clause
as a whole defines some number of independent grouping sets. The effect of this is equivalent to con-
structing a UNION ALL between subqueries with the individual grouping sets as their GROUP BY clauses.
The optional DISTINCT clause removes duplicate sets before processing; it does not transform the UNION
ALL into a UNION DISTINCT. For further details on the handling of grouping sets see Section 7.2.4.

Aggregate functions, if any are used, are computed across all rows making up each group, producing
a separate value for each group. (If there are aggregate functions but no GROUP BY clause, the query
is treated as having a single group comprising all the selected rows.) The set of rows fed to each aggre-
gate function can be further filtered by attaching a FILTER clause to the aggregate function call; see
Section 4.2.7 for more information. When a FILTER clause is present, only those rows matching it are
included in the input to that aggregate function.

When GROUP BY is present, or any aggregate functions are present, it is not valid for the SELECT list
expressions to refer to ungrouped columns except within aggregate functions or when the ungrouped
column is functionally dependent on the grouped columns, since there would otherwise be more than
one possible value to return for an ungrouped column. A functional dependency exists if the grouped
columns (or a subset thereof) are the primary key of the table containing the ungrouped column.

Keep in mind that all aggregate functions are evaluated before evaluating any “scalar” expressions in
the HAVING clause or SELECT list. This means that, for example, a CASE expression cannot be used to skip
evaluation of an aggregate function; see Section 4.2.14.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
GROUP BY.

HAVING Clause
The optional HAVING clause has the general form

1837

SELECT

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the condition. HAVING is different from WHERE: WHERE
filters individual rows before the application of GROUP BY, while HAVING filters group rows created by
GROUP BY. Each column referenced in condition must unambiguously reference a grouping column,
unless the reference appears within an aggregate function or the ungrouped column is functionally
dependent on the grouping columns.

The presence of HAVING turns a query into a grouped query even if there is no GROUP BY clause. This
is the same as what happens when the query contains aggregate functions but no GROUP BY clause.
All the selected rows are considered to form a single group, and the SELECT list and HAVING clause can
only reference table columns from within aggregate functions. Such a query will emit a single row if the
HAVING condition is true, zero rows if it is not true.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
HAVING.

WINDOW Clause
The optional WINDOW clause has the general form
WINDOW window_name AS (window_definition) [, ...]

where window_name is a name that can be referenced from OVER clauses or subsequent window defini-
tions, and window_definition is
[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
[frame_clause]

If an existing_window_name is specified it must refer to an earlier entry in the WINDOW list; the new
window copies its partitioning clause from that entry, as well as its ordering clause if any. In this case
the new window cannot specify its own PARTITION BY clause, and it can specify ORDER BY only if the
copied window does not have one. The new window always uses its own frame clause; the copied window
must not specify a frame clause.

The elements of the PARTITION BY list are interpreted in much the same fashion as elements of a GROUP
BY clause, except that they are always simple expressions and never the name or number of an output
column. Another difference is that these expressions can contain aggregate function calls, which are not
allowed in a regular GROUP BY clause. They are allowed here because windowing occurs after grouping
and aggregation.

Similarly, the elements of the ORDER BY list are interpreted in much the same fashion as elements of
a statement-level ORDER BY clause, except that the expressions are always taken as simple expressions
and never the name or number of an output column.

The optional frame_clause defines the window frame for window functions that depend on the frame
(not all do). The window frame is a set of related rows for each row of the query (called the current
row). The frame_clause can be one of
{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame_start and frame_end can be one of
UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING

1838

SELECT

UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

If frame_end is omitted it defaults to CURRENT ROW. Restrictions are that frame_start cannot be UN-
BOUNDED FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING, and the frame_end choice cannot ap-
pear earlier in the above list of frame_start and frame_end options than the frame_start choice does
— for example RANGE BETWEEN CURRENT ROW AND offset PRECEDING is not allowed.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UN-
BOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the partition start up through
the current row's last peer (a row that the window's ORDER BY clause considers equivalent to the current
row; all rows are peers if there is no ORDER BY). In general, UNBOUNDED PRECEDING means that the frame
starts with the first row of the partition, and similarly UNBOUNDED FOLLOWING means that the frame ends
with the last row of the partition, regardless of RANGE, ROWS or GROUPS mode. In ROWS mode, CURRENT
ROW means that the frame starts or ends with the current row; but in RANGE or GROUPS mode it means
that the frame starts or ends with the current row's first or last peer in the ORDER BY ordering. The
offset PRECEDING and offset FOLLOWING options vary in meaning depending on the frame mode. In
ROWS mode, the offset is an integer indicating that the frame starts or ends that many rows before or
after the current row. In GROUPS mode, the offset is an integer indicating that the frame starts or ends
that many peer groups before or after the current row's peer group, where a peer group is a group of
rows that are equivalent according to the window's ORDER BY clause. In RANGE mode, use of an offset
option requires that there be exactly one ORDER BY column in the window definition. Then the frame
contains those rows whose ordering column value is no more than offset less than (for PRECEDING) or
more than (for FOLLOWING) the current row's ordering column value. In these cases the data type of the
offset expression depends on the data type of the ordering column. For numeric ordering columns it is
typically of the same type as the ordering column, but for datetime ordering columns it is an interval. In
all these cases, the value of the offset must be non-null and non-negative. Also, while the offset does
not have to be a simple constant, it cannot contain variables, aggregate functions, or window functions.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

Beware that the ROWS mode can produce unpredictable results if the ORDER BY ordering does not order
the rows uniquely. The RANGE and GROUPS modes are designed to ensure that rows that are peers in the
ORDER BY ordering are treated alike: all rows of a given peer group will be in the frame or excluded
from it.

The purpose of a WINDOW clause is to specify the behavior of window functions appearing in the query's
SELECT list or ORDER BY clause. These functions can reference the WINDOW clause entries by name in
their OVER clauses. A WINDOW clause entry does not have to be referenced anywhere, however; if it is
not used in the query it is simply ignored. It is possible to use window functions without any WINDOW
clause at all, since a window function call can specify its window definition directly in its OVER clause.
However, the WINDOW clause saves typing when the same window definition is needed for more than one
window function.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
WINDOW.

Window functions are described in detail in Section 3.5, Section 4.2.8, and Section 7.2.5.

1839

SELECT

SELECT List
The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output
rows of the SELECT statement. The expressions can (and usually do) refer to columns computed in the
FROM clause.

Just as in a table, every output column of a SELECT has a name. In a simple SELECT this name is just used
to label the column for display, but when the SELECT is a sub-query of a larger query, the name is seen
by the larger query as the column name of the virtual table produced by the sub-query. To specify the
name to use for an output column, write AS output_name after the column's expression. (You can omit
AS, but only if the desired output name does not match any PostgreSQL keyword (see Appendix C). For
protection against possible future keyword additions, it is recommended that you always either write AS
or double-quote the output name.) If you do not specify a column name, a name is chosen automatically
by PostgreSQL. If the column's expression is a simple column reference then the chosen name is the
same as that column's name. In more complex cases a function or type name may be used, or the system
may fall back on a generated name such as ?column?.

An output column's name can be used to refer to the column's value in ORDER BY and GROUP BY clauses,
but not in the WHERE or HAVING clauses; there you must write out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the
selected rows. Also, you can write table_name.* as a shorthand for the columns coming from just that
table. In these cases it is not possible to specify new names with AS; the output column names will be
the same as the table columns' names.

According to the SQL standard, the expressions in the output list should be computed before applying
DISTINCT, ORDER BY, or LIMIT. This is obviously necessary when using DISTINCT, since otherwise it's not
clear what values are being made distinct. However, in many cases it is convenient if output expressions
are computed after ORDER BY and LIMIT; particularly if the output list contains any volatile or expensive
functions. With that behavior, the order of function evaluations is more intuitive and there will not be
evaluations corresponding to rows that never appear in the output. PostgreSQL will effectively evalu-
ate output expressions after sorting and limiting, so long as those expressions are not referenced in
DISTINCT, ORDER BY or GROUP BY. (As a counterexample, SELECT f(x) FROM tab ORDER BY 1 clearly
must evaluate f(x) before sorting.) Output expressions that contain set-returning functions are effec-
tively evaluated after sorting and before limiting, so that LIMIT will act to cut off the output from a set-
returning function.

Note
PostgreSQL versions before 9.6 did not provide any guarantees about the timing of evaluation of
output expressions versus sorting and limiting; it depended on the form of the chosen query plan.

DISTINCT Clause
If SELECT DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept from
each group of duplicates). SELECT ALL specifies the opposite: all rows are kept; that is the default.

SELECT DISTINCT ON (expression [, ...]) keeps only the first row of each set of rows where the
given expressions evaluate to equal. The DISTINCT ON expressions are interpreted using the same rules
as for ORDER BY (see above). Note that the “first row” of each set is unpredictable unless ORDER BY is
used to ensure that the desired row appears first. For example:
SELECT DISTINCT ON (location) location, time, report
 FROM weather_reports
 ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we'd have gotten a report from an unpredictable time
for each location.

1840

SELECT

The DISTINCT ON expression(s) must match the leftmost ORDER BY expression(s). The ORDER BY clause
will normally contain additional expression(s) that determine the desired precedence of rows within
each DISTINCT ON group.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
DISTINCT.

UNION Clause
The UNION clause has this general form:
select_statement UNION [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR
UPDATE, FOR SHARE, or FOR KEY SHARE clause. (ORDER BY and LIMIT can be attached to a subexpression
if it is enclosed in parentheses. Without parentheses, these clauses will be taken to apply to the result
of the UNION, not to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A
row is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT
statements that represent the direct operands of the UNION must produce the same number of columns,
and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents
elimination of duplicates. (Therefore, UNION ALL is usually significantly quicker than UNION; use ALL when
you can.) DISTINCT can be written to explicitly specify the default behavior of eliminating duplicate rows.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either
for a UNION result or for any input of a UNION.

INTERSECT Clause
The INTERSECT clause has this general form:
select_statement INTERSECT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR
UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT
statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in the left table and n duplicates in the right table will appear min(m,n)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless paren-
theses dictate otherwise. INTERSECT binds more tightly than UNION. That is, A UNION B INTERSECT C
will be read as A UNION (B INTERSECT C).

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either
for an INTERSECT result or for any input of an INTERSECT.

EXCEPT Clause
The EXCEPT clause has this general form:
select_statement EXCEPT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR
UPDATE, FOR SHARE, or FOR KEY SHARE clause.

1841

SELECT

The EXCEPT operator computes the set of rows that are in the result of the left SELECT statement but
not in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With ALL,
a row that has m duplicates in the left table and n duplicates in the right table will appear max(m-n,0)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless parentheses
dictate otherwise. EXCEPT binds at the same level as UNION.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either
for an EXCEPT result or for any input of an EXCEPT.

ORDER BY Clause
The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]

The ORDER BY clause causes the result rows to be sorted according to the specified expression(s). If two
rows are equal according to the leftmost expression, they are compared according to the next expression
and so on. If they are equal according to all specified expressions, they are returned in an implementa-
tion-dependent order.

Each expression can be the name or ordinal number of an output column (SELECT list item), or it can
be an arbitrary expression formed from input-column values.

The ordinal number refers to the ordinal (left-to-right) position of the output column. This feature makes
it possible to define an ordering on the basis of a column that does not have a unique name. This is
never absolutely necessary because it is always possible to assign a name to an output column using
the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
appear in the SELECT output list. Thus the following statement is valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT, or
EXCEPT clause can only specify an output column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both an output column name and an input
column name, ORDER BY will interpret it as the output column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is made to be compatible with the
SQL standard.

Optionally one can add the key word ASC (ascending) or DESC (descending) after any expression in the
ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering operator
name can be specified in the USING clause. An ordering operator must be a less-than or greater-than
member of some B-tree operator family. ASC is usually equivalent to USING < and DESC is usually equiv-
alent to USING >. (But the creator of a user-defined data type can define exactly what the default sort
ordering is, and it might correspond to operators with other names.)

If NULLS LAST is specified, null values sort after all non-null values; if NULLS FIRST is specified, null
values sort before all non-null values. If neither is specified, the default behavior is NULLS LAST when
ASC is specified or implied, and NULLS FIRST when DESC is specified (thus, the default is to act as though
nulls are larger than non-nulls). When USING is specified, the default nulls ordering depends on whether
the operator is a less-than or greater-than operator.

Note that ordering options apply only to the expression they follow; for example ORDER BY x, y DESC
does not mean the same thing as ORDER BY x DESC, y DESC.

1842

SELECT

Character-string data is sorted according to the collation that applies to the column being sorted. That
can be overridden at need by including a COLLATE clause in the expression, for example ORDER BY
mycolumn COLLATE "en_US". For more information see Section 4.2.10 and Section 23.2.

LIMIT Clause
The LIMIT clause consists of two independent sub-clauses:

LIMIT { count | ALL }
OFFSET start

The parameter count specifies the maximum number of rows to return, while start specifies the number
of rows to skip before starting to return rows. When both are specified, start rows are skipped before
starting to count the count rows to be returned.

If the count expression evaluates to NULL, it is treated as LIMIT ALL, i.e., no limit. If start evaluates
to NULL, it is treated the same as OFFSET 0.

SQL:2008 introduced a different syntax to achieve the same result, which PostgreSQL also supports. It is:

OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }

In this syntax, the start or count value is required by the standard to be a literal constant, a parameter,
or a variable name; as a PostgreSQL extension, other expressions are allowed, but will generally need
to be enclosed in parentheses to avoid ambiguity. If count is omitted in a FETCH clause, it defaults to 1.
The WITH TIES option is used to return any additional rows that tie for the last place in the result set
according to the ORDER BY clause; ORDER BY is mandatory in this case, and SKIP LOCKED is not allowed.
ROW and ROWS as well as FIRST and NEXT are noise words that don't influence the effects of these clauses.
According to the standard, the OFFSET clause must come before the FETCH clause if both are present;
but PostgreSQL is laxer and allows either order.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows — you might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don't know
what ordering unless you specify ORDER BY.

The query planner takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you use for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

It is even possible for repeated executions of the same LIMIT query to return different subsets of the
rows of a table, if there is not an ORDER BY to enforce selection of a deterministic subset. Again, this is
not a bug; determinism of the results is simply not guaranteed in such a case.

The Locking Clause
FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE are locking clauses; they affect how
SELECT locks rows as they are obtained from the table.

The locking clause has the general form

FOR lock_strength [OF from_reference [, ...]] [NOWAIT | SKIP LOCKED]

where lock_strength can be one of

UPDATE
NO KEY UPDATE
SHARE
KEY SHARE

1843

SELECT

from_reference must be a table alias or non-hidden table_name referenced in the FROM clause. For
more information on each row-level lock mode, refer to Section 13.3.2.

To prevent the operation from waiting for other transactions to commit, use either the NOWAIT or SKIP
LOCKED option. With NOWAIT, the statement reports an error, rather than waiting, if a selected row cannot
be locked immediately. With SKIP LOCKED, any selected rows that cannot be immediately locked are
skipped. Skipping locked rows provides an inconsistent view of the data, so this is not suitable for general
purpose work, but can be used to avoid lock contention with multiple consumers accessing a queue-like
table. Note that NOWAIT and SKIP LOCKED apply only to the row-level lock(s) — the required ROW SHARE
table-level lock is still taken in the ordinary way (see Chapter 13). You can use LOCK with the NOWAIT
option first, if you need to acquire the table-level lock without waiting.

If specific tables are named in a locking clause, then only rows coming from those tables are locked; any
other tables used in the SELECT are simply read as usual. A locking clause without a table list affects
all tables used in the statement. If a locking clause is applied to a view or sub-query, it affects all tables
used in the view or sub-query. However, these clauses do not apply to WITH queries referenced by the
primary query. If you want row locking to occur within a WITH query, specify a locking clause within
the WITH query.

Multiple locking clauses can be written if it is necessary to specify different locking behavior for different
tables. If the same table is mentioned (or implicitly affected) by more than one locking clause, then it
is processed as if it was only specified by the strongest one. Similarly, a table is processed as NOWAIT
if that is specified in any of the clauses affecting it. Otherwise, it is processed as SKIP LOCKED if that
is specified in any of the clauses affecting it.

The locking clauses cannot be used in contexts where returned rows cannot be clearly identified with
individual table rows; for example they cannot be used with aggregation.

When a locking clause appears at the top level of a SELECT query, the rows that are locked are exactly
those that are returned by the query; in the case of a join query, the rows locked are those that contribute
to returned join rows. In addition, rows that satisfied the query conditions as of the query snapshot will
be locked, although they will not be returned if they were updated after the snapshot and no longer
satisfy the query conditions. If a LIMIT is used, locking stops once enough rows have been returned to
satisfy the limit (but note that rows skipped over by OFFSET will get locked). Similarly, if a locking clause
is used in a cursor's query, only rows actually fetched or stepped past by the cursor will be locked.

When a locking clause appears in a sub-SELECT, the rows locked are those returned to the outer query
by the sub-query. This might involve fewer rows than inspection of the sub-query alone would suggest,
since conditions from the outer query might be used to optimize execution of the sub-query. For example,

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

will lock only rows having col1 = 5, even though that condition is not textually within the sub-query.

Previous releases failed to preserve a lock which is upgraded by a later savepoint. For example, this code:

BEGIN;
SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
SAVEPOINT s;
UPDATE mytable SET ... WHERE key = 1;
ROLLBACK TO s;

would fail to preserve the FOR UPDATE lock after the ROLLBACK TO. This has been fixed in release 9.3.

Caution
It is possible for a SELECT command running at the READ COMMITTED transaction isolation level
and using ORDER BY and a locking clause to return rows out of order. This is because ORDER BY is
applied first. The command sorts the result, but might then block trying to obtain a lock on one or
more of the rows. Once the SELECT unblocks, some of the ordering column values might have been

1844

SELECT

modified, leading to those rows appearing to be out of order (though they are in order in terms of
the original column values). This can be worked around at need by placing the FOR UPDATE/SHARE
clause in a sub-query, for example
SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;

Note that this will result in locking all rows of mytable, whereas FOR UPDATE at the top level
would lock only the actually returned rows. This can make for a significant performance difference,
particularly if the ORDER BY is combined with LIMIT or other restrictions. So this technique is
recommended only if concurrent updates of the ordering columns are expected and a strictly
sorted result is required.

At the REPEATABLE READ or SERIALIZABLE transaction isolation level this would cause a serializa-
tion failure (with an SQLSTATE of '40001'), so there is no possibility of receiving rows out of order
under these isolation levels.

TABLE Command
The command
TABLE name

is equivalent to
SELECT * FROM name

It can be used as a top-level command or as a space-saving syntax variant in parts of complex queries.
Only the WITH, UNION, INTERSECT, EXCEPT, ORDER BY, LIMIT, OFFSET, FETCH and FOR locking clauses can
be used with TABLE; the WHERE clause and any form of aggregation cannot be used.

Examples
To join the table films with the table distributors:
SELECT f.title, f.did, d.name, f.date_prod, f.kind
 FROM distributors d JOIN films f USING (did);

 title | did | name | date_prod | kind
-------------------+-----+--------------+------------+----------
 The Third Man | 101 | British Lion | 1949-12-23 | Drama
 The African Queen | 101 | British Lion | 1951-08-11 | Romantic
 ...

To sum the column len of all films and group the results by kind:
SELECT kind, sum(len) AS total FROM films GROUP BY kind;

 kind | total
----------+-------
 Action | 07:34
 Comedy | 02:58
 Drama | 14:28
 Musical | 06:42
 Romantic | 04:38

To sum the column len of all films, group the results by kind and show those group totals that are less
than 5 hours:
SELECT kind, sum(len) AS total
 FROM films
 GROUP BY kind
 HAVING sum(len) < interval '5 hours';

1845

SELECT

 kind | total
----------+-------
 Comedy | 02:58
 Romantic | 04:38

The following two examples are identical ways of sorting the individual results according to the contents
of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did | name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward

The next example shows how to obtain the union of the tables distributors and actors, restricting
the results to those that begin with the letter W in each table. Only distinct rows are wanted, so the
key word ALL is omitted.

distributors: actors:
 did | name id | name
-----+-------------- ----+----------------
 108 | Westward 1 | Woody Allen
 111 | Walt Disney 2 | Warren Beatty
 112 | Warner Bros. 3 | Walter Matthau

SELECT distributors.name
 FROM distributors
 WHERE distributors.name LIKE 'W%'
UNION
SELECT actors.name
 FROM actors
 WHERE actors.name LIKE 'W%';

 name

 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen

This example shows how to use a function in the FROM clause, both with and without a column definition
list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$

1846

SELECT

 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
 did | name
-----+-------------
 111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
 f1 | f2
-----+-------------
 111 | Walt Disney

Here is an example of a function with an ordinality column added:
SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
 unnest | ordinality
--------+----------
 a | 1
 b | 2
 c | 3
 d | 4
 e | 5
 f | 6
(6 rows)

This example shows how to use a simple WITH clause:
WITH t AS (
 SELECT random() as x FROM generate_series(1, 3)
)
SELECT * FROM t
UNION ALL
SELECT * FROM t;
 x

 0.534150459803641
 0.520092216785997
 0.0735620250925422
 0.534150459803641
 0.520092216785997
 0.0735620250925422

Notice that the WITH query was evaluated only once, so that we got two sets of the same three random
values.

This example uses WITH RECURSIVE to find all subordinates (direct or indirect) of the employee Mary,
and their level of indirectness, from a table that shows only direct subordinates:
WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS (
 SELECT 1, employee_name, manager_name
 FROM employee
 WHERE manager_name = 'Mary'
 UNION ALL
 SELECT er.distance + 1, e.employee_name, e.manager_name
 FROM employee_recursive er, employee e
 WHERE er.employee_name = e.manager_name

1847

SELECT

)
SELECT distance, employee_name FROM employee_recursive;

Notice the typical form of recursive queries: an initial condition, followed by UNION, followed by the
recursive part of the query. Be sure that the recursive part of the query will eventually return no tuples,
or else the query will loop indefinitely. (See Section 7.8 for more examples.)

This example uses LATERAL to apply a set-returning function get_product_names() for each row of the
manufacturers table:

SELECT m.name AS mname, pname
FROM manufacturers m, LATERAL get_product_names(m.id) pname;

Manufacturers not currently having any products would not appear in the result, since it is an inner join.
If we wished to include the names of such manufacturers in the result, we could do:

SELECT m.name AS mname, pname
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true;

Compatibility
Of course, the SELECT statement is compatible with the SQL standard. But there are some extensions
and some missing features.

Omitted FROM Clauses
PostgreSQL allows one to omit the FROM clause. It has a straightforward use to compute the results of
simple expressions:

SELECT 2+2;

 ?column?

 4

Some other SQL databases cannot do this except by introducing a dummy one-row table from which
to do the SELECT.

Empty SELECT Lists
The list of output expressions after SELECT can be empty, producing a zero-column result table. This
is not valid syntax according to the SQL standard. PostgreSQL allows it to be consistent with allowing
zero-column tables. However, an empty list is not allowed when DISTINCT is used.

Omitting the AS Key Word
In the SQL standard, the optional key word AS can be omitted before an output column name whenever
the new column name is a valid column name (that is, not the same as any reserved keyword). PostgreSQL
is slightly more restrictive: AS is required if the new column name matches any keyword at all, reserved
or not. Recommended practice is to use AS or double-quote output column names, to prevent any possible
conflict against future keyword additions.

In FROM items, both the standard and PostgreSQL allow AS to be omitted before an alias that is an
unreserved keyword. But this is impractical for output column names, because of syntactic ambiguities.

Omitting Sub-SELECT Aliases in FROM
According to the SQL standard, a sub-SELECT in the FROM list must have an alias. In PostgreSQL, this
alias may be omitted.

ONLY and Inheritance
The SQL standard requires parentheses around the table name when writing ONLY, for example SELECT
* FROM ONLY (tab1), ONLY (tab2) WHERE PostgreSQL considers these parentheses to be optional.

1848

SELECT

PostgreSQL allows a trailing * to be written to explicitly specify the non-ONLY behavior of including child
tables. The standard does not allow this.

(These points apply equally to all SQL commands supporting the ONLY option.)

TABLESAMPLE Clause Restrictions
The TABLESAMPLE clause is currently accepted only on regular tables and materialized views. According
to the SQL standard it should be possible to apply it to any FROM item.

Function Calls in FROM
PostgreSQL allows a function call to be written directly as a member of the FROM list. In the SQL standard
it would be necessary to wrap such a function call in a sub-SELECT; that is, the syntax FROM func(...)
alias is approximately equivalent to FROM LATERAL (SELECT func(...)) alias. Note that LATERAL is
considered to be implicit; this is because the standard requires LATERAL semantics for an UNNEST() item
in FROM. PostgreSQL treats UNNEST() the same as other set-returning functions.

Namespace Available to GROUP BY and ORDER BY
In the SQL-92 standard, an ORDER BY clause can only use output column names or numbers, while a GROUP
BY clause can only use expressions based on input column names. PostgreSQL extends each of these
clauses to allow the other choice as well (but it uses the standard's interpretation if there is ambiguity).
PostgreSQL also allows both clauses to specify arbitrary expressions. Note that names appearing in an
expression will always be taken as input-column names, not as output-column names.

SQL:1999 and later use a slightly different definition which is not entirely upward compatible with
SQL-92. In most cases, however, PostgreSQL will interpret an ORDER BY or GROUP BY expression the
same way SQL:1999 does.

Functional Dependencies
PostgreSQL recognizes functional dependency (allowing columns to be omitted from GROUP BY) only
when a table's primary key is included in the GROUP BY list. The SQL standard specifies additional
conditions that should be recognized.

LIMIT and OFFSET
The clauses LIMIT and OFFSET are PostgreSQL-specific syntax, also used by MySQL. The SQL:2008 stan-
dard has introduced the clauses OFFSET ... FETCH {FIRST|NEXT} ... for the same functionality, as
shown above in LIMIT Clause. This syntax is also used by IBM DB2. (Applications written for Oracle fre-
quently use a workaround involving the automatically generated rownum column, which is not available
in PostgreSQL, to implement the effects of these clauses.)

FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE
Although FOR UPDATE appears in the SQL standard, the standard allows it only as an option of DECLARE
CURSOR. PostgreSQL allows it in any SELECT query as well as in sub-SELECTs, but this is an extension.
The FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE variants, as well as the NOWAIT and SKIP LOCKED
options, do not appear in the standard.

Data-Modifying Statements in WITH
PostgreSQL allows INSERT, UPDATE, DELETE, and MERGE to be used as WITH queries. This is not found in
the SQL standard.

Nonstandard Clauses
DISTINCT ON (...) is an extension of the SQL standard.

ROWS FROM(...) is an extension of the SQL standard.

1849

SELECT

The MATERIALIZED and NOT MATERIALIZED options of WITH are extensions of the SQL standard.

1850

SELECT INTO
SELECT INTO — define a new table from the results of a query

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [{ * | expression [[AS] output_name] } [, ...]]
 INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

Description
SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table's columns have the names and data types
associated with the output columns of the SELECT.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

new_table

The name (optionally schema-qualified) of the table to be created.

All other parameters are described in detail under SELECT.

Notes
CREATE TABLE AS is functionally similar to SELECT INTO. CREATE TABLE AS is the recommended syntax,
since this form of SELECT INTO is not available in ECPG or PL/pgSQL, because they interpret the INTO
clause differently. Furthermore, CREATE TABLE AS offers a superset of the functionality provided by
SELECT INTO.

In contrast to CREATE TABLE AS, SELECT INTO does not allow specifying properties like a table's access
method with USING method or the table's tablespace with TABLESPACE tablespace_name. Use CREATE
TABLE AS if necessary. Therefore, the default table access method is chosen for the new table. See
default_table_access_method for more information.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

1851

SELECT INTO

SELECT * INTO films_recent FROM films WHERE date_prod >= '2002-01-01';

Compatibility
The SQL standard uses SELECT INTO to represent selecting values into scalar variables of a host program,
rather than creating a new table. This indeed is the usage found in ECPG (see Chapter 34) and PL/pgSQL
(see Chapter 41). The PostgreSQL usage of SELECT INTO to represent table creation is historical. Some
other SQL implementations also use SELECT INTO in this way (but most SQL implementations support
CREATE TABLE AS instead). Apart from such compatibility considerations, it is best to use CREATE TABLE
AS for this purpose in new code.

See Also
CREATE TABLE AS

1852

SET
SET — change a run-time parameter

Synopsis
SET [SESSION | LOCAL] configuration_parameter { TO | = } { value | 'value' |
 DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { value | 'value' | LOCAL | DEFAULT }

Description
The SET command changes run-time configuration parameters. Many of the run-time parameters listed
in Chapter 19 can be changed on-the-fly with SET. (Some parameters can only be changed by superusers
and users who have been granted SET privilege on that parameter. There are also parameters that cannot
be changed after server or session start.) SET only affects the value used by the current session.

If SET (or equivalently SET SESSION) is issued within a transaction that is later aborted, the effects of
the SET command disappear when the transaction is rolled back. Once the surrounding transaction is
committed, the effects will persist until the end of the session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether committed or not.
A special case is SET followed by SET LOCAL within a single transaction: the SET LOCAL value will be
seen until the end of the transaction, but afterwards (if the transaction is committed) the SET value will
take effect.

The effects of SET or SET LOCAL are also canceled by rolling back to a savepoint that is earlier than
the command.

If SET LOCAL is used within a function that has a SET option for the same variable (see CREATE FUNC-
TION), the effects of the SET LOCAL command disappear at function exit; that is, the value in effect when
the function was called is restored anyway. This allows SET LOCAL to be used for dynamic or repeated
changes of a parameter within a function, while still having the convenience of using the SET option to
save and restore the caller's value. However, a regular SET command overrides any surrounding func-
tion's SET option; its effects will persist unless rolled back.

Note
In PostgreSQL versions 8.0 through 8.2, the effects of a SET LOCAL would be canceled by releasing
an earlier savepoint, or by successful exit from a PL/pgSQL exception block. This behavior has
been changed because it was deemed unintuitive.

Parameters
SESSION

Specifies that the command takes effect for the current session. (This is the default if neither SESSION
nor LOCAL appears.)

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or ROLLBACK,
the session-level setting takes effect again. Issuing this outside of a transaction block emits a warning
and otherwise has no effect.

configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 19 and
below.

1853

SET

value

New value of parameter. Values can be specified as string constants, identifiers, numbers, or com-
ma-separated lists of these, as appropriate for the particular parameter. DEFAULT can be written to
specify resetting the parameter to its default value (that is, whatever value it would have had if no
SET had been executed in the current session).

Besides the configuration parameters documented in Chapter 19, there are a few that can only be ad-
justed using the SET command or that have a special syntax:
SCHEMA

SET SCHEMA 'value' is an alias for SET search_path TO value. Only one schema can be specified
using this syntax.

NAMES

SET NAMES 'value' is an alias for SET client_encoding TO value.

SEED

Sets the internal seed for the random number generator (the function random). Allowed values are
floating-point numbers between -1 and 1 inclusive.

The seed can also be set by invoking the function setseed:
SELECT setseed(value);

TIME ZONE

SET TIME ZONE 'value' is an alias for SET timezone TO 'value'. The syntax SET TIME ZONE allows
special syntax for the time zone specification. Here are examples of valid values:
'America/Los_Angeles'

The time zone for Berkeley, California.

'Europe/Rome'

The time zone for Italy.

-7

The time zone 7 hours west from UTC (equivalent to PDT). Positive values are east from UTC.

INTERVAL '-08:00' HOUR TO MINUTE

The time zone 8 hours west from UTC (equivalent to PST).

LOCAL
DEFAULT

Set the time zone to your local time zone (that is, the server's default value of timezone).

Timezone settings given as numbers or intervals are internally translated to POSIX timezone syntax.
For example, after SET TIME ZONE -7, SHOW TIME ZONE would report <-07>+07.

Time zone abbreviations are not supported by SET; see Section 8.5.3 for more information about
time zones.

Notes
The function set_config provides equivalent functionality; see Section 9.28.1. Also, it is possible to
UPDATE the pg_settings system view to perform the equivalent of SET.

Examples
Set the schema search path:

1854

SET

SET search_path TO my_schema, public;

Set the style of date to traditional POSTGRES with “day before month” input convention:

SET datestyle TO postgres, dmy;

Set the time zone for Berkeley, California:

SET TIME ZONE 'America/Los_Angeles';

Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility
SET TIME ZONE extends syntax defined in the SQL standard. The standard allows only numeric time
zone offsets while PostgreSQL allows more flexible time-zone specifications. All other SET features are
PostgreSQL extensions.

See Also
RESET, SHOW

1855

SET CONSTRAINTS
SET CONSTRAINTS — set constraint check timing for the current transaction

Synopsis
SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description
SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until trans-
action commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY DEFERRED,
DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is always IMMEDIATE and is not
affected by the SET CONSTRAINTS command. The first two classes start every transaction in the indicated
mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which must
all be deferrable). Each constraint name can be schema-qualified. The current schema search path is
used to find the first matching name if no schema name is specified. SET CONSTRAINTS ALL changes the
mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new mode
takes effect retroactively: any outstanding data modifications that would have been checked at the end of
the transaction are instead checked during the execution of the SET CONSTRAINTS command. If any such
constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode). Thus, SET
CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a transaction.

Currently, only UNIQUE, PRIMARY KEY, REFERENCES (foreign key), and EXCLUDE constraints are affected
by this setting. NOT NULL and CHECK constraints are always checked immediately when a row is inserted
or modified (not at the end of the statement). Uniqueness and exclusion constraints that have not been
declared DEFERRABLE are also checked immediately.

The firing of triggers that are declared as “constraint triggers” is also controlled by this setting — they
fire at the same time that the associated constraint should be checked.

Notes
Because PostgreSQL does not require constraint names to be unique within a schema (but only per-
table), it is possible that there is more than one match for a specified constraint name. In this case SET
CONSTRAINTS will act on all matches. For a non-schema-qualified name, once a match or matches have
been found in some schema in the search path, schemas appearing later in the path are not searched.

This command only alters the behavior of constraints within the current transaction. Issuing this outside
of a transaction block emits a warning and otherwise has no effect.

Compatibility
This command complies with the behavior defined in the SQL standard, except for the limitation that,
in PostgreSQL, it does not apply to NOT NULL and CHECK constraints. Also, PostgreSQL checks non-
deferrable uniqueness constraints immediately, not at end of statement as the standard would suggest.

1856

SET ROLE
SET ROLE — set the current user identifier of the current session

Synopsis
SET [SESSION | LOCAL] ROLE role_name
SET [SESSION | LOCAL] ROLE NONE
RESET ROLE

Description
This command sets the current user identifier of the current SQL session to be role_name. The role
name can be written as either an identifier or a string literal. After SET ROLE, permissions checking for
SQL commands is carried out as though the named role were the one that had logged in originally. Note
that SET ROLE and SET SESSION AUTHORIZATION are exceptions; permissions checks for those continue
to use the current session user and the initial session user (the authenticated user), respectively.

The current session user must have the SET option for the specified role_name, either directly or indi-
rectly via a chain of memberships with the SET option. (If the session user is a superuser, any role can
be selected.)

The SESSION and LOCAL modifiers act the same as for the regular SET command.

SET ROLE NONE sets the current user identifier to the current session user identifier, as returned by
session_user. RESET ROLE sets the current user identifier to the connection-time setting specified by
the command-line options, ALTER ROLE, or ALTER DATABASE, if any such settings exist. Otherwise, RESET
ROLE sets the current user identifier to the current session user identifier. These forms can be executed
by any user.

Notes
Using this command, it is possible to either add privileges or restrict one's privileges. If the session user
role has been granted memberships WITH INHERIT TRUE, it automatically has all the privileges of every
such role. In this case, SET ROLE effectively drops all the privileges except for those which the target role
directly possesses or inherits. On the other hand, if the session user role has been granted memberships
WITH INHERIT FALSE, the privileges of the granted roles can't be accessed by default. However, if the
role was granted WITH SET TRUE, the session user can use SET ROLE to drop the privileges assigned
directly to the session user and instead acquire the privileges available to the named role. If the role was
granted WITH INHERIT FALSE, SET FALSE then the privileges of that role cannot be exercised either
with or without SET ROLE.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the privilege checks involved
are quite different. Also, SET SESSION AUTHORIZATION determines which roles are allowable for later
SET ROLE commands, whereas changing roles with SET ROLE does not change the set of roles allowed
to a later SET ROLE.

SET ROLE does not process session variables as specified by the role's ALTER ROLE settings; this only
happens during login.

SET ROLE cannot be used within a SECURITY DEFINER function.

Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------

1857

SET ROLE

 peter | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | paul

Compatibility
PostgreSQL allows identifier syntax ("rolename"), while the SQL standard requires the role name to be
written as a string literal. SQL does not allow this command during a transaction; PostgreSQL does not
make this restriction because there is no reason to. The SESSION and LOCAL modifiers are a PostgreSQL
extension, as is the RESET syntax.

See Also
SET SESSION AUTHORIZATION

1858

SET SESSION AUTHORIZATION
SET SESSION AUTHORIZATION — set the session user identifier and the current user identifier of the
current session

Synopsis
SET [SESSION | LOCAL] SESSION AUTHORIZATION user_name
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description
This command sets the session user identifier and the current user identifier of the current SQL session
to be user_name. The user name can be written as either an identifier or a string literal. Using this
command, it is possible, for example, to temporarily become an unprivileged user and later switch back
to being a superuser.

The session user identifier is initially set to be the (possibly authenticated) user name provided by the
client. The current user identifier is normally equal to the session user identifier, but might change tem-
porarily in the context of SECURITY DEFINER functions and similar mechanisms; it can also be changed
by SET ROLE. The current user identifier is relevant for permission checking.

The session user identifier can be changed only if the initial session user (the authenticated user) has
the superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user
name.

The SESSION and LOCAL modifiers act the same as for the regular SET command.

The DEFAULT and RESET forms reset the session and current user identifiers to be the originally authen-
ticated user name. These forms can be executed by any user.

Notes
SET SESSION AUTHORIZATION cannot be used within a SECURITY DEFINER function.

Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 paul | paul

Compatibility
The SQL standard allows some other expressions to appear in place of the literal user_name, but these
options are not important in practice. PostgreSQL allows identifier syntax ("username"), which SQL does
not. SQL does not allow this command during a transaction; PostgreSQL does not make this restriction
because there is no reason to. The SESSION and LOCAL modifiers are a PostgreSQL extension, as is the
RESET syntax.

1859

SET SESSION AUTHORIZATION

The privileges necessary to execute this command are left implementation-defined by the standard.

See Also
SET ROLE

1860

SET TRANSACTION
SET TRANSACTION — set the characteristics of the current transaction

Synopsis
SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on
any subsequent transactions. SET SESSION CHARACTERISTICS sets the default transaction characteristics
for subsequent transactions of a session. These defaults can be overridden by SET TRANSACTION for an
individual transaction.

The available transaction characteristics are the transaction isolation level, the transaction access mode
(read/write or read-only), and the deferrable mode. In addition, a snapshot can be selected, though only
for the current transaction, not as a session default.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently:
READ COMMITTED

A statement can only see rows committed before it began. This is the default.

REPEATABLE READ

All statements of the current transaction can only see rows committed before the first query or
data-modification statement was executed in this transaction.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or da-
ta-modification statement was executed in this transaction. If a pattern of reads and writes among
concurrent serializable transactions would create a situation which could not have occurred for any
serial (one-at-a-time) execution of those transactions, one of them will be rolled back with a seri-
alization_failure error.

The SQL standard defines one additional level, READ UNCOMMITTED. In PostgreSQL READ UNCOMMITTED
is treated as READ COMMITTED.

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, MERGE, FETCH, or COPY) of a transaction has been executed. See Chap-
ter 13 for more information about transaction isolation and concurrency control.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write
is the default. When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, MERGE, and COPY FROM if the table they would write to is not a temporary table; all CREATE,
ALTER, and DROP commands; COMMENT, GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if
the command they would execute is among those listed. This is a high-level notion of read-only that does
not prevent all writes to disk.

1861

SET TRANSACTION

The DEFERRABLE transaction property has no effect unless the transaction is also SERIALIZABLE and READ
ONLY. When all three of these properties are selected for a transaction, the transaction may block when
first acquiring its snapshot, after which it is able to run without the normal overhead of a SERIALIZABLE
transaction and without any risk of contributing to or being canceled by a serialization failure. This mode
is well suited for long-running reports or backups.

The SET TRANSACTION SNAPSHOT command allows a new transaction to run with the same snapshot as
an existing transaction. The pre-existing transaction must have exported its snapshot with the pg_ex-
port_snapshot function (see Section 9.28.5). That function returns a snapshot identifier, which must be
given to SET TRANSACTION SNAPSHOT to specify which snapshot is to be imported. The identifier must
be written as a string literal in this command, for example '00000003-0000001B-1'. SET TRANSACTION
SNAPSHOT can only be executed at the start of a transaction, before the first query or data-modification
statement (SELECT, INSERT, DELETE, UPDATE, MERGE, FETCH, or COPY) of the transaction. Furthermore, the
transaction must already be set to SERIALIZABLE or REPEATABLE READ isolation level (otherwise, the
snapshot would be discarded immediately, since READ COMMITTED mode takes a new snapshot for each
command). If the importing transaction uses SERIALIZABLE isolation level, then the transaction that
exported the snapshot must also use that isolation level. Also, a non-read-only serializable transaction
cannot import a snapshot from a read-only transaction.

Notes
If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it emits a warning and
otherwise has no effect.

It is possible to dispense with SET TRANSACTION by instead specifying the desired transaction_modes
in BEGIN or START TRANSACTION. But that option is not available for SET TRANSACTION SNAPSHOT.

The session default transaction modes can also be set or examined via the configuration parameters de-
fault_transaction_isolation, default_transaction_read_only, and default_transaction_deferrable. (In fact
SET SESSION CHARACTERISTICS is just a verbose equivalent for setting these variables with SET.) This
means the defaults can be set in the configuration file, via ALTER DATABASE, etc. Consult Chapter 19
for more information.

The current transaction's modes can similarly be set or examined via the configuration parameters
transaction_isolation, transaction_read_only, and transaction_deferrable. Setting one of these parame-
ters acts the same as the corresponding SET TRANSACTION option, with the same restrictions on when
it can be done. However, these parameters cannot be set in the configuration file, or from any source
other than live SQL.

Examples
To begin a new transaction with the same snapshot as an already existing transaction, first export the
snapshot from the existing transaction. That will return the snapshot identifier, for example:
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
 pg_export_snapshot

 00000003-0000001B-1
(1 row)

Then give the snapshot identifier in a SET TRANSACTION SNAPSHOT command at the beginning of the
newly opened transaction:
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000003-0000001B-1';

Compatibility
These commands are defined in the SQL standard, except for the DEFERRABLE transaction mode and the
SET TRANSACTION SNAPSHOT form, which are PostgreSQL extensions.

1862

SET TRANSACTION

SERIALIZABLE is the default transaction isolation level in the standard. In PostgreSQL the default is
ordinarily READ COMMITTED, but you can change it as mentioned above.

In the SQL standard, there is one other transaction characteristic that can be set with these commands:
the size of the diagnostics area. This concept is specific to embedded SQL, and therefore is not imple-
mented in the PostgreSQL server.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
PostgreSQL allows the commas to be omitted.

1863

SHOW
SHOW — show the value of a run-time parameter

Synopsis
SHOW name
SHOW ALL

Description
SHOW will display the current setting of run-time parameters. These variables can be set using the SET
statement, by editing the postgresql.conf configuration file, through the PGOPTIONS environmental
variable (when using libpq or a libpq-based application), or through command-line flags when starting
the postgres server. See Chapter 19 for details.

Parameters
name

The name of a run-time parameter. Available parameters are documented in Chapter 19 and on the
SET reference page. In addition, there are a few parameters that can be shown but not set:

SERVER_VERSION

Shows the server's version number.

SERVER_ENCODING

Shows the server-side character set encoding. At present, this parameter can be shown but not
set, because the encoding is determined at database creation time.

IS_SUPERUSER

True if the current role has superuser privileges.

ALL

Show the values of all configuration parameters, with descriptions.

Notes
The function current_setting produces equivalent output; see Section 9.28.1. Also, the pg_settings
system view produces the same information.

Examples
Show the current setting of the parameter DateStyle:

SHOW DateStyle;
 DateStyle

 ISO, MDY
(1 row)

Show the current setting of the parameter geqo:

SHOW geqo;
 geqo

 on
(1 row)

1864

SHOW

Show all settings:

SHOW ALL;
 name | setting | description
-------------------------+---------+---
 allow_system_table_mods | off | Allows modifications of the structure of ...
 .
 .
 .
 xmloption | content | Sets whether XML data in implicit parsing ...
 zero_damaged_pages | off | Continues processing past damaged page headers.
(196 rows)

Compatibility
The SHOW command is a PostgreSQL extension.

See Also
SET, RESET

1865

START TRANSACTION
START TRANSACTION — start a transaction block

Synopsis
START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
This command begins a new transaction block. If the isolation level, read/write mode, or deferrable mode
is specified, the new transaction has those characteristics, as if SET TRANSACTION was executed. This
is the same as the BEGIN command.

Parameters
Refer to SET TRANSACTION for information on the meaning of the parameters to this statement.

Compatibility
In the standard, it is not necessary to issue START TRANSACTION to start a transaction block: any SQL
command implicitly begins a block. PostgreSQL's behavior can be seen as implicitly issuing a COMMIT
after each command that does not follow START TRANSACTION (or BEGIN), and it is therefore often called
“autocommit”. Other relational database systems might offer an autocommit feature as a convenience.

The DEFERRABLE transaction_mode is a PostgreSQL language extension.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
PostgreSQL allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

See Also
BEGIN, COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION

1866

TRUNCATE
TRUNCATE — empty a table or set of tables

Synopsis
TRUNCATE [TABLE] [ONLY] name [*] [, ...]
 [RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

Description
TRUNCATE quickly removes all rows from a set of tables. It has the same effect as an unqualified DELETE on
each table, but since it does not actually scan the tables it is faster. Furthermore, it reclaims disk space
immediately, rather than requiring a subsequent VACUUM operation. This is most useful on large tables.

Parameters
name

The name (optionally schema-qualified) of a table to truncate. If ONLY is specified before the table
name, only that table is truncated. If ONLY is not specified, the table and all its descendant tables
(if any) are truncated. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

RESTART IDENTITY

Automatically restart sequences owned by columns of the truncated table(s).

CONTINUE IDENTITY

Do not change the values of sequences. This is the default.

CASCADE

Automatically truncate all tables that have foreign-key references to any of the named tables, or to
any tables added to the group due to CASCADE.

RESTRICT

Refuse to truncate if any of the tables have foreign-key references from tables that are not listed in
the command. This is the default.

Notes
You must have the TRUNCATE privilege on a table to truncate it.

TRUNCATE acquires an ACCESS EXCLUSIVE lock on each table it operates on, which blocks all other con-
current operations on the table. When RESTART IDENTITY is specified, any sequences that are to be
restarted are likewise locked exclusively. If concurrent access to a table is required, then the DELETE
command should be used instead.

TRUNCATE cannot be used on a table that has foreign-key references from other tables, unless all such
tables are also truncated in the same command. Checking validity in such cases would require table
scans, and the whole point is not to do one. The CASCADE option can be used to automatically include all
dependent tables — but be very careful when using this option, or else you might lose data you did not
intend to! Note in particular that when the table to be truncated is a partition, siblings partitions are left
untouched, but cascading occurs to all referencing tables and all their partitions with no distinction.

TRUNCATE will not fire any ON DELETE triggers that might exist for the tables. But it will fire ON TRUNCATE
triggers. If ON TRUNCATE triggers are defined for any of the tables, then all BEFORE TRUNCATE triggers are

1867

TRUNCATE

fired before any truncation happens, and all AFTER TRUNCATE triggers are fired after the last truncation
is performed and any sequences are reset. The triggers will fire in the order that the tables are to be
processed (first those listed in the command, and then any that were added due to cascading).

TRUNCATE is not MVCC-safe. After truncation, the table will appear empty to concurrent transactions, if
they are using a snapshot taken before the truncation occurred. See Section 13.6 for more details.

TRUNCATE is transaction-safe with respect to the data in the tables: the truncation will be safely rolled
back if the surrounding transaction does not commit.

When RESTART IDENTITY is specified, the implied ALTER SEQUENCE RESTART operations are also done
transactionally; that is, they will be rolled back if the surrounding transaction does not commit. Be aware
that if any additional sequence operations are done on the restarted sequences before the transaction
rolls back, the effects of these operations on the sequences will be rolled back, but not their effects
on currval(); that is, after the transaction currval() will continue to reflect the last sequence value
obtained inside the failed transaction, even though the sequence itself may no longer be consistent with
that. This is similar to the usual behavior of currval() after a failed transaction.

TRUNCATE can be used for foreign tables if supported by the foreign data wrapper, for instance, see
postgres_fdw.

Examples
Truncate the tables bigtable and fattable:

TRUNCATE bigtable, fattable;

The same, and also reset any associated sequence generators:

TRUNCATE bigtable, fattable RESTART IDENTITY;

Truncate the table othertable, and cascade to any tables that reference othertable via foreign-key
constraints:

TRUNCATE othertable CASCADE;

Compatibility
The SQL:2008 standard includes a TRUNCATE command with the syntax TRUNCATE TABLE tablename. The
clauses CONTINUE IDENTITY/RESTART IDENTITY also appear in that standard, but have slightly different
though related meanings. Some of the concurrency behavior of this command is left implementation-de-
fined by the standard, so the above notes should be considered and compared with other implementa-
tions if necessary.

See Also
DELETE

1868

UNLISTEN
UNLISTEN — stop listening for a notification

Synopsis
UNLISTEN { channel | * }

Description
UNLISTEN is used to remove an existing registration for NOTIFY events. UNLISTEN cancels any existing
registration of the current PostgreSQL session as a listener on the notification channel named channel.
The special wildcard * cancels all listener registrations for the current session.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Parameters
channel

Name of a notification channel (any identifier).

*

All current listen registrations for this session are cleared.

Notes
You can unlisten something you were not listening for; no warning or error will appear.

At the end of each session, UNLISTEN * is automatically executed.

A transaction that has executed UNLISTEN cannot be prepared for two-phase commit.

Examples
To make a registration:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

Once UNLISTEN has been executed, further NOTIFY messages will be ignored:

UNLISTEN virtual;
NOTIFY virtual;
-- no NOTIFY event is received

Compatibility
There is no UNLISTEN command in the SQL standard.

See Also
LISTEN, NOTIFY

1869

UPDATE
UPDATE — update rows of a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]
 SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [FROM from_item [, ...]]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING [WITH ({ OLD | NEW } AS output_alias [, ...])]
 { * | output_expression [[AS] output_name] } [, ...]]

Description
UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the
columns to be modified need be mentioned in the SET clause; columns not explicitly modified retain their
previous values.

There are two ways to modify a table using information contained in other tables in the database: using
sub-selects, or specifying additional tables in the FROM clause. Which technique is more appropriate
depends on the specific circumstances.

The optional RETURNING clause causes UPDATE to compute and return value(s) based on each row actually
updated. Any expression using the table's columns, and/or columns of other tables mentioned in FROM,
can be computed. By default, the new (post-update) values of the table's columns are used, but it is also
possible to request the old (pre-update) values. The syntax of the RETURNING list is identical to that of
the output list of SELECT.

You must have the UPDATE privilege on the table, or at least on the column(s) that are listed to be updated.
You must also have the SELECT privilege on any column whose values are read in the expressions or
condition.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
UPDATE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to update. If ONLY is specified before the table
name, matching rows are updated in the named table only. If ONLY is not specified, matching rows
are also updated in any tables inheriting from the named table. Optionally, * can be specified after
the table name to explicitly indicate that descendant tables are included.

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given UPDATE foo AS f, the remainder of the UPDATE statement must refer
to this table as f not foo.

column_name

The name of a column in the table named by table_name. The column name can be qualified with a
subfield name or array subscript, if needed. Do not include the table's name in the specification of a
target column — for example, UPDATE table_name SET table_name.col = 1 is invalid.

1870

UPDATE

expression

An expression to assign to the column. The expression can use the old values of this and other columns
in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has been
assigned to it). An identity column will be set to a new value generated by the associated sequence.
For a generated column, specifying this is permitted but merely specifies the normal behavior of
computing the column from its generation expression.

sub-SELECT

A SELECT sub-query that produces as many output columns as are listed in the parenthesized column
list preceding it. The sub-query must yield no more than one row when executed. If it yields one row,
its column values are assigned to the target columns; if it yields no rows, NULL values are assigned
to the target columns. The sub-query can refer to old values of the current row of the table being
updated.

from_item

A table expression allowing columns from other tables to appear in the WHERE condition and update
expressions. This uses the same syntax as the FROM clause of a SELECT statement; for example, an
alias for the table name can be specified. Do not repeat the target table as a from_item unless you
intend a self-join (in which case it must appear with an alias in the from_item).

condition

An expression that returns a value of type boolean. Only rows for which this expression returns true
will be updated.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be updated is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the UPDATE's
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_alias

An optional substitute name for OLD or NEW rows in the RETURNING list.

By default, old values from the target table can be returned by writing OLD.column_name or OLD.*,
and new values can be returned by writing NEW.column_name or NEW.*. When an alias is provided,
these names are hidden and the old or new rows must be referred to using the alias. For example
RETURNING WITH (OLD AS o, NEW AS n) o.*, n.*.

output_expression

An expression to be computed and returned by the UPDATE command after each row is updated. The
expression can use any column names of the table named by table_name or table(s) listed in FROM.
Write * to return all columns.

A column name or * may be qualified using OLD or NEW, or the corresponding output_alias for OLD
or NEW, to cause old or new values to be returned. An unqualified column name, or *, or a column
name or * qualified using the target table name or alias will return new values.

output_name

A name to use for a returned column.

Outputs
On successful completion, an UPDATE command returns a command tag of the form

1871

UPDATE

UPDATE count

The count is the number of rows updated, including matched rows whose values did not change. Note
that the number may be less than the number of rows that matched the condition when updates were
suppressed by a BEFORE UPDATE trigger. If count is 0, no rows were updated by the query (this is not
considered an error).

If the UPDATE command contains a RETURNING clause, the result will be similar to that of a SELECT state-
ment containing the columns and values defined in the RETURNING list, computed over the row(s) updat-
ed by the command.

Notes
When a FROM clause is present, what essentially happens is that the target table is joined to the tables
mentioned in the from_item list, and each output row of the join represents an update operation for the
target table. When using FROM you should ensure that the join produces at most one output row for each
row to be modified. In other words, a target row shouldn't join to more than one row from the other
table(s). If it does, then only one of the join rows will be used to update the target row, but which one
will be used is not readily predictable.

Because of this indeterminacy, referencing other tables only within sub-selects is safer, though often
harder to read and slower than using a join.

In the case of a partitioned table, updating a row might cause it to no longer satisfy the partition con-
straint of the containing partition. In that case, if there is some other partition in the partition tree for
which this row satisfies its partition constraint, then the row is moved to that partition. If there is no
such partition, an error will occur. Behind the scenes, the row movement is actually a DELETE and INSERT
operation.

There is a possibility that a concurrent UPDATE or DELETE on the row being moved will get a serialization
failure error. Suppose session 1 is performing an UPDATE on a partition key, and meanwhile a concurrent
session 2 for which this row is visible performs an UPDATE or DELETE operation on this row. In such case,
session 2's UPDATE or DELETE will detect the row movement and raise a serialization failure error (which
always returns with an SQLSTATE code '40001'). Applications may wish to retry the transaction if this
occurs. In the usual case where the table is not partitioned, or where there is no row movement, session 2
would have identified the newly updated row and carried out the UPDATE/DELETE on this new row version.

Note that while rows can be moved from local partitions to a foreign-table partition (provided the foreign
data wrapper supports tuple routing), they cannot be moved from a foreign-table partition to another
partition.

An attempt of moving a row from one partition to another will fail if a foreign key is found to directly
reference an ancestor of the source partition that is not the same as the ancestor that's mentioned in
the UPDATE query.

Examples
Change the word Drama to Dramatic in the column kind of the table films:

UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

Adjust temperature entries and reset precipitation to its default value in one row of the table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03';

Perform the same operation and return the updated entries, and the old precipitation value:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03'
 RETURNING temp_lo, temp_hi, prcp, old.prcp AS old_prcp;

1872

UPDATE

Use the alternative column-list syntax to do the same update:
UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1, temp_lo+15, DEFAULT)
 WHERE city = 'San Francisco' AND date = '2003-07-03';

Increment the sales count of the salesperson who manages the account for Acme Corporation, using
the FROM clause syntax:
UPDATE employees SET sales_count = sales_count + 1 FROM accounts
 WHERE accounts.name = 'Acme Corporation'
 AND employees.id = accounts.sales_person;

Perform the same operation, using a sub-select in the WHERE clause:
UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation');

Update contact names in an accounts table to match the currently assigned salespeople:
UPDATE accounts SET (contact_first_name, contact_last_name) =
 (SELECT first_name, last_name FROM employees
 WHERE employees.id = accounts.sales_person);

A similar result could be accomplished with a join:
UPDATE accounts SET contact_first_name = first_name,
 contact_last_name = last_name
 FROM employees WHERE employees.id = accounts.sales_person;

However, the second query may give unexpected results if employees.id is not a unique key, whereas
the first query is guaranteed to raise an error if there are multiple id matches. Also, if there is no match
for a particular accounts.sales_person entry, the first query will set the corresponding name fields to
NULL, whereas the second query will not update that row at all.

Update statistics in a summary table to match the current data:
UPDATE summary s SET (sum_x, sum_y, avg_x, avg_y) =
 (SELECT sum(x), sum(y), avg(x), avg(y) FROM data d
 WHERE d.group_id = s.group_id);

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead up-
date the stock count of the existing item. To do this without failing the entire transaction, use savepoints:
BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES('Chateau Lafite 2003', '24');
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau Lafite 2003';
-- continue with other operations, and eventually
COMMIT;

Change the kind column of the table films in the row on which the cursor c_films is currently posi-
tioned:
UPDATE films SET kind = 'Dramatic' WHERE CURRENT OF c_films;

Updates affecting many rows can have negative effects on system performance, such as table bloat,
increased replica lag, and increased lock contention. In such situations it can make sense to perform
the operation in smaller batches, possibly with a VACUUM operation on the table between batches. While
there is no LIMIT clause for UPDATE, it is possible to get a similar effect through the use of a Common
Table Expression and a self-join. With the standard PostgreSQL table access method, a self-join on the
system column ctid is very efficient:

1873

UPDATE

WITH exceeded_max_retries AS (
 SELECT w.ctid FROM work_item AS w
 WHERE w.status = 'active' AND w.num_retries > 10
 ORDER BY w.retry_timestamp
 FOR UPDATE
 LIMIT 5000
)
UPDATE work_item SET status = 'failed'
 FROM exceeded_max_retries AS emr
 WHERE work_item.ctid = emr.ctid;

This command will need to be repeated until no rows remain to be updated. Use of an ORDER BY clause
allows the command to prioritize which rows will be updated; it can also prevent deadlock with other
update operations if they use the same ordering. If lock contention is a concern, then SKIP LOCKED can
be added to the CTE to prevent multiple commands from updating the same row. However, then a final
UPDATE without SKIP LOCKED or LIMIT will be needed to ensure that no matching rows were overlooked.

Compatibility
This command conforms to the SQL standard, except that the FROM and RETURNING clauses are Post-
greSQL extensions, as is the ability to use WITH with UPDATE.

Some other database systems offer a FROM option in which the target table is supposed to be listed again
within FROM. That is not how PostgreSQL interprets FROM. Be careful when porting applications that use
this extension.

According to the standard, the source value for a parenthesized sub-list of target column names can be
any row-valued expression yielding the correct number of columns. PostgreSQL only allows the source
value to be a row constructor or a sub-SELECT. An individual column's updated value can be specified as
DEFAULT in the row-constructor case, but not inside a sub-SELECT.

1874

VACUUM
VACUUM — garbage-collect and optionally analyze a database

Synopsis
VACUUM [(option [, ...])] [table_and_columns [, ...]]

where option can be one of:

 FULL [boolean]
 FREEZE [boolean]
 VERBOSE [boolean]
 ANALYZE [boolean]
 DISABLE_PAGE_SKIPPING [boolean]
 SKIP_LOCKED [boolean]
 INDEX_CLEANUP { AUTO | ON | OFF }
 PROCESS_MAIN [boolean]
 PROCESS_TOAST [boolean]
 TRUNCATE [boolean]
 PARALLEL integer
 SKIP_DATABASE_STATS [boolean]
 ONLY_DATABASE_STATS [boolean]
 BUFFER_USAGE_LIMIT size

and table_and_columns is:

 [ONLY] table_name [*] [(column_name [, ...])]

Description
VACUUM reclaims storage occupied by dead tuples. In normal PostgreSQL operation, tuples that are delet-
ed or obsoleted by an update are not physically removed from their table; they remain present until
a VACUUM is done. Therefore it's necessary to do VACUUM periodically, especially on frequently-updated
tables.

Without a table_and_columns list, VACUUM processes every table and materialized view in the current
database that the current user has permission to vacuum. With a list, VACUUM processes only those ta-
ble(s).

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table. This is a handy com-
bination form for routine maintenance scripts. See ANALYZE for more details about its processing.

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use. This form of the
command can operate in parallel with normal reading and writing of the table, as an exclusive lock is
not obtained. However, extra space is not returned to the operating system (in most cases); it's just kept
available for re-use within the same table. It also allows us to leverage multiple CPUs in order to process
indexes. This feature is known as parallel vacuum. To disable this feature, one can use PARALLEL option
and specify parallel workers as zero. VACUUM FULL rewrites the entire contents of the table into a new
disk file with no extra space, allowing unused space to be returned to the operating system. This form
is much slower and requires an ACCESS EXCLUSIVE lock on each table while it is being processed.

Parameters
FULL

Selects “full” vacuum, which can reclaim more space, but takes much longer and exclusively locks
the table. This method also requires extra disk space, since it writes a new copy of the table and

1875

VACUUM

doesn't release the old copy until the operation is complete. Usually this should only be used when
a significant amount of space needs to be reclaimed from within the table.

FREEZE

Selects aggressive “freezing” of tuples. Specifying FREEZE is equivalent to performing VACUUM with
the vacuum_freeze_min_age and vacuum_freeze_table_age parameters set to zero. Aggressive freez-
ing is always performed when the table is rewritten, so this option is redundant when FULL is spec-
ified.

VERBOSE

Prints a detailed vacuum activity report for each table at INFO level.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute a query.

DISABLE_PAGE_SKIPPING

Normally, VACUUM will skip pages based on the visibility map. Pages where all tuples are known to
be frozen can always be skipped, and those where all tuples are known to be visible to all transac-
tions may be skipped except when performing an aggressive vacuum. Furthermore, except when
performing an aggressive vacuum, some pages may be skipped in order to avoid waiting for other
sessions to finish using them. This option disables all page-skipping behavior, and is intended to be
used only when the contents of the visibility map are suspect, which should happen only if there is
a hardware or software issue causing database corruption.

SKIP_LOCKED

Specifies that VACUUM should not wait for any conflicting locks to be released when beginning work
on a relation: if a relation cannot be locked immediately without waiting, the relation is skipped. Note
that even with this option, VACUUM may still block when opening the relation's indexes. Additional-
ly, VACUUM ANALYZE may still block when acquiring sample rows from partitions, table inheritance
children, and some types of foreign tables. Also, while VACUUM ordinarily processes all partitions of
specified partitioned tables, this option will cause VACUUM to skip all partitions if there is a conflicting
lock on the partitioned table.

INDEX_CLEANUP

Normally, VACUUM will skip index vacuuming when there are very few dead tuples in the table. The
cost of processing all of the table's indexes is expected to greatly exceed the benefit of removing
dead index tuples when this happens. This option can be used to force VACUUM to process indexes
when there are more than zero dead tuples. The default is AUTO, which allows VACUUM to skip index
vacuuming when appropriate. If INDEX_CLEANUP is set to ON, VACUUM will conservatively remove all
dead tuples from indexes. This may be useful for backwards compatibility with earlier releases of
PostgreSQL where this was the standard behavior.

INDEX_CLEANUP can also be set to OFF to force VACUUM to always skip index vacuuming, even when
there are many dead tuples in the table. This may be useful when it is necessary to make VACUUM run
as quickly as possible to avoid imminent transaction ID wraparound (see Section 24.1.5). However,
the wraparound failsafe mechanism controlled by vacuum_failsafe_age will generally trigger auto-
matically to avoid transaction ID wraparound failure, and should be preferred. If index cleanup is
not performed regularly, performance may suffer, because as the table is modified indexes will ac-
cumulate dead tuples and the table itself will accumulate dead line pointers that cannot be removed
until index cleanup is completed.

This option has no effect for tables that have no index and is ignored if the FULL option is used. It
also has no effect on the transaction ID wraparound failsafe mechanism. When triggered it will skip
index vacuuming, even when INDEX_CLEANUP is set to ON.

1876

VACUUM

PROCESS_MAIN

Specifies that VACUUM should attempt to process the main relation. This is usually the desired behavior
and is the default. Setting this option to false may be useful when it is only necessary to vacuum a
relation's corresponding TOAST table.

PROCESS_TOAST

Specifies that VACUUM should attempt to process the corresponding TOAST table for each relation, if
one exists. This is usually the desired behavior and is the default. Setting this option to false may
be useful when it is only necessary to vacuum the main relation. This option is required when the
FULL option is used.

TRUNCATE

Specifies that VACUUM should attempt to truncate off any empty pages at the end of the table and allow
the disk space for the truncated pages to be returned to the operating system. This is normally the
desired behavior and is the default unless vacuum_truncate is set to false or the vacuum_truncate
option has been set to false for the table to be vacuumed. Setting this option to false may be useful
to avoid ACCESS EXCLUSIVE lock on the table that the truncation requires. This option is ignored if
the FULL option is used.

PARALLEL

Perform index vacuum and index cleanup phases of VACUUM in parallel using integer background
workers (for the details of each vacuum phase, please refer to Table 27.46). The number of workers
used to perform the operation is equal to the number of indexes on the relation that support parallel
vacuum which is limited by the number of workers specified with PARALLEL option if any which is
further limited by max_parallel_maintenance_workers. An index can participate in parallel vacuum if
and only if the size of the index is more than min_parallel_index_scan_size. Please note that it is not
guaranteed that the number of parallel workers specified in integer will be used during execution.
It is possible for a vacuum to run with fewer workers than specified, or even with no workers at all.
Only one worker can be used per index. So parallel workers are launched only when there are at
least 2 indexes in the table. Workers for vacuum are launched before the start of each phase and
exit at the end of the phase. These behaviors might change in a future release. This option can't be
used with the FULL option.

SKIP_DATABASE_STATS

Specifies that VACUUM should skip updating the database-wide statistics about oldest unfrozen XIDs.
Normally VACUUM will update these statistics once at the end of the command. However, this can take
awhile in a database with a very large number of tables, and it will accomplish nothing unless the
table that had contained the oldest unfrozen XID was among those vacuumed. Moreover, if multiple
VACUUM commands are issued in parallel, only one of them can update the database-wide statistics
at a time. Therefore, if an application intends to issue a series of many VACUUM commands, it can be
helpful to set this option in all but the last such command; or set it in all the commands and separately
issue VACUUM (ONLY_DATABASE_STATS) afterwards.

ONLY_DATABASE_STATS

Specifies that VACUUM should do nothing except update the database-wide statistics about oldest
unfrozen XIDs. When this option is specified, the table_and_columns list must be empty, and no
other option may be enabled except VERBOSE.

BUFFER_USAGE_LIMIT

Specifies the Buffer Access Strategy ring buffer size for VACUUM. This size is used to calculate the
number of shared buffers which will be reused as part of this strategy. 0 disables use of a Buffer
Access Strategy. If ANALYZE is also specified, the BUFFER_USAGE_LIMIT value is used for both the
vacuum and analyze stages. This option can't be used with the FULL option except if ANALYZE is also
specified. When this option is not specified, VACUUM uses the value from vacuum_buffer_usage_limit.
Higher settings can allow VACUUM to run more quickly, but having too large a setting may cause too

1877

VACUUM

many other useful pages to be evicted from shared buffers. The minimum value is 128 kB and the
maximum value is 16 GB.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

integer

Specifies a non-negative integer value passed to the selected option.

size

Specifies an amount of memory in kilobytes. Sizes may also be specified as a string containing
the numerical size followed by any one of the following memory units: B (bytes), kB (kilobytes), MB
(megabytes), GB (gigabytes), or TB (terabytes).

table_name

The name (optionally schema-qualified) of a specific table or materialized view to vacuum. If ONLY
is specified before the table name, only that table is vacuumed. If ONLY is not specified, the table
and all its inheritance child tables or partitions (if any) are also vacuumed. Optionally, * can be
specified after the table name to explicitly indicate that inheritance child tables (or partitions) are
to be vacuumed.

column_name

The name of a specific column to analyze. Defaults to all columns. If a column list is specified, ANALYZE
must also be specified.

Outputs
When VERBOSE is specified, VACUUM emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
To vacuum a table, one must ordinarily have the MAINTAIN privilege on the table. However, database
owners are allowed to vacuum all tables in their databases, except shared catalogs. VACUUM will skip
over any tables that the calling user does not have permission to vacuum.

While VACUUM is running, the search_path is temporarily changed to pg_catalog, pg_temp.

VACUUM cannot be executed inside a transaction block.

For tables with GIN indexes, VACUUM (in any form) also completes any pending index insertions, by moving
pending index entries to the appropriate places in the main GIN index structure. See Section 65.4.4.1
for details.

We recommend that all databases be vacuumed regularly in order to remove dead rows. PostgreSQL
includes an “autovacuum” facility which can automate routine vacuum maintenance. For more informa-
tion about automatic and manual vacuuming, see Section 24.1.

The FULL option is not recommended for routine use, but might be useful in special cases. An example
is when you have deleted or updated most of the rows in a table and would like the table to physically
shrink to occupy less disk space and allow faster table scans. VACUUM FULL will usually shrink the table
more than a plain VACUUM would.

The PARALLEL option is used only for vacuum purposes. If this option is specified with the ANALYZE option,
it does not affect ANALYZE.

1878

VACUUM

VACUUM causes a substantial increase in I/O traffic, which might cause poor performance for other active
sessions. Therefore, it is sometimes advisable to use the cost-based vacuum delay feature. For parallel
vacuum, each worker sleeps in proportion to the work done by that worker. See Section 19.10.2 for
details.

Each backend running VACUUM without the FULL option will report its progress in the pg_s-
tat_progress_vacuum view. Backends running VACUUM FULL will instead report their progress in the
pg_stat_progress_cluster view. See Section 27.4.5 and Section 27.4.2 for details.

Examples
To clean a single table onek, analyze it for the optimizer and print a detailed vacuum activity report:

VACUUM (VERBOSE, ANALYZE) onek;

Compatibility
There is no VACUUM statement in the SQL standard.

The following syntax was used before PostgreSQL version 9.0 and is still supported:

VACUUM [FULL] [FREEZE] [VERBOSE] [ANALYZE] [table_and_columns [, ...]]

Note that in this syntax, the options must be specified in exactly the order shown.

See Also
vacuumdb, Section 19.10.2, Section 24.1.6, Section 27.4.5, Section 27.4.2

1879

VALUES
VALUES — compute a set of rows

Synopsis
VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Description
VALUES computes a row value or set of row values specified by value expressions. It is most commonly
used to generate a “constant table” within a larger command, but it can be used on its own.

When more than one row is specified, all the rows must have the same number of elements. The data
types of the resulting table's columns are determined by combining the explicit or inferred types of the
expressions appearing in that column, using the same rules as for UNION (see Section 10.5).

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is. Because it is treated
like a SELECT by the grammar, it is possible to use the ORDER BY, LIMIT (or equivalently FETCH FIRST),
and OFFSET clauses with a VALUES command.

Parameters
expression

A constant or expression to compute and insert at the indicated place in the resulting table (set of
rows). In a VALUES list appearing at the top level of an INSERT, an expression can be replaced by
DEFAULT to indicate that the destination column's default value should be inserted. DEFAULT cannot
be used when VALUES appears in other contexts.

sort_expression

An expression or integer constant indicating how to sort the result rows. This expression can refer to
the columns of the VALUES result as column1, column2, etc. For more details see ORDER BY Clause
in the SELECT documentation.

operator

A sorting operator. For details see ORDER BY Clause in the SELECT documentation.

count

The maximum number of rows to return. For details see LIMIT Clause in the SELECT documentation.

start

The number of rows to skip before starting to return rows. For details see LIMIT Clause in the
SELECT documentation.

Notes
VALUES lists with very large numbers of rows should be avoided, as you might encounter out-of-memory
failures or poor performance. VALUES appearing within INSERT is a special case (because the desired
column types are known from the INSERT's target table, and need not be inferred by scanning the VALUES
list), so it can handle larger lists than are practical in other contexts.

1880

VALUES

Examples
A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

This will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

More usually, VALUES is used within a larger SQL command. The most common use is in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the column default
should be used here instead of specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes'),
 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM clause:

SELECT f.*
 FROM films f, (VALUES('MGM', 'Horror'), ('UA', 'Sci-Fi')) AS t (studio, kind)
 WHERE f.studio = t.studio AND f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase
 FROM (VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno, target, increase)
 WHERE employees.depno = v.depno AND employees.sales >= v.target;

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true for SELECT. It is
not required that the AS clause specify names for all the columns, but it's good practice to do so. (The
default column names for VALUES are column1, column2, etc. in PostgreSQL, but these names might be
different in other database systems.)

When VALUES is used in INSERT, the values are all automatically coerced to the data type of the corre-
sponding destination column. When it's used in other contexts, it might be necessary to specify the cor-
rect data type. If the entries are all quoted literal constants, coercing the first is sufficient to determine
the assumed type for all:

SELECT * FROM machines
WHERE ip_address IN (VALUES('192.168.0.1'::inet), ('192.168.0.10'), ('192.168.1.43'));

Tip
For simple IN tests, it's better to rely on the list-of-scalars form of IN than to write a VALUES query
as shown above. The list of scalars method requires less writing and is often more efficient.

Compatibility
VALUES conforms to the SQL standard. LIMIT and OFFSET are PostgreSQL extensions; see also under
SELECT.

See Also
INSERT, SELECT

1881

PostgreSQL Client Applications
This part contains reference information for PostgreSQL client applications and utilities. Not all of these
commands are of general utility; some might require special privileges. The common feature of these
applications is that they can be run on any host, independent of where the database server resides.

When specified on the command line, user and database names have their case preserved — the presence
of spaces or special characters might require quoting. Table names and other identifiers do not have
their case preserved, except where documented, and might require quoting.

1882

clusterdb
clusterdb — cluster a PostgreSQL database

Synopsis
clusterdb [connection-option...] [option...] [--table | -t table] ... [dbname | -a | --all]

Description
clusterdb is a utility for reclustering tables in a PostgreSQL database. It finds tables that have previously
been clustered, and clusters them again on the same index that was last used. Tables that have never
been clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. There is no effective difference between
clustering databases via this utility and via other methods for accessing the server.

Options
clusterdb accepts the following command-line arguments:
-a
--all

Cluster all databases.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be clustered, when -a/--all is not used. If this is not specified,
the database name is read from the environment variable PGDATABASE. If that is not set, the user
name specified for the connection is used. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-e
--echo

Echo the commands that clusterdb generates and sends to the server.

-q
--quiet

Do not display progress messages.

-t table
--table=table

Cluster table only. Multiple tables can be clustered by writing multiple -t switches.

-v
--verbose

Print detailed information during processing.

-V
--version

Print the clusterdb version and exit.

-?
--help

Show help about clusterdb command line arguments, and exit.

1883

clusterdb

clusterdb also accepts the following command-line arguments for connection parameters:
-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force clusterdb to prompt for a password before connecting to a database.

This option is never essential, since clusterdb will automatically prompt for a password if the server
demands password authentication. However, clusterdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

When the -a/--all is used, connect to this database to gather the list of databases to cluster. If not
specified, the postgres database will be used, or if that does not exist, template1 will be used. This
can be a connection string. If so, connection string parameters will override any conflicting command
line options. Also, connection string parameters other than the database name itself will be re-used
when connecting to other databases.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see CLUSTER and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

1884

clusterdb

Examples
To cluster the database test:

$ clusterdb test

To cluster a single table foo in a database named xyzzy:

$ clusterdb --table=foo xyzzy

See Also
CLUSTER

1885

createdb
createdb — create a new PostgreSQL database

Synopsis
createdb [connection-option...] [option...] [dbname [description]]

Description
createdb creates a new PostgreSQL database.

Normally, the database user who executes this command becomes the owner of the new database. How-
ever, a different owner can be specified via the -O option, if the executing user has appropriate privileges.

createdb is a wrapper around the SQL command CREATE DATABASE. There is no effective difference
between creating databases via this utility and via other methods for accessing the server.

Options
createdb accepts the following command-line arguments:
dbname

Specifies the name of the database to be created. The name must be unique among all PostgreSQL
databases in this cluster. The default is to create a database with the same name as the current
system user.

description

Specifies a comment to be associated with the newly created database.

-D tablespace
--tablespace=tablespace

Specifies the default tablespace for the database. (This name is processed as a double-quoted iden-
tifier.)

-e
--echo

Echo the commands that createdb generates and sends to the server.

-E encoding
--encoding=encoding

Specifies the character encoding scheme to be used in this database. The character sets supported
by the PostgreSQL server are described in Section 23.3.1.

-l locale
--locale=locale

Specifies the locale to be used in this database. This is equivalent to specifying --lc-collate, --
lc-ctype, and --icu-locale to the same value. Some locales are only valid for ICU and must be
set with --icu-locale.

--lc-collate=locale

Specifies the LC_COLLATE setting to be used in this database.

--lc-ctype=locale

Specifies the LC_CTYPE setting to be used in this database.

1886

createdb

--builtin-locale=locale

Specifies the locale name when the builtin provider is used. Locale support is described in Sec-
tion 23.1.

--icu-locale=locale

Specifies the ICU locale ID to be used in this database, if the ICU locale provider is selected.

--icu-rules=rules

Specifies additional collation rules to customize the behavior of the default collation of this database.
This is supported for ICU only.

--locale-provider={builtin|libc|icu}

Specifies the locale provider for the database's default collation.

-O owner
--owner=owner

Specifies the database user who will own the new database. (This name is processed as a double-quot-
ed identifier.)

-S strategy
--strategy=strategy

Specifies the database creation strategy. See CREATE DATABASE STRATEGY for more details.

-T template
--template=template

Specifies the template database from which to build this database. (This name is processed as a
double-quoted identifier.)

-V
--version

Print the createdb version and exit.

-?
--help

Show help about createdb command line arguments, and exit.

The options -D, -l, -E, -O, and -T correspond to options of the underlying SQL command CREATE DATA-
BASE; see there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or the local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

1887

createdb

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force createdb to prompt for a password before connecting to a database.

This option is never essential, since createdb will automatically prompt for a password if the server
demands password authentication. However, createdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to when creating the new database. If not specified,
the postgres database will be used; if that does not exist (or if it is the name of the new database
being created), template1 will be used. This can be a connection string. If so, connection string
parameters will override any conflicting command line options.

Environment
PGDATABASE

If set, the name of the database to create, unless overridden on the command line.

PGHOST
PGPORT
PGUSER

Default connection parameters. PGUSER also determines the name of the database to create, if it is
not specified on the command line or by PGDATABASE.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see CREATE DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection set-
tings and environment variables used by the libpq front-end library will apply.

Examples
To create the database demo using the default database server:
$ createdb demo

To create the database demo using the server on host eden, port 5000, using the template0 template
database, here is the command-line command and the underlying SQL command:
$ createdb -p 5000 -h eden -T template0 -e demo
CREATE DATABASE demo TEMPLATE template0;

See Also
dropdb, CREATE DATABASE

1888

createuser
createuser — define a new PostgreSQL user account

Synopsis
createuser [connection-option...] [option...] [username]

Description
createuser creates a new PostgreSQL user (or more precisely, a role). Only superusers and users with
CREATEROLE privilege can create new users, so createuser must be invoked by someone who can connect
as a superuser or a user with CREATEROLE privilege.

If you wish to create a role with the SUPERUSER, REPLICATION, or BYPASSRLS privilege, you must connect
as a superuser, not merely with CREATEROLE privilege. Being a superuser implies the ability to bypass
all access permission checks within the database, so superuser access should not be granted lightly.
CREATEROLE also conveys very extensive privileges.

createuser is a wrapper around the SQL command CREATE ROLE. There is no effective difference between
creating users via this utility and via other methods for accessing the server.

Options
createuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be created. This name must be different from all
existing roles in this PostgreSQL installation.

-a role
--with-admin=role

Specifies an existing role that will be automatically added as a member of the new role with admin
option, giving it the right to grant membership in the new role to others. Multiple existing roles can
be specified by writing multiple -a switches.

-c number
--connection-limit=number

Set a maximum number of connections for the new user. The default is to set no limit.

-d
--createdb

The new user will be allowed to create databases.

-D
--no-createdb

The new user will not be allowed to create databases. This is the default.

-e
--echo

Echo the commands that createuser generates and sends to the server.

-E
--encrypted

This option is obsolete but still accepted for backward compatibility.

1889

createuser

-g role
--member-of=role
--role=role (deprecated)

Specifies the new role should be automatically added as a member of the specified existing role.
Multiple existing roles can be specified by writing multiple -g switches.

-i
--inherit

The new role will automatically inherit privileges of roles it is a member of. This is the default.

-I
--no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

--interactive

Prompt for the user name if none is specified on the command line, and also prompt for whichever of
the options -d/-D, -r/-R, -s/-S is not specified on the command line. (This was the default behavior
up to PostgreSQL 9.1.)

-l
--login

The new user will be allowed to log in (that is, the user name can be used as the initial session user
identifier). This is the default.

-L
--no-login

The new user will not be allowed to log in. (A role without login privilege is still useful as a means
of managing database permissions.)

-m role
--with-member=role

Specifies an existing role that will be automatically added as a member of the new role. Multiple
existing roles can be specified by writing multiple -m switches.

-P
--pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if you
do not plan on using password authentication.

-r
--createrole

The new user will be allowed to create, alter, drop, comment on, change the security label for other
roles; that is, this user will have CREATEROLE privilege. See role creation for more details about what
capabilities are conferred by this privilege.

-R
--no-createrole

The new user will not be allowed to create new roles. This is the default.

-s
--superuser

The new user will be a superuser.

1890

createuser

-S
--no-superuser

The new user will not be a superuser. This is the default.

-v timestamp
--valid-until=timestamp

Set a date and time after which the role's password is no longer valid. The default is to set no password
expiry date.

-V
--version

Print the createuser version and exit.

--bypassrls

The new user will bypass every row-level security (RLS) policy.

--no-bypassrls

The new user will not bypass row-level security (RLS) policies. This is the default.

--replication

The new user will have the REPLICATION privilege, which is described more fully in the documentation
for CREATE ROLE.

--no-replication

The new user will not have the REPLICATION privilege, which is described more fully in the documen-
tation for CREATE ROLE. This is the default.

-?
--help

Show help about createuser command line arguments, and exit.

createuser also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as (not the user name to create).

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

1891

createuser

-W
--password

Force createuser to prompt for a password (for connecting to the server, not for the password of
the new user).

This option is never essential, since createuser will automatically prompt for a password if the server
demands password authentication. However, createuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see CREATE ROLE and psql for discussions of potential problems and error mes-
sages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To create a user joe on the default database server:
$ createuser joe

To create a user joe on the default database server with prompting for some additional attributes:
$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

To create the same user joe using the server on host eden, port 5000, with attributes explicitly specified,
taking a look at the underlying command:
$ createuser -h eden -p 5000 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

To create the user joe as a superuser, and assign a password immediately:
$ createuser -P -s -e joe
Enter password for new role: xyzzy
Enter it again: xyzzy
CREATE ROLE joe PASSWORD 'md5b5f5ba1a423792b526f799ae4eb3d59e' SUPERUSER CREATEDB
 CREATEROLE INHERIT LOGIN;

In the above example, the new password isn't actually echoed when typed, but we show what was typed
for clarity. As you see, the password is encrypted before it is sent to the client.

See Also
dropuser, CREATE ROLE, createrole_self_grant

1892

dropdb
dropdb — remove a PostgreSQL database

Synopsis
dropdb [connection-option...] [option...] dbname

Description
dropdb destroys an existing PostgreSQL database. The user who executes this command must be a
database superuser or the owner of the database.

dropdb is a wrapper around the SQL command DROP DATABASE. There is no effective difference between
dropping databases via this utility and via other methods for accessing the server.

Options
dropdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be removed.

-e
--echo

Echo the commands that dropdb generates and sends to the server.

-f
--force

Attempt to terminate all existing connections to the target database before dropping it. See DROP
DATABASE for more information on this option.

-i
--interactive

Issues a verification prompt before doing anything destructive.

-V
--version

Print the dropdb version and exit.

--if-exists

Do not throw an error if the database does not exist. A notice is issued in this case.

-?
--help

Show help about dropdb command line arguments, and exit.

dropdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

1893

dropdb

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force dropdb to prompt for a password before connecting to a database.

This option is never essential, since dropdb will automatically prompt for a password if the server
demands password authentication. However, dropdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to in order to drop the target database. If not speci-
fied, the postgres database will be used; if that does not exist (or is the database being dropped),
template1 will be used. This can be a connection string. If so, connection string parameters will
override any conflicting command line options.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see DROP DATABASE and psql for discussions of potential problems and error mes-
sages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To destroy the database demo on the default database server:

$ dropdb demo

To destroy the database demo using the server on host eden, port 5000, with verification and a peek at
the underlying command:

1894

dropdb

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE demo;

See Also
createdb, DROP DATABASE

1895

dropuser
dropuser — remove a PostgreSQL user account

Synopsis
dropuser [connection-option...] [option...] [username]

Description
dropuser removes an existing PostgreSQL user. Superusers can use this command to remove any role;
otherwise, only non-superuser roles can be removed, and only by a user who possesses the CREATEROLE
privilege and has been granted ADMIN OPTION on the target role.

dropuser is a wrapper around the SQL command DROP ROLE. There is no effective difference between
dropping users via this utility and via other methods for accessing the server.

Options
dropuser accepts the following command-line arguments:
username

Specifies the name of the PostgreSQL user to be removed. You will be prompted for a name if none
is specified on the command line and the -i/--interactive option is used.

-e
--echo

Echo the commands that dropuser generates and sends to the server.

-i
--interactive

Prompt for confirmation before actually removing the user, and prompt for the user name if none
is specified on the command line.

-V
--version

Print the dropuser version and exit.

--if-exists

Do not throw an error if the user does not exist. A notice is issued in this case.

-?
--help

Show help about dropuser command line arguments, and exit.

dropuser also accepts the following command-line arguments for connection parameters:
-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

1896

dropuser

-U username
--username=username

User name to connect as (not the user name to drop).

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force dropuser to prompt for a password before connecting to a database.

This option is never essential, since dropuser will automatically prompt for a password if the server
demands password authentication. However, dropuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see DROP ROLE and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To remove user joe from the default database server:

$ dropuser joe

To remove user joe using the server on host eden, port 5000, with verification and a peek at the under-
lying command:

$ dropuser -p 5000 -h eden -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE joe;

See Also
createuser, DROP ROLE

1897

ecpg
ecpg — embedded SQL C preprocessor

Synopsis
ecpg [option...] file...

Description
ecpg is the embedded SQL preprocessor for C programs. It converts C programs with embedded SQL
statements to normal C code by replacing the SQL invocations with special function calls. The output
files can then be processed with any C compiler tool chain.

ecpg will convert each input file given on the command line to the corresponding C output file. If an
input file name does not have any extension, .pgc is assumed. The file's extension will be replaced by
.c to construct the output file name. But the output file name can be overridden using the -o option.

If an input file name is just -, ecpg reads the program from standard input (and writes to standard
output, unless that is overridden with -o).

This reference page does not describe the embedded SQL language. See Chapter 34 for more information
on that topic.

Options
ecpg accepts the following command-line arguments:
-c

Automatically generate certain C code from SQL code. Currently, this works for EXEC SQL TYPE.

-C mode

Set a compatibility mode. mode can be INFORMIX, INFORMIX_SE, or ORACLE.

-D symbol[=value]

Define a preprocessor symbol, equivalently to the EXEC SQL DEFINE directive. If no value is specified,
the symbol is defined with the value 1.

-h

Process header files. When this option is specified, the output file extension becomes .h not .c, and
the default input file extension is .pgh not .pgc. Also, the -c option is forced on.

-i

Parse system include files as well.

-I directory

Specify an additional include path, used to find files included via EXEC SQL INCLUDE. Defaults are
. (current directory), /usr/local/include, the PostgreSQL include directory which is defined at
compile time (default: /usr/local/pgsql/include), and /usr/include, in that order.

-o filename

Specifies that ecpg should write all its output to the given filename. Write -o - to send all output
to standard output.

-r option

Selects run-time behavior. Option can be one of the following:

1898

ecpg

no_indicator

Do not use indicators but instead use special values to represent null values. Historically there
have been databases using this approach.

prepare

Prepare all statements before using them. Libecpg will keep a cache of prepared statements and
reuse a statement if it gets executed again. If the cache runs full, libecpg will free the least used
statement.

questionmarks

Allow question mark as placeholder for compatibility reasons. This used to be the default long ago.

-t

Turn on autocommit of transactions. In this mode, each SQL command is automatically committed
unless it is inside an explicit transaction block. In the default mode, commands are committed only
when EXEC SQL COMMIT is issued.

-v

Print additional information including the version and the "include" path.

--version

Print the ecpg version and exit.

-?
--help

Show help about ecpg command line arguments, and exit.

Notes
When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header
files in the PostgreSQL include directory. Therefore, you might have to use the -I option when invoking
the compiler (e.g., -I/usr/local/pgsql/include).

Programs using C code with embedded SQL have to be linked against the libecpg library, for example
using the linker options -L/usr/local/pgsql/lib -lecpg.

The value of either of these directories that is appropriate for the installation can be found out using
pg_config.

Examples
If you have an embedded SQL C source file named prog1.pgc, you can create an executable program
using the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

1899

pg_amcheck
pg_amcheck — checks for corruption in one or more PostgreSQL databases

Synopsis
pg_amcheck [option...] [dbname]

Description
pg_amcheck supports running amcheck's corruption checking functions against one or more databases,
with options to select which schemas, tables and indexes to check, which kinds of checking to perform,
and whether to perform the checks in parallel, and if so, the number of parallel connections to establish
and use.

Only ordinary and toast table relations, materialized views, sequences, and btree indexes are currently
supported. Other relation types are silently skipped.

If dbname is specified, it should be the name of a single database to check, and no other database se-
lection options should be present. Otherwise, if any database selection options are present, all match-
ing databases will be checked. If no such options are present, the default database will be checked.
Database selection options include --all, --database and --exclude-database. They also include --
relation, --exclude-relation, --table, --exclude-table, --index, and --exclude-index, but only
when such options are used with a three-part pattern (e.g. mydb*.myschema*.myrel*). Finally, they in-
clude --schema and --exclude-schema when such options are used with a two-part pattern (e.g. myd-
b*.myschema*).

dbname can also be a connection string.

Options
The following command-line options control what is checked:
-a
--all

Check all databases, except for any excluded via --exclude-database.

-d pattern
--database=pattern

Check databases matching the specified pattern, except for any excluded by --exclude-database.
This option can be specified more than once.

-D pattern
--exclude-database=pattern

Exclude databases matching the given pattern. This option can be specified more than once.

-i pattern
--index=pattern

Check indexes matching the specified pattern, unless they are otherwise excluded. This option can
be specified more than once.

This is similar to the --relation option, except that it applies only to indexes, not to other relation
types.

-I pattern
--exclude-index=pattern

Exclude indexes matching the specified pattern. This option can be specified more than once.

1900

pg_amcheck

This is similar to the --exclude-relation option, except that it applies only to indexes, not other
relation types.

-r pattern
--relation=pattern

Check relations matching the specified pattern, unless they are otherwise excluded. This option can
be specified more than once.

Patterns may be unqualified, e.g. myrel*, or they may be schema-qualified, e.g. myschema*.myrel*
or database-qualified and schema-qualified, e.g. mydb*.myschema*.myrel*. A database-qualified pat-
tern will add matching databases to the list of databases to be checked.

-R pattern
--exclude-relation=pattern

Exclude relations matching the specified pattern. This option can be specified more than once.

As with --relation, the pattern may be unqualified, schema-qualified, or database- and schema-
qualified.

-s pattern
--schema=pattern

Check tables and indexes in schemas matching the specified pattern, unless they are otherwise
excluded. This option can be specified more than once.

To select only tables in schemas matching a particular pattern, consider using something like --
table=SCHEMAPAT.* --no-dependent-indexes. To select only indexes, consider using something
like --index=SCHEMAPAT.*.

A schema pattern may be database-qualified. For example, you may write --schema=myd-
b*.myschema* to select schemas matching myschema* in databases matching mydb*.

-S pattern
--exclude-schema=pattern

Exclude tables and indexes in schemas matching the specified pattern. This option can be specified
more than once.

As with --schema, the pattern may be database-qualified.

-t pattern
--table=pattern

Check tables matching the specified pattern, unless they are otherwise excluded. This option can
be specified more than once.

This is similar to the --relation option, except that it applies only to tables, materialized views, and
sequences, not to indexes.

-T pattern
--exclude-table=pattern

Exclude tables matching the specified pattern. This option can be specified more than once.

This is similar to the --exclude-relation option, except that it applies only to tables, materialized
views, and sequences, not to indexes.

--no-dependent-indexes

By default, if a table is checked, any btree indexes of that table will also be checked, even if they
are not explicitly selected by an option such as --index or --relation. This option suppresses that
behavior.

1901

pg_amcheck

--no-dependent-toast

By default, if a table is checked, its toast table, if any, will also be checked, even if it is not explicitly
selected by an option such as --table or --relation. This option suppresses that behavior.

--no-strict-names

By default, if an argument to --database, --table, --index, or --relation matches no objects, it
is a fatal error. This option downgrades that error to a warning.

The following command-line options control checking of tables:
--exclude-toast-pointers

By default, whenever a toast pointer is encountered in a table, a lookup is performed to ensure that
it references apparently-valid entries in the toast table. These checks can be quite slow, and this
option can be used to skip them.

--on-error-stop

After reporting all corruptions on the first page of a table where corruption is found, stop processing
that table relation and move on to the next table or index.

Note that index checking always stops after the first corrupt page. This option only has meaning
relative to table relations.

--skip=option

If all-frozen is given, table corruption checks will skip over pages in all tables that are marked
as all frozen.

If all-visible is given, table corruption checks will skip over pages in all tables that are marked
as all visible.

By default, no pages are skipped. This can be specified as none, but since this is the default, it need
not be mentioned.

--startblock=block

Start checking at the specified block number. An error will occur if the table relation being checked
has fewer than this number of blocks. This option does not apply to indexes, and is probably only
useful when checking a single table relation. See --endblock for further caveats.

--endblock=block

End checking at the specified block number. An error will occur if the table relation being checked
has fewer than this number of blocks. This option does not apply to indexes, and is probably only
useful when checking a single table relation. If both a regular table and a toast table are checked, this
option will apply to both, but higher-numbered toast blocks may still be accessed while validating
toast pointers, unless that is suppressed using --exclude-toast-pointers.

The following command-line options control checking of B-tree indexes:
--checkunique

For each index with unique constraint checked, verify that no more than one among duplicate entries
is visible in the index using amcheck's checkunique option.

--heapallindexed

For each index checked, verify the presence of all heap tuples as index tuples in the index using
amcheck's heapallindexed option.

--parent-check

For each btree index checked, use amcheck's bt_index_parent_check function, which performs
additional checks of parent/child relationships during index checking.

1902

pg_amcheck

The default is to use amcheck's bt_index_check function, but note that use of the --rootdescend
option implicitly selects bt_index_parent_check.

--rootdescend

For each index checked, re-find tuples on the leaf level by performing a new search from the root
page for each tuple using amcheck's rootdescend option.

Use of this option implicitly also selects the --parent-check option.

This form of verification was originally written to help in the development of btree index features. It
may be of limited use or even of no use in helping detect the kinds of corruption that occur in practice.
It may also cause corruption checking to take considerably longer and consume considerably more
resources on the server.

Warning
The extra checks performed against B-tree indexes when the --parent-check option or the --
rootdescend option is specified require relatively strong relation-level locks. These checks are
the only checks that will block concurrent data modification from INSERT, UPDATE, and DELETE
commands.

The following command-line options control the connection to the server:

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_amcheck to prompt for a password before connecting to a database.

This option is never essential, since pg_amcheck will automatically prompt for a password if the
server demands password authentication. However, pg_amcheck will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

--maintenance-db=dbname

Specifies a database or connection string to be used to discover the list of databases to be checked. If
neither --all nor any option including a database pattern is used, no such connection is required and

1903

pg_amcheck

this option does nothing. Otherwise, any connection string parameters other than the database name
which are included in the value for this option will also be used when connecting to the databases
being checked. If this option is omitted, the default is postgres or, if that fails, template1.

Other options are also available:

-e
--echo

Echo to stdout all SQL sent to the server.

-j num
--jobs=num

Use num concurrent connections to the server, or one per object to be checked, whichever is less.

The default is to use a single connection.

-P
--progress

Show progress information. Progress information includes the number of relations for which check-
ing has been completed, and the total size of those relations. It also includes the total number of
relations that will eventually be checked, and the estimated size of those relations.

-v
--verbose

Print more messages. In particular, this will print a message for each relation being checked, and
will increase the level of detail shown for server errors.

-V
--version

Print the pg_amcheck version and exit.

--install-missing
--install-missing=schema

Install any missing extensions that are required to check the database(s). If not yet installed, each
extension's objects will be installed into the given schema, or if not specified into schema pg_catalog.

At present, the only required extension is amcheck.

-?
--help

Show help about pg_amcheck command line arguments, and exit.

Environment
pg_amcheck, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
pg_amcheck is designed to work with PostgreSQL 14.0 and later.

See Also
amcheck

1904

pg_basebackup
pg_basebackup — take a base backup of a PostgreSQL cluster

Synopsis
pg_basebackup [option...]

Description
pg_basebackup is used to take a base backup of a running PostgreSQL database cluster. The backup is
taken without affecting other clients of the database, and can be used both for point-in-time recovery
(see Section 25.3) and as the starting point for a log-shipping or streaming-replication standby server
(see Section 26.2).

pg_basebackup can take a full or incremental base backup of the database. When used to take a full
backup, it makes an exact copy of the database cluster's files. When used to take an incremental backup,
some files that would have been part of a full backup may be replaced with incremental versions of
the same files, containing only those blocks that have been modified since the reference backup. An
incremental backup cannot be used directly; instead, pg_combinebackup must first be used to combine
it with the previous backups upon which it depends. See Section 25.3.3 for more information about
incremental backups, and Section 25.3.5 for steps to recover from a backup.

In any mode, pg_basebackup makes sure the server is put into and out of backup mode automatically.
Backups are always taken of the entire database cluster; it is not possible to back up individual databases
or database objects. For selective backups, another tool such as pg_dump must be used.

The backup is made over a regular PostgreSQL connection that uses the replication protocol. The con-
nection must be made with a user ID that has REPLICATION permissions (see Section 21.2) or is a su-
peruser, and pg_hba.conf must permit the replication connection. The server must also be configured
with max_wal_senders set high enough to provide at least one walsender for the backup plus one for
WAL streaming (if used).

There can be multiple pg_basebackups running at the same time, but it is usually better from a perfor-
mance point of view to take only one backup, and copy the result.

pg_basebackup can make a base backup from not only a primary server but also a standby. To take a
backup from a standby, set up the standby so that it can accept replication connections (that is, set
max_wal_senders and hot_standby, and configure its pg_hba.conf appropriately). You will also need to
enable full_page_writes on the primary.

Note that there are some limitations in taking a backup from a standby:
• The backup history file is not created in the database cluster backed up.
• pg_basebackup cannot force the standby to switch to a new WAL file at the end of backup. When

you are using -X none, if write activity on the primary is low, pg_basebackup may need to wait a
long time for the last WAL file required for the backup to be switched and archived. In this case,
it may be useful to run pg_switch_wal on the primary in order to trigger an immediate WAL file
switch.

• If the standby is promoted to be primary during backup, the backup fails.
• All WAL records required for the backup must contain sufficient full-page writes, which requires

you to enable full_page_writes on the primary.

Whenever pg_basebackup is taking a base backup, the server's pg_stat_progress_basebackup view
will report the progress of the backup. See Section 27.4.6 for details.

Options
The following command-line options control the location and format of the output:

1905

pg_basebackup

-D directory
--pgdata=directory

Sets the target directory to write the output to. pg_basebackup will create this directory (and any
missing parent directories) if it does not exist. If it already exists, it must be empty.

When the backup is in tar format, the target directory may be specified as - (dash), causing the tar
file to be written to stdout.

This option is required.

-F format
--format=format

Selects the format for the output. format can be one of the following:

p
plain

Write the output as plain files, with the same layout as the source server's data directory and
tablespaces. When the cluster has no additional tablespaces, the whole database will be placed
in the target directory. If the cluster contains additional tablespaces, the main data directory will
be placed in the target directory, but all other tablespaces will be placed in the same absolute
path as they have on the source server. (See --tablespace-mapping to change that.)

This is the default format.

t
tar

Write the output as tar files in the target directory. The main data directory's contents will be
written to a file named base.tar, and each other tablespace will be written to a separate tar file
named after that tablespace's OID.

If the target directory is specified as - (dash), the tar contents will be written to standard output,
suitable for piping to (for example) gzip. This is only allowed if the cluster has no additional
tablespaces and WAL streaming is not used.

-i old_manifest_file
--incremental=old_manifest_file

Performs an incremental backup. The backup manifest for the reference backup must be provided,
and will be uploaded to the server, which will respond by sending the requested incremental backup.

-R
--write-recovery-conf

Creates a standby.signal file and appends connection settings to the postgresql.auto.conf file
in the target directory (or within the base archive file when using tar format). This eases setting up
a standby server using the results of the backup.

The postgresql.auto.conf file will record the connection settings and, if specified, the replication
slot that pg_basebackup is using, so that streaming replication and logical replication slot synchro-
nization will use the same settings later on. The dbname will be recorded only if the dbname was
specified explicitly in the connection string or environment variable.

-t target
--target=target

Instructs the server where to place the base backup. The default target is client, which specifies
that the backup should be sent to the machine where pg_basebackup is running. If the target is
instead set to server:/some/path, the backup will be stored on the machine where the server is
running in the /some/path directory. Storing a backup on the server requires superuser privileges or

1906

pg_basebackup

having privileges of the pg_write_server_files role. If the target is set to blackhole, the contents
are discarded and not stored anywhere. This should only be used for testing purposes, as you will
not end up with an actual backup.

Since WAL streaming is implemented by pg_basebackup rather than by the server, this option cannot
be used together with -Xstream. Since that is the default, when this option is specified, you must
also specify either -Xfetch or -Xnone.

-T olddir=newdir
--tablespace-mapping=olddir=newdir

Relocates the tablespace in directory olddir to newdir during the backup. To be effective, olddir
must exactly match the path specification of the tablespace as it is defined on the source server.
(But it is not an error if there is no tablespace in olddir on the source server.) Meanwhile newdir
is a directory in the receiving host's filesystem. As with the main target directory, newdir need not
exist already, but if it does exist it must be empty. Both olddir and newdir must be absolute paths.
If either path needs to contain an equal sign (=), precede that with a backslash. This option can be
specified multiple times for multiple tablespaces.

If a tablespace is relocated in this way, the symbolic links inside the main data directory are updated
to point to the new location. So the new data directory is ready to be used for a new server instance
with all tablespaces in the updated locations.

Currently, this option only works with plain output format; it is ignored if tar format is selected.

--waldir=waldir

Sets the directory to write WAL (write-ahead log) files to. By default WAL files will be placed in the
pg_wal subdirectory of the target directory, but this option can be used to place them elsewhere.
waldir must be an absolute path. As with the main target directory, waldir need not exist already,
but if it does exist it must be empty. This option can only be specified when the backup is in plain
format.

-X method
--wal-method=method

Includes the required WAL (write-ahead log) files in the backup. This will include all write-ahead
logs generated during the backup. Unless the method none is specified, it is possible to start a post-
master in the target directory without the need to consult the WAL archive, thus making the output
a completely standalone backup.

The following methods for collecting the write-ahead logs are supported:
n
none

Don't include write-ahead logs in the backup.

f
fetch

The write-ahead log files are collected at the end of the backup. Therefore, it is necessary for the
source server's wal_keep_size parameter to be set high enough that the required log data is not
removed before the end of the backup. If the required log data has been recycled before it's time
to transfer it, the backup will fail and be unusable.

When tar format is used, the write-ahead log files will be included in the base.tar file.

s
stream

Stream write-ahead log data while the backup is being taken. This method will open a second
connection to the server and start streaming the write-ahead log in parallel while running the

1907

pg_basebackup

backup. Therefore, it will require two replication connections not just one. As long as the client
can keep up with the write-ahead log data, using this method requires no extra write-ahead logs
to be saved on the source server.

When tar format is used, the write-ahead log files will be written to a separate file named pg_w-
al.tar (if the server is a version earlier than 10, the file will be named pg_xlog.tar).

This value is the default.

-z
--gzip

Enables gzip compression of tar file output, with the default compression level. Compression is only
available when using the tar format, and the suffix .gz will automatically be added to all tar filenames.

-Z level
-Z [{client|server}-]method[:detail]
--compress=level
--compress=[{client|server}-]method[:detail]

Requests compression of the backup. If client or server is included, it specifies where the com-
pression is to be performed. Compressing on the server will reduce transfer bandwidth but will in-
crease server CPU consumption. The default is client except when --target is used. In that case,
the backup is not being sent to the client, so only server compression is sensible. When -Xstream,
which is the default, is used, server-side compression will not be applied to the WAL. To compress
the WAL, use client-side compression, or specify -Xfetch.

The compression method can be set to gzip, lz4, zstd, none for no compression or an integer (no
compression if 0, gzip if greater than 0). A compression detail string can optionally be specified.
If the detail string is an integer, it specifies the compression level. Otherwise, it should be a com-
ma-separated list of items, each of the form keyword or keyword=value. Currently, the supported
keywords are level, long, and workers. The detail string cannot be used when the compression
method is specified as a plain integer.

If no compression level is specified, the default compression level will be used. If only a level is
specified without mentioning an algorithm, gzip compression will be used if the level is greater than
0, and no compression will be used if the level is 0.

When the tar format is used with gzip, lz4, or zstd, the suffix .gz, .lz4, or .zst, respectively, will
be automatically added to all tar filenames. When the plain format is used, client-side compression
may not be specified, but it is still possible to request server-side compression. If this is done, the
server will compress the backup for transmission, and the client will decompress and extract it.

When this option is used in combination with -Xstream, pg_wal.tar will be compressed using gzip
if client-side gzip compression is selected, but will not be compressed if any other compression al-
gorithm is selected, or if server-side compression is selected.

The following command-line options control the generation of the backup and the invocation of the
program:

-c {fast|spread}
--checkpoint={fast|spread}

Sets checkpoint mode to fast (immediate) or spread (the default) (see Section 25.3.4).

-C
--create-slot

Specifies that the replication slot named by the --slot option should be created before starting the
backup. An error is raised if the slot already exists.

1908

pg_basebackup

-l label
--label=label

Sets the label for the backup. If none is specified, a default value of “pg_basebackup base backup”
will be used.

-n
--no-clean

By default, when pg_basebackup aborts with an error, it removes any directories it might have cre-
ated before discovering that it cannot finish the job (for example, the target directory and write-
ahead log directory). This option inhibits tidying-up and is thus useful for debugging.

Note that tablespace directories are not cleaned up either way.

-N
--no-sync

By default, pg_basebackup will wait for all files to be written safely to disk. This option causes
pg_basebackup to return without waiting, which is faster, but means that a subsequent operating
system crash can leave the base backup corrupt. Generally, this option is useful for testing but should
not be used when creating a production installation.

-P
--progress

Enables progress reporting. Turning this on will deliver an approximate progress report during the
backup. Since the database may change during the backup, this is only an approximation and may
not end at exactly 100%. In particular, when WAL log is included in the backup, the total amount of
data cannot be estimated in advance, and in this case the estimated target size will increase once
it passes the total estimate without WAL.

-r rate
--max-rate=rate

Sets the maximum transfer rate at which data is collected from the source server. This can be useful
to limit the impact of pg_basebackup on the server. Values are in kilobytes per second. Use a suffix
of M to indicate megabytes per second. A suffix of k is also accepted, and has no effect. Valid values
are between 32 kilobytes per second and 1024 megabytes per second.

This option always affects transfer of the data directory. Transfer of WAL files is only affected if the
collection method is fetch.

-S slotname
--slot=slotname

This option can only be used together with -X stream. It causes WAL streaming to use the specified
replication slot. If the base backup is intended to be used as a streaming-replication standby using a
replication slot, the standby should then use the same replication slot name as primary_slot_name.
This ensures that the primary server does not remove any necessary WAL data in the time between
the end of the base backup and the start of streaming replication on the new standby.

The specified replication slot has to exist unless the option -C is also used.

If this option is not specified and the server supports temporary replication slots (version 10 and
later), then a temporary replication slot is automatically used for WAL streaming.

--sync-method=method

When set to fsync, which is the default, pg_basebackup will recursively open and synchronize all
files in the backup directory. When the plain format is used, the search for files will follow symbolic
links for the WAL directory and each configured tablespace.

1909

pg_basebackup

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole
file system that contains the backup directory. When the plain format is used, pg_basebackup
will also synchronize the file systems that contain the WAL files and each tablespace. See recov-
ery_init_sync_method for information about the caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used.

-v
--verbose

Enables verbose mode. Will output some extra steps during startup and shutdown, as well as show
the exact file name that is currently being processed if progress reporting is also enabled.

--manifest-checksums=algorithm

Specifies the checksum algorithm that should be applied to each file included in the backup mani-
fest. Currently, the available algorithms are NONE, CRC32C, SHA224, SHA256, SHA384, and SHA512. The
default is CRC32C.

If NONE is selected, the backup manifest will not contain any checksums. Otherwise, it will contain
a checksum of each file in the backup using the specified algorithm. In addition, the manifest will
always contain a SHA256 checksum of its own contents. The SHA algorithms are significantly more
CPU-intensive than CRC32C, so selecting one of them may increase the time required to complete
the backup.

Using a SHA hash function provides a cryptographically secure digest of each file for users who
wish to verify that the backup has not been tampered with, while the CRC-32C algorithm provides
a checksum that is much faster to calculate; it is good at catching errors due to accidental changes
but is not resistant to malicious modifications. Note that, to be useful against an adversary who has
access to the backup, the backup manifest would need to be stored securely elsewhere or otherwise
verified not to have been modified since the backup was taken.

pg_verifybackup can be used to check the integrity of a backup against the backup manifest.

--manifest-force-encode

Forces all filenames in the backup manifest to be hex-encoded. If this option is not specified, only
non-UTF8 filenames are hex-encoded. This option is mostly intended to test that tools which read a
backup manifest file properly handle this case.

--no-estimate-size

Prevents the server from estimating the total amount of backup data that will be streamed, resulting
in the backup_total column in the pg_stat_progress_basebackup view always being NULL.

Without this option, the backup will start by enumerating the size of the entire database, and then go
back and send the actual contents. This may make the backup take slightly longer, and in particular
it will take longer before the first data is sent. This option is useful to avoid such estimation time
if it's too long.

This option is not allowed when using --progress.

--no-manifest

Disables generation of a backup manifest. If this option is not specified, the server will generate and
send a backup manifest which can be verified using pg_verifybackup. The manifest is a list of every
file present in the backup with the exception of any WAL files that may be included. It also stores the
size, last modification time, and an optional checksum for each file.

--no-slot

Prevents the creation of a temporary replication slot for the backup.

1910

pg_basebackup

By default, if log streaming is selected but no slot name is given with the -S option, then a temporary
replication slot is created (if supported by the source server).

The main purpose of this option is to allow taking a base backup when the server has no free repli-
cation slots. Using a replication slot is almost always preferred, because it prevents needed WAL
from being removed by the server during the backup.

--no-verify-checksums

Disables verification of checksums, if they are enabled on the server the base backup is taken from.

By default, checksums are verified and checksum failures will result in a non-zero exit status. How-
ever, the base backup will not be removed in such a case, as if the --no-clean option had been used.
Checksum verification failures will also be reported in the pg_stat_database view.

The following command-line options control the connection to the source server:

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any
conflicting command line options.

This option is called --dbname for consistency with other client applications, but because pg_base-
backup doesn't connect to any particular database in the cluster, any database name included in
the connection string will be ignored by the server. However, a database name supplied that way
overrides the default database name (replication) for purposes of looking up the replication con-
nection's password in ~/.pgpass. Similarly, middleware or proxies used in connecting to PostgreSQL
might utilize the name for purposes such as connection routing. The database name can also be used
by logical replication slot synchronization.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for a Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-s interval
--status-interval=interval

Specifies the number of seconds between status packets sent back to the source server. Smaller
values allow more accurate monitoring of backup progress from the server. A value of zero disables
periodic status updates completely, although an update will still be sent when requested by the
server, to avoid timeout-based disconnects. The default value is 10 seconds.

-U username
--username=username

Specifies the user name to connect as.

-w
--no-password

Prevents issuing a password prompt. If the server requires password authentication and a password
is not available by other means such as a .pgpass file, the connection attempt will fail. This option
can be useful in batch jobs and scripts where no user is present to enter a password.

1911

pg_basebackup

-W
--password

Forces pg_basebackup to prompt for a password before connecting to the source server.

This option is never essential, since pg_basebackup will automatically prompt for a password if the
server demands password authentication. However, pg_basebackup will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

Other options are also available:

-V
--version

Prints the pg_basebackup version and exits.

-?
--help

Shows help about pg_basebackup command line arguments, and exits.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
At the beginning of the backup, a checkpoint needs to be performed on the source server. This can take
some time (especially if the option --checkpoint=fast is not used), during which pg_basebackup will
appear to be idle.

The backup will include all files in the data directory and tablespaces, including the configuration files
and any additional files placed in the directory by third parties, except certain temporary files managed
by PostgreSQL and operating system files. But only regular files and directories are copied, except that
symbolic links used for tablespaces are preserved. Symbolic links pointing to certain directories known
to PostgreSQL are copied as empty directories. Other symbolic links and special device files are skipped.
See Section 54.4 for the precise details.

In plain format, tablespaces will be backed up to the same path they have on the source server, unless
the option --tablespace-mapping is used. Without this option, running a plain format base backup on
the same host as the server will not work if tablespaces are in use, because the backup would have to
be written to the same directory locations as the original tablespaces.

When tar format is used, it is the user's responsibility to unpack each tar file before starting a PostgreSQL
server that uses the data. If there are additional tablespaces, the tar files for them need to be unpacked
in the correct locations. In this case the symbolic links for those tablespaces will be created by the server
according to the contents of the tablespace_map file that is included in the base.tar file.

pg_basebackup works with servers of the same or older major version, down to 9.1. However, WAL
streaming mode (-X stream) only works with server version 9.3 and later, the tar format (--format=tar)
only works with server version 9.5 and later, and incremental backup (--incremental) only works with
server version 17 and later.

pg_basebackup will preserve group permissions for data files if group permissions are enabled on the
source cluster.

1912

pg_basebackup

Examples
To create a base backup of the server at mydbserver and store it in the local directory /usr/lo-
cal/pgsql/data:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

To create a backup of the local server with one compressed tar file for each tablespace, and store it in
the directory backup, showing a progress report while running:

$ pg_basebackup -D backup -Ft -z -P

To create a backup of a single-tablespace local database and compress this with bzip2:

$ pg_basebackup -D - -Ft -X fetch | bzip2 > backup.tar.bz2

(This command will fail if there are multiple tablespaces in the database.)

To create a backup of a local database where the tablespace in /opt/ts is relocated to ./backup/ts:

$ pg_basebackup -D backup/data -T /opt/ts=$(pwd)/backup/ts

To create a backup of the local server with one tar file for each tablespace compressed with gzip at level
9, stored in the directory backup:

$ pg_basebackup -D backup -Ft --compress=gzip:9

See Also
pg_dump, Section 27.4.6

1913

pgbench
pgbench — run a benchmark test on PostgreSQL

Synopsis
pgbench -i [option...] [dbname]

pgbench [option...] [dbname]

Description
pgbench is a simple program for running benchmark tests on PostgreSQL. It runs the same sequence of
SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the
average transaction rate (transactions per second). By default, pgbench tests a scenario that is loosely
based on TPC-B, involving five SELECT, UPDATE, and INSERT commands per transaction. However, it is
easy to test other cases by writing your own transaction script files.

Typical output from pgbench looks like:
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)
latency average = 11.013 ms
latency stddev = 7.351 ms
initial connection time = 45.758 ms
tps = 896.967014 (without initial connection time)

The first seven lines report some of the most important parameter settings. The sixth line reports the
maximum number of tries for transactions with serialization or deadlock errors (see Failures and Seri-
alization/Deadlock Retries for more information). The eighth line reports the number of transactions
completed and intended (the latter being just the product of number of clients and number of transac-
tions per client); these will be equal unless the run failed before completion or some SQL command(s)
failed. (In -T mode, only the actual number of transactions is printed.) The next line reports the number
of failed transactions due to serialization or deadlock errors (see Failures and Serialization/Deadlock
Retries for more information). The last line reports the number of transactions per second.

The default TPC-B-like transaction test requires specific tables to be set up beforehand. pgbench should
be invoked with the -i (initialize) option to create and populate these tables. (When you are testing a
custom script, you don't need this step, but will instead need to do whatever setup your test needs.)
Initialization looks like:
pgbench -i [other-options] dbname

where dbname is the name of the already-created database to test in. (You may also need -h, -p, and/or
-U options to specify how to connect to the database server.)

Caution
pgbench -i creates four tables pgbench_accounts, pgbench_branches, pgbench_history, and
pgbench_tellers, destroying any existing tables of these names. Be very careful to use another
database if you have tables having these names!

1914

pgbench

At the default “scale factor” of 1, the tables initially contain this many rows:

table # of rows

pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0

You can (and, for most purposes, probably should) increase the number of rows by using the -s (scale
factor) option. The -F (fillfactor) option might also be used at this point.

Once you have done the necessary setup, you can run your benchmark with a command that doesn't
include -i, that is

pgbench [options] dbname

In nearly all cases, you'll need some options to make a useful test. The most important options are -c
(number of clients), -t (number of transactions), -T (time limit), and -f (specify a custom script file).
See below for a full list.

Options
The following is divided into three subsections. Different options are used during database initialization
and while running benchmarks, but some options are useful in both cases.

Initialization Options
pgbench accepts the following command-line initialization arguments:

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to test in. If this is not specified, the environment variable PG-
DATABASE is used. If that is not set, the user name specified for the connection is used.

-i
--initialize

Required to invoke initialization mode.

-I init_steps
--init-steps=init_steps

Perform just a selected set of the normal initialization steps. init_steps specifies the initialization
steps to be performed, using one character per step. Each step is invoked in the specified order. The
default is dtgvp. The available steps are:

d (Drop)

Drop any existing pgbench tables.

t (create Tables)

Create the tables used by the standard pgbench scenario, namely pgbench_accounts, pg-
bench_branches, pgbench_history, and pgbench_tellers.

g or G (Generate data, client-side or server-side)

Generate data and load it into the standard tables, replacing any data already present.

With g (client-side data generation), data is generated in pgbench client and then sent to the serv-
er. This uses the client/server bandwidth extensively through a COPY. pgbench uses the FREEZE

1915

pgbench

option to load data into ordinary (non-partition) tables with version 14 or later of PostgreSQL to
speed up subsequent VACUUM. Using g causes logging to print one message every 100,000 rows
while generating data for all tables.

With G (server-side data generation), only small queries are sent from the pgbench client and then
data is actually generated in the server. No significant bandwidth is required for this variant, but
the server will do more work. Using G causes logging not to print any progress message while
generating data.

The default initialization behavior uses client-side data generation (equivalent to g).

v (Vacuum)

Invoke VACUUM on the standard tables.

p (create Primary keys)

Create primary key indexes on the standard tables.

f (create Foreign keys)

Create foreign key constraints between the standard tables. (Note that this step is not performed
by default.)

-F fillfactor
--fillfactor=fillfactor

Create the pgbench_accounts, pgbench_tellers and pgbench_branches tables with the given fill-
factor. Default is 100.

-n
--no-vacuum

Perform no vacuuming during initialization. (This option suppresses the v initialization step, even
if it was specified in -I.)

-q
--quiet

Switch logging to quiet mode, producing only one progress message per 5 seconds. The default
logging prints one message each 100,000 rows, which often outputs many lines per second (especially
on good hardware).

This setting has no effect if G is specified in -I.

-s scale_factor
--scale=scale_factor

Multiply the number of rows generated by the scale factor. For example, -s 100 will create
10,000,000 rows in the pgbench_accounts table. Default is 1. When the scale is 20,000 or larger, the
columns used to hold account identifiers (aid columns) will switch to using larger integers (bigint),
in order to be big enough to hold the range of account identifiers.

--foreign-keys

Create foreign key constraints between the standard tables. (This option adds the f step to the
initialization step sequence, if it is not already present.)

--index-tablespace=index_tablespace

Create indexes in the specified tablespace, rather than the default tablespace.

1916

pgbench

--partition-method=NAME

Create a partitioned pgbench_accounts table with NAME method. Expected values are range or hash.
This option requires that --partitions is set to non-zero. If unspecified, default is range.

--partitions=NUM

Create a partitioned pgbench_accounts table with NUM partitions of nearly equal size for the scaled
number of accounts. Default is 0, meaning no partitioning.

--tablespace=tablespace

Create tables in the specified tablespace, rather than the default tablespace.

--unlogged-tables

Create all tables as unlogged tables, rather than permanent tables.

Benchmarking Options
pgbench accepts the following command-line benchmarking arguments:

-b scriptname[@weight]
--builtin=scriptname[@weight]

Add the specified built-in script to the list of scripts to be executed. Available built-in scripts are:
tpcb-like, simple-update and select-only. Unambiguous prefixes of built-in names are accepted.
With the special name list, show the list of built-in scripts and exit immediately.

Optionally, write an integer weight after @ to adjust the probability of selecting this script versus
other ones. The default weight is 1. See below for details.

-c clients
--client=clients

Number of clients simulated, that is, number of concurrent database sessions. Default is 1.

-C
--connect

Establish a new connection for each transaction, rather than doing it just once per client session.
This is useful to measure the connection overhead.

-D varname=value
--define=varname=value

Define a variable for use by a custom script (see below). Multiple -D options are allowed.

-f filename[@weight]
--file=filename[@weight]

Add a transaction script read from filename to the list of scripts to be executed.

Optionally, write an integer weight after @ to adjust the probability of selecting this script versus
other ones. The default weight is 1. (To use a script file name that includes an @ character, append
a weight so that there is no ambiguity, for example filen@me@1.) See below for details.

-j threads
--jobs=threads

Number of worker threads within pgbench. Using more than one thread can be helpful on multi-CPU
machines. Clients are distributed as evenly as possible among available threads. Default is 1.

1917

pgbench

-l
--log

Write information about each transaction to a log file. See below for details.

-L limit
--latency-limit=limit

Transactions that last more than limit milliseconds are counted and reported separately, as late.

When throttling is used (--rate=...), transactions that lag behind schedule by more than limit ms,
and thus have no hope of meeting the latency limit, are not sent to the server at all. They are counted
and reported separately as skipped.

When the --max-tries option is used, a transaction which fails due to a serialization anomaly or
from a deadlock will not be retried if the total time of all its tries is greater than limit ms. To
limit only the time of tries and not their number, use --max-tries=0. By default, the option --max-
tries is set to 1 and transactions with serialization/deadlock errors are not retried. See Failures and
Serialization/Deadlock Retries for more information about retrying such transactions.

-M querymode
--protocol=querymode

Protocol to use for submitting queries to the server:
• simple: use simple query protocol.
• extended: use extended query protocol.
• prepared: use extended query protocol with prepared statements.
In the prepared mode, pgbench reuses the parse analysis result starting from the second query
iteration, so pgbench runs faster than in other modes.

The default is simple query protocol. (See Chapter 54 for more information.)

-n
--no-vacuum

Perform no vacuuming before running the test. This option is necessary if you are running a custom
test scenario that does not include the standard tables pgbench_accounts, pgbench_branches, pg-
bench_history, and pgbench_tellers.

-N
--skip-some-updates

Run built-in simple-update script. Shorthand for -b simple-update.

-P sec
--progress=sec

Show progress report every sec seconds. The report includes the time since the beginning of the
run, the TPS since the last report, and the transaction latency average, standard deviation, and the
number of failed transactions since the last report. Under throttling (-R), the latency is computed
with respect to the transaction scheduled start time, not the actual transaction beginning time, thus it
also includes the average schedule lag time. When --max-tries is used to enable transaction retries
after serialization/deadlock errors, the report includes the number of retried transactions and the
sum of all retries.

-r
--report-per-command

Report the following statistics for each command after the benchmark finishes: the average per-
statement latency (execution time from the perspective of the client), the number of failures, and the
number of retries after serialization or deadlock errors in this command. The report displays retry
statistics only if the --max-tries option is not equal to 1.

1918

pgbench

-R rate
--rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default).
The rate is given in transactions per second. If the targeted rate is above the maximum possible rate,
the rate limit won't impact the results.

The rate is targeted by starting transactions along a Poisson-distributed schedule time line. The ex-
pected start time schedule moves forward based on when the client first started, not when the previ-
ous transaction ended. That approach means that when transactions go past their original scheduled
end time, it is possible for later ones to catch up again.

When throttling is active, the transaction latency reported at the end of the run is calculated from the
scheduled start times, so it includes the time each transaction had to wait for the previous transaction
to finish. The wait time is called the schedule lag time, and its average and maximum are also reported
separately. The transaction latency with respect to the actual transaction start time, i.e., the time
spent executing the transaction in the database, can be computed by subtracting the schedule lag
time from the reported latency.

If --latency-limit is used together with --rate, a transaction can lag behind so much that it is
already over the latency limit when the previous transaction ends, because the latency is calculated
from the scheduled start time. Such transactions are not sent to the server, but are skipped altogether
and counted separately.

A high schedule lag time is an indication that the system cannot process transactions at the specified
rate, with the chosen number of clients and threads. When the average transaction execution time
is longer than the scheduled interval between each transaction, each successive transaction will fall
further behind, and the schedule lag time will keep increasing the longer the test run is. When that
happens, you will have to reduce the specified transaction rate.

-s scale_factor
--scale=scale_factor

Report the specified scale factor in pgbench's output. With the built-in tests, this is not necessary;
the correct scale factor will be detected by counting the number of rows in the pgbench_branches
table. However, when testing only custom benchmarks (-f option), the scale factor will be reported
as 1 unless this option is used.

-S
--select-only

Run built-in select-only script. Shorthand for -b select-only.

-t transactions
--transactions=transactions

Number of transactions each client runs. Default is 10.

-T seconds
--time=seconds

Run the test for this many seconds, rather than a fixed number of transactions per client. -t and -
T are mutually exclusive.

-v
--vacuum-all

Vacuum all four standard tables before running the test. With neither -n nor -v, pgbench will vacuum
the pgbench_tellers and pgbench_branches tables, and will truncate pgbench_history.

--aggregate-interval=seconds

Length of aggregation interval (in seconds). May be used only with -l option. With this option, the
log contains per-interval summary data, as described below.

1919

pgbench

--exit-on-abort

Exit immediately when any client is aborted due to some error. Without this option, even when a
client is aborted, other clients could continue their run as specified by -t or -T option, and pgbench
will print an incomplete results in this case.

Note that serialization failures or deadlock failures do not abort the client, so they are not affected
by this option. See Failures and Serialization/Deadlock Retries for more information.

--failures-detailed

Report failures in per-transaction and aggregation logs, as well as in the main and per-script reports,
grouped by the following types:

• serialization failures;

• deadlock failures;

See Failures and Serialization/Deadlock Retries for more information.

--log-prefix=prefix

Set the filename prefix for the log files created by --log. The default is pgbench_log.

--max-tries=number_of_tries

Enable retries for transactions with serialization/deadlock errors and set the maximum number of
these tries. This option can be combined with the --latency-limit option which limits the total
time of all transaction tries; moreover, you cannot use an unlimited number of tries (--max-tries=0)
without --latency-limit or --time. The default value is 1 and transactions with serialization/dead-
lock errors are not retried. See Failures and Serialization/Deadlock Retries for more information
about retrying such transactions.

--progress-timestamp

When showing progress (option -P), use a timestamp (Unix epoch) instead of the number of seconds
since the beginning of the run. The unit is in seconds, with millisecond precision after the dot. This
helps compare logs generated by various tools.

--random-seed=seed

Set random generator seed. Seeds the system random number generator, which then produces a
sequence of initial generator states, one for each thread. Values for seed may be: time (the default,
the seed is based on the current time), rand (use a strong random source, failing if none is available),
or an unsigned decimal integer value. The random generator is invoked explicitly from a pgbench
script (random... functions) or implicitly (for instance option --rate uses it to schedule transac-
tions). When explicitly set, the value used for seeding is shown on the terminal. Any value allowed for
seed may also be provided through the environment variable PGBENCH_RANDOM_SEED. To ensure that
the provided seed impacts all possible uses, put this option first or use the environment variable.

Setting the seed explicitly allows to reproduce a pgbench run exactly, as far as random numbers
are concerned. As the random state is managed per thread, this means the exact same pgbench
run for an identical invocation if there is one client per thread and there are no external or data
dependencies. From a statistical viewpoint reproducing runs exactly is a bad idea because it can
hide the performance variability or improve performance unduly, e.g., by hitting the same pages as
a previous run. However, it may also be of great help for debugging, for instance re-running a tricky
case which leads to an error. Use wisely.

--sampling-rate=rate

Sampling rate, used when writing data into the log, to reduce the amount of log generated. If this
option is given, only the specified fraction of transactions are logged. 1.0 means all transactions will
be logged, 0.05 means only 5% of the transactions will be logged.

1920

pgbench

Remember to take the sampling rate into account when processing the log file. For example, when
computing TPS values, you need to multiply the numbers accordingly (e.g., with 0.01 sample rate,
you'll only get 1/100 of the actual TPS).

--show-script=scriptname

Show the actual code of builtin script scriptname on stderr, and exit immediately.

--verbose-errors

Print messages about all errors and failures (errors without retrying) including which limit for retries
was exceeded and how far it was exceeded for the serialization/deadlock failures. (Note that in this
case the output can be significantly increased.) See Failures and Serialization/Deadlock Retries for
more information.

Common Options
pgbench also accepts the following common command-line arguments for connection parameters and
other common settings:

--debug

Print debugging output.

-h hostname
--host=hostname

The database server's host name

-p port
--port=port

The database server's port number

-U login
--username=login

The user name to connect as

-V
--version

Print the pgbench version and exit.

-?
--help

Show help about pgbench command line arguments, and exit.

Exit Status
A successful run will exit with status 0. Exit status 1 indicates static problems such as invalid com-
mand-line options or internal errors which are supposed to never occur. Early errors that occur when
starting benchmark such as initial connection failures also exit with status 1. Errors during the run such
as database errors or problems in the script will result in exit status 2. In the latter case, pgbench will
print partial results if --exit-on-abort option is not specified.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

1921

pgbench

This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes

What Is the “Transaction” Actually Performed in pgbench?
pgbench executes test scripts chosen randomly from a specified list. The scripts may include built-in
scripts specified with -b and user-provided scripts specified with -f. Each script may be given a relative
weight specified after an @ so as to change its selection probability. The default weight is 1. Scripts with
a weight of 0 are ignored.

The default built-in transaction script (also invoked with -b tpcb-like) issues seven commands per
transaction over randomly chosen aid, tid, bid and delta. The scenario is inspired by the TPC-B bench-
mark, but is not actually TPC-B, hence the name.

1. BEGIN;

2. UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;

3. SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

4. UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

5. UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

6. INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
(:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

7. END;

If you select the simple-update built-in (also -N), steps 4 and 5 aren't included in the transaction. This
will avoid update contention on these tables, but it makes the test case even less like TPC-B.

If you select the select-only built-in (also -S), only the SELECT is issued.

Custom Scripts
pgbench has support for running custom benchmark scenarios by replacing the default transaction script
(described above) with a transaction script read from a file (-f option). In this case a “transaction”
counts as one execution of a script file.

A script file contains one or more SQL commands terminated by semicolons. Empty lines and lines
beginning with -- are ignored. Script files can also contain “meta commands”, which are interpreted
by pgbench itself, as described below.

Note
Before PostgreSQL 9.6, SQL commands in script files were terminated by newlines, and so they
could not be continued across lines. Now a semicolon is required to separate consecutive SQL
commands (though an SQL command does not need one if it is followed by a meta command). If
you need to create a script file that works with both old and new versions of pgbench, be sure to
write each SQL command on a single line ending with a semicolon.

It is assumed that pgbench scripts do not contain incomplete blocks of SQL transactions. If at
runtime the client reaches the end of the script without completing the last transaction block, it
will be aborted.

1922

pgbench

There is a simple variable-substitution facility for script files. Variable names must consist of letters
(including non-Latin letters), digits, and underscores, with the first character not being a digit. Variables
can be set by the command-line -D option, explained above, or by the meta commands explained below.
In addition to any variables preset by -D command-line options, there are a few variables that are preset
automatically, listed in Table 301. A value specified for these variables using -D takes precedence over
the automatic presets. Once set, a variable's value can be inserted into an SQL command by writing
:variablename. When running more than one client session, each session has its own set of variables.
pgbench supports up to 255 variable uses in one statement.

Table 301. pgbench Automatic Variables

Variable Description
client_id unique number identifying the client session (starts from zero)
default_seed seed used in hash and pseudorandom permutation functions by de-

fault
random_seed random generator seed (unless overwritten with -D)
scale current scale factor

Script file meta commands begin with a backslash (\) and normally extend to the end of the line, although
they can be continued to additional lines by writing backslash-return. Arguments to a meta command
are separated by white space. These meta commands are supported:

\gset [prefix] \aset [prefix]

These commands may be used to end SQL queries, taking the place of the terminating semicolon (;).

When the \gset command is used, the preceding SQL query is expected to return one row, the
columns of which are stored into variables named after column names, and prefixed with prefix
if provided.

When the \aset command is used, all combined SQL queries (separated by \;) have their columns
stored into variables named after column names, and prefixed with prefix if provided. If a query
returns no row, no assignment is made and the variable can be tested for existence to detect this. If
a query returns more than one row, the last value is kept.

\gset and \aset cannot be used in pipeline mode, since the query results are not yet available by
the time the commands would need them.

The following example puts the final account balance from the first query into variable abalance,
and fills variables p_two and p_three with integers from the third query. The result of the second
query is discarded. The result of the two last combined queries are stored in variables four and five.

UPDATE pgbench_accounts
 SET abalance = abalance + :delta
 WHERE aid = :aid
 RETURNING abalance \gset
-- compound of two queries
SELECT 1 \;
SELECT 2 AS two, 3 AS three \gset p_
SELECT 4 AS four \; SELECT 5 AS five \aset

\if expression
\elif expression
\else
\endif

This group of commands implements nestable conditional blocks, similarly to psql's \if expression.
Conditional expressions are identical to those with \set, with non-zero values interpreted as true.

1923

pgbench

\set varname expression

Sets variable varname to a value calculated from expression. The expression may contain the NULL
constant, Boolean constants TRUE and FALSE, integer constants such as 5432, double constants such
as 3.14159, references to variables :variablename, operators with their usual SQL precedence and
associativity, function calls, SQL CASE generic conditional expressions and parentheses.

Functions and most operators return NULL on NULL input.

For conditional purposes, non zero numerical values are TRUE, zero numerical values and NULL are
FALSE.

Too large or small integer and double constants, as well as integer arithmetic operators (+, -, * and
/) raise errors on overflows.

When no final ELSE clause is provided to a CASE, the default value is NULL.

Examples:

\set ntellers 10 * :scale
\set aid (1021 * random(1, 100000 * :scale)) % \
 (100000 * :scale) + 1
\set divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END

\sleep number [us | ms | s]

Causes script execution to sleep for the specified duration in microseconds (us), milliseconds (ms)
or seconds (s). If the unit is omitted then seconds are the default. number can be either an integer
constant or a :variablename reference to a variable having an integer value.

Example:

\sleep 10 ms

\setshell varname command [argument ...]

Sets variable varname to the result of the shell command command with the given argument(s). The
command must return an integer value through its standard output.

command and each argument can be either a text constant or a :variablename reference to a variable.
If you want to use an argument starting with a colon, write an additional colon at the beginning of
argument.

Example:

\setshell variable_to_be_assigned command
 literal_argument :variable ::literal_starting_with_colon

\shell command [argument ...]

Same as \setshell, but the result of the command is discarded.

Example:

\shell command literal_argument :variable ::literal_starting_with_colon

\startpipeline
\syncpipeline
\endpipeline

This group of commands implements pipelining of SQL statements. A pipeline must begin with
a \startpipeline and end with an \endpipeline. In between there may be any number of
\syncpipeline commands, which sends a sync message without ending the ongoing pipeline and

1924

pgbench

flushing the send buffer. In pipeline mode, statements are sent to the server without waiting for the
results of previous statements. See Section 32.5 for more details. Pipeline mode requires the use of
extended query protocol.

Built-in Operators
The arithmetic, bitwise, comparison and logical operators listed in Table 302 are built into pgbench
and may be used in expressions appearing in \set. The operators are listed in increasing precedence
order. Except as noted, operators taking two numeric inputs will produce a double value if either input
is double, otherwise they produce an integer result.

Table 302. pgbench Operators

Operator
Description
Example(s)

boolean OR boolean → boolean
Logical OR
5 or 0 → TRUE

boolean AND boolean → boolean
Logical AND
3 and 0 → FALSE

NOT boolean → boolean
Logical NOT
not false → TRUE

boolean IS [NOT] (NULL|TRUE|FALSE) → boolean
Boolean value tests
1 is null → FALSE

value ISNULL|NOTNULL → boolean
Nullness tests
1 notnull → TRUE

number = number → boolean
Equal
5 = 4 → FALSE

number <> number → boolean
Not equal
5 <> 4 → TRUE

number != number → boolean
Not equal
5 != 5 → FALSE

number < number → boolean
Less than
5 < 4 → FALSE

number <= number → boolean
Less than or equal to
5 <= 4 → FALSE

number > number → boolean
Greater than
5 > 4 → TRUE

1925

pgbench

Operator
Description
Example(s)

number >= number → boolean
Greater than or equal to
5 >= 4 → TRUE

integer | integer → integer
Bitwise OR
1 | 2 → 3

integer # integer → integer
Bitwise XOR
1 # 3 → 2

integer & integer → integer
Bitwise AND
1 & 3 → 1

~ integer → integer
Bitwise NOT
~ 1 → -2

integer << integer → integer
Bitwise shift left
1 << 2 → 4

integer >> integer → integer
Bitwise shift right
8 >> 2 → 2

number + number → number
Addition
5 + 4 → 9

number - number → number
Subtraction
3 - 2.0 → 1.0

number * number → number
Multiplication
5 * 4 → 20

number / number → number
Division (truncates the result towards zero if both inputs are integers)
5 / 3 → 1

integer % integer → integer
Modulo (remainder)
3 % 2 → 1

- number → number
Negation
- 2.0 → -2.0

Built-In Functions
The functions listed in Table 303 are built into pgbench and may be used in expressions appearing in
\set.

1926

pgbench

Table 303. pgbench Functions

Function
Description
Example(s)

abs (number) → same type as input
Absolute value
abs(-17) → 17

debug (number) → same type as input
Prints the argument to stderr, and returns the argument.
debug(5432.1) → 5432.1

double (number) → double
Casts to double.
double(5432) → 5432.0

exp (number) → double
Exponential (e raised to the given power)
exp(1.0) → 2.718281828459045

greatest (number [, ...]) → double if any argument is double, else integer
Selects the largest value among the arguments.
greatest(5, 4, 3, 2) → 5

hash (value [, seed]) → integer
This is an alias for hash_murmur2 .
hash(10, 5432) → -5817877081768721676

hash_fnv1a (value [, seed]) → integer
Computes FNV-1a hash.
hash_fnv1a(10, 5432) → -7793829335365542153

hash_murmur2 (value [, seed]) → integer
Computes MurmurHash2 hash.
hash_murmur2(10, 5432) → -5817877081768721676

int (number) → integer
Casts to integer.
int(5.4 + 3.8) → 9

least (number [, ...]) → double if any argument is double, else integer
Selects the smallest value among the arguments.
least(5, 4, 3, 2.1) → 2.1

ln (number) → double
Natural logarithm
ln(2.718281828459045) → 1.0

mod (integer, integer) → integer
Modulo (remainder)
mod(54, 32) → 22

permute (i, size [, seed]) → integer
Permuted value of i, in the range [0, size) . This is the new position of i (modulo size) in
a pseudorandom permutation of the integers 0...size-1, parameterized by seed, see below.
permute(0, 4) → an integer between 0 and 3

pi () → double

1927

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.wikipedia.org/wiki/MurmurHash

pgbench

Function
Description
Example(s)
Approximate value of π
pi() → 3.14159265358979323846

pow (x, y) → double
power (x, y) → double

x raised to the power of y
pow(2.0, 10) → 1024.0

random (lb, ub) → integer
Computes a uniformly-distributed random integer in [lb, ub] .
random(1, 10) → an integer between 1 and 10

random_exponential (lb, ub, parameter) → integer
Computes an exponentially-distributed random integer in [lb, ub] , see below.
random_exponential(1, 10, 3.0) → an integer between 1 and 10

random_gaussian (lb, ub, parameter) → integer
Computes a Gaussian-distributed random integer in [lb, ub] , see below.
random_gaussian(1, 10, 2.5) → an integer between 1 and 10

random_zipfian (lb, ub, parameter) → integer
Computes a Zipfian-distributed random integer in [lb, ub] , see below.
random_zipfian(1, 10, 1.5) → an integer between 1 and 10

sqrt (number) → double
Square root
sqrt(2.0) → 1.414213562

The random function generates values using a uniform distribution, that is all the values are drawn
within the specified range with equal probability. The random_exponential, random_gaussian and ran-
dom_zipfian functions require an additional double parameter which determines the precise shape of
the distribution.

• For an exponential distribution, parameter controls the distribution by truncating a quickly-de-
creasing exponential distribution at parameter, and then projecting onto integers between the
bounds. To be precise, with

f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))

Then value i between min and max inclusive is drawn with probability: f(i) - f(i + 1).

Intuitively, the larger the parameter, the more frequently values close to min are accessed, and the
less frequently values close to max are accessed. The closer to 0 parameter is, the flatter (more uni-
form) the access distribution. A crude approximation of the distribution is that the most frequent
1% values in the range, close to min, are drawn parameter% of the time. The parameter value must
be strictly positive.

• For a Gaussian distribution, the interval is mapped onto a standard normal distribution (the classi-
cal bell-shaped Gaussian curve) truncated at -parameter on the left and +parameter on the right.
Values in the middle of the interval are more likely to be drawn. To be precise, if PHI(x) is the cu-
mulative distribution function of the standard normal distribution, with mean mu defined as (max +
min) / 2.0, with

f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
 (2.0 * PHI(parameter) - 1)

1928

pgbench

then value i between min and max inclusive is drawn with probability: f(i + 0.5) - f(i - 0.5).
Intuitively, the larger the parameter, the more frequently values close to the middle of the interval
are drawn, and the less frequently values close to the min and max bounds. About 67% of values are
drawn from the middle 1.0 / parameter, that is a relative 0.5 / parameter around the mean, and
95% in the middle 2.0 / parameter, that is a relative 1.0 / parameter around the mean; for in-
stance, if parameter is 4.0, 67% of values are drawn from the middle quarter (1.0 / 4.0) of the inter-
val (i.e., from 3.0 / 8.0 to 5.0 / 8.0) and 95% from the middle half (2.0 / 4.0) of the interval
(second and third quartiles). The minimum allowed parameter value is 2.0.

• random_zipfian generates a bounded Zipfian distribution. parameter defines how skewed the dis-
tribution is. The larger the parameter, the more frequently values closer to the beginning of the in-
terval are drawn. The distribution is such that, assuming the range starts from 1, the ratio of the
probability of drawing k versus drawing k+1 is ((k+1)/k)**parameter. For example, random_zip-
fian(1, ..., 2.5) produces the value 1 about (2/1)**2.5 = 5.66 times more frequently than 2,
which itself is produced (3/2)**2.5 = 2.76 times more frequently than 3, and so on.

pgbench's implementation is based on "Non-Uniform Random Variate Generation", Luc Devroye, p.
550-551, Springer 1986. Due to limitations of that algorithm, the parameter value is restricted to
the range [1.001, 1000].

Note
When designing a benchmark which selects rows non-uniformly, be aware that the rows chosen
may be correlated with other data such as IDs from a sequence or the physical row ordering, which
may skew performance measurements.

To avoid this, you may wish to use the permute function, or some other additional step with similar
effect, to shuffle the selected rows and remove such correlations.

Hash functions hash, hash_murmur2 and hash_fnv1a accept an input value and an optional seed para-
meter. In case the seed isn't provided the value of :default_seed is used, which is initialized randomly
unless set by the command-line -D option.

permute accepts an input value, a size, and an optional seed parameter. It generates a pseudorandom
permutation of integers in the range [0, size), and returns the index of the input value in the permuted
values. The permutation chosen is parameterized by the seed, which defaults to :default_seed, if not
specified. Unlike the hash functions, permute ensures that there are no collisions or holes in the output
values. Input values outside the interval are interpreted modulo the size. The function raises an error if
the size is not positive. permute can be used to scatter the distribution of non-uniform random functions
such as random_zipfian or random_exponential so that values drawn more often are not trivially cor-
related. For instance, the following pgbench script simulates a possible real world workload typical for
social media and blogging platforms where a few accounts generate excessive load:
\set size 1000000
\set r random_zipfian(1, :size, 1.07)
\set k 1 + permute(:r, :size)

In some cases several distinct distributions are needed which don't correlate with each other and this
is when the optional seed parameter comes in handy:
\set k1 1 + permute(:r, :size, :default_seed + 123)
\set k2 1 + permute(:r, :size, :default_seed + 321)

A similar behavior can also be approximated with hash:
\set size 1000000
\set r random_zipfian(1, 100 * :size, 1.07)
\set k 1 + abs(hash(:r)) % :size

However, since hash generates collisions, some values will not be reachable and others will be more
frequent than expected from the original distribution.

1929

pgbench

As an example, the full definition of the built-in TPC-B-like transaction is:

\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000)
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
 (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

This script allows each iteration of the transaction to reference different, randomly-chosen rows. (This
example also shows why it's important for each client session to have its own variables — otherwise
they'd not be independently touching different rows.)

Per-Transaction Logging
With the -l option (but without the --aggregate-interval option), pgbench writes information about
each transaction to a log file. The log file will be named prefix.nnn, where prefix defaults to pg-
bench_log, and nnn is the PID of the pgbench process. The prefix can be changed by using the --log-
prefix option. If the -j option is 2 or higher, so that there are multiple worker threads, each will have its
own log file. The first worker will use the same name for its log file as in the standard single worker case.
The additional log files for the other workers will be named prefix.nnn.mmm, where mmm is a sequential
number for each worker starting with 1.

Each line in a log file describes one transaction. It contains the following space-separated fields:

client_id

identifies the client session that ran the transaction

transaction_no

counts how many transactions have been run by that session

time

transaction's elapsed time, in microseconds

script_no

identifies the script file that was used for the transaction (useful when multiple scripts are specified
with -f or -b)

time_epoch

transaction's completion time, as a Unix-epoch time stamp

time_us

fractional-second part of transaction's completion time, in microseconds

schedule_lag

transaction start delay, that is the difference between the transaction's scheduled start time and the
time it actually started, in microseconds (present only if --rate is specified)

retries

count of retries after serialization or deadlock errors during the transaction (present only if --max-
tries is not equal to one)

1930

pgbench

When both --rate and --latency-limit are used, the time for a skipped transaction will be reported
as skipped. If the transaction ends with a failure, its time will be reported as failed. If you use the
--failures-detailed option, the time of the failed transaction will be reported as serialization or
deadlock depending on the type of failure (see Failures and Serialization/Deadlock Retries for more
information).

Here is a snippet of a log file generated in a single-client run:
0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608
0 202 2038 0 1175850569 2663

Another example with --rate=100 and --latency-limit=5 (note the additional schedule_lag column):
0 81 4621 0 1412881037 912698 3005
0 82 6173 0 1412881037 914578 4304
0 83 skipped 0 1412881037 914578 5217
0 83 skipped 0 1412881037 914578 5099
0 83 4722 0 1412881037 916203 3108
0 84 4142 0 1412881037 918023 2333
0 85 2465 0 1412881037 919759 740

In this example, transaction 82 was late, because its latency (6.173 ms) was over the 5 ms limit. The
next two transactions were skipped, because they were already late before they were even started.

The following example shows a snippet of a log file with failures and retries, with the maximum number
of tries set to 10 (note the additional retries column):
3 0 47423 0 1499414498 34501 3
3 1 8333 0 1499414498 42848 0
3 2 8358 0 1499414498 51219 0
4 0 72345 0 1499414498 59433 6
1 3 41718 0 1499414498 67879 4
1 4 8416 0 1499414498 76311 0
3 3 33235 0 1499414498 84469 3
0 0 failed 0 1499414498 84905 9
2 0 failed 0 1499414498 86248 9
3 4 8307 0 1499414498 92788 0

If the --failures-detailed option is used, the type of failure is reported in the time like this:
3 0 47423 0 1499414498 34501 3
3 1 8333 0 1499414498 42848 0
3 2 8358 0 1499414498 51219 0
4 0 72345 0 1499414498 59433 6
1 3 41718 0 1499414498 67879 4
1 4 8416 0 1499414498 76311 0
3 3 33235 0 1499414498 84469 3
0 0 serialization 0 1499414498 84905 9
2 0 serialization 0 1499414498 86248 9
3 4 8307 0 1499414498 92788 0

When running a long test on hardware that can handle a lot of transactions, the log files can become
very large. The --sampling-rate option can be used to log only a random sample of transactions.

Aggregated Logging
With the --aggregate-interval option, a different format is used for the log files. Each log line de-
scribes one aggregation interval. It contains the following space-separated fields:
interval_start

start time of the interval, as a Unix-epoch time stamp

1931

pgbench

num_transactions

number of transactions within the interval

sum_latency

sum of transaction latencies

sum_latency_2

sum of squares of transaction latencies

min_latency

minimum transaction latency

max_latency

maximum transaction latency

sum_lag

sum of transaction start delays (zero unless --rate is specified)

sum_lag_2

sum of squares of transaction start delays (zero unless --rate is specified)

min_lag

minimum transaction start delay (zero unless --rate is specified)

max_lag

maximum transaction start delay (zero unless --rate is specified)

skipped

number of transactions skipped because they would have started too late (zero unless --rate and
--latency-limit are specified)

retried

number of retried transactions (zero unless --max-tries is not equal to one)

retries

number of retries after serialization or deadlock errors (zero unless --max-tries is not equal to one)

serialization_failures

number of transactions that got a serialization error and were not retried afterwards (zero unless
--failures-detailed is specified)

deadlock_failures

number of transactions that got a deadlock error and were not retried afterwards (zero unless --
failures-detailed is specified)

Here is some example output generated with this option:
pgbench --aggregate-interval=10 --time=20 --client=10 --log --rate=1000 --latency-
limit=10 --failures-detailed --max-tries=10 test

1650260552 5178 26171317 177284491527 1136 44462 2647617 7321113867 0 9866 64 7564
 28340 4148 0
1650260562 4808 25573984 220121792172 1171 62083 3037380 9666800914 0 9998 598 7392
 26621 4527 0

1932

pgbench

Notice that while the plain (unaggregated) log format shows which script was used for each transaction,
the aggregated format does not. Therefore if you need per-script data, you need to aggregate the data
on your own.

Per-Statement Report
With the -r option, pgbench collects the following statistics for each statement:
• latency — elapsed transaction time for each statement. pgbench reports an average value of all

successful runs of the statement.
• The number of failures in this statement. See Failures and Serialization/Deadlock Retries for more

information.
• The number of retries after a serialization or a deadlock error in this statement. See Failures and

Serialization/Deadlock Retries for more information.

The report displays retry statistics only if the --max-tries option is not equal to 1.

All values are computed for each statement executed by every client and are reported after the bench-
mark has finished.

For the default script, the output will look similar to this:

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)
number of transactions above the 50.0 ms latency limit: 1311/10000 (13.110 %)
latency average = 28.488 ms
latency stddev = 21.009 ms
initial connection time = 69.068 ms
tps = 346.224794 (without initial connection time)
statement latencies in milliseconds and failures:
 0.012 0 \set aid random(1, 100000 * :scale)
 0.002 0 \set bid random(1, 1 * :scale)
 0.002 0 \set tid random(1, 10 * :scale)
 0.002 0 \set delta random(-5000, 5000)
 0.319 0 BEGIN;
 0.834 0 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
 0.641 0 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
 11.126 0 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
 12.961 0 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
 0.634 0 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
 (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
 1.957 0 END;

Another example of output for the default script using serializable default transaction isolation level
(PGOPTIONS='-c default_transaction_isolation=serializable' pgbench ...):

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1

1933

pgbench

maximum number of tries: 10
number of transactions per client: 1000
number of transactions actually processed: 6317/10000
number of failed transactions: 3683 (36.830%)
number of transactions retried: 7667 (76.670%)
total number of retries: 45339
number of transactions above the 50.0 ms latency limit: 106/6317 (1.678 %)
latency average = 17.016 ms
latency stddev = 13.283 ms
initial connection time = 45.017 ms
tps = 186.792667 (without initial connection time)
statement latencies in milliseconds, failures and retries:
 0.006 0 0 \set aid random(1, 100000 * :scale)
 0.001 0 0 \set bid random(1, 1 * :scale)
 0.001 0 0 \set tid random(1, 10 * :scale)
 0.001 0 0 \set delta random(-5000, 5000)
 0.385 0 0 BEGIN;
 0.773 0 1 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE
 aid = :aid;
 0.624 0 0 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
 1.098 320 3762 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid
 = :tid;
 0.582 3363 41576 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE
 bid = :bid;
 0.465 0 0 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
 (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
 1.933 0 0 END;

If multiple script files are specified, all statistics are reported separately for each script file.

Note that collecting the additional timing information needed for per-statement latency computation
adds some overhead. This will slow average execution speed and lower the computed TPS. The amount
of slowdown varies significantly depending on platform and hardware. Comparing average TPS values
with and without latency reporting enabled is a good way to measure if the timing overhead is significant.

Failures and Serialization/Deadlock Retries
When executing pgbench, there are three main types of errors:

• Errors of the main program. They are the most serious and always result in an immediate exit from
pgbench with the corresponding error message. They include:

• errors at the beginning of pgbench (e.g. an invalid option value);

• errors in the initialization mode (e.g. the query to create tables for built-in scripts fails);

• errors before starting threads (e.g. could not connect to the database server, syntax error in the
meta command, thread creation failure);

• internal pgbench errors (which are supposed to never occur...).

• Errors when the thread manages its clients (e.g. the client could not start a connection to the data-
base server / the socket for connecting the client to the database server has become invalid). In
such cases all clients of this thread stop while other threads continue to work. However, --ex-
it-on-abort is specified, all of the threads stop immediately in this case.

• Direct client errors. They lead to immediate exit from pgbench with the corresponding error mes-
sage in the case of an internal pgbench error (which are supposed to never occur...) or when --ex-
it-on-abort is specified. Otherwise in the worst case they only lead to the abortion of the failed
client while other clients continue their run (but some client errors are handled without an abor-
tion of the client and reported separately, see below). Later in this section it is assumed that the
discussed errors are only the direct client errors and they are not internal pgbench errors.

1934

pgbench

A client's run is aborted in case of a serious error; for example, the connection with the database server
was lost or the end of script was reached without completing the last transaction. In addition, if exe-
cution of an SQL or meta command fails for reasons other than serialization or deadlock errors, the
client is aborted. Otherwise, if an SQL command fails with serialization or deadlock errors, the client
is not aborted. In such cases, the current transaction is rolled back, which also includes setting the
client variables as they were before the run of this transaction (it is assumed that one transaction script
contains only one transaction; see What Is the "Transaction" Actually Performed in pgbench? for more
information). Transactions with serialization or deadlock errors are repeated after rollbacks until they
complete successfully or reach the maximum number of tries (specified by the --max-tries option) / the
maximum time of retries (specified by the --latency-limit option) / the end of benchmark (specified
by the --time option). If the last trial run fails, this transaction will be reported as failed but the client
is not aborted and continues to work.

Note
Without specifying the --max-tries option, a transaction will never be retried after a serialization
or deadlock error because its default value is 1. Use an unlimited number of tries (--max-tries=0)
and the --latency-limit option to limit only the maximum time of tries. You can also use the --
time option to limit the benchmark duration under an unlimited number of tries.

Be careful when repeating scripts that contain multiple transactions: the script is always retried
completely, so successful transactions can be performed several times.

Be careful when repeating transactions with shell commands. Unlike the results of SQL commands,
the results of shell commands are not rolled back, except for the variable value of the \setshell
command.

The latency of a successful transaction includes the entire time of transaction execution with rollbacks
and retries. The latency is measured only for successful transactions and commands but not for failed
transactions or commands.

The main report contains the number of failed transactions. If the --max-tries option is not equal to
1, the main report also contains statistics related to retries: the total number of retried transactions
and total number of retries. The per-script report inherits all these fields from the main report. The per-
statement report displays retry statistics only if the --max-tries option is not equal to 1.

If you want to group failures by basic types in per-transaction and aggregation logs, as well as in the
main and per-script reports, use the --failures-detailed option. If you also want to distinguish all
errors and failures (errors without retrying) by type including which limit for retries was exceeded and
how much it was exceeded by for the serialization/deadlock failures, use the --verbose-errors option.

Table Access Methods
You may specify the Table Access Method for the pgbench tables. The environment variable PGOPTIONS
specifies database configuration options that are passed to PostgreSQL via the command line (See Sec-
tion 19.1.4). For example, a hypothetical default Table Access Method for the tables that pgbench cre-
ates called wuzza can be specified with:

PGOPTIONS='-c default_table_access_method=wuzza'

Good Practices
It is very easy to use pgbench to produce completely meaningless numbers. Here are some guidelines
to help you get useful results.

In the first place, never believe any test that runs for only a few seconds. Use the -t or -T option to
make the run last at least a few minutes, so as to average out noise. In some cases you could need hours
to get numbers that are reproducible. It's a good idea to try the test run a few times, to find out if your
numbers are reproducible or not.

1935

pgbench

For the default TPC-B-like test scenario, the initialization scale factor (-s) should be at least as large as
the largest number of clients you intend to test (-c); else you'll mostly be measuring update contention.
There are only -s rows in the pgbench_branches table, and every transaction wants to update one of
them, so -c values in excess of -s will undoubtedly result in lots of transactions blocked waiting for
other transactions.

The default test scenario is also quite sensitive to how long it's been since the tables were initialized:
accumulation of dead rows and dead space in the tables changes the results. To understand the results
you must keep track of the total number of updates and when vacuuming happens. If autovacuum is
enabled it can result in unpredictable changes in measured performance.

A limitation of pgbench is that it can itself become the bottleneck when trying to test a large number
of client sessions. This can be alleviated by running pgbench on a different machine from the database
server, although low network latency will be essential. It might even be useful to run several pgbench
instances concurrently, on several client machines, against the same database server.

Security
If untrusted users have access to a database that has not adopted a secure schema usage pattern, do not
run pgbench in that database. pgbench uses unqualified names and does not manipulate the search path.

1936

pg_combinebackup
pg_combinebackup — reconstruct a full backup from an incremental backup and dependent backups

Synopsis
pg_combinebackup [option...] [backup_directory...]

Description
pg_combinebackup is used to reconstruct a synthetic full backup from an incremental backup and the
earlier backups upon which it depends.

Specify all of the required backups on the command line from oldest to newest. That is, the first backup
directory should be the path to the full backup, and the last should be the path to the final incremen-
tal backup that you wish to restore. The reconstructed backup will be written to the output directory
specified by the -o option.

pg_combinebackup will attempt to verify that the backups you specify form a legal backup chain from
which a correct full backup can be reconstructed. However, it is not designed to help you keep track of
which backups depend on which other backups. If you remove one or more of the previous backups upon
which your incremental backup relies, you will not be able to restore it. Moreover, pg_combinebackup
only attempts to verify that the backups have the correct relationship to each other, not that each indi-
vidual backup is intact; for that, use pg_verifybackup.

Since the output of pg_combinebackup is a synthetic full backup, it can be used as an input to a future
invocation of pg_combinebackup. The synthetic full backup would be specified on the command line in
lieu of the chain of backups from which it was reconstructed.

Options
-d
--debug

Print lots of debug logging output on stderr.

-k
--link

Use hard links instead of copying files to the synthetic backup. Reconstruction of the synthetic backup
might be faster (no file copying) and use less disk space, but care must be taken when using the
output directory, because any modifications to that directory (for example, starting the server) can
also affect the input directories. Likewise, changes to the input directories (for example, starting the
server on the full backup) could affect the output directory. Thus, this option is best used when the
input directories are only copies that will be removed after pg_combinebackup has completed.

Requires that the input backups and the output directory are in the same file system.

If a backup manifest is not available or does not contain checksum of the right type, hard links will
still be created, but the file will be also read block-by-block for the checksum calculation.

-n
--dry-run

The -n/--dry-run option instructs pg_combinebackup to figure out what would be done without
actually creating the target directory or any output files. It is particularly useful in combination with
--debug.

1937

pg_combinebackup

-N
--no-sync

By default, pg_combinebackup will wait for all files to be written safely to disk. This option causes
pg_combinebackup to return without waiting, which is faster, but means that a subsequent operating
system crash can leave the output backup corrupt. Generally, this option is useful for testing but
should not be used when creating a production installation.

-o outputdir
--output=outputdir

Specifies the output directory to which the synthetic full backup should be written. Currently, this
argument is required.

-T olddir=newdir
--tablespace-mapping=olddir=newdir

Relocates the tablespace in directory olddir to newdir during the backup. olddir is the absolute
path of the tablespace as it exists in the final backup specified on the command line, and newdir
is the absolute path to use for the tablespace in the reconstructed backup. If either path needs to
contain an equal sign (=), precede that with a backslash. This option can be specified multiple times
for multiple tablespaces.

--clone

Use efficient file cloning (also known as “reflinks” on some systems) instead of copying files to the
new data directory, which can result in near-instantaneous copying of the data files.

If a backup manifest is not available or does not contain checksum of the right type, file cloning will
be used to copy the file, but the file will be also read block-by-block for the checksum calculation.

File cloning is only supported on some operating systems and file systems. If it is selected but not
supported, the pg_combinebackup run will error. At present, it is supported on Linux (kernel 4.5 or
later) with Btrfs and XFS (on file systems created with reflink support), and on macOS with APFS.

--copy

Perform regular file copy. This is the default. (See also --copy-file-range, --clone, and -k/--link.)

--copy-file-range

Use the copy_file_range system call for efficient copying. On some file systems this gives results
similar to --clone, sharing physical disk blocks, while on others it may still copy blocks, but do so
via an optimized path. At present, it is supported on Linux and FreeBSD.

If a backup manifest is not available or does not contain checksum of the right type, copy_file_range
will be used to copy the file, but the file will be also read block-by-block for the checksum calculation.

--manifest-checksums=algorithm

Like pg_basebackup, pg_combinebackup writes a backup manifest in the output directory. This op-
tion specifies the checksum algorithm that should be applied to each file included in the backup
manifest. Currently, the available algorithms are NONE, CRC32C, SHA224, SHA256, SHA384, and SHA512.
The default is CRC32C.

--no-manifest

Disables generation of a backup manifest. If this option is not specified, a backup manifest for the
reconstructed backup will be written to the output directory.

--sync-method=method

When set to fsync, which is the default, pg_combinebackup will recursively open and synchronize all
files in the backup directory. When the plain format is used, the search for files will follow symbolic
links for the WAL directory and each configured tablespace.

1938

pg_combinebackup

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole
file system that contains the backup directory. When the plain format is used, pg_combinebackup
will also synchronize the file systems that contain the WAL files and each tablespace. See recov-
ery_init_sync_method for information about the caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used.

-V
--version

Prints the pg_combinebackup version and exits.

-?
--help

Shows help about pg_combinebackup command line arguments, and exits.

Limitations
pg_combinebackup does not recompute page checksums when writing the output directory. Therefore,
if any of the backups used for reconstruction were taken with checksums disabled, but the final backup
was taken with checksums enabled, the resulting directory may contain pages with invalid checksums.

To avoid this problem, taking a new full backup after changing the checksum state of the cluster using
pg_checksums is recommended. Otherwise, you can disable and then optionally reenable checksums on
the directory produced by pg_combinebackup in order to correct the problem.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

See Also
pg_basebackup

1939

pg_config
pg_config — retrieve information about the installed version of PostgreSQL

Synopsis
pg_config [option...]

Description
The pg_config utility prints configuration parameters of the currently installed version of PostgreSQL.
It is intended, for example, to be used by software packages that want to interface to PostgreSQL to
facilitate finding the required header files and libraries.

Options
To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is nor-
mally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--htmldir

Print the location of HTML documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them. (Other
architecture-dependent data files might also be installed in this directory.)

--localedir

Print the location of locale support files. (This will be an empty string if locale support was not
configured when PostgreSQL was built.)

--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

1940

pg_config

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to the configure script when PostgreSQL was configured for build-
ing. This can be used to reproduce the identical configuration, or to find out with what options a
binary package was built. (Note however that binary packages often contain vendor-specific custom
patches.) See also the examples below.

--cc

Print the value of the CC variable that was used for building PostgreSQL. This shows the C compiler
used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building PostgreSQL. This shows C com-
piler switches needed at preprocessing time (typically, -I switches).

--cflags

Print the value of the CFLAGS variable that was used for building PostgreSQL. This shows C compiler
switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building PostgreSQL. This shows extra
C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building PostgreSQL. This shows linker
switches.

--ldflags_ex

Print the value of the LDFLAGS_EX variable that was used for building PostgreSQL. This shows linker
switches used for building executables only.

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building PostgreSQL. This shows linker
switches used for building shared libraries only.

--libs

Print the value of the LIBS variable that was used for building PostgreSQL. This normally contains
-l switches for external libraries linked into PostgreSQL.

--version

Print the version of PostgreSQL.

-?
--help

Show help about pg_config command line arguments, and exit.

If more than one option is given, the information is printed in that order, one item per line. If no options
are given, all available information is printed, with labels.

1941

pg_config

Notes
The options --docdir, --pkgincludedir, --localedir, --mandir, --sharedir, --sysconfdir, --cc, --
cppflags, --cflags, --cflags_sl, --ldflags, --ldflags_sl, and --libs were added in PostgreSQL
8.1. The option --htmldir was added in PostgreSQL 8.4. The option --ldflags_ex was added in Post-
greSQL 9.0.

Example
To reproduce the build configuration of the current PostgreSQL installation, run the following command:

eval ./configure `pg_config --configure`

The output of pg_config --configure contains shell quotation marks so arguments with spaces are
represented correctly. Therefore, using eval is required for proper results.

1942

pg_dump
pg_dump — export a PostgreSQL database as an SQL script or to other formats

Synopsis
pg_dump [connection-option...] [option...] [dbname]

Description
pg_dump is a utility for exporting a PostgreSQL database. It makes consistent exports even if the data-
base is being used concurrently. pg_dump does not block other users accessing the database (readers
or writers). Note, however, that except in simple cases, pg_dump is generally not the right choice for
taking regular backups of production databases. See Chapter 25 for further discussion.

pg_dump only dumps a single database. To export an entire cluster, or to export global objects that are
common to all databases in a cluster (such as roles and tablespaces), use pg_dumpall.

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the
SQL commands required to reconstruct the database to the state it was in at the time it was saved. To
restore from such a script, feed it to psql. Script files can be used to reconstruct the database even on
other machines and other architectures; with some modifications, even on other SQL database products.

The alternative archive file formats must be used with pg_restore to rebuild the database. They allow
pg_restore to be selective about what is restored, or even to reorder the items prior to being restored.
The archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a flexi-
ble archival and transfer mechanism. pg_dump can be used to export an entire database, then pg_restore
can be used to examine the archive and/or select which parts of the database are to be restored. The
most flexible output file formats are the “custom” format (-Fc) and the “directory” format (-Fd). They
allow for selection and reordering of all archived items, support parallel restoration, and are compressed
by default. The “directory” format is the only format that supports parallel dumps.

While running pg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

Warning
Restoring a dump causes the destination to execute arbitrary code of the source superusers'
choice. Partial dumps and partial restores do not limit that. If the source superusers are not trust-
ed, the dumped SQL statements must be inspected before restoring. Non-plain-text dumps can be
inspected by using pg_restore's --file option. Note that the client running the dump and restore
need not trust the source or destination superusers.

Options
The following command-line options control the content and format of the output.
dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-a
--data-only

Dump only the data, not the schema (data definitions) or statistics. Table data, large objects, and
sequence values are dumped.

1943

pg_dump

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-b
--large-objects
--blobs (deprecated)

Include large objects in the dump. This is the default behavior except when --schema, --table, --
schema-only, --statistics-only, or --no-data is specified. The -b switch is therefore only useful
to add large objects to dumps where a specific schema or table has been requested. Note that large
objects are considered data and therefore will be included when --data-only is used, but not when
--schema-only or --statistics-only is.

-B
--no-large-objects
--no-blobs (deprecated)

Exclude large objects in the dump.

When both -b and -B are given, the behavior is to output large objects, when data is being dumped,
see the -b documentation.

-c
--clean

Output commands to DROP all the dumped database objects prior to outputting the commands for
creating them. This option is useful when the restore is to overwrite an existing database. If any of
the objects do not exist in the destination database, ignorable error messages will be reported during
restore, unless --if-exists is also specified.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

-C
--create

Begin the output with a command to create the database itself and reconnect to the created database.
(With a script of this form, it doesn't matter which database in the destination installation you connect
to before running the script.) If --clean is also specified, the script drops and recreates the target
database before reconnecting to it.

With --create, the output also includes the database's comment if any, and any configuration vari-
able settings that are specific to this database, that is, any ALTER DATABASE ... SET ... and ALTER
ROLE ... IN DATABASE ... SET ... commands that mention this database. Access privileges for
the database itself are also dumped, unless --no-acl is specified.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

-e pattern
--extension=pattern

Dump only extensions matching pattern. When this option is not specified, all non-system extensions
in the target database will be dumped. Multiple extensions can be selected by writing multiple -e
switches. The pattern parameter is interpreted as a pattern according to the same rules used by
psql's \d commands (see Patterns), so multiple extensions can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent
the shell from expanding the wildcards.

Any configuration relation registered by pg_extension_config_dump is included in the dump if its
extension is specified by --extension.

1944

pg_dump

Note
When -e is specified, pg_dump makes no attempt to dump any other database objects that the
selected extension(s) might depend upon. Therefore, there is no guarantee that the results of
a specific-extension dump can be successfully restored by themselves into a clean database.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the
database encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment
variable to the desired dump encoding.) The supported encodings are described in Section 23.3.1.

-f file
--file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in
which case the standard output is used. It must be given for the directory output format however,
where it specifies the target directory instead of a file. In this case the directory is created by pg_dump
and must not exist before.

-F format
--format=format

Selects the format of the output. format can be one of the following:
p
plain

Output a plain-text SQL script file (the default).

c
custom

Output a custom-format archive suitable for input into pg_restore. Together with the directory
output format, this is the most flexible output format in that it allows manual selection and re-
ordering of archived items during restore. This format is also compressed by default.

d
directory

Output a directory-format archive suitable for input into pg_restore. This will create a directory
with one file for each table and large object being dumped, plus a so-called Table of Contents file
describing the dumped objects in a machine-readable format that pg_restore can read. A direc-
tory format archive can be manipulated with standard Unix tools; for example, files in an uncom-
pressed archive can be compressed with the gzip, lz4, or zstd tools. This format is compressed
by default using gzip and also supports parallel dumps.

t
tar

Output a tar-format archive suitable for input into pg_restore. The tar format is compatible with
the directory format: extracting a tar-format archive produces a valid directory-format archive.
However, the tar format does not support compression. Also, when using tar format the relative
order of table data items cannot be changed during restore.

-j njobs
--jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option may reduce the time
needed to perform the dump but it also increases the load on the database server. You can only use
this option with the directory output format because this is the only output format where multiple
processes can write their data at the same time.

1945

pg_dump

pg_dump will open njobs + 1 connections to the database, so make sure your max_connections
setting is high enough to accommodate all connections.

Requesting exclusive locks on database objects while running a parallel dump could cause the dump
to fail. The reason is that the pg_dump leader process requests shared locks (ACCESS SHARE) on
the objects that the worker processes are going to dump later in order to make sure that nobody
deletes them and makes them go away while the dump is running. If another client then requests an
exclusive lock on a table, that lock will not be granted but will be queued waiting for the shared lock
of the leader process to be released. Consequently any other access to the table will not be granted
either and will queue after the exclusive lock request. This includes the worker process trying to
dump the table. Without any precautions this would be a classic deadlock situation. To detect this
conflict, the pg_dump worker process requests another shared lock using the NOWAIT option. If the
worker process is not granted this shared lock, somebody else must have requested an exclusive
lock in the meantime and there is no way to continue with the dump, so pg_dump has no choice but
to abort the dump.

To perform a parallel dump, the database server needs to support synchronized snapshots, a feature
that was introduced in PostgreSQL 9.2 for primary servers and 10 for standbys. With this feature,
database clients can ensure they see the same data set even though they use different connections.
pg_dump -j uses multiple database connections; it connects to the database once with the leader
process and once again for each worker job. Without the synchronized snapshot feature, the different
worker jobs wouldn't be guaranteed to see the same data in each connection, which could lead to
an inconsistent backup.

-n pattern
--schema=pattern

Dump only schemas matching pattern; this selects both the schema itself, and all its contained
objects. When this option is not specified, all non-system schemas in the target database will be
dumped. Multiple schemas can be selected by writing multiple -n switches. The pattern parameter
is interpreted as a pattern according to the same rules used by psql's \d commands (see Patterns),
so multiple schemas can also be selected by writing wildcard characters in the pattern. When using
wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the wildcards;
see Examples below.

Note
When -n is specified, pg_dump makes no attempt to dump any other database objects that the
selected schema(s) might depend upon. Therefore, there is no guarantee that the results of a
specific-schema dump can be successfully restored by themselves into a clean database.

Note
Non-schema objects such as large objects are not dumped when -n is specified. You can add
large objects back to the dump with the --large-objects switch.

-N pattern
--exclude-schema=pattern

Do not dump any schemas matching pattern. The pattern is interpreted according to the same rules
as for -n. -N can be given more than once to exclude schemas matching any of several patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one -
n switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from
what is otherwise a normal dump.

1946

pg_dump

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of created
database objects. These statements will fail when the script is run unless it is started by a superuser
(or the same user that owns all of the objects in the script). To make a script that can be restored by
any user, but will give that user ownership of all the objects, specify -O.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Dump only the object definitions (schema), not data or statistics.

This option cannot be used with --data-only or --statistics-only. It is similar to, but for historical
reasons not identical to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-table-data.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --dis-
able-triggers is used. (Usually, it's better to leave this out, and instead start the resulting script
as superuser.)

-t pattern
--table=pattern

Dump only tables with names matching pattern. Multiple tables can be selected by writing multiple
-t switches. The pattern parameter is interpreted as a pattern according to the same rules used
by psql's \d commands (see Patterns), so multiple tables can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent
the shell from expanding the wildcards; see Examples below.

As well as tables, this option can be used to dump the definition of matching views, materialized
views, foreign tables, and sequences. It will not dump the contents of views or materialized views,
and the contents of foreign tables will only be dumped if the corresponding foreign server is specified
with --include-foreign-data.

The -n and -N switches have no effect when -t is used, because tables selected by -t will be dumped
regardless of those switches, and non-table objects will not be dumped.

Note
When -t is specified, pg_dump makes no attempt to dump any other database objects that the
selected table(s) might depend upon. Therefore, there is no guarantee that the results of a
specific-table dump can be successfully restored by themselves into a clean database.

1947

pg_dump

-T pattern
--exclude-table=pattern

Do not dump any tables matching pattern. The pattern is interpreted according to the same rules
as for -t. -T can be given more than once to exclude tables matching any of several patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one -
t switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from
what is otherwise a normal dump.

-v
--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and start/
stop times to the dump file, and progress messages to standard error. Repeating the option causes
additional debug-level messages to appear on standard error.

-V
--version

Print the pg_dump version and exit.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-Z level
-Z method[:detail]
--compress=level
--compress=method[:detail]

Specify the compression method and/or the compression level to use. The compression method can
be set to gzip, lz4, zstd, or none for no compression. A compression detail string can optionally be
specified. If the detail string is an integer, it specifies the compression level. Otherwise, it should be a
comma-separated list of items, each of the form keyword or keyword=value. Currently, the supported
keywords are level and long.

If no compression level is specified, the default compression level will be used. If only a level is
specified without mentioning an algorithm, gzip compression will be used if the level is greater than
0, and no compression will be used if the level is 0.

For the custom and directory archive formats, this specifies compression of individual table-data
segments, and the default is to compress using gzip at a moderate level. For plain text output, setting
a nonzero compression level causes the entire output file to be compressed, as though it had been
fed through gzip, lz4, or zstd; but the default is not to compress. With zstd compression, long mode
may improve the compression ratio, at the cost of increased memory use.

The tar archive format currently does not support compression at all.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, ...)
VALUES ...). This will make restoration very slow; it is mainly useful for making dumps that can be
loaded into non-PostgreSQL databases. Any error during restoring will cause only rows that are part
of the problematic INSERT to be lost, rather than the entire table contents.

1948

pg_dump

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a dump that includes data but does not include schema.
It instructs pg_dump to include commands to temporarily disable triggers on the target tables while
the data is restored. Use this if you have referential integrity checks or other triggers on the tables
that you do not want to invoke during data restore.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should
also specify a superuser name with -S, or preferably be careful to start the resulting script as a
superuser.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

--enable-row-security

This option is relevant only when dumping the contents of a table which has row security. By default,
pg_dump will set row_security to off, to ensure that all data is dumped from the table. If the user
does not have sufficient privileges to bypass row security, then an error is thrown. This parameter
instructs pg_dump to set row_security to on instead, allowing the user to dump the parts of the
contents of the table that they have access to.

Note that if you use this option currently, you probably also want the dump be in INSERT format, as
the COPY FROM during restore does not support row security.

--exclude-extension=pattern

Do not dump any extensions matching pattern. The pattern is interpreted according to the same
rules as for -e. --exclude-extension can be given more than once to exclude extensions matching
any of several patterns.

When both -e and --exclude-extension are given, the behavior is to dump just the extensions that
match at least one -e switch but no --exclude-extension switches. If --exclude-extension ap-
pears without -e, then extensions matching --exclude-extension are excluded from what is other-
wise a normal dump.

--exclude-table-and-children=pattern

This is the same as the -T/--exclude-table option, except that it also excludes any partitions or
inheritance child tables of the table(s) matching the pattern.

--exclude-table-data=pattern

Do not dump data for any tables matching pattern. The pattern is interpreted according to the same
rules as for -t. --exclude-table-data can be given more than once to exclude tables matching
any of several patterns. This option is useful when you need the definition of a particular table even
though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only or --statistics-only.

--exclude-table-data-and-children=pattern

This is the same as the --exclude-table-data option, except that it also excludes data of any par-
titions or inheritance child tables of the table(s) matching the pattern.

--extra-float-digits=ndigits

Use the specified value of extra_float_digits when dumping floating-point data, instead of the
maximum available precision. Routine dumps made for backup purposes should not use this option.

1949

pg_dump

--filter=filename

Specify a filename from which to read patterns for objects to include or exclude from the dump.
The patterns are interpreted according to the same rules as the corresponding options: -t/--ta-
ble, --table-and-children, -T/--exclude-table, and --exclude-table-and-children for tables,
-n/--schema and -N/--exclude-schema for schemas, --include-foreign-data for data on foreign
servers, --exclude-table-data and --exclude-table-data-and-children for table data, and -e/
--extension and --exclude-extension for extensions. To read from STDIN, use - as the filename.
The --filter option can be specified in conjunction with the above listed options for including or
excluding objects, and can also be specified more than once for multiple filter files.

The file lists one object pattern per row, with the following format:
{ include | exclude } { extension | foreign_data | table | table_and_children |
 table_data | table_data_and_children | schema } PATTERN

The first keyword specifies whether the objects matched by the pattern are to be included or exclud-
ed. The second keyword specifies the type of object to be filtered using the pattern:
• extension: extensions. This works like the -e/--extension or --exclude-extension option.
• foreign_data: data on foreign servers. This works like the --include-foreign-data option.

This keyword can only be used with the include keyword.
• table: tables. This works like the -t/--table or -T/--exclude-table option.
• table_and_children: tables including any partitions or inheritance child tables. This works like

the --table-and-children or --exclude-table-and-children option.
• table_data: table data of any tables matching pattern. This works like the --exclude-ta-

ble-data option. This keyword can only be used with the exclude keyword.
• table_data_and_children: table data of any tables matching pattern as well as any partitions

or inheritance children of the table(s). This works like the --exclude-table-data-and-chil-
dren option. This keyword can only be used with the exclude keyword.

• schema: schemas. This works like the -n/--schema or -N/--exclude-schema option.

Lines starting with # are considered comments and ignored. Comments can be placed after an object
pattern row as well. Blank lines are also ignored. See Patterns for how to perform quoting in patterns.

Example files are listed below in the Examples section.

--if-exists

Use DROP ... IF EXISTS commands to drop objects in --clean mode. This suppresses “does not ex-
ist” errors that might otherwise be reported. This option is not valid unless --clean is also specified.

--include-foreign-data=foreignserver

Dump the data for any foreign table with a foreign server matching foreignserver pattern. Multiple
foreign servers can be selected by writing multiple --include-foreign-data switches. Also, the
foreignserver parameter is interpreted as a pattern according to the same rules used by psql's
\d commands (see Patterns), so multiple foreign servers can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent
the shell from expanding the wildcards; see Examples below. The only exception is that an empty
pattern is disallowed.

Note
Using wildcards in --include-foreign-data may result in access to unexpected foreign
servers. Also, to use this option securely, make sure that the named server must have a trusted
owner.

1950

pg_dump

Note
When --include-foreign-data is specified, pg_dump does not check that the foreign table
is writable. Therefore, there is no guarantee that the results of a foreign table dump can be
successfully restored.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is main-
ly useful for making dumps that can be loaded into non-PostgreSQL databases. Any error during
restoring will cause only rows that are part of the problematic INSERT to be lost, rather than the en-
tire table contents. Note that the restore might fail altogether if you have rearranged column order.
The --column-inserts option is safe against column order changes, though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of the
partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate
partition to be re-determined for each row when the data is loaded. This may be useful when restoring
data on a server where rows do not always fall into the same partitions as they did on the original
server. That could happen, for example, if the partitioning column is of type text and the two systems
have different definitions of the collation used to sort the partitioning column.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. (Allowed formats vary depending on the server version you
are dumping from, but an integer number of milliseconds is accepted by all versions.)

--no-comments

Do not dump COMMENT commands.

--no-data

Do not dump data.

--no-policies

Do not dump row security policies.

--no-publications

Do not dump publications.

--no-schema

Do not dump schema (data definitions).

--no-security-labels

Do not dump security labels.

--no-statistics

Do not dump statistics. This is the default.

--no-subscriptions

Do not dump subscriptions.

1951

pg_dump

--no-sync

By default, pg_dump will wait for all files to be written safely to disk. This option causes pg_dump to
return without waiting, which is faster, but means that a subsequent operating system crash can
leave the dump corrupt. Generally, this option is useful for testing but should not be used when
dumping data from production installation.

--no-table-access-method

Do not output commands to select table access methods. With this option, all objects will be created
with whichever table access method is the default during restore.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in whichev-
er tablespace is the default during restore.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

--no-toast-compression

Do not output commands to set TOAST compression methods. With this option, all columns will be
restored with the default compression setting.

--no-unlogged-table-data

Do not dump the contents of unlogged tables and sequences. This option has no effect on whether or
not the table and sequence definitions (schema) are dumped; it only suppresses dumping the table
and sequence data. Data in unlogged tables and sequences is always excluded when dumping from
a standby server.

--on-conflict-do-nothing

Add ON CONFLICT DO NOTHING to INSERT commands. This option is not valid unless --inserts, --
column-inserts or --rows-per-insert is also specified.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server
whose PostgreSQL major version is different from pg_dump's, or when the output is intended to be
loaded into a server of a different major version. By default, pg_dump quotes only identifiers that
are reserved words in its own major version. This sometimes results in compatibility issues when
dealing with servers of other versions that may have slightly different sets of reserved words. Using
--quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--restrict-key=restrict_key

Use the provided string as the psql \restrict key in the dump output. This can only be specified
for plain-text dumps, i.e., when --format is set to plain or the --format option is omitted. If no
restrict key is specified, pg_dump will generate a random one as needed. Keys may contain only
alphanumeric characters.

This option is primarily intended for testing purposes and other scenarios that require repeatable
output (e.g., comparing dump files). It is not recommended for general use, as a malicious server
with advance knowledge of the key may be able to inject arbitrary code that will be executed on the
machine that runs psql with the dump output.

--rows-per-insert=nrows

Dump data as INSERT commands (rather than COPY). Controls the maximum number of rows per
INSERT command. The value specified must be a number greater than zero. Any error during restor-

1952

pg_dump

ing will cause only rows that are part of the problematic INSERT to be lost, rather than the entire
table contents.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data. This option
can be specified more than once to select multiple sections. The default is to dump all sections.

The data section contains actual table data, large-object contents, sequence values, and statistics for
tables, materialized views, and foreign tables. Post-data items include definitions of indexes, triggers,
rules, statistics for indexes, and constraints other than validated check and not-null constraints. Pre-
data items include all other data definition items.

--sequence-data

Include sequence data in the dump. This is the default behavior except when --no-data, --schema-
only, or --statistics-only is specified.

--serializable-deferrable

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent with
later database states; but do this by waiting for a point in the transaction stream at which no anom-
alies can be present, so that there isn't a risk of the dump failing or causing other transactions to
roll back with a serialization_failure. See Chapter 13 for more information about transaction
isolation and concurrency control.

This option is not beneficial for a dump which is intended only for disaster recovery. It could be
useful for a dump used to load a copy of the database for reporting or other read-only load sharing
while the original database continues to be updated. Without it the dump may reflect a state which
is not consistent with any serial execution of the transactions eventually committed. For example,
if batch processing techniques are used, a batch may show as closed in the dump without all of the
items which are in the batch appearing.

This option will make no difference if there are no read-write transactions active when pg_dump is
started. If read-write transactions are active, the start of the dump may be delayed for an indetermi-
nate length of time. Once running, performance with or without the switch is the same.

--snapshot=snapshotname

Use the specified synchronized snapshot when making a dump of the database (see Table 9.100 for
more details).

This option is useful when needing to synchronize the dump with a logical replication slot (see Chap-
ter 47) or with a concurrent session.

In the case of a parallel dump, the snapshot name defined by this option is used rather than taking
a new snapshot.

--statistics

Dump statistics.

--statistics-only

Dump only the statistics, not the schema (data definitions) or data. Statistics for tables, materialized
views, foreign tables, and indexes are dumped.

--strict-names

Require that each extension (-e/--extension), schema (-n/--schema) and table (-t/--table) pattern
match at least one extension/schema/table in the database to be dumped. This also applies to filters
used with --filter. Note that if none of the extension/schema/table patterns find matches, pg_dump
will generate an error even without --strict-names.

1953

pg_dump

This option has no effect on --exclude-extension, -N/--exclude-schema, -T/--exclude-table, or
--exclude-table-data. An exclude pattern failing to match any objects is not considered an error.

--sync-method=method

When set to fsync, which is the default, pg_dump --format=directory will recursively open and
synchronize all files in the archive directory.

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole file
system that contains the archive directory. See recovery_init_sync_method for information about the
caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used or --format is not set to directory.

--table-and-children=pattern

This is the same as the -t/--table option, except that it also includes any partitions or inheritance
child tables of the table(s) matching the pattern.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands
to determine object ownership. This makes the dump more standards-compatible, but depending on
the history of the objects in the dump, might not restore properly. Also, a dump using SET SESSION
AUTHORIZATION will certainly require superuser privileges to restore correctly, whereas ALTER OWNER
requires lesser privileges.

-?
--help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.
-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

1954

pg_dump

-W
--password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the server
demands password authentication. However, pg_dump will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment
PGDATABASE
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you
are able to select information from the database using, for example, psql. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

The database activity of pg_dump is normally collected by the cumulative statistics system. If this is
undesirable, you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes
If your database cluster has any local additions to the template1 database, be careful to restore the
output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate
definitions of the added objects. To make an empty database without any local additions, copy from
template0 not template1, for example:
CREATE DATABASE foo WITH TEMPLATE template0;

When a dump without schema is chosen and the option --disable-triggers is used, pg_dump emits
commands to disable triggers on user tables before inserting the data, and then commands to re-enable
them after the data has been inserted. If the restore is stopped in the middle, the system catalogs might
be left in the wrong state.

If --statistics is specified, pg_dump will include most optimizer statistics in the resulting dump file.
However, some statistics may not be included, such as those created explicitly with CREATE STATISTICS
or custom statistics added by an extension. Therefore, it may be useful to run ANALYZE after restoring
from a dump file to ensure optimal performance; see Section 24.1.3 and Section 24.1.6 for more infor-
mation.

1955

pg_dump

Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump
can be expected to load into PostgreSQL server versions newer than pg_dump's version. pg_dump can
also dump from PostgreSQL servers older than its own version. (Currently, servers back to version 9.2
are supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major
version; it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed
that pg_dump's output can be loaded into a server of an older major version — not even if the dump
was taken from a server of that version. Loading a dump file into an older server may require manual
editing of the dump file to remove syntax not understood by the older server. Use of the --quote-all-
identifiers option is recommended in cross-version cases, as it can prevent problems arising from
varying reserved-word lists in different PostgreSQL versions.

When dumping logical replication subscriptions, pg_dump will generate CREATE SUBSCRIPTION com-
mands that use the connect = false option, so that restoring the subscription does not make remote
connections for creating a replication slot or for initial table copy. That way, the dump can be restored
without requiring network access to the remote servers. It is then up to the user to reactivate the sub-
scriptions in a suitable way. If the involved hosts have changed, the connection information might have
to be changed. It might also be appropriate to truncate the target tables before initiating a new full
table copy. If users intend to copy initial data during refresh they must create the slot with two_phase
= false. After the initial sync, the two_phase option will be automatically enabled by the subscriber if
the subscription had been originally created with two_phase = true option.

It is generally recommended to use the -X (--no-psqlrc) option when restoring a database from a plain-
text pg_dump script to ensure a clean restore process and prevent potential conflicts with non-default
psql configurations.

Examples
To dump a database called mydb into an SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -X -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To reload an archive file into the same database it was dumped from, discarding the current contents
of that database:

$ pg_restore -d postgres --clean --create db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named
employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

1956

pg_dump

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas whose
names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T 'ts_*' mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case (see Patterns). But double quotes are special to the shell, so in
turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need something like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

To dump all tables whose names start with mytable, except for table mytable2, specify a filter file fil-
ter.txt like:

include table mytable*
exclude table mytable2

$ pg_dump --filter=filter.txt mydb > db.sql

See Also
pg_dumpall, pg_restore, psql

1957

pg_dumpall
pg_dumpall — extract a PostgreSQL database cluster into a script file

Synopsis
pg_dumpall [connection-option...] [option...]

Description
pg_dumpall is a utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one script
file. The script file contains SQL commands that can be used as input to psql to restore the databases. It
does this by calling pg_dump for each database in the cluster. pg_dumpall also dumps global objects that
are common to all databases, namely database roles, tablespaces, and privilege grants for configuration
parameters. (pg_dump does not save these objects.)

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add roles and create databases.

The SQL script will be written to the standard output. Use the -f/--file option or shell operators to
redirect it into a file.

pg_dumpall needs to connect several times to the PostgreSQL server (once per database). If you use
password authentication it will ask for a password each time. It is convenient to have a ~/.pgpass file
in such cases. See Section 32.16 for more information.

Warning
Restoring a dump causes the destination to execute arbitrary code of the source superusers'
choice. Partial dumps and partial restores do not limit that. If the source superusers are not trust-
ed, the dumped SQL statements must be inspected before restoring. Note that the client running
the dump and restore need not trust the source or destination superusers.

Options
The following command-line options control the content and format of the output.

-a
--data-only

Dump only the data, not the schema (data definitions) or statistics.

-c
--clean

Emit SQL commands to DROP all the dumped databases, roles, and tablespaces before recreating
them. This option is useful when the restore is to overwrite an existing cluster. If any of the objects
do not exist in the destination cluster, ignorable error messages will be reported during restore,
unless --if-exists is also specified.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the
database encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment
variable to the desired dump encoding.)

1958

pg_dumpall

-f filename
--file=filename

Send output to the specified file. If this is omitted, the standard output is used.

-g
--globals-only

Dump only global objects (roles and tablespaces), no databases.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dumpall issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of
created schema elements. These statements will fail when the script is run unless it is started by a
superuser (or the same user that owns all of the objects in the script). To make a script that can be
restored by any user, but will give that user ownership of all the objects, specify -O.

-r
--roles-only

Dump only roles, no databases or tablespaces.

-s
--schema-only

Dump only the object definitions (schema), not data.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --dis-
able-triggers is used. (Usually, it's better to leave this out, and instead start the resulting script
as superuser.)

-t
--tablespaces-only

Dump only tablespaces, no databases or roles.

-v
--verbose

Specifies verbose mode. This will cause pg_dumpall to output start/stop times to the dump file, and
progress messages to standard error. Repeating the option causes additional debug-level messages
to appear on standard error. The option is also passed down to pg_dump.

-V
--version

Print the pg_dumpall version and exit.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

1959

pg_dumpall

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, ...)
VALUES ...). This will make restoration very slow; it is mainly useful for making dumps that can be
loaded into non-PostgreSQL databases.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a dump with data and without schema. It instructs
pg_dumpall to include commands to temporarily disable triggers on the target tables while the data
is restored. Use this if you have referential integrity checks or other triggers on the tables that you
do not want to invoke during data restore.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should
also specify a superuser name with -S, or preferably be careful to start the resulting script as a
superuser.

--exclude-database=pattern

Do not dump databases whose name matches pattern. Multiple patterns can be excluded by writing
multiple --exclude-database switches. The pattern parameter is interpreted as a pattern according
to the same rules used by psql's \d commands (see Patterns), so multiple databases can also be
excluded by writing wildcard characters in the pattern. When using wildcards, be careful to quote
the pattern if needed to prevent shell wildcard expansion.

--extra-float-digits=ndigits

Use the specified value of extra_float_digits when dumping floating-point data, instead of the maxi-
mum available precision. Routine dumps made for backup purposes should not use this option.

--filter=filename

Specify a filename from which to read patterns for databases excluded from the dump. The patterns
are interpreted according to the same rules as --exclude-database. To read from STDIN, use - as
the filename. The --filter option can be specified in conjunction with --exclude-database for
excluding databases, and can also be specified more than once for multiple filter files.

The file lists one database pattern per row, with the following format:
exclude database PATTERN

Lines starting with # are considered comments and ignored. Comments can be placed after an object
pattern row as well. Blank lines are also ignored. See Patterns for how to perform quoting in patterns.

--if-exists

Use DROP ... IF EXISTS commands to drop objects in --clean mode. This suppresses “does not ex-
ist” errors that might otherwise be reported. This option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is mainly
useful for making dumps that can be loaded into non-PostgreSQL databases. Note that the restore
might fail altogether if you have rearranged column order. The --column-inserts option is safer,
though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of the
partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate

1960

pg_dumpall

partition to be re-determined for each row when the data is loaded. This may be useful when restoring
data on a server where rows do not always fall into the same partitions as they did on the original
server. That could happen, for example, if the partitioning column is of type text and the two systems
have different definitions of the collation used to sort the partitioning column.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead, fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout.

--no-comments

Do not dump COMMENT commands.

--no-data

Do not dump data.

--no-policies

Do not dump row security policies.

--no-publications

Do not dump publications.

--no-role-passwords

Do not dump passwords for roles. When restored, roles will have a null password, and password au-
thentication will always fail until the password is set. Since password values aren't needed when this
option is specified, the role information is read from the catalog view pg_roles instead of pg_authid.
Therefore, this option also helps if access to pg_authid is restricted by some security policy.

--no-schema

Do not dump schema (data definitions).

--no-security-labels

Do not dump security labels.

--no-statistics

Do not dump statistics. This is the default.

--no-subscriptions

Do not dump subscriptions.

--no-sync

By default, pg_dumpall will wait for all files to be written safely to disk. This option causes pg_dumpall
to return without waiting, which is faster, but means that a subsequent operating system crash can
leave the dump corrupt. Generally, this option is useful for testing but should not be used when
dumping data from production installation.

--no-table-access-method

Do not output commands to select table access methods. With this option, all objects will be created
with whichever table access method is the default during restore.

--no-tablespaces

Do not output commands to create tablespaces nor select tablespaces for objects. With this option,
all objects will be created in whichever tablespace is the default during restore.

1961

pg_dumpall

--no-toast-compression

Do not output commands to set TOAST compression methods. With this option, all columns will be
restored with the default compression setting.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data.

--on-conflict-do-nothing

Add ON CONFLICT DO NOTHING to INSERT commands. This option is not valid unless --inserts or
--column-inserts is also specified.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server
whose PostgreSQL major version is different from pg_dumpall's, or when the output is intended to be
loaded into a server of a different major version. By default, pg_dumpall quotes only identifiers that
are reserved words in its own major version. This sometimes results in compatibility issues when
dealing with servers of other versions that may have slightly different sets of reserved words. Using
--quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--restrict-key=restrict_key

Use the provided string as the psql \restrict key in the dump output. If no restrict key is specified,
pg_dumpall will generate a random one as needed. Keys may contain only alphanumeric characters.

This option is primarily intended for testing purposes and other scenarios that require repeatable
output (e.g., comparing dump files). It is not recommended for general use, as a malicious server
with advance knowledge of the key may be able to inject arbitrary code that will be executed on the
machine that runs psql with the dump output.

--rows-per-insert=nrows

Dump data as INSERT commands (rather than COPY). Controls the maximum number of rows per
INSERT command. The value specified must be a number greater than zero. Any error during restor-
ing will cause only rows that are part of the problematic INSERT to be lost, rather than the entire
table contents.

--statistics

Dump statistics.

--statistics-only

Dump only the statistics, not the schema (data definitions) or data. Statistics for tables, materialized
views, foreign tables, and indexes are dumped.

--sequence-data

Include sequence data in the dump. This is the default behavior except when --no-data, --schema-
only, or --statistics-only is specified.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands
to determine object ownership. This makes the dump more standards compatible, but depending on
the history of the objects in the dump, might not restore properly.

-?
--help

Show help about pg_dumpall command line arguments, and exit.

1962

pg_dumpall

The following command-line options control the database connection parameters.

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any
conflicting command line options.

The option is called --dbname for consistency with other client applications, but because pg_dumpall
needs to connect to many databases, the database name in the connection string will be ignored. Use
the -l option to specify the name of the database used for the initial connection, which will dump
global objects and discover what other databases should be dumped.

-h host
--host=host

Specifies the host name of the machine on which the database server is running. If the value begins
with a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-l dbname
--database=dbname

Specifies the name of the database to connect to for dumping global objects and discovering what
other databases should be dumped. If not specified, the postgres database will be used, and if that
does not exist, template1 will be used.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_dumpall to prompt for a password before connecting to a database.

This option is never essential, since pg_dumpall will automatically prompt for a password if the server
demands password authentication. However, pg_dumpall will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Note that the password prompt will occur again for each database to be dumped. Usually, it's better
to set up a ~/.pgpass file than to rely on manual password entry.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dumpall to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dumpall, but can switch to a role with the required

1963

pg_dumpall

rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

The --clean option can be useful even when your intention is to restore the dump script into a fresh
cluster. Use of --clean authorizes the script to drop and re-create the built-in postgres and template1
databases, ensuring that those databases will retain the same properties (for instance, locale and en-
coding) that they had in the source cluster. Without the option, those databases will retain their existing
database-level properties, as well as any pre-existing contents.

If --statistics is specified, pg_dumpall will include most optimizer statistics in the resulting dump file.
However, some statistics may not be included, such as those created explicitly with CREATE STATISTICS
or custom statistics added by an extension. Therefore, it may be useful to run ANALYZE on each database
after restoring from a dump file to ensure optimal performance. You can also run vacuumdb -a -z to
analyze all databases.

The dump script should not be expected to run completely without errors. In particular, because the
script will issue CREATE ROLE for every role existing in the source cluster, it is certain to get a “role
already exists” error for the bootstrap superuser, unless the destination cluster was initialized with a
different bootstrap superuser name. This error is harmless and should be ignored. Use of the --clean
option is likely to produce additional harmless error messages about non-existent objects, although you
can minimize those by adding --if-exists.

pg_dumpall requires all needed tablespace directories to exist before the restore; otherwise, database
creation will fail for databases in non-default locations.

It is generally recommended to use the -X (--no-psqlrc) option when restoring a database from a
pg_dumpall script to ensure a clean restore process and prevent potential conflicts with non-default psql
configurations. Additionally, because the pg_dumpall script may include psql meta-commands, it may
be incompatible with clients other than psql.

Examples
To dump all databases:

$ pg_dumpall > db.out

To restore database(s) from this file, you can use:

$ psql -X -f db.out -d postgres

It is not important which database you connect to here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases. An exception is that

1964

pg_dumpall

if you specified --clean, you must connect to the postgres database initially; the script will attempt to
drop other databases immediately, and that will fail for the database you are connected to.

See Also
Check pg_dump for details on possible error conditions.

1965

pg_isready
pg_isready — check the connection status of a PostgreSQL server

Synopsis
pg_isready [connection-option...] [option...]

Description
pg_isready is a utility for checking the connection status of a PostgreSQL database server. The exit
status specifies the result of the connection check.

Options
-d dbname
--dbname=dbname

Specifies the name of the database to connect to. The dbname can be a connection string. If so,
connection string parameters will override any conflicting command line options.

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix-domain socket.

-p port
--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

-q
--quiet

Do not display status message. This is useful when scripting.

-t seconds
--timeout=seconds

The maximum number of seconds to wait when attempting connection before returning that the
server is not responding. Setting to 0 disables. The default is 3 seconds.

-U username
--username=username

Connect to the database as the user username instead of the default.

-V
--version

Print the pg_isready version and exit.

-?
--help

Show help about pg_isready command line arguments, and exit.

1966

pg_isready

Exit Status
pg_isready returns 0 to the shell if the server is accepting connections normally, 1 if the server is rejecting
connections (for example during startup), 2 if there was no response to the connection attempt, and 3
if no attempt was made (for example due to invalid parameters).

Environment
pg_isready, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
It is not necessary to supply correct user name, password, or database name values to obtain the server
status; however, if incorrect values are provided, the server will log a failed connection attempt.

Examples
Standard Usage:

$ pg_isready
/tmp:5432 - accepting connections
$ echo $?
0

Running with connection parameters to a PostgreSQL cluster in startup:

$ pg_isready -h localhost -p 5433
localhost:5433 - rejecting connections
$ echo $?
1

Running with connection parameters to a non-responsive PostgreSQL cluster:

$ pg_isready -h someremotehost
someremotehost:5432 - no response
$ echo $?
2

1967

pg_receivewal
pg_receivewal — stream write-ahead logs from a PostgreSQL server

Synopsis
pg_receivewal [option...]

Description
pg_receivewal is used to stream the write-ahead log from a running PostgreSQL cluster. The write-
ahead log is streamed using the streaming replication protocol, and is written to a local directory of
files. This directory can be used as the archive location for doing a restore using point-in-time recovery
(see Section 25.3).

pg_receivewal streams the write-ahead log in real time as it's being generated on the server, and does
not wait for segments to complete like archive_command and archive_library do. For this reason, it is
not necessary to set archive_timeout when using pg_receivewal.

Unlike the WAL receiver of a PostgreSQL standby server, pg_receivewal by default flushes WAL data
only when a WAL file is closed. The option --synchronous must be specified to flush WAL data in real
time. Since pg_receivewal does not apply WAL, you should not allow it to become a synchronous standby
when synchronous_commit equals remote_apply. If it does, it will appear to be a standby that never
catches up, and will cause transaction commits to block. To avoid this, you should either configure an
appropriate value for synchronous_standby_names, or specify application_name for pg_receivewal that
does not match it, or change the value of synchronous_commit to something other than remote_apply.

The write-ahead log is streamed over a regular PostgreSQL connection and uses the replication protocol.
The connection must be made with a user having REPLICATION permissions (see Section 21.2) or a
superuser, and pg_hba.conf must permit the replication connection. The server must also be configured
with max_wal_senders set high enough to leave at least one session available for the stream.

The starting point of the write-ahead log streaming is calculated when pg_receivewal starts:
1. First, scan the directory where the WAL segment files are written and find the newest completed

segment file, using as the starting point the beginning of the next WAL segment file.
2. If a starting point cannot be calculated with the previous method, and if a replication slot is used,

an extra READ_REPLICATION_SLOT command is issued to retrieve the slot's restart_lsn to use as the
starting point. This option is only available when streaming write-ahead logs from PostgreSQL 15
and up.

3. If a starting point cannot be calculated with the previous method, the latest WAL flush location is
used as reported by the server from an IDENTIFY_SYSTEM command.

If the connection is lost, or if it cannot be initially established, with a non-fatal error, pg_receivewal will
retry the connection indefinitely, and reestablish streaming as soon as possible. To avoid this behavior,
use the -n parameter.

In the absence of fatal errors, pg_receivewal will run until terminated by the SIGINT (Control+C) or
SIGTERM signal.

Options
-D directory
--directory=directory

Directory to write the output to.

This parameter is required.

1968

pg_receivewal

-E lsn
--endpos=lsn

Automatically stop replication and exit with normal exit status 0 when receiving reaches the specified
LSN.

If there is a record with LSN exactly equal to lsn, the record will be processed.

--if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already exists.

-n
--no-loop

Don't loop on connection errors. Instead, exit right away with an error.

--no-sync

This option causes pg_receivewal to not force WAL data to be flushed to disk. This is faster, but
means that a subsequent operating system crash can leave the WAL segments corrupt. Generally,
this option is useful for testing but should not be used when doing WAL archiving on a production
deployment.

This option is incompatible with --synchronous.

-s interval
--status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This allows for
easier monitoring of the progress from server. A value of zero disables the periodic status updates
completely, although an update will still be sent when requested by the server, to avoid timeout
disconnect. The default value is 10 seconds.

-S slotname
--slot=slotname

Require pg_receivewal to use an existing replication slot (see Section 26.2.6). When this option is
used, pg_receivewal will report a flush position to the server, indicating when each segment has been
synchronized to disk so that the server can remove that segment if it is not otherwise needed.

When the replication client of pg_receivewal is configured on the server as a synchronous standby,
then using a replication slot will report the flush position to the server, but only when a WAL file is
closed. Therefore, that configuration will cause transactions on the primary to wait for a long time
and effectively not work satisfactorily. The option --synchronous (see below) must be specified in
addition to make this work correctly.

--synchronous

Flush the WAL data to disk immediately after it has been received. Also send a status packet back to
the server immediately after flushing, regardless of --status-interval.

This option should be specified if the replication client of pg_receivewal is configured on the server
as a synchronous standby, to ensure that timely feedback is sent to the server.

-v
--verbose

Enables verbose mode.

-Z level
-Z method[:detail]
--compress=level
--compress=method[:detail]

Enables compression of write-ahead logs.

1969

pg_receivewal

The compression method can be set to gzip, lz4 (if PostgreSQL was compiled with --with-lz4) or
none for no compression. A compression detail string can optionally be specified. If the detail string
is an integer, it specifies the compression level. Otherwise, it should be a comma-separated list of
items, each of the form keyword or keyword=value. Currently, the only supported keyword is level.

If no compression level is specified, the default compression level will be used. If only a level is
specified without mentioning an algorithm, gzip compression will be used if the level is greater than
0, and no compression will be used if the level is 0.

The suffix .gz will automatically be added to all filenames when using gzip, and the suffix .lz4 is
added when using lz4.

The following command-line options control the database connection parameters.
-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any
conflicting command line options.

This option is called --dbname for consistency with other client applications, but because pg_receive-
wal doesn't connect to any particular database in the cluster, any database name included in the con-
nection string will be ignored by the server. However, a database name supplied that way overrides
the default database name (replication) for purposes of looking up the replication connection's
password in ~/.pgpass. Similarly, middleware or proxies used in connecting to PostgreSQL might
utilize the name for purposes such as connection routing.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_receivewal to prompt for a password before connecting to a database.

This option is never essential, since pg_receivewal will automatically prompt for a password if the
server demands password authentication. However, pg_receivewal will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

pg_receivewal can perform one of the two following actions in order to control physical replication slots:

1970

pg_receivewal

--create-slot

Create a new physical replication slot with the name specified in --slot, then exit.

--drop-slot

Drop the replication slot with the name specified in --slot, then exit.

Other options are also available:

-V
--version

Print the pg_receivewal version and exit.

-?
--help

Show help about pg_receivewal command line arguments, and exit.

Exit Status
pg_receivewal will exit with status 0 when terminated by the SIGINT or SIGTERM signal. (That is the
normal way to end it. Hence it is not an error.) For fatal errors or other signals, the exit status will be
nonzero.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
When using pg_receivewal instead of archive_command or archive_library as the main WAL backup
method, it is strongly recommended to use replication slots. Otherwise, the server is free to recycle or
remove write-ahead log files before they are backed up, because it does not have any information, either
from archive_command or archive_library or the replication slots, about how far the WAL stream has
been archived. Note, however, that a replication slot will fill up the server's disk space if the receiver
does not keep up with fetching the WAL data.

pg_receivewal will preserve group permissions on the received WAL files if group permissions are en-
abled on the source cluster.

Examples
To stream the write-ahead log from the server at mydbserver and store it in the local directory /usr/
local/pgsql/archive:

$ pg_receivewal -h mydbserver -D /usr/local/pgsql/archive

See Also
pg_basebackup

1971

pg_recvlogical
pg_recvlogical — control PostgreSQL logical decoding streams

Synopsis
pg_recvlogical [option...]

Description
pg_recvlogical controls logical decoding replication slots and streams data from such replication slots.

It creates a replication-mode connection, so it is subject to the same constraints as pg_receivewal, plus
those for logical replication (see Chapter 47).

pg_recvlogical has no equivalent to the logical decoding SQL interface's peek and get modes. It sends
replay confirmations for data lazily as it receives it and on clean exit. To examine pending data on a slot
without consuming it, use pg_logical_slot_peek_changes.

In the absence of fatal errors, pg_recvlogical will run until terminated by the SIGINT (Control+C) or
SIGTERM signal.

When pg_recvlogical receives a SIGHUP signal, it closes the current output file and opens a new one
using the filename specified by the --file option. This allows us to rotate the output file by first renaming
the current file and then sending a SIGHUP signal to pg_recvlogical.

Options
At least one of the following options must be specified to select an action:

--create-slot

Create a new logical replication slot with the name specified by --slot, using the output plugin
specified by --plugin, for the database specified by --dbname.

The --slot and --dbname are required for this action.

The --enable-two-phase and --enable-failover options can be specified with --create-slot.

--drop-slot

Drop the replication slot with the name specified by --slot, then exit.

The --slot is required for this action.

--start

Begin streaming changes from the logical replication slot specified by --slot, continuing until ter-
minated by a signal. If the server side change stream ends with a server shutdown or disconnect,
retry in a loop unless --no-loop is specified.

The --slot and --dbname, --file are required for this action.

The stream format is determined by the output plugin specified when the slot was created.

The connection must be to the same database used to create the slot.

--create-slot and --start can be specified together. --drop-slot cannot be combined with another
action.

1972

pg_recvlogical

The following command-line options control the location and format of the output and other replication
behavior:
-E lsn
--endpos=lsn

In --start mode, automatically stop replication and exit with normal exit status 0 when receiving
reaches the specified LSN. If specified when not in --start mode, an error is raised.

If there's a record with LSN exactly equal to lsn, the record will be output.

The --endpos option is not aware of transaction boundaries and may truncate output partway
through a transaction. Any partially output transaction will not be consumed and will be replayed
again when the slot is next read from. Individual messages are never truncated.

--enable-failover

Enables the slot to be synchronized to the standbys. This option may only be specified with --cre-
ate-slot.

-f filename
--file=filename

Write received and decoded transaction data into this file. Use - for stdout.

This parameter is required for --start.

-F interval_seconds
--fsync-interval=interval_seconds

Specifies how often pg_recvlogical should issue fsync() calls to ensure the output file is safely
flushed to disk.

The server will occasionally request the client to perform a flush and report the flush position to the
server. This setting is in addition to that, to perform flushes more frequently.

Specifying an interval of 0 disables issuing fsync() calls altogether, while still reporting progress
to the server. In this case, data could be lost in the event of a crash.

-I lsn
--startpos=lsn

In --start mode, start replication from the given LSN. For details on the effect of this, see the
documentation in Chapter 47 and Section 54.4. Ignored in other modes.

--if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already exists.

-n
--no-loop

When the connection to the server is lost, do not retry in a loop, just exit.

-o name[=value]
--option=name[=value]

Pass the option name to the output plugin with, if specified, the option value value. Which options
exist and their effects depends on the used output plugin.

-P plugin
--plugin=plugin

When creating a slot, use the specified logical decoding output plugin. See Chapter 47. This option
has no effect if the slot already exists.

1973

pg_recvlogical

-s interval_seconds
--status-interval=interval_seconds

This option has the same effect as the option of the same name in pg_receivewal. See the description
there.

-S slot_name
--slot=slot_name

In --start mode, use the existing logical replication slot named slot_name. In --create-slot mode,
create the slot with this name. In --drop-slot mode, delete the slot with this name.

This parameter is required for any of actions.

-t
--enable-two-phase
--two-phase (deprecated)

Enables decoding of prepared transactions. This option may only be specified with --create-slot.

-v
--verbose

Enables verbose mode.

The following command-line options control the database connection parameters.
-d dbname
--dbname=dbname

The database to connect to. See the description of the actions for what this means in detail. The
dbname can be a connection string. If so, connection string parameters will override any conflicting
command line options.

This parameter is required for --create-slot and --start.

-h hostname-or-ip
--host=hostname-or-ip

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U user
--username=user

User name to connect as. Defaults to current operating system user name.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_recvlogical to prompt for a password before connecting to a database.

1974

pg_recvlogical

This option is never essential, since pg_recvlogical will automatically prompt for a password if the
server demands password authentication. However, pg_recvlogical will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

The following additional options are available:

-V
--version

Print the pg_recvlogical version and exit.

-?
--help

Show help about pg_recvlogical command line arguments, and exit.

Exit Status
pg_recvlogical will exit with status 0 when terminated by the SIGINT or SIGTERM signal. (That is the
normal way to end it. Hence it is not an error.) For fatal errors or other signals, the exit status will be
nonzero.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
pg_recvlogical will preserve group permissions on the received WAL files if group permissions are en-
abled on the source cluster.

Examples
See Section 47.1 for an example.

See Also
pg_receivewal

1975

pg_restore
pg_restore — restore a PostgreSQL database from an archive file created by pg_dump

Synopsis
pg_restore [connection-option...] [option...] [filename]

Description
pg_restore is a utility for restoring a PostgreSQL database from an archive created by pg_dump in one
of the non-plain-text formats. It will issue the commands necessary to reconstruct the database to the
state it was in at the time it was saved. The archive files also allow pg_restore to be selective about what
is restored, or even to reorder the items prior to being restored. The archive files are designed to be
portable across architectures.

pg_restore can operate in two modes. If a database name is specified, pg_restore connects to that data-
base and restores archive contents directly into the database. Otherwise, a script containing the SQL
commands necessary to rebuild the database is created and written to a file or standard output. This
script output is equivalent to the plain text output format of pg_dump. Some of the options controlling
the output are therefore analogous to pg_dump options.

Obviously, pg_restore cannot restore information that is not present in the archive file. For instance, if
the archive was made using the “dump data as INSERT commands” option, pg_restore will not be able
to load the data using COPY statements.

Warning
Restoring a dump causes the destination to execute arbitrary code of the source superusers'
choice. Partial dumps and partial restores do not limit that. If the source superusers are not trust-
ed, the dumped SQL statements must be inspected before restoring. Non-plain-text dumps can be
inspected by using pg_restore's --file option. Note that the client running the dump and restore
need not trust the source or destination superusers.

Options
pg_restore accepts the following command line arguments.

filename

Specifies the location of the archive file (or directory, for a directory-format archive) to be restored.
If not specified, the standard input is used.

-a
--data-only

Restore only the data, not the schema (data definitions) or statistics. Table data, large objects, and
sequence values are restored, if present in the archive.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-c
--clean

Before restoring database objects, issue commands to DROP all the objects that will be restored. This
option is useful for overwriting an existing database. If any of the objects do not exist in the destina-
tion database, ignorable error messages will be reported, unless --if-exists is also specified.

1976

pg_restore

-C
--create

Create the database before restoring into it. If --clean is also specified, drop and recreate the target
database before connecting to it.

With --create, pg_restore also restores the database's comment if any, and any configuration vari-
able settings that are specific to this database, that is, any ALTER DATABASE ... SET ... and ALTER
ROLE ... IN DATABASE ... SET ... commands that mention this database. Access privileges for
the database itself are also restored, unless --no-acl is specified.

When this option is used, the database named with -d is used only to issue the initial DROP DATABASE
and CREATE DATABASE commands. All data is restored into the database name that appears in the
archive.

-d dbname
--dbname=dbname

Connect to database dbname and restore directly into the database. The dbname can be a connection
string. If so, connection string parameters will override any conflicting command line options.

-e
--exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is to con-
tinue and to display a count of errors at the end of the restoration.

-f filename
--file=filename

Specify output file for generated script, or for the listing when used with -l. Use - for stdout.

-F format
--format=format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will determine
the format automatically. If specified, it can be one of the following:
c
custom

The archive is in the custom format of pg_dump.

d
directory

The archive is a directory archive.

t
tar

The archive is a tar archive.

-I index
--index=index

Restore definition of named index only. Multiple indexes may be specified with multiple -I switches.

-j number-of-jobs
--jobs=number-of-jobs

Run the most time-consuming steps of pg_restore — those that load data, create indexes, or create
constraints — concurrently, using up to number-of-jobs concurrent sessions. This option can dra-
matically reduce the time to restore a large database to a server running on a multiprocessor ma-
chine. This option is ignored when emitting a script rather than connecting directly to a database
server.

1977

pg_restore

Each job is one process or one thread, depending on the operating system, and uses a separate
connection to the server.

The optimal value for this option depends on the hardware setup of the server, of the client, and of
the network. Factors include the number of CPU cores and the disk setup. A good place to start is
the number of CPU cores on the server, but values larger than that can also lead to faster restore
times in many cases. Of course, values that are too high will lead to decreased performance because
of thrashing.

Only the custom and directory archive formats are supported with this option. The input must be a
regular file or directory (not, for example, a pipe or standard input). Also, multiple jobs cannot be
used together with the option --single-transaction.

-l
--list

List the table of contents of the archive. The output of this operation can be used as input to the
-L option. Note that if filtering switches such as -n or -t are used with -l, they will restrict the
items listed.

-L list-file
--use-list=list-file

Restore only those archive elements that are listed in list-file, and restore them in the order they
appear in the file. Note that if filtering switches such as -n or -t are used with -L, they will further
restrict the items restored.

list-file is normally created by editing the output of a previous -l operation. Lines can be moved
or removed, and can also be commented out by placing a semicolon (;) at the start of the line. See
below for examples.

-n schema
--schema=schema

Restore only objects that are in the named schema. Multiple schemas may be specified with multiple
-n switches. This can be combined with the -t option to restore just a specific table.

-N schema
--exclude-schema=schema

Do not restore objects that are in the named schema. Multiple schemas to be excluded may be spec-
ified with multiple -N switches.

When both -n and -N are given for the same schema name, the -N switch wins and the schema is
excluded.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of
created schema elements. These statements will fail unless the initial connection to the database is
made by a superuser (or the same user that owns all of the objects in the script). With -O, any user
name can be used for the initial connection, and this user will own all the created objects.

-P function-name(argtype [, ...])
--function=function-name(argtype [, ...])

Restore the named function only. Be careful to spell the function name and arguments exactly as
they appear in the dump file's table of contents. Multiple functions may be specified with multiple
-P switches.

1978

pg_restore

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Restore only the schema (data definitions), not data, to the extent that schema entries are present
in the archive.

This option cannot be used with --data-only or --statistics-only. It is similar to, but for historical
reasons not identical to, specifying --section=pre-data --section=post-data --no-statistics.

(Do not confuse this with the --schema option, which uses the word “schema” in a different meaning.)

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --dis-
able-triggers is used.

-t table
--table=table

Restore definition and/or data of only the named table. For this purpose, “table” includes views,
materialized views, sequences, and foreign tables. Multiple tables can be selected by writing multiple
-t switches. This option can be combined with the -n option to specify table(s) in a particular schema.

Note
When -t is specified, pg_restore makes no attempt to restore any other database objects that
the selected table(s) might depend upon. Therefore, there is no guarantee that a specific-table
restore into a clean database will succeed.

Note
This flag does not behave identically to the -t flag of pg_dump. There is not currently any
provision for wild-card matching in pg_restore, nor can you include a schema name within its
-t. And, while pg_dump's -t flag will also dump subsidiary objects (such as indexes) of the
selected table(s), pg_restore's -t flag does not include such subsidiary objects.

Note
In versions prior to PostgreSQL 9.6, this flag matched only tables, not any other type of relation.

-T trigger
--trigger=trigger

Restore named trigger only. Multiple triggers may be specified with multiple -T switches.

-v
--verbose

Specifies verbose mode. This will cause pg_restore to output detailed object comments and start/
stop times to the output file, and progress messages to standard error. Repeating the option causes
additional debug-level messages to appear on standard error.

1979

pg_restore

-V
--version

Print the pg_restore version and exit.

-x
--no-privileges
--no-acl

Prevent restoration of access privileges (grant/revoke commands).

-1
--single-transaction

Execute the restore as a single transaction (that is, wrap the emitted commands in BEGIN/COMMIT).
This ensures that either all the commands complete successfully, or no changes are applied. This
option implies --exit-on-error.

--disable-triggers

This option is relevant only when performing a restore without schema. It instructs pg_restore to
execute commands to temporarily disable triggers on the target tables while the data is restored.
Use this if you have referential integrity checks or other triggers on the tables that you do not want
to invoke during data restore.

Presently, the commands emitted for --disable-triggers must be done as superuser. So you should
also specify a superuser name with -S or, preferably, run pg_restore as a PostgreSQL superuser.

--enable-row-security

This option is relevant only when restoring the contents of a table which has row security. By default,
pg_restore will set row_security to off, to ensure that all data is restored in to the table. If the user
does not have sufficient privileges to bypass row security, then an error is thrown. This parameter
instructs pg_restore to set row_security to on instead, allowing the user to attempt to restore the
contents of the table with row security enabled. This might still fail if the user does not have the
right to insert the rows from the dump into the table.

Note that this option currently also requires the dump be in INSERT format, as COPY FROM does not
support row security.

--filter=filename

Specify a filename from which to read patterns for objects excluded or included from restore. The
patterns are interpreted according to the same rules as -n/--schema for including objects in schemas,
-N/--exclude-schema for excluding objects in schemas, -P/--function for restoring named func-
tions, -I/--index for restoring named indexes, -t/--table for restoring named tables or -T/--trig-
ger for restoring triggers. To read from STDIN, use - as the filename. The --filter option can be
specified in conjunction with the above listed options for including or excluding objects, and can also
be specified more than once for multiple filter files.

The file lists one database pattern per row, with the following format:

{ include | exclude } { function | index | schema | table | trigger } PATTERN

The first keyword specifies whether the objects matched by the pattern are to be included or exclud-
ed. The second keyword specifies the type of object to be filtered using the pattern:
• function: functions, works like the -P/--function option. This keyword can only be used with

the include keyword.
• index: indexes, works like the -I/--indexes option. This keyword can only be used with the in-

clude keyword.
• schema: schemas, works like the -n/--schema and -N/--exclude-schema options.

1980

pg_restore

• table: tables, works like the -t/--table option. This keyword can only be used with the in-
clude keyword.

• trigger: triggers, works like the -T/--trigger option. This keyword can only be used with the
include keyword.

Lines starting with # are considered comments and ignored. Comments can be placed after an object
pattern row as well. Blank lines are also ignored. See Patterns for how to perform quoting in patterns.

--if-exists

Use DROP ... IF EXISTS commands to drop objects in --clean mode. This suppresses “does not ex-
ist” errors that might otherwise be reported. This option is not valid unless --clean is also specified.

--no-comments

Do not output commands to restore comments, even if the archive contains them.

--no-data

Do not output commands to restore data, even if the archive contains them.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g., because it
already exists). With this option, data for such a table is skipped. This behavior is useful if the target
database already contains the desired table contents. For example, auxiliary tables for PostgreSQL
extensions such as PostGIS might already be loaded in the target database; specifying this option
prevents duplicate or obsolete data from being loaded into them.

This option is effective only when restoring directly into a database, not when producing SQL script
output.

--no-policies

Do not output commands to restore row security policies, even if the archive contains them.

--no-publications

Do not output commands to restore publications, even if the archive contains them.

--no-schema

Do not output commands to restore schema (data definitions), even if the archive contains them.

--no-security-labels

Do not output commands to restore security labels, even if the archive contains them.

--no-statistics

Do not output commands to restore statistics, even if the archive contains them.

--no-subscriptions

Do not output commands to restore subscriptions, even if the archive contains them.

--no-table-access-method

Do not output commands to select table access methods. With this option, all objects will be created
with whichever table access method is the default during restore.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in whichev-
er tablespace is the default during restore.

1981

pg_restore

--restrict-key=restrict_key

Use the provided string as the psql \restrict key in the dump output. This can only be specified for
SQL script output, i.e., when the --file option is used. If no restrict key is specified, pg_restore will
generate a random one as needed. Keys may contain only alphanumeric characters.

This option is primarily intended for testing purposes and other scenarios that require repeatable
output (e.g., comparing dump files). It is not recommended for general use, as a malicious server
with advance knowledge of the key may be able to inject arbitrary code that will be executed on the
machine that runs psql with the dump output.

--section=sectionname

Only restore the named section. The section name can be pre-data, data, or post-data. This option
can be specified more than once to select multiple sections. The default is to restore all sections.

The data section contains actual table data as well as large-object definitions. Post-data items consist
of definitions of indexes, triggers, rules and constraints other than validated check constraints. Pre-
data items consist of all other data definition items.

--statistics

Output commands to restore statistics, if the archive contains them. This is the default.

--statistics-only

Restore only the statistics, not schema (data definitions) or data.

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one schema/
table in the file to be restored.

--transaction-size=N

Execute the restore as a series of transactions, each processing up to N database objects. This option
implies --exit-on-error.

--transaction-size offers an intermediate choice between the default behavior (one transaction
per SQL command) and -1/--single-transaction (one transaction for all restored objects). While
--single-transaction has the least overhead, it may be impractical for large databases because the
transaction will take a lock on each restored object, possibly exhausting the server's lock table space.
Using --transaction-size with a size of a few thousand objects offers nearly the same performance
benefits while capping the amount of lock table space needed.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands
to determine object ownership. This makes the dump more standards-compatible, but depending on
the history of the objects in the dump, might not restore properly.

-?
--help

Show help about pg_restore command line arguments, and exit.

pg_restore also accepts the following command line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

1982

pg_restore

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_restore to prompt for a password before connecting to a database.

This option is never essential, since pg_restore will automatically prompt for a password if the server
demands password authentication. However, pg_restore will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to perform the restore. This option causes pg_restore to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_restore, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows restores to be performed without violating the policy.

Environment
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15). However, it does not read PGDATABASE when a database name is not supplied.

Diagnostics
When a direct database connection is specified using the -d option, pg_restore internally executes SQL
statements. If you have problems running pg_restore, make sure you are able to select information from
the database using, for example, psql. Also, any default connection settings and environment variables
used by the libpq front-end library will apply.

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions

1983

pg_restore

of the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:
CREATE DATABASE foo WITH TEMPLATE template0;

The limitations of pg_restore are detailed below.
• When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore

emits commands to disable triggers on user tables before inserting the data, then emits commands
to re-enable them after the data has been inserted. If the restore is stopped in the middle, the sys-
tem catalogs might be left in the wrong state.

• pg_restore cannot restore large objects selectively; for instance, only those for a specific table. If
an archive contains large objects, then all large objects will be restored, or none of them if they are
excluded via -L, -t, or other options.

See also the pg_dump documentation for details on limitations of pg_dump.

By default, pg_restore will restore optimizer statistics if included in the dump file. If not all statistics
were restored, it may be useful to run ANALYZE on each restored table so the optimizer has useful sta-
tistics; see Section 24.1.3 and Section 24.1.6 for more information.

Examples
Assume we have dumped a database called mydb into a custom-format dump file:
$ pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:
$ dropdb mydb
$ pg_restore -C -d postgres db.dump

The database named in the -d switch can be any database existing in the cluster; pg_restore only uses
it to issue the CREATE DATABASE command for mydb. With -C, data is always restored into the database
name that appears in the dump file.

To restore the dump into a new database called newdb:
$ createdb -T template0 newdb
$ pg_restore -d newdb db.dump

Notice we don't use -C, and instead connect directly to the database to be restored into. Also note that
we clone the new database from template0 not template1, to ensure it is initially empty.

To reorder database items, it is first necessary to dump the table of contents of the archive:
$ pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, e.g.:
;
; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:

1984

pg_restore

;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID as-
signed to each item.

Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order:

$ pg_restore -L db.list db.dump

See Also
pg_dump, pg_dumpall, psql

1985

pg_verifybackup
pg_verifybackup — verify the integrity of a base backup of a PostgreSQL cluster

Synopsis
pg_verifybackup [option...]

Description
pg_verifybackup is used to check the integrity of a database cluster backup taken using pg_basebackup
against a backup_manifest generated by the server at the time of the backup. The backup may be stored
either in the "plain" or the "tar" format; this includes tar-format backups compressed with any algorithm
supported by pg_basebackup. However, at present, WAL verification is supported only for plain-format
backups. Therefore, if the backup is stored in tar-format, the -n, --no-parse-wal option should be used.

It is important to note that the validation which is performed by pg_verifybackup does not and cannot
include every check which will be performed by a running server when attempting to make use of the
backup. Even if you use this tool, you should still perform test restores and verify that the resulting
databases work as expected and that they appear to contain the correct data. However, pg_verifybackup
can detect many problems that commonly occur due to storage problems or user error.

Backup verification proceeds in four stages. First, pg_verifybackup reads the backup_manifest file. If
that file does not exist, cannot be read, is malformed, fails to match the system identifier with pg_control
of the backup directory or fails verification against its own internal checksum, pg_verifybackup will
terminate with a fatal error.

Second, pg_verifybackup will attempt to verify that the data files currently stored on disk are exactly
the same as the data files which the server intended to send, with some exceptions that are described
below. Extra and missing files will be detected, with a few exceptions. This step will ignore the presence
or absence of, or any modifications to, postgresql.auto.conf, standby.signal, and recovery.signal,
because it is expected that these files may have been created or modified as part of the process of taking
the backup. It also won't complain about a backup_manifest file in the target directory or about anything
inside pg_wal, even though these files won't be listed in the backup manifest. Only files are checked; the
presence or absence of directories is not verified, except indirectly: if a directory is missing, any files it
should have contained will necessarily also be missing.

Next, pg_verifybackup will checksum all the files, compare the checksums against the values in the
manifest, and emit errors for any files for which the computed checksum does not match the checksum
stored in the manifest. This step is not performed for any files which produced errors in the previous
step, since they are already known to have problems. Files which were ignored in the previous step are
also ignored in this step.

Finally, pg_verifybackup will use the manifest to verify that the write-ahead log records which will be
needed to recover the backup are present and that they can be read and parsed. The backup_manifest
contains information about which write-ahead log records will be needed, and pg_verifybackup will
use that information to invoke pg_waldump to parse those write-ahead log records. The --quiet flag
will be used, so that pg_waldump will only report errors, without producing any other output. While this
level of verification is sufficient to detect obvious problems such as a missing file or one whose internal
checksums do not match, they aren't extensive enough to detect every possible problem that might occur
when attempting to recover. For instance, a server bug that produces write-ahead log records that have
the correct checksums but specify nonsensical actions can't be detected by this method.

Note that if extra WAL files which are not required to recover the backup are present, they will not be
checked by this tool, although a separate invocation of pg_waldump could be used for that purpose. Also
note that WAL verification is version-specific: you must use the version of pg_verifybackup, and thus
of pg_waldump, which pertains to the backup being checked. In contrast, the data file integrity checks
should work with any version of the server that generates a backup_manifest file.

1986

pg_verifybackup

Options
pg_verifybackup accepts the following command-line arguments:
-e
--exit-on-error

Exit as soon as a problem with the backup is detected. If this option is not specified, pg_verify-
backup will continue checking the backup even after a problem has been detected, and will report
all problems detected as errors.

-F format
--format=format

Specifies the format of the backup. format can be one of the following:
p
plain

Backup consists of plain files with the same layout as the source server's data directory and
tablespaces.

t
tar

Backup consists of tar files, which may be compressed. A valid backup includes the main data
directory in a file named base.tar, the WAL files in pg_wal.tar, and separate tar files for each
tablespace, named after the tablespace's OID. If the backup is compressed, the relevant com-
pression extension is added to the end of each file name.

-i path
--ignore=path

Ignore the specified file or directory, which should be expressed as a relative path name, when
comparing the list of data files actually present in the backup to those listed in the backup_manifest
file. If a directory is specified, this option affects the entire subtree rooted at that location. Complaints
about extra files, missing files, file size differences, or checksum mismatches will be suppressed if
the relative path name matches the specified path name. This option can be specified multiple times.

-m path
--manifest-path=path

Use the manifest file at the specified path, rather than one located in the root of the backup directory.

-n
--no-parse-wal

Don't attempt to parse write-ahead log data that will be needed to recover from this backup.

-P
--progress

Enable progress reporting. Turning this on will deliver a progress report while verifying checksums.

This option cannot be used together with the option --quiet.

-q
--quiet

Don't print anything when a backup is successfully verified.

-s
--skip-checksums

Do not verify data file checksums. The presence or absence of files and the sizes of those files will
still be checked. This is much faster, because the files themselves do not need to be read.

1987

pg_verifybackup

-w path
--wal-directory=path

Try to parse WAL files stored in the specified directory, rather than in pg_wal. This may be useful if
the backup is stored in a separate location from the WAL archive.

Other options are also available:

-V
--version

Print the pg_verifybackup version and exit.

-?
--help

Show help about pg_verifybackup command line arguments, and exit.

Examples
To create a base backup of the server at mydbserver and verify the integrity of the backup:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ pg_verifybackup /usr/local/pgsql/data

To create a base backup of the server at mydbserver, move the manifest somewhere outside the backup
directory, and verify the backup:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/backup1234
$ mv /usr/local/pgsql/backup1234/backup_manifest /my/secure/location/
backup_manifest.1234
$ pg_verifybackup -m /my/secure/location/backup_manifest.1234 /usr/local/pgsql/
backup1234

To verify a backup while ignoring a file that was added manually to the backup directory, and also
skipping checksum verification:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ edit /usr/local/pgsql/data/note.to.self
$ pg_verifybackup --ignore=note.to.self --skip-checksums /usr/local/pgsql/data

See Also
pg_basebackup

1988

psql
psql — PostgreSQL interactive terminal

Synopsis
psql [option...] [dbname [username]]

Description
psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue
them to PostgreSQL, and see the query results. Alternatively, input can be from a file or from command
line arguments. In addition, psql provides a number of meta-commands and various shell-like features
to facilitate writing scripts and automating a wide variety of tasks.

Options
-a
--echo-all

Print all nonempty input lines to standard output as they are read. (This does not apply to lines read
interactively.) This is equivalent to setting the variable ECHO to all.

-A
--no-align

Switches to unaligned output mode. (The default output mode is aligned.) This is equivalent to \pset
format unaligned.

-b
--echo-errors

Print failed SQL commands to standard error output. This is equivalent to setting the variable ECHO
to errors.

-c command
--command=command

Specifies that psql is to execute the given command string, command. This option can be repeated
and combined in any order with the -f option. When either -c or -f is specified, psql does not read
commands from standard input; instead it terminates after processing all the -c and -f options in
sequence.

command must be either a command string that is completely parsable by the server (i.e., it contains
no psql-specific features), or a single backslash command. Thus you cannot mix SQL and psql meta-
commands within a -c option. To achieve that, you could use repeated -c options or pipe the string
into psql, for example:

psql -c '\x' -c 'SELECT * FROM foo;'

or

echo '\x \\ SELECT * FROM foo;' | psql

(\\ is the separator meta-command.)

Each SQL command string passed to -c is sent to the server as a single request. Because of this, the
server executes it as a single transaction even if the string contains multiple SQL commands, unless
there are explicit BEGIN/COMMIT commands included in the string to divide it into multiple transac-
tions. (See Section 54.2.2.1 for more details about how the server handles multi-query strings.)

1989

psql

If having several commands executed in one transaction is not desired, use repeated -c commands
or feed multiple commands to psql's standard input, either using echo as illustrated above, or via a
shell here-document, for example:

psql <<EOF
\x
SELECT * FROM foo;
EOF

--csv

Switches to CSV (Comma-Separated Values) output mode. This is equivalent to \pset format csv.

-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-e
--echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to setting
the variable ECHO to queries.

-E
--echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this to study
psql's internal operations. This is equivalent to setting the variable ECHO_HIDDEN to on.

-f filename
--file=filename

Read commands from the file filename, rather than standard input. This option can be repeated
and combined in any order with the -c option. When either -c or -f is specified, psql does not read
commands from standard input; instead it terminates after processing all the -c and -f options in
sequence. Except for that, this option is largely equivalent to the meta-command \i.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.
This can be used to intersperse interactive input with input from files. Note however that Readline
is not used in this case (much as if -n had been specified).

Using this option is subtly different from writing psql < filename. In general, both will do what you
expect, but using -f enables some nice features such as error messages with line numbers. There is
also a slight chance that using this option will reduce the start-up overhead. On the other hand, the
variant using the shell's input redirection is (in theory) guaranteed to yield exactly the same output
you would have received had you entered everything by hand.

-F separator
--field-separator=separator

Use separator as the field separator for unaligned output. This is equivalent to \pset fieldsep
or \f.

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix-domain socket.

1990

psql

-H
--html

Switches to HTML output mode. This is equivalent to \pset format html or the \H command.

-l
--list

List all available databases, then exit. Other non-connection options are ignored. This is similar to
the meta-command \list.

When this option is used, psql will connect to the database postgres, unless a different database
is named on the command line (option -d or non-option argument, possibly via a service entry, but
not via an environment variable).

-L filename
--log-file=filename

Write all query output into file filename, in addition to the normal output destination.

-n
--no-readline

Do not use Readline for line editing and do not use the command history (see the section called
“Command-Line Editing” below).

-o filename
--output=filename

Put all query output into file filename. This is equivalent to the command \o.

-p port
--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

-P assignment
--pset=assignment

Specifies printing options, in the style of \pset. Note that here you have to separate name and value
with an equal sign instead of a space. For example, to set the output format to LaTeX, you could
write -P format=latex.

-q
--quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the -c option.
This is equivalent to setting the variable QUIET to on.

-R separator
--record-separator=separator

Use separator as the record separator for unaligned output. This is equivalent to \pset recordsep.

-s
--single-step

Run in single-step mode. That means the user is prompted before each command is sent to the server,
with the option to cancel execution as well. Use this to debug scripts.

1991

psql

-S
--single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.

Note
This mode is provided for those who insist on it, but you are not necessarily encouraged to use
it. In particular, if you mix SQL and meta-commands on a line the order of execution might not
always be clear to the inexperienced user.

-t
--tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to \t or \pset
tuples_only.

-T table_options
--table-attr=table_options

Specifies options to be placed within the HTML table tag. See \pset tableattr for details.

-U username
--username=username

Connect to the database as the user username instead of the default. (You must have permission to
do so, of course.)

-v assignment
--set=assignment
--variable=assignment

Perform a variable assignment, like the \set meta-command. Note that you must separate name and
value, if any, by an equal sign on the command line. To unset a variable, leave off the equal sign. To set
a variable with an empty value, use the equal sign but leave off the value. These assignments are done
during command line processing, so variables that reflect connection state will get overwritten later.

-V
--version

Print the psql version and exit.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available from other sources such as a .pgpass file, the connection attempt will fail. This option
can be useful in batch jobs and scripts where no user is present to enter a password.

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-W
--password

Force psql to prompt for a password before connecting to a database, even if the password will not
be used.

If the server requires password authentication and a password is not available from other sources
such as a .pgpass file, psql will prompt for a password in any case. However, psql will waste a
connection attempt finding out that the server wants a password. In some cases it is worth typing
-W to avoid the extra connection attempt.

1992

psql

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-x
--expanded

Turn on the expanded table formatting mode. This is equivalent to \x or \pset expanded.

-X
--no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user's ~/.psqlrc file).

-z
--field-separator-zero

Set the field separator for unaligned output to a zero byte. This is equivalent to \pset fieldsep_zero.

-0
--record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing, for exam-
ple, with xargs -0. This is equivalent to \pset recordsep_zero.

-1
--single-transaction

This option can only be used in combination with one or more -c and/or -f options. It causes psql
to issue a BEGIN command before the first such option and a COMMIT command after the last one,
thereby wrapping all the commands into a single transaction. If any of the commands fails and the
variable ON_ERROR_STOP was set, a ROLLBACK command is sent instead. This ensures that either all
the commands complete successfully, or no changes are applied.

If the commands themselves contain BEGIN, COMMIT, or ROLLBACK, this option will not have the desired
effects. Also, if an individual command cannot be executed inside a transaction block, specifying this
option will cause the whole transaction to fail.

-?
--help[=topic]

Show help about psql and exit. The optional topic parameter (defaulting to options) selects which
part of psql is explained: commands describes psql's backslash commands; options describes the
command-line options that can be passed to psql; and variables shows help about psql configuration
variables.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own occurs (e.g., out of memory,
file not found), 2 if the connection to the server went bad and the session was not interactive, and 3 if
an error occurred in a script and the variable ON_ERROR_STOP was set.

Usage
Connecting to a Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know the
name of your target database, the host name and port number of the server, and what database user
name you want to connect as. psql can be told about those parameters via command line options, namely
-d, -h, -p, and -U respectively. If an argument is found that does not belong to any option it will be
interpreted as the database name (or the database user name, if the database name is already given). Not
all of these options are required; there are useful defaults. If you omit the host name, psql will connect via
a Unix-domain socket to a server on the local host, or via TCP/IP to localhost on Windows. The default

1993

psql

port number is determined at compile time. Since the database server uses the same default, you will
not have to specify the port in most cases. The default database user name is your operating-system user
name. Once the database user name is determined, it is used as the default database name. Note that
you cannot just connect to any database under any database user name. Your database administrator
should have informed you about your access rights.

When the defaults aren't quite right, you can save yourself some typing by setting the environment
variables PGDATABASE, PGHOST, PGPORT and/or PGUSER to appropriate values. (For additional environment
variables, see Section 32.15.) It is also convenient to have a ~/.pgpass file to avoid regularly having to
type in passwords. See Section 32.16 for more information.

An alternative way to specify connection parameters is in a conninfo string or a URI, which is used in-
stead of a database name. This mechanism give you very wide control over the connection. For example:

$ psql "service=myservice sslmode=require"
$ psql postgresql://dbmaster:5433/mydb?sslmode=require

This way you can also use LDAP for connection parameter lookup as described in Section 32.18. See
Section 32.1.2 for more information on all the available connection options.

If the connection could not be made for any reason (e.g., insufficient privileges, server is not running on
the targeted host, etc.), psql will return an error and terminate.

If both standard input and standard output are a terminal, then psql sets the client encoding to “auto”,
which will detect the appropriate client encoding from the locale settings (LC_CTYPE environment vari-
able on Unix systems). If this doesn't work out as expected, the client encoding can be overridden using
the environment variable PGCLIENTENCODING.

Entering SQL Commands
In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string =>. For example:

$ psql testdb
psql (18.0)
Type "help" for help.

testdb=>

At the prompt, the user can type in SQL commands. Ordinarily, input lines are sent to the server when
a command-terminating semicolon is reached. An end of line does not terminate a command. Thus com-
mands can be spread over several lines for clarity. If the command was sent and executed without error,
the results of the command are displayed on the screen.

If untrusted users have access to a database that has not adopted a secure schema usage
pattern, begin your session by removing publicly-writable schemas from search_path. One can
add options=-csearch_path= to the connection string or issue SELECT pg_catalog.set_con-
fig('search_path', '', false) before other SQL commands. This consideration is not specific to
psql; it applies to every interface for executing arbitrary SQL commands.

Whenever a command is executed, psql also polls for asynchronous notification events generated by
LISTEN and NOTIFY.

While C-style block comments are passed to the server for processing and removal, SQL-standard com-
ments are removed by psql.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands make psql more useful for administration or scripting. Meta-
commands are often called slash or backslash commands.

1994

psql

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace in an argument you can quote it with single quotes. To include a single quote
in an argument, write two single quotes within single-quoted text. Anything contained in single quotes
is furthermore subject to C-like substitutions for \n (new line), \t (tab), \b (backspace), \r (carriage
return), \f (form feed), \digits (octal), and \xdigits (hexadecimal). A backslash preceding any other
character within single-quoted text quotes that single character, whatever it is.

If an unquoted colon (:) followed by a psql variable name appears within an argument, it is replaced
by the variable's value, as described in SQL Interpolation below. The forms :'variable_name' and
:"variable_name" described there work as well. The :{?variable_name} syntax allows testing whether
a variable is defined. It is substituted by TRUE or FALSE. Escaping the colon with a backslash protects
it from substitution.

Within an argument, text that is enclosed in backquotes (`) is taken as a command line that is passed
to the shell. The output of the command (with any trailing newline removed) replaces the backquoted
text. Within the text enclosed in backquotes, no special quoting or other processing occurs, except
that appearances of :variable_name where variable_name is a psql variable name are replaced by the
variable's value. Also, appearances of :'variable_name' are replaced by the variable's value suitably
quoted to become a single shell command argument. (The latter form is almost always preferable, unless
you are very sure of what is in the variable.) Because carriage return and line feed characters cannot
be safely quoted on all platforms, the :'variable_name' form prints an error message and does not
substitute the variable value when such characters appear in the value.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow the
syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters
from case conversion and allow incorporation of whitespace into the identifier. Within double quotes,
paired double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ
is interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops at the end of the line, or when another unquoted backslash is found. An
unquoted backslash is taken as the beginning of a new meta-command. The special sequence \\ (two
backslashes) marks the end of arguments and continues parsing SQL commands, if any. That way SQL
and psql commands can be freely mixed on a line. But in any case, the arguments of a meta-command
cannot continue beyond the end of the line.

Many of the meta-commands act on the current query buffer. This is simply a buffer holding whatever
SQL command text has been typed but not yet sent to the server for execution. This will include previous
input lines as well as any text appearing before the meta-command on the same line.

Many of the meta-commands also allow x to be appended as an option. This will cause the results to be
displayed in expanded mode, as if \x or \pset expanded had been used.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it is
set to unaligned. This command is kept for backwards compatibility. See \pset for a more general
solution.

\bind [parameter] ...
Sets query parameters for the next query execution, with the specified parameters passed for any
parameter placeholders ($1 etc.).

Example:

INSERT INTO tbl1 VALUES ($1, $2) \bind 'first value' 'second value' \g

1995

psql

This also works for query-execution commands besides \g, such as \gx and \gset.

This command causes the extended query protocol (see Section 54.1.2) to be used, unlike normal
psql operation, which uses the simple query protocol. So this command can be useful to test the
extended query protocol from psql. (The extended query protocol is used even if the query has no
parameters and this command specifies zero parameters.) This command affects only the next query
executed; all subsequent queries will use the simple query protocol by default.

\bind_named statement_name [parameter] ...
\bind_named is equivalent to \bind, except that it takes the name of an existing prepared statement
as first parameter. An empty string denotes the unnamed prepared statement.

Example:
INSERT INTO tbls1 VALUES ($1, $2) \parse stmt1
\bind_named stmt1 'first value' 'second value' \g

This command causes the extended query protocol (see Section 54.1.2) to be used, unlike normal
psql operation, which uses the simple query protocol. So this command can be useful to test the
extended query protocol from psql.

\c or \connect [-reuse-previous=on|off] [dbname [username] [host] [port] |
conninfo]

Establishes a new connection to a PostgreSQL server. The connection parameters to use can be
specified either using a positional syntax (one or more of database name, user, host, and port), or
using a conninfo connection string as detailed in Section 32.1.1. If no arguments are given, a new
connection is made using the same parameters as before.

Specifying any of dbname, username, host or port as - is equivalent to omitting that parameter.

The new connection can re-use connection parameters from the previous connection; not only data-
base name, user, host, and port, but other settings such as sslmode. By default, parameters are re-
used in the positional syntax, but not when a conninfo string is given. Passing a first argument of -
reuse-previous=on or -reuse-previous=off overrides that default. If parameters are re-used, then
any parameter not explicitly specified as a positional parameter or in the conninfo string is taken
from the existing connection's parameters. An exception is that if the host setting is changed from its
previous value using the positional syntax, any hostaddr setting present in the existing connection's
parameters is dropped. Also, any password used for the existing connection will be re-used only if
the user, host, and port settings are not changed. When the command neither specifies nor reuses
a particular parameter, the libpq default is used.

If the new connection is successfully made, the previous connection is closed. If the connection at-
tempt fails (wrong user name, access denied, etc.), the previous connection will be kept if psql is
in interactive mode. But when executing a non-interactive script, the old connection is closed and
an error is reported. That may or may not terminate the script; if it does not, all database-accessing
commands will fail until another \connect command is successfully executed. This distinction was
chosen as a user convenience against typos on the one hand, and a safety mechanism that scripts
are not accidentally acting on the wrong database on the other hand. Note that whenever a \con-
nect command attempts to re-use parameters, the values re-used are those of the last successful
connection, not of any failed attempts made subsequently. However, in the case of a non-interactive
\connect failure, no parameters are allowed to be re-used later, since the script would likely be
expecting the values from the failed \connect to be re-used.

Examples:

=> \c mydb myuser host.dom 6432
=> \c service=foo
=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10 sslmode=disable"
=> \c -reuse-previous=on sslmode=require -- changes only sslmode

1996

psql

=> \c postgresql://tom@localhost/mydb?application_name=myapp

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This command
is equivalent to \pset title title. (The name of this command derives from “caption”, as it was
previously only used to set the caption in an HTML table.)

\cd [directory]

Changes the current working directory to directory. Without argument, changes to the current
user's home directory. For details on how home directories are found, see Section 32.16.

Tip
To print your current working directory, use \! pwd.

\close_prepared prepared_statement_name
Closes the specified prepared statement. An empty string denotes the unnamed prepared statement.
If no prepared statement exists with this name, the operation is a no-op.

Example:

SELECT $1 \parse stmt1
\close_prepared stmt1

This command causes the extended query protocol to be used, unlike normal psql operation, which
uses the simple query protocol. So this command can be useful to test the extended query protocol
from psql.

\conninfo

Outputs information about the current database connection, including SSL-related information if
SSL is in use.

Note that the Client User field shows the user at the time of connection, while the Superuser field
indicates whether the current user (in the current execution context) has superuser privileges. These
users are usually the same, but they can differ, for example, if the current user was changed with
the SET ROLE command.

\copy { table [(column_list)] } from { 'filename' | program 'command' | stdin |
pstdin } [[with] (option [, ...])] [where condition]
\copy { table [(column_list)] | (query) } to { 'filename' | program 'command' |
stdout | pstdout } [[with] (option [, ...])]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but instead
of the server reading or writing the specified file, psql reads or writes the file and routes the data
between the server and the local file system. This means that file accessibility and privileges are
those of the local user, not the server, and no SQL superuser privileges are required.

When program is specified, command is executed by psql and the data passed from or to command is
routed between the server and the client. Again, the execution privileges are those of the local user,
not the server, and no SQL superuser privileges are required.

For \copy ... from stdin, data rows are read from the same source that issued the command,
continuing until a line containing only \. is read or the stream reaches EOF. This option is useful for
populating tables in-line within an SQL script file. For \copy ... to stdout, output is sent to the
same place as psql command output, and the COPY count command status is not printed (since it
might be confused with a data row). To read/write psql's standard input or output regardless of the
current command source or \o option, write from pstdin or to pstdout.

1997

psql

The syntax of this command is similar to that of the SQL COPY command. All options other than the
data source/destination are as specified for COPY. Because of this, special parsing rules apply to the
\copy meta-command. Unlike most other meta-commands, the entire remainder of the line is always
taken to be the arguments of \copy, and neither variable interpolation nor backquote expansion are
performed in the arguments.

Tip
Another way to obtain the same result as \copy ... to is to use the SQL COPY ... TO STDOUT
command and terminate it with \g filename or \g |program. Unlike \copy, this method allows
the command to span multiple lines; also, variable interpolation and backquote expansion can
be used.

Tip
These operations are not as efficient as the SQL COPY command with a file or program data
source or destination, because all data must pass through the client/server connection. For
large amounts of data the SQL command might be preferable.

\copyright

Shows the copyright and distribution terms of PostgreSQL.

\crosstabview [colV [colH [colD [sortcolH]]]]

Executes the current query buffer (like \g) and shows the results in a crosstab grid. The query must
return at least three columns. The output column identified by colV becomes a vertical header and
the output column identified by colH becomes a horizontal header. colD identifies the output column
to display within the grid. sortcolH identifies an optional sort column for the horizontal header.

Each column specification can be a column number (starting at 1) or a column name. The usual SQL
case folding and quoting rules apply to column names. If omitted, colV is taken as column 1 and colH
as column 2. colH must differ from colV. If colD is not specified, then there must be exactly three
columns in the query result, and the column that is neither colV nor colH is taken to be colD.

The vertical header, displayed as the leftmost column, contains the values found in column colV, in
the same order as in the query results, but with duplicates removed.

The horizontal header, displayed as the first row, contains the values found in column colH, with
duplicates removed. By default, these appear in the same order as in the query results. But if the
optional sortcolH argument is given, it identifies a column whose values must be integer numbers,
and the values from colH will appear in the horizontal header sorted according to the corresponding
sortcolH values.

Inside the crosstab grid, for each distinct value x of colH and each distinct value y of colV, the cell
located at the intersection (x,y) contains the value of the colD column in the query result row for
which the value of colH is x and the value of colV is y. If there is no such row, the cell is empty. If
there are multiple such rows, an error is reported.

\d[Sx+] [pattern]

For each relation (table, view, materialized view, index, sequence, or foreign table) or composite
type matching the pattern, show all columns, their types, the tablespace (if not the default) and any
special attributes such as NOT NULL or defaults. Associated indexes, constraints, rules, and triggers
are also shown. For foreign tables, the associated foreign server is shown as well. (“Matching the
pattern” is defined in Patterns below.)

1998

psql

For some types of relation, \d shows additional information for each column: column values for
sequences, indexed expressions for indexes, and foreign data wrapper options for foreign tables.

The command form \d+ is identical, except that more information is displayed: any comments asso-
ciated with the columns of the table are shown, as is the presence of OIDs in the table, the view
definition if the relation is a view, a non-default replica identity setting and the access method name
if the relation has an access method.

By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

Note
If \d is used without a pattern argument, it is equivalent to \dtvmsE which will show a list
of all visible tables, views, materialized views, sequences and foreign tables. This is purely a
convenience measure.

As with many other commands, if x is appended to the command name, the results are dis-
played in expanded mode, but note that this only applies when \d is used without a pattern
argument, and the x modifier cannot appear immediately after the \d (because \dx is a differ-
ent command); the x modifier may only appear after an S or + modifier. For example, \d+x is
equivalent to \dtvmsE+x and will show a list of all relations in expanded mode.

\da[Sx] [pattern]

Lists aggregate functions, together with their return type and the data types they operate on. If
pattern is specified, only aggregates whose names match the pattern are shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects. If x is
appended to the command name, the results are displayed in expanded mode.

\dA[x+] [pattern]

Lists access methods. If pattern is specified, only access methods whose names match the pattern
are shown. If x is appended to the command name, the results are displayed in expanded mode. If +
is appended to the command name, each access method is listed with its associated handler function
and description.

\dAc[x+] [access-method-pattern [input-type-pattern]]

Lists operator classes (see Section 36.16.1). If access-method-pattern is specified, only operator
classes associated with access methods whose names match that pattern are listed. If input-type-
pattern is specified, only operator classes associated with input types whose names match that
pattern are listed. If x is appended to the command name, the results are displayed in expanded mode.
If + is appended to the command name, each operator class is listed with its associated operator
family and owner.

\dAf[x+] [access-method-pattern [input-type-pattern]]

Lists operator families (see Section 36.16.5). If access-method-pattern is specified, only operator
families associated with access methods whose names match that pattern are listed. If input-type-
pattern is specified, only operator families associated with input types whose names match that
pattern are listed. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, each operator family is listed with its owner.

\dAo[x+] [access-method-pattern [operator-family-pattern]]

Lists operators associated with operator families (see Section 36.16.2). If access-method-pattern
is specified, only members of operator families associated with access methods whose names match
that pattern are listed. If operator-family-pattern is specified, only members of operator families

1999

psql

whose names match that pattern are listed. If x is appended to the command name, the results are
displayed in expanded mode. If + is appended to the command name, each operator is listed with its
sort operator family (if it is an ordering operator), and whether its underlying function is leakproof.

\dAp[x+] [access-method-pattern [operator-family-pattern]]

Lists support functions associated with operator families (see Section 36.16.3). If access-method-
pattern is specified, only functions of operator families associated with access methods whose names
match that pattern are listed. If operator-family-pattern is specified, only functions of operator
families whose names match that pattern are listed. If x is appended to the command name, the
results are displayed in expanded mode. If + is appended to the command name, functions are dis-
played verbosely, with their actual parameter lists.

\db[x+] [pattern]

Lists tablespaces. If pattern is specified, only tablespaces whose names match the pattern are
shown. If x is appended to the command name, the results are displayed in expanded mode. If + is
appended to the command name, each tablespace is listed with its associated options, on-disk size,
permissions and description.

\dc[Sx+] [pattern]

Lists conversions between character-set encodings. If pattern is specified, only conversions whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects. If x is appended to the command name, the results are
displayed in expanded mode. If + is appended to the command name, each object is listed with its
associated description.

\dconfig[x+] [pattern]

Lists server configuration parameters and their values. If pattern is specified, only parameters
whose names match the pattern are listed. Without a pattern, only parameters that are set to non-
default values are listed. (Use \dconfig * to see all parameters.) If x is appended to the command
name, the results are displayed in expanded mode. If + is appended to the command name, each pa-
rameter is listed with its data type, context in which the parameter can be set, and access privileges
(if non-default access privileges have been granted).

\dC[x+] [pattern]

Lists type casts. If pattern is specified, only casts whose source or target types match the pattern
are listed. If x is appended to the command name, the results are displayed in expanded mode. If + is
appended to the command name, additional information about each cast is shown, including whether
its underlying function is leakproof, and the cast's description.

\dd[Sx] [pattern]

Shows the descriptions of objects of type constraint, operator class, operator family, rule,
and trigger. All other comments may be viewed by the respective backslash commands for those
object types.

\dd displays descriptions for objects matching the pattern, or of visible objects of the appropriate
type if no argument is given. But in either case, only objects that have a description are listed. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If x is appended to the command name, the results are displayed in expanded mode.

Descriptions for objects can be created with the COMMENT SQL command.

\dD[Sx+] [pattern]

Lists domains. If pattern is specified, only domains whose names match the pattern are shown. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system

2000

psql

objects. If x is appended to the command name, the results are displayed in expanded mode. If + is
appended to the command name, each object is listed with its associated permissions and description.

\ddp[x] [pattern]

Lists default access privilege settings. An entry is shown for each role (and schema, if applicable)
for which the default privilege settings have been changed from the built-in defaults. If pattern
is specified, only entries whose role name or schema name matches the pattern are listed. If x is
appended to the command name, the results are displayed in expanded mode.

The ALTER DEFAULT PRIVILEGES command is used to set default access privileges. The meaning of
the privilege display is explained in Section 5.8.

\dE[Sx+] [pattern]
\di[Sx+] [pattern]
\dm[Sx+] [pattern]
\ds[Sx+] [pattern]
\dt[Sx+] [pattern]
\dv[Sx+] [pattern]

In this group of commands, the letters E, i, m, s, t, and v stand for foreign table, index, materialized
view, sequence, table, and view, respectively. You can specify any or all of these letters, in any order,
to obtain a listing of objects of these types. For example, \dti lists tables and indexes. If x is appended
to the command name, the results are displayed in expanded mode. If + is appended to the command
name, each object is listed with its persistence status (permanent, temporary, or unlogged), physical
size on disk, and associated description if any. If pattern is specified, only objects whose names
match the pattern are listed. By default, only user-created objects are shown; supply a pattern or
the S modifier to include system objects.

\des[x+] [pattern]

Lists foreign servers (mnemonic: “external servers”). If pattern is specified, only those servers
whose name matches the pattern are listed. If x is appended to the command name, the results are
displayed in expanded mode. If + is appended to the command name, a full description of each server
is shown, including the server's access privileges, type, version, options, and description.

\det[x+] [pattern]

Lists foreign tables (mnemonic: “external tables”). If pattern is specified, only entries whose table
name or schema name matches the pattern are listed. If x is appended to the command name, the
results are displayed in expanded mode. If + is appended to the command name, generic options and
the foreign table description are also displayed.

\deu[x+] [pattern]

Lists user mappings (mnemonic: “external users”). If pattern is specified, only those mappings
whose user names match the pattern are listed. If x is appended to the command name, the results
are displayed in expanded mode. If + is appended to the command name, additional information
about each mapping is shown.

Caution
\deu+ might also display the user name and password of the remote user, so care should be
taken not to disclose them.

\dew[x+] [pattern]

Lists foreign-data wrappers (mnemonic: “external wrappers”). If pattern is specified, only those
foreign-data wrappers whose name matches the pattern are listed. If x is appended to the command
name, the results are displayed in expanded mode. If + is appended to the command name, the access
privileges, options, and description of the foreign-data wrapper are also shown.

2001

psql

\df[anptwSx+] [pattern [arg_pattern ...]]

Lists functions, together with their result data types, argument data types, and function types, which
are classified as “agg” (aggregate), “normal”, “procedure”, “trigger”, or “window”. To display only
functions of specific type(s), add the corresponding letters a, n, p, t, or w to the command. If pattern
is specified, only functions whose names match the pattern are shown. Any additional arguments are
type-name patterns, which are matched to the type names of the first, second, and so on arguments of
the function. (Matching functions can have more arguments than what you specify. To prevent that,
write a dash - as the last arg_pattern.) By default, only user-created objects are shown; supply a
pattern or the S modifier to include system objects. If x is appended to the command name, the results
are displayed in expanded mode. If + is appended to the command name, additional information about
each function is shown, including volatility, parallel safety, owner, security classification, whether
it is leakproof, access privileges, language, internal name (for C and internal functions only), and
description. Source code for a specific function can be seen using \sf.

\dF[x+] [pattern]

Lists text search configurations. If pattern is specified, only configurations whose names match the
pattern are shown. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, a full description of each configuration is shown,
including the underlying text search parser and the dictionary list for each parser token type.

\dFd[x+] [pattern]

Lists text search dictionaries. If pattern is specified, only dictionaries whose names match the pat-
tern are shown. If x is appended to the command name, the results are displayed in expanded mode.
If + is appended to the command name, additional information is shown about each selected dictio-
nary, including the underlying text search template and the option values.

\dFp[x+] [pattern]

Lists text search parsers. If pattern is specified, only parsers whose names match the pattern are
shown. If x is appended to the command name, the results are displayed in expanded mode. If + is
appended to the command name, a full description of each parser is shown, including the underlying
functions and the list of recognized token types.

\dFt[x+] [pattern]

Lists text search templates. If pattern is specified, only templates whose names match the pattern
are shown. If x is appended to the command name, the results are displayed in expanded mode. If +
is appended to the command name, additional information is shown about each template, including
the underlying function names.

\dg[Sx+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”,
this command is now equivalent to \du.) By default, only user-created roles are shown; supply the
S modifier to include system roles. If pattern is specified, only those roles whose names match the
pattern are listed. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, additional information is shown about each role;
currently this adds the comment for each role.

\dl[x+]

This is an alias for \lo_list, which shows a list of large objects. If x is appended to the command
name, the results are displayed in expanded mode. If + is appended to the command name, each
large object is listed with its associated permissions, if any.

\dL[Sx+] [pattern]

Lists procedural languages. If pattern is specified, only languages whose names match the pattern
are listed. By default, only user-created languages are shown; supply the S modifier to include system

2002

psql

objects. If x is appended to the command name, the results are displayed in expanded mode. If +
is appended to the command name, each language is listed with its call handler, validator, access
privileges, and whether it is a system object.

\dn[Sx+] [pattern]

Lists schemas (namespaces). If pattern is specified, only schemas whose names match the pattern
are listed. By default, only user-created objects are shown; supply a pattern or the S modifier to
include system objects. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, each object is listed with its associated permissions
and description, if any.

\do[Sx+] [pattern [arg_pattern [arg_pattern]]]

Lists operators with their operand and result types. If pattern is specified, only operators whose
names match the pattern are listed. If one arg_pattern is specified, only prefix operators whose right
argument's type name matches that pattern are listed. If two arg_patterns are specified, only binary
operators whose argument type names match those patterns are listed. (Alternatively, write - for
the unused argument of a unary operator.) By default, only user-created objects are shown; supply a
pattern or the S modifier to include system objects. If x is appended to the command name, the results
are displayed in expanded mode. If + is appended to the command name, additional information about
each operator is shown, including the name of the underlying function, and whether it is leakproof.

\dO[Sx+] [pattern]

Lists collations. If pattern is specified, only collations whose names match the pattern are listed. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If x is appended to the command name, the results are displayed in expanded mode. If + is
appended to the command name, each collation is listed with its associated description, if any. Note
that only collations usable with the current database's encoding are shown, so the results may vary
in different databases of the same installation.

\dp[Sx] [pattern]

Lists tables, views and sequences with their associated access privileges. If pattern is specified, only
tables, views and sequences whose names match the pattern are listed. By default only user-created
objects are shown; supply a pattern or the S modifier to include system objects. If x is appended to
the command name, the results are displayed in expanded mode.

The GRANT and REVOKE commands are used to set access privileges. The meaning of the privilege
display is explained in Section 5.8.

\dP[itnx+] [pattern]

Lists partitioned relations. If pattern is specified, only entries whose name matches the pattern are
listed. The modifiers t (tables) and i (indexes) can be appended to the command, filtering the kind
of relations to list. By default, partitioned tables and indexes are listed.

If the modifier n (“nested”) is used, or a pattern is specified, then non-root partitioned relations are
included, and a column is shown displaying the parent of each partitioned relation.

If x is appended to the command name, the results are displayed in expanded mode. If + is appended
to the command name, the sum of the sizes of each relation's partitions is also displayed, along with
the relation's description. If n is combined with +, two sizes are shown: one including the total size
of directly-attached leaf partitions, and another showing the total size of all partitions, including
indirectly attached sub-partitions.

\drds[x] [role-pattern [database-pattern]]

Lists defined configuration settings. These settings can be role-specific, database-specific, or both.
role-pattern and database-pattern are used to select specific roles and databases to list, respec-

2003

psql

tively. If omitted, or if * is specified, all settings are listed, including those not role-specific or data-
base-specific, respectively. If x is appended to the command name, the results are displayed in ex-
panded mode.

The ALTER ROLE and ALTER DATABASE commands are used to define per-role and per-database con-
figuration settings.

\drg[Sx] [pattern]

Lists information about each granted role membership, including assigned options (ADMIN, INHERIT
and/or SET) and grantor. See the GRANT command for information about role memberships.

By default, only grants to user-created roles are shown; supply the S modifier to include system roles.
If pattern is specified, only grants to those roles whose names match the pattern are listed. If x is
appended to the command name, the results are displayed in expanded mode.

\dRp[x+] [pattern]

Lists replication publications. If pattern is specified, only those publications whose names match the
pattern are listed. If x is appended to the command name, the results are displayed in expanded mode.
If + is appended to the command name, the tables and schemas associated with each publication
are shown as well.

\dRs[x+] [pattern]

Lists replication subscriptions. If pattern is specified, only those subscriptions whose names match
the pattern are listed. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, additional properties of the subscriptions are shown.

\dT[Sx+] [pattern]

Lists data types. If pattern is specified, only types whose names match the pattern are listed. If x
is appended to the command name, the results are displayed in expanded mode. If + is appended to
the command name, each type is listed with its internal name and size, its allowed values if it is an
enum type, and its associated permissions. By default, only user-created objects are shown; supply a
pattern or the S modifier to include system objects.

\du[Sx+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”,
this command is now equivalent to \dg.) By default, only user-created roles are shown; supply the
S modifier to include system roles. If pattern is specified, only those roles whose names match the
pattern are listed. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, additional information is shown about each role;
currently this adds the comment for each role.

\dx[x+] [pattern]

Lists installed extensions. If pattern is specified, only those extensions whose names match the
pattern are listed. If x is appended to the command name, the results are displayed in expanded
mode. If + is appended to the command name, all the objects belonging to each matching extension
are listed.

\dX[x] [pattern]

Lists extended statistics. If pattern is specified, only those extended statistics whose names match
the pattern are listed. If x is appended to the command name, the results are displayed in expanded
mode.

The status of each kind of extended statistics is shown in a column named after its statistic kind
(e.g. Ndistinct). defined means that it was requested when creating the statistics, and NULL means

2004

psql

it wasn't requested. You can use pg_stats_ext if you'd like to know whether ANALYZE was run and
statistics are available to the planner.

\dy[x+] [pattern]

Lists event triggers. If pattern is specified, only those event triggers whose names match the pattern
are listed. If x is appended to the command name, the results are displayed in expanded mode. If +
is appended to the command name, each object is listed with its associated description.

\e or \edit [filename] [line_number]
If filename is specified, the file is edited; after the editor exits, the file's content is copied into the
current query buffer. If no filename is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion. Or, if the current query buffer is empty, the most recently
executed query is copied to a temporary file and edited in the same fashion.

If you edit a file or the previous query, and you quit the editor without modifying the file, the query
buffer is cleared. Otherwise, the new contents of the query buffer are re-parsed according to the
normal rules of psql, treating the whole buffer as a single line. Any complete queries are immediately
executed; that is, if the query buffer contains or ends with a semicolon, everything up to that point is
executed and removed from the query buffer. Whatever remains in the query buffer is redisplayed.
Type semicolon or \g to send it, or \r to cancel it by clearing the query buffer.

Treating the buffer as a single line primarily affects meta-commands: whatever is in the buffer after
a meta-command will be taken as argument(s) to the meta-command, even if it spans multiple lines.
(Thus you cannot make meta-command-using scripts this way. Use \i for that.)

If a line number is specified, psql will position the cursor on the specified line of the file or query
buffer. Note that if a single all-digits argument is given, psql assumes it is a line number, not a file
name.

Tip
See Environment, below, for how to configure and customize your editor.

\echo text [...]

Prints the evaluated arguments to standard output, separated by spaces and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:
=> \echo `date`
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted -n the trailing newline is not written (nor is the first argument).

Tip
If you use the \o command to redirect your query output you might wish to use \qecho instead
of this command. See also \warn.

\ef [function_description [line_number]]

This command fetches and edits the definition of the named function or procedure, in the form of a
CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command. Editing is done in the
same way as for \edit. If you quit the editor without saving, the statement is discarded. If you save
and exit the editor, the updated command is executed immediately if you added a semicolon to it.
Otherwise it is redisplayed; type semicolon or \g to send it, or \r to cancel.

The target function can be specified by name alone, or by name and arguments, for example foo(in-
teger, text). The argument types must be given if there is more than one function of the same name.

2005

psql

If no function is specified, a blank CREATE FUNCTION template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the function body.
(Note that the function body typically does not begin on the first line of the file.)

Unlike most other meta-commands, the entire remainder of the line is always taken to be the argu-
ment(s) of \ef, and neither variable interpolation nor backquote expansion are performed in the
arguments.

Tip
See Environment, below, for how to configure and customize your editor.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the current en-
coding.

\errverbose

Repeats the most recent server error message at maximum verbosity, as though VERBOSITY were set
to verbose and SHOW_CONTEXT were set to always.

\ev [view_name [line_number]]

This command fetches and edits the definition of the named view, in the form of a CREATE OR REPLACE
VIEW command. Editing is done in the same way as for \edit. If you quit the editor without saving, the
statement is discarded. If you save and exit the editor, the updated command is executed immediately
if you added a semicolon to it. Otherwise it is redisplayed; type semicolon or \g to send it, or \r
to cancel.

If no view is specified, a blank CREATE VIEW template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the view definition.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the argu-
ment(s) of \ev, and neither variable interpolation nor backquote expansion are performed in the
arguments.

\f [string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). It is equivalent
to \pset fieldsep.

\g [(option=value [...])] [filename]
\g [(option=value [...])] [|command]

Sends the current query buffer to the server for execution.

If parentheses appear after \g, they surround a space-separated list of option=value formatting-op-
tion clauses, which are interpreted in the same way as \pset option value commands, but take
effect only for the duration of this query. In this list, spaces are not allowed around = signs, but are
required between option clauses. If =value is omitted, the named option is changed in the same way
as for \pset option with no explicit value.

If a filename or |command argument is given, the query's output is written to the named file or piped
to the given shell command, instead of displaying it as usual. The file or command is written to only
if the query successfully returns zero or more tuples, not if the query fails or is a non-data-returning
SQL command.

2006

psql

If the current query buffer is empty, the most recently sent query is re-executed instead. Except for
that behavior, \g without any arguments is essentially equivalent to a semicolon. With arguments, \g
provides a “one-shot” alternative to the \o command, and additionally allows one-shot adjustments
of the output formatting options normally set by \pset.

When the last argument begins with |, the entire remainder of the line is taken to be the command
to execute, and neither variable interpolation nor backquote expansion are performed in it. The rest
of the line is simply passed literally to the shell.

\gdesc

Shows the description (that is, the column names and data types) of the result of the current query
buffer. The query is not actually executed; however, if it contains some type of syntax error, that
error will be reported in the normal way.

If the current query buffer is empty, the most recently sent query is described instead.

\getenv psql_var env_var

Gets the value of the environment variable env_var and assigns it to the psql variable psql_var. If
env_var is not defined in the psql process's environment, psql_var is not changed. Example:

=> \getenv home HOME
=> \echo :home
/home/postgres

\gexec

Sends the current query buffer to the server, then treats each column of each row of the query's
output (if any) as an SQL statement to be executed. For example, to create an index on each column
of my_table:

=> SELECT format('create index on my_table(%I)', attname)
-> FROM pg_attribute
-> WHERE attrelid = 'my_table'::regclass AND attnum > 0
-> ORDER BY attnum
-> \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX

The generated queries are executed in the order in which the rows are returned, and left-to-right
within each row if there is more than one column. NULL fields are ignored. The generated queries
are sent literally to the server for processing, so they cannot be psql meta-commands nor contain
psql variable references. If any individual query fails, execution of the remaining queries continues
unless ON_ERROR_STOP is set. Execution of each query is subject to ECHO processing. (Setting ECHO to
all or queries is often advisable when using \gexec.) Query logging, single-step mode, timing, and
other query execution features apply to each generated query as well.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gset [prefix]

Sends the current query buffer to the server and stores the query's output into psql variables (see
Variables below). The query to be executed must return exactly one row. Each column of the row is
stored into a separate variable, named the same as the column. For example:

=> SELECT 'hello' AS var1, 10 AS var2
-> \gset
=> \echo :var1 :var2
hello 10

2007

psql

If you specify a prefix, that string is prepended to the query's column names to create the variable
names to use:
=> SELECT 'hello' AS var1, 10 AS var2
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10

If a column result is NULL, the corresponding variable is unset rather than being set.

If the query fails or does not return one row, no variables are changed.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gx [(option=value [...])] [filename]
\gx [(option=value [...])] [|command]

\gx is equivalent to \g, except that it forces expanded output mode for this query, as if expanded=on
were included in the list of \pset options. See also \x.

\h or \help [command]
Gives syntax help on the specified SQL command. If command is not specified, then psql will list all
the commands for which syntax help is available. If command is an asterisk (*), then syntax help on
all SQL commands is shown.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the argu-
ment(s) of \help, and neither variable interpolation nor backquote expansion are performed in the
arguments.

Note
To simplify typing, commands that consists of several words do not have to be quoted. Thus
it is fine to type \help alter table.

\H or \html
Turns on HTML query output format. If the HTML format is already on, it is switched back to the
default aligned text format. This command is for compatibility and convenience, but see \pset about
setting other output options.

\i or \include filename
Reads input from the file filename and executes it as though it had been typed on the keyboard.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.
This can be used to intersperse interactive input with input from files. Note that Readline behavior
will be used only if it is active at the outermost level.

Note
If you want to see the lines on the screen as they are read you must set the variable ECHO to all.

\if expression
\elif expression
\else
\endif

This group of commands implements nestable conditional blocks. A conditional block must begin
with an \if and end with an \endif. In between there may be any number of \elif clauses, which

2008

psql

may optionally be followed by a single \else clause. Ordinary queries and other types of backslash
commands may (and usually do) appear between the commands forming a conditional block.

The \if and \elif commands read their argument(s) and evaluate them as a Boolean expression.
If the expression yields true then processing continues normally; otherwise, lines are skipped until
a matching \elif, \else, or \endif is reached. Once an \if or \elif test has succeeded, the argu-
ments of later \elif commands in the same block are not evaluated but are treated as false. Lines
following an \else are processed only if no earlier matching \if or \elif succeeded.

The expression argument of an \if or \elif command is subject to variable interpolation and back-
quote expansion, just like any other backslash command argument. After that it is evaluated like the
value of an on/off option variable. So a valid value is any unambiguous case-insensitive match for one
of: true, false, 1, 0, on, off, yes, no. For example, t, T, and tR will all be considered to be true.

Expressions that do not properly evaluate to true or false will generate a warning and be treated
as false.

Lines being skipped are parsed normally to identify queries and backslash commands, but queries
are not sent to the server, and backslash commands other than conditionals (\if, \elif, \else,
\endif) are ignored. Conditional commands are checked only for valid nesting. Variable references
in skipped lines are not expanded, and backquote expansion is not performed either.

All the backslash commands of a given conditional block must appear in the same source file. If EOF
is reached on the main input file or an \include-ed file before all local \if-blocks have been closed,
then psql will raise an error.

Here is an example:

-- check for the existence of two separate records in the database and store
-- the results in separate psql variables
SELECT
 EXISTS(SELECT 1 FROM customer WHERE customer_id = 123) as is_customer,
 EXISTS(SELECT 1 FROM employee WHERE employee_id = 456) as is_employee
\gset
\if :is_customer
 SELECT * FROM customer WHERE customer_id = 123;
\elif :is_employee
 \echo 'is not a customer but is an employee'
 SELECT * FROM employee WHERE employee_id = 456;
\else
 \if yes
 \echo 'not a customer or employee'
 \else
 \echo 'this will never print'
 \endif
\endif

\ir or \include_relative filename
The \ir command is similar to \i, but resolves relative file names differently. When executing in
interactive mode, the two commands behave identically. However, when invoked from a script, \ir
interprets file names relative to the directory in which the script is located, rather than the current
working directory.

\l[x+] or \list[x+] [pattern]
List the databases in the server and show their names, owners, character set encodings, and access
privileges. If pattern is specified, only databases whose names match the pattern are listed. If x is
appended to the command name, the results are displayed in expanded mode. If + is appended to
the command name, database sizes, default tablespaces, and descriptions are also displayed. (Size
information is only available for databases that the current user can connect to.)

2009

psql

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that this
is subtly different from the server function lo_export, which acts with the permissions of the user
that the database server runs as and on the server's file system.

Tip
Use \lo_list to find out the large object's OID.

\lo_import filename [comment]

Stores the file into a PostgreSQL large object. Optionally, it associates the given comment with the
object. Example:

foo=> \lo_import '/home/peter/pictures/photo.xcf' 'a picture of me'
lo_import 152801

The response indicates that the large object received object ID 152801, which can be used to access
the newly-created large object in the future. For the sake of readability, it is recommended to always
associate a human-readable comment with every object. Both OIDs and comments can be viewed
with the \lo_list command.

Note that this command is subtly different from the server-side lo_import because it acts as the
local user on the local file system, rather than the server's user and file system.

\lo_list[x+]

Shows a list of all PostgreSQL large objects currently stored in the database, along with any com-
ments provided for them. If x is appended to the command name, the results are displayed in ex-
panded mode. If + is appended to the command name, each large object is listed with its associated
permissions, if any.

\lo_unlink loid

Deletes the large object with OID loid from the database.

Tip
Use \lo_list to find out the large object's OID.

\o or \out [filename]
\o or \out [|command]

Arranges to save future query results to the file filename or pipe future results to the shell command
command. If no argument is specified, the query output is reset to the standard output.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

“Query results” includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as \d); but
not error messages.

Tip
To intersperse text output in between query results, use \qecho.

2010

psql

\p or \print

Print the current query buffer to the standard output. If the current query buffer is empty, the most
recently executed query is printed instead.

\parse statement_name

Creates a prepared statement from the current query buffer, based on the name of a destination
prepared-statement object. An empty string denotes the unnamed prepared statement.

Example:

SELECT $1 \parse stmt1

This command causes the extended query protocol to be used, unlike normal psql operation, which
uses the simple query protocol. A Parse (F) message will be issued by this command so it can be useful
to test the extended query protocol from psql. This command affects only the next query executed;
all subsequent queries will use the simple query protocol by default.

\password [username]

Changes the password of the specified user (by default, the current user). This command prompts
for the new password, encrypts it, and sends it to the server as an ALTER ROLE command. This makes
sure that the new password does not appear in cleartext in the command history, the server log,
or elsewhere.

\prompt [text] name

Prompts the user to supply text, which is assigned to the variable name. An optional prompt string,
text, can be specified. (For multiword prompts, surround the text with single quotes.)

By default, \prompt uses the terminal for input and output. However, if the -f command line switch
was used, \prompt uses standard input and standard output.

\pset [option [value]]

This command sets options affecting the output of query result tables. option indicates which option
is to be set. The semantics of value vary depending on the selected option. For some options, omitting
value causes the option to be toggled or unset, as described under the particular option. If no such
behavior is mentioned, then omitting value just results in the current setting being displayed.

\pset without any arguments displays the current status of all printing options.

Adjustable printing options are:

border

The value must be a number. In general, the higher the number the more borders and lines the
tables will have, but details depend on the particular format. In HTML format, this will translate
directly into the border=... attribute. In most other formats only values 0 (no border), 1 (internal
dividing lines), and 2 (table frame) make sense, and values above 2 will be treated the same
as border = 2. The latex and latex-longtable formats additionally allow a value of 3 to add
dividing lines between data rows.

columns

Sets the target width for the wrapped format, and also the width limit for determining whether
output is wide enough to require the pager or switch to the vertical display in expanded auto
mode. Zero (the default) causes the target width to be controlled by the environment variable
COLUMNS, or the detected screen width if COLUMNS is not set. In addition, if columns is zero then
the wrapped format only affects screen output. If columns is nonzero then file and pipe output
is wrapped to that width as well.

2011

psql

csv_fieldsep

Specifies the field separator to be used in CSV output format. If the separator character appears
in a field's value, that field is output within double quotes, following standard CSV rules. The
default is a comma.

expanded (or x)
If value is specified it must be either on or off, which will enable or disable expanded mode, or
auto. If value is omitted the command toggles between the on and off settings. When expanded
mode is enabled, query results are displayed in two columns, with the column name on the left
and the data on the right. This mode is useful if the data wouldn't fit on the screen in the normal
“horizontal” mode. In the auto setting, the expanded mode is used whenever the query output
has more than one column and is wider than the screen; otherwise, the regular mode is used.
The auto setting is only effective in the aligned and wrapped formats. In other formats, it always
behaves as if the expanded mode is off.

fieldsep

Specifies the field separator to be used in unaligned output format. That way one can create, for
example, tab-separated output, which other programs might prefer. To set a tab as field separator,
type \pset fieldsep '\t'. The default field separator is '|' (a vertical bar).

fieldsep_zero

Sets the field separator to use in unaligned output format to a zero byte.

footer

If value is specified it must be either on or off which will enable or disable display of the table
footer (the (n rows) count). If value is omitted the command toggles footer display on or off.

format

Sets the output format to one of aligned, asciidoc, csv, html, latex, latex-longtable, troff-
ms, unaligned, or wrapped. Unique abbreviations are allowed.

aligned format is the standard, human-readable, nicely formatted text output; this is the default.

unaligned format writes all columns of a row on one line, separated by the currently active
field separator. This is useful for creating output that might be intended to be read in by other
programs, for example, tab-separated or comma-separated format. However, the field separator
character is not treated specially if it appears in a column's value; so CSV format may be better
suited for such purposes.

csv format writes column values separated by commas, applying the quoting rules described in
RFC 4180. This output is compatible with the CSV format of the server's COPY command. A header
line with column names is generated unless the tuples_only parameter is on. Titles and footers
are not printed. Each row is terminated by the system-dependent end-of-line character, which is
typically a single newline (\n) for Unix-like systems or a carriage return and newline sequence
(\r\n) for Microsoft Windows. Field separator characters other than comma can be selected with
\pset csv_fieldsep.

wrapped format is like aligned but wraps wide data values across lines to make the output fit in
the target column width. The target width is determined as described under the columns option.
Note that psql will not attempt to wrap column header titles; therefore, wrapped format behaves
the same as aligned if the total width needed for column headers exceeds the target.

The asciidoc, html, latex, latex-longtable, and troff-ms formats put out tables that are in-
tended to be included in documents using the respective mark-up language. They are not com-
plete documents! This might not be necessary in HTML, but in LaTeX you must have a complete
document wrapper. The latex format uses LaTeX's tabular environment. The latex-longtable
format requires the LaTeX longtable and booktabs packages.

2012

https://datatracker.ietf.org/doc/html/rfc4180

psql

linestyle

Sets the border line drawing style to one of ascii, old-ascii, or unicode. Unique abbreviations
are allowed. (That would mean one letter is enough.) The default setting is ascii. This option
only affects the aligned and wrapped output formats.

ascii style uses plain ASCII characters. Newlines in data are shown using a + symbol in the right-
hand margin. When the wrapped format wraps data from one line to the next without a newline
character, a dot (.) is shown in the right-hand margin of the first line, and again in the left-hand
margin of the following line.

old-ascii style uses plain ASCII characters, using the formatting style used in PostgreSQL 8.4
and earlier. Newlines in data are shown using a : symbol in place of the left-hand column sepa-
rator. When the data is wrapped from one line to the next without a newline character, a ; symbol
is used in place of the left-hand column separator.

unicode style uses Unicode box-drawing characters. Newlines in data are shown using a carriage
return symbol in the right-hand margin. When the data is wrapped from one line to the next
without a newline character, an ellipsis symbol is shown in the right-hand margin of the first line,
and again in the left-hand margin of the following line.

When the border setting is greater than zero, the linestyle option also determines the charac-
ters with which the border lines are drawn. Plain ASCII characters work everywhere, but Unicode
characters look nicer on displays that recognize them.

null

Sets the string to be printed in place of a null value. The default is to print nothing, which can
easily be mistaken for an empty string. For example, one might prefer \pset null '(null)'.

numericlocale

If value is specified it must be either on or off which will enable or disable display of a locale-spe-
cific character to separate groups of digits to the left of the decimal marker. If value is omitted
the command toggles between regular and locale-specific numeric output.

pager

Controls use of a pager program for query and psql help output. When the pager option is off,
the pager program is not used. When the pager option is on, the pager is used when appropriate,
i.e., when the output is to a terminal and will not fit on the screen. The pager option can also be
set to always, which causes the pager to be used for all terminal output regardless of whether it
fits on the screen. \pset pager without a value toggles pager use on and off.

If the environment variable PSQL_PAGER or PAGER is set, output to be paged is piped to the specified
program. Otherwise a platform-dependent default program (such as more) is used.

When using the \watch command to execute a query repeatedly, the environment variable
PSQL_WATCH_PAGER is used to find the pager program instead, on Unix systems. This is configured
separately because it may confuse traditional pagers, but can be used to send output to tools that
understand psql's output format (such as pspg --stream).

pager_min_lines

If pager_min_lines is set to a number greater than the page height, the pager program will not
be called unless there are at least this many lines of output to show. The default setting is 0.

recordsep

Specifies the record (line) separator to use in unaligned output format. The default is a newline
character.

2013

psql

recordsep_zero

Sets the record separator to use in unaligned output format to a zero byte.

tableattr (or T)
In HTML format, this specifies attributes to be placed inside the table tag. This could for example
be cellpadding or bgcolor. Note that you probably don't want to specify border here, as that is
already taken care of by \pset border. If no value is given, the table attributes are unset.

In latex-longtable format, this controls the proportional width of each column containing a left-
aligned data type. It is specified as a whitespace-separated list of values, e.g., '0.2 0.2 0.6'.
Unspecified output columns use the last specified value.

title (or C)
Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no value is given, the title is unset.

tuples_only (or t)
If value is specified it must be either on or off which will enable or disable tuples-only mode. If
value is omitted the command toggles between regular and tuples-only output. Regular output
includes extra information such as column headers, titles, and various footers. In tuples-only
mode, only actual table data is shown.

unicode_border_linestyle

Sets the border drawing style for the unicode line style to one of single or double.

unicode_column_linestyle

Sets the column drawing style for the unicode line style to one of single or double.

unicode_header_linestyle

Sets the header drawing style for the unicode line style to one of single or double.

xheader_width

Sets the maximum width of the header for expanded output to one of full (the default value),
column, page, or an integer value.

full: the expanded header is not truncated, and will be as wide as the widest output line.

column: truncate the header line to the width of the first column.

page: truncate the header line to the terminal width.

integer value: specify the exact maximum width of the header line.

Illustrations of how these different formats look can be seen in Examples, below.

Tip
There are various shortcut commands for \pset. See \a, \C, \f, \H, \t, \T, and \x.

\q or \quit
Quits the psql program. In a script file, only execution of that script is terminated.

\qecho text [...]

This command is identical to \echo except that the output will be written to the query output channel,
as set by \o.

2014

psql

\r or \reset
Resets (clears) the query buffer.

\restrict restrict_key

Enter "restricted" mode with the provided key. In this mode, the only allowed meta-command is
\unrestrict, to exit restricted mode. The key may contain only alphanumeric characters.

This command is primarily intended for use in plain-text dumps generated by pg_dump, pg_dumpall,
and pg_restore, but it may be useful elsewhere.

\s [filename]

Print psql's command line history to filename. If filename is omitted, the history is written to the
standard output (using the pager if appropriate). This command is not available if psql was built
without Readline support.

\set [name [value [...]]]

Sets the psql variable name to value, or if more than one value is given, to the concatenation of all of
them. If only one argument is given, the variable is set to an empty-string value. To unset a variable,
use the \unset command.

\set without any arguments displays the names and values of all currently-set psql variables.

Valid variable names can contain letters, digits, and underscores. See Variables below for details.
Variable names are case-sensitive.

Certain variables are special, in that they control psql's behavior or are automatically set to reflect
connection state. These variables are documented in Variables, below.

Note
This command is unrelated to the SQL command SET.

\setenv name [value]

Sets the environment variable name to value, or if the value is not supplied, unsets the environment
variable. Example:
testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F

\sf[+] function_description

This command fetches and shows the definition of the named function or procedure, in the form of a
CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command. The definition is printed
to the current query output channel, as set by \o.

The target function can be specified by name alone, or by name and arguments, for example foo(in-
teger, text). The argument types must be given if there is more than one function of the same name.

If + is appended to the command name, then the output lines are numbered, with the first line of
the function body being line 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the argu-
ment(s) of \sf, and neither variable interpolation nor backquote expansion are performed in the
arguments.

\sv[+] view_name

This command fetches and shows the definition of the named view, in the form of a CREATE OR
REPLACE VIEW command. The definition is printed to the current query output channel, as set by \o.

2015

psql

If + is appended to the command name, then the output lines are numbered from 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the argu-
ment(s) of \sv, and neither variable interpolation nor backquote expansion are performed in the
arguments.

\startpipeline
\sendpipeline
\syncpipeline
\endpipeline
\flushrequest
\flush
\getresults [number_results]

This group of commands implements pipelining of SQL statements. A pipeline must begin with
a \startpipeline and end with an \endpipeline. In between there may be any number of
\syncpipeline commands, which sends a sync message without ending the ongoing pipeline and
flushing the send buffer. In pipeline mode, statements are sent to the server without waiting for the
results of previous statements. See Section 32.5 for more details.

All queries executed while a pipeline is ongoing use the extended query protocol. Queries are ap-
pended to the pipeline when ending with a semicolon. The meta-commands \bind, \bind_named,
\close_prepared or \parse can be used in an ongoing pipeline. While a pipeline is ongoing, \send-
pipeline will append the current query buffer to the pipeline. Other meta-commands like \g, \gx
or \gdesc are not allowed in pipeline mode.

\flushrequest appends a flush command to the pipeline, allowing to read results with \getresults
without issuing a sync or ending the pipeline. \getresults will automatically push unsent data to
the server. \flush can be used to manually push unsent data.

\getresults accepts an optional number_results parameter. If provided, only the first number_re-
sults pending results will be read. If not provided or 0, all pending results are read.

When pipeline mode is active, a dedicated prompt variable is available to report the pipeline status.
See %P for more details

COPY is not supported while in pipeline mode.

Example:
\startpipeline
SELECT * FROM pg_class;
SELECT 1 \bind \sendpipeline
\flushrequest
\getresults
\endpipeline

\t

Toggles the display of output column name headings and row count footer. This command is equiv-
alent to \pset tuples_only and is provided for convenience.

\T table_options

Specifies attributes to be placed within the table tag in HTML output format. This command is
equivalent to \pset tableattr table_options.

\timing [on | off]

With a parameter, turns displaying of how long each SQL statement takes on or off. Without a para-
meter, toggles the display between on and off. The display is in milliseconds; intervals longer than 1
second are also shown in minutes:seconds format, with hours and days fields added if needed.

2016

psql

\unrestrict restrict_key

Exit "restricted" mode (i.e., where all other meta-commands are blocked), provided the specified key
matches the one given to \restrict when restricted mode was entered.

This command is primarily intended for use in plain-text dumps generated by pg_dump, pg_dumpall,
and pg_restore, but it may be useful elsewhere.

\unset name

Unsets (deletes) the psql variable name.

Most variables that control psql's behavior cannot be unset; instead, an \unset command is inter-
preted as setting them to their default values. See Variables below.

\w or \write filename
\w or \write |command

Writes the current query buffer to the file filename or pipes it to the shell command command. If the
current query buffer is empty, the most recently executed query is written instead.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

\warn text [...]

This command is identical to \echo except that the output will be written to psql's standard error
channel, rather than standard output.

\watch [i[nterval]=seconds] [c[ount]=times] [m[in_rows]=rows] [seconds]

Repeatedly execute the current query buffer (as \g does) until interrupted, or the query fails, or the
execution count limit (if given) is reached, or the query no longer returns the minimum number of
rows. Wait the specified number of seconds (default 2) between executions. The default wait can be
changed with the variable WATCH_INTERVAL. For backwards compatibility, seconds can be specified
with or without an interval= prefix. Each query result is displayed with a header that includes the
\pset title string (if any), the time as of query start, and the delay interval.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\x [on | off | auto]

Sets or toggles expanded table formatting mode. As such it is equivalent to \pset expanded.

\z[Sx] [pattern]

Lists tables, views and sequences with their associated access privileges. If a pattern is specified,
only tables, views and sequences whose names match the pattern are listed. By default only user-
created objects are shown; supply a pattern or the S modifier to include system objects. If x is ap-
pended to the command name, the results are displayed in expanded mode.

This is an alias for \dp (“display privileges”).

\! [command]

With no argument, escapes to a sub-shell; psql resumes when the sub-shell exits. With an argument,
executes the shell command command.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the argu-
ment(s) of \!, and neither variable interpolation nor backquote expansion are performed in the ar-
guments. The rest of the line is simply passed literally to the shell.

2017

psql

\? [topic]

Shows help information. The optional topic parameter (defaulting to commands) selects which part
of psql is explained: commands describes psql's backslash commands; options describes the com-
mand-line options that can be passed to psql; and variables shows help about psql configuration
variables.

\;

Backslash-semicolon is not a meta-command in the same way as the preceding commands; rather, it
simply causes a semicolon to be added to the query buffer without any further processing.

Normally, psql will dispatch an SQL command to the server as soon as it reaches the command-ending
semicolon, even if more input remains on the current line. Thus for example entering

select 1; select 2; select 3;

will result in the three SQL commands being individually sent to the server, with each one's results
being displayed before continuing to the next command. However, a semicolon entered as \; will
not trigger command processing, so that the command before it and the one after are effectively
combined and sent to the server in one request. So for example

select 1\; select 2\; select 3;

results in sending the three SQL commands to the server in a single request, when the non-back-
slashed semicolon is reached. The server executes such a request as a single transaction, unless
there are explicit BEGIN/COMMIT commands included in the string to divide it into multiple transac-
tions. (See Section 54.2.2.1 for more details about how the server handles multi-query strings.)

Patterns

The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example,
\dt "FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for SQL
names, you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR will
display the table named fooFOObar.

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path — this is equivalent to using * as the pattern. (An object is
said to be visible if its containing schema is in the search path and no object of the same kind and name
appears earlier in the search path. This is equivalent to the statement that the object can be referenced
by name without explicit schema qualification.) To see all objects in the database regardless of visibility,
use *.* as the pattern.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any
single character. (This notation is comparable to Unix shell file name patterns.) For example, \dt int*
displays tables whose names begin with int. But within double quotes, * and ? lose these special mean-
ings and are just matched literally.

A relation pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object
name pattern. For example, \dt foo*.*bar* displays all tables whose table name includes bar that are
in schemas whose schema name starts with foo. When no dot appears, then the pattern matches only
objects that are visible in the current schema search path. Again, a dot within double quotes loses its
special meaning and is matched literally. A relation pattern that contains two dots (.) is interpreted as
a database name followed by a schema name pattern followed by an object name pattern. The database
name portion will not be treated as a pattern and must match the name of the currently connected
database, else an error will be raised.

2018

psql

A schema pattern that contains a dot (.) is interpreted as a database name followed by a schema name
pattern. For example, \dn mydb.*foo* displays all schemas whose schema name includes foo. The data-
base name portion will not be treated as a pattern and must match the name of the currently connected
database, else an error will be raised.

Advanced users can use regular-expression notations such as character classes, for example [0-9] to
match any digit. All regular expression special characters work as specified in Section 9.7.3, except for
. which is taken as a separator as mentioned above, * which is translated to the regular-expression
notation .*, ? which is translated to ., and $ which is matched literally. You can emulate these pattern
characters at need by writing ? for ., (R+|) for R*, or (R|) for R?. $ is not needed as a regular-expression
character since the pattern must match the whole name, unlike the usual interpretation of regular ex-
pressions (in other words, $ is automatically appended to your pattern). Write * at the beginning and/or
end if you don't wish the pattern to be anchored. Note that within double quotes, all regular expression
special characters lose their special meanings and are matched literally. Also, the regular expression
special characters are matched literally in operator name patterns (i.e., the argument of \do).

Advanced Features

Variables

psql provides variable substitution features similar to common Unix command shells. Variables are sim-
ply name/value pairs, where the value can be any string of any length. The name must consist of letters
(including non-Latin letters), digits, and underscores.

To set a variable, use the psql meta-command \set. For example,
testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with
a colon, for example:
testdb=> \echo :foo
bar

This works in both regular SQL commands and meta-commands; there is more detail in SQL Interpola-
tion, below.

If you call \set without a second argument, the variable is set to an empty-string value. To unset (i.e.,
delete) a variable, use the command \unset. To show the values of all variables, call \set without any
argument.

Note
The arguments of \set are subject to the same substitution rules as with other commands. Thus
you can construct interesting references such as \set :foo 'something' and get “soft links” or
“variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?), there is no
way to do anything useful with these constructs. On the other hand, \set bar :foo is a perfectly
valid way to copy a variable.

A number of these variables are treated specially by psql. They represent certain option settings that
can be changed at run time by altering the value of the variable, or in some cases represent changeable
state of psql. By convention, all specially treated variables' names consist of all upper-case ASCII letters
(and possibly digits and underscores). To ensure maximum compatibility in the future, avoid using such
variable names for your own purposes.

Variables that control psql's behavior generally cannot be unset or set to invalid values. An \unset
command is allowed but is interpreted as setting the variable to its default value. A \set command
without a second argument is interpreted as setting the variable to on, for control variables that accept
that value, and is rejected for others. Also, control variables that accept the values on and off will also
accept other common spellings of Boolean values, such as true and false.

2019

psql

The specially treated variables are:

AUTOCOMMIT
When on (the default), each SQL command is automatically committed upon successful completion.
To postpone commit in this mode, you must enter a BEGIN or START TRANSACTION SQL command.
When off or unset, SQL commands are not committed until you explicitly issue COMMIT or END. The
autocommit-off mode works by issuing an implicit BEGIN for you, just before any command that is not
already in a transaction block and is not itself a BEGIN or other transaction-control command, nor a
command that cannot be executed inside a transaction block (such as VACUUM).

Note
In autocommit-off mode, you must explicitly abandon any failed transaction by entering ABORT
or ROLLBACK. Also keep in mind that if you exit the session without committing, your work will
be lost.

Note
The autocommit-on mode is PostgreSQL's traditional behavior, but autocommit-off is closer to
the SQL spec. If you prefer autocommit-off, you might wish to set it in the system-wide psqlrc
file or your ~/.psqlrc file.

COMP_KEYWORD_CASE

Determines which letter case to use when completing an SQL key word. If set to lower or upper,
the completed word will be in lower or upper case, respectively. If set to preserve-lower or pre-
serve-upper (the default), the completed word will be in the case of the word already entered, but
words being completed without anything entered will be in lower or upper case, respectively.

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be changed or unset.

ECHO

If set to all, all nonempty input lines are printed to standard output as they are read. (This does not
apply to lines read interactively.) To select this behavior on program start-up, use the switch -a. If
set to queries, psql prints each query to standard output as it is sent to the server. The switch to
select this behavior is -e. If set to errors, then only failed queries are displayed on standard error
output. The switch for this behavior is -b. If set to none (the default), then no queries are displayed.

ECHO_HIDDEN

When this variable is set to on and a backslash command queries the database, the query is first
shown. This feature helps you to study PostgreSQL internals and provide similar functionality in
your own programs. (To select this behavior on program start-up, use the switch -E.) If you set this
variable to the value noexec, the queries are just shown but are not actually sent to the server and
executed. The default value is off.

ENCODING

The current client character set encoding. This is set every time you connect to a database (including
program start-up), and when you change the encoding with \encoding, but it can be changed or
unset.

ERROR

true if the last SQL query failed, false if it succeeded. See also SQLSTATE.

2020

psql

FETCH_COUNT

If this variable is set to an integer value greater than zero, the results of SELECT queries are fetched
and displayed in groups of that many rows, rather than the default behavior of collecting the entire
result set before display. Therefore only a limited amount of memory is used, regardless of the size
of the result set. Settings of 100 to 1000 are commonly used when enabling this feature. Keep in
mind that when using this feature, a query might fail after having already displayed some rows.

Tip
Although you can use any output format with this feature, the default aligned format tends
to look bad because each group of FETCH_COUNT rows will be formatted separately, leading to
varying column widths across the row groups. The other output formats work better.

HIDE_TABLEAM

If this variable is set to true, a table's access method details are not displayed. This is mainly useful
for regression tests.

HIDE_TOAST_COMPRESSION

If this variable is set to true, column compression method details are not displayed. This is mainly
useful for regression tests.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into the history
list. If set to a value of ignoredups, lines matching the previous history line are not entered. A value
of ignoreboth combines the two options. If set to none (the default), all lines read in interactive mode
are saved on the history list.

Note
This feature was shamelessly plagiarized from Bash.

HISTFILE

The file name that will be used to store the history list. If unset, the file name is taken from the
PSQL_HISTORY environment variable. If that is not set either, the default is ~/.psql_history, or
%APPDATA%\postgresql\psql_history on Windows. For example, putting:
\set HISTFILE ~/.psql_history-:DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

Note
This feature was shamelessly plagiarized from Bash.

HISTSIZE

The maximum number of commands to store in the command history (default 500). If set to a negative
value, no limit is applied.

Note
This feature was shamelessly plagiarized from Bash.

2021

psql

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be changed or unset.

IGNOREEOF

If set to 1 or less, sending an EOF character (usually Control+D) to an interactive session of psql will
terminate the application. If set to a larger numeric value, that many consecutive EOF characters
must be typed to make an interactive session terminate. If the variable is set to a non-numeric value,
it is interpreted as 10. The default is 0.

Note
This feature was shamelessly plagiarized from Bash.

LASTOID

The value of the last affected OID, as returned from an INSERT or \lo_import command. This variable
is only guaranteed to be valid until after the result of the next SQL command has been displayed.
PostgreSQL servers since version 12 do not support OID system columns anymore, thus LASTOID
will always be 0 following INSERT when targeting such servers.

LAST_ERROR_MESSAGE
LAST_ERROR_SQLSTATE

The primary error message and associated SQLSTATE code for the most recent failed query in the
current psql session, or an empty string and 00000 if no error has occurred in the current session.

ON_ERROR_ROLLBACK

When set to on, if a statement in a transaction block generates an error, the error is ignored and the
transaction continues. When set to interactive, such errors are only ignored in interactive sessions,
and not when reading script files. When set to off (the default), a statement in a transaction block
that generates an error aborts the entire transaction. The error rollback mode works by issuing an
implicit SAVEPOINT for you, just before each command that is in a transaction block, and then rolling
back to the savepoint if the command fails.

ON_ERROR_STOP

By default, command processing continues after an error. When this variable is set to on, processing
will instead stop immediately. In interactive mode, psql will return to the command prompt; other-
wise, psql will exit, returning error code 3 to distinguish this case from fatal error conditions, which
are reported using error code 1. In either case, any currently running scripts (the top-level script,
if any, and any other scripts which it may have in invoked) will be terminated immediately. If the
top-level command string contained multiple SQL commands, processing will stop with the current
command.

PIPELINE_COMMAND_COUNT

The number of commands queued in an ongoing pipeline.

PIPELINE_RESULT_COUNT

The number of commands of an ongoing pipeline that were followed by either a \flushrequest or
a \syncpipeline, forcing the server to send the results. These results can be retrieved with \ge-
tresults.

PIPELINE_SYNC_COUNT

The number of sync messages queued in an ongoing pipeline.

2022

psql

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be changed or unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See Prompting below.

QUIET

Setting this variable to on is equivalent to the command line option -q. It is probably not too useful
in interactive mode.

ROW_COUNT

The number of rows returned or affected by the last SQL query, or 0 if the query failed or did not
report a row count.

SERVER_VERSION_NAME
SERVER_VERSION_NUM

The server's version number as a string, for example 9.6.2, 10.1 or 11beta1, and in numeric form,
for example 90602 or 100001. These are set every time you connect to a database (including program
start-up), but can be changed or unset.

SERVICE

The service name, if applicable.

SHELL_ERROR

true if the last shell command failed, false if it succeeded. This applies to shell commands invoked
via the \!, \g, \o, \w, and \copy meta-commands, as well as backquote (`) expansion. Note that
for \o, this variable is updated when the output pipe is closed by the next \o command. See also
SHELL_EXIT_CODE.

SHELL_EXIT_CODE

The exit status returned by the last shell command. 0–127 represent program exit codes, 128–255
indicate termination by a signal, and -1 indicates failure to launch a program or to collect its exit
status. This applies to shell commands invoked via the \!, \g, \o, \w, and \copy meta-commands, as
well as backquote (`) expansion. Note that for \o, this variable is updated when the output pipe is
closed by the next \o command. See also SHELL_ERROR.

SHOW_ALL_RESULTS

When this variable is set to off, only the last result of a combined query (\;) is shown instead of all
of them. The default is on. The off behavior is for compatibility with older versions of psql.

SHOW_CONTEXT

This variable can be set to the values never, errors, or always to control whether CONTEXT fields are
displayed in messages from the server. The default is errors (meaning that context will be shown in
error messages, but not in notice or warning messages). This setting has no effect when VERBOSITY
is set to terse or sqlstate. (See also \errverbose, for use when you want a verbose version of the
error you just got.)

SINGLELINE

Setting this variable to on is equivalent to the command line option -S.

2023

psql

SINGLESTEP

Setting this variable to on is equivalent to the command line option -s.

SQLSTATE

The error code (see Appendix A) associated with the last SQL query's failure, or 00000 if it succeeded.

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be changed or unset.

VERBOSITY

This variable can be set to the values default, verbose, terse, or sqlstate to control the verbosity
of error reports. (See also \errverbose, for use when you want a verbose version of the error you
just got.)

VERSION
VERSION_NAME
VERSION_NUM

These variables are set at program start-up to reflect psql's version, respectively as a verbose string,
a short string (e.g., 9.6.2, 10.1, or 11beta1), and a number (e.g., 90602 or 100001). They can be
changed or unset.

WATCH_INTERVAL

This variable sets the default interval, in seconds, which \watch waits between executing the query.
The default is 2 seconds. Specifying an interval in the command overrides this variable.

SQL Interpolation
A key feature of psql variables is that you can substitute (“interpolate”) them into regular SQL state-
ments, as well as the arguments of meta-commands. Furthermore, psql provides facilities for ensuring
that variable values used as SQL literals and identifiers are properly quoted. The syntax for interpolating
a value without any quoting is to prepend the variable name with a colon (:). For example,
testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

would query the table my_table. Note that this may be unsafe: the value of the variable is copied literally,
so it can contain unbalanced quotes, or even backslash commands. You must make sure that it makes
sense where you put it.

When a value is to be used as an SQL literal or identifier, it is safest to arrange for it to be quoted. To
quote the value of a variable as an SQL literal, write a colon followed by the variable name in single
quotes. To quote the value as an SQL identifier, write a colon followed by the variable name in double
quotes. These constructs deal correctly with quotes and other special characters embedded within the
variable value. The previous example would be more safely written this way:
testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :"foo";

Variable interpolation will not be performed within quoted SQL literals and identifiers. Therefore, a
construction such as ':foo' doesn't work to produce a quoted literal from a variable's value (and it
would be unsafe if it did work, since it wouldn't correctly handle quotes embedded in the value).

One example use of this mechanism is to copy the contents of a file into a table column. First load the
file into a variable and then interpolate the variable's value as a quoted string:
testdb=> \set content `cat my_file.txt`
testdb=> INSERT INTO my_table VALUES (:'content');

(Note that this still won't work if my_file.txt contains NUL bytes. psql does not support embedded
NUL bytes in variable values.)

2024

psql

Since colons can legally appear in SQL commands, an apparent attempt at interpolation (that is, :name,
:'name', or :"name") is not replaced unless the named variable is currently set. In any case, you can
escape a colon with a backslash to protect it from substitution.

The :{?name} special syntax returns TRUE or FALSE depending on whether the variable exists or not,
and is thus always substituted, unless the colon is backslash-escaped.

The colon syntax for variables is standard SQL for embedded query languages, such as ECPG. The colon
syntaxes for array slices and type casts are PostgreSQL extensions, which can sometimes conflict with
the standard usage. The colon-quote syntax for escaping a variable's value as an SQL literal or identifier
is a psql extension.

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued
when more input is expected during command entry, for example because the command was not termi-
nated with a semicolon or a quote was not closed. Prompt 3 is issued when you are running an SQL COPY
FROM STDIN command and you need to type in a row value on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is encoun-
tered. Depending on the next character, certain other text is substituted instead. Defined substitutions
are:

%M

The full host name (with domain name) of the database server, or [local] if the connection is over
a Unix domain socket, or [local:/dir/name], if the Unix domain socket is not at the compiled in
default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection is over
a Unix domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a database session
as the result of the command SET SESSION AUTHORIZATION.)

%s

The name of the service.

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this value might
change during a database session as the result of the command SET SESSION AUTHORIZATION.)

%p

The process ID of the backend currently connected to.

2025

psql

%P

Pipeline status: off when not in a pipeline, on when in an ongoing pipeline or abort when in an
aborted pipeline.

%R

In prompt 1 normally =, but @ if the session is in an inactive branch of a conditional block, or ^ if in
single-line mode, or ! if the session is disconnected from the database (which can happen if \connect
fails). In prompt 2 %R is replaced by a character that depends on why psql expects more input: - if
the command simply wasn't terminated yet, but * if there is an unfinished /* ... */ comment, a
single quote if there is an unfinished quoted string, a double quote if there is an unfinished quoted
identifier, a dollar sign if there is an unfinished dollar-quoted string, or (if there is an unmatched
left parenthesis. In prompt 3 %R doesn't produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a transaction block,
or ! when in a failed transaction block, or ? when the transaction state is indeterminate (for example,
because there is no connection).

%l

The line number inside the current statement, starting from 1.

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See Variables, above, for details.

%`command`

The output of command, similar to ordinary “back-tick” substitution.

%[... %]
Prompts can contain terminal control characters which, for example, change the color, background,
or style of the prompt text, or change the title of the terminal window. In order for the line editing
features of Readline to work properly, these non-printing control characters must be designated as
invisible by surrounding them with %[and %]. Multiple pairs of these can occur within the prompt.
For example:
testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# '

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-capable ter-
minals.

%w

Whitespace of the same width as the most recent output of PROMPT1. This can be used as a PROMPT2
setting, so that multi-line statements are aligned with the first line, but there is no visible secondary
prompt.

To insert a percent sign into your prompt, write %%. The default prompts are '%/%R%x%# ' for prompts
1 and 2, and '>> ' for prompt 3.

Note
This feature was shamelessly plagiarized from tcsh.

Command-Line Editing

2026

psql

psql uses the Readline or libedit library, if available, for convenient line editing and retrieval. The com-
mand history is automatically saved when psql exits and is reloaded when psql starts up. Type up-arrow
or control-P to retrieve previous lines.

You can also use tab completion to fill in partially-typed keywords and SQL object names in many (by
no means all) contexts. For example, at the start of a command, typing ins and pressing TAB will fill in
insert into . Then, typing a few characters of a table or schema name and pressing TAB will fill in the
unfinished name, or offer a menu of possible completions when there's more than one. (Depending on
the library in use, you may need to press TAB more than once to get a menu.)

Tab completion for SQL object names requires sending queries to the server to find possible matches.
In some contexts this can interfere with other operations. For example, after BEGIN it will be too late
to issue SET TRANSACTION ISOLATION LEVEL if a tab-completion query is issued in between. If you do
not want tab completion at all, you can turn it off permanently by putting this in a file named .inputrc
in your home directory:
$if psql
set disable-completion on
$endif

(This is not a psql but a Readline feature. Read its documentation for further details.)

The -n (--no-readline) command line option can also be useful to disable use of Readline for a single run
of psql. This prevents tab completion, use or recording of command line history, and editing of multi-line
commands. It is particularly useful when you need to copy-and-paste text that contains TAB characters.

Environment
COLUMNS

If \pset columns is zero, controls the width for the wrapped format and width for determining if
wide output requires the pager or should be switched to the vertical format in expanded auto mode.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters (see Section 32.15).

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e, \ef, and \ev commands. These variables are examined in the order listed; the
first that is set is used. If none of them is set, the default is to use vi on Unix systems or notepad.exe
on Windows systems.

PSQL_EDITOR_LINENUMBER_ARG

When \e, \ef, or \ev is used with a line number argument, this variable specifies the command-line
argument used to pass the starting line number to the user's editor. For editors such as Emacs or
vi, this is a plus sign. Include a trailing space in the value of the variable if there needs to be space
between the option name and the line number. Examples:
PSQL_EDITOR_LINENUMBER_ARG='+'
PSQL_EDITOR_LINENUMBER_ARG='--line '

The default is + on Unix systems (corresponding to the default editor vi, and useful for many other
common editors); but there is no default on Windows systems.

2027

psql

PSQL_HISTORY

Alternative location for the command history file. Tilde (~) expansion is performed.

PSQL_PAGER
PAGER

If a query's results do not fit on the screen, they are piped through this command. Typical values are
more or less. Use of the pager can be disabled by setting PSQL_PAGER or PAGER to an empty string,
or by adjusting the pager-related options of the \pset command. These variables are examined in
the order listed; the first that is set is used. If neither of them is set, the default is to use more on
most platforms, but less on Cygwin.

PSQL_WATCH_PAGER

When a query is executed repeatedly with the \watch command, a pager is not used by default. This
behavior can be changed by setting PSQL_WATCH_PAGER to a pager command, on Unix systems. The
pspg pager (not part of PostgreSQL but available in many open source software distributions) can
display the output of \watch if started with the option --stream.

PSQLRC

Alternative location of the user's .psqlrc file. Tilde (~) expansion is performed.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Files
psqlrc and ~/.psqlrc

Unless it is passed an -X option, psql attempts to read and execute commands from the system-wide
startup file (psqlrc) and then the user's personal startup file (~/.psqlrc), after connecting to the
database but before accepting normal commands. These files can be used to set up the client and/
or the server to taste, typically with \set and SET commands.

The system-wide startup file is named psqlrc. By default it is sought in the installation's “system
configuration” directory, which is most reliably identified by running pg_config --sysconfdir. Typ-
ically this directory will be ../etc/ relative to the directory containing the PostgreSQL executables.
The directory to look in can be set explicitly via the PGSYSCONFDIR environment variable.

The user's personal startup file is named .psqlrc and is sought in the invoking user's home directory.
On Windows the personal startup file is instead named %APPDATA%\postgresql\psqlrc.conf. In
either case, this default file path can be overridden by setting the PSQLRC environment variable.

Both the system-wide startup file and the user's personal startup file can be made psql-version-spe-
cific by appending a dash and the PostgreSQL major or minor release identifier to the file name, for
example ~/.psqlrc-18 or ~/.psqlrc-18.0. The most specific version-matching file will be read in
preference to a non-version-specific file. These version suffixes are added after determining the file
path as explained above.

.psql_history

The command-line history is stored in the file ~/.psql_history, or %APPDATA%\post-
gresql\psql_history on Windows.

2028

psql

The location of the history file can be set explicitly via the HISTFILE psql variable or the PSQL_HISTORY
environment variable.

Notes
• psql works best with servers of the same or an older major version. Backslash commands are par-

ticularly likely to fail if the server is of a newer version than psql itself. However, backslash com-
mands of the \d family should work with servers of versions back to 9.2, though not necessarily
with servers newer than psql itself. The general functionality of running SQL commands and dis-
playing query results should also work with servers of a newer major version, but this cannot be
guaranteed in all cases.

If you want to use psql to connect to several servers of different major versions, it is recommend-
ed that you use the newest version of psql. Alternatively, you can keep around a copy of psql from
each major version and be sure to use the version that matches the respective server. But in prac-
tice, this additional complication should not be necessary.

• Before PostgreSQL 9.6, the -c option implied -X (--no-psqlrc); this is no longer the case.
• Before PostgreSQL 8.4, psql allowed the first argument of a single-letter backslash command to

start directly after the command, without intervening whitespace. Now, some whitespace is re-
quired.

Notes for Windows Users
psql is built as a “console application”. Since the Windows console windows use a different encoding
than the rest of the system, you must take special care when using 8-bit characters within psql. If psql
detects a problematic console code page, it will warn you at startup. To change the console code page,
two things are necessary:
• Set the code page by entering cmd.exe /c chcp 1252. (1252 is a code page that is appropriate for

German; replace it with your value.) If you are using Cygwin, you can put this command in /etc/
profile.

• Set the console font to Lucida Console, because the raster font does not work with the ANSI code
page.

Examples
The first example shows how to spread a command over several lines of input. Notice the changing
prompt:
testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Now look at the table definition again:
testdb=> \d my_table
 Table "public.my_table"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 first | integer | | not null | 0
 second | text | | |

Now we change the prompt to something more interesting:
testdb=> \set PROMPT1 '%n@%m %~%R%# '
peter@localhost testdb=>

Let's assume you have filled the table with data and want to take a look at it:
peter@localhost testdb=> SELECT * FROM my_table;

2029

psql

 first | second
-------+--------
 1 | one
 2 | two
 3 | three
 4 | four
(4 rows)

You can display tables in different ways by using the \pset command:

peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------
 1 one
 2 two
 3 three
 4 four
(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format csv
Output format is csv.
peter@localhost testdb=> \pset tuples_only
Tuples only is on.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep '\t'
Field separator is " ".
peter@localhost testdb=> SELECT second, first FROM my_table;
one 1
two 2
three 3
four 4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x
Output format is aligned.
Tuples only is off.

2030

psql

Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

Also, these output format options can be set for just one query by using \g:

peter@localhost testdb=> SELECT * FROM my_table
peter@localhost testdb-> \g (format=aligned tuples_only=off expanded=on)
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

Here is an example of using the \df command to find only functions with names matching int*pl and
whose second argument is of type bigint:

testdb=> \df int*pl * bigint
 List of functions
 Schema | Name | Result data type | Argument data types | Type
------------+---------+------------------+---------------------+------
 pg_catalog | int28pl | bigint | smallint, bigint | func
 pg_catalog | int48pl | bigint | integer, bigint | func
 pg_catalog | int8pl | bigint | bigint, bigint | func
(3 rows)

Here, the + option is used to display additional information about one of these functions, and x is used
to display the results in expanded mode:

testdb=> \df+x int*pl integer bigint
List of functions
-[RECORD 1]-------+-----------------------------
Schema | pg_catalog
Name | int48pl
Result data type | bigint
Argument data types | integer, bigint
Type | func
Volatility | immutable
Parallel | safe
Owner | postgres
Security | invoker
Leakproof? | no

2031

psql

Access privileges |
Language | internal
Internal name | int48pl
Description | implementation of + operator

When suitable, query results can be shown in a crosstab representation with the \crosstabview com-
mand:

testdb=> SELECT first, second, first > 2 AS gt2 FROM my_table;
 first | second | gt2
-------+--------+-----
 1 | one | f
 2 | two | f
 3 | three | t
 4 | four | t
(4 rows)

testdb=> \crosstabview first second
 first | one | two | three | four
-------+-----+-----+-------+------
 1 | f | | |
 2 | | f | |
 3 | | | t |
 4 | | | | t
(4 rows)

This second example shows a multiplication table with rows sorted in reverse numerical order and
columns with an independent, ascending numerical order.

testdb=> SELECT t1.first as "A", t2.first+100 AS "B", t1.first*(t2.first+100) as "AxB",
testdb-> row_number() over(order by t2.first) AS ord
testdb-> FROM my_table t1 CROSS JOIN my_table t2 ORDER BY 1 DESC
testdb-> \crosstabview "A" "B" "AxB" ord
 A | 101 | 102 | 103 | 104
---+-----+-----+-----+-----
 4 | 404 | 408 | 412 | 416
 3 | 303 | 306 | 309 | 312
 2 | 202 | 204 | 206 | 208
 1 | 101 | 102 | 103 | 104
(4 rows)

2032

reindexdb
reindexdb — reindex a PostgreSQL database

Synopsis
reindexdb [connection-option...] [option...] [-S | --schema schema] ... [-t | --table table] ... [-i
| --index index] ... [-s | --system] [dbname | -a | --all]

Description
reindexdb is a utility for rebuilding indexes in a PostgreSQL database.

reindexdb is a wrapper around the SQL command REINDEX. There is no effective difference between
reindexing databases via this utility and via other methods for accessing the server.

Options
reindexdb accepts the following command-line arguments:
-a
--all

Reindex all databases.

--concurrently

Use the CONCURRENTLY option. See REINDEX, where all the caveats of this option are explained in
detail.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be reindexed, when -a/--all is not used. If this is not specified,
the database name is read from the environment variable PGDATABASE. If that is not set, the user
name specified for the connection is used. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-e
--echo

Echo the commands that reindexdb generates and sends to the server.

-i index
--index=index

Recreate index only. Multiple indexes can be recreated by writing multiple -i switches.

-j njobs
--jobs=njobs

Execute the reindex commands in parallel by running njobs commands simultaneously. This option
may reduce the processing time but it also increases the load on the database server.

reindexdb will open njobs connections to the database, so make sure your max_connections setting
is high enough to accommodate all connections.

Note that this option is incompatible with the --system option.

-q
--quiet

Do not display progress messages.

2033

reindexdb

-s
--system

Reindex database's system catalogs only.

-S schema
--schema=schema

Reindex schema only. Multiple schemas can be reindexed by writing multiple -S switches.

-t table
--table=table

Reindex table only. Multiple tables can be reindexed by writing multiple -t switches.

--tablespace=tablespace

Specifies the tablespace where indexes are rebuilt. (This name is processed as a double-quoted iden-
tifier.)

-v
--verbose

Print detailed information during processing.

-V
--version

Print the reindexdb version and exit.

-?
--help

Show help about reindexdb command line arguments, and exit.

reindexdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force reindexdb to prompt for a password before connecting to a database.

2034

reindexdb

This option is never essential, since reindexdb will automatically prompt for a password if the server
demands password authentication. However, reindexdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

When the -a/--all is used, connect to this database to gather the list of databases to reindex. If
not specified, the postgres database will be used, or if that does not exist, template1 will be used.
This can be a connection string. If so, connection string parameters will override any conflicting
command line options. Also, connection string parameters other than the database name itself will
be re-used when connecting to other databases.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see REINDEX and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To reindex the database test:

$ reindexdb test

To reindex the table foo and the index bar in a database named abcd:

$ reindexdb --table=foo --index=bar abcd

See Also
REINDEX

2035

vacuumdb
vacuumdb — garbage-collect and analyze a PostgreSQL database

Synopsis
vacuumdb [connection-option...] [option...] [-t | --table table [(column [,...])]] ... [dbname | -a |
--all]

vacuumdb [connection-option...] [option...] [-n | --schema schema] ... [dbname | -a | --all]

vacuumdb [connection-option...] [option...] [-N | --exclude-schema schema] ... [dbname | -a | --all]

Description
vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statistics
used by the PostgreSQL query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective difference between
vacuuming and analyzing databases via this utility and via other methods for accessing the server.

Options
vacuumdb accepts the following command-line arguments:

-a
--all

Vacuum all databases.

--buffer-usage-limit size

Specifies the Buffer Access Strategy ring buffer size for a given invocation of vacuumdb. This size
is used to calculate the number of shared buffers which will be reused as part of this strategy. See
VACUUM.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be cleaned or analyzed, when -a/--all is not used. If this is
not specified, the database name is read from the environment variable PGDATABASE. If that is not
set, the user name specified for the connection is used. The dbname can be a connection string. If so,
connection string parameters will override any conflicting command line options.

--disable-page-skipping

Disable skipping pages based on the contents of the visibility map.

-e
--echo

Echo the commands that vacuumdb generates and sends to the server.

-f
--full

Perform “full” vacuuming.

-F
--freeze

Aggressively “freeze” tuples.

2036

vacuumdb

--force-index-cleanup

Always remove index entries pointing to dead tuples.

-j njobs
--jobs=njobs

Execute the vacuum or analyze commands in parallel by running njobs commands simultaneously.
This option may reduce the processing time but it also increases the load on the database server.

vacuumdb will open njobs connections to the database, so make sure your max_connections setting
is high enough to accommodate all connections.

Note that using this mode together with the -f (FULL) option might cause deadlock failures if certain
system catalogs are processed in parallel.

--min-mxid-age mxid_age

Only execute the vacuum or analyze commands on tables with a multixact ID age of at least mx-
id_age. This setting is useful for prioritizing tables to process to prevent multixact ID wraparound
(see Section 24.1.5.1).

For the purposes of this option, the multixact ID age of a relation is the greatest of the ages of the
main relation and its associated TOAST table, if one exists. Since the commands issued by vacuumdb
will also process the TOAST table for the relation if necessary, it does not need to be considered
separately.

--min-xid-age xid_age

Only execute the vacuum or analyze commands on tables with a transaction ID age of at least
xid_age. This setting is useful for prioritizing tables to process to prevent transaction ID wraparound
(see Section 24.1.5).

For the purposes of this option, the transaction ID age of a relation is the greatest of the ages of the
main relation and its associated TOAST table, if one exists. Since the commands issued by vacuumdb
will also process the TOAST table for the relation if necessary, it does not need to be considered
separately.

--missing-stats-only

Only analyze relations that are missing statistics for a column, index expression, or extended statis-
tics object. When used with --analyze-in-stages, this option prevents vacuumdb from temporari-
ly replacing existing statistics with ones generated with lower statistics targets, thus avoiding tran-
siently worse query optimizer choices.

This option can only be used in conjunction with --analyze-only or --analyze-in-stages.

Note that --missing-stats-only requires SELECT privileges on pg_statistic and pg_statis-
tic_ext_data, which are restricted to superusers by default.

-n schema
--schema=schema

Clean or analyze all tables in schema only. Multiple schemas can be vacuumed by writing multiple
-n switches.

-N schema
--exclude-schema=schema

Do not clean or analyze any tables in schema. Multiple schemas can be excluded by writing multiple
-N switches.

--no-index-cleanup

Do not remove index entries pointing to dead tuples.

2037

vacuumdb

--no-process-main

Skip the main relation.

--no-process-toast

Skip the TOAST table associated with the table to vacuum, if any.

--no-truncate

Do not truncate empty pages at the end of the table.

-P parallel_workers
--parallel=parallel_workers

Specify the number of parallel workers for parallel vacuum. This allows the vacuum to leverage
multiple CPUs to process indexes. See VACUUM.

-q
--quiet

Do not display progress messages.

--skip-locked

Skip relations that cannot be immediately locked for processing.

-t table [(column [,...])]
--table=table [(column [,...])]

Clean or analyze table only. Column names can be specified only in conjunction with the --analyze
or --analyze-only options. Multiple tables can be vacuumed by writing multiple -t switches.

Tip
If you specify columns, you probably have to escape the parentheses from the shell. (See ex-
amples below.)

-v
--verbose

Print detailed information during processing.

-V
--version

Print the vacuumdb version and exit.

-z
--analyze

Also calculate statistics for use by the optimizer.

-Z
--analyze-only

Only calculate statistics for use by the optimizer (no vacuum).

--analyze-in-stages

Only calculate statistics for use by the optimizer (no vacuum), like --analyze-only. Run three stages
of analyze; the first stage uses the lowest possible statistics target (see default_statistics_target) to
produce usable statistics faster, and subsequent stages build the full statistics.

This option is only useful to analyze a database that currently has no statistics or has wholly incor-
rect ones, such as if it is newly populated from a restored dump or by pg_upgrade. Be aware that

2038

vacuumdb

running with this option in a database with existing statistics may cause the query optimizer choices
to become transiently worse due to the low statistics targets of the early stages.

-?
--help

Show help about vacuumdb command line arguments, and exit.

vacuumdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force vacuumdb to prompt for a password before connecting to a database.

This option is never essential, since vacuumdb will automatically prompt for a password if the server
demands password authentication. However, vacuumdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

When the -a/--all is used, connect to this database to gather the list of databases to vacuum. If
not specified, the postgres database will be used, or if that does not exist, template1 will be used.
This can be a connection string. If so, connection string parameters will override any conflicting
command line options. Also, connection string parameters other than the database name itself will
be re-used when connecting to other databases.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

2039

vacuumdb

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

Diagnostics
In case of difficulty, see VACUUM and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To clean the database test:

$ vacuumdb test

To clean and analyze for the optimizer a database named bigdb:

$ vacuumdb --analyze bigdb

To clean a single table foo in a database named xyzzy, and analyze a single column bar of the table
for the optimizer:

$ vacuumdb --analyze --verbose --table='foo(bar)' xyzzy

To clean all tables in the foo and bar schemas in a database named xyzzy:

$ vacuumdb --schema='foo' --schema='bar' xyzzy

See Also
VACUUM

2040

PostgreSQL Server Applications
This part contains reference information for PostgreSQL server applications and support utilities. These
commands can only be run usefully on the host where the database server resides. Other utility programs
are listed in PostgreSQL Client Applications.

2041

initdb
initdb — create a new PostgreSQL database cluster

Synopsis
initdb [option...] [--pgdata | -D] directory

Description
initdb creates a new PostgreSQL database cluster.

Creating a database cluster consists of creating the directories in which the cluster data will live, gen-
erating the shared catalog tables (tables that belong to the whole cluster rather than to any particular
database), and creating the postgres, template1, and template0 databases. The postgres database is a
default database meant for use by users, utilities and third party applications. template1 and template0
are meant as source databases to be copied by later CREATE DATABASE commands. template0 should
never be modified, but you can add objects to template1, which by default will be copied into databases
created later. See Section 22.3 for more details.

Although initdb will attempt to create the specified data directory, it might not have permission if the
parent directory of the desired data directory is root-owned. To initialize in such a setup, create an empty
data directory as root, then use chown to assign ownership of that directory to the database user account,
then su to become the database user to run initdb.

initdb must be run as the user that will own the server process, because the server needs to have access
to the files and directories that initdb creates. Since the server cannot be run as root, you must not run
initdb as root either. (It will in fact refuse to do so.)

For security reasons the new cluster created by initdb will only be accessible by the cluster owner by
default. The --allow-group-access option allows any user in the same group as the cluster owner to
read files in the cluster. This is useful for performing backups as a non-privileged user.

initdb initializes the database cluster's default locale and character set encoding. These can also be
set separately for each database when it is created. initdb determines those settings for the template
databases, which will serve as the default for all other databases.

By default, initdb uses the locale provider libc (see Section 23.1.4). The libc locale provider takes the
locale settings from the environment, and determines the encoding from the locale settings.

To choose a different locale for the cluster, use the option --locale. There are also individual options --
lc-* and --icu-locale (see below) to set values for the individual locale categories. Note that inconsis-
tent settings for different locale categories can give nonsensical results, so this should be used with care.

Alternatively, initdb can use the ICU library to provide locale services by specifying --lo-
cale-provider=icu. The server must be built with ICU support. To choose the specific ICU locale ID to
apply, use the option --icu-locale. Note that for implementation reasons and to support legacy code,
initdb will still select and initialize libc locale settings when the ICU locale provider is used.

When initdb runs, it will print out the locale settings it has chosen. If you have complex requirements
or specified multiple options, it is advisable to check that the result matches what was intended.

More details about locale settings can be found in Section 23.1.

To alter the default encoding, use the --encoding. More details can be found in Section 23.3.

2042

initdb

Options
-A authmethod
--auth=authmethod

This option specifies the default authentication method for local users used in pg_hba.conf (host
and local lines). See Section 20.1 for an overview of valid values.

initdb will prepopulate pg_hba.conf entries using the specified authentication method for non-
replication as well as replication connections.

Do not use trust unless you trust all local users on your system. trust is the default for ease of
installation.

--auth-host=authmethod

This option specifies the authentication method for local users via TCP/IP connections used in pg_h-
ba.conf (host lines).

--auth-local=authmethod

This option specifies the authentication method for local users via Unix-domain socket connections
used in pg_hba.conf (local lines).

-D directory
--pgdata=directory

This option specifies the directory where the database cluster should be stored. This is the only
information required by initdb, but you can avoid writing it by setting the PGDATA environment
variable, which can be convenient since the database server (postgres) can find the data directory
later by the same variable.

-E encoding
--encoding=encoding

Selects the encoding of the template databases. This will also be the default encoding of any database
you create later, unless you override it then. The character sets supported by the PostgreSQL server
are described in Section 23.3.1.

By default, the template database encoding is derived from the locale. If --no-locale is specified (or
equivalently, if the locale is C or POSIX), then the default is UTF8 for the ICU provider and SQL_ASCII
for the libc provider.

-g
--allow-group-access

Allows users in the same group as the cluster owner to read all cluster files created by initdb. This
option is ignored on Windows as it does not support POSIX-style group permissions.

--icu-locale=locale

Specifies the ICU locale when the ICU provider is used. Locale support is described in Section 23.1.

--icu-rules=rules

Specifies additional collation rules to customize the behavior of the default collation. This is support-
ed for ICU only.

-k
--data-checksums

Use checksums on data pages to help detect corruption by the I/O system that would otherwise be
silent. This is enabled by default; use --no-data-checksums to disable checksums.

2043

initdb

Enabling checksums might incur a small performance penalty. If set, checksums are calculated for
all objects, in all databases. All checksum failures will be reported in the pg_stat_database view.
See Section 28.2 for details.

--locale=locale

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited
from the environment that initdb runs in. Locale support is described in Section 23.1.

If --locale-provider is builtin, --locale or --builtin-locale must be specified and set to C,
C.UTF-8 or PG_UNICODE_FAST.

--lc-collate=locale
--lc-ctype=locale
--lc-messages=locale
--lc-monetary=locale
--lc-numeric=locale
--lc-time=locale

Like --locale, but only sets the locale in the specified category.

--no-locale

Equivalent to --locale=C.

--builtin-locale=locale

Specifies the locale name when the builtin provider is used. Locale support is described in Sec-
tion 23.1.

--locale-provider={builtin|libc|icu}

This option sets the locale provider for databases created in the new cluster. It can be overridden in
the CREATE DATABASE command when new databases are subsequently created. The default is libc
(see Section 23.1.4).

--no-data-checksums

Do not enable data checksums.

--pwfile=filename

Makes initdb read the bootstrap superuser's password from a file. The first line of the file is taken
as the password.

-T config
--text-search-config=config

Sets the default text search configuration. See default_text_search_config for further information.

-U username
--username=username

Sets the user name of the bootstrap superuser. This defaults to the name of the operating-system
user running initdb.

-W
--pwprompt

Makes initdb prompt for a password to give the bootstrap superuser. If you don't plan on using
password authentication, this is not important. Otherwise you won't be able to use password authen-
tication until you have a password set up.

2044

initdb

-X directory
--waldir=directory

This option specifies the directory where the write-ahead log should be stored.

--wal-segsize=size

Set the WAL segment size, in megabytes. This is the size of each individual file in the WAL log. The
default size is 16 megabytes. The value must be a power of 2 between 1 and 1024 (megabytes). This
option can only be set during initialization, and cannot be changed later.

It may be useful to adjust this size to control the granularity of WAL log shipping or archiving. Also,
in databases with a high volume of WAL, the sheer number of WAL files per directory can become
a performance and management problem. Increasing the WAL file size will reduce the number of
WAL files.

Other, less commonly used, options are also available:

-c name=value
--set name=value

Forcibly set the server parameter name to value during initdb, and also install that setting in the
generated postgresql.conf file, so that it will apply during future server runs. This option can be
given more than once to set several parameters. It is primarily useful when the environment is such
that the server will not start at all using the default parameters.

-d
--debug

Print debugging output from the bootstrap backend and a few other messages of lesser interest for
the general public. The bootstrap backend is the program initdb uses to create the catalog tables.
This option generates a tremendous amount of extremely boring output.

--discard-caches

Run the bootstrap backend with the debug_discard_caches=1 option. This takes a very long time
and is only of use for deep debugging.

-L directory

Specifies where initdb should find its input files to initialize the database cluster. This is normally
not necessary. You will be told if you need to specify their location explicitly.

-n
--no-clean

By default, when initdb determines that an error prevented it from completely creating the database
cluster, it removes any files it might have created before discovering that it cannot finish the job.
This option inhibits tidying-up and is thus useful for debugging.

-N
--no-sync

By default, initdb will wait for all files to be written safely to disk. This option causes initdb to
return without waiting, which is faster, but means that a subsequent operating system crash can
leave the data directory corrupt. Generally, this option is useful for testing, but should not be used
when creating a production installation.

--no-sync-data-files

By default, initdb safely writes all database files to disk. This option instructs initdb to skip syn-
chronizing all files in the individual database directories, the database directories themselves, and
the tablespace directories, i.e., everything in the base subdirectory and any other tablespace direc-

2045

initdb

tories. Other files, such as those in pg_wal and pg_xact, will still be synchronized unless the --no-
sync option is also specified.

Note that if --no-sync-data-files is used in conjunction with --sync-method=syncfs, some or all
of the aforementioned files and directories will be synchronized because syncfs processes entire
file systems.

This option is primarily intended for internal use by tools that separately ensure the skipped files
are synchronized to disk.

--no-instructions

By default, initdb will write instructions for how to start the cluster at the end of its output. This
option causes those instructions to be left out. This is primarily intended for use by tools that wrap
initdb in platform-specific behavior, where those instructions are likely to be incorrect.

-s
--show

Show internal settings and exit, without doing anything else. This can be used to debug the initdb
installation.

--sync-method=method

When set to fsync, which is the default, initdb will recursively open and synchronize all files in
the data directory. The search for files will follow symbolic links for the WAL directory and each
configured tablespace.

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole
file systems that contain the data directory, the WAL files, and each tablespace. See recov-
ery_init_sync_method for information about the caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used.

-S
--sync-only

Safely write all database files to disk and exit. This does not perform any of the normal initdb oper-
ations. Generally, this option is useful for ensuring reliable recovery after changing fsync from off
to on.

Other options:

-V
--version

Print the initdb version and exit.

-?
--help

Show help about initdb command line arguments, and exit.

Environment
PGDATA

Specifies the directory where the database cluster is to be stored; can be overridden using the -
D option.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

2046

initdb

TZ

Specifies the default time zone of the created database cluster. The value should be a full time zone
name (see Section 8.5.3).

Notes
initdb can also be invoked via pg_ctl initdb.

See Also
pg_ctl, postgres, Section 20.1

2047

pg_archivecleanup
pg_archivecleanup — clean up PostgreSQL WAL archive files

Synopsis
pg_archivecleanup [option...] archivelocation oldestkeptwalfile

Description
pg_archivecleanup is designed to be used as an archive_cleanup_command to clean up WAL file archives
when running as a standby server (see Section 26.2). pg_archivecleanup can also be used as a standalone
program to clean WAL file archives.

To configure a standby server to use pg_archivecleanup, put this into its postgresql.conf configuration
file:

archive_cleanup_command = 'pg_archivecleanup archivelocation %r'

where archivelocation is the directory from which WAL segment files should be removed.

When used within archive_cleanup_command, all WAL files logically preceding the value of the %r ar-
gument will be removed from archivelocation. This minimizes the number of files that need to be re-
tained, while preserving crash-restart capability. Use of this parameter is appropriate if the archivelo-
cation is a transient staging area for this particular standby server, but not when the archivelocation
is intended as a long-term WAL archive area, or when multiple standby servers are recovering from the
same archive location.

When used as a standalone program all WAL files logically preceding the oldestkeptwalfile will be
removed from archivelocation. In this mode, if you specify a .partial or .backup file name, then only
the file prefix will be used as the oldestkeptwalfile. This treatment of .backup file name allows you to
remove all WAL files archived prior to a specific base backup without error. For example, the following
example will remove all files older than WAL file name 000000010000003700000010:

pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup: keep WAL file "archive/000000010000003700000010" and later
pg_archivecleanup: removing file "archive/00000001000000370000000F"
pg_archivecleanup: removing file "archive/00000001000000370000000E"

pg_archivecleanup assumes that archivelocation is a directory readable and writable by the serv-
er-owning user.

Options
pg_archivecleanup accepts the following command-line arguments:

-b
--clean-backup-history

Remove backup history files as well. See Section 25.3.2 for details about backup history files.

-d
--debug

Print lots of debug logging output on stderr.

-n
--dry-run

Print the names of the files that would have been removed on stdout (performs a dry run).

2048

pg_archivecleanup

-V
--version

Print the pg_archivecleanup version and exit.

-x extension
--strip-extension=extension

Provide an extension that will be stripped from all file names before deciding if they should be deleted.
This is typically useful for cleaning up archives that have been compressed during storage, and
therefore have had an extension added by the compression program. For example: -x .gz.

-?
--help

Show help about pg_archivecleanup command line arguments, and exit.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
pg_archivecleanup is designed to work with PostgreSQL 8.0 and later when used as a standalone utility,
or with PostgreSQL 9.0 and later when used as an archive cleanup command.

pg_archivecleanup is written in C and has an easy-to-modify source code, with specifically designated
sections to modify for your own needs

Examples
On Linux or Unix systems, you might use:

archive_cleanup_command = 'pg_archivecleanup -d /mnt/standby/archive %r 2>>cleanup.log'

where the archive directory is physically located on the standby server, so that the archive_command is
accessing it across NFS, but the files are local to the standby. This will:

• produce debugging output in cleanup.log
• remove no-longer-needed files from the archive directory

2049

pg_checksums
pg_checksums — enable, disable or check data checksums in a PostgreSQL database cluster

Synopsis
pg_checksums [option...] [[-D | --pgdata]datadir]

Description
pg_checksums checks, enables or disables data checksums in a PostgreSQL cluster. The server must be
shut down cleanly before running pg_checksums. When verifying checksums, the exit status is zero if
there are no checksum errors, and nonzero if at least one checksum failure is detected. When enabling
or disabling checksums, the exit status is nonzero if the operation failed.

When verifying checksums, every file in the cluster is scanned. When enabling checksums, each relation
file block with a changed checksum is rewritten in-place. Disabling checksums only updates the file
pg_control.

Options
The following command-line options are available:

-D directory
--pgdata=directory

Specifies the directory where the database cluster is stored.

-c
--check

Checks checksums. This is the default mode if nothing else is specified.

-d
--disable

Disables checksums.

-e
--enable

Enables checksums.

-f filenode
--filenode=filenode

Only validate checksums in the relation with filenode filenode.

-N
--no-sync

By default, pg_checksums will wait for all files to be written safely to disk. This option causes
pg_checksums to return without waiting, which is faster, but means that a subsequent operating sys-
tem crash can leave the updated data directory corrupt. Generally, this option is useful for testing
but should not be used on a production installation. This option has no effect when using --check.

-P
--progress

Enable progress reporting. Turning this on will deliver a progress report while checking or enabling
checksums.

2050

pg_checksums

--sync-method=method

When set to fsync, which is the default, pg_checksums will recursively open and synchronize all files
in the data directory. The search for files will follow symbolic links for the WAL directory and each
configured tablespace.

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole
file systems that contain the data directory, the WAL files, and each tablespace. See recov-
ery_init_sync_method for information about the caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used.

-v
--verbose

Enable verbose output. Lists all checked files.

-V
--version

Print the pg_checksums version and exit.

-?
--help

Show help about pg_checksums command line arguments, and exit.

Environment
PGDATA

Specifies the directory where the database cluster is stored; can be overridden using the -D option.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
Enabling checksums in a large cluster can potentially take a long time. During this operation, the cluster
or other programs that write to the data directory must not be started or else data loss may occur.

When using a replication setup with tools which perform direct copies of relation file blocks (for exam-
ple pg_rewind), enabling or disabling checksums can lead to page corruptions in the shape of incorrect
checksums if the operation is not done consistently across all nodes. When enabling or disabling check-
sums in a replication setup, it is thus recommended to stop all the clusters before switching them all
consistently. Destroying all standbys, performing the operation on the primary and finally recreating
the standbys from scratch is also safe.

If pg_checksums is aborted or killed while enabling or disabling checksums, the cluster's data checksum
configuration remains unchanged, and pg_checksums can be re-run to perform the same operation.

2051

pg_controldata
pg_controldata — display control information of a PostgreSQL database cluster

Synopsis
pg_controldata [option] [[-D | --pgdata]datadir]

Description
pg_controldata prints information initialized during initdb, such as the catalog version. It also shows
information about write-ahead logging and checkpoint processing. This information is cluster-wide, and
not specific to any one database.

This utility can only be run by the user who initialized the cluster because it requires read access to the
data directory. You can specify the data directory on the command line, or use the environment variable
PGDATA. This utility supports the options -V and --version, which print the pg_controldata version and
exit. It also supports options -? and --help, which output the supported arguments.

Environment
PGDATA

Default data directory location

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

2052

pg_createsubscriber
pg_createsubscriber — convert a physical replica into a new logical replica

Synopsis
pg_createsubscriber [option...] { -d | --database }dbname { -D | --pgdata }datadir { -P | --pub-
lisher-server }connstr

Description
pg_createsubscriber creates a new logical replica from a physical standby server. All tables in the spec-
ified database are included in the logical replication setup. A pair of publication and subscription objects
are created for each database. It must be run at the target server.

After a successful run, the state of the target server is analogous to a fresh logical replication setup.
The main difference between the logical replication setup and pg_createsubscriber is how the data syn-
chronization is done. pg_createsubscriber does not copy the initial table data. It does only the synchro-
nization phase, which ensures each table is brought up to a synchronized state.

pg_createsubscriber targets large database systems because in logical replication setup, most of the
time is spent doing the initial data copy. Furthermore, a side effect of this long time spent synchronizing
data is usually a large amount of changes to be applied (that were produced during the initial data copy),
which increases even more the time when the logical replica will be available. For smaller databases,
it is recommended to set up logical replication with initial data synchronization. For details, see the
CREATE SUBSCRIPTION copy_data option.

Options
pg_createsubscriber accepts the following command-line arguments:

-a
--all

Create one subscription per database on the target server. Exceptions are template databases and
databases that don't allow connections. To discover the list of all databases, connect to the source
server using the database name specified in the --publisher-server connection string, or if not
specified, the postgres database will be used, or if that does not exist, template1 will be used. Au-
tomatically generated names for subscriptions, publications, and replication slots are used when this
option is specified. This option cannot be used along with --database, --publication, --replica-
tion-slot, or --subscription.

-d dbname
--database=dbname

The name of the database in which to create a subscription. Multiple databases can be selected by
writing multiple -d switches. This option cannot be used together with -a. If -d option is not provided,
the database name will be obtained from -P option. If the database name is not specified in either
the -d option, or the -P option, and -a option is not specified, an error will be reported.

-D directory
--pgdata=directory

The target directory that contains a cluster directory from a physical replica.

-n
--dry-run

Do everything except actually modifying the target directory.

2053

pg_createsubscriber

-p port
--subscriber-port=port

The port number on which the target server is listening for connections. Defaults to running the
target server on port 50432 to avoid unintended client connections.

-P connstr
--publisher-server=connstr

The connection string to the publisher. For details see Section 32.1.1.

-s dir
--socketdir=dir

The directory to use for postmaster sockets on target server. The default is current directory.

-t seconds
--recovery-timeout=seconds

The maximum number of seconds to wait for recovery to end. Setting to 0 disables. The default is 0.

-T
--enable-two-phase

Enables two_phase commit for the subscription. When multiple databases are specified, this option
applies uniformly to all subscriptions created on those databases. The default is false.

-U username
--subscriber-username=username

The user name to connect as on target server. Defaults to the current operating system user name.

-v
--verbose

Enables verbose mode. This will cause pg_createsubscriber to output progress messages and detailed
information about each step to standard error. Repeating the option causes additional debug-level
messages to appear on standard error.

--clean=objtype

Drop all objects of the specified type from specified databases on the target server.

• publications: The FOR ALL TABLES publications established for this subscriber are always
dropped; specifying this object type causes all other publications replicated from the source
server to be dropped as well.

The objects selected to be dropped are individually logged, including during a --dry-run. There is
no opportunity to affect or stop the dropping of the selected objects, so consider taking a backup
of them using pg_dump.

--config-file=filename

Use the specified main server configuration file for the target data directory. pg_createsubscriber
internally uses the pg_ctl command to start and stop the target server. It allows you to specify the
actual postgresql.conf configuration file if it is stored outside the data directory.

--publication=name

The publication name to set up the logical replication. Multiple publications can be specified by
writing multiple --publication switches. The number of publication names must match the number
of specified databases, otherwise an error is reported. The order of the multiple publication name
switches must match the order of database switches. If this option is not specified, a generated name
is assigned to the publication name. This option cannot be used together with --all.

2054

pg_createsubscriber

--replication-slot=name

The replication slot name to set up the logical replication. Multiple replication slots can be specified
by writing multiple --replication-slot switches. The number of replication slot names must match
the number of specified databases, otherwise an error is reported. The order of the multiple replica-
tion slot name switches must match the order of database switches. If this option is not specified,
the subscription name is assigned to the replication slot name. This option cannot be used together
with --all.

--subscription=name

The subscription name to set up the logical replication. Multiple subscriptions can be specified by
writing multiple --subscription switches. The number of subscription names must match the num-
ber of specified databases, otherwise an error is reported. The order of the multiple subscription
name switches must match the order of database switches. If this option is not specified, a generated
name is assigned to the subscription name. This option cannot be used together with --all.

-V
--version

Print the pg_createsubscriber version and exit.

-?
--help

Show help about pg_createsubscriber command line arguments, and exit.

Notes
Prerequisites

There are some prerequisites for pg_createsubscriber to convert the target server into a logical replica.
If these are not met, an error will be reported. The source and target servers must have the same major
version as the pg_createsubscriber. The given target data directory must have the same system identifier
as the source data directory. The given database user for the target data directory must have privileges
for creating subscriptions and using pg_replication_origin_advance().

The target server must be used as a physical standby. The target server must have max_active_repli-
cation_origins and max_logical_replication_workers configured to a value greater than or equal to the
number of specified databases. The target server must have max_worker_processes configured to a val-
ue greater than the number of specified databases. The target server must accept local connections.
If you are planning to use the --enable-two-phase switch then you will also need to set the max_pre-
pared_transactions appropriately.

The source server must accept connections from the target server. The source server must not be in
recovery. The source server must have wal_level as logical. The source server must have max_replica-
tion_slots configured to a value greater than or equal to the number of specified databases plus existing
replication slots. The source server must have max_wal_senders configured to a value greater than or
equal to the number of specified databases and existing WAL sender processes.

Warnings
If pg_createsubscriber fails after the target server was promoted, then the data directory is likely not in
a state that can be recovered. In such case, creating a new standby server is recommended.

pg_createsubscriber usually starts the target server with different connection settings during transfor-
mation. Hence, connections to the target server should fail.

Since DDL commands are not replicated by logical replication, avoid executing DDL commands that
change the database schema while running pg_createsubscriber. If the target server has already been
converted to logical replica, the DDL commands might not be replicated, which might cause an error.

2055

pg_createsubscriber

If pg_createsubscriber fails while processing, objects (publications, replication slots) created on the
source server are removed. The removal might fail if the target server cannot connect to the source
server. In such a case, a warning message will inform the objects left. If the target server is running,
it will be stopped.

If the replication is using primary_slot_name, it will be removed from the source server after the logical
replication setup.

If the target server is a synchronous replica, transaction commits on the primary might wait for repli-
cation while running pg_createsubscriber.

Unless the --enable-two-phase switch is specified, pg_createsubscriber sets up logical replication with
two-phase commit disabled. This means that any prepared transactions will be replicated at the time of
COMMIT PREPARED, without advance preparation. Once setup is complete, you can manually drop and re-
create the subscription(s) with the two_phase option enabled.

pg_createsubscriber changes the system identifier using pg_resetwal. It would avoid situations in which
the target server might use WAL files from the source server. If the target server has a standby, repli-
cation will break and a fresh standby should be created.

Replication failures can occur if required WAL files are missing. To prevent this, the source server must
set max_slot_wal_keep_size to -1 to ensure that required WAL files are not prematurely removed.

How It Works
The basic idea is to have a replication start point from the source server and set up a logical replication
to start from this point:

1. Start the target server with the specified command-line options. If the target server is already run-
ning, pg_createsubscriber will terminate with an error.

2. Check if the target server can be converted. There are also a few checks on the source server. If any
of the prerequisites are not met, pg_createsubscriber will terminate with an error.

3. Create a publication and replication slot for each specified database on the source server. Each
publication is created using FOR ALL TABLES. If the --publication option is not specified, the
publication has the following name pattern: “pg_createsubscriber_%u_%x” (parameter: database
oid, random int). If the --replication-slot option is not specified, the replication slot has the
following name pattern: “pg_createsubscriber_%u_%x” (parameters: database oid, random int).
These replication slots will be used by the subscriptions in a future step. The last replication slot
LSN is used as a stopping point in the recovery_target_lsn parameter and by the subscriptions as a
replication start point. It guarantees that no transaction will be lost.

4. Write recovery parameters into the target data directory and restart the target server. It specifies
an LSN (recovery_target_lsn) of the write-ahead log location up to which recovery will proceed. It
also specifies promote as the action that the server should take once the recovery target is reached.
Additional recovery parameters are added to avoid unexpected behavior during the recovery process
such as end of the recovery as soon as a consistent state is reached (WAL should be applied until the
replication start location) and multiple recovery targets that can cause a failure. This step finishes
once the server ends standby mode and is accepting read-write transactions. If --recovery-timeout
option is set, pg_createsubscriber terminates if recovery does not end until the given number of
seconds.

5. Create a subscription for each specified database on the target server. If the --subscription option
is not specified, the subscription has the following name pattern: “pg_createsubscriber_%u_%x”
(parameters: database oid, random int). It does not copy existing data from the source server. It
does not create a replication slot. Instead, it uses the replication slot that was created in a previous
step. The subscription is created but it is not enabled yet. The reason is the replication progress
must be set to the replication start point before starting the replication.

6. Drop publications on the target server that were replicated because they were created before the
replication start location. It has no use on the subscriber.

2056

pg_createsubscriber

7. Set the replication progress to the replication start point for each subscription. When the target
server starts the recovery process, it catches up to the replication start point. This is the exact LSN to
be used as a initial replication location for each subscription. The replication origin name is obtained
since the subscription was created. The replication origin name and the replication start point are
used in pg_replication_origin_advance() to set up the initial replication location.

8. Enable the subscription for each specified database on the target server. The subscription starts
applying transactions from the replication start point.

9. If the standby server was using primary_slot_name, it has no use from now on so drop it.
10. If the standby server contains failover replication slots, they cannot be synchronized anymore, so

drop them.
11. Update the system identifier on the target server. The pg_resetwal is run to modify the system

identifier. The target server is stopped as a pg_resetwal requirement.

Examples
To create a logical replica for databases hr and finance from a physical replica at foo:

$ pg_createsubscriber -D /usr/local/pgsql/data -P "host=foo" -d hr -d finance

See Also
pg_basebackup

2057

pg_ctl
pg_ctl — initialize, start, stop, or control a PostgreSQL server

Synopsis
pg_ctl init[db] [-D datadir] [-s] [-o initdb-options]

pg_ctl start [-D datadir] [-l filename] [-W] [-t seconds] [-s] [-o options] [-p path] [-c]

pg_ctl stop [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s]

pg_ctl restart [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s] [-o options]
[-c]

pg_ctl reload [-D datadir] [-s]

pg_ctl status [-D datadir]

pg_ctl promote [-D datadir] [-W] [-t seconds] [-s]

pg_ctl logrotate [-D datadir] [-s]

pg_ctl kill signal_name process_id

On Microsoft Windows, also:

pg_ctl register [-D datadir] [-N servicename] [-U username] [-P password] [-S a[uto] | d[emand]]
[-e source] [-W] [-t seconds] [-s] [-o options]

pg_ctl unregister [-N servicename]

Description
pg_ctl is a utility for initializing a PostgreSQL database cluster, starting, stopping, or restarting the
PostgreSQL database server (postgres), or displaying the status of a running server. Although the server
can be started manually, pg_ctl encapsulates tasks such as redirecting log output and properly detaching
from the terminal and process group. It also provides convenient options for controlled shutdown.

The init or initdb mode creates a new PostgreSQL database cluster, that is, a collection of databases
that will be managed by a single server instance. This mode invokes the initdb command. See initdb
for details.

start mode launches a new server. The server is started in the background, and its standard input is
attached to /dev/null (or nul on Windows). On Unix-like systems, by default, the server's standard
output and standard error are sent to pg_ctl's standard output (not standard error). The standard output
of pg_ctl should then be redirected to a file or piped to another process such as a log rotating program like
rotatelogs; otherwise postgres will write its output to the controlling terminal (from the background)
and will not leave the shell's process group. On Windows, by default the server's standard output and
standard error are sent to the terminal. These default behaviors can be changed by using -l to append
the server's output to a log file. Use of either -l or output redirection is recommended.

stop mode shuts down the server that is running in the specified data directory. Three different shut-
down methods can be selected with the -m option. “Smart” mode disallows new connections, then waits
for all existing clients to disconnect. If the server is in hot standby, recovery and streaming replication
will be terminated once all clients have disconnected. “Fast” mode (the default) does not wait for clients
to disconnect. All active transactions are rolled back and clients are forcibly disconnected, then the
server is shut down. “Immediate” mode will abort all server processes immediately, without a clean
shutdown. This choice will lead to a crash-recovery cycle during the next server start.

2058

pg_ctl

restart mode effectively executes a stop followed by a start. This allows changing the postgres com-
mand-line options, or changing configuration-file options that cannot be changed without restarting the
server. If relative paths were used on the command line during server start, restart might fail unless
pg_ctl is executed in the same current directory as it was during server start.

reload mode simply sends the postgres server process a SIGHUP signal, causing it to reread its con-
figuration files (postgresql.conf, pg_hba.conf, etc.). This allows changing configuration-file options
that do not require a full server restart to take effect.

status mode checks whether a server is running in the specified data directory. If it is, the server's PID
and the command line options that were used to invoke it are displayed. If the server is not running,
pg_ctl returns an exit status of 3. If an accessible data directory is not specified, pg_ctl returns an exit
status of 4.

promote mode commands the standby server that is running in the specified data directory to end stand-
by mode and begin read-write operations.

logrotate mode rotates the server log file. For details on how to use this mode with external log rotation
tools, see Section 24.3.

kill mode sends a signal to a specified process. This is primarily valuable on Microsoft Windows which
does not have a built-in kill command. Use --help to see a list of supported signal names.

register mode registers the PostgreSQL server as a system service on Microsoft Windows. The -S
option allows selection of service start type, either “auto” (start service automatically on system startup)
or “demand” (start service on demand).

unregister mode unregisters a system service on Microsoft Windows. This undoes the effects of the
register command.

Options
-c
--core-files

Attempt to allow server crashes to produce core files, on platforms where this is possible, by lifting
any soft resource limit placed on core files. This is useful in debugging or diagnosing problems by
allowing a stack trace to be obtained from a failed server process.

-D datadir
--pgdata=datadir

Specifies the file system location of the database configuration files. If this option is omitted, the
environment variable PGDATA is used.

-l filename
--log=filename

Append the server log output to filename. If the file does not exist, it is created. The umask is set to
077, so access to the log file is disallowed to other users by default.

-m mode
--mode=mode

Specifies the shutdown mode. mode can be smart, fast, or immediate, or the first letter of one of
these three. If this option is omitted, fast is the default.

-o options
--options=options

Specifies options to be passed directly to the postgres command. -o can be specified multiple times,
with all the given options being passed through.

2059

pg_ctl

The options should usually be surrounded by single or double quotes to ensure that they are passed
through as a group.

-o initdb-options
--options=initdb-options

Specifies options to be passed directly to the initdb command. -o can be specified multiple times,
with all the given options being passed through.

The initdb-options should usually be surrounded by single or double quotes to ensure that they
are passed through as a group.

-p path

Specifies the location of the postgres executable. By default the postgres executable is taken from
the same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not neces-
sary to use this option unless you are doing something unusual and get errors that the postgres
executable was not found.

In init mode, this option analogously specifies the location of the initdb executable.

-s
--silent

Print only errors, no informational messages.

-t seconds
--timeout=seconds

Specifies the maximum number of seconds to wait when waiting for an operation to complete (see op-
tion -w). Defaults to the value of the PGCTLTIMEOUT environment variable or, if not set, to 60 seconds.

-V
--version

Print the pg_ctl version and exit.

-w
--wait

Wait for the operation to complete. This is supported for the modes start, stop, restart, promote,
and register, and is the default for those modes.

When waiting, pg_ctl repeatedly checks the server's PID file, sleeping for a short amount of time
between checks. Startup is considered complete when the PID file indicates that the server is ready to
accept connections. Shutdown is considered complete when the server removes the PID file. pg_ctl
returns an exit code based on the success of the startup or shutdown.

If the operation does not complete within the timeout (see option -t), then pg_ctl exits with a nonze-
ro exit status. But note that the operation might continue in the background and eventually succeed.

-W
--no-wait

Do not wait for the operation to complete. This is the opposite of the option -w.

If waiting is disabled, the requested action is triggered, but there is no feedback about its success.
In that case, the server log file or an external monitoring system would have to be used to check the
progress and success of the operation.

In prior releases of PostgreSQL, this was the default except for the stop mode.

2060

pg_ctl

-?
--help

Show help about pg_ctl command line arguments, and exit.

If an option is specified that is valid, but not relevant to the selected operating mode, pg_ctl ignores it.

Options for Windows
-e source

Name of the event source for pg_ctl to use for logging to the event log when running as a Windows
service. The default is PostgreSQL. Note that this only controls messages sent from pg_ctl itself;
once started, the server will use the event source specified by its event_source parameter. Should
the server fail very early in startup, before that parameter has been set, it might also log using the
default event source name PostgreSQL.

-N servicename

Name of the system service to register. This name will be used as both the service name and the
display name. The default is PostgreSQL.

-P password

Password for the user to run the service as.

-S start-type

Start type of the system service. start-type can be auto, or demand, or the first letter of one of these
two. If this option is omitted, auto is the default.

-U username

User name for the user to run the service as. For domain users, use the format DOMAIN\username.

Environment
PGCTLTIMEOUT

Default limit on the number of seconds to wait when waiting for startup or shutdown to complete.
If not set, the default is 60 seconds.

PGDATA

Default data directory location.

Most pg_ctl modes require knowing the data directory location; therefore, the -D option is required
unless PGDATA is set.

For additional variables that affect the server, see postgres.

Files
postmaster.pid

pg_ctl examines this file in the data directory to determine whether the server is currently running.

postmaster.opts

If this file exists in the data directory, pg_ctl (in restart mode) will pass the contents of the file as
options to postgres, unless overridden by the -o option. The contents of this file are also displayed
in status mode.

Examples
Starting the Server

To start the server, waiting until the server is accepting connections:

2061

pg_ctl

$ pg_ctl start

To start the server using port 5433, and running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the Server
To stop the server, use:

$ pg_ctl stop

The -m option allows control over how the server shuts down:

$ pg_ctl stop -m smart

Restarting the Server
Restarting the server is almost equivalent to stopping the server and starting it again, except that by
default, pg_ctl saves and reuses the command line options that were passed to the previously-running
instance. To restart the server using the same options as before, use:

$ pg_ctl restart

But if -o is specified, that replaces any previous options. To restart using port 5433, disabling fsync
upon restart:

$ pg_ctl -o "-F -p 5433" restart

Showing the Server Status
Here is sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: server is running (PID: 13718)
/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433" "-B" "128"

The second line is the command that would be invoked in restart mode.

See Also
initdb, postgres

2062

pg_resetwal
pg_resetwal — reset the write-ahead log and other control information of a PostgreSQL database cluster

Synopsis
pg_resetwal [-f | --force] [-n | --dry-run] [option...] [-D | --pgdata]datadir

Description
pg_resetwal clears the write-ahead log (WAL) and optionally resets some other control information
stored in the pg_control file. This function is sometimes needed if these files have become corrupted.
It should be used only as a last resort, when the server will not start due to such corruption.

Some options, such as --wal-segsize (see below), can also be used to modify certain global settings
of a database cluster without the need to rerun initdb. This can be done safely on an otherwise sound
database cluster, if none of the dangerous modes mentioned below are used.

If pg_resetwal is used on a data directory where the server has been cleanly shut down and the control
file is sound, then it will have no effect on the contents of the database system, except that no longer
used WAL files are cleared away. Any other use is potentially dangerous and must be done with great
care. pg_resetwal will require the -f (force) option to be specified before working on a data directory
in an unclean shutdown state or with a corrupted control file.

After running this command on a data directory with corrupted WAL or a corrupted control file, it should
be possible to start the server, but bear in mind that the database might contain inconsistent data due
to partially-committed transactions. You should immediately dump your data, run initdb, and restore.
After restore, check for inconsistencies and repair as needed.

If pg_resetwal complains that it cannot determine valid data for pg_control, you can force it to proceed
anyway by specifying the -f (force) option. In this case plausible values will be substituted for the missing
data. Most of the fields can be expected to match, but manual assistance might be needed for the next
OID, next transaction ID and epoch, next multitransaction ID and offset, and WAL starting location fields.
These fields can be set using the options discussed below. If you are not able to determine correct values
for all these fields, -f can still be used, but the recovered database must be treated with even more
suspicion than usual: an immediate dump and restore is imperative. Do not execute any data-modifying
operations in the database before you dump, as any such action is likely to make the corruption worse.

This utility can only be run by the user who installed the server, because it requires read/write access
to the data directory.

Options
datadir
-D datadir
--pgdata=datadir

Specifies the location of the database directory. For safety reasons, you must specify the data direc-
tory on the command line. pg_resetwal does not use the environment variable PGDATA.

-f
--force

Force pg_resetwal to proceed even in situations where it could be dangerous, as explained above.
Specifically, this option is required to proceed if the server had not been cleanly shut down or if
pg_resetwal cannot determine valid data for pg_control.

2063

pg_resetwal

-n
--dry-run

The -n/--dry-run option instructs pg_resetwal to print the values reconstructed from pg_control
and values about to be changed, and then exit without modifying anything. This is mainly a debugging
tool, but can be useful as a sanity check before allowing pg_resetwal to proceed for real.

-V
--version

Display version information, then exit.

-?
--help

Show help, then exit.

The following options are only needed when pg_resetwal is unable to determine appropriate values by
reading pg_control. Safe values can be determined as described below. For values that take numeric
arguments, hexadecimal values can be specified by using the prefix 0x. Note that these instructions only
apply with the standard block size of 8 kB.

-c xid,xid
--commit-timestamp-ids=xid,xid

Manually set the oldest and newest transaction IDs for which the commit time can be retrieved.

A safe value for the oldest transaction ID for which the commit time can be retrieved (first part) can
be determined by looking for the numerically smallest file name in the directory pg_commit_ts under
the data directory. Conversely, a safe value for the newest transaction ID for which the commit time
can be retrieved (second part) can be determined by looking for the numerically greatest file name
in the same directory. The file names are in hexadecimal.

-e xid_epoch
--epoch=xid_epoch

Manually set the next transaction ID's epoch.

The transaction ID epoch is not actually stored anywhere in the database except in the field that is set
by pg_resetwal, so any value will work so far as the database itself is concerned. You might need to
adjust this value to ensure that replication systems such as Slony-I and Skytools work correctly — if
so, an appropriate value should be obtainable from the state of the downstream replicated database.

-l walfile
--next-wal-file=walfile

Manually set the WAL starting location by specifying the name of the next WAL segment file.

The name of next WAL segment file should be larger than any WAL segment file name currently
existing in the directory pg_wal under the data directory. These names are also in hexadecimal and
have three parts. The first part is the “timeline ID” and should usually be kept the same. For example,
if 00000001000000320000004A is the largest entry in pg_wal, use -l 00000001000000320000004B
or higher.

Note that when using nondefault WAL segment sizes, the numbers in the WAL file names are different
from the LSNs that are reported by system functions and system views. This option takes a WAL file
name, not an LSN.

Note
pg_resetwal itself looks at the files in pg_wal and chooses a default -l setting beyond the last
existing file name. Therefore, manual adjustment of -l should only be needed if you are aware

2064

pg_resetwal

of WAL segment files that are not currently present in pg_wal, such as entries in an offline
archive; or if the contents of pg_wal have been lost entirely.

-m mxid,mxid
--multixact-ids=mxid,mxid

Manually set the next and oldest multitransaction ID.

A safe value for the next multitransaction ID (first part) can be determined by looking for the numer-
ically largest file name in the directory pg_multixact/offsets under the data directory, adding one,
and then multiplying by 65536 (0x10000). Conversely, a safe value for the oldest multitransaction ID
(second part of -m) can be determined by looking for the numerically smallest file name in the same
directory and multiplying by 65536. The file names are in hexadecimal, so the easiest way to do this
is to specify the option value in hexadecimal and append four zeroes.

-o oid
--next-oid=oid

Manually set the next OID.

There is no comparably easy way to determine a next OID that's beyond the largest one in the data-
base, but fortunately it is not critical to get the next-OID setting right.

-O mxoff
--multixact-offset=mxoff

Manually set the next multitransaction offset.

A safe value can be determined by looking for the numerically largest file name in the directo-
ry pg_multixact/members under the data directory, adding one, and then multiplying by 52352
(0xCC80). The file names are in hexadecimal. There is no simple recipe such as the ones for other
options of appending zeroes.

-u xid
--oldest-transaction-id=xid

Manually set the oldest unfrozen transaction ID.

A safe value can be determined by looking for the numerically smallest file name in the directory
pg_xact under the data directory and then multiplying by 1048576 (0x100000). Note that the file
names are in hexadecimal. It is usually easiest to specify the option value in hexadecimal too. For
example, if 0007 is the smallest entry in pg_xact, -u 0x700000 will work (five trailing zeroes provide
the proper multiplier).

-x xid
--next-transaction-id=xid

Manually set the next transaction ID.

A safe value can be determined by looking for the numerically largest file name in the directory
pg_xact under the data directory, adding one, and then multiplying by 1048576 (0x100000). Note
that the file names are in hexadecimal. It is usually easiest to specify the option value in hexadecimal
too. For example, if 0011 is the largest entry in pg_xact, -x 0x1200000 will work (five trailing zeroes
provide the proper multiplier).

--char-signedness=option

Manually set the default char signedness. Possible values are signed and unsigned.

For a database cluster that pg_upgrade upgraded from a PostgreSQL version before 18, the safe
value would be the default char signedness of the platform that ran the cluster before that upgrade.

2065

pg_resetwal

For all other clusters, signed would be the safe value. However, this option is exclusively for use
with pg_upgrade and should not normally be used manually.

--wal-segsize=wal_segment_size

Set the new WAL segment size, in megabytes. The value must be set to a power of 2 between 1 and
1024 (megabytes). See the same option of initdb for more information.

This option can also be used to change the WAL segment size of an existing database cluster, avoiding
the need to re-initdb.

Note
While pg_resetwal will set the WAL starting address beyond the latest existing WAL segment
file, some segment size changes can cause previous WAL file names to be reused. It is recom-
mended to use -l together with this option to manually set the WAL starting address if WAL
file name overlap will cause problems with your archiving strategy.

Environment
PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
This command must not be used when the server is running. pg_resetwal will refuse to start up if it
finds a server lock file in the data directory. If the server crashed then a lock file might have been left
behind; in that case you can remove the lock file to allow pg_resetwal to run. But before you do so,
make doubly certain that there is no server process still alive.

pg_resetwal works only with servers of the same major version.

See Also
pg_controldata

2066

pg_rewind
pg_rewind — synchronize a PostgreSQL data directory with another data directory that was forked from
it

Synopsis
pg_rewind [option...] { -D | --target-pgdata } directory { --source-pgdata=directory | --source-
server=connstr }

Description
pg_rewind is a tool for synchronizing a PostgreSQL cluster with another copy of the same cluster, after
the clusters' timelines have diverged. A typical scenario is to bring an old primary server back online
after failover as a standby that follows the new primary.

After a successful rewind, the state of the target data directory is analogous to a base backup of the
source data directory. Unlike taking a new base backup or using a tool like rsync, pg_rewind does not
require comparing or copying unchanged relation blocks in the cluster. Only changed blocks from ex-
isting relation files are copied; all other files, including new relation files, configuration files, and WAL
segments, are copied in full. As such the rewind operation is significantly faster than other approaches
when the database is large and only a small fraction of blocks differ between the clusters.

pg_rewind examines the timeline histories of the source and target clusters to determine the point where
they diverged, and expects to find WAL in the target cluster's pg_wal directory reaching all the way back
to the point of divergence. The point of divergence can be found either on the target timeline, the source
timeline, or their common ancestor. In the typical failover scenario where the target cluster was shut
down soon after the divergence, this is not a problem, but if the target cluster ran for a long time after
the divergence, its old WAL files might no longer be present. In this case, you can manually copy them
from the WAL archive to the pg_wal directory, or run pg_rewind with the -c option to automatically
retrieve them from the WAL archive. The use of pg_rewind is not limited to failover, e.g., a standby server
can be promoted, run some write transactions, and then rewound to become a standby again.

After running pg_rewind, WAL replay needs to complete for the data directory to be in a consistent state.
When the target server is started again it will enter archive recovery and replay all WAL generated in
the source server from the last checkpoint before the point of divergence. If some of the WAL was no
longer available in the source server when pg_rewind was run, and therefore could not be copied by
the pg_rewind session, it must be made available when the target server is started. This can be done by
creating a recovery.signal file in the target data directory and by configuring a suitable restore_com-
mand in postgresql.conf.

pg_rewind requires that the target server either has the wal_log_hints option enabled in post-
gresql.conf or data checksums enabled when the cluster was initialized with initdb. Neither of these
are currently on by default. full_page_writes must also be set to on, but is enabled by default.

Warning: Failures While Rewinding
If pg_rewind fails while processing, then the data folder of the target is likely not in a state that
can be recovered. In such a case, taking a new fresh backup is recommended.

As pg_rewind copies configuration files entirely from the source, it may be required to correct
the configuration used for recovery before restarting the target server, especially if the target is
reintroduced as a standby of the source. If you restart the server after the rewind operation has
finished but without configuring recovery, the target may again diverge from the primary.

pg_rewind will fail immediately if it finds files it cannot write directly to. This can happen for
example when the source and the target server use the same file mapping for read-only SSL keys
and certificates. If such files are present on the target server it is recommended to remove them

2067

pg_rewind

before running pg_rewind. After doing the rewind, some of those files may have been copied from
the source, in which case it may be necessary to remove the data copied and restore back the set
of links used before the rewind.

Options
pg_rewind accepts the following command-line arguments:

-D directory
--target-pgdata=directory

This option specifies the target data directory that is synchronized with the source. The target server
must be shut down cleanly before running pg_rewind

--source-pgdata=directory

Specifies the file system path to the data directory of the source server to synchronize the target
with. This option requires the source server to be cleanly shut down.

--source-server=connstr

Specifies a libpq connection string to connect to the source PostgreSQL server to synchronize the
target with. The connection must be a normal (non-replication) connection with a role having suffi-
cient permissions to execute the functions used by pg_rewind on the source server (see Notes section
for details) or a superuser role. This option requires the source server to be running and accepting
connections.

-R
--write-recovery-conf

Create standby.signal and append connection settings to postgresql.auto.conf in the output
directory. The dbname will be recorded only if the dbname was specified explicitly in the connection
string or environment variable. --source-server is mandatory with this option.

-n
--dry-run

Do everything except actually modifying the target directory.

-N
--no-sync

By default, pg_rewind will wait for all files to be written safely to disk. This option causes pg_rewind
to return without waiting, which is faster, but means that a subsequent operating system crash can
leave the data directory corrupt. Generally, this option is useful for testing but should not be used
on a production installation.

-P
--progress

Enables progress reporting. Turning this on will deliver an approximate progress report while copy-
ing data from the source cluster.

-c
--restore-target-wal

Use restore_command defined in the target cluster configuration to retrieve WAL files from the WAL
archive if these files are no longer available in the pg_wal directory.

--config-file=filename

Use the specified main server configuration file for the target cluster. This affects pg_rewind when
it uses internally the postgres command for the rewind operation on this cluster (when retrieving

2068

pg_rewind

restore_command with the option -c/--restore-target-wal and when forcing a completion of crash
recovery).

--debug

Print verbose debugging output that is mostly useful for developers debugging pg_rewind.

--no-ensure-shutdown

pg_rewind requires that the target server is cleanly shut down before rewinding. By default, if the
target server is not shut down cleanly, pg_rewind starts the target server in single-user mode to
complete crash recovery first, and stops it. By passing this option, pg_rewind skips this and errors
out immediately if the server is not cleanly shut down. Users are expected to handle the situation
themselves in that case.

--sync-method=method

When set to fsync, which is the default, pg_rewind will recursively open and synchronize all files
in the data directory. The search for files will follow symbolic links for the WAL directory and each
configured tablespace.

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole
file systems that contain the data directory, the WAL files, and each tablespace. See recov-
ery_init_sync_method for information about the caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used.

-V
--version

Display version information, then exit.

-?
--help

Show help, then exit.

Environment
When --source-server option is used, pg_rewind also uses the environment variables supported by
libpq (see Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
When executing pg_rewind using an online cluster as source, a role having sufficient permissions to
execute the functions used by pg_rewind on the source cluster can be used instead of a superuser. Here
is how to create such a role, named rewind_user here:
CREATE USER rewind_user LOGIN;
GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean)
 TO rewind_user;

How It Works
The basic idea is to copy all file system-level changes from the source cluster to the target cluster:

1. Scan the WAL log of the target cluster, starting from the last checkpoint before the point where
the source cluster's timeline history forked off from the target cluster. For each WAL record, record

2069

pg_rewind

each data block that was touched. This yields a list of all the data blocks that were changed in the
target cluster, after the source cluster forked off. If some of the WAL files are no longer available,
try re-running pg_rewind with the -c option to search for the missing files in the WAL archive.

2. Copy all those changed blocks from the source cluster to the target cluster, either using direct
file system access (--source-pgdata) or SQL (--source-server). Relation files are now in a state
equivalent to the moment of the last completed checkpoint prior to the point at which the WAL
timelines of the source and target diverged plus the current state on the source of any blocks changed
on the target after that divergence.

3. Copy all other files, including new relation files, WAL segments, pg_xact, and configuration files
from the source cluster to the target cluster. Similarly to base backups, the contents of the direc-
tories pg_dynshmem/, pg_notify/, pg_replslot/, pg_serial/, pg_snapshots/, pg_stat_tmp/, and
pg_subtrans/ are omitted from the data copied from the source cluster. The files backup_label,
tablespace_map, pg_internal.init, postmaster.opts, postmaster.pid and .DS_Store as well as
any file or directory beginning with pgsql_tmp, are omitted.

4. Create a backup_label file to begin WAL replay at the checkpoint created at failover and configure
the pg_control file with a minimum consistency LSN defined as the result of pg_current_wal_in-
sert_lsn() when rewinding from a live source or the last checkpoint LSN when rewinding from
a stopped source.

5. When starting the target, PostgreSQL replays all the required WAL, resulting in a data directory
in a consistent state.

2070

pg_test_fsync
pg_test_fsync — determine fastest wal_sync_method for PostgreSQL

Synopsis
pg_test_fsync [option...]

Description
pg_test_fsync is intended to give you a reasonable idea of what the fastest wal_sync_method is on your
specific system, as well as supplying diagnostic information in the event of an identified I/O problem.
However, differences shown by pg_test_fsync might not make any significant difference in real database
throughput, especially since many database servers are not speed-limited by their write-ahead logs.
pg_test_fsync reports average file sync operation time in microseconds for each wal_sync_method, which
can also be used to inform efforts to optimize the value of commit_delay.

Options
pg_test_fsync accepts the following command-line options:

-f
--filename

Specifies the file name to write test data in. This file should be in the same file system that the pg_wal
directory is or will be placed in. (pg_wal contains the WAL files.) The default is pg_test_fsync.out
in the current directory.

-s
--secs-per-test

Specifies the number of seconds for each test. The more time per test, the greater the test's accuracy,
but the longer it takes to run. The default is 5 seconds, which allows the program to complete in
under 2 minutes.

-V
--version

Print the pg_test_fsync version and exit.

-?
--help

Show help about pg_test_fsync command line arguments, and exit.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

See Also
postgres

2071

pg_test_timing
pg_test_timing — measure timing overhead

Synopsis
pg_test_timing [option...]

Description
pg_test_timing is a tool to measure the timing overhead on your system and confirm that the system time
never moves backwards. Systems that are slow to collect timing data can give less accurate EXPLAIN
ANALYZE results.

Options
pg_test_timing accepts the following command-line options:
-d duration
--duration=duration

Specifies the test duration, in seconds. Longer durations give slightly better accuracy, and are more
likely to discover problems with the system clock moving backwards. The default test duration is
3 seconds.

-V
--version

Print the pg_test_timing version and exit.

-?
--help

Show help about pg_test_timing command line arguments, and exit.

Usage
Interpreting Results

Good results will show most (>90%) individual timing calls take less than one microsecond. Average per
loop overhead will be even lower, below 100 nanoseconds. This example from an Intel i7-860 system
using a TSC clock source shows excellent performance:
Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
 < us % of total count
 1 96.40465 80435604
 2 3.59518 2999652
 4 0.00015 126
 8 0.00002 13
 16 0.00000 2

Note that different units are used for the per loop time than the histogram. The loop can have resolution
within a few nanoseconds (ns), while the individual timing calls can only resolve down to one microsecond
(us).

Measuring Executor Timing Overhead
When the query executor is running a statement using EXPLAIN ANALYZE, individual operations are timed
as well as showing a summary. The overhead of your system can be checked by counting rows with the
psql program:

2072

pg_test_timing

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE version takes
16.6 ms, each processing just over 100,000 rows. That 6.8 ms difference means the timing overhead per
row is 68 ns, about twice what pg_test_timing estimated it would be. Even that relatively small amount
of overhead is making the fully timed count statement take almost 70% longer. On more substantial
queries, the timing overhead would be less problematic.

Changing Time Sources
On some newer Linux systems, it's possible to change the clock source used to collect timing data at
any time. A second example shows the slowdown possible from switching to the slower acpi_pm time
source, on the same system used for the fast results above:
cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
 < us % of total count
 1 27.84870 1155682
 2 72.05956 2990371
 4 0.07810 3241
 8 0.01357 563
 16 0.00007 3

In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That's 1061 ns of timing
overhead, again a small multiple of what's measured directly by this utility. That much timing overhead
means the actual query itself is only taking a tiny fraction of the accounted for time, most of it is being
consumed in overhead instead. In this configuration, any EXPLAIN ANALYZE totals involving many timed
operations would be inflated significantly by timing overhead.

FreeBSD also allows changing the time source on the fly, and it logs information about the timer selected
during boot:
dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC

Other systems may only allow setting the time source on boot. On older Linux systems the "clock" kernel
setting is the only way to make this sort of change. And even on some more recent ones, the only option
you'll see for a clock source is "jiffies". Jiffies are the older Linux software clock implementation, which
can have good resolution when it's backed by fast enough timing hardware, as in this example:
$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:

2073

pg_test_timing

 < us % of total count
 1 90.23734 27694571
 2 9.75277 2993204
 4 0.00981 3010
 8 0.00007 22
 16 0.00000 1
 32 0.00000 1

Clock Hardware and Timing Accuracy
Collecting accurate timing information is normally done on computers using hardware clocks with var-
ious levels of accuracy. With some hardware the operating systems can pass the system clock time al-
most directly to programs. A system clock can also be derived from a chip that simply provides timing
interrupts, periodic ticks at some known time interval. In either case, operating system kernels provide
a clock source that hides these details. But the accuracy of that clock source and how quickly it can
return results varies based on the underlying hardware.

Inaccurate time keeping can result in system instability. Test any change to the clock source very care-
fully. Operating system defaults are sometimes made to favor reliability over best accuracy. And if you
are using a virtual machine, look into the recommended time sources compatible with it. Virtual hard-
ware faces additional difficulties when emulating timers, and there are often per operating system set-
tings suggested by vendors.

The Time Stamp Counter (TSC) clock source is the most accurate one available on current generation
CPUs. It's the preferred way to track the system time when it's supported by the operating system and
the TSC clock is reliable. There are several ways that TSC can fail to provide an accurate timing source,
making it unreliable. Older systems can have a TSC clock that varies based on the CPU temperature,
making it unusable for timing. Trying to use TSC on some older multicore CPUs can give a reported
time that's inconsistent among multiple cores. This can result in the time going backwards, a problem
this program checks for. And even the newest systems can fail to provide accurate TSC timing with very
aggressive power saving configurations.

Newer operating systems may check for the known TSC problems and switch to a slower, more stable
clock source when they are seen. If your system supports TSC time but doesn't default to that, it may
be disabled for a good reason. And some operating systems may not detect all the possible problems
correctly, or will allow using TSC even in situations where it's known to be inaccurate.

The High Precision Event Timer (HPET) is the preferred timer on systems where it's available and TSC
is not accurate. The timer chip itself is programmable to allow up to 100 nanosecond resolution, but you
may not see that much accuracy in your system clock.

Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer, which
Linux refers to as the acpi_pm. The clock derived from acpi_pm will at best provide 300 nanosecond
resolution.

Timers used on older PC hardware include the 8254 Programmable Interval Timer (PIT), the real-time
clock (RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and the Cyclone timer.
These timers aim for millisecond resolution.

See Also
EXPLAIN

2074

pg_upgrade
pg_upgrade — upgrade a PostgreSQL server instance

Synopsis
pg_upgrade -b oldbindir [-B newbindir] -d oldconfigdir -D newconfigdir [option...]

Description
pg_upgrade (formerly called pg_migrator) allows data stored in PostgreSQL data files to be upgraded
to a later PostgreSQL major version without the data dump/restore typically required for major version
upgrades, e.g., from 12.14 to 13.10 or from 14.9 to 15.5. It is not required for minor version upgrades,
e.g., from 12.7 to 12.8 or from 14.1 to 14.5.

Major PostgreSQL releases regularly add new features that often change the layout of the system tables,
but the internal data storage format rarely changes. pg_upgrade uses this fact to perform rapid upgrades
by creating new system tables and simply reusing the old user data files. If a future major release ever
changes the data storage format in a way that makes the old data format unreadable, pg_upgrade will
not be usable for such upgrades. (The community will attempt to avoid such situations.)

pg_upgrade does its best to make sure the old and new clusters are binary-compatible, e.g., by check-
ing for compatible compile-time settings, including 32/64-bit binaries. It is important that any external
modules are also binary compatible, though this cannot be checked by pg_upgrade.

pg_upgrade supports upgrades from 9.2.X and later to the current major release of PostgreSQL, includ-
ing snapshot and beta releases.

Warning
Upgrading a cluster causes the destination to execute arbitrary code of the source superusers'
choice. Ensure that the source superusers are trusted before upgrading.

Options
pg_upgrade accepts the following command-line arguments:
-b bindir
--old-bindir=bindir

the old PostgreSQL executable directory; environment variable PGBINOLD

-B bindir
--new-bindir=bindir

the new PostgreSQL executable directory; default is the directory where pg_upgrade resides; envi-
ronment variable PGBINNEW

-c
--check

check clusters only, don't change any data

-d configdir
--old-datadir=configdir

the old database cluster configuration directory; environment variable PGDATAOLD

-D configdir
--new-datadir=configdir

the new database cluster configuration directory; environment variable PGDATANEW

2075

pg_upgrade

-j njobs
--jobs=njobs

number of simultaneous connections and processes/threads to use

-k
--link

use hard links instead of copying files to the new cluster

-N
--no-sync

By default, pg_upgrade will wait for all files of the upgraded cluster to be written safely to disk. This
option causes pg_upgrade to return without waiting, which is faster, but means that a subsequent
operating system crash can leave the data directory corrupt. Generally, this option is useful for
testing but should not be used on a production installation.

-o options
--old-options options

options to be passed directly to the old postgres command; multiple option invocations are appended

-O options
--new-options options

options to be passed directly to the new postgres command; multiple option invocations are append-
ed

-p port
--old-port=port

the old cluster port number; environment variable PGPORTOLD

-P port
--new-port=port

the new cluster port number; environment variable PGPORTNEW

-r
--retain

retain SQL and log files even after successful completion

-s dir
--socketdir=dir

directory to use for postmaster sockets during upgrade; default is current working directory; envi-
ronment variable PGSOCKETDIR

-U username
--username=username

cluster's install user name; environment variable PGUSER

-v
--verbose

enable verbose internal logging

-V
--version

display version information, then exit

2076

pg_upgrade

--clone

Use efficient file cloning (also known as “reflinks” on some systems) instead of copying files to the new
cluster. This can result in near-instantaneous copying of the data files, giving the speed advantages
of -k/--link while leaving the old cluster untouched.

File cloning is only supported on some operating systems and file systems. If it is selected but not
supported, the pg_upgrade run will error. At present, it is supported on Linux (kernel 4.5 or later)
with Btrfs and XFS (on file systems created with reflink support), and on macOS with APFS.

--copy

Copy files to the new cluster. This is the default. (See also --link, --clone, --copy-file-range,
and --swap.)

--copy-file-range

Use the copy_file_range system call for efficient copying. On some file systems this gives results
similar to --clone, sharing physical disk blocks, while on others it may still copy blocks, but do so
via an optimized path. At present, it is supported on Linux and FreeBSD.

--no-statistics

Do not restore statistics from the old cluster into the new cluster.

--set-char-signedness=option

Manually set the default char signedness of new clusters. Possible values are signed and unsigned.

In the C language, the default signedness of the char type (when not explicitly specified) varies
across platforms. For example, char defaults to signed char on x86 CPUs but to unsigned char
on ARM CPUs.

Starting from PostgreSQL 18, database clusters maintain their own default char signedness setting,
which can be used to ensure consistent behavior across platforms with different default char signed-
ness. By default, pg_upgrade preserves the char signedness setting when upgrading from an exist-
ing cluster. However, when upgrading from PostgreSQL 17 or earlier, pg_upgrade adopts the char
signedness of the platform on which it was built.

This option allows you to explicitly set the default char signedness for the new cluster, overriding
any inherited values. There are two specific scenarios where this option is relevant:
• If you are planning to migrate to a different platform after the upgrade, you should not use this

option. The default behavior is right in this case. Instead, perform the upgrade on the original
platform without this flag, and then migrate the cluster afterward. This is the recommended and
safest approach.

• If you have already migrated the cluster to a platform with different char signedness (for exam-
ple, from an x86-based system to an ARM-based system), you should use this option to specify
the signedness matching the original platform's default char signedness. Additionally, it's essen-
tial not to modify any data files between migrating data files and running pg_upgrade. pg_up-
grade should be the first operation that starts the cluster on the new platform.

--swap

Move the data directories from the old cluster to the new cluster. Then, replace the catalog files with
those generated for the new cluster. This mode can outperform --link, --clone, --copy, and --
copy-file-range, especially on clusters with many relations.

However, this mode creates many garbage files in the old cluster, which can prolong the file syn-
chronization step if --sync-method=syncfs is used. Therefore, it is recommended to use --sync-
method=fsync with --swap.

Additionally, once the file transfer step begins, the old cluster will be destructively modified and
therefore will no longer be safe to start. See Step 17 for details.

2077

pg_upgrade

--sync-method=method

When set to fsync, which is the default, pg_upgrade will recursively open and synchronize all files
in the upgraded cluster's data directory. The search for files will follow symbolic links for the WAL
directory and each configured tablespace.

On Linux, syncfs may be used instead to ask the operating system to synchronize the whole file
systems that contain the upgraded cluster's data directory, its WAL files, and each tablespace. See
recovery_init_sync_method for information about the caveats to be aware of when using syncfs.

This option has no effect when --no-sync is used.

-?
--help

show help, then exit

Usage
These are the steps to perform an upgrade with pg_upgrade:

Note
The steps to upgrade logical replication clusters are not covered here; refer to Section 29.13 for
details.

1. Optionally move the old cluster

If you are using a version-specific installation directory, e.g., /opt/PostgreSQL/18, you do not need
to move the old cluster. The graphical installers all use version-specific installation directories.

If your installation directory is not version-specific, e.g., /usr/local/pgsql, it is necessary to move
the current PostgreSQL install directory so it does not interfere with the new PostgreSQL installa-
tion. Once the current PostgreSQL server is shut down, it is safe to rename the PostgreSQL instal-
lation directory; assuming the old directory is /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

to rename the directory.

2. For source installs, build the new version

Build the new PostgreSQL source with configure flags that are compatible with the old cluster.
pg_upgrade will check pg_controldata to make sure all settings are compatible before starting the
upgrade.

3. Install the new PostgreSQL binaries

Install the new server's binaries and support files. pg_upgrade is included in a default installation.

For source installs, if you wish to install the new server in a custom location, use the prefix variable:

make prefix=/usr/local/pgsql.new install

4. Initialize the new PostgreSQL cluster

Initialize the new cluster using initdb. Again, use compatible initdb flags that match the old cluster.
Many prebuilt installers do this step automatically. There is no need to start the new cluster.

5. Install extension shared object files

Many extensions and custom modules, whether from contrib or another source, use shared object
files (or DLLs), e.g., pgcrypto.so. If the old cluster used these, shared object files matching the new
server binary must be installed in the new cluster, usually via operating system commands. Do not

2078

pg_upgrade

load the schema definitions, e.g., CREATE EXTENSION pgcrypto, because these will be duplicated
from the old cluster. If extension updates are available, pg_upgrade will report this and create a
script that can be run later to update them.

6. Copy custom full-text search files
Copy any custom full text search files (dictionary, synonym, thesaurus, stop words) from the old to
the new cluster.

7. Adjust authentication
pg_upgrade will connect to the old and new servers several times, so you might want to set authen-
tication to peer in pg_hba.conf or use a ~/.pgpass file (see Section 32.16).

8. Stop both servers
Make sure both database servers are stopped using, on Unix, e.g.:
pg_ctl -D /opt/PostgreSQL/12 stop
pg_ctl -D /opt/PostgreSQL/18 stop

or on Windows, using the proper service names:
NET STOP postgresql-12
NET STOP postgresql-18

Streaming replication and log-shipping standby servers must be running during this shutdown so
they receive all changes.

9. Prepare for standby server upgrades
If you are upgrading standby servers using methods outlined in section Step 11, verify that the
old standby servers are caught up by running pg_controldata against the old primary and standby
clusters. Verify that the “Latest checkpoint location” values match in all clusters. Also, make sure
wal_level is not set to minimal in the postgresql.conf file on the new primary cluster.

10. Run pg_upgrade
Always run the pg_upgrade binary of the new server, not the old one. pg_upgrade requires the
specification of the old and new cluster's data and executable (bin) directories. You can also specify
user and port values, and whether you want the data files linked, cloned, or swapped instead of the
default copy behavior.

If you use link mode, the upgrade will be much faster (no file copying) and use less disk space, but
you will not be able to access your old cluster once you start the new cluster after the upgrade.
Link mode also requires that the old and new cluster data directories be in the same file system.
(Tablespaces and pg_wal can be on different file systems.) Clone mode provides the same speed and
disk space advantages but does not cause the old cluster to be unusable once the new cluster is
started. Clone mode also requires that the old and new data directories be in the same file system.
This mode is only available on certain operating systems and file systems. Swap mode may be the
fastest if there are many relations, but you will not be able to access your old cluster once the file
transfer step begins. Swap mode also requires that the old and new cluster data directories be in
the same file system.

Setting --jobs to 2 or higher allows pg_upgrade to process multiple databases and tablespaces in
parallel. A good starting point is the number of CPU cores on the machine. This option can substan-
tially reduce the upgrade time for multi-database and multi-tablespace servers.

For Windows users, you must be logged into an administrative account, and then run pg_upgrade
with quoted directories, e.g.:
pg_upgrade.exe
 --old-datadir "C:/Program Files/PostgreSQL/12/data"
 --new-datadir "C:/Program Files/PostgreSQL/18/data"
 --old-bindir "C:/Program Files/PostgreSQL/12/bin"
 --new-bindir "C:/Program Files/PostgreSQL/18/bin"

2079

pg_upgrade

Once started, pg_upgrade will verify the two clusters are compatible and then do the upgrade. You
can use pg_upgrade --check to perform only the checks, even if the old server is still running.
pg_upgrade --check will also outline any manual adjustments you will need to make after the up-
grade. If you are going to be using link, clone, copy-file-range, or swap mode, you should use the op-
tion --link, --clone, --copy-file-range, or --swap with --check to enable mode-specific checks.
pg_upgrade requires write permission in the current directory.

Obviously, no one should be accessing the clusters during the upgrade. pg_upgrade defaults to run-
ning servers on port 50432 to avoid unintended client connections. You can use the same port num-
ber for both clusters when doing an upgrade because the old and new clusters will not be running
at the same time. However, when checking an old running server, the old and new port numbers
must be different.

If an error occurs while restoring the database schema, pg_upgrade will exit and you will have to
revert to the old cluster as outlined in Step 17 below. To try pg_upgrade again, you will need to
modify the old cluster so the pg_upgrade schema restore succeeds. If the problem is a contrib
module, you might need to uninstall the contrib module from the old cluster and install it in the
new cluster after the upgrade, assuming the module is not being used to store user data.

11. Upgrade streaming replication and log-shipping standby servers

If you used link mode and have Streaming Replication (see Section 26.2.5) or Log-Shipping (see
Section 26.2) standby servers, you can follow these steps to quickly upgrade them. You will not
be running pg_upgrade on the standby servers, but rather rsync on the primary. Do not start any
servers yet.

If you did not use link mode, do not have or do not want to use rsync, or want an easier solution, skip
the instructions in this section and simply recreate the standby servers once pg_upgrade completes
and the new primary is running.

1. Install the new PostgreSQL binaries on standby servers

Make sure the new binaries and support files are installed on all standby servers.

2. Make sure the new standby data directories do not exist

Make sure the new standby data directories do not exist or are empty. If initdb was run, delete
the standby servers' new data directories.

3. Install extension shared object files

Install the same extension shared object files on the new standbys that you installed in the new
primary cluster.

4. Stop standby servers

If the standby servers are still running, stop them now using the above instructions.

5. Save configuration files

Save any configuration files from the old standbys' configuration directories you need to keep,
e.g., postgresql.conf (and any files included by it), postgresql.auto.conf, pg_hba.conf, be-
cause these will be overwritten or removed in the next step.

6. Run rsync

When using link mode, standby servers can be quickly upgraded using rsync. To accomplish this,
from a directory on the primary server that is above the old and new database cluster directories,
run this on the primary for each standby server:

rsync --archive --delete --hard-links --size-only --no-inc-recursive old_cluster
 new_cluster remote_dir

where old_cluster and new_cluster are relative to the current directory on the primary, and
remote_dir is above the old and new cluster directories on the standby. The directory structure

2080

pg_upgrade

under the specified directories on the primary and standbys must match. Consult the rsync
manual page for details on specifying the remote directory, e.g.,

rsync --archive --delete --hard-links --size-only --no-inc-recursive /opt/
PostgreSQL/12 \
 /opt/PostgreSQL/18 standby.example.com:/opt/PostgreSQL

You can verify what the command will do using rsync's --dry-run option. While rsync must be
run on the primary for at least one standby, it is possible to run rsync on an upgraded standby
to upgrade other standbys, as long as the upgraded standby has not been started.

What this does is to record the links created by pg_upgrade's link mode that connect files in
the old and new clusters on the primary server. It then finds matching files in the standby's old
cluster and creates links for them in the standby's new cluster. Files that were not linked on
the primary are copied from the primary to the standby. (They are usually small.) This provides
rapid standby upgrades. Unfortunately, rsync needlessly copies files associated with temporary
and unlogged tables because these files don't normally exist on standby servers.

If you have tablespaces, you will need to run a similar rsync command for each tablespace di-
rectory, e.g.:

rsync --archive --delete --hard-links --size-only --no-inc-recursive /vol1/
pg_tblsp/PG_12_201909212 \
 /vol1/pg_tblsp/PG_18_202307071 standby.example.com:/vol1/pg_tblsp

If you have relocated pg_wal outside the data directories, rsync must be run on those directories
too.

7. Configure streaming replication and log-shipping standby servers

Configure the servers for log shipping. (You do not need to run pg_backup_start() and pg_back-
up_stop() or take a file system backup as the standbys are still synchronized with the primary.)
If the old primary is prior to version 17.0, then no slots on the primary are copied to the new
standby, so all the slots on the old standby must be recreated manually. If the old primary is
version 17.0 or later, then only logical slots on the primary are copied to the new standby, but
other slots on the old standby are not copied, so must be recreated manually.

12. Restore pg_hba.conf

If you modified pg_hba.conf, restore its original settings. It might also be necessary to adjust other
configuration files in the new cluster to match the old cluster, e.g., postgresql.conf (and any files
included by it), postgresql.auto.conf.

13. Start the new server

The new server can now be safely started, and then any rsync'ed standby servers.

14. Post-upgrade processing

If any post-upgrade processing is required, pg_upgrade will issue warnings as it completes. It will
also generate script files that must be run by the administrator. The script files will connect to each
database that needs post-upgrade processing. Each script should be run using:

psql --username=postgres --file=script.sql postgres

The scripts can be run in any order and can be deleted once they have been run.

Caution
In general it is unsafe to access tables referenced in rebuild scripts until the rebuild scripts
have run to completion; doing so could yield incorrect results or poor performance. Tables not
referenced in rebuild scripts can be accessed immediately.

2081

pg_upgrade

15. Statistics
Unless the --no-statistics option is specified, pg_upgrade will transfer most optimizer statistics
from the old cluster to the new cluster. However, some statistics may not be transferred, such as
those created explicitly with CREATE STATISTICS or custom statistics added by an extension.

Because not all statistics are transferred by pg_upgrade, you will be instructed to run commands to
regenerate that information at the end of the upgrade. You might need to set connection parameters
to match your new cluster.

First, use vacuumdb --all --analyze-in-stages --missing-stats-only to quickly generate min-
imal optimizer statistics for relations without any. Then, use vacuumdb --all --analyze-only to
ensure all relations have updated cumulative statistics for triggering vacuum and analyze. For both
commands, the use of --jobs can speed it up. If vacuum_cost_delay is set to a non-zero value, this
can be overridden to speed up statistics generation using PGOPTIONS, e.g., PGOPTIONS='-c vacu-
um_cost_delay=0' vacuumdb

16. Delete old cluster
Once you are satisfied with the upgrade, you can delete the old cluster's data directories by running
the script mentioned when pg_upgrade completes. (Automatic deletion is not possible if you have
user-defined tablespaces inside the old data directory.) You can also delete the old installation di-
rectories (e.g., bin, share).

17. Reverting to old cluster
If, after running pg_upgrade, you wish to revert to the old cluster, there are several options:
• If the --check option was used, the old cluster was unmodified; it can be restarted.
• If neither --link nor --swap was used, the old cluster was unmodified; it can be restarted.
• If the --link option was used, the data files might be shared between the old and new cluster:

• If pg_upgrade aborted before linking started, the old cluster was unmodified; it can be
restarted.

• If you did not start the new cluster, the old cluster was unmodified except that, when linking
started, a .old suffix was appended to $PGDATA/global/pg_control. To reuse the old clus-
ter, remove the .old suffix from $PGDATA/global/pg_control; you can then restart the old
cluster.

• If you did start the new cluster, it has written to shared files and it is unsafe to use the old
cluster. The old cluster will need to be restored from backup in this case.

• If the --swap option was used, the old cluster might be destructively modified:
• If pg_upgrade aborts before reporting that the old cluster is no longer safe to start, the old

cluster was unmodified; it can be restarted.
• If pg_upgrade has reported that the old cluster is no longer safe to start, the old cluster was

destructively modified. The old cluster will need to be restored from backup in this case.

Environment
Some environment variables can be used to provide defaults for command-line options:
PGBINOLD

The old PostgreSQL executable directory; option -b/--old-bindir.

PGBINNEW

The new PostgreSQL executable directory; option -B/--new-bindir.

PGDATAOLD

The old database cluster configuration directory; option -d/--old-datadir.

2082

pg_upgrade

PGDATANEW

The new database cluster configuration directory; option -D/--new-datadir.

PGPORTOLD

The old cluster port number; option -p/--old-port.

PGPORTNEW

The new cluster port number; option -P/--new-port.

PGSOCKETDIR

Directory to use for postmaster sockets during upgrade; option -s/--socketdir.

PGUSER

Cluster's install user name; option -U/--username.

Notes
pg_upgrade creates various working files, such as schema dumps, stored within pg_upgrade_output.d in
the directory of the new cluster. Each run creates a new subdirectory named with a timestamp formatted
as per ISO 8601 (%Y%m%dT%H%M%S), where all its generated files are stored. pg_upgrade_output.d and
its contained files will be removed automatically if pg_upgrade completes successfully; but in the event
of trouble, the files there may provide useful debugging information.

pg_upgrade launches short-lived postmasters in the old and new data directories. Temporary Unix socket
files for communication with these postmasters are, by default, made in the current working directory.
In some situations the path name for the current directory might be too long to be a valid socket name.
In that case you can use the -s option to put the socket files in some directory with a shorter path
name. For security, be sure that that directory is not readable or writable by any other users. (This is
not supported on Windows.)

All failure, rebuild, and reindex cases will be reported by pg_upgrade if they affect your installation;
post-upgrade scripts to rebuild tables and indexes will be generated automatically. If you are trying to
automate the upgrade of many clusters, you should find that clusters with identical database schemas
require the same post-upgrade steps for all cluster upgrades; this is because the post-upgrade steps are
based on the database schemas, and not user data.

For deployment testing, create a schema-only copy of the old cluster, insert dummy data, and upgrade
that.

pg_upgrade does not support upgrading of databases containing table columns using these reg* OID-
referencing system data types:

regcollation
regconfig
regdictionary
regnamespace
regoper
regoperator
regproc
regprocedure

(regclass, regrole, and regtype can be upgraded.)

If you want to use link mode and you do not want your old cluster to be modified when the new cluster
is started, consider using the clone mode. If that is not available, make a copy of the old cluster and
upgrade that in link mode. To make a valid copy of the old cluster, use rsync to create a dirty copy of the
old cluster while the server is running, then shut down the old server and run rsync --checksum again

2083

pg_upgrade

to update the copy with any changes to make it consistent. (--checksum is necessary because rsync
only has file modification-time granularity of one second.) You might want to exclude some files, e.g.,
postmaster.pid, as documented in Section 25.3.4. If your file system supports file system snapshots or
copy-on-write file copies, you can use that to make a backup of the old cluster and tablespaces, though
the snapshot and copies must be created simultaneously or while the database server is down.

See Also
initdb, pg_ctl, pg_dump, postgres

2084

pg_waldump
pg_waldump — display a human-readable rendering of the write-ahead log of a PostgreSQL database
cluster

Synopsis
pg_waldump [option...] [startseg [endseg]]

Description
pg_waldump displays the write-ahead log (WAL) and is mainly useful for debugging or educational pur-
poses.

This utility can only be run by the user who installed the server, because it requires read-only access
to the data directory.

Options
The following command-line options control the location and format of the output:

startseg

Start reading at the specified WAL segment file. This implicitly determines the path in which files
will be searched for, and the timeline to use.

endseg

Stop after reading the specified WAL segment file.

-b
--bkp-details

Output detailed information about backup blocks.

-B block
--block=block

Only display records that modify the given block. The relation must also be provided with --relation
or -R.

-e end
--end=end

Stop reading at the specified WAL location, instead of reading to the end of the log stream.

-f
--follow

After reaching the end of valid WAL, keep polling once per second for new WAL to appear.

-F fork
--fork=fork

Only display records that modify blocks in the given fork. The valid values are main for the main fork,
fsm for the free space map, vm for the visibility map, and init for the init fork.

-n limit
--limit=limit

Display the specified number of records, then stop.

2085

pg_waldump

-p path
--path=path

Specifies a directory to search for WAL segment files or a directory with a pg_wal subdirectory that
contains such files. The default is to search in the current directory, the pg_wal subdirectory of the
current directory, and the pg_wal subdirectory of PGDATA.

-q
--quiet

Do not print any output, except for errors. This option can be useful when you want to know whether
a range of WAL records can be successfully parsed but don't care about the record contents.

-r rmgr
--rmgr=rmgr

Only display records generated by the specified resource manager. You can specify the option mul-
tiple times to select multiple resource managers. If list is passed as name, print a list of valid re-
source manager names, and exit.

Extensions may define custom resource managers, but pg_waldump does not load the extension
module and therefore does not recognize custom resource managers by name. Instead, you can
specify the custom resource managers as custom### where ### is the three-digit resource manager
ID. Names of this form will always be considered valid.

-R tblspc/db/rel
--relation=tblspc/db/rel

Only display records that modify blocks in the given relation. The relation is specified with tablespace
OID, database OID, and relfilenode separated by slashes, for example 1234/12345/12345. This is the
same format used for relations in the program's output.

-s start
--start=start

WAL location at which to start reading. The default is to start reading the first valid WAL record
found in the earliest file found.

-t timeline
--timeline=timeline

Timeline from which to read WAL records. The default is to use the value in startseg, if that is
specified; otherwise, the default is 1. The value can be specified in decimal or hexadecimal, for
example 17 or 0x11.

-V
--version

Print the pg_waldump version and exit.

-w
--fullpage

Only display records that include full page images.

-x xid
--xid=xid

Only display records marked with the given transaction ID.

-z
--stats[=record]

Display summary statistics (number and size of records and full-page images) instead of individual
records. Optionally generate statistics per-record instead of per-rmgr.

2086

pg_waldump

If pg_waldump is terminated by signal SIGINT (Control+C), the summary of the statistics computed
is displayed up to the termination point. This operation is not supported on Windows.

--save-fullpage=save_path

Save full page images found in the WAL records to the save_path directory. The images saved are
subject to the same filtering and limiting criteria as the records displayed.

The full page images are saved with the following file name format: TIMELINE-LSN.RELTABLES-
PACE.DATOID.RELNODE.BLKNO_FORK The file names are composed of the following parts:

Component Description
TIMELINE The timeline of the WAL segment file where the

record is located formatted as one 8-character
hexadecimal number %08X

LSN The LSN of the record with this image, format-
ted as two 8-character hexadecimal numbers
%08X-%08X

RELTABLESPACE tablespace OID of the block
DATOID database OID of the block
RELNODE filenode of the block
BLKNO block number of the block
FORK The name of the fork the full page image came

from, such as main, fsm, vm, or init.

-?
--help

Show help about pg_waldump command line arguments, and exit.

Environment
PGDATA

Data directory; see also the -p option.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
Can give wrong results when the server is running.

Only the specified timeline is displayed (or the default, if none is specified). Records in other timelines
are ignored.

pg_waldump cannot read WAL files with suffix .partial. If those files need to be read, .partial suffix
needs to be removed from the file name.

See Also
Section 28.6

2087

pg_walsummary
pg_walsummary — print contents of WAL summary files

Synopsis
pg_walsummary [option...] [file...]

Description
pg_walsummary is used to print the contents of WAL summary files. These binary files are found with
the pg_wal/summaries subdirectory of the data directory, and can be converted to text using this tool.
This is not ordinarily necessary, since WAL summary files primarily exist to support incremental backup,
but it may be useful for debugging purposes.

A WAL summary file is indexed by tablespace OID, relation OID, and relation fork. For each relation fork,
it stores the list of blocks that were modified by WAL within the range summarized in the file. It can also
store a "limit block," which is 0 if the relation fork was created or truncated within the relevant WAL
range, and otherwise the shortest length to which the relation fork was truncated. If the relation fork
was not created, deleted, or truncated within the relevant WAL range, the limit block is undefined or
infinite and will not be printed by this tool.

Options
-i
--individual

By default, pg_walsummary prints one line of output for each range of one or more consecutive mod-
ified blocks. This can make the output a lot briefer, since a relation where all blocks from 0 through
999 were modified will produce only one line of output rather than 1000 separate lines. This option
requests a separate line of output for every modified block.

-q
--quiet

Do not print any output, except for errors. This can be useful when you want to know whether a WAL
summary file can be successfully parsed but don't care about the contents.

-V
--version

Display version information, then exit.

-?
--help

Shows help about pg_walsummary command line arguments, and exits.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

See Also
pg_basebackup, pg_combinebackup

2088

postgres
postgres — PostgreSQL database server

Synopsis
postgres [option...]

Description
postgres is the PostgreSQL database server. In order for a client application to access a database it
connects (over a network or locally) to a running postgres instance. The postgres instance then starts
a separate server process to handle the connection.

One postgres instance always manages the data of exactly one database cluster. A database cluster is
a collection of databases that is stored at a common file system location (the “data area”). More than
one postgres instance can run on a system at one time, so long as they use different data areas and
different communication ports (see below). When postgres starts it needs to know the location of the
data area. The location must be specified by the -D option or the PGDATA environment variable; there
is no default. Typically, -D or PGDATA points directly to the data area directory created by initdb. Other
possible file layouts are discussed in Section 19.2.

By default postgres starts in the foreground and prints log messages to the standard error stream. In
practical applications postgres should be started as a background process, perhaps at boot time.

The postgres command can also be called in single-user mode. The primary use for this mode is during
bootstrapping by initdb. Sometimes it is used for debugging or disaster recovery; note that running a
single-user server is not truly suitable for debugging the server, since no realistic interprocess commu-
nication and locking will happen. When invoked in single-user mode from the shell, the user can enter
queries and the results will be printed to the screen, but in a form that is more useful for developers
than end users. In the single-user mode, the session user will be set to the user with ID 1, and implicit
superuser powers are granted to this user. This user does not actually have to exist, so the single-user
mode can be used to manually recover from certain kinds of accidental damage to the system catalogs.

Options
postgres accepts the following command-line arguments. For a detailed discussion of the options consult
Chapter 19. You can save typing most of these options by setting up a configuration file. Some (safe)
options can also be set from the connecting client in an application-dependent way to apply only for that
session. For example, if the environment variable PGOPTIONS is set, then libpq-based clients will pass
that string to the server, which will interpret it as postgres command-line options.

General Purpose
-B nbuffers

Sets the number of shared buffers for use by the server processes. The default value of this parameter
is chosen automatically by initdb. Specifying this option is equivalent to setting the shared_buffers
configuration parameter.

-c name=value

Sets a named run-time parameter. The configuration parameters supported by PostgreSQL are de-
scribed in Chapter 19. Most of the other command line options are in fact short forms of such a
parameter assignment. -c can appear multiple times to set multiple parameters.

-C name

Prints the value of the named run-time parameter, and exits. (See the -c option above for details.)
This returns values from postgresql.conf, modified by any parameters supplied in this invocation.
It does not reflect parameters supplied when the cluster was started.

2089

postgres

This can be used on a running server for most parameters. However, the server must be
shut down for some runtime-computed parameters (e.g., shared_memory_size, shared_memo-
ry_size_in_huge_pages, and wal_segment_size).

This option is meant for other programs that interact with a server instance, such as pg_ctl, to query
configuration parameter values. User-facing applications should instead use SHOW or the pg_settings
view.

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the server
log. Values are from 1 to 5. It is also possible to pass -d 0 for a specific session, which will prevent
the server log level of the parent postgres process from being propagated to this session.

-D datadir

Specifies the file system location of the database configuration files. See Section 19.2 for details.

-e

Sets the default date style to “European”, that is DMY ordering of input date fields. This also causes
the day to be printed before the month in certain date output formats. See Section 8.5 for more
information.

-F

Disables fsync calls for improved performance, at the risk of data corruption in the event of a system
crash. Specifying this option is equivalent to disabling the fsync configuration parameter. Read the
detailed documentation before using this!

-h hostname

Specifies the IP host name or address on which postgres is to listen for TCP/IP connections from
client applications. The value can also be a comma-separated list of addresses, or * to specify listening
on all available interfaces. An empty value specifies not listening on any IP addresses, in which case
only Unix-domain sockets can be used to connect to the server. Defaults to listening only on localhost.
Specifying this option is equivalent to setting the listen_addresses configuration parameter.

-i

Allows remote clients to connect via TCP/IP (Internet domain) connections. Without this option, only
local connections are accepted. This option is equivalent to setting listen_addresses to * in post-
gresql.conf or via -h.

This option is deprecated since it does not allow access to the full functionality of listen_addresses.
It's usually better to set listen_addresses directly.

-k directory

Specifies the directory of the Unix-domain socket on which postgres is to listen for connections
from client applications. The value can also be a comma-separated list of directories. An empty value
specifies not listening on any Unix-domain sockets, in which case only TCP/IP sockets can be used
to connect to the server. The default value is normally /tmp, but that can be changed at build time.
Specifying this option is equivalent to setting the unix_socket_directories configuration parameter.

-l

Enables secure connections using SSL. PostgreSQL must have been compiled with support for SSL
for this option to be available. For more information on using SSL, refer to Section 18.9.

-N max-connections

Sets the maximum number of client connections that this server will accept. The default value of
this parameter is chosen automatically by initdb. Specifying this option is equivalent to setting the
max_connections configuration parameter.

2090

postgres

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which postgres is to listen
for connections from client applications. Defaults to the value of the PGPORT environment variable,
or if PGPORT is not set, then defaults to the value established during compilation (normally 5432). If
you specify a port other than the default port, then all client applications must specify the same port
using either command-line options or PGPORT.

-s

Print time information and other statistics at the end of each command. This is useful for benchmark-
ing or for use in tuning the number of buffers.

-S work-mem
Specifies the base amount of memory to be used by sorts and hash tables before resorting to tempo-
rary disk files. See the description of the work_mem configuration parameter in Section 19.4.1.

-V
--version

Print the postgres version and exit.

--name=value

Sets a named run-time parameter; a shorter form of -c.

--describe-config

This option dumps out the server's internal configuration variables, descriptions, and defaults in tab-
delimited COPY format. It is designed primarily for use by administration tools.

-?
--help

Show help about postgres command line arguments, and exit.

Semi-Internal Options
The options described here are used mainly for debugging purposes, and in some cases to assist with
recovery of severely damaged databases. There should be no reason to use them in a production database
setup. They are listed here only for use by PostgreSQL system developers. Furthermore, these options
might change or be removed in a future release without notice.

-f { s | i | o | b | t | n | m | h }
Forbids the use of particular scan and join methods: s and i disable sequential and index scans
respectively, o, b and t disable index-only scans, bitmap index scans, and TID scans respectively,
while n, m, and h disable nested-loop, merge and hash joins respectively.

Neither sequential scans nor nested-loop joins can be disabled completely; the -fs and -fn options
simply discourage the optimizer from using those plan types if it has any other alternative.

-O

Allows the structure of system tables to be modified. This is used by initdb.

-P

Ignore system indexes when reading system tables, but still update the indexes when modifying the
tables. This is useful when recovering from damaged system indexes.

-t pa[rser] | pl[anner] | e[xecutor]
Print timing statistics for each query relating to each of the major system modules. This option cannot
be used together with the -s option.

2091

postgres

-T

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate, by sending
them SIGQUIT signals. With this option, SIGABRT will be sent instead, resulting in production of
core dump files.

-v protocol
Specifies the version number of the frontend/backend protocol to be used for a particular session.
This option is for internal use only.

-W seconds
A delay of this many seconds occurs when a new server process is started, after it conducts the
authentication procedure. This is intended to give an opportunity to attach to the server process
with a debugger.

Options for Single-User Mode
The following options only apply to the single-user mode (see Single-User Mode below).

--single

Selects the single-user mode. This must be the first argument on the command line.

database

Specifies the name of the database to be accessed. This must be the last argument on the command
line. If it is omitted it defaults to the user name.

-E

Echo all commands to standard output before executing them.

-j

Use semicolon followed by two newlines, rather than just newline, as the command entry terminator.

-r filename
Send all server log output to filename. This option is only honored when supplied as a command-line
option.

Environment
PGCLIENTENCODING

Default character encoding used by clients. (The clients can override this individually.) This value
can also be set in the configuration file.

PGDATA

Default data directory location

PGDATESTYLE

Default value of the DateStyle run-time parameter. (The use of this environment variable is depre-
cated.)

PGPORT

Default port number (preferably set in the configuration file)

Diagnostics
A failure message mentioning semget or shmget probably indicates you need to configure your kernel to
provide adequate shared memory and semaphores. For more discussion see Section 18.4. You might be

2092

postgres

able to postpone reconfiguring your kernel by decreasing shared_buffers to reduce the shared memory
consumption of PostgreSQL, and/or by reducing max_connections to reduce the semaphore consump-
tion.

A failure message suggesting that another server is already running should be checked carefully, for
example by using the command
$ ps ax | grep postgres

or
$ ps -ef | grep postgres

depending on your system. If you are certain that no conflicting server is running, you can remove the
lock file mentioned in the message and try again.

A failure message indicating inability to bind to a port might indicate that that port is already in use by
some non-PostgreSQL process. You might also get this error if you terminate postgres and immediately
restart it using the same port; in this case, you must simply wait a few seconds until the operating
system closes the port before trying again. Finally, you might get this error if you specify a port number
that your operating system considers to be reserved. For example, many versions of Unix consider port
numbers under 1024 to be “trusted” and only permit the Unix superuser to access them.

Notes
The utility command pg_ctl can be used to start and shut down the postgres server safely and comfort-
ably.

If at all possible, do not use SIGKILL to kill the main postgres server. Doing so will prevent postgres from
freeing the system resources (e.g., shared memory and semaphores) that it holds before terminating.
This might cause problems for starting a fresh postgres run.

To terminate the postgres server normally, the signals SIGTERM, SIGINT, or SIGQUIT can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all clients,
and the third will quit immediately without proper shutdown, resulting in a recovery run during restart.

The SIGHUP signal will reload the server configuration files. It is also possible to send SIGHUP to an
individual server process, but that is usually not sensible.

To cancel a running query, send the SIGINT signal to the process running that command. To terminate
a backend process cleanly, send SIGTERM to that process. See also pg_cancel_backend and pg_termi-
nate_backend in Section 9.28.2 for the SQL-callable equivalents of these two actions.

The postgres server uses SIGQUIT to tell subordinate server processes to terminate without normal
cleanup. This signal should not be used by users. It is also unwise to send SIGKILL to a server process
— the main postgres process will interpret this as a crash and will force all the sibling processes to quit
as part of its standard crash-recovery procedure.

Bugs
The -- options will not work on FreeBSD or OpenBSD. Use -c instead. This is a bug in the affected
operating systems; a future release of PostgreSQL will provide a workaround if this is not fixed.

Single-User Mode
To start a single-user mode server, use a command like
postgres --single -D /usr/local/pgsql/data other-options my_database

Provide the correct path to the database directory with -D, or make sure that the environment variable
PGDATA is set. Also specify the name of the particular database you want to work in.

Normally, the single-user mode server treats newline as the command entry terminator; there is no
intelligence about semicolons, as there is in psql. To continue a command across multiple lines, you

2093

postgres

must type backslash just before each newline except the last one. The backslash and adjacent newline
are both dropped from the input command. Note that this will happen even when within a string literal
or comment.

But if you use the -j command line switch, a single newline does not terminate command entry; instead,
the sequence semicolon-newline-newline does. That is, type a semicolon immediately followed by a com-
pletely empty line. Backslash-newline is not treated specially in this mode. Again, there is no intelligence
about such a sequence appearing within a string literal or comment.

In either input mode, if you type a semicolon that is not just before or part of a command entry terminator,
it is considered a command separator. When you do type a command entry terminator, the multiple
statements you've entered will be executed as a single transaction.

To quit the session, type EOF (Control+D, usually). If you've entered any text since the last command
entry terminator, then EOF will be taken as a command entry terminator, and another EOF will be
needed to exit.

Note that the single-user mode server does not provide sophisticated line-editing features (no command
history, for example). Single-user mode also does not do any background processing, such as automatic
checkpoints or replication.

Examples
To start postgres in the background using default values, type:

$ nohup postgres >logfile 2>&1 </dev/null &

To start postgres with a specific port, e.g., 1234:

$ postgres -p 1234

To connect to this server using psql, specify this port with the -p option:

$ psql -p 1234

or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

Named run-time parameters can be set in either of these styles:

$ postgres -c work_mem=1234
$ postgres --work-mem=1234

Either form overrides whatever setting might exist for work_mem in postgresql.conf. Notice that un-
derscores in parameter names can be written as either underscore or dash on the command line. Except
for short-term experiments, it's probably better practice to edit the setting in postgresql.conf than to
rely on a command-line switch to set a parameter.

See Also
initdb, pg_ctl

2094

Part VII. Internals
This part contains assorted information that might be of use to PostgreSQL developers.

Chapter 51. Overview of PostgreSQL
Internals

Author
This chapter originated as part of sim98 Stefan Simkovics' Master's Thesis prepared at Vienna
University of Technology under the direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag.
Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of PostgreSQL. After having read
the following sections you should have an idea of how a query is processed. This chapter is intended to
help the reader understand the general sequence of operations that occur within the backend from the
point at which a query is received, to the point at which the results are returned to the client.

51.1. The Path of a Query
Here we give a short overview of the stages a query has to pass to obtain a result.

1. A connection from an application program to the PostgreSQL server has to be established. The
application program transmits a query to the server and waits to receive the results sent back by
the server.

2. The parser stage checks the query transmitted by the application program for correct syntax and
creates a query tree.

3. The rewrite system takes the query tree created by the parser stage and looks for any rules (stored
in the system catalogs) to apply to the query tree. It performs the transformations given in the rule
bodies.

One application of the rewrite system is in the realization of views. Whenever a query against a view
(i.e., a virtual table) is made, the rewrite system rewrites the user's query to a query that accesses
the base tables given in the view definition instead.

4. The planner/optimizer takes the (rewritten) query tree and creates a query plan that will be the
input to the executor.

It does so by first creating all possible paths leading to the same result. For example if there is
an index on a relation to be scanned, there are two paths for the scan. One possibility is a simple
sequential scan and the other possibility is to use the index. Next the cost for the execution of each
path is estimated and the cheapest path is chosen. The cheapest path is expanded into a complete
plan that the executor can use.

5. The executor recursively steps through the plan tree and retrieves rows in the way represented by
the plan. The executor makes use of the storage system while scanning relations, performs sorts and
joins, evaluates qualifications and finally hands back the rows derived.

In the following sections we will cover each of the above listed items in more detail to give a better
understanding of PostgreSQL's internal control and data structures.

51.2. How Connections Are Established
PostgreSQL implements a “process per user” client/server model. In this model, every client process
connects to exactly one backend process. As we do not know ahead of time how many connections will be
made, we have to use a “supervisor process” that spawns a new backend process every time a connection
is requested. This supervisor process is called postmaster and listens at a specified TCP/IP port for
incoming connections. Whenever it detects a request for a connection, it spawns a new backend process.
Those backend processes communicate with each other and with other processes of the instance using
semaphores and shared memory to ensure data integrity throughout concurrent data access.

2096

Overview of PostgreSQL Internals

The client process can be any program that understands the PostgreSQL protocol described in Chap-
ter 54. Many clients are based on the C-language library libpq, but several independent implementations
of the protocol exist, such as the Java JDBC driver.

Once a connection is established, the client process can send a query to the backend process it's con-
nected to. The query is transmitted using plain text, i.e., there is no parsing done in the client. The back-
end process parses the query, creates an execution plan, executes the plan, and returns the retrieved
rows to the client by transmitting them over the established connection.

51.3. The Parser Stage
The parser stage consists of two parts:

• The parser defined in gram.y and scan.l is built using the Unix tools bison and flex.

• The transformation process does modifications and augmentations to the data structures returned
by the parser.

51.3.1. Parser
The parser has to check the query string (which arrives as plain text) for valid syntax. If the syntax is
correct a parse tree is built up and handed back; otherwise an error is returned. The parser and lexer
are implemented using the well-known Unix tools bison and flex.

The lexer is defined in the file scan.l and is responsible for recognizing identifiers, the SQL key words
etc. For every key word or identifier that is found, a token is generated and handed to the parser.

The parser is defined in the file gram.y and consists of a set of grammar rules and actions that are
executed whenever a rule is fired. The code of the actions (which is actually C code) is used to build
up the parse tree.

The file scan.l is transformed to the C source file scan.c using the program flex and gram.y is trans-
formed to gram.c using bison. After these transformations have taken place a normal C compiler can be
used to create the parser. Never make any changes to the generated C files as they will be overwritten
the next time flex or bison is called.

Note
The mentioned transformations and compilations are normally done automatically using the make-
files shipped with the PostgreSQL source distribution.

A detailed description of bison or the grammar rules given in gram.y would be beyond the scope of
this manual. There are many books and documents dealing with flex and bison. You should be familiar
with bison before you start to study the grammar given in gram.y otherwise you won't understand what
happens there.

51.3.2. Transformation Process
The parser stage creates a parse tree using only fixed rules about the syntactic structure of SQL. It
does not make any lookups in the system catalogs, so there is no possibility to understand the detailed
semantics of the requested operations. After the parser completes, the transformation process takes the
tree handed back by the parser as input and does the semantic interpretation needed to understand
which tables, functions, and operators are referenced by the query. The data structure that is built to
represent this information is called the query tree.

The reason for separating raw parsing from semantic analysis is that system catalog lookups can only
be done within a transaction, and we do not wish to start a transaction immediately upon receiving a
query string. The raw parsing stage is sufficient to identify the transaction control commands (BEGIN,

2097

Overview of PostgreSQL Internals

ROLLBACK, etc.), and these can then be correctly executed without any further analysis. Once we know
that we are dealing with an actual query (such as SELECT or UPDATE), it is okay to start a transaction if
we're not already in one. Only then can the transformation process be invoked.

The query tree created by the transformation process is structurally similar to the raw parse tree in most
places, but it has many differences in detail. For example, a FuncCall node in the parse tree represents
something that looks syntactically like a function call. This might be transformed to either a FuncExpr
or Aggref node depending on whether the referenced name turns out to be an ordinary function or an
aggregate function. Also, information about the actual data types of columns and expression results is
added to the query tree.

51.4. The PostgreSQL Rule System
PostgreSQL supports a powerful rule system for the specification of views and ambiguous view updates.
Originally the PostgreSQL rule system consisted of two implementations:

• The first one worked using row level processing and was implemented deep in the executor. The
rule system was called whenever an individual row had been accessed. This implementation was re-
moved in 1995 when the last official release of the Berkeley Postgres project was transformed into
Postgres95.

• The second implementation of the rule system is a technique called query rewriting. The rewrite
system is a module that exists between the parser stage and the planner/optimizer. This technique
is still implemented.

The query rewriter is discussed in some detail in Chapter 39, so there is no need to cover it here. We
will only point out that both the input and the output of the rewriter are query trees, that is, there is
no change in the representation or level of semantic detail in the trees. Rewriting can be thought of as
a form of macro expansion.

51.5. Planner/Optimizer
The task of the planner/optimizer is to create an optimal execution plan. A given SQL query (and hence,
a query tree) can be actually executed in a wide variety of different ways, each of which will produce
the same set of results. If it is computationally feasible, the query optimizer will examine each of these
possible execution plans, ultimately selecting the execution plan that is expected to run the fastest.

Note
In some situations, examining each possible way in which a query can be executed would take an
excessive amount of time and memory. In particular, this occurs when executing queries involving
large numbers of join operations. In order to determine a reasonable (not necessarily optimal)
query plan in a reasonable amount of time, PostgreSQL uses a Genetic Query Optimizer (see
Chapter 61) when the number of joins exceeds a threshold (see geqo_threshold).

The planner's search procedure actually works with data structures called paths, which are simply cut-
down representations of plans containing only as much information as the planner needs to make its
decisions. After the cheapest path is determined, a full-fledged plan tree is built to pass to the executor.
This represents the desired execution plan in sufficient detail for the executor to run it. In the rest of
this section we'll ignore the distinction between paths and plans.

51.5.1. Generating Possible Plans
The planner/optimizer starts by generating plans for scanning each individual relation (table) used in
the query. The possible plans are determined by the available indexes on each relation. There is always
the possibility of performing a sequential scan on a relation, so a sequential scan plan is always created.
Assume an index is defined on a relation (for example a B-tree index) and a query contains the restriction
relation.attribute OPR constant. If relation.attribute happens to match the key of the B-tree

2098

Overview of PostgreSQL Internals

index and OPR is one of the operators listed in the index's operator class, another plan is created using
the B-tree index to scan the relation. If there are further indexes present and the restrictions in the
query happen to match a key of an index, further plans will be considered. Index scan plans are also
generated for indexes that have a sort ordering that can match the query's ORDER BY clause (if any), or
a sort ordering that might be useful for merge joining (see below).

If the query requires joining two or more relations, plans for joining relations are considered after all
feasible plans have been found for scanning single relations. The three available join strategies are:

• nested loop join: The right relation is scanned once for every row found in the left relation. This
strategy is easy to implement but can be very time consuming. (However, if the right relation can
be scanned with an index scan, this can be a good strategy. It is possible to use values from the
current row of the left relation as keys for the index scan of the right.)

• merge join: Each relation is sorted on the join attributes before the join starts. Then the two re-
lations are scanned in parallel, and matching rows are combined to form join rows. This kind of
join is attractive because each relation has to be scanned only once. The required sorting might be
achieved either by an explicit sort step, or by scanning the relation in the proper order using an in-
dex on the join key.

• hash join: the right relation is first scanned and loaded into a hash table, using its join attributes as
hash keys. Next the left relation is scanned and the appropriate values of every row found are used
as hash keys to locate the matching rows in the table.

When the query involves more than two relations, the final result must be built up by a tree of join steps,
each with two inputs. The planner examines different possible join sequences to find the cheapest one.

If the query uses fewer than geqo_threshold relations, a near-exhaustive search is conducted to find
the best join sequence. The planner preferentially considers joins between any two relations for which
there exists a corresponding join clause in the WHERE qualification (i.e., for which a restriction like where
rel1.attr1=rel2.attr2 exists). Join pairs with no join clause are considered only when there is no
other choice, that is, a particular relation has no available join clauses to any other relation. All possible
plans are generated for every join pair considered by the planner, and the one that is (estimated to be)
the cheapest is chosen.

When geqo_threshold is exceeded, the join sequences considered are determined by heuristics, as
described in Chapter 61. Otherwise the process is the same.

The finished plan tree consists of sequential or index scans of the base relations, plus nested-loop, merge,
or hash join nodes as needed, plus any auxiliary steps needed, such as sort nodes or aggregate-function
calculation nodes. Most of these plan node types have the additional ability to do selection (discarding
rows that do not meet a specified Boolean condition) and projection (computation of a derived column
set based on given column values, that is, evaluation of scalar expressions where needed). One of the
responsibilities of the planner is to attach selection conditions from the WHERE clause and computation
of required output expressions to the most appropriate nodes of the plan tree.

51.6. Executor
The executor takes the plan created by the planner/optimizer and recursively processes it to extract the
required set of rows. This is essentially a demand-pull pipeline mechanism. Each time a plan node is
called, it must deliver one more row, or report that it is done delivering rows.

To provide a concrete example, assume that the top node is a MergeJoin node. Before any merge can
be done two rows have to be fetched (one from each subplan). So the executor recursively calls itself to
process the subplans (it starts with the subplan attached to lefttree). The new top node (the top node
of the left subplan) is, let's say, a Sort node and again recursion is needed to obtain an input row. The
child node of the Sort might be a SeqScan node, representing actual reading of a table. Execution of this
node causes the executor to fetch a row from the table and return it up to the calling node. The Sort
node will repeatedly call its child to obtain all the rows to be sorted. When the input is exhausted (as
indicated by the child node returning a NULL instead of a row), the Sort code performs the sort, and

2099

Overview of PostgreSQL Internals

finally is able to return its first output row, namely the first one in sorted order. It keeps the remaining
rows stored so that it can deliver them in sorted order in response to later demands.

The MergeJoin node similarly demands the first row from its right subplan. Then it compares the two
rows to see if they can be joined; if so, it returns a join row to its caller. On the next call, or immediately if
it cannot join the current pair of inputs, it advances to the next row of one table or the other (depending
on how the comparison came out), and again checks for a match. Eventually, one subplan or the other
is exhausted, and the MergeJoin node returns NULL to indicate that no more join rows can be formed.

Complex queries can involve many levels of plan nodes, but the general approach is the same: each
node computes and returns its next output row each time it is called. Each node is also responsible for
applying any selection or projection expressions that were assigned to it by the planner.

The executor mechanism is used to evaluate all five basic SQL query types: SELECT, INSERT, UPDATE,
DELETE, and MERGE. For SELECT, the top-level executor code only needs to send each row returned by the
query plan tree off to the client. INSERT ... SELECT, UPDATE, DELETE, and MERGE are effectively SELECTs
under a special top-level plan node called ModifyTable.

INSERT ... SELECT feeds the rows up to ModifyTable for insertion. For UPDATE, the planner arranges
that each computed row includes all the updated column values, plus the TID (tuple ID, or row ID) of the
original target row; this data is fed up to the ModifyTable node, which uses the information to create a
new updated row and mark the old row deleted. For DELETE, the only column that is actually returned
by the plan is the TID, and the ModifyTable node simply uses the TID to visit each target row and mark
it deleted. For MERGE, the planner joins the source and target relations, and includes all column values
required by any of the WHEN clauses, plus the TID of the target row; this data is fed up to the ModifyTable
node, which uses the information to work out which WHEN clause to execute, and then inserts, updates
or deletes the target row, as required.

A simple INSERT ... VALUES command creates a trivial plan tree consisting of a single Result node,
which computes just one result row, feeding that up to ModifyTable to perform the insertion.

2100

Chapter 52. System Catalogs
The system catalogs are the place where a relational database management system stores schema meta-
data, such as information about tables and columns, and internal bookkeeping information. PostgreSQL's
system catalogs are regular tables. You can drop and recreate the tables, add columns, insert and update
values, and severely mess up your system that way. Normally, one should not change the system catalogs
by hand, there are normally SQL commands to do that. (For example, CREATE DATABASE inserts a row
into the pg_database catalog — and actually creates the database on disk.) There are some exceptions
for particularly esoteric operations, but many of those have been made available as SQL commands over
time, and so the need for direct manipulation of the system catalogs is ever decreasing.

52.1. Overview
Table 52.1 lists the system catalogs. More detailed documentation of each catalog follows below.

Most system catalogs are copied from the template database during database creation and are thereafter
database-specific. A few catalogs are physically shared across all databases in a cluster; these are noted
in the descriptions of the individual catalogs.

Table 52.1. System Catalogs

Catalog Name Purpose
pg_aggregate aggregate functions
pg_am relation access methods
pg_amop access method operators
pg_amproc access method support functions
pg_attrdef column default values
pg_attribute table columns (“attributes”)
pg_authid authorization identifiers (roles)
pg_auth_members authorization identifier membership relationships
pg_cast casts (data type conversions)
pg_class tables, indexes, sequences, views (“relations”)
pg_collation collations (locale information)
pg_constraint check constraints, unique constraints, primary

key constraints, foreign key constraints
pg_conversion encoding conversion information
pg_database databases within this database cluster
pg_db_role_setting per-role and per-database settings
pg_default_acl default privileges for object types
pg_depend dependencies between database objects
pg_description descriptions or comments on database objects
pg_enum enum label and value definitions
pg_event_trigger event triggers
pg_extension installed extensions
pg_foreign_data_wrapper foreign-data wrapper definitions
pg_foreign_server foreign server definitions
pg_foreign_table additional foreign table information
pg_index additional index information

2101

System Catalogs

Catalog Name Purpose
pg_inherits table inheritance hierarchy
pg_init_privs object initial privileges
pg_language languages for writing functions
pg_largeobject data pages for large objects
pg_largeobject_metadata metadata for large objects
pg_namespace schemas
pg_opclass access method operator classes
pg_operator operators
pg_opfamily access method operator families
pg_parameter_acl configuration parameters for which privileges

have been granted
pg_partitioned_table information about partition key of tables
pg_policy row-security policies
pg_proc functions and procedures
pg_publication publications for logical replication
pg_publication_namespace schema to publication mapping
pg_publication_rel relation to publication mapping
pg_range information about range types
pg_replication_origin registered replication origins
pg_rewrite query rewrite rules
pg_seclabel security labels on database objects
pg_sequence information about sequences
pg_shdepend dependencies on shared objects
pg_shdescription comments on shared objects
pg_shseclabel security labels on shared database objects
pg_statistic planner statistics
pg_statistic_ext extended planner statistics (definition)
pg_statistic_ext_data extended planner statistics (built statistics)
pg_subscription logical replication subscriptions
pg_subscription_rel relation state for subscriptions
pg_tablespace tablespaces within this database cluster
pg_transform transforms (data type to procedural language con-

versions)
pg_trigger triggers
pg_ts_config text search configurations
pg_ts_config_map text search configurations' token mappings
pg_ts_dict text search dictionaries
pg_ts_parser text search parsers
pg_ts_template text search templates
pg_type data types

2102

System Catalogs

Catalog Name Purpose
pg_user_mapping mappings of users to foreign servers

52.2. pg_aggregate
The catalog pg_aggregate stores information about aggregate functions. An aggregate function is a
function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are
sum, count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc
entry carries the aggregate's name, input and output data types, and other information that is similar
to ordinary functions.

Table 52.2. pg_aggregate Columns

Column Type
Description

aggfnoid regproc (references pg_proc .oid)
pg_proc OID of the aggregate function

aggkind char
Aggregate kind: n for “normal” aggregates, o for “ordered-set” aggregates, or h for “hypo-
thetical-set” aggregates

aggnumdirectargs int2
Number of direct (non-aggregated) arguments of an ordered-set or hypothetical-set aggre-
gate, counting a variadic array as one argument. If equal to pronargs, the aggregate must be
variadic and the variadic array describes the aggregated arguments as well as the final direct
arguments. Always zero for normal aggregates.

aggtransfn regproc (references pg_proc .oid)
Transition function

aggfinalfn regproc (references pg_proc .oid)
Final function (zero if none)

aggcombinefn regproc (references pg_proc .oid)
Combine function (zero if none)

aggserialfn regproc (references pg_proc .oid)
Serialization function (zero if none)

aggdeserialfn regproc (references pg_proc .oid)
Deserialization function (zero if none)

aggmtransfn regproc (references pg_proc .oid)
Forward transition function for moving-aggregate mode (zero if none)

aggminvtransfn regproc (references pg_proc .oid)
Inverse transition function for moving-aggregate mode (zero if none)

aggmfinalfn regproc (references pg_proc .oid)
Final function for moving-aggregate mode (zero if none)

aggfinalextra bool
True to pass extra dummy arguments to aggfinalfn

aggmfinalextra bool
True to pass extra dummy arguments to aggmfinalfn

aggfinalmodify char
Whether aggfinalfn modifies the transition state value: r if it is read-only, s if the ag-
gtransfn cannot be applied after the aggfinalfn, or w if it writes on the value

aggmfinalmodify char
Like aggfinalmodify, but for the aggmfinalfn

2103

System Catalogs

Column Type
Description

aggsortop oid (references pg_operator .oid)
Associated sort operator (zero if none)

aggtranstype oid (references pg_type .oid)
Data type of the aggregate function's internal transition (state) data

aggtransspace int4
Approximate average size (in bytes) of the transition state data, or zero to use a default esti-
mate

aggmtranstype oid (references pg_type .oid)
Data type of the aggregate function's internal transition (state) data for moving-aggregate
mode (zero if none)

aggmtransspace int4
Approximate average size (in bytes) of the transition state data for moving-aggregate mode,
or zero to use a default estimate

agginitval text
The initial value of the transition state. This is a text field containing the initial value in its ex-
ternal string representation. If this field is null, the transition state value starts out null.

aggminitval text
The initial value of the transition state for moving-aggregate mode. This is a text field con-
taining the initial value in its external string representation. If this field is null, the transition
state value starts out null.

New aggregate functions are registered with the CREATE AGGREGATE command. See Section 36.12 for
more information about writing aggregate functions and the meaning of the transition functions, etc.

52.3. pg_am
The catalog pg_am stores information about relation access methods. There is one row for each access
method supported by the system. Currently, only tables and indexes have access methods. The require-
ments for table and index access methods are discussed in detail in Chapter 62 and Chapter 63 respec-
tively.

Table 52.3. pg_am Columns

Column Type
Description

oid oid
Row identifier

amname name
Name of the access method

amhandler regproc (references pg_proc .oid)
OID of a handler function that is responsible for supplying information about the access
method

amtype char
t = table (including materialized views), i = index.

Note
Before PostgreSQL 9.6, pg_am contained many additional columns representing properties of in-
dex access methods. That data is now only directly visible at the C code level. However, pg_in-
dex_column_has_property() and related functions have been added to allow SQL queries to in-
spect index access method properties; see Table 9.76.

2104

System Catalogs

52.4. pg_amop
The catalog pg_amop stores information about operators associated with access method operator fami-
lies. There is one row for each operator that is a member of an operator family. A family member can be
either a search operator or an ordering operator. An operator can appear in more than one family, but
cannot appear in more than one search position nor more than one ordering position within a family. (It
is allowed, though unlikely, for an operator to be used for both search and ordering purposes.)

Table 52.4. pg_amop Columns

Column Type
Description

oid oid
Row identifier

amopfamily oid (references pg_opfamily .oid)
The operator family this entry is for

amoplefttype oid (references pg_type .oid)
Left-hand input data type of operator

amoprighttype oid (references pg_type .oid)
Right-hand input data type of operator

amopstrategy int2
Operator strategy number

amoppurpose char
Operator purpose, either s for search or o for ordering

amopopr oid (references pg_operator .oid)
OID of the operator

amopmethod oid (references pg_am .oid)
Index access method operator family is for

amopsortfamily oid (references pg_opfamily .oid)
The B-tree operator family this entry sorts according to, if an ordering operator; zero if a
search operator

A “search” operator entry indicates that an index of this operator family can be searched to find all rows
satisfying WHERE indexed_column operator constant. Obviously, such an operator must return boolean,
and its left-hand input type must match the index's column data type.

An “ordering” operator entry indicates that an index of this operator family can be scanned to return
rows in the order represented by ORDER BY indexed_column operator constant. Such an operator could
return any sortable data type, though again its left-hand input type must match the index's column data
type. The exact semantics of the ORDER BY are specified by the amopsortfamily column, which must
reference a B-tree operator family for the operator's result type.

Note
At present, it's assumed that the sort order for an ordering operator is the default for the refer-
enced operator family, i.e., ASC NULLS LAST. This might someday be relaxed by adding additional
columns to specify sort options explicitly.

An entry's amopmethod must match the opfmethod of its containing operator family (including amop-
method here is an intentional denormalization of the catalog structure for performance reasons). Al-
so, amoplefttype and amoprighttype must match the oprleft and oprright fields of the referenced
pg_operator entry.

2105

System Catalogs

52.5. pg_amproc
The catalog pg_amproc stores information about support functions associated with access method oper-
ator families. There is one row for each support function belonging to an operator family.

Table 52.5. pg_amproc Columns

Column Type
Description

oid oid
Row identifier

amprocfamily oid (references pg_opfamily .oid)
The operator family this entry is for

amproclefttype oid (references pg_type .oid)
Left-hand input data type of associated operator

amprocrighttype oid (references pg_type .oid)
Right-hand input data type of associated operator

amprocnum int2
Support function number

amproc regproc (references pg_proc .oid)
OID of the function

The usual interpretation of the amproclefttype and amprocrighttype fields is that they identify the left
and right input types of the operator(s) that a particular support function supports. For some access
methods these match the input data type(s) of the support function itself, for others not. There is a notion
of “default” support functions for an index, which are those with amproclefttype and amprocrighttype
both equal to the index operator class's opcintype.

52.6. pg_attrdef
The catalog pg_attrdef stores column default expressions and generation expressions. The main infor-
mation about columns is stored in pg_attribute. Only columns for which a default expression or gen-
eration expression has been explicitly set will have an entry here.

Table 52.6. pg_attrdef Columns

Column Type
Description

oid oid
Row identifier

adrelid oid (references pg_class .oid)
The table this column belongs to

adnum int2 (references pg_attribute .attnum)
The number of the column

adbin pg_node_tree
The column default or generation expression, in nodeToString() representation. Use pg_
get_expr(adbin, adrelid) to convert it to an SQL expression.

52.7. pg_attribute
The catalog pg_attribute stores information about table columns. There will be exactly one pg_at-
tribute row for every column in every table in the database. (There will also be attribute entries for
indexes, and indeed all objects that have pg_class entries.)

2106

System Catalogs

The term attribute is equivalent to column and is used for historical reasons.

Table 52.7. pg_attribute Columns

Column Type
Description

attrelid oid (references pg_class .oid)
The table this column belongs to

attname name
The column name

atttypid oid (references pg_type .oid)
The data type of this column (zero for a dropped column)

attlen int2
A copy of pg_type.typlen of this column's type

attnum int2
The number of the column. Ordinary columns are numbered from 1 up. System columns, such
as ctid, have (arbitrary) negative numbers.

atttypmod int4
atttypmod records type-specific data supplied at table creation time (for example, the maxi-
mum length of a varchar column). It is passed to type-specific input functions and length co-
ercion functions. The value will generally be -1 for types that do not need atttypmod.

attndims int2
Number of dimensions, if the column is an array type; otherwise 0. (Presently, the number
of dimensions of an array is not enforced, so any nonzero value effectively means “it's an ar-
ray”.)

attbyval bool
A copy of pg_type.typbyval of this column's type

attalign char
A copy of pg_type.typalign of this column's type

attstorage char
Normally a copy of pg_type.typstorage of this column's type. For TOAST-able data types,
this can be altered after column creation to control storage policy.

attcompression char
The current compression method of the column. Typically this is '\0' to specify use of the
current default setting (see default_toast_compression). Otherwise, 'p' selects pglz compres-
sion, while 'l' selects LZ4 compression. However, this field is ignored whenever attstorage
does not allow compression.

attnotnull bool
This column has a (possibly invalid) not-null constraint.

atthasdef bool
This column has a default expression or generation expression, in which case there will be a
corresponding entry in the pg_attrdef catalog that actually defines the expression. (Check
attgenerated to determine whether this is a default or a generation expression.)

atthasmissing bool
This column has a value which is used where the column is entirely missing from the row, as
happens when a column is added with a non-volatile DEFAULT value after the row is created.
The actual value used is stored in the attmissingval column.

attidentity char
If a zero byte (''), then not an identity column. Otherwise, a = generated always, d = gener-
ated by default.

attgenerated char

2107

System Catalogs

Column Type
Description
If a zero byte (''), then not a generated column. Otherwise, s = stored, v = virtual. A stored
generated column is physically stored like a normal column. A virtual generated column is
physically stored as a null value, with the actual value being computed at run time.

attisdropped bool
This column has been dropped and is no longer valid. A dropped column is still physically
present in the table, but is ignored by the parser and so cannot be accessed via SQL.

attislocal bool
This column is defined locally in the relation. Note that a column can be locally defined and
inherited simultaneously.

attinhcount int2
The number of direct ancestors this column has. A column with a nonzero number of ances-
tors cannot be dropped nor renamed.

attcollation oid (references pg_collation .oid)
The defined collation of the column, or zero if the column is not of a collatable data type

attstattarget int2
attstattarget controls the level of detail of statistics accumulated for this column by ANA-
LYZE. A zero value indicates that no statistics should be collected. A null value says to use the
system default statistics target. The exact meaning of positive values is data type-dependent.
For scalar data types, attstattarget is both the target number of “most common values” to
collect, and the target number of histogram bins to create.

attacl aclitem[]
Column-level access privileges, if any have been granted specifically on this column

attoptions text[]
Attribute-level options, as “keyword=value” strings

attfdwoptions text[]
Attribute-level foreign data wrapper options, as “keyword=value” strings

attmissingval anyarray
This column has a one element array containing the value used when the column is entirely
missing from the row, as happens when the column is added with a non-volatile DEFAULT value
after the row is created. The value is only used when atthasmissing is true. If there is no val-
ue the column is null.

In a dropped column's pg_attribute entry, atttypid is reset to zero, but attlen and the other fields
copied from pg_type are still valid. This arrangement is needed to cope with the situation where the
dropped column's data type was later dropped, and so there is no pg_type row anymore. attlen and
the other fields can be used to interpret the contents of a row of the table.

52.8. pg_authid
The catalog pg_authid contains information about database authorization identifiers (roles). A role sub-
sumes the concepts of “users” and “groups”. A user is essentially just a role with the rolcanlogin flag
set. Any role (with or without rolcanlogin) can have other roles as members; see pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Chapter 21 contains detailed information about user and privilege management.

Because user identities are cluster-wide, pg_authid is shared across all databases of a cluster: there is
only one copy of pg_authid per cluster, not one per database.

2108

System Catalogs

Table 52.8. pg_authid Columns

Column Type
Description

oid oid
Row identifier

rolname name
Role name

rolsuper bool
Role has superuser privileges

rolinherit bool
Role automatically inherits privileges of roles it is a member of

rolcreaterole bool
Role can create more roles

rolcreatedb bool
Role can create databases

rolcanlogin bool
Role can log in. That is, this role can be given as the initial session authorization identifier.

rolreplication bool
Role is a replication role. A replication role can initiate replication connections and create
and drop replication slots.

rolbypassrls bool
Role bypasses every row-level security policy, see Section 5.9 for more information.

rolconnlimit int4
For roles that can log in, this sets maximum number of concurrent connections this role can
make. -1 means no limit.

rolpassword text
Encrypted password; null if none. The format depends on the form of encryption used.

rolvaliduntil timestamptz
Password expiry time (only used for password authentication); null if no expiration

For an MD5 encrypted password, rolpassword column will begin with the string md5 followed by a
32-character hexadecimal MD5 hash. The MD5 hash will be of the user's password concatenated to
their user name. For example, if user joe has password xyzzy, PostgreSQL will store the md5 hash of
xyzzyjoe.

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future release of
PostgreSQL. Refer to Section 20.5 for details about migrating to another password type.

If the password is encrypted with SCRAM-SHA-256, it has the format:
SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>

where salt, StoredKey and ServerKey are in Base64 encoded format. This format is the same as that
specified by RFC 5803.

52.9. pg_auth_members
The catalog pg_auth_members shows the membership relations between roles. Any non-circular set of
relationships is allowed.

Because user identities are cluster-wide, pg_auth_members is shared across all databases of a cluster:
there is only one copy of pg_auth_members per cluster, not one per database.

2109

https://datatracker.ietf.org/doc/html/rfc5803

System Catalogs

Table 52.9. pg_auth_members Columns

Column Type
Description

oid oid
Row identifier

roleid oid (references pg_authid .oid)
ID of a role that has a member

member oid (references pg_authid .oid)
ID of a role that is a member of roleid

grantor oid (references pg_authid .oid)
ID of the role that granted this membership

admin_option bool
True if member can grant membership in roleid to others

inherit_option bool
True if the member automatically inherits the privileges of the granted role

set_option bool
True if the member can SET ROLE to the granted role

52.10. pg_cast
The catalog pg_cast stores data type conversion paths, both built-in and user-defined.

It should be noted that pg_cast does not represent every type conversion that the system knows how
to perform; only those that cannot be deduced from some generic rule. For example, casting between a
domain and its base type is not explicitly represented in pg_cast. Another important exception is that
“automatic I/O conversion casts”, those performed using a data type's own I/O functions to convert to
or from text or other string types, are not explicitly represented in pg_cast.

Table 52.10. pg_cast Columns

Column Type
Description

oid oid
Row identifier

castsource oid (references pg_type .oid)
OID of the source data type

casttarget oid (references pg_type .oid)
OID of the target data type

castfunc oid (references pg_proc .oid)
The OID of the function to use to perform this cast. Zero is stored if the cast method doesn't
require a function.

castcontext char
Indicates what contexts the cast can be invoked in. e means only as an explicit cast (using
CAST or :: syntax). a means implicitly in assignment to a target column, as well as explicitly.
i means implicitly in expressions, as well as the other cases.

castmethod char
Indicates how the cast is performed. f means that the function specified in the castfunc field
is used. i means that the input/output functions are used. b means that the types are bina-
ry-coercible, thus no conversion is required.

The cast functions listed in pg_cast must always take the cast source type as their first argument type,
and return the cast destination type as their result type. A cast function can have up to three arguments.
The second argument, if present, must be type integer; it receives the type modifier associated with the

2110

System Catalogs

destination type, or -1 if there is none. The third argument, if present, must be type boolean; it receives
true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent “length coercion functions”
that coerce values of the type to be legal for a particular type modifier value.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single
step. When no such entry is available, coercion to a type that uses a type modifier involves two steps,
one to convert between data types and a second to apply the modifier.

52.11. pg_class
The catalog pg_class describes tables and other objects that have columns or are otherwise similar to
a table. This includes indexes (but see also pg_index), sequences (but see also pg_sequence), views,
materialized views, composite types, and TOAST tables; see relkind. Below, when we mean all of these
kinds of objects we speak of “relations”. Not all of pg_class's columns are meaningful for all relation
kinds.

Table 52.11. pg_class Columns

Column Type
Description

oid oid
Row identifier

relname name
Name of the table, index, view, etc.

relnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this relation

reltype oid (references pg_type .oid)
The OID of the data type that corresponds to this table's row type, if any; zero for indexes, se-
quences, and toast tables, which have no pg_type entry

reloftype oid (references pg_type .oid)
For typed tables, the OID of the underlying composite type; zero for all other relations

relowner oid (references pg_authid .oid)
Owner of the relation

relam oid (references pg_am .oid)
The access method used to access this table or index. Not meaningful if the relation is a se-
quence or has no on-disk file, except for partitioned tables, where, if set, it takes precedence
over default_table_access_method when determining the access method to use for par-
titions created when one is not specified in the creation command.

relfilenode oid
Name of the on-disk file of this relation; zero means this is a “mapped” relation whose disk
file name is determined by low-level state

reltablespace oid (references pg_tablespace .oid)
The tablespace in which this relation is stored. If zero, the database's default tablespace is
implied. Not meaningful if the relation has no on-disk file, except for partitioned tables, where
this is the tablespace in which partitions will be created when one is not specified in the cre-
ation command.

relpages int4
Size of the on-disk representation of this table in pages (of size BLCKSZ). This is only an esti-
mate used by the planner. It is updated by VACUUM, ANALYZE, and a few DDL commands such
as CREATE INDEX.

2111

System Catalogs

Column Type
Description

reltuples float4
Number of live rows in the table. This is only an estimate used by the planner. It is updated
by VACUUM, ANALYZE, and a few DDL commands such as CREATE INDEX. If the table has never
yet been vacuumed or analyzed, reltuples contains -1 indicating that the row count is un-
known.

relallvisible int4
Number of pages that are marked all-visible in the table's visibility map. This is only an esti-
mate used by the planner. It is updated by VACUUM, ANALYZE, and a few DDL commands such
as CREATE INDEX.

relallfrozen int4
Number of pages that are marked all-frozen in the table's visibility map. This is only an es-
timate used for triggering autovacuums. It can also be used along with relallvisible for
scheduling manual vacuums and tuning vacuum's freezing behavior. It is updated by VACUUM,
 ANALYZE, and a few DDL commands such as CREATE INDEX.

reltoastrelid oid (references pg_class .oid)
OID of the TOAST table associated with this table, zero if none. The TOAST table stores large
attributes “out of line” in a secondary table.

relhasindex bool
True if this is a table and it has (or recently had) any indexes

relisshared bool
True if this table is shared across all databases in the cluster. Only certain system catalogs (
such as pg_database) are shared.

relpersistence char
p = permanent table/sequence, u = unlogged table/sequence, t = temporary table/sequence

relkind char
r = ordinary table, i = index, S = sequence, t = TOAST table, v = view, m = materialized
view, c = composite type, f = foreign table, p = partitioned table, I = partitioned index

relnatts int2
Number of user columns in the relation (system columns not counted). There must be this
many corresponding entries in pg_attribute . See also pg_attribute .attnum.

relchecks int2
Number of CHECK constraints on the table; see pg_constraint catalog

relhasrules bool
True if table has (or once had) rules; see pg_rewrite catalog

relhastriggers bool
True if table has (or once had) triggers; see pg_trigger catalog

relhassubclass bool
True if table or index has (or once had) any inheritance children or partitions

relrowsecurity bool
True if table has row-level security enabled; see pg_policy catalog

relforcerowsecurity bool
True if row-level security (when enabled) will also apply to table owner; see pg_policy cata-
log

relispopulated bool
True if relation is populated (this is true for all relations other than some materialized views)

relreplident char

2112

System Catalogs

Column Type
Description
Columns used to form “replica identity” for rows: d = default (primary key, if any), n = noth-
ing, f = all columns, i = index with indisreplident set (same as nothing if the index used
has been dropped)

relispartition bool
True if table or index is a partition

relrewrite oid (references pg_class .oid)
For new relations being written during a DDL operation that requires a table rewrite, this
contains the OID of the original relation; otherwise zero. That state is only visible internally;
this field should never contain anything other than zero for a user-visible relation.

relfrozenxid xid
All transaction IDs before this one have been replaced with a permanent (“frozen”) transac-
tion ID in this table. This is used to track whether the table needs to be vacuumed in order to
prevent transaction ID wraparound or to allow pg_xact to be shrunk. Zero (InvalidTrans-
actionId) if the relation is not a table.

relminmxid xid
All multixact IDs before this one have been replaced by a transaction ID in this table. This is
used to track whether the table needs to be vacuumed in order to prevent multixact ID wrap-
around or to allow pg_multixact to be shrunk. Zero (InvalidMultiXactId) if the relation is
not a table.

relacl aclitem[]
Access privileges; see Section 5.8 for details

reloptions text[]
Access-method-specific options, as “keyword=value” strings

relpartbound pg_node_tree
If table is a partition (see relispartition), internal representation of the partition bound

Several of the Boolean flags in pg_class are maintained lazily: they are guaranteed to be true if that's
the correct state, but may not be reset to false immediately when the condition is no longer true. For
example, relhasindex is set by CREATE INDEX, but it is never cleared by DROP INDEX. Instead, VACUUM
clears relhasindex if it finds the table has no indexes. This arrangement avoids race conditions and
improves concurrency.

52.12. pg_collation
The catalog pg_collation describes the available collations, which are essentially mappings from an
SQL name to operating system locale categories. See Section 23.2 for more information.

Table 52.12. pg_collation Columns

Column Type
Description

oid oid
Row identifier

collname name
Collation name (unique per namespace and encoding)

collnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this collation

collowner oid (references pg_authid .oid)
Owner of the collation

collprovider char
Provider of the collation: d = database default, b = builtin, c = libc, i = icu

2113

System Catalogs

Column Type
Description

collisdeterministic bool
Is the collation deterministic?

collencoding int4
Encoding in which the collation is applicable, or -1 if it works for any encoding

collcollate text
LC_COLLATE for this collation object. If the provider is not libc, collcollate is NULL and
colllocale is used instead.

collctype text
LC_CTYPE for this collation object. If the provider is not libc, collctype is NULL and colllo-
cale is used instead.

colllocale text
Collation provider locale name for this collation object. If the provider is libc, colllocale is
NULL; collcollate and collctype are used instead.

collicurules text
ICU collation rules for this collation object

collversion text
Provider-specific version of the collation. This is recorded when the collation is created and
then checked when it is used, to detect changes in the collation definition that could lead to
data corruption.

Note that the unique key on this catalog is (collname, collencoding, collnamespace) not just (collname,
collnamespace). PostgreSQL generally ignores all collations that do not have collencoding equal to
either the current database's encoding or -1, and creation of new entries with the same name as an entry
with collencoding = -1 is forbidden. Therefore it is sufficient to use a qualified SQL name (schema.name)
to identify a collation, even though this is not unique according to the catalog definition. The reason
for defining the catalog this way is that initdb fills it in at cluster initialization time with entries for all
locales available on the system, so it must be able to hold entries for all encodings that might ever be
used in the cluster.

In the template0 database, it could be useful to create collations whose encoding does not match the
database encoding, since they could match the encodings of databases later cloned from template0.
This would currently have to be done manually.

52.13. pg_constraint
The catalog pg_constraint stores check, not-null, primary key, unique, foreign key, and exclusion con-
straints on tables. (Column constraints are not treated specially. Every column constraint is equivalent
to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT TRIGGER) also give rise to an entry
in this table.

Check constraints on domains are stored here, too.

Table 52.13. pg_constraint Columns

Column Type
Description

oid oid
Row identifier

conname name
Constraint name (not necessarily unique!)

connamespace oid (references pg_namespace .oid)

2114

System Catalogs

Column Type
Description
The OID of the namespace that contains this constraint

contype char
c = check constraint, f = foreign key constraint, n = not-null constraint, p = primary key con-
straint, u = unique constraint, t = constraint trigger, x = exclusion constraint

condeferrable bool
Is the constraint deferrable?

condeferred bool
Is the constraint deferred by default?

conenforced bool
Is the constraint enforced?

convalidated bool
Has the constraint been validated?

conrelid oid (references pg_class .oid)
The table this constraint is on; zero if not a table constraint

contypid oid (references pg_type .oid)
The domain this constraint is on; zero if not a domain constraint

conindid oid (references pg_class .oid)
The index supporting this constraint, if it's a unique, primary key, foreign key, or exclusion
constraint; else zero

conparentid oid (references pg_constraint .oid)
The corresponding constraint of the parent partitioned table, if this is a constraint on a parti-
tion; else zero

confrelid oid (references pg_class .oid)
If a foreign key, the referenced table; else zero

confupdtype char
Foreign key update action code: a = no action, r = restrict, c = cascade, n = set null, d = set
default

confdeltype char
Foreign key deletion action code: a = no action, r = restrict, c = cascade, n = set null, d = set
default

confmatchtype char
Foreign key match type: f = full, p = partial, s = simple

conislocal bool
This constraint is defined locally for the relation. Note that a constraint can be locally defined
and inherited simultaneously.

coninhcount int2
The number of direct inheritance ancestors this constraint has. A constraint with a nonzero
number of ancestors cannot be dropped nor renamed.

connoinherit bool
This constraint is defined locally for the relation. It is a non-inheritable constraint.

conperiod bool
This constraint is defined with WITHOUT OVERLAPS (for primary keys and unique constraints)
or PERIOD (for foreign keys).

conkey int2[] (references pg_attribute .attnum)
If a table constraint (including foreign keys, but not constraint triggers), list of the con-
strained columns

confkey int2[] (references pg_attribute .attnum)

2115

System Catalogs

Column Type
Description
If a foreign key, list of the referenced columns

conpfeqop oid[] (references pg_operator .oid)
If a foreign key, list of the equality operators for PK = FK comparisons

conppeqop oid[] (references pg_operator .oid)
If a foreign key, list of the equality operators for PK = PK comparisons

conffeqop oid[] (references pg_operator .oid)
If a foreign key, list of the equality operators for FK = FK comparisons

confdelsetcols int2[] (references pg_attribute .attnum)
If a foreign key with a SET NULL or SET DEFAULT delete action, the columns that will be updat-
ed. If null, all of the referencing columns will be updated.

conexclop oid[] (references pg_operator .oid)
If an exclusion constraint or WITHOUT OVERLAPS primary key/unique constraint, list of the per-
column exclusion operators.

conbin pg_node_tree
If a check constraint, an internal representation of the expression. (It's recommended to use
pg_get_constraintdef() to extract the definition of a check constraint.)

In the case of an exclusion constraint, conkey is only useful for constraint elements that are simple
column references. For other cases, a zero appears in conkey and the associated index must be consulted
to discover the expression that is constrained. (conkey thus has the same contents as pg_index.indkey
for the index.)

Note
pg_class.relchecks needs to agree with the number of check-constraint entries found in this
table for each relation.

52.14. pg_conversion
The catalog pg_conversion describes encoding conversion functions. See CREATE CONVERSION for
more information.

Table 52.14. pg_conversion Columns

Column Type
Description

oid oid
Row identifier

conname name
Conversion name (unique within a namespace)

connamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this conversion

conowner oid (references pg_authid .oid)
Owner of the conversion

conforencoding int4
Source encoding ID (pg_encoding_to_char() can translate this number to the encoding
name)

contoencoding int4
Destination encoding ID (pg_encoding_to_char() can translate this number to the en-
coding name)

2116

System Catalogs

Column Type
Description

conproc regproc (references pg_proc .oid)
Conversion function

condefault bool
True if this is the default conversion

52.15. pg_database
The catalog pg_database stores information about the available databases. Databases are created with
the CREATE DATABASE command. Consult Chapter 22 for details about the meaning of some of the pa-
rameters.

Unlike most system catalogs, pg_database is shared across all databases of a cluster: there is only one
copy of pg_database per cluster, not one per database.

Table 52.15. pg_database Columns

Column Type
Description

oid oid
Row identifier

datname name
Database name

datdba oid (references pg_authid .oid)
Owner of the database, usually the user who created it

encoding int4
Character encoding for this database (pg_encoding_to_char() can translate this num-
ber to the encoding name)

datlocprovider char
Locale provider for this database: b = builtin, c = libc, i = icu

datistemplate bool
If true, then this database can be cloned by any user with CREATEDB privileges; if false, then
only superusers or the owner of the database can clone it.

datallowconn bool
If false then no one can connect to this database. This is used to protect the template0 data-
base from being altered.

dathasloginevt bool
Indicates that there are login event triggers defined for this database. This flag is used to
avoid extra lookups on the pg_event_trigger table during each backend startup. This flag
is used internally by PostgreSQL and should not be manually altered or read for monitoring
purposes.

datconnlimit int4
Sets maximum number of concurrent connections that can be made to this database. -1
means no limit, -2 indicates the database is invalid.

datfrozenxid xid
All transaction IDs before this one have been replaced with a permanent (“frozen”) transac-
tion ID in this database. This is used to track whether the database needs to be vacuumed in
order to prevent transaction ID wraparound or to allow pg_xact to be shrunk. It is the mini-
mum of the per-table pg_class .relfrozenxid values.

datminmxid xid
All multixact IDs before this one have been replaced with a transaction ID in this database.
This is used to track whether the database needs to be vacuumed in order to prevent multix-

2117

System Catalogs

Column Type
Description
act ID wraparound or to allow pg_multixact to be shrunk. It is the minimum of the per-table
pg_class .relminmxid values.

dattablespace oid (references pg_tablespace .oid)
The default tablespace for the database. Within this database, all tables for which pg_
class .reltablespace is zero will be stored in this tablespace; in particular, all the non-
shared system catalogs will be there.

datcollate text
LC_COLLATE for this database

datctype text
LC_CTYPE for this database

datlocale text
Collation provider locale name for this database. If the provider is libc, datlocale is NULL;
datcollate and datctype are used instead.

daticurules text
ICU collation rules for this database

datcollversion text
Provider-specific version of the collation. This is recorded when the database is created and
then checked when it is used, to detect changes in the collation definition that could lead to
data corruption.

datacl aclitem[]
Access privileges; see Section 5.8 for details

52.16. pg_db_role_setting
The catalog pg_db_role_setting records the default values that have been set for run-time configura-
tion variables, for each role and database combination.

Unlike most system catalogs, pg_db_role_setting is shared across all databases of a cluster: there is
only one copy of pg_db_role_setting per cluster, not one per database.

Table 52.16. pg_db_role_setting Columns

Column Type
Description

setdatabase oid (references pg_database .oid)
The OID of the database the setting is applicable to, or zero if not database-specific

setrole oid (references pg_authid .oid)
The OID of the role the setting is applicable to, or zero if not role-specific

setconfig text[]
Defaults for run-time configuration variables

52.17. pg_default_acl
The catalog pg_default_acl stores initial privileges to be assigned to newly created objects.

Table 52.17. pg_default_acl Columns

Column Type
Description

oid oid
Row identifier

2118

System Catalogs

Column Type
Description

defaclrole oid (references pg_authid .oid)
The OID of the role associated with this entry

defaclnamespace oid (references pg_namespace .oid)
The OID of the namespace associated with this entry, or zero if none

defaclobjtype char
Type of object this entry is for: r = relation (table, view), S = sequence, f = function, T =
type, n = schema, L = large object

defaclacl aclitem[]
Access privileges that this type of object should have on creation

A pg_default_acl entry shows the initial privileges to be assigned to an object belonging to the indicated
user. There are currently two types of entry: “global” entries with defaclnamespace = zero, and “per-
schema” entries that reference a particular schema. If a global entry is present then it overrides the
normal hard-wired default privileges for the object type. A per-schema entry, if present, represents
privileges to be added to the global or hard-wired default privileges.

Note that when an ACL entry in another catalog is null, it is taken to represent the hard-wired default
privileges for its object, not whatever might be in pg_default_acl at the moment. pg_default_acl is
only consulted during object creation.

52.18. pg_depend
The catalog pg_depend records the dependency relationships between database objects. This informa-
tion allows DROP commands to find which other objects must be dropped by DROP CASCADE or prevent
dropping in the DROP RESTRICT case.

See also pg_shdepend, which performs a similar function for dependencies involving objects that are
shared across a database cluster.

Table 52.18. pg_depend Columns

Column Type
Description

classid oid (references pg_class .oid)
The OID of the system catalog the dependent object is in

objid oid (references any OID column)
The OID of the specific dependent object

objsubid int4
For a table column, this is the column number (the objid and classid refer to the table it-
self). For all other object types, this column is zero.

refclassid oid (references pg_class .oid)
The OID of the system catalog the referenced object is in

refobjid oid (references any OID column)
The OID of the specific referenced object

refobjsubid int4
For a table column, this is the column number (the refobjid and refclassid refer to the ta-
ble itself). For all other object types, this column is zero.

deptype char
A code defining the specific semantics of this dependency relationship; see text

In all cases, a pg_depend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

2119

System Catalogs

DEPENDENCY_NORMAL (n)
A normal relationship between separately-created objects. The dependent object can be dropped
without affecting the referenced object. The referenced object can only be dropped by specifying
CASCADE, in which case the dependent object is dropped, too. Example: a table column has a normal
dependency on its data type.

DEPENDENCY_AUTO (a)
The dependent object can be dropped separately from the referenced object, and should be auto-
matically dropped (regardless of RESTRICT or CASCADE mode) if the referenced object is dropped.
Example: a named constraint on a table is made auto-dependent on the table, so that it will go away
if the table is dropped.

DEPENDENCY_INTERNAL (i)
The dependent object was created as part of creation of the referenced object, and is really just a
part of its internal implementation. A direct DROP of the dependent object will be disallowed outright
(we'll tell the user to issue a DROP against the referenced object, instead). A DROP of the referenced
object will result in automatically dropping the dependent object whether CASCADE is specified or not.
If the dependent object has to be dropped due to a dependency on some other object being removed,
its drop is converted to a drop of the referenced object, so that NORMAL and AUTO dependencies of
the dependent object behave much like they were dependencies of the referenced object. Example:
a view's ON SELECT rule is made internally dependent on the view, preventing it from being dropped
while the view remains. Dependencies of the rule (such as tables it refers to) act as if they were
dependencies of the view.

DEPENDENCY_PARTITION_PRI (P)
DEPENDENCY_PARTITION_SEC (S)

The dependent object was created as part of creation of the referenced object, and is really just a part
of its internal implementation; however, unlike INTERNAL, there is more than one such referenced
object. The dependent object must not be dropped unless at least one of these referenced objects is
dropped; if any one is, the dependent object should be dropped whether or not CASCADE is specified.
Also unlike INTERNAL, a drop of some other object that the dependent object depends on does not
result in automatic deletion of any partition-referenced object. Hence, if the drop does not cascade
to at least one of these objects via some other path, it will be refused. (In most cases, the dependent
object shares all its non-partition dependencies with at least one partition-referenced object, so that
this restriction does not result in blocking any cascaded delete.) Primary and secondary partition
dependencies behave identically except that the primary dependency is preferred for use in error
messages; hence, a partition-dependent object should have one primary partition dependency and
one or more secondary partition dependencies. Note that partition dependencies are made in addi-
tion to, not instead of, any dependencies the object would normally have. This simplifies ATTACH/DE-
TACH PARTITION operations: the partition dependencies need only be added or removed. Example:
a child partitioned index is made partition-dependent on both the partition table it is on and the
parent partitioned index, so that it goes away if either of those is dropped, but not otherwise. The
dependency on the parent index is primary, so that if the user tries to drop the child partitioned
index, the error message will suggest dropping the parent index instead (not the table).

DEPENDENCY_EXTENSION (e)
The dependent object is a member of the extension that is the referenced object (see pg_extension).
The dependent object can be dropped only via DROP EXTENSION on the referenced object. Functionally
this dependency type acts the same as an INTERNAL dependency, but it's kept separate for clarity
and to simplify pg_dump.

DEPENDENCY_AUTO_EXTENSION (x)
The dependent object is not a member of the extension that is the referenced object (and so it should
not be ignored by pg_dump), but it cannot function without the extension and should be auto-dropped
if the extension is. The dependent object may be dropped on its own as well. Functionally this de-
pendency type acts the same as an AUTO dependency, but it's kept separate for clarity and to simplify
pg_dump.

2120

System Catalogs

Other dependency flavors might be needed in future.

Note that it's quite possible for two objects to be linked by more than one pg_depend entry. For example,
a child partitioned index would have both a partition-type dependency on its associated partition table,
and an auto dependency on each column of that table that it indexes. This sort of situation expresses
the union of multiple dependency semantics. A dependent object can be dropped without CASCADE if
any of its dependencies satisfies its condition for automatic dropping. Conversely, all the dependencies'
restrictions about which objects must be dropped together must be satisfied.

Most objects created during initdb are considered “pinned”, which means that the system itself depends
on them. Therefore, they are never allowed to be dropped. Also, knowing that pinned objects will not be
dropped, the dependency mechanism doesn't bother to make pg_depend entries showing dependencies
on them. Thus, for example, a table column of type numeric notionally has a NORMAL dependency on the
numeric data type, but no such entry actually appears in pg_depend.

52.19. pg_description
The catalog pg_description stores optional descriptions (comments) for each database object. Descrip-
tions can be manipulated with the COMMENT command and viewed with psql's \d commands. Descriptions
of many built-in system objects are provided in the initial contents of pg_description.

See also pg_shdescription, which performs a similar function for descriptions involving objects that
are shared across a database cluster.

Table 52.19. pg_description Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this description pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

objsubid int4
For a comment on a table column, this is the column number (the objoid and classoid refer
to the table itself). For all other object types, this column is zero.

description text
Arbitrary text that serves as the description of this object

52.20. pg_enum
The pg_enum catalog contains entries showing the values and labels for each enum type. The internal
representation of a given enum value is actually the OID of its associated row in pg_enum.

Table 52.20. pg_enum Columns

Column Type
Description

oid oid
Row identifier

enumtypid oid (references pg_type .oid)
The OID of the pg_type entry owning this enum value

enumsortorder float4
The sort position of this enum value within its enum type

enumlabel name
The textual label for this enum value

2121

System Catalogs

The OIDs for pg_enum rows follow a special rule: even-numbered OIDs are guaranteed to be ordered in
the same way as the sort ordering of their enum type. That is, if two even OIDs belong to the same enum
type, the smaller OID must have the smaller enumsortorder value. Odd-numbered OID values need bear
no relationship to the sort order. This rule allows the enum comparison routines to avoid catalog lookups
in many common cases. The routines that create and alter enum types attempt to assign even OIDs to
enum values whenever possible.

When an enum type is created, its members are assigned sort-order positions 1..n. But members added
later might be given negative or fractional values of enumsortorder. The only requirement on these
values is that they be correctly ordered and unique within each enum type.

52.21. pg_event_trigger
The catalog pg_event_trigger stores event triggers. See Chapter 38 for more information.

Table 52.21. pg_event_trigger Columns

Column Type
Description

oid oid
Row identifier

evtname name
Trigger name (must be unique)

evtevent name
Identifies the event for which this trigger fires

evtowner oid (references pg_authid .oid)
Owner of the event trigger

evtfoid oid (references pg_proc .oid)
The function to be called

evtenabled char
Controls in which session_replication_role modes the event trigger fires. O = trigger fires in
“origin” and “local” modes, D = trigger is disabled, R = trigger fires in “replica” mode, A =
trigger fires always.

evttags text[]
Command tags for which this trigger will fire. If NULL, the firing of this trigger is not restrict-
ed on the basis of the command tag.

52.22. pg_extension
The catalog pg_extension stores information about the installed extensions. See Section 36.17 for de-
tails about extensions.

Table 52.22. pg_extension Columns

Column Type
Description

oid oid
Row identifier

extname name
Name of the extension

extowner oid (references pg_authid .oid)
Owner of the extension

extnamespace oid (references pg_namespace .oid)
Schema containing the extension's exported objects

extrelocatable bool

2122

System Catalogs

Column Type
Description
True if extension can be relocated to another schema

extversion text
Version name for the extension

extconfig oid[] (references pg_class .oid)
Array of regclass OIDs for the extension's configuration table(s), or NULL if none

extcondition text[]
Array of WHERE-clause filter conditions for the extension's configuration table(s), or NULL if
none

Note that unlike most catalogs with a “namespace” column, extnamespace is not meant to imply that the
extension belongs to that schema. Extension names are never schema-qualified. Rather, extnamespace
indicates the schema that contains most or all of the extension's objects. If extrelocatable is true, then
this schema must in fact contain all schema-qualifiable objects belonging to the extension.

52.23. pg_foreign_data_wrapper
The catalog pg_foreign_data_wrapper stores foreign-data wrapper definitions. A foreign-data wrapper
is the mechanism by which external data, residing on foreign servers, is accessed.

Table 52.23. pg_foreign_data_wrapper Columns

Column Type
Description

oid oid
Row identifier

fdwname name
Name of the foreign-data wrapper

fdwowner oid (references pg_authid .oid)
Owner of the foreign-data wrapper

fdwhandler oid (references pg_proc .oid)
References a handler function that is responsible for supplying execution routines for the for-
eign-data wrapper. Zero if no handler is provided

fdwvalidator oid (references pg_proc .oid)
References a validator function that is responsible for checking the validity of the options giv-
en to the foreign-data wrapper, as well as options for foreign servers and user mappings us-
ing the foreign-data wrapper. Zero if no validator is provided

fdwacl aclitem[]
Access privileges; see Section 5.8 for details

fdwoptions text[]
Foreign-data wrapper specific options, as “keyword=value” strings

52.24. pg_foreign_server
The catalog pg_foreign_server stores foreign server definitions. A foreign server describes a source
of external data, such as a remote server. Foreign servers are accessed via foreign-data wrappers.

Table 52.24. pg_foreign_server Columns

Column Type
Description

oid oid
Row identifier

srvname name

2123

System Catalogs

Column Type
Description
Name of the foreign server

srvowner oid (references pg_authid .oid)
Owner of the foreign server

srvfdw oid (references pg_foreign_data_wrapper .oid)
OID of the foreign-data wrapper of this foreign server

srvtype text
Type of the server (optional)

srvversion text
Version of the server (optional)

srvacl aclitem[]
Access privileges; see Section 5.8 for details

srvoptions text[]
Foreign server specific options, as “keyword=value” strings

52.25. pg_foreign_table
The catalog pg_foreign_table contains auxiliary information about foreign tables. A foreign table is
primarily represented by a pg_class entry, just like a regular table. Its pg_foreign_table entry contains
the information that is pertinent only to foreign tables and not any other kind of relation.

Table 52.25. pg_foreign_table Columns

Column Type
Description

ftrelid oid (references pg_class .oid)
The OID of the pg_class entry for this foreign table

ftserver oid (references pg_foreign_server .oid)
OID of the foreign server for this foreign table

ftoptions text[]
Foreign table options, as “keyword=value” strings

52.26. pg_index
The catalog pg_index contains part of the information about indexes. The rest is mostly in pg_class.

Table 52.26. pg_index Columns

Column Type
Description

indexrelid oid (references pg_class .oid)
The OID of the pg_class entry for this index

indrelid oid (references pg_class .oid)
The OID of the pg_class entry for the table this index is for

indnatts int2
The total number of columns in the index (duplicates pg_class.relnatts); this number in-
cludes both key and included attributes

indnkeyatts int2
The number of key columns in the index, not counting any included columns, which are mere-
ly stored and do not participate in the index semantics

indisunique bool
If true, this is a unique index

2124

System Catalogs

Column Type
Description

indnullsnotdistinct bool
This value is only used for unique indexes. If false, this unique index will consider null values
distinct (so the index can contain multiple null values in a column, the default PostgreSQL be-
havior). If it is true, it will consider null values to be equal (so the index can only contain one
null value in a column).

indisprimary bool
If true, this index represents the primary key of the table (indisunique should always be true
when this is true)

indisexclusion bool
If true, this index supports an exclusion constraint

indimmediate bool
If true, the uniqueness check is enforced immediately on insertion (irrelevant if indisunique
is not true)

indisclustered bool
If true, the table was last clustered on this index

indisvalid bool
If true, the index is currently valid for queries. False means the index is possibly incomplete:
it must still be modified by INSERT/UPDATE operations, but it cannot safely be used for queries.
If it is unique, the uniqueness property is not guaranteed true either.

indcheckxmin bool
If true, queries must not use the index until the xmin of this pg_index row is below their
TransactionXmin event horizon, because the table may contain broken HOT chains with in-
compatible rows that they can see

indisready bool
If true, the index is currently ready for inserts. False means the index must be ignored by
INSERT/UPDATE operations.

indislive bool
If false, the index is in process of being dropped, and should be ignored for all purposes (in-
cluding HOT-safety decisions)

indisreplident bool
If true this index has been chosen as “replica identity” using ALTER TABLE ... REPLICA
IDENTITY USING INDEX ...

indkey int2vector (references pg_attribute .attnum)
This is an array of indnatts values that indicate which table columns this index indexes. For
example, a value of 1 3 would mean that the first and the third table columns make up the in-
dex entries. Key columns come before non-key (included) columns. A zero in this array indi-
cates that the corresponding index attribute is an expression over the table columns, rather
than a simple column reference.

indcollation oidvector (references pg_collation .oid)
For each column in the index key (indnkeyatts values), this contains the OID of the collation
to use for the index, or zero if the column is not of a collatable data type.

indclass oidvector (references pg_opclass .oid)
For each column in the index key (indnkeyatts values), this contains the OID of the operator
class to use. See pg_opclass for details.

indoption int2vector
This is an array of indnkeyatts values that store per-column flag bits. The meaning of the
bits is defined by the index's access method.

indexprs pg_node_tree

2125

System Catalogs

Column Type
Description
Expression trees (in nodeToString() representation) for index attributes that are not simple
column references. This is a list with one element for each zero entry in indkey. Null if all in-
dex attributes are simple references.

indpred pg_node_tree
Expression tree (in nodeToString() representation) for partial index predicate. Null if not a
partial index.

52.27. pg_inherits
The catalog pg_inherits records information about table and index inheritance hierarchies. There is
one entry for each direct parent-child table or index relationship in the database. (Indirect inheritance
can be determined by following chains of entries.)

Table 52.27. pg_inherits Columns

Column Type
Description

inhrelid oid (references pg_class .oid)
The OID of the child table or index

inhparent oid (references pg_class .oid)
The OID of the parent table or index

inhseqno int4
If there is more than one direct parent for a child table (multiple inheritance), this number
tells the order in which the inherited columns are to be arranged. The count starts at 1.
Indexes cannot have multiple inheritance, since they can only inherit when using declarative
partitioning.

inhdetachpending bool
true for a partition that is in the process of being detached; false otherwise.

52.28. pg_init_privs
The catalog pg_init_privs records information about the initial privileges of objects in the system.
There is one entry for each object in the database which has a non-default (non-NULL) initial set of
privileges.

Objects can have initial privileges either by having those privileges set when the system is initialized
(by initdb) or when the object is created during a CREATE EXTENSION and the extension script sets
initial privileges using the GRANT system. Note that the system will automatically handle recording of the
privileges during the extension script and that extension authors need only use the GRANT and REVOKE
statements in their script to have the privileges recorded. The privtype column indicates if the initial
privilege was set by initdb or during a CREATE EXTENSION command.

Objects which have initial privileges set by initdb will have entries where privtype is 'i', while objects
which have initial privileges set by CREATE EXTENSION will have entries where privtype is 'e'.

Table 52.28. pg_init_privs Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the specific object

classoid oid (references pg_class .oid)

2126

System Catalogs

Column Type
Description
The OID of the system catalog the object is in

objsubid int4
For a table column, this is the column number (the objoid and classoid refer to the table it-
self). For all other object types, this column is zero.

privtype char
A code defining the type of initial privilege of this object; see text

initprivs aclitem[]
The initial access privileges; see Section 5.8 for details

52.29. pg_language
The catalog pg_language registers languages in which you can write functions or stored procedures.
See CREATE LANGUAGE and Chapter 40 for more information about language handlers.

Table 52.29. pg_language Columns

Column Type
Description

oid oid
Row identifier

lanname name
Name of the language

lanowner oid (references pg_authid .oid)
Owner of the language

lanispl bool
This is false for internal languages (such as SQL) and true for user-defined languages. Cur-
rently, pg_dump still uses this to determine which languages need to be dumped, but this
might be replaced by a different mechanism in the future.

lanpltrusted bool
True if this is a trusted language, which means that it is believed not to grant access to any-
thing outside the normal SQL execution environment. Only superusers can create functions in
untrusted languages.

lanplcallfoid oid (references pg_proc .oid)
For noninternal languages this references the language handler, which is a special function
that is responsible for executing all functions that are written in the particular language. Zero
for internal languages.

laninline oid (references pg_proc .oid)
This references a function that is responsible for executing “inline” anonymous code blocks (
DO blocks). Zero if inline blocks are not supported.

lanvalidator oid (references pg_proc .oid)
This references a language validator function that is responsible for checking the syntax and
validity of new functions when they are created. Zero if no validator is provided.

lanacl aclitem[]
Access privileges; see Section 5.8 for details

52.30. pg_largeobject
The catalog pg_largeobject holds the data making up “large objects”. A large object is identified by
an OID assigned when it is created. Each large object is broken into segments or “pages” small enough
to be conveniently stored as rows in pg_largeobject. The amount of data per page is defined to be
LOBLKSIZE (which is currently BLCKSZ/4, or typically 2 kB).

2127

System Catalogs

Prior to PostgreSQL 9.0, there was no permission structure associated with large objects. As a result,
pg_largeobject was publicly readable and could be used to obtain the OIDs (and contents) of all large
objects in the system. This is no longer the case; use pg_largeobject_metadata to obtain a list of large
object OIDs.

Table 52.30. pg_largeobject Columns

Column Type
Description

loid oid (references pg_largeobject_metadata .oid)
Identifier of the large object that includes this page

pageno int4
Page number of this page within its large object (counting from zero)

data bytea
Actual data stored in the large object. This will never be more than LOBLKSIZE bytes and
might be less.

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset (pageno
* LOBLKSIZE) within the object. The implementation allows sparse storage: pages might be missing, and
might be shorter than LOBLKSIZE bytes even if they are not the last page of the object. Missing regions
within a large object read as zeroes.

52.31. pg_largeobject_metadata
The catalog pg_largeobject_metadata holds metadata associated with large objects. The actual large
object data is stored in pg_largeobject.

Table 52.31. pg_largeobject_metadata Columns

Column Type
Description

oid oid
Row identifier

lomowner oid (references pg_authid .oid)
Owner of the large object

lomacl aclitem[]
Access privileges; see Section 5.8 for details

52.32. pg_namespace
The catalog pg_namespace stores namespaces. A namespace is the structure underlying SQL schemas:
each namespace can have a separate collection of relations, types, etc. without name conflicts.

Table 52.32. pg_namespace Columns

Column Type
Description

oid oid
Row identifier

nspname name
Name of the namespace

nspowner oid (references pg_authid .oid)
Owner of the namespace

nspacl aclitem[]

2128

System Catalogs

Column Type
Description
Access privileges; see Section 5.8 for details

52.33. pg_opclass
The catalog pg_opclass defines index access method operator classes. Each operator class defines se-
mantics for index columns of a particular data type and a particular index access method. An operator
class essentially specifies that a particular operator family is applicable to a particular indexable column
data type. The set of operators from the family that are actually usable with the indexed column are
whichever ones accept the column's data type as their left-hand input.

Operator classes are described at length in Section 36.16.

Table 52.33. pg_opclass Columns

Column Type
Description

oid oid
Row identifier

opcmethod oid (references pg_am .oid)
Index access method operator class is for

opcname name
Name of this operator class

opcnamespace oid (references pg_namespace .oid)
Namespace of this operator class

opcowner oid (references pg_authid .oid)
Owner of the operator class

opcfamily oid (references pg_opfamily .oid)
Operator family containing the operator class

opcintype oid (references pg_type .oid)
Data type that the operator class indexes

opcdefault bool
True if this operator class is the default for opcintype

opckeytype oid (references pg_type .oid)
Type of data stored in index, or zero if same as opcintype

An operator class's opcmethod must match the opfmethod of its containing operator family. Also, there
must be no more than one pg_opclass row having opcdefault true for any given combination of
opcmethod and opcintype.

52.34. pg_operator
The catalog pg_operator stores information about operators. See CREATE OPERATOR and Sec-
tion 36.14 for more information.

Table 52.34. pg_operator Columns

Column Type
Description

oid oid
Row identifier

oprname name
Name of the operator

2129

System Catalogs

Column Type
Description

oprnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this operator

oprowner oid (references pg_authid .oid)
Owner of the operator

oprkind char
b = infix operator (“both”), or l = prefix operator (“left”)

oprcanmerge bool
This operator supports merge joins

oprcanhash bool
This operator supports hash joins

oprleft oid (references pg_type .oid)
Type of the left operand (zero for a prefix operator)

oprright oid (references pg_type .oid)
Type of the right operand

oprresult oid (references pg_type .oid)
Type of the result (zero for a not-yet-defined “shell” operator)

oprcom oid (references pg_operator .oid)
Commutator of this operator (zero if none)

oprnegate oid (references pg_operator .oid)
Negator of this operator (zero if none)

oprcode regproc (references pg_proc .oid)
Function that implements this operator (zero for a not-yet-defined “shell” operator)

oprrest regproc (references pg_proc .oid)
Restriction selectivity estimation function for this operator (zero if none)

oprjoin regproc (references pg_proc .oid)
Join selectivity estimation function for this operator (zero if none)

52.35. pg_opfamily
The catalog pg_opfamily defines operator families. Each operator family is a collection of operators
and associated support routines that implement the semantics specified for a particular index access
method. Furthermore, the operators in a family are all “compatible”, in a way that is specified by the
access method. The operator family concept allows cross-data-type operators to be used with indexes
and to be reasoned about using knowledge of access method semantics.

Operator families are described at length in Section 36.16.

Table 52.35. pg_opfamily Columns

Column Type
Description

oid oid
Row identifier

opfmethod oid (references pg_am .oid)
Index access method operator family is for

opfname name
Name of this operator family

opfnamespace oid (references pg_namespace .oid)
Namespace of this operator family

2130

System Catalogs

Column Type
Description

opfowner oid (references pg_authid .oid)
Owner of the operator family

The majority of the information defining an operator family is not in its pg_opfamily row, but in the
associated rows in pg_amop, pg_amproc, and pg_opclass.

52.36. pg_parameter_acl
The catalog pg_parameter_acl records configuration parameters for which privileges have been granted
to one or more roles. No entry is made for parameters that have default privileges.

Unlike most system catalogs, pg_parameter_acl is shared across all databases of a cluster: there is only
one copy of pg_parameter_acl per cluster, not one per database.

Table 52.36. pg_parameter_acl Columns

Column Type
Description

oid oid
Row identifier

parname text
The name of a configuration parameter for which privileges are granted

paracl aclitem[]
Access privileges; see Section 5.8 for details

52.37. pg_partitioned_table
The catalog pg_partitioned_table stores information about how tables are partitioned.

Table 52.37. pg_partitioned_table Columns

Column Type
Description

partrelid oid (references pg_class .oid)
The OID of the pg_class entry for this partitioned table

partstrat char
Partitioning strategy; h = hash partitioned table, l = list partitioned table, r = range parti-
tioned table

partnatts int2
The number of columns in the partition key

partdefid oid (references pg_class .oid)
The OID of the pg_class entry for the default partition of this partitioned table, or zero if
this partitioned table does not have a default partition

partattrs int2vector (references pg_attribute .attnum)
This is an array of partnatts values that indicate which table columns are part of the parti-
tion key. For example, a value of 1 3 would mean that the first and the third table columns
make up the partition key. A zero in this array indicates that the corresponding partition key
column is an expression, rather than a simple column reference.

partclass oidvector (references pg_opclass .oid)
For each column in the partition key, this contains the OID of the operator class to use. See
pg_opclass for details.

partcollation oidvector (references pg_collation .oid)

2131

System Catalogs

Column Type
Description
For each column in the partition key, this contains the OID of the collation to use for partition-
ing, or zero if the column is not of a collatable data type.

partexprs pg_node_tree
Expression trees (in nodeToString() representation) for partition key columns that are not
simple column references. This is a list with one element for each zero entry in partattrs.
Null if all partition key columns are simple references.

52.38. pg_policy
The catalog pg_policy stores row-level security policies for tables. A policy includes the kind of com-
mand that it applies to (possibly all commands), the roles that it applies to, the expression to be added
as a security-barrier qualification to queries that include the table, and the expression to be added as a
WITH CHECK option for queries that attempt to add new records to the table.

Table 52.38. pg_policy Columns

Column Type
Description

oid oid
Row identifier

polname name
The name of the policy

polrelid oid (references pg_class .oid)
The table to which the policy applies

polcmd char
The command type to which the policy is applied: r for SELECT, a for INSERT, w for UPDATE,
 d for DELETE, or * for all

polpermissive bool
Is the policy permissive or restrictive?

polroles oid[] (references pg_authid .oid)
The roles to which the policy is applied; zero means PUBLIC (and normally appears alone in
the array)

polqual pg_node_tree
The expression tree to be added to the security barrier qualifications for queries that use the
table

polwithcheck pg_node_tree
The expression tree to be added to the WITH CHECK qualifications for queries that attempt
to add rows to the table

Note
Policies stored in pg_policy are applied only when pg_class.relrowsecurity is set for their table.

52.39. pg_proc
The catalog pg_proc stores information about functions, procedures, aggregate functions, and window
functions (collectively also known as routines). See CREATE FUNCTION, CREATE PROCEDURE, and
Section 36.3 for more information.

If prokind indicates that the entry is for an aggregate function, there should be a matching row in
pg_aggregate.

2132

System Catalogs

Table 52.39. pg_proc Columns

Column Type
Description

oid oid
Row identifier

proname name
Name of the function

pronamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this function

proowner oid (references pg_authid .oid)
Owner of the function

prolang oid (references pg_language .oid)
Implementation language or call interface of this function

procost float4
Estimated execution cost (in units of cpu_operator_cost); if proretset, this is cost per row re-
turned

prorows float4
Estimated number of result rows (zero if not proretset)

provariadic oid (references pg_type .oid)
Data type of the variadic array parameter's elements, or zero if the function does not have a
variadic parameter

prosupport regproc (references pg_proc .oid)
Planner support function for this function (see Section 36.11), or zero if none

prokind char
f for a normal function, p for a procedure, a for an aggregate function, or w for a window
function

prosecdef bool
Function is a security definer (i.e., a “setuid” function)

proleakproof bool
The function has no side effects. No information about the arguments is conveyed except via
the return value. Any function that might throw an error depending on the values of its argu-
ments is not leakproof.

proisstrict bool
Function returns null if any call argument is null. In that case the function won't actually be
called at all. Functions that are not “strict” must be prepared to handle null inputs.

proretset bool
Function returns a set (i.e., multiple values of the specified data type)

provolatile char
provolatile tells whether the function's result depends only on its input arguments, or is af-
fected by outside factors. It is i for “immutable” functions, which always deliver the same re-
sult for the same inputs. It is s for “stable” functions, whose results (for fixed inputs) do not
change within a scan. It is v for “volatile” functions, whose results might change at any time.
(Use v also for functions with side-effects, so that calls to them cannot get optimized away.)

proparallel char
proparallel tells whether the function can be safely run in parallel mode. It is s for functions
which are safe to run in parallel mode without restriction. It is r for functions which can be
run in parallel mode, but their execution is restricted to the parallel group leader; parallel
worker processes cannot invoke these functions. It is u for functions which are unsafe in par-
allel mode; the presence of such a function forces a serial execution plan.

pronargs int2

2133

System Catalogs

Column Type
Description
Number of input arguments

pronargdefaults int2
Number of arguments that have defaults

prorettype oid (references pg_type .oid)
Data type of the return value

proargtypes oidvector (references pg_type .oid)
An array of the data types of the function arguments. This includes only input arguments (in-
cluding INOUT and VARIADIC arguments), and thus represents the call signature of the func-
tion.

proallargtypes oid[] (references pg_type .oid)
An array of the data types of the function arguments. This includes all arguments (including
OUT and INOUT arguments); however, if all the arguments are IN arguments, this field will be
null. Note that subscripting is 1-based, whereas for historical reasons proargtypes is sub-
scripted from 0.

proargmodes char[]
An array of the modes of the function arguments, encoded as i for IN arguments, o for OUT ar-
guments, b for INOUT arguments, v for VARIADIC arguments, t for TABLE arguments. If all the
arguments are IN arguments, this field will be null. Note that subscripts correspond to posi-
tions of proallargtypes not proargtypes.

proargnames text[]
An array of the names of the function arguments. Arguments without a name are set to emp-
ty strings in the array. If none of the arguments have a name, this field will be null. Note that
subscripts correspond to positions of proallargtypes not proargtypes.

proargdefaults pg_node_tree
Expression trees (in nodeToString() representation) for default values. This is a list with
pronargdefaults elements, corresponding to the last N input arguments (i.e., the last N
proargtypes positions). If none of the arguments have defaults, this field will be null.

protrftypes oid[] (references pg_type .oid)
An array of the argument/result data type(s) for which to apply transforms (from the func-
tion's TRANSFORM clause). Null if none.

prosrc text
This tells the function handler how to invoke the function. It might be the actual source code
of the function for interpreted languages, a link symbol, a file name, or just about anything
else, depending on the implementation language/call convention.

probin text
Additional information about how to invoke the function. Again, the interpretation is lan-
guage-specific.

prosqlbody pg_node_tree
Pre-parsed SQL function body. This is used for SQL-language functions when the body is giv-
en in SQL-standard notation rather than as a string literal. It's null in other cases.

proconfig text[]
Function's local settings for run-time configuration variables

proacl aclitem[]
Access privileges; see Section 5.8 for details

For compiled functions, both built-in and dynamically loaded, prosrc contains the function's C-language
name (link symbol). For SQL-language functions, prosrc contains the function's source text if that is
specified as a string literal; but if the function body is specified in SQL-standard style, prosrc is unused
(typically it's an empty string) and prosqlbody contains the pre-parsed definition. For all other current-

2134

System Catalogs

ly-known language types, prosrc contains the function's source text. probin is null except for dynami-
cally-loaded C functions, for which it gives the name of the shared library file containing the function.

52.40. pg_publication
The catalog pg_publication contains all publications created in the database. For more on publications
see Section 29.1.

Table 52.40. pg_publication Columns

Column Type
Description

oid oid
Row identifier

pubname name
Name of the publication

pubowner oid (references pg_authid .oid)
Owner of the publication

puballtables bool
If true, this publication automatically includes all tables in the database, including any that
will be created in the future.

pubinsert bool
If true, INSERT operations are replicated for tables in the publication.

pubupdate bool
If true, UPDATE operations are replicated for tables in the publication.

pubdelete bool
If true, DELETE operations are replicated for tables in the publication.

pubtruncate bool
If true, TRUNCATE operations are replicated for tables in the publication.

pubviaroot bool
If true, operations on a leaf partition are replicated using the identity and schema of its top-
most partitioned ancestor mentioned in the publication instead of its own.

pubgencols char
Controls how to handle generated column replication when there is no publication column
list: n = generated columns in the tables associated with the publication should not be repli-
cated, s = stored generated columns in the tables associated with the publication should be
replicated.

52.41. pg_publication_namespace
The catalog pg_publication_namespace contains the mapping between schemas and publications in the
database. This is a many-to-many mapping.

Table 52.41. pg_publication_namespace Columns

Column Type
Description

oid oid
Row identifier

pnpubid oid (references pg_publication .oid)
Reference to publication

pnnspid oid (references pg_namespace .oid)
Reference to schema

2135

System Catalogs

52.42. pg_publication_rel
The catalog pg_publication_rel contains the mapping between relations and publications in the data-
base. This is a many-to-many mapping. See also Section 53.18 for a more user-friendly view of this in-
formation.

Table 52.42. pg_publication_rel Columns

Column Type
Description

oid oid
Row identifier

prpubid oid (references pg_publication .oid)
Reference to publication

prrelid oid (references pg_class .oid)
Reference to relation

prqual pg_node_tree
Expression tree (in nodeToString() representation) for the relation's publication qualifying
condition. Null if there is no publication qualifying condition.

prattrs int2vector (references pg_attribute .attnum)
This is an array of values that indicates which table columns are part of the publication. For
example, a value of 1 3 would mean that the first and the third table columns are published.
A null value indicates that all columns are published.

52.43. pg_range
The catalog pg_range stores information about range types. This is in addition to the types' entries in
pg_type.

Table 52.43. pg_range Columns

Column Type
Description

rngtypid oid (references pg_type .oid)
OID of the range type

rngsubtype oid (references pg_type .oid)
OID of the element type (subtype) of this range type

rngmultitypid oid (references pg_type .oid)
OID of the multirange type for this range type

rngcollation oid (references pg_collation .oid)
OID of the collation used for range comparisons, or zero if none

rngsubopc oid (references pg_opclass .oid)
OID of the subtype's operator class used for range comparisons

rngcanonical regproc (references pg_proc .oid)
OID of the function to convert a range value into canonical form, or zero if none

rngsubdiff regproc (references pg_proc .oid)
OID of the function to return the difference between two element values as double preci-
sion, or zero if none

rngsubopc (plus rngcollation, if the element type is collatable) determines the sort ordering used by
the range type. rngcanonical is used when the element type is discrete. rngsubdiff is optional but
should be supplied to improve performance of GiST indexes on the range type.

52.44. pg_replication_origin

2136

System Catalogs

The pg_replication_origin catalog contains all replication origins created. For more on replication
origins see Chapter 48.

Unlike most system catalogs, pg_replication_origin is shared across all databases of a cluster: there
is only one copy of pg_replication_origin per cluster, not one per database.

Table 52.44. pg_replication_origin Columns

Column Type
Description

roident oid
A unique, cluster-wide identifier for the replication origin. Should never leave the system.

roname text
The external, user defined, name of a replication origin.

52.45. pg_rewrite
The catalog pg_rewrite stores rewrite rules for tables and views.

Table 52.45. pg_rewrite Columns

Column Type
Description

oid oid
Row identifier

rulename name
Rule name

ev_class oid (references pg_class .oid)
The table this rule is for

ev_type char
Event type that the rule is for: 1 = SELECT, 2 = UPDATE, 3 = INSERT, 4 = DELETE

ev_enabled char
Controls in which session_replication_role modes the rule fires. O = rule fires in “origin” and
“local” modes, D = rule is disabled, R = rule fires in “replica” mode, A = rule fires always.

is_instead bool
True if the rule is an INSTEAD rule

ev_qual pg_node_tree
Expression tree (in the form of a nodeToString() representation) for the rule's qualifying
condition

ev_action pg_node_tree
Query tree (in the form of a nodeToString() representation) for the rule's action

Note
pg_class.relhasrules must be true if a table has any rules in this catalog.

52.46. pg_seclabel
The catalog pg_seclabel stores security labels on database objects. Security labels can be manipulated
with the SECURITY LABEL command. For an easier way to view security labels, see Section 53.23.

See also pg_shseclabel, which performs a similar function for security labels of database objects that
are shared across a database cluster.

2137

System Catalogs

Table 52.46. pg_seclabel Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this security label pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

objsubid int4
For a security label on a table column, this is the column number (the objoid and classoid
refer to the table itself). For all other object types, this column is zero.

provider text
The label provider associated with this label.

label text
The security label applied to this object.

52.47. pg_sequence
The catalog pg_sequence contains information about sequences. Some of the information about se-
quences, such as the name and the schema, is in pg_class

Table 52.47. pg_sequence Columns

Column Type
Description

seqrelid oid (references pg_class .oid)
The OID of the pg_class entry for this sequence

seqtypid oid (references pg_type .oid)
Data type of the sequence

seqstart int8
Start value of the sequence

seqincrement int8
Increment value of the sequence

seqmax int8
Maximum value of the sequence

seqmin int8
Minimum value of the sequence

seqcache int8
Cache size of the sequence

seqcycle bool
Whether the sequence cycles

52.48. pg_shdepend
The catalog pg_shdepend records the dependency relationships between database objects and shared
objects, such as roles. This information allows PostgreSQL to ensure that those objects are unreferenced
before attempting to delete them.

See also pg_depend, which performs a similar function for dependencies involving objects within a single
database.

Unlike most system catalogs, pg_shdepend is shared across all databases of a cluster: there is only one
copy of pg_shdepend per cluster, not one per database.

2138

System Catalogs

Table 52.48. pg_shdepend Columns

Column Type
Description

dbid oid (references pg_database .oid)
The OID of the database the dependent object is in, or zero for a shared object

classid oid (references pg_class .oid)
The OID of the system catalog the dependent object is in

objid oid (references any OID column)
The OID of the specific dependent object

objsubid int4
For a table column, this is the column number (the objid and classid refer to the table it-
self). For all other object types, this column is zero.

refclassid oid (references pg_class .oid)
The OID of the system catalog the referenced object is in (must be a shared catalog)

refobjid oid (references any OID column)
The OID of the specific referenced object

deptype char
A code defining the specific semantics of this dependency relationship; see text

In all cases, a pg_shdepend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:
SHARED_DEPENDENCY_OWNER (o)

The referenced object (which must be a role) is the owner of the dependent object.

SHARED_DEPENDENCY_ACL (a)
The referenced object (which must be a role) is mentioned in the ACL of the dependent object. (A
SHARED_DEPENDENCY_ACL entry is not made for the owner of the object, since the owner will have a
SHARED_DEPENDENCY_OWNER entry anyway.)

SHARED_DEPENDENCY_INITACL (i)
The referenced object (which must be a role) is mentioned in a pg_init_privs entry for the depen-
dent object.

SHARED_DEPENDENCY_POLICY (r)
The referenced object (which must be a role) is mentioned as the target of a dependent policy object.

SHARED_DEPENDENCY_TABLESPACE (t)
The referenced object (which must be a tablespace) is mentioned as the tablespace for a relation
that doesn't have storage.

Other dependency flavors might be needed in future. Note in particular that the current definition only
supports roles and tablespaces as referenced objects.

As in the pg_depend catalog, most objects created during initdb are considered “pinned”. No entries are
made in pg_shdepend that would have a pinned object as either referenced or dependent object.

52.49. pg_shdescription
The catalog pg_shdescription stores optional descriptions (comments) for shared database objects.
Descriptions can be manipulated with the COMMENT command and viewed with psql's \d commands.

See also pg_description, which performs a similar function for descriptions involving objects within
a single database.

2139

System Catalogs

Unlike most system catalogs, pg_shdescription is shared across all databases of a cluster: there is only
one copy of pg_shdescription per cluster, not one per database.

Table 52.49. pg_shdescription Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this description pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

description text
Arbitrary text that serves as the description of this object

52.50. pg_shseclabel
The catalog pg_shseclabel stores security labels on shared database objects. Security labels can be
manipulated with the SECURITY LABEL command. For an easier way to view security labels, see Sec-
tion 53.23.

See also pg_seclabel, which performs a similar function for security labels involving objects within a
single database.

Unlike most system catalogs, pg_shseclabel is shared across all databases of a cluster: there is only
one copy of pg_shseclabel per cluster, not one per database.

Table 52.50. pg_shseclabel Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this security label pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

provider text
The label provider associated with this label.

label text
The security label applied to this object.

52.51. pg_statistic
The catalog pg_statistic stores statistical data about the contents of the database. Entries are created
by ANALYZE and subsequently used by the query planner. Note that all the statistical data is inherently
approximate, even assuming that it is up-to-date.

Normally there is one entry, with stainherit = false, for each table column that has been analyzed. If
the table has inheritance children or partitions, a second entry with stainherit = true is also created.
This row represents the column's statistics over the inheritance tree, i.e., statistics for the data you'd
see with SELECT column FROM table*, whereas the stainherit = false row represents the results of
SELECT column FROM ONLY table.

pg_statistic also stores statistical data about the values of index expressions. These are described as
if they were actual data columns; in particular, starelid references the index. No entry is made for
an ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column. Currently, entries for index expressions always have stainherit = false.

Since different kinds of statistics might be appropriate for different kinds of data, pg_statistic is de-
signed not to assume very much about what sort of statistics it stores. Only extremely general statistics

2140

System Catalogs

(such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in “slots”,
which are groups of associated columns whose content is identified by a code number in one of the slot's
columns. For more information see src/include/catalog/pg_statistic.h.

pg_statistic should not be readable by the public, since even statistical information about a table's
contents might be considered sensitive. (Example: minimum and maximum values of a salary column
might be quite interesting.) pg_stats is a publicly readable view on pg_statistic that only exposes
information about those tables that are readable by the current user.

Table 52.51. pg_statistic Columns

Column Type
Description

starelid oid (references pg_class .oid)
The table or index that the described column belongs to

staattnum int2 (references pg_attribute .attnum)
The number of the described column

stainherit bool
If true, the stats include values from child tables, not just the values in the specified relation

stanullfrac float4
The fraction of the column's entries that are null

stawidth int4
The average stored width, in bytes, of nonnull entries

stadistinct float4
The number of distinct nonnull data values in the column. A value greater than zero is the ac-
tual number of distinct values. A value less than zero is the negative of a multiplier for the
number of rows in the table; for example, a column in which about 80% of the values are non-
null and each nonnull value appears about twice on average could be represented by stadis-
tinct = -0.4. A zero value means the number of distinct values is unknown.

stakindN int2
A code number indicating the kind of statistics stored in the Nth “slot” of the pg_statistic
row.

staopN oid (references pg_operator .oid)
An operator used to derive the statistics stored in the Nth “slot”. For example, a histogram
slot would show the < operator that defines the sort order of the data. Zero if the statistics
kind does not require an operator.

stacollN oid (references pg_collation .oid)
The collation used to derive the statistics stored in the Nth “slot”. For example, a histogram
slot for a collatable column would show the collation that defines the sort order of the data.
Zero for noncollatable data.

stanumbersN float4[]
Numerical statistics of the appropriate kind for the Nth “slot”, or null if the slot kind does not
involve numerical values

stavaluesN anyarray
Column data values of the appropriate kind for the Nth “slot”, or null if the slot kind does not
store any data values. Each array's element values are actually of the specific column's da-
ta type, or a related type such as an array's element type, so there is no way to define these
columns' type more specifically than anyarray.

52.52. pg_statistic_ext
The catalog pg_statistic_ext holds definitions of extended planner statistics. Each row in this catalog
corresponds to a statistics object created with CREATE STATISTICS.

2141

System Catalogs

Table 52.52. pg_statistic_ext Columns

Column Type
Description

oid oid
Row identifier

stxrelid oid (references pg_class .oid)
Table containing the columns described by this object

stxname name
Name of the statistics object

stxnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this statistics object

stxowner oid (references pg_authid .oid)
Owner of the statistics object

stxkeys int2vector (references pg_attribute .attnum)
An array of attribute numbers, indicating which table columns are covered by this statistics
object; for example a value of 1 3 would mean that the first and the third table columns are
covered

stxstattarget int2
stxstattarget controls the level of detail of statistics accumulated for this statistics object
by ANALYZE. A zero value indicates that no statistics should be collected. A null value says to
use the maximum of the statistics targets of the referenced columns, if set, or the system de-
fault statistics target. Positive values of stxstattarget determine the target number of “most
common values” to collect.

stxkind char[]
An array containing codes for the enabled statistics kinds; valid values are: d for n-distinct
statistics, f for functional dependency statistics, m for most common values (MCV) list statis-
tics, and e for expression statistics

stxexprs pg_node_tree
Expression trees (in nodeToString() representation) for statistics object attributes that are
not simple column references. This is a list with one element per expression. Null if all statis-
tics object attributes are simple references.

The pg_statistic_ext entry is filled in completely during CREATE STATISTICS, but the actual statistical
values are not computed then. Subsequent ANALYZE commands compute the desired values and populate
an entry in the pg_statistic_ext_data catalog.

52.53. pg_statistic_ext_data
The catalog pg_statistic_ext_data holds data for extended planner statistics defined in pg_statis-
tic_ext. Each row in this catalog corresponds to a statistics object created with CREATE STATISTICS.

Normally there is one entry, with stxdinherit = false, for each statistics object that has been ana-
lyzed. If the table has inheritance children or partitions, a second entry with stxdinherit = true is also
created. This row represents the statistics object over the inheritance tree, i.e., statistics for the data
you'd see with SELECT * FROM table*, whereas the stxdinherit = false row represents the results
of SELECT * FROM ONLY table.

Like pg_statistic, pg_statistic_ext_data should not be readable by the public, since the contents
might be considered sensitive. (Example: most common combinations of values in columns might be
quite interesting.) pg_stats_ext is a publicly readable view on pg_statistic_ext_data (after joining
with pg_statistic_ext) that only exposes information about tables the current user owns.

2142

System Catalogs

Table 52.53. pg_statistic_ext_data Columns

Column Type
Description

stxoid oid (references pg_statistic_ext .oid)
Extended statistics object containing the definition for this data

stxdinherit bool
If true, the stats include values from child tables, not just the values in the specified relation

stxdndistinct pg_ndistinct
N-distinct counts, serialized as pg_ndistinct type

stxddependencies pg_dependencies
Functional dependency statistics, serialized as pg_dependencies type

stxdmcv pg_mcv_list
MCV (most-common values) list statistics, serialized as pg_mcv_list type

stxdexpr pg_statistic[]
Per-expression statistics, serialized as an array of pg_statistic type

52.54. pg_subscription
The catalog pg_subscription contains all existing logical replication subscriptions. For more informa-
tion about logical replication see Chapter 29.

Unlike most system catalogs, pg_subscription is shared across all databases of a cluster: there is only
one copy of pg_subscription per cluster, not one per database.

Access to the column subconninfo is revoked from normal users, because it could contain plain-text
passwords.

Table 52.54. pg_subscription Columns

Column Type
Description

oid oid
Row identifier

subdbid oid (references pg_database .oid)
OID of the database that the subscription resides in

subskiplsn pg_lsn
Finish LSN of the transaction whose changes are to be skipped, if a valid LSN; otherwise 0/0.

subname name
Name of the subscription

subowner oid (references pg_authid .oid)
Owner of the subscription

subenabled bool
If true, the subscription is enabled and should be replicating

subbinary bool
If true, the subscription will request that the publisher send data in binary format

substream char
Controls how to handle the streaming of in-progress transactions: f = disallow streaming of
in-progress transactions, t = spill the changes of in-progress transactions to disk and apply
at once after the transaction is committed on the publisher and received by the subscriber, p
= apply changes directly using a parallel apply worker if available (same as t if no worker is
available)

2143

System Catalogs

Column Type
Description

subtwophasestate char
State codes for two-phase mode: d = disabled, p = pending enablement, e = enabled

subdisableonerr bool
If true, the subscription will be disabled if one of its workers detects an error

subpasswordrequired bool
If true, the subscription will be required to specify a password for authentication

subrunasowner bool
If true, the subscription will be run with the permissions of the subscription owner

subfailover bool
If true, the associated replication slots (i.e. the main slot and the table synchronization slots)
in the upstream database are enabled to be synchronized to the standbys

subconninfo text
Connection string to the upstream database

subslotname name
Name of the replication slot in the upstream database (also used for the local replication ori-
gin name); null represents NONE

subsynccommit text
The synchronous_commit setting for the subscription's workers to use

subpublications text[]
Array of subscribed publication names. These reference publications defined in the upstream
database. For more on publications see Section 29.1.

suborigin text
The origin value must be either none or any. The default is any. If none, the subscription will
request the publisher to only send changes that don't have an origin. If any, the publisher
sends changes regardless of their origin.

52.55. pg_subscription_rel
The catalog pg_subscription_rel contains the state for each replicated relation in each subscription.
This is a many-to-many mapping.

This catalog only contains tables known to the subscription after running either CREATE SUBSCRIPTION
or ALTER SUBSCRIPTION ... REFRESH PUBLICATION.

Table 52.55. pg_subscription_rel Columns

Column Type
Description

srsubid oid (references pg_subscription .oid)
Reference to subscription

srrelid oid (references pg_class .oid)
Reference to relation

srsubstate char
State code: i = initialize, d = data is being copied, f = finished table copy, s = synchronized,
r = ready (normal replication)

srsublsn pg_lsn
Remote LSN of the state change used for synchronization coordination when in s or r states,
otherwise null

52.56. pg_tablespace

2144

System Catalogs

The catalog pg_tablespace stores information about the available tablespaces. Tables can be placed in
particular tablespaces to aid administration of disk layout.

Unlike most system catalogs, pg_tablespace is shared across all databases of a cluster: there is only
one copy of pg_tablespace per cluster, not one per database.

Table 52.56. pg_tablespace Columns

Column Type
Description

oid oid
Row identifier

spcname name
Tablespace name

spcowner oid (references pg_authid .oid)
Owner of the tablespace, usually the user who created it

spcacl aclitem[]
Access privileges; see Section 5.8 for details

spcoptions text[]
Tablespace-level options, as “keyword=value” strings

52.57. pg_transform
The catalog pg_transform stores information about transforms, which are a mechanism to adapt data
types to procedural languages. See CREATE TRANSFORM for more information.

Table 52.57. pg_transform Columns

Column Type
Description

oid oid
Row identifier

trftype oid (references pg_type .oid)
OID of the data type this transform is for

trflang oid (references pg_language .oid)
OID of the language this transform is for

trffromsql regproc (references pg_proc .oid)
The OID of the function to use when converting the data type for input to the procedural lan-
guage (e.g., function parameters). Zero is stored if the default behavior should be used.

trftosql regproc (references pg_proc .oid)
The OID of the function to use when converting output from the procedural language (e.g.,
return values) to the data type. Zero is stored if the default behavior should be used.

52.58. pg_trigger
The catalog pg_trigger stores triggers on tables and views. See CREATE TRIGGER for more informa-
tion.

Table 52.58. pg_trigger Columns

Column Type
Description

oid oid

2145

System Catalogs

Column Type
Description
Row identifier

tgrelid oid (references pg_class .oid)
The table this trigger is on

tgparentid oid (references pg_trigger .oid)
Parent trigger that this trigger is cloned from (this happens when partitions are created or at-
tached to a partitioned table); zero if not a clone

tgname name
Trigger name (must be unique among triggers of same table)

tgfoid oid (references pg_proc .oid)
The function to be called

tgtype int2
Bit mask identifying trigger firing conditions

tgenabled char
Controls in which session_replication_role modes the trigger fires. O = trigger fires in “ori-
gin” and “local” modes, D = trigger is disabled, R = trigger fires in “replica” mode, A = trigger
fires always.

tgisinternal bool
True if trigger is internally generated (usually, to enforce the constraint identified by tgcon-
straint)

tgconstrrelid oid (references pg_class .oid)
The table referenced by a referential integrity constraint (zero if trigger is not for a referen-
tial integrity constraint)

tgconstrindid oid (references pg_class .oid)
The index supporting a unique, primary key, referential integrity, or exclusion constraint (ze-
ro if trigger is not for one of these types of constraint)

tgconstraint oid (references pg_constraint .oid)
The pg_constraint entry associated with the trigger (zero if trigger is not for a constraint)

tgdeferrable bool
True if constraint trigger is deferrable

tginitdeferred bool
True if constraint trigger is initially deferred

tgnargs int2
Number of argument strings passed to trigger function

tgattr int2vector (references pg_attribute .attnum)
Column numbers, if trigger is column-specific; otherwise an empty array

tgargs bytea
Argument strings to pass to trigger, each NULL-terminated

tgqual pg_node_tree
Expression tree (in nodeToString() representation) for the trigger's WHEN condition, or null
if none

tgoldtable name
REFERENCING clause name for OLD TABLE, or null if none

tgnewtable name
REFERENCING clause name for NEW TABLE, or null if none

Currently, column-specific triggering is supported only for UPDATE events, and so tgattr is relevant only
for that event type. tgtype might contain bits for other event types as well, but those are presumed to
be table-wide regardless of what is in tgattr.

2146

System Catalogs

Note
When tgconstraint is nonzero, tgconstrrelid, tgconstrindid, tgdeferrable, and tginitde-
ferred are largely redundant with the referenced pg_constraint entry. However, it is possible
for a non-deferrable trigger to be associated with a deferrable constraint: foreign key constraints
can have some deferrable and some non-deferrable triggers.

Note
pg_class.relhastriggers must be true if a relation has any triggers in this catalog.

52.59. pg_ts_config
The pg_ts_config catalog contains entries representing text search configurations. A configuration
specifies a particular text search parser and a list of dictionaries to use for each of the parser's output
token types. The parser is shown in the pg_ts_config entry, but the token-to-dictionary mapping is
defined by subsidiary entries in pg_ts_config_map.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.59. pg_ts_config Columns

Column Type
Description

oid oid
Row identifier

cfgname name
Text search configuration name

cfgnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this configuration

cfgowner oid (references pg_authid .oid)
Owner of the configuration

cfgparser oid (references pg_ts_parser .oid)
The OID of the text search parser for this configuration

52.60. pg_ts_config_map
The pg_ts_config_map catalog contains entries showing which text search dictionaries should be con-
sulted, and in what order, for each output token type of each text search configuration's parser.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.60. pg_ts_config_map Columns

Column Type
Description

mapcfg oid (references pg_ts_config .oid)
The OID of the pg_ts_config entry owning this map entry

maptokentype int4
A token type emitted by the configuration's parser

mapseqno int4
Order in which to consult this entry (lower mapseqnos first)

mapdict oid (references pg_ts_dict .oid)

2147

System Catalogs

Column Type
Description
The OID of the text search dictionary to consult

52.61. pg_ts_dict
The pg_ts_dict catalog contains entries defining text search dictionaries. A dictionary depends on a
text search template, which specifies all the implementation functions needed; the dictionary itself pro-
vides values for the user-settable parameters supported by the template. This division of labor allows
dictionaries to be created by unprivileged users. The parameters are specified by a text string dictini-
toption, whose format and meaning vary depending on the template.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.61. pg_ts_dict Columns

Column Type
Description

oid oid
Row identifier

dictname name
Text search dictionary name

dictnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this dictionary

dictowner oid (references pg_authid .oid)
Owner of the dictionary

dicttemplate oid (references pg_ts_template .oid)
The OID of the text search template for this dictionary

dictinitoption text
Initialization option string for the template

52.62. pg_ts_parser
The pg_ts_parser catalog contains entries defining text search parsers. A parser is responsible for
splitting input text into lexemes and assigning a token type to each lexeme. Since a parser must be
implemented by C-language-level functions, creation of new parsers is restricted to database superusers.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.62. pg_ts_parser Columns

Column Type
Description

oid oid
Row identifier

prsname name
Text search parser name

prsnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this parser

prsstart regproc (references pg_proc .oid)
OID of the parser's startup function

prstoken regproc (references pg_proc .oid)
OID of the parser's next-token function

prsend regproc (references pg_proc .oid)
OID of the parser's shutdown function

2148

System Catalogs

Column Type
Description

prsheadline regproc (references pg_proc .oid)
OID of the parser's headline function (zero if none)

prslextype regproc (references pg_proc .oid)
OID of the parser's lextype function

52.63. pg_ts_template
The pg_ts_template catalog contains entries defining text search templates. A template is the imple-
mentation skeleton for a class of text search dictionaries. Since a template must be implemented by C-
language-level functions, creation of new templates is restricted to database superusers.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.63. pg_ts_template Columns

Column Type
Description

oid oid
Row identifier

tmplname name
Text search template name

tmplnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this template

tmplinit regproc (references pg_proc .oid)
OID of the template's initialization function (zero if none)

tmpllexize regproc (references pg_proc .oid)
OID of the template's lexize function

52.64. pg_type
The catalog pg_type stores information about data types. Base types and enum types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically created
for each table in the database, to represent the row structure of the table. It is also possible to create
composite types with CREATE TYPE AS.

Table 52.64. pg_type Columns

Column Type
Description

oid oid
Row identifier

typname name
Data type name

typnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this type

typowner oid (references pg_authid .oid)
Owner of the type

typlen int2
For a fixed-size type, typlen is the number of bytes in the internal representation of the type.
But for a variable-length type, typlen is negative. -1 indicates a “varlena” type (one that has
a length word), -2 indicates a null-terminated C string.

typbyval bool

2149

System Catalogs

Column Type
Description
typbyval determines whether internal routines pass a value of this type by value or by refer-
ence. typbyval had better be false if typlen is not 1, 2, or 4 (or 8 on machines where Datum
is 8 bytes). Variable-length types are always passed by reference. Note that typbyval can be
false even if the length would allow pass-by-value.

typtype char
typtype is b for a base type, c for a composite type (e.g., a table's row type), d for a domain, e
for an enum type, p for a pseudo-type, r for a range type, or m for a multirange type. See also
typrelid and typbasetype.

typcategory char
typcategory is an arbitrary classification of data types that is used by the parser to deter-
mine which implicit casts should be “preferred”. See Table 52.65.

typispreferred bool
True if the type is a preferred cast target within its typcategory

typisdefined bool
True if the type is defined, false if this is a placeholder entry for a not-yet-defined type. When
typisdefined is false, nothing except the type name, namespace, and OID can be relied on.

typdelim char
Character that separates two values of this type when parsing array input. Note that the de-
limiter is associated with the array element data type, not the array data type.

typrelid oid (references pg_class .oid)
If this is a composite type (see typtype), then this column points to the pg_class entry that
defines the corresponding table. (For a free-standing composite type, the pg_class entry
doesn't really represent a table, but it is needed anyway for the type's pg_attribute entries
to link to.) Zero for non-composite types.

typsubscript regproc (references pg_proc .oid)
Subscripting handler function's OID, or zero if this type doesn't support subscripting. Types
that are “true” array types have typsubscript = array_subscript_handler , but other
types may have other handler functions to implement specialized subscripting behavior.

typelem oid (references pg_type .oid)
If typelem is not zero then it identifies another row in pg_type , defining the type yielded by
subscripting. This should be zero if typsubscript is zero. However, it can be zero when typ-
subscript isn't zero, if the handler doesn't need typelem to determine the subscripting result
type. Note that a typelem dependency is considered to imply physical containment of the el-
ement type in this type; so DDL changes on the element type might be restricted by the pres-
ence of this type.

typarray oid (references pg_type .oid)
If typarray is not zero then it identifies another row in pg_type , which is the “true” array
type having this type as element

typinput regproc (references pg_proc .oid)
Input conversion function (text format)

typoutput regproc (references pg_proc .oid)
Output conversion function (text format)

typreceive regproc (references pg_proc .oid)
Input conversion function (binary format), or zero if none

typsend regproc (references pg_proc .oid)
Output conversion function (binary format), or zero if none

typmodin regproc (references pg_proc .oid)
Type modifier input function, or zero if type does not support modifiers

typmodout regproc (references pg_proc .oid)

2150

System Catalogs

Column Type
Description
Type modifier output function, or zero to use the standard format

typanalyze regproc (references pg_proc .oid)
Custom ANALYZE function, or zero to use the standard function

typalign char
typalign is the alignment required when storing a value of this type. It applies to storage on
disk as well as most representations of the value inside PostgreSQL. When multiple values
are stored consecutively, such as in the representation of a complete row on disk, padding
is inserted before a datum of this type so that it begins on the specified boundary. The align-
ment reference is the beginning of the first datum in the sequence. Possible values are:
• c = char alignment, i.e., no alignment needed.
• s = short alignment (2 bytes on most machines).
• i = int alignment (4 bytes on most machines).
• d = double alignment (8 bytes on many machines, but by no means all).

typstorage char
typstorage tells for varlena types (those with typlen = -1) if the type is prepared for toasting
and what the default strategy for attributes of this type should be. Possible values are:
• p (plain): Values must always be stored plain (non-varlena types always use this value).
• e (external): Values can be stored in a secondary “TOAST” relation (if relation has one, see

pg_class.reltoastrelid).
• m (main): Values can be compressed and stored inline.
• x (extended): Values can be compressed and/or moved to a secondary relation.

x is the usual choice for toast-able types. Note that m values can also be moved out to sec-
ondary storage, but only as a last resort (e and x values are moved first).

typnotnull bool
typnotnull represents a not-null constraint on a type. Used for domains only.

typbasetype oid (references pg_type .oid)
If this is a domain (see typtype), then typbasetype identifies the type that this one is based
on. Zero if this type is not a domain.

typtypmod int4
Domains use typtypmod to record the typmod to be applied to their base type (-1 if base type
does not use a typmod). -1 if this type is not a domain.

typndims int4
typndims is the number of array dimensions for a domain over an array (that is, typbasetype
is an array type). Zero for types other than domains over array types.

typcollation oid (references pg_collation .oid)
typcollation specifies the collation of the type. If the type does not support collations, this
will be zero. A base type that supports collations will have a nonzero value here, typically DE-
FAULT_COLLATION_OID . A domain over a collatable type can have a collation OID different
from its base type's, if one was specified for the domain.

typdefaultbin pg_node_tree
If typdefaultbin is not null, it is the nodeToString() representation of a default expression
for the type. This is only used for domains.

typdefault text
typdefault is null if the type has no associated default value. If typdefaultbin is not null,
 typdefault must contain a human-readable version of the default expression represented by
typdefaultbin. If typdefaultbin is null and typdefault is not, then typdefault is the ex-

2151

System Catalogs

Column Type
Description
ternal representation of the type's default value, which can be fed to the type's input convert-
er to produce a constant.

typacl aclitem[]
Access privileges; see Section 5.8 for details

Note
For fixed-width types used in system tables, it is critical that the size and alignment defined in
pg_type agree with the way that the compiler will lay out the column in a structure representing
a table row.

Table 52.65 lists the system-defined values of typcategory. Any future additions to this list will also be
upper-case ASCII letters. All other ASCII characters are reserved for user-defined categories.

Table 52.65. typcategory Codes

Code Category
A Array types
B Boolean types
C Composite types
D Date/time types
E Enum types
G Geometric types
I Network address types
N Numeric types
P Pseudo-types
R Range types
S String types
T Timespan types
U User-defined types
V Bit-string types
X unknown type
Z Internal-use types

52.65. pg_user_mapping
The catalog pg_user_mapping stores the mappings from local user to remote. Access to this catalog is
restricted from normal users, use the view pg_user_mappings instead.

Table 52.66. pg_user_mapping Columns

Column Type
Description

oid oid
Row identifier

umuser oid (references pg_authid .oid)
OID of the local role being mapped, or zero if the user mapping is public

2152

System Catalogs

Column Type
Description

umserver oid (references pg_foreign_server .oid)
The OID of the foreign server that contains this mapping

umoptions text[]
User mapping specific options, as “keyword=value” strings

2153

Chapter 53. System Views
In addition to the system catalogs, PostgreSQL provides a number of built-in views. Some system views
provide convenient access to some commonly used queries on the system catalogs. Other views provide
access to internal server state.

The information schema (Chapter 35) provides an alternative set of views which overlap the functionality
of the system views. Since the information schema is SQL-standard whereas the views described here are
PostgreSQL-specific, it's usually better to use the information schema if it provides all the information
you need.

Table 53.1 lists the system views described here. More detailed documentation of each view follows
below. There are some additional views that provide access to accumulated statistics; they are described
in Table 27.2.

53.1. Overview
Table 53.1 lists the system views. More detailed documentation of each catalog follows below. Except
where noted, all the views described here are read-only.

Table 53.1. System Views

View Name Purpose
pg_aios In-use asynchronous IO handles
pg_available_extensions available extensions
pg_available_extension_versions available versions of extensions
pg_backend_memory_contexts backend memory contexts
pg_config compile-time configuration parameters
pg_cursors open cursors
pg_file_settings summary of configuration file contents
pg_group groups of database users
pg_hba_file_rules summary of client authentication configuration

file contents
pg_ident_file_mappings summary of client user name mapping configura-

tion file contents
pg_indexes indexes
pg_locks locks currently held or awaited
pg_matviews materialized views
pg_policies policies
pg_prepared_statements prepared statements
pg_prepared_xacts prepared transactions
pg_publication_tables publications and information of their associated

tables
pg_replication_origin_status information about replication origins, including

replication progress
pg_replication_slots replication slot information
pg_roles database roles
pg_rules rules
pg_seclabels security labels

2154

System Views

View Name Purpose
pg_sequences sequences
pg_settings parameter settings
pg_shadow database users
pg_shmem_allocations shared memory allocations
pg_shmem_allocations_numa NUMA node mappings for shared memory alloca-

tions
pg_stats planner statistics
pg_stats_ext extended planner statistics
pg_stats_ext_exprs extended planner statistics for expressions
pg_tables tables
pg_timezone_abbrevs time zone abbreviations
pg_timezone_names time zone names
pg_user database users
pg_user_mappings user mappings
pg_views views
pg_wait_events wait events

53.2. pg_aios
The pg_aios view lists all Asynchronous I/O handles that are currently in-use. An I/O handle is used to
reference an I/O operation that is being prepared, executed or is in the process of completing. pg_aios
contains one row for each I/O handle.

This view is mainly useful for developers of PostgreSQL, but may also be useful when tuning PostgreSQL.

Table 53.2. pg_aios Columns

Column Type
Description

pid int4
Process ID of the server process that is issuing this I/O.

io_id int4
Identifier of the I/O handle. Handles are reused once the I/O completed (or if the handle is re-
leased before I/O is started). On reuse pg_aios .io_generation is incremented.

io_generation int8
Generation of the I/O handle.

state text
State of the I/O handle:
• HANDED_OUT , referenced by code but not yet used
• DEFINED, information necessary for execution is known
• STAGED, ready for execution
• SUBMITTED, submitted for execution
• COMPLETED_IO , finished, but result has not yet been processed
• COMPLETED_SHARED , shared completion processing completed
• COMPLETED_LOCAL , backend local completion processing completed

2155

System Views

Column Type
Description

operation text
Operation performed using the I/O handle:
• invalid, not yet known
• readv, a vectored read
• writev, a vectored write

off int8
Offset of the I/O operation.

length int8
Length of the I/O operation.

target text
What kind of object is the I/O targeting:
• smgr, I/O on relations

handle_data_len int2
Length of the data associated with the I/O operation. For I/O to/from shared_buffers and
temp_buffers, this indicates the number of buffers the I/O is operating on.

raw_result int4
Low-level result of the I/O operation, or NULL if the operation has not yet completed.

result text
High-level result of the I/O operation:
• UNKNOWN means that the result of the operation is not yet known.
• OK means the I/O completed successfully.
• PARTIAL means that the I/O completed without error, but did not process all data. Com-

monly callers will need to retry and perform the remainder of the work in a separate I/O.
• WARNING means that the I/O completed without error, but that execution of the IO trig-

gered a warning. E.g. when encountering a corrupted buffer with zero_damaged_pages en-
abled.

• ERROR means the I/O failed with an error.
target_desc text

Description of what the I/O operation is targeting.
f_sync bool

Flag indicating whether the I/O is executed synchronously.
f_localmem bool

Flag indicating whether the I/O references process local memory.
f_buffered bool

Flag indicating whether the I/O is buffered I/O.

The pg_aios view is read-only.

By default, the pg_aios view can be read only by superusers or roles with privileges of the pg_read_al-
l_stats role.

53.3. pg_available_extensions
The pg_available_extensions view lists the extensions that are available for installation. See also the
pg_extension catalog, which shows the extensions currently installed.

2156

System Views

Table 53.3. pg_available_extensions Columns

Column Type
Description

name name
Extension name

default_version text
Name of default version, or NULL if none is specified

installed_version text
Currently installed version of the extension, or NULL if not installed

comment text
Comment string from the extension's control file

The pg_available_extensions view is read-only.

53.4. pg_available_extension_versions
The pg_available_extension_versions view lists the specific extension versions that are available for
installation. See also the pg_extension catalog, which shows the extensions currently installed.

Table 53.4. pg_available_extension_versions Columns

Column Type
Description

name name
Extension name

version text
Version name

installed bool
True if this version of this extension is currently installed

superuser bool
True if only superusers are allowed to install this extension (but see trusted)

trusted bool
True if the extension can be installed by non-superusers with appropriate privileges

relocatable bool
True if extension can be relocated to another schema

schema name
Name of the schema that the extension must be installed into, or NULL if partially or fully relo-
catable

requires name[]
Names of prerequisite extensions, or NULL if none

comment text
Comment string from the extension's control file

The pg_available_extension_versions view is read-only.

53.5. pg_backend_memory_contexts
The view pg_backend_memory_contexts displays all the memory contexts of the server process attached
to the current session.

pg_backend_memory_contexts contains one row for each memory context.

2157

System Views

Table 53.5. pg_backend_memory_contexts Columns

Column Type
Description

name text
Name of the memory context

ident text
Identification information of the memory context. This field is truncated at 1024 bytes

type text
Type of the memory context

level int4
The 1-based level of the context in the memory context hierarchy. The level of a context also
shows the position of that context in the path column.

path int4[]
Array of transient numerical identifiers to describe the memory context hierarchy. The first
element is for TopMemoryContext, subsequent elements contain intermediate parents and the
final element contains the identifier for the current context.

total_bytes int8
Total bytes allocated for this memory context

total_nblocks int8
Total number of blocks allocated for this memory context

free_bytes int8
Free space in bytes

free_chunks int8
Total number of free chunks

used_bytes int8
Used space in bytes

By default, the pg_backend_memory_contexts view can be read only by superusers or roles with the
privileges of the pg_read_all_stats role.

Since memory contexts are created and destroyed during the running of a query, the identifiers stored
in the path column can be unstable between multiple invocations of the view in the same query. The
example below demonstrates an effective usage of this column and calculates the total number of bytes
used by CacheMemoryContext and all of its children:

WITH memory_contexts AS (
 SELECT * FROM pg_backend_memory_contexts
)
SELECT sum(c1.total_bytes)
FROM memory_contexts c1, memory_contexts c2
WHERE c2.name = 'CacheMemoryContext'
AND c1.path[c2.level] = c2.path[c2.level];

The Common Table Expression is used to ensure the context IDs in the path column match between
both evaluations of the view.

53.6. pg_config
The view pg_config describes the compile-time configuration parameters of the currently installed ver-
sion of PostgreSQL. It is intended, for example, to be used by software packages that want to interface
to PostgreSQL to facilitate finding the required header files and libraries. It provides the same basic
information as the pg_config PostgreSQL client application.

By default, the pg_config view can be read only by superusers.

2158

System Views

Table 53.6. pg_config Columns

Column Type
Description

name text
The parameter name

setting text
The parameter value

53.7. pg_cursors
The pg_cursors view lists the cursors that are currently available. Cursors can be defined in several
ways:
• via the DECLARE statement in SQL
• via the Bind message in the frontend/backend protocol, as described in Section 54.2.3
• via the Server Programming Interface (SPI), as described in Section 45.1

The pg_cursors view displays cursors created by any of these means. Cursors only exist for the duration
of the transaction that defines them, unless they have been declared WITH HOLD. Therefore non-holdable
cursors are only present in the view until the end of their creating transaction.

Note
Cursors are used internally to implement some of the components of PostgreSQL, such as proce-
dural languages. Therefore, the pg_cursors view might include cursors that have not been explic-
itly created by the user.

Table 53.7. pg_cursors Columns

Column Type
Description

name text
The name of the cursor

statement text
The verbatim query string submitted to declare this cursor

is_holdable bool
true if the cursor is holdable (that is, it can be accessed after the transaction that declared
the cursor has committed); false otherwise

is_binary bool
true if the cursor was declared BINARY; false otherwise

is_scrollable bool
true if the cursor is scrollable (that is, it allows rows to be retrieved in a nonsequential man-
ner); false otherwise

creation_time timestamptz
The time at which the cursor was declared

The pg_cursors view is read-only.

53.8. pg_file_settings
The view pg_file_settings provides a summary of the contents of the server's configuration file(s). A
row appears in this view for each “name = value” entry appearing in the files, with annotations indicating

2159

System Views

whether the value could be applied successfully. Additional row(s) may appear for problems not linked
to a “name = value” entry, such as syntax errors in the files.

This view is helpful for checking whether planned changes in the configuration files will work, or for
diagnosing a previous failure. Note that this view reports on the current contents of the files, not on
what was last applied by the server. (The pg_settings view is usually sufficient to determine that.)

By default, the pg_file_settings view can be read only by superusers.

Table 53.8. pg_file_settings Columns

Column Type
Description

sourcefile text
Full path name of the configuration file

sourceline int4
Line number within the configuration file where the entry appears

seqno int4
Order in which the entries are processed (1..n)

name text
Configuration parameter name

setting text
Value to be assigned to the parameter

applied bool
True if the value can be applied successfully

error text
If not null, an error message indicating why this entry could not be applied

If the configuration file contains syntax errors or invalid parameter names, the server will not attempt to
apply any settings from it, and therefore all the applied fields will read as false. In such a case there will
be one or more rows with non-null error fields indicating the problem(s). Otherwise, individual settings
will be applied if possible. If an individual setting cannot be applied (e.g., invalid value, or the setting
cannot be changed after server start) it will have an appropriate message in the error field. Another way
that an entry might have applied = false is that it is overridden by a later entry for the same parameter
name; this case is not considered an error so nothing appears in the error field.

See Section 19.1 for more information about the various ways to change run-time parameters.

53.9. pg_group
The view pg_group exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows the names and members of all roles that are marked as not rolcanlogin,
which is an approximation to the set of roles that are being used as groups.

Table 53.9. pg_group Columns

Column Type
Description

groname name (references pg_authid .rolname)
Name of the group

grosysid oid (references pg_authid .oid)
ID of this group

grolist oid[] (references pg_authid .oid)
An array containing the IDs of the roles in this group

2160

System Views

53.10. pg_hba_file_rules
The view pg_hba_file_rules provides a summary of the contents of the client authentication configu-
ration file, pg_hba.conf. A row appears in this view for each non-empty, non-comment line in the file,
with annotations indicating whether the rule could be applied successfully.

This view can be helpful for checking whether planned changes in the authentication configuration file
will work, or for diagnosing a previous failure. Note that this view reports on the current contents of
the file, not on what was last loaded by the server.

By default, the pg_hba_file_rules view can be read only by superusers.

Table 53.10. pg_hba_file_rules Columns

Column Type
Description

rule_number int4
Number of this rule, if valid, otherwise NULL. This indicates the order in which each rule is
considered until a match is found during authentication.

file_name text
Name of the file containing this rule

line_number int4
Line number of this rule in file_name

type text
Type of connection

database text[]
List of database name(s) to which this rule applies

user_name text[]
List of user and group name(s) to which this rule applies

address text
Host name or IP address, or one of all, samehost, or samenet, or null for local connections

netmask text
IP address mask, or null if not applicable

auth_method text
Authentication method

options text[]
Options specified for authentication method, if any

error text
If not null, an error message indicating why this line could not be processed

Usually, a row reflecting an incorrect entry will have values for only the line_number and error fields.

See Chapter 20 for more information about client authentication configuration.

53.11. pg_ident_file_mappings
The view pg_ident_file_mappings provides a summary of the contents of the client user name mapping
configuration file, pg_ident.conf. A row appears in this view for each non-empty, non-comment line in
the file, with annotations indicating whether the map could be applied successfully.

This view can be helpful for checking whether planned changes in the authentication configuration file
will work, or for diagnosing a previous failure. Note that this view reports on the current contents of
the file, not on what was last loaded by the server.

By default, the pg_ident_file_mappings view can be read only by superusers.

2161

System Views

Table 53.11. pg_ident_file_mappings Columns

Column Type
Description

map_number int4
Number of this map, in priority order, if valid, otherwise NULL

file_name text
Name of the file containing this map

line_number int4
Line number of this map in file_name

map_name text
Name of the map

sys_name text
Detected user name of the client

pg_username text
Requested PostgreSQL user name

error text
If not NULL, an error message indicating why this line could not be processed

Usually, a row reflecting an incorrect entry will have values for only the line_number and error fields.

See Chapter 20 for more information about client authentication configuration.

53.12. pg_indexes
The view pg_indexes provides access to useful information about each index in the database.

Table 53.12. pg_indexes Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table and index

tablename name (references pg_class .relname)
Name of table the index is for

indexname name (references pg_class .relname)
Name of index

tablespace name (references pg_tablespace .spcname)
Name of tablespace containing index (null if default for database)

indexdef text
Index definition (a reconstructed CREATE INDEX command)

53.13. pg_locks
The view pg_locks provides access to information about the locks held by active processes within the
database server. See Chapter 13 for more discussion of locking.

pg_locks contains one row per active lockable object, requested lock mode, and relevant process. Thus,
the same lockable object might appear many times, if multiple processes are holding or waiting for locks
on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (e.g., tables), individual pages of
relations, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general

2162

System Views

database objects (identified by class OID and object OID, in the same way as in pg_description or
pg_depend). Also, the right to extend a relation is represented as a separate lockable object, as is the
right to update pg_database.datfrozenxid. Also, “advisory” locks can be taken on numbers that have
user-defined meanings.

Table 53.13. pg_locks Columns

Column Type
Description

locktype text
Type of the lockable object: relation, extend, frozenid, page, tuple, transactionid,
 virtualxid, spectoken, object, userlock, advisory, or applytransaction. (See also Ta-
ble 27.11.)

database oid (references pg_database .oid)
OID of the database in which the lock target exists, or zero if the target is a shared object, or
null if the target is a transaction ID

relation oid (references pg_class .oid)
OID of the relation targeted by the lock, or null if the target is not a relation or part of a rela-
tion

page int4
Page number targeted by the lock within the relation, or null if the target is not a relation
page or tuple

tuple int2
Tuple number targeted by the lock within the page, or null if the target is not a tuple

virtualxid text
Virtual ID of the transaction targeted by the lock, or null if the target is not a virtual transac-
tion ID; see Chapter 67

transactionid xid
ID of the transaction targeted by the lock, or null if the target is not a transaction ID; Chap-
ter 67

classid oid (references pg_class .oid)
OID of the system catalog containing the lock target, or null if the target is not a general
database object

objid oid (references any OID column)
OID of the lock target within its system catalog, or null if the target is not a general database
object

objsubid int2
Column number targeted by the lock (the classid and objid refer to the table itself), or zero
if the target is some other general database object, or null if the target is not a general data-
base object

virtualtransaction text
Virtual ID of the transaction that is holding or awaiting this lock

pid int4
Process ID of the server process holding or awaiting this lock, or null if the lock is held by a
prepared transaction

mode text
Name of the lock mode held or desired by this process (see Section 13.3.1 and Section 13.2.3)

granted bool
True if lock is held, false if lock is awaited

fastpath bool
True if lock was taken via fast path, false if taken via main lock table

waitstart timestamptz

2163

System Views

Column Type
Description
Time when the server process started waiting for this lock, or null if the lock is held. Note
that this can be null for a very short period of time after the wait started even though grant-
ed is false.

granted is true in a row representing a lock held by the indicated process. False indicates that this
process is currently waiting to acquire this lock, which implies that at least one other process is holding
or waiting for a conflicting lock mode on the same lockable object. The waiting process will sleep until
the other lock is released (or a deadlock situation is detected). A single process can be waiting to acquire
at most one lock at a time.

Throughout running a transaction, a server process holds an exclusive lock on the transaction's virtual
transaction ID. If a permanent ID is assigned to the transaction (which normally happens only if the
transaction changes the state of the database), it also holds an exclusive lock on the transaction's per-
manent transaction ID until it ends. When a process finds it necessary to wait specifically for another
transaction to end, it does so by attempting to acquire share lock on the other transaction's ID (either
virtual or permanent ID depending on the situation). That will succeed only when the other transaction
terminates and releases its locks.

Although tuples are a lockable type of object, information about row-level locks is stored on disk, not in
memory, and therefore row-level locks normally do not appear in this view. If a process is waiting for
a row-level lock, it will usually appear in the view as waiting for the permanent transaction ID of the
current holder of that row lock.

A speculative insertion lock consists of a transaction ID and a speculative insertion token. The speculative
insertion token is displayed in the objid column.

Advisory locks can be acquired on keys consisting of either a single bigint value or two integer values.
A bigint key is displayed with its high-order half in the classid column, its low-order half in the objid
column, and objsubid equal to 1. The original bigint value can be reassembled with the expression
(classid::bigint << 32) | objid::bigint. Integer keys are displayed with the first key in the classid
column, the second key in the objid column, and objsubid equal to 2. The actual meaning of the keys
is up to the user. Advisory locks are local to each database, so the database column is meaningful for
an advisory lock.

Apply transaction locks are used in parallel mode to apply the transaction in logical replication. The
remote transaction ID is displayed in the transactionid column. The objsubid displays the lock subtype
which is 0 for the lock used to synchronize the set of changes, and 1 for the lock used to wait for the
transaction to finish to ensure commit order.

pg_locks provides a global view of all locks in the database cluster, not only those relevant to the current
database. Although its relation column can be joined against pg_class.oid to identify locked relations,
this will only work correctly for relations in the current database (those for which the database column
is either the current database's OID or zero).

The pid column can be joined to the pid column of the pg_stat_activity view to get more information
on the session holding or awaiting each lock, for example

SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa
 ON pl.pid = psa.pid;

Also, if you are using prepared transactions, the virtualtransaction column can be joined to the trans-
action column of the pg_prepared_xacts view to get more information on prepared transactions that
hold locks. (A prepared transaction can never be waiting for a lock, but it continues to hold the locks
it acquired while running.) For example:

SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx
 ON pl.virtualtransaction = '-1/' || ppx.transaction;

2164

System Views

While it is possible to obtain information about which processes block which other processes by joining
pg_locks against itself, this is very difficult to get right in detail. Such a query would have to encode
knowledge about which lock modes conflict with which others. Worse, the pg_locks view does not expose
information about which processes are ahead of which others in lock wait queues, nor information about
which processes are parallel workers running on behalf of which other client sessions. It is better to
use the pg_blocking_pids() function (see Table 9.71) to identify which process(es) a waiting process
is blocked behind.

The pg_locks view displays data from both the regular lock manager and the predicate lock manager,
which are separate systems; in addition, the regular lock manager subdivides its locks into regular and
fast-path locks. This data is not guaranteed to be entirely consistent. When the view is queried, data on
fast-path locks (with fastpath = true) is gathered from each backend one at a time, without freezing
the state of the entire lock manager, so it is possible for locks to be taken or released while information
is gathered. Note, however, that these locks are known not to conflict with any other lock currently
in place. After all backends have been queried for fast-path locks, the remainder of the regular lock
manager is locked as a unit, and a consistent snapshot of all remaining locks is collected as an atomic
action. After unlocking the regular lock manager, the predicate lock manager is similarly locked and all
predicate locks are collected as an atomic action. Thus, with the exception of fast-path locks, each lock
manager will deliver a consistent set of results, but as we do not lock both lock managers simultaneously,
it is possible for locks to be taken or released after we interrogate the regular lock manager and before
we interrogate the predicate lock manager.

Locking the regular and/or predicate lock manager could have some impact on database performance
if this view is very frequently accessed. The locks are held only for the minimum amount of time neces-
sary to obtain data from the lock managers, but this does not completely eliminate the possibility of a
performance impact.

53.14. pg_matviews
The view pg_matviews provides access to useful information about each materialized view in the data-
base.

Table 53.14. pg_matviews Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing materialized view

matviewname name (references pg_class .relname)
Name of materialized view

matviewowner name (references pg_authid .rolname)
Name of materialized view's owner

tablespace name (references pg_tablespace .spcname)
Name of tablespace containing materialized view (null if default for database)

hasindexes bool
True if materialized view has (or recently had) any indexes

ispopulated bool
True if materialized view is currently populated

definition text
Materialized view definition (a reconstructed SELECT query)

53.15. pg_policies
The view pg_policies provides access to useful information about each row-level security policy in the
database.

2165

System Views

Table 53.15. pg_policies Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table policy is on

tablename name (references pg_class .relname)
Name of table policy is on

policyname name (references pg_policy .polname)
Name of policy

permissive text
Is the policy permissive or restrictive?

roles name[]
The roles to which this policy applies

cmd text
The command type to which the policy is applied

qual text
The expression added to the security barrier qualifications for queries that this policy applies
to

with_check text
The expression added to the WITH CHECK qualifications for queries that attempt to add rows
to this table

53.16. pg_prepared_statements
The pg_prepared_statements view displays all the prepared statements that are available in the current
session. See PREPARE for more information about prepared statements.

pg_prepared_statements contains one row for each prepared statement. Rows are added to the view
when a new prepared statement is created and removed when a prepared statement is released (for
example, via the DEALLOCATE command).

Table 53.16. pg_prepared_statements Columns

Column Type
Description

name text
The identifier of the prepared statement

statement text
The query string submitted by the client to create this prepared statement. For prepared
statements created via SQL, this is the PREPARE statement submitted by the client. For pre-
pared statements created via the frontend/backend protocol, this is the text of the prepared
statement itself.

prepare_time timestamptz
The time at which the prepared statement was created

parameter_types regtype[]
The expected parameter types for the prepared statement in the form of an array of regtype.
The OID corresponding to an element of this array can be obtained by casting the regtype
value to oid.

result_types regtype[]
The types of the columns returned by the prepared statement in the form of an array of reg-
type. The OID corresponding to an element of this array can be obtained by casting the reg-
type value to oid. If the prepared statement does not provide a result (e.g., a DML state-
ment), then this field will be null.

2166

System Views

Column Type
Description

from_sql bool
true if the prepared statement was created via the PREPARE SQL command; false if the
statement was prepared via the frontend/backend protocol

generic_plans int8
Number of times generic plan was chosen

custom_plans int8
Number of times custom plan was chosen

The pg_prepared_statements view is read-only.

53.17. pg_prepared_xacts
The view pg_prepared_xacts displays information about transactions that are currently prepared for
two-phase commit (see PREPARE TRANSACTION for details).

pg_prepared_xacts contains one row per prepared transaction. An entry is removed when the transac-
tion is committed or rolled back.

Table 53.17. pg_prepared_xacts Columns

Column Type
Description

transaction xid
Numeric transaction identifier of the prepared transaction

gid text
Global transaction identifier that was assigned to the transaction

prepared timestamptz
Time at which the transaction was prepared for commit

owner name (references pg_authid .rolname)
Name of the user that executed the transaction

database name (references pg_database .datname)
Name of the database in which the transaction was executed

When the pg_prepared_xacts view is accessed, the internal transaction manager data structures are
momentarily locked, and a copy is made for the view to display. This ensures that the view produces a
consistent set of results, while not blocking normal operations longer than necessary. Nonetheless there
could be some impact on database performance if this view is frequently accessed.

53.18. pg_publication_tables
The view pg_publication_tables provides information about the mapping between publications and
information of tables they contain. Unlike the underlying catalog pg_publication_rel, this view ex-
pands publications defined as FOR ALL TABLES and FOR TABLES IN SCHEMA, so for such publications
there will be a row for each eligible table.

Table 53.18. pg_publication_tables Columns

Column Type
Description

pubname name (references pg_publication .pubname)
Name of publication

schemaname name (references pg_namespace .nspname)
Name of schema containing table

2167

System Views

Column Type
Description

tablename name (references pg_class .relname)
Name of table

attnames name[] (references pg_attribute .attname)
Names of table columns included in the publication. This contains all the columns of the table
when the user didn't specify the column list for the table.

rowfilter text
Expression for the table's publication qualifying condition

53.19. pg_replication_origin_status
The pg_replication_origin_status view contains information about how far replay for a certain origin
has progressed. For more on replication origins see Chapter 48.

Table 53.19. pg_replication_origin_status Columns

Column Type
Description

local_id oid (references pg_replication_origin .roident)
internal node identifier

external_id text (references pg_replication_origin .roname)
external node identifier

remote_lsn pg_lsn
The origin node's LSN up to which data has been replicated.

local_lsn pg_lsn
This node's LSN at which remote_lsn has been replicated. Used to flush commit records be-
fore persisting data to disk when using asynchronous commits.

53.20. pg_replication_slots
The pg_replication_slots view provides a listing of all replication slots that currently exist on the
database cluster, along with their current state.

For more on replication slots, see Section 26.2.6 and Chapter 47.

Table 53.20. pg_replication_slots Columns

Column Type
Description

slot_name name
A unique, cluster-wide identifier for the replication slot

plugin name
The base name of the shared object containing the output plugin this logical slot is using, or
null for physical slots.

slot_type text
The slot type: physical or logical

datoid oid (references pg_database .oid)
The OID of the database this slot is associated with, or null. Only logical slots have an associ-
ated database.

database name (references pg_database .datname)
The name of the database this slot is associated with, or null. Only logical slots have an asso-
ciated database.

temporary bool

2168

System Views

Column Type
Description
True if this is a temporary replication slot. Temporary slots are not saved to disk and are au-
tomatically dropped on error or when the session has finished.

active bool
True if this slot is currently being streamed

active_pid int4
The process ID of the session streaming data for this slot. NULL if inactive.

xmin xid
The oldest transaction that this slot needs the database to retain. VACUUM cannot remove tu-
ples deleted by any later transaction.

catalog_xmin xid
The oldest transaction affecting the system catalogs that this slot needs the database to re-
tain. VACUUM cannot remove catalog tuples deleted by any later transaction.

restart_lsn pg_lsn
The address (LSN) of oldest WAL which still might be required by the consumer of this slot
and thus won't be automatically removed during checkpoints unless this LSN gets behind
more than max_slot_wal_keep_size from the current LSN. NULL if the LSN of this slot has never
been reserved.

confirmed_flush_lsn pg_lsn
The address (LSN) up to which the logical slot's consumer has confirmed receiving data. Da-
ta corresponding to the transactions committed before this LSN is not available anymore. NULL
for physical slots.

wal_status text
Availability of WAL files claimed by this slot. Possible values are:
• reserved means that the claimed files are within max_wal_size .
• extended means that max_wal_size is exceeded but the files are still retained, either by

the replication slot or by wal_keep_size .
• unreserved means that the slot no longer retains the required WAL files and some of them

are to be removed at the next checkpoint. This typically occurs when max_slot_wal_keep_
size is set to a non-negative value. This state can return to reserved or extended.

• lost means that this slot is no longer usable.
safe_wal_size int8

The number of bytes that can be written to WAL such that this slot is not in danger of getting
in state "lost". It is NULL for lost slots, as well as if max_slot_wal_keep_size is -1.

two_phase bool
True if the slot is enabled for decoding prepared transactions. Always false for physical slots.

two_phase_at pg_lsn
The address (LSN) from which the decoding of prepared transactions is enabled. NULL for logi-
cal slots where two_phase is false and for physical slots.

inactive_since timestamptz
The time when the slot became inactive. NULL if the slot is currently being streamed. If the
slot becomes invalid, this value will never be updated. For standby slots that are being synced
from a primary server (whose synced field is true), the inactive_since indicates the time
when slot synchronization (see Section 47.2.3) was most recently stopped. NULL if the slot has
always been synchronized. This helps standby slots track when synchronization was inter-
rupted.

conflicting bool

2169

System Views

Column Type
Description
True if this logical slot conflicted with recovery (and so is now invalidated). When this column
is true, check invalidation_reason column for the conflict reason. Always NULL for physical
slots.

invalidation_reason text
The reason for the slot's invalidation. It is set for both logical and physical slots. NULL if the
slot is not invalidated. Possible values are:
• wal_removed means that the required WAL has been removed.
• rows_removed means that the required rows have been removed. It is set only for logical

slots.
• wal_level_insufficient means that the primary doesn't have a wal_level sufficient to

perform logical decoding. It is set only for logical slots.
• idle_timeout means that the slot has remained inactive longer than the configured idle_

replication_slot_timeout duration.
failover bool

True if this is a logical slot enabled to be synced to the standbys so that logical replication
can be resumed from the new primary after failover. Always false for physical slots.

synced bool
True if this is a logical slot that was synced from a primary server. On a hot standby, the slots
with the synced column marked as true can neither be used for logical decoding nor dropped
manually. The value of this column has no meaning on the primary server; the column value
on the primary is default false for all slots but may (if leftover from a promoted standby) also
be true.

53.21. pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly read-
able view of pg_authid that blanks out the password field.

Table 53.21. pg_roles Columns

Column Type
Description

rolname name
Role name

rolsuper bool
Role has superuser privileges

rolinherit bool
Role automatically inherits privileges of roles it is a member of

rolcreaterole bool
Role can create more roles

rolcreatedb bool
Role can create databases

rolcanlogin bool
Role can log in. That is, this role can be given as the initial session authorization identifier

rolreplication bool
Role is a replication role. A replication role can initiate replication connections and create
and drop replication slots.

rolconnlimit int4
For roles that can log in, this sets maximum number of concurrent connections this role can
make. -1 means no limit.

2170

System Views

Column Type
Description

rolpassword text
Not the password (always reads as ********)

rolvaliduntil timestamptz
Password expiry time (only used for password authentication); null if no expiration

rolbypassrls bool
Role bypasses every row-level security policy, see Section 5.9 for more information.

rolconfig text[]
Role-specific defaults for run-time configuration variables

oid oid (references pg_authid .oid)
ID of role

53.22. pg_rules
The view pg_rules provides access to useful information about query rewrite rules.

Table 53.22. pg_rules Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table the rule is for

rulename name (references pg_rewrite .rulename)
Name of rule

definition text
Rule definition (a reconstructed creation command)

The pg_rules view excludes the ON SELECT rules of views and materialized views; those can be seen
in pg_views and pg_matviews.

53.23. pg_seclabels
The view pg_seclabels provides information about security labels. It as an easier-to-query version of
the pg_seclabel catalog.

Table 53.23. pg_seclabels Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this security label pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

objsubid int4
For a security label on a table column, this is the column number (the objoid and classoid
refer to the table itself). For all other object types, this column is zero.

objtype text
The type of object to which this label applies, as text.

objnamespace oid (references pg_namespace .oid)
The OID of the namespace for this object, if applicable; otherwise NULL.

2171

System Views

Column Type
Description

objname text
The name of the object to which this label applies, as text.

provider text (references pg_seclabel .provider)
The label provider associated with this label.

label text (references pg_seclabel .label)
The security label applied to this object.

53.24. pg_sequences
The view pg_sequences provides access to useful information about each sequence in the database.

Table 53.24. pg_sequences Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing sequence

sequencename name (references pg_class .relname)
Name of sequence

sequenceowner name (references pg_authid .rolname)
Name of sequence's owner

data_type regtype (references pg_type .oid)
Data type of the sequence

start_value int8
Start value of the sequence

min_value int8
Minimum value of the sequence

max_value int8
Maximum value of the sequence

increment_by int8
Increment value of the sequence

cycle bool
Whether the sequence cycles

cache_size int8
Cache size of the sequence

last_value int8
The last sequence value written to disk. If caching is used, this value can be greater than the
last value handed out from the sequence.

The last_value column will read as null if any of the following are true:
• The sequence has not been read from yet.
• The current user does not have USAGE or SELECT privilege on the sequence.
• The sequence is unlogged and the server is a standby.

53.25. pg_settings
The view pg_settings provides access to run-time parameters of the server. It is essentially an alterna-
tive interface to the SHOW and SET commands. It also provides access to some facts about each parameter
that are not directly available from SHOW, such as minimum and maximum values.

2172

System Views

Table 53.25. pg_settings Columns

Column Type
Description

name text
Run-time configuration parameter name

setting text
Current value of the parameter

unit text
Implicit unit of the parameter

category text
Logical group of the parameter

short_desc text
A brief description of the parameter

extra_desc text
Additional, more detailed, description of the parameter

context text
Context required to set the parameter's value (see below)

vartype text
Parameter type (bool, enum, integer, real, or string)

source text
Source of the current parameter value

min_val text
Minimum allowed value of the parameter (null for non-numeric values)

max_val text
Maximum allowed value of the parameter (null for non-numeric values)

enumvals text[]
Allowed values of an enum parameter (null for non-enum values)

boot_val text
Parameter value assumed at server startup if the parameter is not otherwise set

reset_val text
Value that RESET would reset the parameter to in the current session

sourcefile text
Configuration file the current value was set in (null for values set from sources other than
configuration files, or when examined by a user who neither is a superuser nor has privileges
of pg_read_all_settings); helpful when using include directives in configuration files

sourceline int4
Line number within the configuration file the current value was set at (null for values set
from sources other than configuration files, or when examined by a user who neither is a su-
peruser nor has privileges of pg_read_all_settings).

pending_restart bool
true if the value has been changed in the configuration file but needs a restart; or false oth-
erwise.

There are several possible values of context. In order of decreasing difficulty of changing the setting,
they are:

internal

These settings cannot be changed directly; they reflect internally determined values. Some of them
may be adjustable by rebuilding the server with different configuration options, or by changing op-
tions supplied to initdb.

2173

System Views

postmaster

These settings can only be applied when the server starts, so any change requires restarting the
server. Values for these settings are typically stored in the postgresql.conf file, or passed on the
command line when starting the server. Of course, settings with any of the lower context types can
also be set at server start time.

sighup

Changes to these settings can be made in postgresql.conf without restarting the server. Send a
SIGHUP signal to the postmaster to cause it to re-read postgresql.conf and apply the changes.
The postmaster will also forward the SIGHUP signal to its child processes so that they all pick up
the new value.

superuser-backend

Changes to these settings can be made in postgresql.conf without restarting the server. They
can also be set for a particular session in the connection request packet (for example, via libpq's
PGOPTIONS environment variable), but only if the connecting user is a superuser or has been granted
the appropriate SET privilege. However, these settings never change in a session after it is started.
If you change them in postgresql.conf, send a SIGHUP signal to the postmaster to cause it to re-
read postgresql.conf. The new values will only affect subsequently-launched sessions.

backend

Changes to these settings can be made in postgresql.conf without restarting the server. They
can also be set for a particular session in the connection request packet (for example, via libpq's
PGOPTIONS environment variable); any user can make such a change for their session. However, these
settings never change in a session after it is started. If you change them in postgresql.conf, send
a SIGHUP signal to the postmaster to cause it to re-read postgresql.conf. The new values will only
affect subsequently-launched sessions.

superuser

These settings can be set from postgresql.conf, or within a session via the SET command; but
only superusers and users with the appropriate SET privilege can change them via SET. Changes
in postgresql.conf will affect existing sessions only if no session-local value has been established
with SET.

user

These settings can be set from postgresql.conf, or within a session via the SET command. Any
user is allowed to change their session-local value. Changes in postgresql.conf will affect existing
sessions only if no session-local value has been established with SET.

See Section 19.1 for more information about the various ways to change these parameters.

This view cannot be inserted into or deleted from, but it can be updated. An UPDATE applied to a row
of pg_settings is equivalent to executing the SET command on that named parameter. The change
only affects the value used by the current session. If an UPDATE is issued within a transaction that is
later aborted, the effects of the UPDATE command disappear when the transaction is rolled back. Once
the surrounding transaction is committed, the effects will persist until the end of the session, unless
overridden by another UPDATE or SET.

This view does not display customized options unless the extension module that defines them has been
loaded by the backend process executing the query (e.g., via a mention in shared_preload_libraries,
a call to a C function in the extension, or the LOAD command). For example, since archive modules
are normally loaded only by the archiver process not regular sessions, this view will not display any
customized options defined by such modules unless special action is taken to load them into the backend
process executing the query.

2174

System Views

53.26. pg_shadow
The view pg_shadow exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows properties of all roles that are marked as rolcanlogin in pg_authid.

The name stems from the fact that this table should not be readable by the public since it contains
passwords. pg_user is a publicly readable view on pg_shadow that blanks out the password field.

Table 53.26. pg_shadow Columns

Column Type
Description

usename name (references pg_authid .rolname)
User name

usesysid oid (references pg_authid .oid)
ID of this user

usecreatedb bool
User can create databases

usesuper bool
User is a superuser

userepl bool
User can initiate streaming replication and put the system in and out of backup mode.

usebypassrls bool
User bypasses every row-level security policy, see Section 5.9 for more information.

passwd text
Encrypted password; null if none. See pg_authid for details of how encrypted passwords are
stored.

valuntil timestamptz
Password expiry time (only used for password authentication)

useconfig text[]
Session defaults for run-time configuration variables

53.27. pg_shmem_allocations
The pg_shmem_allocations view shows allocations made from the server's main shared memory seg-
ment. This includes both memory allocated by PostgreSQL itself and memory allocated by extensions
using the mechanisms detailed in Section 36.10.11.

Note that this view does not include memory allocated using the dynamic shared memory infrastructure.

Table 53.27. pg_shmem_allocations Columns

Column Type
Description

name text
The name of the shared memory allocation. NULL for unused memory and <anonymous> for
anonymous allocations.

off int8
The offset at which the allocation starts. NULL for anonymous allocations, since details relat-
ed to them are not known.

size int8
Size of the allocation in bytes

allocated_size int8

2175

System Views

Column Type
Description
Size of the allocation in bytes including padding. For anonymous allocations, no information
about padding is available, so the size and allocated_size columns will always be equal.
Padding is not meaningful for free memory, so the columns will be equal in that case also.

Anonymous allocations are allocations that have been made with ShmemAlloc() directly, rather than via
ShmemInitStruct() or ShmemInitHash().

By default, the pg_shmem_allocations view can be read only by superusers or roles with privileges of
the pg_read_all_stats role.

53.28. pg_shmem_allocations_numa
The pg_shmem_allocations_numa shows how shared memory allocations in the server's main shared
memory segment are distributed across NUMA nodes. This includes both memory allocated by Post-
greSQL itself and memory allocated by extensions using the mechanisms detailed in Section 36.10.11.
This view will output multiple rows for each of the shared memory segments provided that they are
spread across multiple NUMA nodes. This view should not be queried by monitoring systems as it is very
slow and may end up allocating shared memory in case it was not used earlier. Current limitation for
this view is that won't show anonymous shared memory allocations.

Note that this view does not include memory allocated using the dynamic shared memory infrastructure.

Warning
When determining the NUMA node, the view touches all memory pages for the shared memory
segment. This will force allocation of the shared memory, if it wasn't allocated already, and the
memory may get allocated in a single NUMA node (depending on system configuration).

Table 53.28. pg_shmem_allocations_numa Columns

Column Type
Description

name text
The name of the shared memory allocation.

numa_node int4
ID of NUMA node

size int8
Size of the allocation on this particular NUMA memory node in bytes

By default, the pg_shmem_allocations_numa view can be read only by superusers or roles with privileges
of the pg_read_all_stats role.

53.29. pg_stats
The view pg_stats provides access to the information stored in the pg_statistic catalog. This view
allows access only to rows of pg_statistic that correspond to tables the user has permission to read,
and therefore it is safe to allow public read access to this view.

pg_stats is also designed to present the information in a more readable format than the underlying
catalog — at the cost that its schema must be extended whenever new slot types are defined for pg_s-
tatistic.

2176

System Views

Table 53.29. pg_stats Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

attname name (references pg_attribute .attname)
Name of column described by this row

inherited bool
If true, this row includes values from child tables, not just the values in the specified table

null_frac float4
Fraction of column entries that are null

avg_width int4
Average width in bytes of column's entries

n_distinct float4
If greater than zero, the estimated number of distinct values in the column. If less than ze-
ro, the negative of the number of distinct values divided by the number of rows. (The negat-
ed form is used when ANALYZE believes that the number of distinct values is likely to increase
as the table grows; the positive form is used when the column seems to have a fixed number
of possible values.) For example, -1 indicates a unique column in which the number of distinct
values is the same as the number of rows.

most_common_vals anyarray
A list of the most common values in the column. (Null if no values seem to be more common
than any others.)

most_common_freqs float4[]
A list of the frequencies of the most common values, i.e., number of occurrences of each di-
vided by total number of rows. (Null when most_common_vals is.)

histogram_bounds anyarray
A list of values that divide the column's values into groups of approximately equal population.
The values in most_common_vals , if present, are omitted from this histogram calculation.
(This column is null if the column data type does not have a < operator or if the most_com-
mon_vals list accounts for the entire population.)

correlation float4
Statistical correlation between physical row ordering and logical ordering of the column val-
ues. This ranges from -1 to +1. When the value is near -1 or +1, an index scan on the column
will be estimated to be cheaper than when it is near zero, due to reduction of random access
to the disk. (This column is null if the column data type does not have a < operator.)

most_common_elems anyarray
A list of non-null element values most often appearing within values of the column. (Null for
scalar types.)

most_common_elem_freqs float4[]
A list of the frequencies of the most common element values, i.e., the fraction of rows contain-
ing at least one instance of the given value. Two or three additional values follow the per-el-
ement frequencies; these are the minimum and maximum of the preceding per-element fre-
quencies, and optionally the frequency of null elements. (Null when most_common_elems
is.)

elem_count_histogram float4[]
A histogram of the counts of distinct non-null element values within the values of the column,
followed by the average number of distinct non-null elements. (Null for scalar types.)

range_length_histogram anyarray

2177

System Views

Column Type
Description
A histogram of the lengths of non-empty and non-null range values of a range type column. (
Null for non-range types.)
This histogram is calculated using the subtype_diff range function regardless of whether
range bounds are inclusive.

range_empty_frac float4
Fraction of column entries whose values are empty ranges. (Null for non-range types.)

range_bounds_histogram anyarray
A histogram of lower and upper bounds of non-empty and non-null range values. (Null for
non-range types.)
These two histograms are represented as a single array of ranges, whose lower bounds rep-
resent the histogram of lower bounds, and upper bounds represent the histogram of upper
bounds.

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target run-
time parameter.

53.30. pg_stats_ext
The view pg_stats_ext provides access to information about each extended statistics object in the data-
base, combining information stored in the pg_statistic_ext and pg_statistic_ext_data catalogs.
This view allows access only to rows of pg_statistic_ext and pg_statistic_ext_data that correspond
to tables the user owns, and therefore it is safe to allow public read access to this view.

pg_stats_ext is also designed to present the information in a more readable format than the underlying
catalogs — at the cost that its schema must be extended whenever new types of extended statistics are
added to pg_statistic_ext.

Table 53.30. pg_stats_ext Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

statistics_schemaname name (references pg_namespace .nspname)
Name of schema containing extended statistics object

statistics_name name (references pg_statistic_ext .stxname)
Name of extended statistics object

statistics_owner name (references pg_authid .rolname)
Owner of the extended statistics object

attnames name[] (references pg_attribute .attname)
Names of the columns included in the extended statistics object

exprs text[]
Expressions included in the extended statistics object

kinds char[]
Types of extended statistics object enabled for this record

inherited bool (references pg_statistic_ext_data .stxdinherit)
If true, the stats include values from child tables, not just the values in the specified relation

n_distinct pg_ndistinct

2178

System Views

Column Type
Description
N-distinct counts for combinations of column values. If greater than zero, the estimated num-
ber of distinct values in the combination. If less than zero, the negative of the number of dis-
tinct values divided by the number of rows. (The negated form is used when ANALYZE believes
that the number of distinct values is likely to increase as the table grows; the positive form is
used when the column seems to have a fixed number of possible values.) For example, -1 in-
dicates a unique combination of columns in which the number of distinct combinations is the
same as the number of rows.

dependencies pg_dependencies
Functional dependency statistics

most_common_vals text[]
A list of the most common combinations of values in the columns. (Null if no combinations
seem to be more common than any others.)

most_common_val_nulls bool[]
A list of NULL flags for the most common combinations of values. (Null when most_com-
mon_vals is.)

most_common_freqs float8[]
A list of the frequencies of the most common combinations, i.e., number of occurrences of
each divided by total number of rows. (Null when most_common_vals is.)

most_common_base_freqs float8[]
A list of the base frequencies of the most common combinations, i.e., product of per-value fre-
quencies. (Null when most_common_vals is.)

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target run-
time parameter.

53.31. pg_stats_ext_exprs
The view pg_stats_ext_exprs provides access to information about all expressions included in extended
statistics objects, combining information stored in the pg_statistic_ext and pg_statistic_ext_data
catalogs. This view allows access only to rows of pg_statistic_ext and pg_statistic_ext_data that
correspond to tables the user owns, and therefore it is safe to allow public read access to this view.

pg_stats_ext_exprs is also designed to present the information in a more readable format than the
underlying catalogs — at the cost that its schema must be extended whenever the structure of statistics
in pg_statistic_ext changes.

Table 53.31. pg_stats_ext_exprs Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table the statistics object is defined on

statistics_schemaname name (references pg_namespace .nspname)
Name of schema containing extended statistics object

statistics_name name (references pg_statistic_ext .stxname)
Name of extended statistics object

statistics_owner name (references pg_authid .rolname)
Owner of the extended statistics object

expr text

2179

System Views

Column Type
Description
Expression included in the extended statistics object

inherited bool (references pg_statistic_ext_data .stxdinherit)
If true, the stats include values from child tables, not just the values in the specified relation

null_frac float4
Fraction of expression entries that are null

avg_width int4
Average width in bytes of expression's entries

n_distinct float4
If greater than zero, the estimated number of distinct values in the expression. If less than ze-
ro, the negative of the number of distinct values divided by the number of rows. (The negated
form is used when ANALYZE believes that the number of distinct values is likely to increase as
the table grows; the positive form is used when the expression seems to have a fixed number
of possible values.) For example, -1 indicates a unique expression in which the number of dis-
tinct values is the same as the number of rows.

most_common_vals anyarray
A list of the most common values in the expression. (Null if no values seem to be more com-
mon than any others.)

most_common_freqs float4[]
A list of the frequencies of the most common values, i.e., number of occurrences of each di-
vided by total number of rows. (Null when most_common_vals is.)

histogram_bounds anyarray
A list of values that divide the expression's values into groups of approximately equal popu-
lation. The values in most_common_vals , if present, are omitted from this histogram calcu-
lation. (This expression is null if the expression data type does not have a < operator or if the
most_common_vals list accounts for the entire population.)

correlation float4
Statistical correlation between physical row ordering and logical ordering of the expression
values. This ranges from -1 to +1. When the value is near -1 or +1, an index scan on the ex-
pression will be estimated to be cheaper than when it is near zero, due to reduction of ran-
dom access to the disk. (This expression is null if the expression's data type does not have a <
operator.)

most_common_elems anyarray
A list of non-null element values most often appearing within values of the expression. (Null
for scalar types.)

most_common_elem_freqs float4[]
A list of the frequencies of the most common element values, i.e., the fraction of rows contain-
ing at least one instance of the given value. Two or three additional values follow the per-el-
ement frequencies; these are the minimum and maximum of the preceding per-element fre-
quencies, and optionally the frequency of null elements. (Null when most_common_elems
is.)

elem_count_histogram float4[]
A histogram of the counts of distinct non-null element values within the values of the expres-
sion, followed by the average number of distinct non-null elements. (Null for scalar types.)

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target run-
time parameter.

53.32. pg_tables
The view pg_tables provides access to useful information about each table in the database.

2180

System Views

Table 53.32. pg_tables Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

tableowner name (references pg_authid .rolname)
Name of table's owner

tablespace name (references pg_tablespace .spcname)
Name of tablespace containing table (null if default for database)

hasindexes bool (references pg_class .relhasindex)
True if table has (or recently had) any indexes

hasrules bool (references pg_class .relhasrules)
True if table has (or once had) rules

hastriggers bool (references pg_class .relhastriggers)
True if table has (or once had) triggers

rowsecurity bool (references pg_class .relrowsecurity)
True if row security is enabled on the table

53.33. pg_timezone_abbrevs
The view pg_timezone_abbrevs provides a list of time zone abbreviations that are currently recognized
by the datetime input routines. The contents of this view change when the TimeZone or timezone_ab-
breviations run-time parameters are modified.

Table 53.33. pg_timezone_abbrevs Columns

Column Type
Description

abbrev text
Time zone abbreviation

utc_offset interval
Offset from UTC (positive means east of Greenwich)

is_dst bool
True if this is a daylight-savings abbreviation

While most timezone abbreviations represent fixed offsets from UTC, there are some that have histori-
cally varied in value (see Section B.4 for more information). In such cases this view presents their cur-
rent meaning.

53.34. pg_timezone_names
The view pg_timezone_names provides a list of time zone names that are recognized by SET TIMEZONE,
along with their associated abbreviations, UTC offsets, and daylight-savings status. (Technically, Post-
greSQL does not use UTC because leap seconds are not handled.) Unlike the abbreviations shown in
pg_timezone_abbrevs, many of these names imply a set of daylight-savings transition date rules. There-
fore, the associated information changes across local DST boundaries. The displayed information is com-
puted based on the current value of CURRENT_TIMESTAMP.

Table 53.34. pg_timezone_names Columns

Column Type
Description

name text

2181

System Views

Column Type
Description
Time zone name

abbrev text
Time zone abbreviation

utc_offset interval
Offset from UTC (positive means east of Greenwich)

is_dst bool
True if currently observing daylight savings

53.35. pg_user
The view pg_user provides access to information about database users. This is simply a publicly readable
view of pg_shadow that blanks out the password field.

Table 53.35. pg_user Columns

Column Type
Description

usename name
User name

usesysid oid
ID of this user

usecreatedb bool
User can create databases

usesuper bool
User is a superuser

userepl bool
User can initiate streaming replication and put the system in and out of backup mode.

usebypassrls bool
User bypasses every row-level security policy, see Section 5.9 for more information.

passwd text
Not the password (always reads as ********)

valuntil timestamptz
Password expiry time (only used for password authentication)

useconfig text[]
Session defaults for run-time configuration variables

53.36. pg_user_mappings
The view pg_user_mappings provides access to information about user mappings. This is essentially a
publicly readable view of pg_user_mapping that leaves out the options field if the user has no rights
to use it.

Table 53.36. pg_user_mappings Columns

Column Type
Description

umid oid (references pg_user_mapping .oid)
OID of the user mapping

srvid oid (references pg_foreign_server .oid)
The OID of the foreign server that contains this mapping

2182

System Views

Column Type
Description

srvname name (references pg_foreign_server .srvname)
Name of the foreign server

umuser oid (references pg_authid .oid)
OID of the local role being mapped, or zero if the user mapping is public

usename name
Name of the local user to be mapped

umoptions text[]
User mapping specific options, as “keyword=value” strings

To protect password information stored as a user mapping option, the umoptions column will read as
null unless one of the following applies:
• current user is the user being mapped, and owns the server or holds USAGE privilege on it
• current user is the server owner and mapping is for PUBLIC
• current user is a superuser

53.37. pg_views
The view pg_views provides access to useful information about each view in the database.

Table 53.37. pg_views Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing view

viewname name (references pg_class .relname)
Name of view

viewowner name (references pg_authid .rolname)
Name of view's owner

definition text
View definition (a reconstructed SELECT query)

53.38. pg_wait_events
The view pg_wait_events provides description about the wait events.

Table 53.38. pg_wait_events Columns

Column Type
Description

type text
Wait event type

name text
Wait event name

description text
Wait event description

2183

Chapter 54. Frontend/Backend Protocol
PostgreSQL uses a message-based protocol for communication between frontends and backends (clients
and servers). The protocol is supported over TCP/IP and also over Unix-domain sockets. Port number
5432 has been registered with IANA as the customary TCP port number for servers supporting this
protocol, but in practice any non-privileged port number can be used.

This document describes version 3.2 of the protocol, introduced in PostgreSQL version 18. The server
and the libpq client library are backwards compatible with protocol version 3.0, implemented in Post-
greSQL 7.4 and later.

In order to serve multiple clients efficiently, the server launches a new “backend” process for each client.
In the current implementation, a new child process is created immediately after an incoming connection
is detected. This is transparent to the protocol, however. For purposes of the protocol, the terms “back-
end” and “server” are interchangeable; likewise “frontend” and “client” are interchangeable.

54.1. Overview
The protocol has separate phases for startup and normal operation. In the startup phase, the frontend
opens a connection to the server and authenticates itself to the satisfaction of the server. (This might
involve a single message, or multiple messages depending on the authentication method being used.)
If all goes well, the server then sends status information to the frontend, and finally enters normal
operation. Except for the initial startup-request message, this part of the protocol is driven by the server.

During normal operation, the frontend sends queries and other commands to the backend, and the
backend sends back query results and other responses. There are a few cases (such as NOTIFY) wherein
the backend will send unsolicited messages, but for the most part this portion of a session is driven by
frontend requests.

Termination of the session is normally by frontend choice, but can be forced by the backend in certain
cases. In any case, when the backend closes the connection, it will roll back any open (incomplete)
transaction before exiting.

Within normal operation, SQL commands can be executed through either of two sub-protocols. In the
“simple query” protocol, the frontend just sends a textual query string, which is parsed and immediately
executed by the backend. In the “extended query” protocol, processing of queries is separated into mul-
tiple steps: parsing, binding of parameter values, and execution. This offers flexibility and performance
benefits, at the cost of extra complexity.

Normal operation has additional sub-protocols for special operations such as COPY.

54.1.1. Messaging Overview
All communication is through a stream of messages. The first byte of a message identifies the message
type, and the next four bytes specify the length of the rest of the message (this length count includes
itself, but not the message-type byte). The remaining contents of the message are determined by the
message type. For historical reasons, the very first message sent by the client (the startup message) has
no initial message-type byte.

To avoid losing synchronization with the message stream, both servers and clients typically read an
entire message into a buffer (using the byte count) before attempting to process its contents. This allows
easy recovery if an error is detected while processing the contents. In extreme situations (such as not
having enough memory to buffer the message), the receiver can use the byte count to determine how
much input to skip before it resumes reading messages.

Conversely, both servers and clients must take care never to send an incomplete message. This is com-
monly done by marshaling the entire message in a buffer before beginning to send it. If a communica-
tions failure occurs partway through sending or receiving a message, the only sensible response is to
abandon the connection, since there is little hope of recovering message-boundary synchronization.

2184

Frontend/Backend Protocol

54.1.2. Extended Query Overview
In the extended-query protocol, execution of SQL commands is divided into multiple steps. The state
retained between steps is represented by two types of objects: prepared statements and portals. A pre-
pared statement represents the result of parsing and semantic analysis of a textual query string. A pre-
pared statement is not in itself ready to execute, because it might lack specific values for parameters.
A portal represents a ready-to-execute or already-partially-executed statement, with any missing para-
meter values filled in. (For SELECT statements, a portal is equivalent to an open cursor, but we choose
to use a different term since cursors don't handle non-SELECT statements.)

The overall execution cycle consists of a parse step, which creates a prepared statement from a textual
query string; a bind step, which creates a portal given a prepared statement and values for any needed
parameters; and an execute step that runs a portal's query. In the case of a query that returns rows
(SELECT, SHOW, etc.), the execute step can be told to fetch only a limited number of rows, so that multiple
execute steps might be needed to complete the operation.

The backend can keep track of multiple prepared statements and portals (but note that these exist only
within a session, and are never shared across sessions). Existing prepared statements and portals are
referenced by names assigned when they were created. In addition, an “unnamed” prepared statement
and portal exist. Although these behave largely the same as named objects, operations on them are
optimized for the case of executing a query only once and then discarding it, whereas operations on
named objects are optimized on the expectation of multiple uses.

54.1.3. Formats and Format Codes
Data of a particular data type might be transmitted in any of several different formats. As of PostgreSQL
7.4 the only supported formats are “text” and “binary”, but the protocol makes provision for future
extensions. The desired format for any value is specified by a format code. Clients can specify a format
code for each transmitted parameter value and for each column of a query result. Text has format code
zero, binary has format code one, and all other format codes are reserved for future definition.

The text representation of values is whatever strings are produced and accepted by the input/output
conversion functions for the particular data type. In the transmitted representation, there is no trailing
null character; the frontend must add one to received values if it wants to process them as C strings.
(The text format does not allow embedded nulls, by the way.)

Binary representations for integers use network byte order (most significant byte first). For other data
types consult the documentation or source code to learn about the binary representation. Keep in mind
that binary representations for complex data types might change across server versions; the text format
is usually the more portable choice.

54.1.4. Protocol Versions
The current, latest version of the protocol is version 3.2. However, for backwards compatibility with old
server versions and middleware that don't support the version negotiation yet, libpq still uses protocol
version 3.0 by default.

A single server can support multiple protocol versions. The initial startup-request message tells the
server which protocol version the client is attempting to use. If the major version requested by the client
is not supported by the server, the connection will be rejected (for example, this would occur if the client
requested protocol version 4.0, which does not exist as of this writing). If the minor version requested
by the client is not supported by the server (e.g., the client requests version 3.2, but the server supports
only 3.0), the server may either reject the connection or may respond with a NegotiateProtocolVersion
message containing the highest minor protocol version which it supports. The client may then choose
either to continue with the connection using the specified protocol version or to abort the connection.

The protocol negotiation was introduced in PostgreSQL version 9.3.21. Earlier versions would reject the
connection if the client requested a minor version that was not supported by the server.

Table 54.1 shows the currently supported protocol versions.

2185

Frontend/Backend Protocol

Table 54.1. Protocol Versions

Version Supported by Description
3.2 PostgreSQL 18 and later Current latest version. The se-

cret key used in query cancella-
tion was enlarged from 4 bytes
to a variable length field. The
BackendKeyData message was
changed to accommodate that,
and the CancelRequest message
was redefined to have a variable
length payload.

3.1 - Reserved. Version 3.1 has not
been used by any PostgreSQL
version, but it was skipped be-
cause old versions of the popular
pgbouncer application had a bug
in the protocol negotiation which
made it incorrectly claim that it
supported version 3.1.

3.0 PostgreSQL 7.4 and later
2.0 up to PostgreSQL 13 See previous releases of the

PostgreSQL documentation for
details

54.2. Message Flow
This section describes the message flow and the semantics of each message type. (Details of the ex-
act representation of each message appear in Section 54.7.) There are several different sub-protocols
depending on the state of the connection: start-up, query, function call, COPY, and termination. There
are also special provisions for asynchronous operations (including notification responses and command
cancellation), which can occur at any time after the start-up phase.

54.2.1. Start-up
To begin a session, a frontend opens a connection to the server and sends a startup message. This mes-
sage includes the names of the user and of the database the user wants to connect to; it also identifies the
particular protocol version to be used. (Optionally, the startup message can include additional settings
for run-time parameters.) The server then uses this information and the contents of its configuration
files (such as pg_hba.conf) to determine whether the connection is provisionally acceptable, and what
additional authentication is required (if any).

The server then sends an appropriate authentication request message, to which the frontend must reply
with an appropriate authentication response message (such as a password). For all authentication meth-
ods except GSSAPI, SSPI and SASL, there is at most one request and one response. In some methods,
no response at all is needed from the frontend, and so no authentication request occurs. For GSSAPI,
SSPI and SASL, multiple exchanges of packets may be needed to complete the authentication.

The authentication cycle ends with the server either rejecting the connection attempt (ErrorResponse),
or sending AuthenticationOk.

The possible messages from the server in this phase are:
ErrorResponse

The connection attempt has been rejected. The server then immediately closes the connection.

AuthenticationOk
The authentication exchange is successfully completed.

2186

Frontend/Backend Protocol

AuthenticationKerberosV5
The frontend must now take part in a Kerberos V5 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an Au-
thenticationOk, otherwise it responds with an ErrorResponse. This is no longer supported.

AuthenticationCleartextPassword
The frontend must now send a PasswordMessage containing the password in clear-text form. If this
is the correct password, the server responds with an AuthenticationOk, otherwise it responds with
an ErrorResponse.

AuthenticationMD5Password
The frontend must now send a PasswordMessage containing the password (with user name) en-
crypted via MD5, then encrypted again using the 4-byte random salt specified in the Authentica-
tionMD5Password message. If this is the correct password, the server responds with an Authentica-
tionOk, otherwise it responds with an ErrorResponse. The actual PasswordMessage can be comput-
ed in SQL as concat('md5', md5(concat(md5(concat(password, username)), random-salt))).
(Keep in mind the md5() function returns its result as a hex string.)

Warning
Support for MD5-encrypted passwords is deprecated and will be removed in a future release
of PostgreSQL. Refer to Section 20.5 for details about migrating to another password type.

AuthenticationGSS
The frontend must now initiate a GSSAPI negotiation. The frontend will send a GSSResponse message
with the first part of the GSSAPI data stream in response to this. If further messages are needed,
the server will respond with AuthenticationGSSContinue.

AuthenticationSSPI
The frontend must now initiate an SSPI negotiation. The frontend will send a GSSResponse with the
first part of the SSPI data stream in response to this. If further messages are needed, the server will
respond with AuthenticationGSSContinue.

AuthenticationGSSContinue
This message contains the response data from the previous step of GSSAPI or SSPI negotiation (Au-
thenticationGSS, AuthenticationSSPI or a previous AuthenticationGSSContinue). If the GSSAPI or
SSPI data in this message indicates more data is needed to complete the authentication, the frontend
must send that data as another GSSResponse message. If GSSAPI or SSPI authentication is complet-
ed by this message, the server will next send AuthenticationOk to indicate successful authentication
or ErrorResponse to indicate failure.

AuthenticationSASL
The frontend must now initiate a SASL negotiation, using one of the SASL mechanisms listed in the
message. The frontend will send a SASLInitialResponse with the name of the selected mechanism,
and the first part of the SASL data stream in response to this. If further messages are needed, the
server will respond with AuthenticationSASLContinue. See Section 54.3 for details.

AuthenticationSASLContinue
This message contains challenge data from the previous step of SASL negotiation (Authentica-
tionSASL, or a previous AuthenticationSASLContinue). The frontend must respond with a SASLRe-
sponse message.

AuthenticationSASLFinal
SASL authentication has completed with additional mechanism-specific data for the client. The serv-
er will next send AuthenticationOk to indicate successful authentication, or an ErrorResponse to

2187

Frontend/Backend Protocol

indicate failure. This message is sent only if the SASL mechanism specifies additional data to be sent
from server to client at completion.

NegotiateProtocolVersion

The server does not support the minor protocol version requested by the client, but does support
an earlier version of the protocol; this message indicates the highest supported minor version. This
message will also be sent if the client requested unsupported protocol options (i.e., beginning with
pq.) in the startup packet.

After this message, the authentication will continue using the version indicated by the server. If the
client does not support the older version, it should immediately close the connection. If the server
does not send this message, it supports the client's requested protocol version and all the protocol
options.

If the frontend does not support the authentication method requested by the server, then it should
immediately close the connection.

After having received AuthenticationOk, the frontend must wait for further messages from the server.
In this phase a backend process is being started, and the frontend is just an interested bystander. It
is still possible for the startup attempt to fail (ErrorResponse) or the server to decline support for the
requested minor protocol version (NegotiateProtocolVersion), but in the normal case the backend will
send some ParameterStatus messages, BackendKeyData, and finally ReadyForQuery.

During this phase the backend will attempt to apply any additional run-time parameter settings that
were given in the startup message. If successful, these values become session defaults. An error causes
ErrorResponse and exit.

The possible messages from the backend in this phase are:

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to issue
cancel requests later. The frontend should not respond to this message, but should continue listening
for a ReadyForQuery message.

The PostgreSQL server will always send this message, but some third party backend implementations
of the protocol that don't support query cancellation are known not to.

ParameterStatus

This message informs the frontend about the current (initial) setting of backend parameters, such
as client_encoding or DateStyle. The frontend can ignore this message, or record the settings for its
future use; see Section 54.2.7 for more details. The frontend should not respond to this message, but
should continue listening for a ReadyForQuery message.

ReadyForQuery

Start-up is completed. The frontend can now issue commands.

ErrorResponse

Start-up failed. The connection is closed after sending this message.

NoticeResponse

A warning message has been issued. The frontend should display the message but continue listening
for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each command cycle.
Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting
a command cycle, or to consider ReadyForQuery as ending the start-up phase and each subsequent
command cycle.

2188

Frontend/Backend Protocol

54.2.2. Simple Query
A simple query cycle is initiated by the frontend sending a Query message to the backend. The message
includes an SQL command (or commands) expressed as a text string. The backend then sends one or
more response messages depending on the contents of the query command string, and finally a Ready-
ForQuery response message. ReadyForQuery informs the frontend that it can safely send a new com-
mand. (It is not actually necessary for the frontend to wait for ReadyForQuery before issuing another
command, but the frontend must then take responsibility for figuring out what happens if the earlier
command fails and already-issued later commands succeed.)

The possible response messages from the backend are:
CommandComplete

An SQL command completed normally.

CopyInResponse
The backend is ready to copy data from the frontend to a table; see Section 54.2.6.

CopyOutResponse
The backend is ready to copy data from a table to the frontend; see Section 54.2.6.

RowDescription

Indicates that rows are about to be returned in response to a SELECT, FETCH, etc. query. The contents
of this message describe the column layout of the rows. This will be followed by a DataRow message
for each row being returned to the frontend.

DataRow

One of the set of rows returned by a SELECT, FETCH, etc. query.

EmptyQueryResponse
An empty query string was recognized.

ErrorResponse
An error has occurred.

ReadyForQuery
Processing of the query string is complete. A separate message is sent to indicate this because the
query string might contain multiple SQL commands. (CommandComplete marks the end of process-
ing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether process-
ing terminates successfully or with an error.

NoticeResponse
A warning message has been issued in relation to the query. Notices are in addition to other respons-
es, i.e., the backend will continue processing the command.

The response to a SELECT query (or other queries that return row sets, such as EXPLAIN or SHOW) normally
consists of RowDescription, zero or more DataRow messages, and then CommandComplete. COPY to or
from the frontend invokes special protocol as described in Section 54.2.6. All other query types normally
produce only a CommandComplete message.

Since a query string could contain several queries (separated by semicolons), there might be several
such response sequences before the backend finishes processing the query string. ReadyForQuery is
issued when the entire string has been processed and the backend is ready to accept a new query string.

If a completely empty (no contents other than whitespace) query string is received, the response is
EmptyQueryResponse followed by ReadyForQuery.

2189

Frontend/Backend Protocol

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing of
the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this might
occur partway through the sequence of messages generated by an individual query.

In simple Query mode, the format of retrieved values is always text, except when the given command is
a FETCH from a cursor declared with the BINARY option. In that case, the retrieved values are in binary
format. The format codes given in the RowDescription message tell which format is being used.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message. See also Section 54.2.7 concerning messages that the backend
might generate due to outside events.

Recommended practice is to code frontends in a state-machine style that will accept any message type
at any time that it could make sense, rather than wiring in assumptions about the exact sequence of
messages.

54.2.2.1. Multiple Statements in a Simple Query
When a simple Query message contains more than one SQL statement (separated by semicolons), those
statements are executed as a single transaction, unless explicit transaction control commands are in-
cluded to force a different behavior. For example, if the message contains
INSERT INTO mytable VALUES(1);
SELECT 1/0;
INSERT INTO mytable VALUES(2);

then the divide-by-zero failure in the SELECT will force rollback of the first INSERT. Furthermore, because
execution of the message is abandoned at the first error, the second INSERT is never attempted at all.

If instead the message contains
BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELECT 1/0;

then the first INSERT is committed by the explicit COMMIT command. The second INSERT and the SELECT
are still treated as a single transaction, so that the divide-by-zero failure will roll back the second INSERT,
but not the first one.

This behavior is implemented by running the statements in a multi-statement Query message in an
implicit transaction block unless there is some explicit transaction block for them to run in. The main
difference between an implicit transaction block and a regular one is that an implicit block is closed
automatically at the end of the Query message, either by an implicit commit if there was no error, or an
implicit rollback if there was an error. This is similar to the implicit commit or rollback that happens for
a statement executed by itself (when not in a transaction block).

If the session is already in a transaction block, as a result of a BEGIN in some previous message, then the
Query message simply continues that transaction block, whether the message contains one statement or
several. However, if the Query message contains a COMMIT or ROLLBACK closing the existing transaction
block, then any following statements are executed in an implicit transaction block. Conversely, if a BEGIN
appears in a multi-statement Query message, then it starts a regular transaction block that will only be
terminated by an explicit COMMIT or ROLLBACK, whether that appears in this Query message or a later
one. If the BEGIN follows some statements that were executed as an implicit transaction block, those
statements are not immediately committed; in effect, they are retroactively included into the new regular
transaction block.

A COMMIT or ROLLBACK appearing in an implicit transaction block is executed as normal, closing the
implicit block; however, a warning will be issued since a COMMIT or ROLLBACK without a previous BEGIN
might represent a mistake. If more statements follow, a new implicit transaction block will be started
for them.

2190

Frontend/Backend Protocol

Savepoints are not allowed in an implicit transaction block, since they would conflict with the behavior
of automatically closing the block upon any error.

Remember that, regardless of any transaction control commands that may be present, execution of the
Query message stops at the first error. Thus for example given

BEGIN;
SELECT 1/0;
ROLLBACK;

in a single Query message, the session will be left inside a failed regular transaction block, since the
ROLLBACK is not reached after the divide-by-zero error. Another ROLLBACK will be needed to restore the
session to a usable state.

Another behavior of note is that initial lexical and syntactic analysis is done on the entire query string
before any of it is executed. Thus simple errors (such as a misspelled keyword) in later statements
can prevent execution of any of the statements. This is normally invisible to users since the statements
would all roll back anyway when done as an implicit transaction block. However, it can be visible when
attempting to do multiple transactions within a multi-statement Query. For instance, if a typo turned
our previous example into

BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELCT 1/0;

then none of the statements would get run, resulting in the visible difference that the first INSERT is not
committed. Errors detected at semantic analysis or later, such as a misspelled table or column name,
do not have this effect.

Lastly, note that all the statements within the Query message will observe the same value of statemen-
t_timestamp(), since that timestamp is updated only upon receipt of the Query message. This will result
in them all observing the same value of transaction_timestamp() as well, except in cases where the
query string ends a previously-started transaction and begins a new one.

54.2.3. Extended Query
The extended query protocol breaks down the above-described simple query protocol into multiple steps.
The results of preparatory steps can be re-used multiple times for improved efficiency. Furthermore,
additional features are available, such as the possibility of supplying data values as separate parameters
instead of having to insert them directly into a query string.

In the extended protocol, the frontend first sends a Parse message, which contains a textual query string,
optionally some information about data types of parameter placeholders, and the name of a destination
prepared-statement object (an empty string selects the unnamed prepared statement). The response is
either ParseComplete or ErrorResponse. Parameter data types can be specified by OID; if not given, the
parser attempts to infer the data types in the same way as it would do for untyped literal string constants.

Note
A parameter data type can be left unspecified by setting it to zero, or by making the array of
parameter type OIDs shorter than the number of parameter symbols ($n) used in the query string.
Another special case is that a parameter's type can be specified as void (that is, the OID of the
void pseudo-type). This is meant to allow parameter symbols to be used for function parameters
that are actually OUT parameters. Ordinarily there is no context in which a void parameter could
be used, but if such a parameter symbol appears in a function's parameter list, it is effectively
ignored. For example, a function call such as foo($1,$2,$3,$4) could match a function with two
IN and two OUT arguments, if $3 and $4 are specified as having type void.

2191

Frontend/Backend Protocol

Note
The query string contained in a Parse message cannot include more than one SQL statement;
else a syntax error is reported. This restriction does not exist in the simple-query protocol, but it
does exist in the extended protocol, because allowing prepared statements or portals to contain
multiple commands would complicate the protocol unduly.

If successfully created, a named prepared-statement object lasts till the end of the current session,
unless explicitly destroyed. An unnamed prepared statement lasts only until the next Parse statement
specifying the unnamed statement as destination is issued. (Note that a simple Query message also
destroys the unnamed statement.) Named prepared statements must be explicitly closed before they
can be redefined by another Parse message, but this is not required for the unnamed statement. Named
prepared statements can also be created and accessed at the SQL command level, using PREPARE and
EXECUTE.

Once a prepared statement exists, it can be readied for execution using a Bind message. The Bind mes-
sage gives the name of the source prepared statement (empty string denotes the unnamed prepared
statement), the name of the destination portal (empty string denotes the unnamed portal), and the val-
ues to use for any parameter placeholders present in the prepared statement. The supplied parameter
set must match those needed by the prepared statement. (If you declared any void parameters in the
Parse message, pass NULL values for them in the Bind message.) Bind also specifies the format to use
for any data returned by the query; the format can be specified overall, or per-column. The response is
either BindComplete or ErrorResponse.

Note
The choice between text and binary output is determined by the format codes given in Bind, re-
gardless of the SQL command involved. The BINARY attribute in cursor declarations is irrelevant
when using extended query protocol.

Query planning typically occurs when the Bind message is processed. If the prepared statement has
no parameters, or is executed repeatedly, the server might save the created plan and re-use it during
subsequent Bind messages for the same prepared statement. However, it will do so only if it finds that
a generic plan can be created that is not much less efficient than a plan that depends on the specific
parameter values supplied. This happens transparently so far as the protocol is concerned.

If successfully created, a named portal object lasts till the end of the current transaction, unless explicitly
destroyed. An unnamed portal is destroyed at the end of the transaction, or as soon as the next Bind
statement specifying the unnamed portal as destination is issued. (Note that a simple Query message
also destroys the unnamed portal.) Named portals must be explicitly closed before they can be redefined
by another Bind message, but this is not required for the unnamed portal. Named portals can also be
created and accessed at the SQL command level, using DECLARE CURSOR and FETCH.

Once a portal exists, it can be executed using an Execute message. The Execute message specifies the
portal name (empty string denotes the unnamed portal) and a maximum result-row count (zero meaning
“fetch all rows”). The result-row count is only meaningful for portals containing commands that return
row sets; in other cases the command is always executed to completion, and the row count is ignored.
The possible responses to Execute are the same as those described above for queries issued via simple
query protocol, except that Execute doesn't cause ReadyForQuery or RowDescription to be issued.

If Execute terminates before completing the execution of a portal (due to reaching a nonzero result-row
count), it will send a PortalSuspended message; the appearance of this message tells the frontend that
another Execute should be issued against the same portal to complete the operation. The Command-
Complete message indicating completion of the source SQL command is not sent until the portal's exe-
cution is completed. Therefore, an Execute phase is always terminated by the appearance of exactly one

2192

Frontend/Backend Protocol

of these messages: CommandComplete, EmptyQueryResponse (if the portal was created from an empty
query string), ErrorResponse, or PortalSuspended.

At completion of each series of extended-query messages, the frontend should issue a Sync message.
This parameterless message causes the backend to close the current transaction if it's not inside a
BEGIN/COMMIT transaction block (“close” meaning to commit if no error, or roll back if error). Then a
ReadyForQuery response is issued. The purpose of Sync is to provide a resynchronization point for error
recovery. When an error is detected while processing any extended-query message, the backend issues
ErrorResponse, then reads and discards messages until a Sync is reached, then issues ReadyForQuery
and returns to normal message processing. (But note that no skipping occurs if an error is detected
while processing Sync — this ensures that there is one and only one ReadyForQuery sent for each Sync.)

Note
Sync does not cause a transaction block opened with BEGIN to be closed. It is possible to detect
this situation since the ReadyForQuery message includes transaction status information.

In addition to these fundamental, required operations, there are several optional operations that can be
used with extended-query protocol.

The Describe message (portal variant) specifies the name of an existing portal (or an empty string for the
unnamed portal). The response is a RowDescription message describing the rows that will be returned
by executing the portal; or a NoData message if the portal does not contain a query that will return
rows; or ErrorResponse if there is no such portal.

The Describe message (statement variant) specifies the name of an existing prepared statement (or an
empty string for the unnamed prepared statement). The response is a ParameterDescription message
describing the parameters needed by the statement, followed by a RowDescription message describing
the rows that will be returned when the statement is eventually executed (or a NoData message if the
statement will not return rows). ErrorResponse is issued if there is no such prepared statement. Note
that since Bind has not yet been issued, the formats to be used for returned columns are not yet known
to the backend; the format code fields in the RowDescription message will be zeroes in this case.

Tip
In most scenarios the frontend should issue one or the other variant of Describe before issuing
Execute, to ensure that it knows how to interpret the results it will get back.

The Close message closes an existing prepared statement or portal and releases resources. It is not an
error to issue Close against a nonexistent statement or portal name. The response is normally CloseC-
omplete, but could be ErrorResponse if some difficulty is encountered while releasing resources. Note
that closing a prepared statement implicitly closes any open portals that were constructed from that
statement.

The Flush message does not cause any specific output to be generated, but forces the backend to deliver
any data pending in its output buffers. A Flush must be sent after any extended-query command except
Sync, if the frontend wishes to examine the results of that command before issuing more commands.
Without Flush, messages returned by the backend will be combined into the minimum possible number
of packets to minimize network overhead.

Note
The simple Query message is approximately equivalent to the series Parse, Bind, portal Describe,
Execute, Close, Sync, using the unnamed prepared statement and portal objects and no parame-
ters. One difference is that it will accept multiple SQL statements in the query string, automatical-

2193

Frontend/Backend Protocol

ly performing the bind/describe/execute sequence for each one in succession. Another difference
is that it will not return ParseComplete, BindComplete, CloseComplete, or NoData messages.

54.2.4. Pipelining
Use of the extended query protocol allows pipelining, which means sending a series of queries without
waiting for earlier ones to complete. This reduces the number of network round trips needed to complete
a given series of operations. However, the user must carefully consider the required behavior if one of
the steps fails, since later queries will already be in flight to the server.

One way to deal with that is to make the whole query series be a single transaction, that is wrap it
in BEGIN ... COMMIT. However, this does not help if one wishes for some of the commands to commit
independently of others.

The extended query protocol provides another way to manage this concern, which is to omit sending
Sync messages between steps that are dependent. Since, after an error, the backend will skip command
messages until it finds Sync, this allows later commands in a pipeline to be skipped automatically when
an earlier one fails, without the client having to manage that explicitly with BEGIN and COMMIT. Indepen-
dently-committable segments of the pipeline can be separated by Sync messages.

If the client has not issued an explicit BEGIN, then an implicit transaction block is started and each Sync
ordinarily causes an implicit COMMIT if the preceding step(s) succeeded, or an implicit ROLLBACK if they
failed. This implicit transaction block will only be detected by the server when the first command ends
without a sync. There are a few DDL commands (such as CREATE DATABASE) that cannot be executed
inside a transaction block. If one of these is executed in a pipeline, it will fail unless it is the first com-
mand after a Sync. Furthermore, upon success it will force an immediate commit to preserve database
consistency. Thus a Sync immediately following one of these commands has no effect except to respond
with ReadyForQuery.

When using this method, completion of the pipeline must be determined by counting ReadyForQuery
messages and waiting for that to reach the number of Syncs sent. Counting command completion re-
sponses is unreliable, since some of the commands may be skipped and thus not produce a completion
message.

54.2.5. Function Call
The Function Call sub-protocol allows the client to request a direct call of any function that exists in the
database's pg_proc system catalog. The client must have execute permission for the function.

Note
The Function Call sub-protocol is a legacy feature that is probably best avoided in new code.
Similar results can be accomplished by setting up a prepared statement that does SELECT func-
tion($1, ...). The Function Call cycle can then be replaced with Bind/Execute.

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send
a new query or function call.

The possible response messages from the backend are:
ErrorResponse

An error has occurred.

FunctionCallResponse
The function call was completed and returned the result given in the message. (Note that the Function
Call protocol can only handle a single scalar result, not a row type or set of results.)

2194

Frontend/Backend Protocol

ReadyForQuery
Processing of the function call is complete. ReadyForQuery will always be sent, whether processing
terminates successfully or with an error.

NoticeResponse
A warning message has been issued in relation to the function call. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

54.2.6. COPY Operations
The COPY command allows high-speed bulk data transfer to or from the server. Copy-in and copy-out
operations each switch the connection into a distinct sub-protocol, which lasts until the operation is
completed.

Copy-in mode (data transfer to the server) is initiated when the backend executes a COPY FROM STDIN
SQL statement. The backend sends a CopyInResponse message to the frontend. The frontend should then
send zero or more CopyData messages, forming a stream of input data. (The message boundaries are not
required to have anything to do with row boundaries, although that is often a reasonable choice.) The
frontend can terminate the copy-in mode by sending either a CopyDone message (allowing successful
termination) or a CopyFail message (which will cause the COPY SQL statement to fail with an error). The
backend then reverts to the command-processing mode it was in before the COPY started, which will be
either simple or extended query protocol. It will next send either CommandComplete (if successful) or
ErrorResponse (if not).

In the event of a backend-detected error during copy-in mode (including receipt of a CopyFail mes-
sage), the backend will issue an ErrorResponse message. If the COPY command was issued via an extend-
ed-query message, the backend will now discard frontend messages until a Sync message is received,
then it will issue ReadyForQuery and return to normal processing. If the COPY command was issued in
a simple Query message, the rest of that message is discarded and ReadyForQuery is issued. In either
case, any subsequent CopyData, CopyDone, or CopyFail messages issued by the frontend will simply
be dropped.

The backend will ignore Flush and Sync messages received during copy-in mode. Receipt of any other
non-copy message type constitutes an error that will abort the copy-in state as described above. (The
exception for Flush and Sync is for the convenience of client libraries that always send Flush or Sync
after an Execute message, without checking whether the command to be executed is a COPY FROM STDIN.)

Copy-out mode (data transfer from the server) is initiated when the backend executes a COPY TO STDOUT
SQL statement. The backend sends a CopyOutResponse message to the frontend, followed by zero or
more CopyData messages (always one per row), followed by CopyDone. The backend then reverts to
the command-processing mode it was in before the COPY started, and sends CommandComplete. The
frontend cannot abort the transfer (except by closing the connection or issuing a Cancel request), but
it can discard unwanted CopyData and CopyDone messages.

In the event of a backend-detected error during copy-out mode, the backend will issue an ErrorResponse
message and revert to normal processing. The frontend should treat receipt of ErrorResponse as termi-
nating the copy-out mode.

It is possible for NoticeResponse and ParameterStatus messages to be interspersed between CopyData
messages; frontends must handle these cases, and should be prepared for other asynchronous message
types as well (see Section 54.2.7). Otherwise, any message type other than CopyData or CopyDone may
be treated as terminating copy-out mode.

There is another Copy-related mode called copy-both, which allows high-speed bulk data transfer to and
from the server. Copy-both mode is initiated when a backend in walsender mode executes a START_RE-
PLICATION statement. The backend sends a CopyBothResponse message to the frontend. Both the back-
end and the frontend may then send CopyData messages until either end sends a CopyDone message.
After the client sends a CopyDone message, the connection goes from copy-both mode to copy-out mode,
and the client may not send any more CopyData messages. Similarly, when the server sends a CopyDone

2195

Frontend/Backend Protocol

message, the connection goes into copy-in mode, and the server may not send any more CopyData mes-
sages. After both sides have sent a CopyDone message, the copy mode is terminated, and the backend
reverts to the command-processing mode. In the event of a backend-detected error during copy-both
mode, the backend will issue an ErrorResponse message, discard frontend messages until a Sync mes-
sage is received, and then issue ReadyForQuery and return to normal processing. The frontend should
treat receipt of ErrorResponse as terminating the copy in both directions; no CopyDone should be sent
in this case. See Section 54.4 for more information on the subprotocol transmitted over copy-both mode.

The CopyInResponse, CopyOutResponse and CopyBothResponse messages include fields that inform
the frontend of the number of columns per row and the format codes being used for each column. (As
of the present implementation, all columns in a given COPY operation will use the same format, but the
message design does not assume this.)

54.2.7. Asynchronous Operations
There are several cases in which the backend will send messages that are not specifically prompted by
the frontend's command stream. Frontends must be prepared to deal with these messages at any time,
even when not engaged in a query. At minimum, one should check for these cases before beginning to
read a query response.

It is possible for NoticeResponse messages to be generated due to outside activity; for example, if the
database administrator commands a “fast” database shutdown, the backend will send a NoticeResponse
indicating this fact before closing the connection. Accordingly, frontends should always be prepared to
accept and display NoticeResponse messages, even when the connection is nominally idle.

ParameterStatus messages will be generated whenever the active value changes for any of the parame-
ters the backend believes the frontend should know about. Most commonly this occurs in response to
a SET SQL command executed by the frontend, and this case is effectively synchronous — but it is also
possible for parameter status changes to occur because the administrator changed a configuration file
and then sent the SIGHUP signal to the server. Also, if a SET command is rolled back, an appropriate
ParameterStatus message will be generated to report the current effective value.

At present there is a hard-wired set of parameters for which ParameterStatus will be generated. They
are:

application_name scram_iterations
client_encoding search_path
DateStyle server_encoding
default_transaction_read_only server_version
in_hot_standby session_authorization
integer_datetimes standard_conforming_strings
IntervalStyle TimeZone
is_superuser

(default_transaction_read_only and in_hot_standby were not reported by releases before 14;
scram_iterations was not reported by releases before 16; search_path was not reported by releases
before 18.) Note that server_version, server_encoding and integer_datetimes are pseudo-parame-
ters that cannot change after startup. This set might change in the future, or even become configurable.
Accordingly, a frontend should simply ignore ParameterStatus for parameters that it does not under-
stand or care about.

If a frontend issues a LISTEN command, then the backend will send a NotificationResponse message (not
to be confused with NoticeResponse!) whenever a NOTIFY command is executed for the same channel
name.

Note
At present, NotificationResponse can only be sent outside a transaction, and thus it will not occur
in the middle of a command-response series, though it might occur just before ReadyForQuery.

2196

Frontend/Backend Protocol

It is unwise to design frontend logic that assumes that, however. Good practice is to be able to
accept NotificationResponse at any point in the protocol.

54.2.8. Canceling Requests in Progress
During the processing of a query, the frontend might request cancellation of the query. The cancel re-
quest is not sent directly on the open connection to the backend for reasons of implementation efficiency:
we don't want to have the backend constantly checking for new input from the frontend during query
processing. Cancel requests should be relatively infrequent, so we make them slightly cumbersome in
order to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a CancelRequest
message, rather than the StartupMessage message that would ordinarily be sent across a new connec-
tion. The server will process this request and then close the connection. For security reasons, no direct
reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key)
passed to the frontend during connection start-up. If the request matches the PID and secret key for a
currently executing backend, the processing of the current query is aborted. (In the existing implemen-
tation, this is done by sending a special signal to the backend process that is processing the query.)

The cancellation signal might or might not have any effect — for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results in
the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way to
tell whether a cancel request has succeeded. It must continue to wait for the backend to respond to the
query. Issuing a cancel simply improves the odds that the current query will finish soon, and improves
the odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular fron-
tend/backend communication link, it is possible for the cancel request to be issued by any process, not
just the frontend whose query is to be canceled. This might provide additional flexibility when building
multiple-process applications. It also introduces a security risk, in that unauthorized persons might try
to cancel queries. The security risk is addressed by requiring a dynamically generated secret key to be
supplied in cancel requests.

54.2.9. Termination
The normal, graceful termination procedure is that the frontend sends a Terminate message and im-
mediately closes the connection. On receipt of this message, the backend closes the connection and
terminates.

In rare cases (such as an administrator-commanded database shutdown) the backend might disconnect
without any frontend request to do so. In such cases the backend will attempt to send an error or notice
message giving the reason for the disconnection before it closes the connection.

Other termination scenarios arise from various failure cases, such as core dump at one end or the other,
loss of the communications link, loss of message-boundary synchronization, etc. If either frontend or
backend sees an unexpected closure of the connection, it should clean up and terminate. The frontend
has the option of launching a new backend by recontacting the server if it doesn't want to terminate
itself. Closing the connection is also advisable if an unrecognizable message type is received, since this
probably indicates loss of message-boundary sync.

For either normal or abnormal termination, any open transaction is rolled back, not committed. One
should note however that if a frontend disconnects while a non-SELECT query is being processed, the
backend will probably finish the query before noticing the disconnection. If the query is outside any
transaction block (BEGIN ... COMMIT sequence) then its results might be committed before the disconnec-
tion is recognized.

2197

Frontend/Backend Protocol

54.2.10. SSL Session Encryption
If PostgreSQL was built with SSL support, frontend/backend communications can be encrypted using
SSL. This provides communication security in environments where attackers might be able to capture
the session traffic. For more information on encrypting PostgreSQL sessions with SSL, see Section 18.9.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather than
a StartupMessage. The server then responds with a single byte containing S or N, indicating that it is
willing or unwilling to perform SSL, respectively. The frontend might close the connection at this point if
it is dissatisfied with the response. To continue after S, perform an SSL startup handshake (not described
here, part of the SSL specification) with the server. If this is successful, continue with sending the usual
StartupMessage. In this case the StartupMessage and all subsequent data will be SSL-encrypted. To
continue after N, send the usual StartupMessage and proceed without encryption. (Alternatively, it is
permissible to issue a GSSENCRequest message after an N response to try to use GSSAPI encryption
instead of SSL.)

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the
server. The frontend should not display this error message to the user/application, since the server has
not been authenticated (CVE-2024-10977). In this case the connection must be closed, but the frontend
might choose to open a fresh connection and proceed without requesting SSL.

When SSL encryption can be performed, the server is expected to send only the single S byte and
then wait for the frontend to initiate an SSL handshake. If additional bytes are available to read at
this point, it likely means that a man-in-the-middle is attempting to perform a buffer-stuffing attack
(CVE-2021-23222). Frontends should be coded either to read exactly one byte from the socket before
turning the socket over to their SSL library, or to treat it as a protocol violation if they find they have
read additional bytes.

Likewise the server expects the client to not begin the SSL negotiation until it receives the server's single
byte response to the SSL request. If the client begins the SSL negotiation immediately without waiting
for the server response to be received it can reduce connection latency by one round-trip. However this
comes at the cost of not being able to handle the case where the server sends a negative response to
the SSL request. In that case instead of continuing with either GSSAPI or an unencrypted connection
or a protocol error the server will simply disconnect.

An initial SSLRequest can also be used in a connection that is being opened to send a CancelRequest
message.

A second alternate way to initiate SSL encryption is available. The server will recognize connections
which immediately begin SSL negotiation without any previous SSLRequest packets. Once the SSL con-
nection is established the server will expect a normal startup-request packet and continue negotiation
over the encrypted channel. In this case any other requests for encryption will be refused. This method
is not preferred for general purpose tools as it cannot negotiate the best connection encryption avail-
able or handle unencrypted connections. However it is useful for environments where both the server
and client are controlled together. In that case it avoids one round trip of latency and allows the use of
network tools that depend on standard SSL connections. When using SSL connections in this style the
client is required to use the ALPN extension defined by RFC 7301 to protect against protocol confusion
attacks. The PostgreSQL protocol is "postgresql" as registered at IANA TLS ALPN Protocol IDs registry.

While the protocol itself does not provide a way for the server to force SSL encryption, the administrator
can configure the server to reject unencrypted sessions as a byproduct of authentication checking.

54.2.11. GSSAPI Session Encryption
If PostgreSQL was built with GSSAPI support, frontend/backend communications can be encrypted us-
ing GSSAPI. This provides communication security in environments where attackers might be able to
capture the session traffic. For more information on encrypting PostgreSQL sessions with GSSAPI, see
Section 18.10.

To initiate a GSSAPI-encrypted connection, the frontend initially sends a GSSENCRequest message
rather than a StartupMessage. The server then responds with a single byte containing G or N, indi-

2198

https://www.postgresql.org/support/security/CVE-2024-10977/
https://www.postgresql.org/support/security/CVE-2021-23222/
https://tools.ietf.org/html/rfc7301
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids

Frontend/Backend Protocol

cating that it is willing or unwilling to perform GSSAPI encryption, respectively. The frontend might
close the connection at this point if it is dissatisfied with the response. To continue after G, using the
GSSAPI C bindings as discussed in RFC 2744 or equivalent, perform a GSSAPI initialization by call-
ing gss_init_sec_context() in a loop and sending the result to the server, starting with an empty
input and then with each result from the server, until it returns no output. When sending the results
of gss_init_sec_context() to the server, prepend the length of the message as a four byte integer in
network byte order. To continue after N, send the usual StartupMessage and proceed without encryption.
(Alternatively, it is permissible to issue an SSLRequest message after an N response to try to use SSL
encryption instead of GSSAPI.)

The frontend should also be prepared to handle an ErrorMessage response to GSSENCRequest from the
server. The frontend should not display this error message to the user/application, since the server has
not been authenticated (CVE-2024-10977). In this case the connection must be closed, but the frontend
might choose to open a fresh connection and proceed without requesting GSSAPI encryption.

When GSSAPI encryption can be performed, the server is expected to send only the single G byte and
then wait for the frontend to initiate a GSSAPI handshake. If additional bytes are available to read at
this point, it likely means that a man-in-the-middle is attempting to perform a buffer-stuffing attack
(CVE-2021-23222). Frontends should be coded either to read exactly one byte from the socket before
turning the socket over to their GSSAPI library, or to treat it as a protocol violation if they find they
have read additional bytes.

An initial GSSENCRequest can also be used in a connection that is being opened to send a CancelRequest
message.

Once GSSAPI encryption has been successfully established, use gss_wrap() to encrypt the usual Star-
tupMessage and all subsequent data, prepending the length of the result from gss_wrap() as a four
byte integer in network byte order to the actual encrypted payload. Note that the server will only accept
encrypted packets from the client which are less than 16kB; gss_wrap_size_limit() should be used by
the client to determine the size of the unencrypted message which will fit within this limit and larger
messages should be broken up into multiple gss_wrap() calls. Typical segments are 8kB of unencrypted
data, resulting in encrypted packets of slightly larger than 8kB but well within the 16kB maximum. The
server can be expected to not send encrypted packets of larger than 16kB to the client.

While the protocol itself does not provide a way for the server to force GSSAPI encryption, the adminis-
trator can configure the server to reject unencrypted sessions as a byproduct of authentication checking.

54.3. SASL Authentication
SASL is a framework for authentication in connection-oriented protocols. At the moment, PostgreSQL im-
plements three SASL authentication mechanisms: SCRAM-SHA-256, SCRAM-SHA-256-PLUS, and OAU-
THBEARER. More might be added in the future. The below steps illustrate how SASL authentication is
performed in general, while the next subsections give more details on particular mechanisms.

SASL Authentication Message Flow

1. To begin a SASL authentication exchange, the server sends an AuthenticationSASL message. It in-
cludes a list of SASL authentication mechanisms that the server can accept, in the server's preferred
order.

2. The client selects one of the supported mechanisms from the list, and sends a SASLInitialResponse
message to the server. The message includes the name of the selected mechanism, and an optional
Initial Client Response, if the selected mechanism uses that.

3. One or more server-challenge and client-response message will follow. Each server-challenge is sent
in an AuthenticationSASLContinue message, followed by a response from client in a SASLResponse
message. The particulars of the messages are mechanism specific.

4. Finally, when the authentication exchange is completed successfully, the server sends an optional
AuthenticationSASLFinal message, followed immediately by an AuthenticationOk message. The Au-
thenticationSASLFinal contains additional server-to-client data, whose content is particular to the

2199

https://datatracker.ietf.org/doc/html/rfc2744
https://www.postgresql.org/support/security/CVE-2024-10977/
https://www.postgresql.org/support/security/CVE-2021-23222/

Frontend/Backend Protocol

selected authentication mechanism. If the authentication mechanism doesn't use additional data
that's sent at completion, the AuthenticationSASLFinal message is not sent.

On error, the server can abort the authentication at any stage, and send an ErrorMessage.

54.3.1. SCRAM-SHA-256 Authentication
SCRAM-SHA-256, and its variant with channel binding SCRAM-SHA-256-PLUS, are password-based authen-
tication mechanisms. They are described in detail in RFC 7677 and RFC 5802.

When SCRAM-SHA-256 is used in PostgreSQL, the server will ignore the user name that the client sends
in the client-first-message. The user name that was already sent in the startup message is used
instead. PostgreSQL supports multiple character encodings, while SCRAM dictates UTF-8 to be used for
the user name, so it might be impossible to represent the PostgreSQL user name in UTF-8.

The SCRAM specification dictates that the password is also in UTF-8, and is processed with the SASLprep
algorithm. PostgreSQL, however, does not require UTF-8 to be used for the password. When a user's
password is set, it is processed with SASLprep as if it was in UTF-8, regardless of the actual encoding
used. However, if it is not a legal UTF-8 byte sequence, or it contains UTF-8 byte sequences that are
prohibited by the SASLprep algorithm, the raw password will be used without SASLprep processing,
instead of throwing an error. This allows the password to be normalized when it is in UTF-8, but still
allows a non-UTF-8 password to be used, and doesn't require the system to know which encoding the
password is in.

Channel binding is supported in PostgreSQL builds with SSL support. The SASL mechanism name for
SCRAM with channel binding is SCRAM-SHA-256-PLUS. The channel binding type used by PostgreSQL
is tls-server-end-point.

In SCRAM without channel binding, the server chooses a random number that is transmitted to the client
to be mixed with the user-supplied password in the transmitted password hash. While this prevents the
password hash from being successfully retransmitted in a later session, it does not prevent a fake server
between the real server and client from passing through the server's random value and successfully
authenticating.

SCRAM with channel binding prevents such man-in-the-middle attacks by mixing the signature of the
server's certificate into the transmitted password hash. While a fake server can retransmit the real
server's certificate, it doesn't have access to the private key matching that certificate, and therefore
cannot prove it is the owner, causing SSL connection failure.

Example
1. The server sends an AuthenticationSASL message. It includes a list of SASL authentication mecha-

nisms that the server can accept. This will be SCRAM-SHA-256-PLUS and SCRAM-SHA-256 if the server
is built with SSL support, or else just the latter.

2. The client responds by sending a SASLInitialResponse message, which indicates the chosen mech-
anism, SCRAM-SHA-256 or SCRAM-SHA-256-PLUS. (A client is free to choose either mechanism, but for
better security it should choose the channel-binding variant if it can support it.) In the Initial Client
response field, the message contains the SCRAM client-first-message. The client-first-mes-
sage also contains the channel binding type chosen by the client.

3. Server sends an AuthenticationSASLContinue message, with a SCRAM server-first-message as
the content.

4. Client sends a SASLResponse message, with SCRAM client-final-message as the content.
5. Server sends an AuthenticationSASLFinal message, with the SCRAM server-final-message, fol-

lowed immediately by an AuthenticationOk message.

54.3.2. OAUTHBEARER Authentication
OAUTHBEARER is a token-based mechanism for federated authentication. It is described in detail in RFC
7628.

2200

https://datatracker.ietf.org/doc/html/rfc7677
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc7628
https://datatracker.ietf.org/doc/html/rfc7628

Frontend/Backend Protocol

A typical exchange differs depending on whether or not the client already has a bearer token cached for
the current user. If it does not, the exchange will take place over two connections: the first "discovery"
connection to obtain OAuth metadata from the server, and the second connection to send the token after
the client has obtained it. (libpq does not currently implement a caching method as part of its builtin
flow, so it uses the two-connection exchange.)

This mechanism is client-initiated, like SCRAM. The client initial response consists of the standard "GS2"
header used by SCRAM, followed by a list of key=value pairs. The only key currently supported by
the server is auth, which contains the bearer token. OAUTHBEARER additionally specifies three optional
components of the client initial response (the authzid of the GS2 header, and the host and port keys)
which are currently ignored by the server.

OAUTHBEARER does not support channel binding, and there is no "OAUTHBEARER-PLUS" mechanism.
This mechanism does not make use of server data during a successful authentication, so the Authenti-
cationSASLFinal message is not used in the exchange.

Example

1. During the first exchange, the server sends an AuthenticationSASL message with the OAUTHBEARER
mechanism advertised.

2. The client responds by sending a SASLInitialResponse message which indicates the OAUTHBEARER
mechanism. Assuming the client does not already have a valid bearer token for the current user, the
auth field is empty, indicating a discovery connection.

3. Server sends an AuthenticationSASLContinue message containing an error status alongside a well-
known URI and scopes that the client should use to conduct an OAuth flow.

4. Client sends a SASLResponse message containing the empty set (a single 0x01 byte) to finish its
half of the discovery exchange.

5. Server sends an ErrorMessage to fail the first exchange.

At this point, the client conducts one of many possible OAuth flows to obtain a bearer token, using
any metadata that it has been configured with in addition to that provided by the server. (This de-
scription is left deliberately vague; OAUTHBEARER does not specify or mandate any particular method
for obtaining a token.)

Once it has a token, the client reconnects to the server for the final exchange:

6. The server once again sends an AuthenticationSASL message with the OAUTHBEARER mechanism
advertised.

7. The client responds by sending a SASLInitialResponse message, but this time the auth field in the
message contains the bearer token that was obtained during the client flow.

8. The server validates the token according to the instructions of the token provider. If the client is
authorized to connect, it sends an AuthenticationOk message to end the SASL exchange.

54.4. Streaming Replication Protocol
To initiate streaming replication, the frontend sends the replication parameter in the startup message.
A Boolean value of true (or on, yes, 1) tells the backend to go into physical replication walsender mode,
wherein a small set of replication commands, shown below, can be issued instead of SQL statements.

Passing database as the value for the replication parameter instructs the backend to go into logical
replication walsender mode, connecting to the database specified in the dbname parameter. In logical
replication walsender mode, the replication commands shown below as well as normal SQL commands
can be issued.

In either physical replication or logical replication walsender mode, only the simple query protocol can
be used.

2201

Frontend/Backend Protocol

For the purpose of testing replication commands, you can make a replication connection via psql or any
other libpq-using tool with a connection string including the replication option, e.g.:
psql "dbname=postgres replication=database" -c "IDENTIFY_SYSTEM;"

However, it is often more useful to use pg_receivewal (for physical replication) or pg_recvlogical (for
logical replication).

Replication commands are logged in the server log when log_replication_commands is enabled.

The commands accepted in replication mode are:
IDENTIFY_SYSTEM

Requests the server to identify itself. Server replies with a result set of a single row, containing four
fields:

systemid (text)
The unique system identifier identifying the cluster. This can be used to check that the base
backup used to initialize the standby came from the same cluster.

timeline (int8)
Current timeline ID. Also useful to check that the standby is consistent with the primary.

xlogpos (text)
Current WAL flush location. Useful to get a known location in the write-ahead log where streaming
can start.

dbname (text)
Database connected to or null.

SHOW name
Requests the server to send the current setting of a run-time parameter. This is similar to the SQL
command SHOW.

name

The name of a run-time parameter. Available parameters are documented in Chapter 19.

TIMELINE_HISTORY tli
Requests the server to send over the timeline history file for timeline tli. Server replies with a result
set of a single row, containing two fields. While the fields are labeled as text, they effectively return
raw bytes, with no encoding conversion:

filename (text)
File name of the timeline history file, e.g., 00000002.history.

content (text)
Contents of the timeline history file.

CREATE_REPLICATION_SLOT slot_name [TEMPORARY] { PHYSICAL | LOGICAL output_plugin } [(option
[, ...])]

Create a physical or logical replication slot. See Section 26.2.6 for more about replication slots.

slot_name

The name of the slot to create. Must be a valid replication slot name (see Section 26.2.6.1).

output_plugin

The name of the output plugin used for logical decoding (see Section 47.6).

2202

Frontend/Backend Protocol

TEMPORARY

Specify that this replication slot is a temporary one. Temporary slots are not saved to disk and
are automatically dropped on error or when the session has finished.

The following options are supported:

TWO_PHASE [boolean]

If true, this logical replication slot supports decoding of two-phase commit. With this option,
commands related to two-phase commit such as PREPARE TRANSACTION, COMMIT PREPARED and
ROLLBACK PREPARED are decoded and transmitted. The transaction will be decoded and transmit-
ted at PREPARE TRANSACTION time. The default is false.

RESERVE_WAL [boolean]

If true, this physical replication slot reserves WAL immediately. Otherwise, WAL is only reserved
upon connection from a streaming replication client. The default is false.

SNAPSHOT { 'export' | 'use' | 'nothing' }

Decides what to do with the snapshot created during logical slot initialization. 'export', which
is the default, will export the snapshot for use in other sessions. This option can't be used inside a
transaction. 'use' will use the snapshot for the current transaction executing the command. This
option must be used in a transaction, and CREATE_REPLICATION_SLOT must be the first command
run in that transaction. Finally, 'nothing' will just use the snapshot for logical decoding as
normal but won't do anything else with it.

FAILOVER [boolean]

If true, the slot is enabled to be synced to the standbys so that logical replication can be resumed
after failover. The default is false.

In response to this command, the server will send a one-row result set containing the following fields:

slot_name (text)
The name of the newly-created replication slot.

consistent_point (text)
The WAL location at which the slot became consistent. This is the earliest location from which
streaming can start on this replication slot.

snapshot_name (text)
The identifier of the snapshot exported by the command. The snapshot is valid until a new com-
mand is executed on this connection or the replication connection is closed. Null if the created
slot is physical.

output_plugin (text)
The name of the output plugin used by the newly-created replication slot. Null if the created slot
is physical.

CREATE_REPLICATION_SLOT slot_name [TEMPORARY] { PHYSICAL [RESERVE_WAL] | LOGICAL output_plu-
gin [EXPORT_SNAPSHOT | NOEXPORT_SNAPSHOT | USE_SNAPSHOT | TWO_PHASE] }

For compatibility with older releases, this alternative syntax for the CREATE_REPLICATION_SLOT com-
mand is still supported.

ALTER_REPLICATION_SLOT slot_name (option [, ...])
Change the definition of a replication slot. See Section 26.2.6 for more about replication slots. This
command is currently only supported for logical replication slots.

2203

Frontend/Backend Protocol

slot_name

The name of the slot to alter. Must be a valid replication slot name (see Section 26.2.6.1).

The following options are supported:

TWO_PHASE [boolean]

If true, this logical replication slot supports decoding of two-phase commit. With this option,
commands related to two-phase commit such as PREPARE TRANSACTION, COMMIT PREPARED and
ROLLBACK PREPARED are decoded and transmitted. The transaction will be decoded and transmit-
ted at PREPARE TRANSACTION time.

FAILOVER [boolean]

If true, the slot is enabled to be synced to the standbys so that logical replication can be resumed
after failover.

READ_REPLICATION_SLOT slot_name
Read some information associated with a replication slot. Returns a tuple with NULL values if the
replication slot does not exist. This command is currently only supported for physical replication
slots.

In response to this command, the server will return a one-row result set, containing the following
fields:
slot_type (text)

The replication slot's type, either physical or NULL.

restart_lsn (text)
The replication slot's restart_lsn.

restart_tli (int8)
The timeline ID associated with restart_lsn, following the current timeline history.

START_REPLICATION [SLOT slot_name] [PHYSICAL] XXX/XXX [TIMELINE tli]
Instructs server to start streaming WAL, starting at WAL location XXX/XXX. If TIMELINE option is
specified, streaming starts on timeline tli; otherwise, the server's current timeline is selected. The
server can reply with an error, for example if the requested section of WAL has already been recycled.
On success, the server responds with a CopyBothResponse message, and then starts to stream WAL
to the frontend.

If a slot's name is provided via slot_name, it will be updated as replication progresses so that the
server knows which WAL segments, and if hot_standby_feedback is on which transactions, are still
needed by the standby.

If the client requests a timeline that's not the latest but is part of the history of the server, the server
will stream all the WAL on that timeline starting from the requested start point up to the point where
the server switched to another timeline. If the client requests streaming at exactly the end of an old
timeline, the server skips COPY mode entirely.

After streaming all the WAL on a timeline that is not the latest one, the server will end streaming by
exiting the COPY mode. When the client acknowledges this by also exiting COPY mode, the server
sends a result set with one row and two columns, indicating the next timeline in this server's history.
The first column is the next timeline's ID (type int8), and the second column is the WAL location
where the switch happened (type text). Usually, the switch position is the end of the WAL that was
streamed, but there are corner cases where the server can send some WAL from the old timeline
that it has not itself replayed before promoting. Finally, the server sends two CommandComplete
messages (one that ends the CopyData and the other ends the START_REPLICATION itself), and is
ready to accept a new command.

2204

Frontend/Backend Protocol

WAL data is sent as a series of CopyData messages; see Section 54.6 and Section 54.7 for details.
(This allows other information to be intermixed; in particular the server can send an ErrorResponse
message if it encounters a failure after beginning to stream.) The payload of each CopyData message
from server to the client contains a message of one of the following formats:

XLogData (B)
Byte1('w')

Identifies the message as WAL data.

Int64
The starting point of the WAL data in this message.

Int64
The current end of WAL on the server.

Int64
The server's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byten
A section of the WAL data stream.

A single WAL record is never split across two XLogData messages. When a WAL record crosses
a WAL page boundary, and is therefore already split using continuation records, it can be split
at the page boundary. In other words, the first main WAL record and its continuation records
can be sent in different XLogData messages.

Primary keepalive message (B)
Byte1('k')

Identifies the message as a sender keepalive.

Int64
The current end of WAL on the server.

Int64
The server's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byte1
1 means that the client should reply to this message as soon as possible, to avoid a timeout
disconnect. 0 otherwise.

The receiving process can send replies back to the sender at any time, using one of the following
message formats (also in the payload of a CopyData message):

Standby status update (F)
Byte1('r')

Identifies the message as a receiver status update.

Int64
The location of the last WAL byte + 1 received and written to disk in the standby.

Int64
The location of the last WAL byte + 1 flushed to disk in the standby.

2205

Frontend/Backend Protocol

Int64
The location of the last WAL byte + 1 applied in the standby.

Int64
The client's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byte1
If 1, the client requests the server to reply to this message immediately. This can be used to
ping the server, to test if the connection is still healthy.

Hot standby feedback message (F)
Byte1('h')

Identifies the message as a hot standby feedback message.

Int64
The client's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Int32

The standby's current global xmin, excluding the catalog_xmin from any replication slots. If
both this value and the following catalog_xmin are 0, this is treated as a notification that
hot standby feedback will no longer be sent on this connection. Later non-zero messages may
reinitiate the feedback mechanism.

Int32

The epoch of the global xmin xid on the standby.

Int32

The lowest catalog_xmin of any replication slots on the standby. Set to 0 if no catalog_xmin
exists on the standby or if hot standby feedback is being disabled.

Int32

The epoch of the catalog_xmin xid on the standby.

START_REPLICATION SLOT slot_name LOGICAL XXX/XXX [(option_name [option_value] [, ...])]

Instructs server to start streaming WAL for logical replication, starting at either WAL location XXX/
XXX or the slot's confirmed_flush_lsn (see Section 53.20), whichever is greater. This behavior
makes it easier for clients to avoid updating their local LSN status when there is no data to process.
However, starting at a different LSN than requested might not catch certain kinds of client errors;
so the client may wish to check that confirmed_flush_lsn matches its expectations before issuing
START_REPLICATION.

The server can reply with an error, for example if the slot does not exist. On success, the server
responds with a CopyBothResponse message, and then starts to stream WAL to the frontend.

The messages inside the CopyBothResponse messages are of the same format documented for
START_REPLICATION ... PHYSICAL, including two CommandComplete messages.

The output plugin associated with the selected slot is used to process the output for streaming.

SLOT slot_name
The name of the slot to stream changes from. This parameter is required, and must correspond
to an existing logical replication slot created with CREATE_REPLICATION_SLOT in LOGICAL mode.

2206

Frontend/Backend Protocol

XXX/XXX

The WAL location to begin streaming at.

option_name

The name of an option passed to the slot's logical decoding output plugin. See Section 54.5 for
options that are accepted by the standard (pgoutput) plugin.

option_value

Optional value, in the form of a string constant, associated with the specified option.

DROP_REPLICATION_SLOT slot_name [WAIT]
Drops a replication slot, freeing any reserved server-side resources.

slot_name

The name of the slot to drop.

WAIT

This option causes the command to wait if the slot is active until it becomes inactive, instead of
the default behavior of raising an error.

UPLOAD_MANIFEST
Uploads a backup manifest in preparation for taking an incremental backup.

BASE_BACKUP [(option [, ...])]
Instructs the server to start streaming a base backup. The system will automatically be put in backup
mode before the backup is started, and taken out of it when the backup is complete. The following
options are accepted:

LABEL 'label'

Sets the label of the backup. If none is specified, a backup label of base backup will be used.
The quoting rules for the label are the same as a standard SQL string with standard_conform-
ing_strings turned on.

TARGET 'target'

Tells the server where to send the backup. If the target is client, which is the default, the backup
data is sent to the client. If it is server, the backup data is written to the server at the pathname
specified by the TARGET_DETAIL option. If it is blackhole, the backup data is not sent anywhere;
it is simply discarded.

The server target requires superuser privilege or being granted the pg_write_server_files
role.

TARGET_DETAIL 'detail'
Provides additional information about the backup target.

Currently, this option can only be used when the backup target is server. It specifies the server
directory to which the backup should be written.

PROGRESS [boolean]

If set to true, request information required to generate a progress report. This will send back an
approximate size in the header of each tablespace, which can be used to calculate how far along
the stream is done. This is calculated by enumerating all the file sizes once before the transfer
is even started, and might as such have a negative impact on the performance. In particular, it
might take longer before the first data is streamed. Since the database files can change during

2207

Frontend/Backend Protocol

the backup, the size is only approximate and might both grow and shrink between the time of
approximation and the sending of the actual files. The default is false.

CHECKPOINT { 'fast' | 'spread' }

Sets the type of checkpoint to be performed at the beginning of the base backup. The default
is spread.

WAL [boolean]

If set to true, include the necessary WAL segments in the backup. This will include all the files
between start and stop backup in the pg_wal directory of the base directory tar file. The default
is false.

WAIT [boolean]

If set to true, the backup will wait until the last required WAL segment has been archived, or
emit a warning if WAL archiving is not enabled. If false, the backup will neither wait nor warn,
leaving the client responsible for ensuring the required log is available. The default is true.

COMPRESSION 'method'
Instructs the server to compress the backup using the specified method. Currently, the supported
methods are gzip, lz4, and zstd.

COMPRESSION_DETAIL detail
Specifies details for the chosen compression method. This should only be used in conjunction
with the COMPRESSION option. If the value is an integer, it specifies the compression level. Other-
wise, it should be a comma-separated list of items, each of the form keyword or keyword=value.
Currently, the supported keywords are level, long and workers.

The level keyword sets the compression level. For gzip the compression level should be an
integer between 1 and 9 (default Z_DEFAULT_COMPRESSION or -1), for lz4 an integer between 1
and 12 (default 0 for fast compression mode), and for zstd an integer between ZSTD_minCLevel()
(usually -131072) and ZSTD_maxCLevel() (usually 22), (default ZSTD_CLEVEL_DEFAULT or 3).

The long keyword enables long-distance matching mode, for improved compression ratio, at the
expense of higher memory use. Long-distance mode is supported only for zstd.

The workers keyword sets the number of threads that should be used for parallel compression.
Parallel compression is supported only for zstd.

MAX_RATE rate
Limit (throttle) the maximum amount of data transferred from server to client per unit of time.
The expected unit is kilobytes per second. If this option is specified, the value must either be
equal to zero or it must fall within the range from 32 kB through 1 GB (inclusive). If zero is passed
or the option is not specified, no restriction is imposed on the transfer.

TABLESPACE_MAP [boolean]

If true, include information about symbolic links present in the directory pg_tblspc in a file
named tablespace_map. The tablespace map file includes each symbolic link name as it exists in
the directory pg_tblspc/ and the full path of that symbolic link. The default is false.

VERIFY_CHECKSUMS [boolean]

If true, checksums are verified during a base backup if they are enabled. If false, this is skipped.
The default is true.

MANIFEST manifest_option
When this option is specified with a value of yes or force-encode, a backup manifest is created
and sent along with the backup. The manifest is a list of every file present in the backup with the

2208

Frontend/Backend Protocol

exception of any WAL files that may be included. It also stores the size, last modification time,
and optionally a checksum for each file. A value of force-encode forces all filenames to be hex-
encoded; otherwise, this type of encoding is performed only for files whose names are non-UTF8
octet sequences. force-encode is intended primarily for testing purposes, to be sure that clients
which read the backup manifest can handle this case. For compatibility with previous releases,
the default is MANIFEST 'no'.

MANIFEST_CHECKSUMS checksum_algorithm

Specifies the checksum algorithm that should be applied to each file included in the backup man-
ifest. Currently, the available algorithms are NONE, CRC32C, SHA224, SHA256, SHA384, and SHA512.
The default is CRC32C.

INCREMENTAL

Requests an incremental backup. The UPLOAD_MANIFEST command must be executed before run-
ning a base backup with this option.

When the backup is started, the server will first send two ordinary result sets, followed by one or
more CopyOutResponse results.

The first ordinary result set contains the starting position of the backup, in a single row with two
columns. The first column contains the start position given in XLogRecPtr format, and the second
column contains the corresponding timeline ID.

The second ordinary result set has one row for each tablespace. The fields in this row are:

spcoid (oid)

The OID of the tablespace, or null if it's the base directory.

spclocation (text)

The full path of the tablespace directory, or null if it's the base directory.

size (int8)

The approximate size of the tablespace, in kilobytes (1024 bytes), if progress report has been
requested; otherwise it's null.

After the second regular result set, a CopyOutResponse will be sent. The payload of each CopyData
message will contain a message in one of the following formats:

new archive (B)

Byte1('n')

Identifies the message as indicating the start of a new archive. There will be one archive
for the main data directory and one for each additional tablespace; each will use tar format
(following the “ustar interchange format” specified in the POSIX 1003.1-2008 standard).

String

The file name for this archive.

String

For the main data directory, an empty string. For other tablespaces, the full path to the di-
rectory from which this archive was created.

manifest (B)

Byte1('m')

Identifies the message as indicating the start of the backup manifest.

2209

Frontend/Backend Protocol

archive or manifest data (B)

Byte1('d')

Identifies the message as containing archive or manifest data.

Byten

Data bytes.

progress report (B)

Byte1('p')

Identifies the message as a progress report.

Int64

The number of bytes from the current tablespace for which processing has been completed.

After the CopyOutResponse, or all such responses, have been sent, a final ordinary result set will be
sent, containing the WAL end position of the backup, in the same format as the start position.

The tar archive for the data directory and each tablespace will contain all files in the directories,
regardless of whether they are PostgreSQL files or other files added to the same directory. The only
excluded files are:

• postmaster.pid

• postmaster.opts

• pg_internal.init (found in multiple directories)
• Various temporary files and directories created during the operation of the PostgreSQL server,

such as any file or directory beginning with pgsql_tmp and temporary relations.
• Unlogged relations, except for the init fork which is required to recreate the (empty) unlogged

relation on recovery.
• pg_wal, including subdirectories. If the backup is run with WAL files included, a synthesized

version of pg_wal will be included, but it will only contain the files necessary for the backup to
work, not the rest of the contents.

• pg_dynshmem, pg_notify, pg_replslot, pg_serial, pg_snapshots, pg_stat_tmp, and pg_sub-
trans are copied as empty directories (even if they are symbolic links).

• Files other than regular files and directories, such as symbolic links (other than for the directo-
ries listed above) and special device and operating system files, are skipped. (Symbolic links in
pg_tblspc are maintained.)

Owner, group, and file mode are set if the underlying file system on the server supports it.

In all the above commands, when specifying a parameter of type boolean the value part can be omitted,
which is equivalent to specifying TRUE.

54.5. Logical Streaming Replication Protocol
This section describes the logical replication protocol, which is the message flow started by the
START_REPLICATION SLOT slot_name LOGICAL replication command.

The logical streaming replication protocol builds on the primitives of the physical streaming replication
protocol.

PostgreSQL logical decoding supports output plugins. pgoutput is the standard one used for the built-
in logical replication.

54.5.1. Logical Streaming Replication Parameters
Using the START_REPLICATION command, pgoutput accepts the following options:

2210

Frontend/Backend Protocol

proto_version

Protocol version. Currently versions 1, 2, 3, and 4 are supported. A valid version is required.

Version 2 is supported only for server version 14 and above, and it allows streaming of large in-
progress transactions.

Version 3 is supported only for server version 15 and above, and it allows streaming of two-phase
commits.

Version 4 is supported only for server version 16 and above, and it allows streams of large in-progress
transactions to be applied in parallel.

publication_names
Comma-separated list of publication names for which to subscribe (receive changes). The individual
publication names are treated as standard objects names and can be quoted the same as needed. At
least one publication name is required.

binary
Boolean option to use binary transfer mode. Binary mode is faster than the text mode but slightly
less robust.

messages

Boolean option to enable sending the messages that are written by pg_logical_emit_message.

streaming

Option to enable streaming of in-progress transactions. Valid values are off (the default), on and
parallel. The setting parallel enables sending extra information with some messages to be used
for parallelization. Minimum protocol version 2 is required to turn it on. Minimum protocol version
4 is required for the parallel value.

two_phase
Boolean option to enable two-phase transactions. Minimum protocol version 3 is required to turn
it on.

origin

Option to send changes by their origin. Possible values are none to only send the changes that have
no origin associated, or any to send the changes regardless of their origin. This can be used to avoid
loops (infinite replication of the same data) among replication nodes.

54.5.2. Logical Replication Protocol Messages
The individual protocol messages are discussed in the following subsections. Individual messages are
described in Section 54.9.

All top-level protocol messages begin with a message type byte. While represented in code as a character,
this is a signed byte with no associated encoding.

Since the streaming replication protocol supplies a message length there is no need for top-level protocol
messages to embed a length in their header.

54.5.3. Logical Replication Protocol Message Flow
With the exception of the START_REPLICATION command and the replay progress messages, all informa-
tion flows only from the backend to the frontend.

The logical replication protocol sends individual transactions one by one. This means that all messages
between a pair of Begin and Commit messages belong to the same transaction. Similarly, all messages

2211

Frontend/Backend Protocol

between a pair of Begin Prepare and Prepare messages belong to the same transaction. It also sends
changes of large in-progress transactions between a pair of Stream Start and Stream Stop messages.
The last stream of such a transaction contains a Stream Commit or Stream Abort message.

Every sent transaction contains zero or more DML messages (Insert, Update, Delete). In case of a cas-
caded setup it can also contain Origin messages. The origin message indicates that the transaction orig-
inated on different replication node. Since a replication node in the scope of logical replication protocol
can be pretty much anything, the only identifier is the origin name. It's downstream's responsibility to
handle this as needed (if needed). The Origin message is always sent before any DML messages in the
transaction.

Every DML message contains a relation OID, identifying the publisher's relation that was acted on.
Before the first DML message for a given relation OID, a Relation message will be sent, describing the
schema of that relation. Subsequently, a new Relation message will be sent if the relation's definition
has changed since the last Relation message was sent for it. (The protocol assumes that the client is
capable of remembering this metadata for as many relations as needed.)

Relation messages identify column types by their OIDs. In the case of a built-in type, it is assumed that
the client can look up that type OID locally, so no additional data is needed. For a non-built-in type OID,
a Type message will be sent before the Relation message, to provide the type name associated with that
OID. Thus, a client that needs to specifically identify the types of relation columns should cache the
contents of Type messages, and first consult that cache to see if the type OID is defined there. If not,
look up the type OID locally.

54.6. Message Data Types
This section describes the base data types used in messages.

Intn(i)

An n-bit integer in network byte order (most significant byte first). If i is specified it is the exact
value that will appear, otherwise the value is variable. Eg. Int16, Int32(42).

Intn[k]

An array of k n-bit integers, each in network byte order. The array length k is always determined by
an earlier field in the message. Eg. Int16[M].

String(s)

A null-terminated string (C-style string). There is no specific length limitation on strings. If s is spec-
ified it is the exact value that will appear, otherwise the value is variable. Eg. String, String("user").

Note
There is no predefined limit on the length of a string that can be returned by the backend.
Good coding strategy for a frontend is to use an expandable buffer so that anything that fits
in memory can be accepted. If that's not feasible, read the full string and discard trailing
characters that don't fit into your fixed-size buffer.

Byten(c)

Exactly n bytes. If the field width n is not a constant, it is always determinable from an earlier field
in the message. If c is specified it is the exact value. Eg. Byte2, Byte1('\n').

54.7. Message Formats
This section describes the detailed format of each message. Each is marked to indicate that it can be
sent by a frontend (F), a backend (B), or both (F & B). Notice that although each message includes a

2212

Frontend/Backend Protocol

byte count at the beginning, most messages are defined so that the message end can be found without
reference to the byte count. This is for historical reasons, as the original, now-obsolete protocol version
2 did not have an explicit length field. It also aids validity checking though.

AuthenticationOk (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV5 (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationCleartextPassword (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(3)

Specifies that a clear-text password is required.

AuthenticationMD5Password (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(12)

Length of message contents in bytes, including self.

Int32(5)

Specifies that an MD5-encrypted password is required.

Byte4

The salt to use when encrypting the password.

AuthenticationGSS (B)

Byte1('R')

Identifies the message as an authentication request.

2213

Frontend/Backend Protocol

Int32(8)
Length of message contents in bytes, including self.

Int32(7)
Specifies that GSSAPI authentication is required.

AuthenticationGSSContinue (B)
Byte1('R')

Identifies the message as an authentication request.

Int32
Length of message contents in bytes, including self.

Int32(8)
Specifies that this message contains GSSAPI or SSPI data.

Byten
GSSAPI or SSPI authentication data.

AuthenticationSSPI (B)
Byte1('R')

Identifies the message as an authentication request.

Int32(8)
Length of message contents in bytes, including self.

Int32(9)
Specifies that SSPI authentication is required.

AuthenticationSASL (B)
Byte1('R')

Identifies the message as an authentication request.

Int32
Length of message contents in bytes, including self.

Int32(10)
Specifies that SASL authentication is required.

The message body is a list of SASL authentication mechanisms, in the server's order of preference.
A zero byte is required as terminator after the last authentication mechanism name. For each mech-
anism, there is the following:
String

Name of a SASL authentication mechanism.

AuthenticationSASLContinue (B)
Byte1('R')

Identifies the message as an authentication request.

Int32
Length of message contents in bytes, including self.

2214

Frontend/Backend Protocol

Int32(11)
Specifies that this message contains a SASL challenge.

Byten
SASL data, specific to the SASL mechanism being used.

AuthenticationSASLFinal (B)
Byte1('R')

Identifies the message as an authentication request.

Int32
Length of message contents in bytes, including self.

Int32(12)
Specifies that SASL authentication has completed.

Byten
SASL outcome "additional data", specific to the SASL mechanism being used.

BackendKeyData (B)
Byte1('K')

Identifies the message as cancellation key data. The frontend must save these values if it wishes
to be able to issue CancelRequest messages later.

Int32
Length of message contents in bytes, including self.

Int32
The process ID of this backend.

Byten
The secret key of this backend. This field extends to the end of the message, indicated by the
length field.

The minimum and maximum key length are 4 and 256 bytes, respectively. The PostgreSQL server
only sends keys up to 32 bytes, but the larger maximum size allows for future server versions,
as well as connection poolers and other middleware, to use longer keys. One possible use case is
augmenting the server's key with extra information. Middleware is therefore also encouraged to
not use up all of the bytes, in case multiple middleware applications are layered on top of each
other, each of which may wrap the key with extra data.

Before protocol version 3.2, the secret key was always 4 bytes long.

Bind (F)
Byte1('B')

Identifies the message as a Bind command.

Int32
Length of message contents in bytes, including self.

String
The name of the destination portal (an empty string selects the unnamed portal).

2215

Frontend/Backend Protocol

String
The name of the source prepared statement (an empty string selects the unnamed prepared
statement).

Int16

The number of parameter format codes that follow (denoted C below). This can be zero to indicate
that there are no parameters or that the parameters all use the default format (text); or one,
in which case the specified format code is applied to all parameters; or it can equal the actual
number of parameters.

Int16[C]
The parameter format codes. Each must presently be zero (text) or one (binary).

Int16
The number of parameter values that follow (possibly zero). This must match the number of
parameters needed by the query.

Next, the following pair of fields appear for each parameter:

Int32
The length of the parameter value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL parameter value. No value bytes follow in the NULL case.

Byten

The value of the parameter, in the format indicated by the associated format code. n is the above
length.

After the last parameter, the following fields appear:

Int16

The number of result-column format codes that follow (denoted R below). This can be zero to
indicate that there are no result columns or that the result columns should all use the default
format (text); or one, in which case the specified format code is applied to all result columns (if
any); or it can equal the actual number of result columns of the query.

Int16[R]
The result-column format codes. Each must presently be zero (text) or one (binary).

BindComplete (B)
Byte1('2')

Identifies the message as a Bind-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

CancelRequest (F)
Int32(16)

Length of message contents in bytes, including self.

Int32(80877102)

The cancel request code. The value is chosen to contain 1234 in the most significant 16 bits, and
5678 in the least significant 16 bits. (To avoid confusion, this code must not be the same as any
protocol version number.)

2216

Frontend/Backend Protocol

Int32
The process ID of the target backend.

Byten
The secret key for the target backend. This field extends to the end of the message, indicated by
the length field. The maximum key length is 256 bytes.

Before protocol version 3.2, the secret key was always 4 bytes long.

Close (F)
Byte1('C')

Identifies the message as a Close command.

Int32
Length of message contents in bytes, including self.

Byte1

'S' to close a prepared statement; or 'P' to close a portal.

String
The name of the prepared statement or portal to close (an empty string selects the unnamed
prepared statement or portal).

CloseComplete (B)
Byte1('3')

Identifies the message as a Close-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

CommandComplete (B)
Byte1('C')

Identifies the message as a command-completed response.

Int32
Length of message contents in bytes, including self.

String
The command tag. This is usually a single word that identifies which SQL command was com-
pleted.

For an INSERT command, the tag is INSERT oid rows, where rows is the number of rows inserted.
oid used to be the object ID of the inserted row if rows was 1 and the target table had OIDs, but
OIDs system columns are not supported anymore; therefore oid is always 0.

For a DELETE command, the tag is DELETE rows where rows is the number of rows deleted.

For an UPDATE command, the tag is UPDATE rows where rows is the number of rows updated.

For a MERGE command, the tag is MERGE rows where rows is the number of rows inserted, updated,
or deleted.

For a SELECT or CREATE TABLE AS command, the tag is SELECT rows where rows is the number
of rows retrieved.

2217

Frontend/Backend Protocol

For a MOVE command, the tag is MOVE rows where rows is the number of rows the cursor's position
has been changed by.

For a FETCH command, the tag is FETCH rows where rows is the number of rows that have been
retrieved from the cursor.

For a COPY command, the tag is COPY rows where rows is the number of rows copied. (Note: the
row count appears only in PostgreSQL 8.2 and later.)

CopyData (F & B)
Byte1('d')

Identifies the message as COPY data.

Int32
Length of message contents in bytes, including self.

Byten
Data that forms part of a COPY data stream. Messages sent from the backend will always corre-
spond to single data rows, but messages sent by frontends might divide the data stream arbi-
trarily.

CopyDone (F & B)
Byte1('c')

Identifies the message as a COPY-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

CopyFail (F)
Byte1('f')

Identifies the message as a COPY-failure indicator.

Int32
Length of message contents in bytes, including self.

String
An error message to report as the cause of failure.

CopyInResponse (B)
Byte1('G')

Identifies the message as a Start Copy In response. The frontend must now send copy-in data (if
not prepared to do so, send a CopyFail message).

Int32
Length of message contents in bytes, including self.

Int8
0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc.). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16
The number of columns in the data to be copied (denoted N below).

2218

Frontend/Backend Protocol

Int16[N]
The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyOutResponse (B)
Byte1('H')

Identifies the message as a Start Copy Out response. This message will be followed by copy-out
data.

Int32
Length of message contents in bytes, including self.

Int8
0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc.). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16
The number of columns in the data to be copied (denoted N below).

Int16[N]
The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyBothResponse (B)
Byte1('W')

Identifies the message as a Start Copy Both response. This message is used only for Streaming
Replication.

Int32
Length of message contents in bytes, including self.

Int8
0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc.). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16
The number of columns in the data to be copied (denoted N below).

Int16[N]
The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

DataRow (B)
Byte1('D')

Identifies the message as a data row.

Int32
Length of message contents in bytes, including self.

Int16
The number of column values that follow (possibly zero).

2219

Frontend/Backend Protocol

Next, the following pair of fields appear for each column:

Int32
The length of the column value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL column value. No value bytes follow in the NULL case.

Byten
The value of the column, in the format indicated by the associated format code. n is the above
length.

Describe (F)
Byte1('D')

Identifies the message as a Describe command.

Int32
Length of message contents in bytes, including self.

Byte1
'S' to describe a prepared statement; or 'P' to describe a portal.

String
The name of the prepared statement or portal to describe (an empty string selects the unnamed
prepared statement or portal).

EmptyQueryResponse (B)
Byte1('I')

Identifies the message as a response to an empty query string. (This substitutes for Command-
Complete.)

Int32(4)
Length of message contents in bytes, including self.

ErrorResponse (B)
Byte1('E')

Identifies the message as an error.

Int32
Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1
A code identifying the field type; if zero, this is the message terminator and no string follows. The
presently defined field types are listed in Section 54.8. Since more field types might be added in
future, frontends should silently ignore fields of unrecognized type.

String
The field value.

Execute (F)
Byte1('E')

Identifies the message as an Execute command.

2220

Frontend/Backend Protocol

Int32
Length of message contents in bytes, including self.

String
The name of the portal to execute (an empty string selects the unnamed portal).

Int32
Maximum number of rows to return, if portal contains a query that returns rows (ignored other-
wise). Zero denotes “no limit”.

Flush (F)
Byte1('H')

Identifies the message as a Flush command.

Int32(4)
Length of message contents in bytes, including self.

FunctionCall (F)
Byte1('F')

Identifies the message as a function call.

Int32
Length of message contents in bytes, including self.

Int32
Specifies the object ID of the function to call.

Int16

The number of argument format codes that follow (denoted C below). This can be zero to indicate
that there are no arguments or that the arguments all use the default format (text); or one, in
which case the specified format code is applied to all arguments; or it can equal the actual number
of arguments.

Int16[C]
The argument format codes. Each must presently be zero (text) or one (binary).

Int16
Specifies the number of arguments being supplied to the function.

Next, the following pair of fields appear for each argument:

Int32
The length of the argument value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL argument value. No value bytes follow in the NULL case.

Byten

The value of the argument, in the format indicated by the associated format code. n is the above
length.

After the last argument, the following field appears:

Int16
The format code for the function result. Must presently be zero (text) or one (binary).

2221

Frontend/Backend Protocol

FunctionCallResponse (B)

Byte1('V')

Identifies the message as a function call result.

Int32

Length of message contents in bytes, including self.

Int32

The length of the function result value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL function result. No value bytes follow in the NULL case.

Byten

The value of the function result, in the format indicated by the associated format code. n is the
above length.

GSSENCRequest (F)

Int32(8)

Length of message contents in bytes, including self.

Int32(80877104)

The GSSAPI Encryption request code. The value is chosen to contain 1234 in the most significant
16 bits, and 5680 in the least significant 16 bits. (To avoid confusion, this code must not be the
same as any protocol version number.)

GSSResponse (F)

Byte1('p')

Identifies the message as a GSSAPI or SSPI response. Note that this is also used for SASL and
password response messages. The exact message type can be deduced from the context.

Int32

Length of message contents in bytes, including self.

Byten

GSSAPI/SSPI specific message data.

NegotiateProtocolVersion (B)

Byte1('v')

Identifies the message as a protocol version negotiation message.

Int32

Length of message contents in bytes, including self.

Int32

Newest minor protocol version supported by the server for the major protocol version requested
by the client.

Int32

Number of protocol options not recognized by the server.

Then, for protocol option not recognized by the server, there is the following:

2222

Frontend/Backend Protocol

String

The option name.

NoData (B)

Byte1('n')

Identifies the message as a no-data indicator.

Int32(4)

Length of message contents in bytes, including self.

NoticeResponse (B)

Byte1('N')

Identifies the message as a notice.

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows. The
presently defined field types are listed in Section 54.8. Since more field types might be added in
future, frontends should silently ignore fields of unrecognized type.

String

The field value.

NotificationResponse (B)

Byte1('A')

Identifies the message as a notification response.

Int32

Length of message contents in bytes, including self.

Int32

The process ID of the notifying backend process.

String

The name of the channel that the notify has been raised on.

String

The “payload” string passed from the notifying process.

ParameterDescription (B)

Byte1('t')

Identifies the message as a parameter description.

Int32

Length of message contents in bytes, including self.

2223

Frontend/Backend Protocol

Int16
The number of parameters used by the statement (can be zero).

Then, for each parameter, there is the following:

Int32
Specifies the object ID of the parameter data type.

ParameterStatus (B)
Byte1('S')

Identifies the message as a run-time parameter status report.

Int32
Length of message contents in bytes, including self.

String
The name of the run-time parameter being reported.

String
The current value of the parameter.

Parse (F)
Byte1('P')

Identifies the message as a Parse command.

Int32
Length of message contents in bytes, including self.

String
The name of the destination prepared statement (an empty string selects the unnamed prepared
statement).

String
The query string to be parsed.

Int16
The number of parameter data types specified (can be zero). Note that this is not an indication
of the number of parameters that might appear in the query string, only the number that the
frontend wants to prespecify types for.

Then, for each parameter, there is the following:

Int32
Specifies the object ID of the parameter data type. Placing a zero here is equivalent to leaving
the type unspecified.

ParseComplete (B)
Byte1('1')

Identifies the message as a Parse-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

2224

Frontend/Backend Protocol

PasswordMessage (F)
Byte1('p')

Identifies the message as a password response. Note that this is also used for GSSAPI, SSPI and
SASL response messages. The exact message type can be deduced from the context.

Int32
Length of message contents in bytes, including self.

String
The password (encrypted, if requested).

PortalSuspended (B)
Byte1('s')

Identifies the message as a portal-suspended indicator. Note this only appears if an Execute
message's row-count limit was reached.

Int32(4)
Length of message contents in bytes, including self.

Query (F)
Byte1('Q')

Identifies the message as a simple query.

Int32
Length of message contents in bytes, including self.

String
The query string itself.

ReadyForQuery (B)
Byte1('Z')

Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a new
query cycle.

Int32(5)
Length of message contents in bytes, including self.

Byte1
Current backend transaction status indicator. Possible values are 'I' if idle (not in a transaction
block); 'T' if in a transaction block; or 'E' if in a failed transaction block (queries will be rejected
until block is ended).

RowDescription (B)
Byte1('T')

Identifies the message as a row description.

Int32
Length of message contents in bytes, including self.

Int16
Specifies the number of fields in a row (can be zero).

Then, for each field, there is the following:

2225

Frontend/Backend Protocol

String
The field name.

Int32
If the field can be identified as a column of a specific table, the object ID of the table; otherwise
zero.

Int16
If the field can be identified as a column of a specific table, the attribute number of the column;
otherwise zero.

Int32
The object ID of the field's data type.

Int16
The data type size (see pg_type.typlen). Note that negative values denote variable-width types.

Int32
The type modifier (see pg_attribute.atttypmod). The meaning of the modifier is type-specific.

Int16
The format code being used for the field. Currently will be zero (text) or one (binary). In a Row-
Description returned from the statement variant of Describe, the format code is not yet known
and will always be zero.

SASLInitialResponse (F)
Byte1('p')

Identifies the message as an initial SASL response. Note that this is also used for GSSAPI, SSPI
and password response messages. The exact message type is deduced from the context.

Int32
Length of message contents in bytes, including self.

String
Name of the SASL authentication mechanism that the client selected.

Int32
Length of SASL mechanism specific "Initial Client Response" that follows, or -1 if there is no
Initial Response.

Byten
SASL mechanism specific "Initial Response".

SASLResponse (F)
Byte1('p')

Identifies the message as a SASL response. Note that this is also used for GSSAPI, SSPI and
password response messages. The exact message type can be deduced from the context.

Int32
Length of message contents in bytes, including self.

Byten
SASL mechanism specific message data.

2226

Frontend/Backend Protocol

SSLRequest (F)

Int32(8)

Length of message contents in bytes, including self.

Int32(80877103)

The SSL request code. The value is chosen to contain 1234 in the most significant 16 bits, and
5679 in the least significant 16 bits. (To avoid confusion, this code must not be the same as any
protocol version number.)

StartupMessage (F)

Int32

Length of message contents in bytes, including self.

Int32(196610)

The protocol version number. The most significant 16 bits are the major version number (3 for
the protocol described here). The least significant 16 bits are the minor version number (2 for
the protocol described here).

The protocol version number is followed by one or more pairs of parameter name and value strings.
A zero byte is required as a terminator after the last name/value pair. Parameters can appear in any
order. user is required, others are optional. Each parameter is specified as:

String

The parameter name. Currently recognized names are:

user

The database user name to connect as. Required; there is no default.

database

The database to connect to. Defaults to the user name.

options

Command-line arguments for the backend. (This is deprecated in favor of setting individual
run-time parameters.) Spaces within this string are considered to separate arguments, unless
escaped with a backslash (\); write \\ to represent a literal backslash.

replication

Used to connect in streaming replication mode, where a small set of replication commands
can be issued instead of SQL statements. Value can be true, false, or database, and the
default is false. See Section 54.4 for details.

In addition to the above, other parameters may be listed. Parameter names beginning with _pq_.
are reserved for use as protocol extensions, while others are treated as run-time parameters to
be set at backend start time. Such settings will be applied during backend start (after parsing
the command-line arguments if any) and will act as session defaults.

String

The parameter value.

Sync (F)

Byte1('S')

Identifies the message as a Sync command.

2227

Frontend/Backend Protocol

Int32(4)
Length of message contents in bytes, including self.

Terminate (F)
Byte1('X')

Identifies the message as a termination.

Int32(4)
Length of message contents in bytes, including self.

54.8. Error and Notice Message Fields
This section describes the fields that can appear in ErrorResponse and NoticeResponse messages. Each
field type has a single-byte identification token. Note that any given field type should appear at most
once per message.

S

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING, NOTICE,
DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these. Always present.

V

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING, NOTICE,
DEBUG, INFO, or LOG (in a notice message). This is identical to the S field except that the contents are
never localized. This is present only in messages generated by PostgreSQL versions 9.6 and later.

C

Code: the SQLSTATE code for the error (see Appendix A). Not localizable. Always present.

M

Message: the primary human-readable error message. This should be accurate but terse (typically
one line). Always present.

D

Detail: an optional secondary error message carrying more detail about the problem. Might run to
multiple lines.

H

Hint: an optional suggestion what to do about the problem. This is intended to differ from Detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

P

Position: the field value is a decimal ASCII integer, indicating an error cursor position as an index into
the original query string. The first character has index 1, and positions are measured in characters
not bytes.

p

Internal position: this is defined the same as the P field, but it is used when the cursor position refers
to an internally generated command rather than the one submitted by the client. The q field will
always appear when this field appears.

q

Internal query: the text of a failed internally-generated command. This could be, for example, an
SQL query issued by a PL/pgSQL function.

2228

Frontend/Backend Protocol

W

Where: an indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is one
entry per line, most recent first.

s

Schema name: if the error was associated with a specific database object, the name of the schema
containing that object, if any.

t

Table name: if the error was associated with a specific table, the name of the table. (Refer to the
schema name field for the name of the table's schema.)

c

Column name: if the error was associated with a specific table column, the name of the column.
(Refer to the schema and table name fields to identify the table.)

d

Data type name: if the error was associated with a specific data type, the name of the data type.
(Refer to the schema name field for the name of the data type's schema.)

n

Constraint name: if the error was associated with a specific constraint, the name of the constraint.
Refer to fields listed above for the associated table or domain. (For this purpose, indexes are treated
as constraints, even if they weren't created with constraint syntax.)

F

File: the file name of the source-code location where the error was reported.

L

Line: the line number of the source-code location where the error was reported.

R

Routine: the name of the source-code routine reporting the error.

Note
The fields for schema name, table name, column name, data type name, and constraint name are
supplied only for a limited number of error types; see Appendix A. Frontends should not assume
that the presence of any of these fields guarantees the presence of another field. Core error sources
observe the interrelationships noted above, but user-defined functions may use these fields in
other ways. In the same vein, clients should not assume that these fields denote contemporary
objects in the current database.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated
as paragraph breaks, not line breaks.

54.9. Logical Replication Message Formats
This section describes the detailed format of each logical replication message. These messages are either
returned by the replication slot SQL interface or are sent by a walsender. In the case of a walsender, they

2229

Frontend/Backend Protocol

are encapsulated inside replication protocol WAL messages as described in Section 54.4, and generally
obey the same message flow as physical replication.

Begin
Byte1('B')

Identifies the message as a begin message.

Int64 (XLogRecPtr)
The final LSN of the transaction.

Int64 (TimestampTz)
Commit timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32 (TransactionId)
Xid of the transaction.

Message
Byte1('M')

Identifies the message as a logical decoding message.

Int32 (TransactionId)
Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int8
Flags; Either 0 for no flags or 1 if the logical decoding message is transactional.

Int64 (XLogRecPtr)
The LSN of the logical decoding message.

String
The prefix of the logical decoding message.

Int32
Length of the content.

Byten
The content of the logical decoding message.

Commit
Byte1('C')

Identifies the message as a commit message.

Int8(0)
Flags; currently unused.

Int64 (XLogRecPtr)
The LSN of the commit.

Int64 (XLogRecPtr)
The end LSN of the transaction.

2230

Frontend/Backend Protocol

Int64 (TimestampTz)
Commit timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Origin
Byte1('O')

Identifies the message as an origin message.

Int64 (XLogRecPtr)
The LSN of the commit on the origin server.

String
Name of the origin.

Note that there can be multiple Origin messages inside a single transaction.

Relation
Byte1('R')

Identifies the message as a relation message.

Int32 (TransactionId)
Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int32 (Oid)
OID of the relation.

String
Namespace (empty string for pg_catalog).

String
Relation name.

Int8
Replica identity setting for the relation (same as relreplident in pg_class).

Int16
Number of columns.

Next, the following message part appears for each column included in the publication:

Int8
Flags for the column. Currently can be either 0 for no flags or 1 which marks the column as part
of the key.

String
Name of the column.

Int32 (Oid)
OID of the column's data type.

Int32
Type modifier of the column (atttypmod).

2231

Frontend/Backend Protocol

Type
Byte1('Y')

Identifies the message as a type message.

Int32 (TransactionId)
Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int32 (Oid)
OID of the data type.

String

Namespace (empty string for pg_catalog).

String
Name of the data type.

Insert
Byte1('I')

Identifies the message as an insert message.

Int32 (TransactionId)
Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int32 (Oid)
OID of the relation corresponding to the ID in the relation message.

Byte1('N')
Identifies the following TupleData message as a new tuple.

TupleData
TupleData message part representing the contents of new tuple.

Update
Byte1('U')

Identifies the message as an update message.

Int32 (TransactionId)
Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int32 (Oid)
OID of the relation corresponding to the ID in the relation message.

Byte1('K')
Identifies the following TupleData submessage as a key. This field is optional and is only present
if the update changed data in any of the column(s) that are part of the REPLICA IDENTITY index.

Byte1('O')
Identifies the following TupleData submessage as an old tuple. This field is optional and is only
present if table in which the update happened has REPLICA IDENTITY set to FULL.

2232

Frontend/Backend Protocol

TupleData

TupleData message part representing the contents of the old tuple or primary key. Only present
if the previous 'O' or 'K' part is present.

Byte1('N')

Identifies the following TupleData message as a new tuple.

TupleData

TupleData message part representing the contents of a new tuple.

The Update message may contain either a 'K' message part or an 'O' message part or neither of them,
but never both of them.

Delete

Byte1('D')

Identifies the message as a delete message.

Int32 (TransactionId)

Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int32 (Oid)

OID of the relation corresponding to the ID in the relation message.

Byte1('K')

Identifies the following TupleData submessage as a key. This field is present if the table in which
the delete has happened uses an index as REPLICA IDENTITY.

Byte1('O')

Identifies the following TupleData message as an old tuple. This field is present if the table in
which the delete happened has REPLICA IDENTITY set to FULL.

TupleData

TupleData message part representing the contents of the old tuple or primary key, depending
on the previous field.

The Delete message may contain either a 'K' message part or an 'O' message part, but never both
of them.

Truncate

Byte1('T')

Identifies the message as a truncate message.

Int32 (TransactionId)

Xid of the transaction (only present for streamed transactions). This field is available since pro-
tocol version 2.

Int32

Number of relations

Int8

Option bits for TRUNCATE: 1 for CASCADE, 2 for RESTART IDENTITY

2233

Frontend/Backend Protocol

Int32 (Oid)

OID of the relation corresponding to the ID in the relation message. This field is repeated for
each relation.

The following messages (Stream Start, Stream Stop, Stream Commit, and Stream Abort) are available
since protocol version 2.

Stream Start

Byte1('S')

Identifies the message as a stream start message.

Int32 (TransactionId)

Xid of the transaction.

Int8

A value of 1 indicates this is the first stream segment for this XID, 0 for any other stream segment.

Stream Stop

Byte1('E')

Identifies the message as a stream stop message.

Stream Commit

Byte1('c')

Identifies the message as a stream commit message.

Int32 (TransactionId)

Xid of the transaction.

Int8(0)

Flags; currently unused.

Int64 (XLogRecPtr)

The LSN of the commit.

Int64 (XLogRecPtr)

The end LSN of the transaction.

Int64 (TimestampTz)

Commit timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Stream Abort

Byte1('A')

Identifies the message as a stream abort message.

Int32 (TransactionId)

Xid of the transaction.

Int32 (TransactionId)

Xid of the subtransaction (will be same as xid of the transaction for top-level transactions).

2234

Frontend/Backend Protocol

Int64 (XLogRecPtr)

The LSN of the abort operation, present only when streaming is set to parallel. This field is
available since protocol version 4.

Int64 (TimestampTz)

Abort timestamp of the transaction, present only when streaming is set to parallel. The value is
in number of microseconds since PostgreSQL epoch (2000-01-01). This field is available since
protocol version 4.

The following messages (Begin Prepare, Prepare, Commit Prepared, Rollback Prepared, Stream Prepare)
are available since protocol version 3.

Begin Prepare

Byte1('b')

Identifies the message as the beginning of a prepared transaction message.

Int64 (XLogRecPtr)

The LSN of the prepare.

Int64 (XLogRecPtr)

The end LSN of the prepared transaction.

Int64 (TimestampTz)

Prepare timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32 (TransactionId)

Xid of the transaction.

String

The user defined GID of the prepared transaction.

Prepare

Byte1('P')

Identifies the message as a prepared transaction message.

Int8(0)

Flags; currently unused.

Int64 (XLogRecPtr)

The LSN of the prepare.

Int64 (XLogRecPtr)

The end LSN of the prepared transaction.

Int64 (TimestampTz)

Prepare timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32 (TransactionId)

Xid of the transaction.

2235

Frontend/Backend Protocol

String
The user defined GID of the prepared transaction.

Commit Prepared
Byte1('K')

Identifies the message as the commit of a prepared transaction message.

Int8(0)
Flags; currently unused.

Int64 (XLogRecPtr)
The LSN of the commit of the prepared transaction.

Int64 (XLogRecPtr)
The end LSN of the commit of the prepared transaction.

Int64 (TimestampTz)
Commit timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32 (TransactionId)
Xid of the transaction.

String
The user defined GID of the prepared transaction.

Rollback Prepared
Byte1('r')

Identifies the message as the rollback of a prepared transaction message.

Int8(0)
Flags; currently unused.

Int64 (XLogRecPtr)
The end LSN of the prepared transaction.

Int64 (XLogRecPtr)
The end LSN of the rollback of the prepared transaction.

Int64 (TimestampTz)
Prepare timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int64 (TimestampTz)
Rollback timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32 (TransactionId)
Xid of the transaction.

String
The user defined GID of the prepared transaction.

2236

Frontend/Backend Protocol

Stream Prepare
Byte1('p')

Identifies the message as a stream prepared transaction message.

Int8(0)
Flags; currently unused.

Int64 (XLogRecPtr)
The LSN of the prepare.

Int64 (XLogRecPtr)
The end LSN of the prepared transaction.

Int64 (TimestampTz)
Prepare timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32 (TransactionId)
Xid of the transaction.

String
The user defined GID of the prepared transaction.

The following message parts are shared by the above messages.

TupleData
Int16

Number of columns.

Next, one of the following submessages appears for each published column:
Byte1('n')

Identifies the data as NULL value.

Or
Byte1('u')

Identifies unchanged TOASTed value (the actual value is not sent).

Or
Byte1('t')

Identifies the data as text formatted value.

Or
Byte1('b')

Identifies the data as binary formatted value.

Int32
Length of the column value.

Byten
The value of the column, either in binary or in text format. (As specified in the preceding format
byte). n is the above length.

2237

Frontend/Backend Protocol

54.10. Summary of Changes since Protocol 2.0
This section provides a quick checklist of changes, for the benefit of developers trying to update existing
client libraries to protocol 3.0.

The initial startup packet uses a flexible list-of-strings format instead of a fixed format. Notice that ses-
sion default values for run-time parameters can now be specified directly in the startup packet. (Actually,
you could do that before using the options field, but given the limited width of options and the lack of
any way to quote whitespace in the values, it wasn't a very safe technique.)

All messages now have a length count immediately following the message type byte (except for startup
packets, which have no type byte). Also note that PasswordMessage now has a type byte.

ErrorResponse and NoticeResponse ('E' and 'N') messages now contain multiple fields, from which the
client code can assemble an error message of the desired level of verbosity. Note that individual fields
will typically not end with a newline, whereas the single string sent in the older protocol always did.

The ReadyForQuery ('Z') message includes a transaction status indicator.

The distinction between BinaryRow and DataRow message types is gone; the single DataRow message
type serves for returning data in all formats. Note that the layout of DataRow has changed to make it
easier to parse. Also, the representation of binary values has changed: it is no longer directly tied to
the server's internal representation.

There is a new “extended query” sub-protocol, which adds the frontend message types Parse, Bind, Ex-
ecute, Describe, Close, Flush, and Sync, and the backend message types ParseComplete, BindComplete,
PortalSuspended, ParameterDescription, NoData, and CloseComplete. Existing clients do not have to
concern themselves with this sub-protocol, but making use of it might allow improvements in perfor-
mance or functionality.

COPY data is now encapsulated into CopyData and CopyDone messages. There is a well-defined way
to recover from errors during COPY. The special “\.” last line is not needed anymore, and is not sent
during COPY OUT. (It is still recognized as a terminator during text-mode COPY IN, but not in CSV mode.
The text-mode behavior is deprecated and may eventually be removed.) Binary COPY is supported. The
CopyInResponse and CopyOutResponse messages include fields indicating the number of columns and
the format of each column.

The layout of FunctionCall and FunctionCallResponse messages has changed. FunctionCall can now
support passing NULL arguments to functions. It also can handle passing parameters and retrieving
results in either text or binary format. There is no longer any reason to consider FunctionCall a potential
security hole, since it does not offer direct access to internal server data representations.

The backend sends ParameterStatus ('S') messages during connection startup for all parameters it con-
siders interesting to the client library. Subsequently, a ParameterStatus message is sent whenever the
active value changes for any of these parameters.

The RowDescription ('T') message carries new table OID and column number fields for each column of
the described row. It also shows the format code for each column.

The CursorResponse ('P') message is no longer generated by the backend.

The NotificationResponse ('A') message has an additional string field, which can carry a “payload” string
passed from the NOTIFY event sender.

The EmptyQueryResponse ('I') message used to include an empty string parameter; this has been re-
moved.

2238

Chapter 55. PostgreSQL Coding Conventions
55.1. Formatting

Source code formatting uses 4 column tab spacing, with tabs preserved (i.e., tabs are not expanded to
spaces). Each logical indentation level is one additional tab stop.

Layout rules (brace positioning, etc.) follow BSD conventions. In particular, curly braces for the con-
trolled blocks of if, while, switch, etc. go on their own lines.

Limit line lengths so that the code is readable in an 80-column window. (This doesn't mean that you must
never go past 80 columns. For instance, breaking a long error message string in arbitrary places just to
keep the code within 80 columns is probably not a net gain in readability.)

To maintain a consistent coding style, do not use C++ style comments (// comments). pgindent will
replace them with /* ... */.

The preferred style for multi-line comment blocks is
/*
 * comment text begins here
 * and continues here
 */

Note that comment blocks that begin in column 1 will be preserved as-is by pgindent, but it will re-flow
indented comment blocks as though they were plain text. If you want to preserve the line breaks in an
indented block, add dashes like this:
 /*----------
 * comment text begins here
 * and continues here
 *----------
 */

While submitted patches do not absolutely have to follow these formatting rules, it's a good idea to do
so. Your code will get run through pgindent before the next release, so there's no point in making it look
nice under some other set of formatting conventions. A good rule of thumb for patches is “make the new
code look like the existing code around it”.

The src/tools/editors directory contains sample settings files that can be used with the Emacs,
xemacs or vim editors to help ensure that they format code according to these conventions.

If you'd like to run pgindent locally to help make your code match project style, see the src/tools/
pgindent directory.

The text browsing tools more and less can be invoked as:
more -x4
less -x4

to make them show tabs appropriately.

55.2. Reporting Errors Within the Server
Error, warning, and log messages generated within the server code should be created using ereport,
or its older cousin elog. The use of this function is complex enough to require some explanation.

There are two required elements for every message: a severity level (ranging from DEBUG to PANIC,
defined in src/include/utils/elog.h) and a primary message text. In addition there are optional ele-
ments, the most common of which is an error identifier code that follows the SQL spec's SQLSTATE con-
ventions. ereport itself is just a shell macro that exists mainly for the syntactic convenience of making
message generation look like a single function call in the C source code. The only parameter accepted

2239

PostgreSQL Coding Conventions

directly by ereport is the severity level. The primary message text and any optional message elements
are generated by calling auxiliary functions, such as errmsg, within the ereport call.

A typical call to ereport might look like this:

ereport(ERROR,
 errcode(ERRCODE_DIVISION_BY_ZERO),
 errmsg("division by zero"));

This specifies error severity level ERROR (a run-of-the-mill error). The errcode call specifies the SQLS-
TATE error code using a macro defined in src/include/utils/errcodes.h. The errmsg call provides
the primary message text.

You will also frequently see this older style, with an extra set of parentheses surrounding the auxiliary
function calls:

ereport(ERROR,
 (errcode(ERRCODE_DIVISION_BY_ZERO),
 errmsg("division by zero")));

The extra parentheses were required before PostgreSQL version 12, but are now optional.

Here is a more complex example:

ereport(ERROR,
 errcode(ERRCODE_AMBIGUOUS_FUNCTION),
 errmsg("function %s is not unique",
 func_signature_string(funcname, nargs,
 NIL, actual_arg_types)),
 errhint("Unable to choose a best candidate function. "
 "You might need to add explicit typecasts."));

This illustrates the use of format codes to embed run-time values into a message text. Also, an optional
“hint” message is provided. The auxiliary function calls can be written in any order, but conventionally
errcode and errmsg appear first.

If the severity level is ERROR or higher, ereport aborts execution of the current query and does not return
to the caller. If the severity level is lower than ERROR, ereport returns normally.

The available auxiliary routines for ereport are:
• errcode(sqlerrcode) specifies the SQLSTATE error identifier code for the condition. If this rou-

tine is not called, the error identifier defaults to ERRCODE_INTERNAL_ERROR when the error severity
level is ERROR or higher, ERRCODE_WARNING when the error level is WARNING, otherwise (for NOTICE
and below) ERRCODE_SUCCESSFUL_COMPLETION. While these defaults are often convenient, always
think whether they are appropriate before omitting the errcode() call.

• errmsg(const char *msg, ...) specifies the primary error message text, and possibly run-time
values to insert into it. Insertions are specified by sprintf-style format codes. In addition to the
standard format codes accepted by sprintf, the format code %m can be used to insert the error
message returned by strerror for the current value of errno. 1 %m does not require any corre-
sponding entry in the parameter list for errmsg. Note that the message string will be run through
gettext for possible localization before format codes are processed.

• errmsg_internal(const char *msg, ...) is the same as errmsg, except that the message string
will not be translated nor included in the internationalization message dictionary. This should be
used for “cannot happen” cases that are probably not worth expending translation effort on.

• errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long
n, ...) is like errmsg, but with support for various plural forms of the message. fmt_singular is
the English singular format, fmt_plural is the English plural format, n is the integer value that de-

1 That is, the value that was current when the ereport call was reached; changes of errno within the auxiliary reporting routines will not affect it. That would not
be true if you were to write strerror(errno) explicitly in errmsg's parameter list; accordingly, do not do so.

2240

PostgreSQL Coding Conventions

termines which plural form is needed, and the remaining arguments are formatted according to the
selected format string. For more information see Section 56.2.2.

• errdetail(const char *msg, ...) supplies an optional “detail” message; this is to be used when
there is additional information that seems inappropriate to put in the primary message. The mes-
sage string is processed in just the same way as for errmsg.

• errdetail_internal(const char *msg, ...) is the same as errdetail, except that the mes-
sage string will not be translated nor included in the internationalization message dictionary. This
should be used for detail messages that are not worth expending translation effort on, for instance
because they are too technical to be useful to most users.

• errdetail_plural(const char *fmt_singular, const char *fmt_plural, unsigned long
n, ...) is like errdetail, but with support for various plural forms of the message. For more in-
formation see Section 56.2.2.

• errdetail_log(const char *msg, ...) is the same as errdetail except that this string goes on-
ly to the server log, never to the client. If both errdetail (or one of its equivalents above) and er-
rdetail_log are used then one string goes to the client and the other to the log. This is useful for
error details that are too security-sensitive or too bulky to include in the report sent to the client.

• errdetail_log_plural(const char *fmt_singular, const char *fmt_plural, unsigned long
n, ...) is like errdetail_log, but with support for various plural forms of the message. For more
information see Section 56.2.2.

• errhint(const char *msg, ...) supplies an optional “hint” message; this is to be used when of-
fering suggestions about how to fix the problem, as opposed to factual details about what went
wrong. The message string is processed in just the same way as for errmsg.

• errhint_plural(const char *fmt_singular, const char *fmt_plural, unsigned long
n, ...) is like errhint, but with support for various plural forms of the message. For more infor-
mation see Section 56.2.2.

• errcontext(const char *msg, ...) is not normally called directly from an ereport message site;
rather it is used in error_context_stack callback functions to provide information about the con-
text in which an error occurred, such as the current location in a PL function. The message string
is processed in just the same way as for errmsg. Unlike the other auxiliary functions, this can be
called more than once per ereport call; the successive strings thus supplied are concatenated with
separating newlines.

• errposition(int cursorpos) specifies the textual location of an error within a query string. Cur-
rently it is only useful for errors detected in the lexical and syntactic analysis phases of query pro-
cessing.

• errtable(Relation rel) specifies a relation whose name and schema name should be included as
auxiliary fields in the error report.

• errtablecol(Relation rel, int attnum) specifies a column whose name, table name, and
schema name should be included as auxiliary fields in the error report.

• errtableconstraint(Relation rel, const char *conname) specifies a table constraint whose
name, table name, and schema name should be included as auxiliary fields in the error report. In-
dexes should be considered to be constraints for this purpose, whether or not they have an associ-
ated pg_constraint entry. Be careful to pass the underlying heap relation, not the index itself, as
rel.

• errdatatype(Oid datatypeOid) specifies a data type whose name and schema name should be in-
cluded as auxiliary fields in the error report.

• errdomainconstraint(Oid datatypeOid, const char *conname) specifies a domain constraint
whose name, domain name, and schema name should be included as auxiliary fields in the error re-
port.

• errcode_for_file_access() is a convenience function that selects an appropriate SQLSTATE er-
ror identifier for a failure in a file-access-related system call. It uses the saved errno to determine

2241

PostgreSQL Coding Conventions

which error code to generate. Usually this should be used in combination with %m in the primary er-
ror message text.

• errcode_for_socket_access() is a convenience function that selects an appropriate SQLSTATE
error identifier for a failure in a socket-related system call.

• errhidestmt(bool hide_stmt) can be called to specify suppression of the STATEMENT: portion of
a message in the postmaster log. Generally this is appropriate if the message text includes the cur-
rent statement already.

• errhidecontext(bool hide_ctx) can be called to specify suppression of the CONTEXT: portion of
a message in the postmaster log. This should only be used for verbose debugging messages where
the repeated inclusion of context would bloat the log too much.

Note
At most one of the functions errtable, errtablecol, errtableconstraint, errdatatype, or er-
rdomainconstraint should be used in an ereport call. These functions exist to allow applications
to extract the name of a database object associated with the error condition without having to
examine the potentially-localized error message text. These functions should be used in error re-
ports for which it's likely that applications would wish to have automatic error handling. As of
PostgreSQL 9.3, complete coverage exists only for errors in SQLSTATE class 23 (integrity con-
straint violation), but this is likely to be expanded in future.

There is an older function elog that is still heavily used. An elog call:

elog(level, "format string", ...);

is exactly equivalent to:

ereport(level, errmsg_internal("format string", ...));

Notice that the SQLSTATE error code is always defaulted, and the message string is not subject to
translation. Therefore, elog should be used only for internal errors and low-level debug logging. Any
message that is likely to be of interest to ordinary users should go through ereport. Nonetheless, there
are enough internal “cannot happen” error checks in the system that elog is still widely used; it is
preferred for those messages for its notational simplicity.

Advice about writing good error messages can be found in Section 55.3.

55.3. Error Message Style Guide
This style guide is offered in the hope of maintaining a consistent, user-friendly style throughout all the
messages generated by PostgreSQL.

What Goes Where
The primary message should be short, factual, and avoid reference to implementation details such as
specific function names. “Short” means “should fit on one line under normal conditions”. Use a detail
message if needed to keep the primary message short, or if you feel a need to mention implementation
details such as the particular system call that failed. Both primary and detail messages should be factual.
Use a hint message for suggestions about what to do to fix the problem, especially if the suggestion
might not always be applicable.

For example, instead of:

IpcMemoryCreate: shmget(key=%d, size=%u, 0%o) failed: %m
(plus a long addendum that is basically a hint)

write:

Primary: could not create shared memory segment: %m

2242

PostgreSQL Coding Conventions

Detail: Failed syscall was shmget(key=%d, size=%u, 0%o).
Hint: The addendum, written as a complete sentence.

Rationale: keeping the primary message short helps keep it to the point, and lets clients lay out screen
space on the assumption that one line is enough for error messages. Detail and hint messages can be
relegated to a verbose mode, or perhaps a pop-up error-details window. Also, details and hints would
normally be suppressed from the server log to save space. Reference to implementation details is best
avoided since users aren't expected to know the details.

Formatting
Don't put any specific assumptions about formatting into the message texts. Expect clients and the server
log to wrap lines to fit their own needs. In long messages, newline characters (\n) can be used to indicate
suggested paragraph breaks. Don't end a message with a newline. Don't use tabs or other formatting
characters. (In error context displays, newlines are automatically added to separate levels of context
such as function calls.)

Rationale: Messages are not necessarily displayed on terminal-type displays. In GUI displays or browsers
these formatting instructions are at best ignored.

Quotation Marks
English text should use double quotes when quoting is appropriate. Text in other languages should
consistently use one kind of quotes that is consistent with publishing customs and computer output of
other programs.

Rationale: The choice of double quotes over single quotes is somewhat arbitrary, but tends to be the
preferred use. Some have suggested choosing the kind of quotes depending on the type of object ac-
cording to SQL conventions (namely, strings single quoted, identifiers double quoted). But this is a lan-
guage-internal technical issue that many users aren't even familiar with, it won't scale to other kinds of
quoted terms, it doesn't translate to other languages, and it's pretty pointless, too.

Use of Quotes
Always use quotes to delimit file names, user-supplied identifiers, configuration variable names, and
other variables that might contain words. Do not use them to mark up variables that will not contain
words (for example, operator names).

There are functions in the backend that will double-quote their own output as needed (for example,
format_type_be()). Do not put additional quotes around the output of such functions.

Rationale: Objects can have names that create ambiguity when embedded in a message. Be consistent
about denoting where a plugged-in name starts and ends. But don't clutter messages with unnecessary
or duplicate quote marks.

Grammar and Punctuation
The rules are different for primary error messages and for detail/hint messages:

Primary error messages: Do not capitalize the first letter. Do not end a message with a period. Do not
even think about ending a message with an exclamation point.

Detail and hint messages: Use complete sentences, and end each with a period. Capitalize the first word
of sentences. Put two spaces after the period if another sentence follows (for English text; might be
inappropriate in other languages).

Error context strings: Do not capitalize the first letter and do not end the string with a period. Context
strings should normally not be complete sentences.

Rationale: Avoiding punctuation makes it easier for client applications to embed the message into a va-
riety of grammatical contexts. Often, primary messages are not grammatically complete sentences any-

2243

PostgreSQL Coding Conventions

way. (And if they're long enough to be more than one sentence, they should be split into primary and de-
tail parts.) However, detail and hint messages are longer and might need to include multiple sentences.
For consistency, they should follow complete-sentence style even when there's only one sentence.

Upper Case vs. Lower Case
Use lower case for message wording, including the first letter of a primary error message. Use upper
case for SQL commands and key words if they appear in the message.

Rationale: It's easier to make everything look more consistent this way, since some messages are com-
plete sentences and some not.

Avoid Passive Voice
Use the active voice. Use complete sentences when there is an acting subject (“A could not do B”). Use
telegram style without subject if the subject would be the program itself; do not use “I” for the program.

Rationale: The program is not human. Don't pretend otherwise.

Present vs. Past Tense
Use past tense if an attempt to do something failed, but could perhaps succeed next time (perhaps after
fixing some problem). Use present tense if the failure is certainly permanent.

There is a nontrivial semantic difference between sentences of the form:

could not open file "%s": %m

and:

cannot open file "%s"

The first one means that the attempt to open the file failed. The message should give a reason, such as
“disk full” or “file doesn't exist”. The past tense is appropriate because next time the disk might not be
full anymore or the file in question might exist.

The second form indicates that the functionality of opening the named file does not exist at all in the
program, or that it's conceptually impossible. The present tense is appropriate because the condition
will persist indefinitely.

Rationale: Granted, the average user will not be able to draw great conclusions merely from the tense
of the message, but since the language provides us with a grammar we should use it correctly.

Type of the Object
When citing the name of an object, state what kind of object it is.

Rationale: Otherwise no one will know what “foo.bar.baz” refers to.

Brackets
Square brackets are only to be used (1) in command synopses to denote optional arguments, or (2) to
denote an array subscript.

Rationale: Anything else does not correspond to widely-known customary usage and will confuse people.

Assembling Error Messages
When a message includes text that is generated elsewhere, embed it in this style:

could not open file %s: %m

Rationale: It would be difficult to account for all possible error codes to paste this into a single smooth
sentence, so some sort of punctuation is needed. Putting the embedded text in parentheses has also

2244

PostgreSQL Coding Conventions

been suggested, but it's unnatural if the embedded text is likely to be the most important part of the
message, as is often the case.

Reasons for Errors
Messages should always state the reason why an error occurred. For example:
BAD: could not open file %s
BETTER: could not open file %s (I/O failure)

If no reason is known you better fix the code.

Function Names
Don't include the name of the reporting routine in the error text. We have other mechanisms for finding
that out when needed, and for most users it's not helpful information. If the error text doesn't make as
much sense without the function name, reword it.
BAD: pg_strtoint32: error in "z": cannot parse "z"
BETTER: invalid input syntax for type integer: "z"

Avoid mentioning called function names, either; instead say what the code was trying to do:
BAD: open() failed: %m
BETTER: could not open file %s: %m

If it really seems necessary, mention the system call in the detail message. (In some cases, providing
the actual values passed to the system call might be appropriate information for the detail message.)

Rationale: Users don't know what all those functions do.

Tricky Words to Avoid
Unable. “Unable” is nearly the passive voice. Better use “cannot” or “could not”, as appropriate.

Bad. Error messages like “bad result” are really hard to interpret intelligently. It's better to write
why the result is “bad”, e.g., “invalid format”.

Illegal. “Illegal” stands for a violation of the law, the rest is “invalid”. Better yet, say why it's invalid.

Unknown. Try to avoid “unknown”. Consider “error: unknown response”. If you don't know what the
response is, how do you know it's erroneous? “Unrecognized” is often a better choice. Also, be sure to
include the value being complained of.
BAD: unknown node type
BETTER: unrecognized node type: 42

Find vs. Exists. If the program uses a nontrivial algorithm to locate a resource (e.g., a path search)
and that algorithm fails, it is fair to say that the program couldn't “find” the resource. If, on the other
hand, the expected location of the resource is known but the program cannot access it there then say
that the resource doesn't “exist”. Using “find” in this case sounds weak and confuses the issue.

May vs. Can vs. Might. “May” suggests permission (e.g., "You may borrow my rake."), and has little
use in documentation or error messages. “Can” suggests ability (e.g., "I can lift that log."), and “might”
suggests possibility (e.g., "It might rain today."). Using the proper word clarifies meaning and assists
translation.

Contractions. Avoid contractions, like “can't”; use “cannot” instead.

Non-negative. Avoid “non-negative” as it is ambiguous about whether it accepts zero. It's better to
use “greater than zero” or “greater than or equal to zero”.

Proper Spelling
Spell out words in full. For instance, avoid:

2245

PostgreSQL Coding Conventions

• spec
• stats
• parens
• auth
• xact

Rationale: This will improve consistency.

Localization
Keep in mind that error message texts need to be translated into other languages. Follow the guidelines
in Section 56.2.2 to avoid making life difficult for translators.

55.4. Miscellaneous Coding Conventions
C Standard

Code in PostgreSQL should only rely on language features available in the C99 standard. That means a
conforming C99 compiler has to be able to compile postgres, at least aside from a few platform dependent
pieces.

A few features included in the C99 standard are, at this time, not permitted to be used in core PostgreSQL
code. This currently includes variable length arrays, intermingled declarations and code, // comments,
universal character names. Reasons for that include portability and historical practices.

Features from later revisions of the C standard or compiler specific features can be used, if a fallback
is provided.

For example _Static_assert() and __builtin_constant_p are currently used, even though they are
from newer revisions of the C standard and a GCC extension respectively. If not available we respectively
fall back to using a C99 compatible replacement that performs the same checks, but emits rather cryptic
messages and do not use __builtin_constant_p.

Function-Like Macros and Inline Functions
Both macros with arguments and static inline functions may be used. The latter are preferable if
there are multiple-evaluation hazards when written as a macro, as e.g., the case with
#define Max(x, y) ((x) > (y) ? (x) : (y))

or when the macro would be very long. In other cases it's only possible to use macros, or at least easier.
For example because expressions of various types need to be passed to the macro.

When the definition of an inline function references symbols (i.e., variables, functions) that are only
available as part of the backend, the function may not be visible when included from frontend code.
#ifndef FRONTEND
static inline MemoryContext
MemoryContextSwitchTo(MemoryContext context)
{
 MemoryContext old = CurrentMemoryContext;

 CurrentMemoryContext = context;
 return old;
}
#endif /* FRONTEND */

In this example CurrentMemoryContext, which is only available in the backend, is referenced and the
function thus hidden with a #ifndef FRONTEND. This rule exists because some compilers emit references
to symbols contained in inline functions even if the function is not used.

2246

PostgreSQL Coding Conventions

Writing Signal Handlers
To be suitable to run inside a signal handler code has to be written very carefully. The fundamental
problem is that, unless blocked, a signal handler can interrupt code at any time. If code inside the signal
handler uses the same state as code outside chaos may ensue. As an example consider what happens if
a signal handler tries to acquire a lock that's already held in the interrupted code.

Barring special arrangements code in signal handlers may only call async-signal safe functions (as de-
fined in POSIX) and access variables of type volatile sig_atomic_t. A few functions in postgres are
also deemed signal safe, importantly SetLatch().

In most cases signal handlers should do nothing more than note that a signal has arrived, and wake up
code running outside of the handler using a latch. An example of such a handler is the following:

static void
handle_sighup(SIGNAL_ARGS)
{
 got_SIGHUP = true;
 SetLatch(MyLatch);
}

Calling Function Pointers
For clarity, it is preferred to explicitly dereference a function pointer when calling the pointed-to function
if the pointer is a simple variable, for example:

(*emit_log_hook) (edata);

(even though emit_log_hook(edata) would also work). When the function pointer is part of a structure,
then the extra punctuation can and usually should be omitted, for example:

paramInfo->paramFetch(paramInfo, paramId);

2247

Chapter 56. Native Language Support
56.1. For the Translator

PostgreSQL programs (server and client) can issue their messages in your favorite language — if the
messages have been translated. Creating and maintaining translated message sets needs the help of
people who speak their own language well and want to contribute to the PostgreSQL effort. You do not
have to be a programmer at all to do this. This section explains how to help.

56.1.1. Requirements
We won't judge your language skills — this section is about software tools. Theoretically, you only need a
text editor. But this is only in the unlikely event that you do not want to try out your translated messages.
When you configure your source tree, be sure to use the --enable-nls option. This will also check for
the libintl library and the msgfmt program, which all end users will need anyway. To try out your work,
follow the applicable portions of the installation instructions.

If you want to start a new translation effort or want to do a message catalog merge (described later),
you will need the programs xgettext and msgmerge, respectively, in a GNU-compatible implementation.
Later, we will try to arrange it so that if you use a packaged source distribution, you won't need xgettext.
(If working from Git, you will still need it.) GNU Gettext 0.10.36 or later is currently recommended.

Your local gettext implementation should come with its own documentation. Some of that is probably
duplicated in what follows, but for additional details you should look there.

56.1.2. Concepts
The pairs of original (English) messages and their (possibly) translated equivalents are kept in message
catalogs, one for each program (although related programs can share a message catalog) and for each
target language. There are two file formats for message catalogs: The first is the “PO” file (for Portable
Object), which is a plain text file with special syntax that translators edit. The second is the “MO” file
(for Machine Object), which is a binary file generated from the respective PO file and is used while the
internationalized program is run. Translators do not deal with MO files; in fact hardly anyone does.

The extension of the message catalog file is to no surprise either .po or .mo. The base name is either the
name of the program it accompanies, or the language the file is for, depending on the situation. This is
a bit confusing. Examples are psql.po (PO file for psql) or fr.mo (MO file in French).

The file format of the PO files is illustrated here:
comment

msgid "original string"
msgstr "translated string"

msgid "more original"
msgstr "another translated"
"string can be broken up like this"

...

The msgid lines are extracted from the program source. (They need not be, but this is the most common
way.) The msgstr lines are initially empty and are filled in with useful strings by the translator. The
strings can contain C-style escape characters and can be continued across lines as illustrated. (The next
line must start at the beginning of the line.)

The # character introduces a comment. If whitespace immediately follows the # character, then this
is a comment maintained by the translator. There can also be automatic comments, which have a non-
whitespace character immediately following the #. These are maintained by the various tools that oper-
ate on the PO files and are intended to aid the translator.

2248

Native Language Support

#. automatic comment
#: filename.c:1023
#, flags, flags

The #. style comments are extracted from the source file where the message is used. Possibly the pro-
grammer has inserted information for the translator, such as about expected alignment. The #: com-
ments indicate the exact locations where the message is used in the source. The translator need not look
at the program source, but can if there is doubt about the correct translation. The #, comments contain
flags that describe the message in some way. There are currently two flags: fuzzy is set if the message
has possibly been outdated because of changes in the program source. The translator can then verify this
and possibly remove the fuzzy flag. Note that fuzzy messages are not made available to the end user. The
other flag is c-format, which indicates that the message is a printf-style format template. This means
that the translation should also be a format string with the same number and type of placeholders. There
are tools that can verify this, which key off the c-format flag.

56.1.3. Creating and Maintaining Message Catalogs
OK, so how does one create a “blank” message catalog? First, go into the directory that contains the
program whose messages you want to translate. If there is a file nls.mk, then this program has been
prepared for translation.

If there are already some .po files, then someone has already done some translation work. The files are
named language.po, where language is the ISO 639-1 two-letter language code (in lower case), e.g.,
fr.po for French. If there is really a need for more than one translation effort per language then the
files can also be named language_region.po where region is the ISO 3166-1 two-letter country code
(in upper case), e.g., pt_BR.po for Portuguese in Brazil. If you find the language you wanted you can
just start working on that file.

If you need to start a new translation effort, then first run the command:

make init-po

This will create a file progname.pot. (.pot to distinguish it from PO files that are “in production”. The T
stands for “template”.) Copy this file to language.po and edit it. To make it known that the new language
is available, also edit the file po/LINGUAS and add the language (or language and country) code next to
languages already listed, like:

de fr

(Other languages can appear, of course.)

As the underlying program or library changes, messages might be changed or added by the program-
mers. In this case you do not need to start from scratch. Instead, run the command:

make update-po

which will create a new blank message catalog file (the pot file you started with) and will merge it with
the existing PO files. If the merge algorithm is not sure about a particular message it marks it “fuzzy”
as explained above. The new PO file is saved with a .po.new extension.

56.1.4. Editing the PO Files
The PO files can be edited with a regular text editor. There are also several specialized editors for PO
files which can help the process with translation-specific features. There is (unsurprisingly) a PO mode
for Emacs, which can be quite useful.

The translator should only change the area between the quotes after the msgstr directive, add comments,
and alter the fuzzy flag.

The PO files need not be completely filled in. The software will automatically fall back to the original
string if no translation (or an empty translation) is available. It is no problem to submit incomplete trans-
lations for inclusions in the source tree; that gives room for other people to pick up your work. However,

2249

https://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html

Native Language Support

you are encouraged to give priority to removing fuzzy entries after doing a merge. Remember that fuzzy
entries will not be installed; they only serve as reference for what might be the right translation.

Here are some things to keep in mind while editing the translations:

• Make sure that if the original ends with a newline, the translation does, too. Similarly for tabs, etc.

• If the original is a printf format string, the translation also needs to be. The translation also needs
to have the same format specifiers in the same order. Sometimes the natural rules of the language
make this impossible or at least awkward. In that case you can modify the format specifiers like
this:

msgstr "Die Datei %2$s hat %1$u Zeichen."

Then the first placeholder will actually use the second argument from the list. The digits$ needs
to follow the % immediately, before any other format manipulators. (This feature really exists in the
printf family of functions. You might not have heard of it before because there is little use for it
outside of message internationalization.)

• If the original string contains a linguistic mistake, report that (or fix it yourself in the program
source) and translate normally. The corrected string can be merged in when the program sources
have been updated. If the original string contains a factual mistake, report that (or fix it yourself)
and do not translate it. Instead, you can mark the string with a comment in the PO file.

• Maintain the style and tone of the original string. Specifically, messages that are not sentences
(cannot open file %s) should probably not start with a capital letter (if your language distinguish-
es letter case) or end with a period (if your language uses punctuation marks). It might help to read
Section 55.3.

• If you don't know what a message means, or if it is ambiguous, ask on the developers' mailing list.
Chances are that English speaking end users might also not understand it or find it ambiguous, so
it's best to improve the message.

56.2. For the Programmer
56.2.1. Mechanics

This section describes how to implement native language support in a program or library that is part of
the PostgreSQL distribution. Currently, it only applies to C programs.

Adding NLS Support to a Program

1. Insert this code into the start-up sequence of the program:

#ifdef ENABLE_NLS
#include <locale.h>
#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain("progname", LOCALEDIR);
textdomain("progname");
#endif

(The progname can actually be chosen freely.)

2. Wherever a message that is a candidate for translation is found, a call to gettext() needs to be
inserted. E.g.:

fprintf(stderr, "panic level %d\n", lvl);

would be changed to:

2250

Native Language Support

fprintf(stderr, gettext("panic level %d\n"), lvl);

(gettext is defined as a no-op if NLS support is not configured.)

This tends to add a lot of clutter. One common shortcut is to use:
#define _(x) gettext(x)

Another solution is feasible if the program does much of its communication through one or a few
functions, such as ereport() in the backend. Then you make this function call gettext internally
on all input strings.

3. Add a file nls.mk in the directory with the program sources. This file will be read as a makefile. The
following variable assignments need to be made here:
CATALOG_NAME

The program name, as provided in the textdomain() call.

GETTEXT_FILES

List of files that contain translatable strings, i.e., those marked with gettext or an alternative
solution. Eventually, this will include nearly all source files of the program. If this list gets too
long you can make the first “file” be a + and the second word be a file that contains one file
name per line.

GETTEXT_TRIGGERS

The tools that generate message catalogs for the translators to work on need to know what
function calls contain translatable strings. By default, only gettext() calls are known. If you
used _ or other identifiers you need to list them here. If the translatable string is not the first
argument, the item needs to be of the form func:2 (for the second argument). If you have a
function that supports pluralized messages, the item should look like func:1,2 (identifying the
singular and plural message arguments).

4. Add a file po/LINGUAS, which will contain the list of provided translations — initially empty.
The build system will automatically take care of building and installing the message catalogs.

56.2.2. Message-Writing Guidelines
Here are some guidelines for writing messages that are easily translatable.
• Do not construct sentences at run-time, like:

printf("Files were %s.\n", flag ? "copied" : "removed");

The word order within the sentence might be different in other languages. Also, even if you remem-
ber to call gettext() on each fragment, the fragments might not translate well separately. It's bet-
ter to duplicate a little code so that each message to be translated is a coherent whole. Only num-
bers, file names, and such-like run-time variables should be inserted at run time into a message
text.

• For similar reasons, this won't work:
printf("copied %d file%s", n, n!=1 ? "s" : "");

because it assumes how the plural is formed. If you figured you could solve it like this:
if (n==1)
 printf("copied 1 file");
else
 printf("copied %d files", n):

then be disappointed. Some languages have more than two forms, with some peculiar rules. It's of-
ten best to design the message to avoid the issue altogether, for instance like this:
printf("number of copied files: %d", n);

2251

Native Language Support

If you really want to construct a properly pluralized message, there is support for this, but it's a bit
awkward. When generating a primary or detail error message in ereport(), you can write some-
thing like this:

errmsg_plural("copied %d file",
 "copied %d files",
 n,
 n)

The first argument is the format string appropriate for English singular form, the second is the for-
mat string appropriate for English plural form, and the third is the integer control value that deter-
mines which plural form to use. Subsequent arguments are formatted per the format string as usu-
al. (Normally, the pluralization control value will also be one of the values to be formatted, so it has
to be written twice.) In English it only matters whether n is 1 or not 1, but in other languages there
can be many different plural forms. The translator sees the two English forms as a group and has
the opportunity to supply multiple substitute strings, with the appropriate one being selected based
on the run-time value of n.

If you need to pluralize a message that isn't going directly to an errmsg or errdetail report, you
have to use the underlying function ngettext. See the gettext documentation.

• If you want to communicate something to the translator, such as about how a message is intended
to line up with other output, precede the occurrence of the string with a comment that starts with
translator, e.g.:

/* translator: This message is not what it seems to be. */

These comments are copied to the message catalog files so that the translators can see them.

2252

Chapter 57. Writing a Procedural Language
Handler

All calls to functions that are written in a language other than the current “version 1” interface for
compiled languages (this includes functions in user-defined procedural languages and functions written
in SQL) go through a call handler function for the specific language. It is the responsibility of the call
handler to execute the function in a meaningful way, such as by interpreting the supplied source text.
This chapter outlines how a new procedural language's call handler can be written.

The call handler for a procedural language is a “normal” function that must be written in a compiled
language such as C, using the version-1 interface, and registered with PostgreSQL as taking no argu-
ments and returning the type language_handler. This special pseudo-type identifies the function as a
call handler and prevents it from being called directly in SQL commands. For more details on C language
calling conventions and dynamic loading, see Section 36.10.

The call handler is called in the same way as any other function: It receives a pointer to a FunctionCal-
lInfoBaseData struct containing argument values and information about the called function, and it is
expected to return a Datum result (and possibly set the isnull field of the FunctionCallInfoBaseData
structure, if it wishes to return an SQL null result). The difference between a call handler and an ordi-
nary callee function is that the flinfo->fn_oid field of the FunctionCallInfoBaseData structure will
contain the OID of the actual function to be called, not of the call handler itself. The call handler must
use this field to determine which function to execute. Also, the passed argument list has been set up
according to the declaration of the target function, not of the call handler.

It's up to the call handler to fetch the entry of the function from the pg_proc system catalog and to
analyze the argument and return types of the called function. The AS clause from the CREATE FUNCTION
command for the function will be found in the prosrc column of the pg_proc row. This is commonly
source text in the procedural language, but in theory it could be something else, such as a path name
to a file, or anything else that tells the call handler what to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using the flinfo->fn_extra field. This will initially
be NULL, but can be set by the call handler to point at information about the called function. On subse-
quent calls, if flinfo->fn_extra is already non-NULL then it can be used and the information lookup step
skipped. The call handler must make sure that flinfo->fn_extra is made to point at memory that will
live at least until the end of the current query, since an FmgrInfo data structure could be kept that long.
One way to do this is to allocate the extra data in the memory context specified by flinfo->fn_mcxt;
such data will normally have the same lifespan as the FmgrInfo itself. But the handler could also choose
to use a longer-lived memory context so that it can cache function definition information across queries.

When a procedural-language function is invoked as a trigger, no arguments are passed in the usual way,
but the FunctionCallInfoBaseData's context field points at a TriggerData structure, rather than being
NULL as it is in a plain function call. A language handler should provide mechanisms for procedural-lan-
guage functions to get at the trigger information.

A template for a procedural-language handler written as a C extension is provided in src/test/mod-
ules/plsample. This is a working sample demonstrating one way to create a procedural-language han-
dler, process parameters, and return a value.

Although providing a call handler is sufficient to create a minimal procedural language, there are two
other functions that can optionally be provided to make the language more convenient to use. These are
a validator and an inline handler. A validator can be provided to allow language-specific checking to be
done during CREATE FUNCTION. An inline handler can be provided to allow the language to support
anonymous code blocks executed via the DO command.

If a validator is provided by a procedural language, it must be declared as a function taking a single
parameter of type oid. The validator's result is ignored, so it is customarily declared to return void.

2253

Writing a Procedur-
al Language Handler

The validator will be called at the end of a CREATE FUNCTION command that has created or updated
a function written in the procedural language. The passed-in OID is the OID of the function's pg_proc
row. The validator must fetch this row in the usual way, and do whatever checking is appropriate. First,
call CheckFunctionValidatorAccess() to diagnose explicit calls to the validator that the user could not
achieve through CREATE FUNCTION. Typical checks then include verifying that the function's argument
and result types are supported by the language, and that the function's body is syntactically correct in
the language. If the validator finds the function to be okay, it should just return. If it finds an error, it
should report that via the normal ereport() error reporting mechanism. Throwing an error will force a
transaction rollback and thus prevent the incorrect function definition from being committed.

Validator functions should typically honor the check_function_bodies parameter: if it is turned off then
any expensive or context-sensitive checking should be skipped. If the language provides for code exe-
cution at compilation time, the validator must suppress checks that would induce such execution. In
particular, this parameter is turned off by pg_dump so that it can load procedural language functions
without worrying about side effects or dependencies of the function bodies on other database objects.
(Because of this requirement, the call handler should avoid assuming that the validator has fully checked
the function. The point of having a validator is not to let the call handler omit checks, but to notify
the user immediately if there are obvious errors in a CREATE FUNCTION command.) While the choice of
exactly what to check is mostly left to the discretion of the validator function, note that the core CRE-
ATE FUNCTION code only executes SET clauses attached to a function when check_function_bodies is
on. Therefore, checks whose results might be affected by GUC parameters definitely should be skipped
when check_function_bodies is off, to avoid false failures when restoring a dump.

If an inline handler is provided by a procedural language, it must be declared as a function taking a
single parameter of type internal. The inline handler's result is ignored, so it is customarily declared to
return void. The inline handler will be called when a DO statement is executed specifying the procedural
language. The parameter actually passed is a pointer to an InlineCodeBlock struct, which contains
information about the DO statement's parameters, in particular the text of the anonymous code block to
be executed. The inline handler should execute this code and return.

It's recommended that you wrap all these function declarations, as well as the CREATE LANGUAGE com-
mand itself, into an extension so that a simple CREATE EXTENSION command is sufficient to install the
language. See Section 36.17 for information about writing extensions.

The procedural languages included in the standard distribution are good references when trying to
write your own language handler. Look into the src/pl subdirectory of the source tree. The CREATE
LANGUAGE reference page also has some useful details.

2254

Chapter 58. Writing a Foreign Data Wrapper
All operations on a foreign table are handled through its foreign data wrapper, which consists of a set
of functions that the core server calls. The foreign data wrapper is responsible for fetching data from
the remote data source and returning it to the PostgreSQL executor. If updating foreign tables is to be
supported, the wrapper must handle that, too. This chapter outlines how to write a new foreign data
wrapper.

The foreign data wrappers included in the standard distribution are good references when trying to
write your own. Look into the contrib subdirectory of the source tree. The CREATE FOREIGN DATA
WRAPPER reference page also has some useful details.

Note
The SQL standard specifies an interface for writing foreign data wrappers. However, PostgreSQL
does not implement that API, because the effort to accommodate it into PostgreSQL would be
large, and the standard API hasn't gained wide adoption anyway.

58.1. Foreign Data Wrapper Functions
The FDW author needs to implement a handler function, and optionally a validator function. Both func-
tions must be written in a compiled language such as C, using the version-1 interface. For details on C
language calling conventions and dynamic loading, see Section 36.10.

The handler function simply returns a struct of function pointers to callback functions that will be called
by the planner, executor, and various maintenance commands. Most of the effort in writing an FDW is
in implementing these callback functions. The handler function must be registered with PostgreSQL as
taking no arguments and returning the special pseudo-type fdw_handler. The callback functions are
plain C functions and are not visible or callable at the SQL level. The callback functions are described
in Section 58.2.

The validator function is responsible for validating options given in CREATE and ALTER commands for its
foreign data wrapper, as well as foreign servers, user mappings, and foreign tables using the wrapper.
The validator function must be registered as taking two arguments, a text array containing the options
to be validated, and an OID representing the type of object the options are associated with. The latter
corresponds to the OID of the system catalog the object would be stored in, one of:
• AttributeRelationId
• ForeignDataWrapperRelationId
• ForeignServerRelationId
• ForeignTableRelationId
• UserMappingRelationId

If no validator function is supplied, options are not checked at object creation time or object alteration
time.

58.2. Foreign Data Wrapper Callback Routines
The FDW handler function returns a palloc'd FdwRoutine struct containing pointers to the callback func-
tions described below. The scan-related functions are required, the rest are optional.

The FdwRoutine struct type is declared in src/include/foreign/fdwapi.h, which see for additional
details.

58.2.1. FDW Routines for Scanning Foreign Tables
void
GetForeignRelSize(PlannerInfo *root,

2255

Writing a Foreign Data Wrapper

 RelOptInfo *baserel,
 Oid foreigntableid);

Obtain relation size estimates for a foreign table. This is called at the beginning of planning for a query
that scans a foreign table. root is the planner's global information about the query; baserel is the
planner's information about this table; and foreigntableid is the pg_class OID of the foreign table.
(foreigntableid could be obtained from the planner data structures, but it's passed explicitly to save
effort.)

This function should update baserel->rows to be the expected number of rows returned by the table
scan, after accounting for the filtering done by the restriction quals. The initial value of baserel->rows
is just a constant default estimate, which should be replaced if at all possible. The function may also
choose to update baserel->width if it can compute a better estimate of the average result row width.
(The initial value is based on column data types and on column average-width values measured by the
last ANALYZE.) Also, this function may update baserel->tuples if it can compute a better estimate of
the foreign table's total row count. (The initial value is from pg_class.reltuples which represents the
total row count seen by the last ANALYZE; it will be -1 if no ANALYZE has been done on this foreign table.)

See Section 58.4 for additional information.

void
GetForeignPaths(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

Create possible access paths for a scan on a foreign table. This is called during query planning. The
parameters are the same as for GetForeignRelSize, which has already been called.

This function must generate at least one access path (ForeignPath node) for a scan on the foreign
table and must call add_path to add each such path to baserel->pathlist. It's recommended to use
create_foreignscan_path to build the ForeignPath nodes. The function can generate multiple access
paths, e.g., a path which has valid pathkeys to represent a pre-sorted result. Each access path must
contain cost estimates, and can contain any FDW-private information that is needed to identify the spe-
cific scan method intended.

See Section 58.4 for additional information.

ForeignScan *
GetForeignPlan(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid,
 ForeignPath *best_path,
 List *tlist,
 List *scan_clauses,
 Plan *outer_plan);

Create a ForeignScan plan node from the selected foreign access path. This is called at the end of query
planning. The parameters are as for GetForeignRelSize, plus the selected ForeignPath (previously
produced by GetForeignPaths, GetForeignJoinPaths, or GetForeignUpperPaths), the target list to be
emitted by the plan node, the restriction clauses to be enforced by the plan node, and the outer subplan
of the ForeignScan, which is used for rechecks performed by RecheckForeignScan. (If the path is for a
join rather than a base relation, foreigntableid is InvalidOid.)

This function must create and return a ForeignScan plan node; it's recommended to use make_foreign-
scan to build the ForeignScan node.

See Section 58.4 for additional information.

void
BeginForeignScan(ForeignScanState *node,

2256

Writing a Foreign Data Wrapper

 int eflags);

Begin executing a foreign scan. This is called during executor startup. It should perform any initializa-
tion needed before the scan can start, but not start executing the actual scan (that should be done upon
the first call to IterateForeignScan). The ForeignScanState node has already been created, but its
fdw_state field is still NULL. Information about the table to scan is accessible through the ForeignS-
canState node (in particular, from the underlying ForeignScan plan node, which contains any FDW-
private information provided by GetForeignPlan). eflags contains flag bits describing the executor's
operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform any
externally-visible actions; it should only do the minimum required to make the node state valid for Ex-
plainForeignScan and EndForeignScan.

TupleTableSlot *
IterateForeignScan(ForeignScanState *node);

Fetch one row from the foreign source, returning it in a tuple table slot (the node's ScanTupleSlot should
be used for this purpose). Return NULL if no more rows are available. The tuple table slot infrastructure
allows either a physical or virtual tuple to be returned; in most cases the latter choice is preferable from
a performance standpoint. Note that this is called in a short-lived memory context that will be reset
between invocations. Create a memory context in BeginForeignScan if you need longer-lived storage,
or use the es_query_cxt of the node's EState.

The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they must
match the row type of the foreign table being scanned. If you choose to optimize away fetching columns
that are not needed, you should insert nulls in those column positions, or else generate a fdw_scan_tlist
list with those columns omitted.

Note that PostgreSQL's executor doesn't care whether the rows returned violate any constraints that
were defined on the foreign table — but the planner does care, and may optimize queries incorrectly
if there are rows visible in the foreign table that do not satisfy a declared constraint. If a constraint is
violated when the user has declared that the constraint should hold true, it may be appropriate to raise
an error (just as you would need to do in the case of a data type mismatch).

void
ReScanForeignScan(ForeignScanState *node);

Restart the scan from the beginning. Note that any parameters the scan depends on may have changed
value, so the new scan does not necessarily return exactly the same rows.

void
EndForeignScan(ForeignScanState *node);

End the scan and release resources. It is normally not important to release palloc'd memory, but for
example open files and connections to remote servers should be cleaned up.

58.2.2. FDW Routines for Scanning Foreign Joins
If an FDW supports performing foreign joins remotely (rather than by fetching both tables' data and
doing the join locally), it should provide this callback function:

void
GetForeignJoinPaths(PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData *extra);

Create possible access paths for a join of two (or more) foreign tables that all belong to the same foreign
server. This optional function is called during query planning. As with GetForeignPaths, this function

2257

Writing a Foreign Data Wrapper

should generate ForeignPath path(s) for the supplied joinrel (use create_foreign_join_path to build
them), and call add_path to add these paths to the set of paths considered for the join. But unlike
GetForeignPaths, it is not necessary that this function succeed in creating at least one path, since paths
involving local joining are always possible.

Note that this function will be invoked repeatedly for the same join relation, with different combinations
of inner and outer relations; it is the responsibility of the FDW to minimize duplicated work.

Note also that the set of join clauses to apply to the join, which is passed as extra->restrictlist,
varies depending on the combination of inner and outer relations. A ForeignPath path generated for
the joinrel must contain the set of join clauses it uses, which will be used by the planner to convert the
ForeignPath path into a plan, if it is selected by the planner as the best path for the joinrel.

If a ForeignPath path is chosen for the join, it will represent the entire join process; paths generated
for the component tables and subsidiary joins will not be used. Subsequent processing of the join path
proceeds much as it does for a path scanning a single foreign table. One difference is that the scanrelid
of the resulting ForeignScan plan node should be set to zero, since there is no single relation that it
represents; instead, the fs_relids field of the ForeignScan node represents the set of relations that
were joined. (The latter field is set up automatically by the core planner code, and need not be filled by
the FDW.) Another difference is that, because the column list for a remote join cannot be found from
the system catalogs, the FDW must fill fdw_scan_tlist with an appropriate list of TargetEntry nodes,
representing the set of columns it will supply at run time in the tuples it returns.

Note
Beginning with PostgreSQL 16, fs_relids includes the rangetable indexes of outer joins, if any
were involved in this join. The new field fs_base_relids includes only base relation indexes, and
thus mimics fs_relids's old semantics.

See Section 58.4 for additional information.

58.2.3. FDW Routines for Planning Post-Scan/Join Processing
If an FDW supports performing remote post-scan/join processing, such as remote aggregation, it should
provide this callback function:

void
GetForeignUpperPaths(PlannerInfo *root,
 UpperRelationKind stage,
 RelOptInfo *input_rel,
 RelOptInfo *output_rel,
 void *extra);

Create possible access paths for upper relation processing, which is the planner's term for all post-scan/
join query processing, such as aggregation, window functions, sorting, and table updates. This optional
function is called during query planning. Currently, it is called only if all base relation(s) involved in the
query belong to the same FDW. This function should generate ForeignPath path(s) for any post-scan/
join processing that the FDW knows how to perform remotely (use create_foreign_upper_path to build
them), and call add_path to add these paths to the indicated upper relation. As with GetForeignJoin-
Paths, it is not necessary that this function succeed in creating any paths, since paths involving local
processing are always possible.

The stage parameter identifies which post-scan/join step is currently being considered. output_rel is
the upper relation that should receive paths representing computation of this step, and input_rel is
the relation representing the input to this step. The extra parameter provides additional details, cur-
rently, it is set only for UPPERREL_PARTIAL_GROUP_AGG or UPPERREL_GROUP_AGG, in which case it points
to a GroupPathExtraData structure; or for UPPERREL_FINAL, in which case it points to a FinalPathEx-

2258

Writing a Foreign Data Wrapper

traData structure. (Note that ForeignPath paths added to output_rel would typically not have any
direct dependency on paths of the input_rel, since their processing is expected to be done externally.
However, examining paths previously generated for the previous processing step can be useful to avoid
redundant planning work.)

See Section 58.4 for additional information.

58.2.4. FDW Routines for Updating Foreign Tables
If an FDW supports writable foreign tables, it should provide some or all of the following callback func-
tions depending on the needs and capabilities of the FDW:

void
AddForeignUpdateTargets(PlannerInfo *root,
 Index rtindex,
 RangeTblEntry *target_rte,
 Relation target_relation);

UPDATE and DELETE operations are performed against rows previously fetched by the table-scanning
functions. The FDW may need extra information, such as a row ID or the values of primary-key columns,
to ensure that it can identify the exact row to update or delete. To support that, this function can add
extra hidden, or “junk”, target columns to the list of columns that are to be retrieved from the foreign
table during an UPDATE or DELETE.

To do that, construct a Var representing an extra value you need, and pass it to add_row_identity_var,
along with a name for the junk column. (You can do this more than once if several columns are needed.)
You must choose a distinct junk column name for each different Var you need, except that Vars that
are identical except for the varno field can and should share a column name. The core system uses the
junk column names tableoid for a table's tableoid column, ctid or ctidN for ctid, wholerow for a
whole-row Var marked with vartype = RECORD, and wholerowN for a whole-row Var with vartype equal
to the table's declared row type. Re-use these names when you can (the planner will combine duplicate
requests for identical junk columns). If you need another kind of junk column besides these, it might be
wise to choose a name prefixed with your extension name, to avoid conflicts against other FDWs.

If the AddForeignUpdateTargets pointer is set to NULL, no extra target expressions are added. (This
will make it impossible to implement DELETE operations, though UPDATE may still be feasible if the FDW
relies on an unchanging primary key to identify rows.)

List *
PlanForeignModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

Perform any additional planning actions needed for an insert, update, or delete on a foreign table. This
function generates the FDW-private information that will be attached to the ModifyTable plan node that
performs the update action. This private information must have the form of a List, and will be delivered
to BeginForeignModify during the execution stage.

root is the planner's global information about the query. plan is the ModifyTable plan node, which is
complete except for the fdwPrivLists field. resultRelation identifies the target foreign table by its
range table index. subplan_index identifies which target of the ModifyTable plan node this is, counting
from zero; use this if you want to index into per-target-relation substructures of the plan node.

See Section 58.4 for additional information.

If the PlanForeignModify pointer is set to NULL, no additional plan-time actions are taken, and the
fdw_private list delivered to BeginForeignModify will be NIL.

void

2259

Writing a Foreign Data Wrapper

BeginForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 int eflags);

Begin executing a foreign table modification operation. This routine is called during executor startup.
It should perform any initialization needed prior to the actual table modifications. Subsequently, Ex-
ecForeignInsert/ExecForeignBatchInsert, ExecForeignUpdate or ExecForeignDelete will be called
for tuple(s) to be inserted, updated, or deleted.

mtstate is the overall state of the ModifyTable plan node being executed; global data about the plan and
execution state is available via this structure. rinfo is the ResultRelInfo struct describing the target
foreign table. (The ri_FdwState field of ResultRelInfo is available for the FDW to store any private state
it needs for this operation.) fdw_private contains the private data generated by PlanForeignModify, if
any. subplan_index identifies which target of the ModifyTable plan node this is. eflags contains flag
bits describing the executor's operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform any
externally-visible actions; it should only do the minimum required to make the node state valid for Ex-
plainForeignModify and EndForeignModify.

If the BeginForeignModify pointer is set to NULL, no action is taken during executor startup.

TupleTableSlot *
ExecForeignInsert(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Insert one tuple into the foreign table. estate is global execution state for the query. rinfo is the Re-
sultRelInfo struct describing the target foreign table. slot contains the tuple to be inserted; it will
match the row-type definition of the foreign table. planSlot contains the tuple that was generated by the
ModifyTable plan node's subplan; it differs from slot in possibly containing additional “junk” columns.
(The planSlot is typically of little interest for INSERT cases, but is provided for completeness.)

The return value is either a slot containing the data that was actually inserted (this might differ from
the data supplied, for example as a result of trigger actions), or NULL if no row was actually inserted
(again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.

The data in the returned slot is used only if the INSERT statement has a RETURNING clause or involves a
view WITH CHECK OPTION; or if the foreign table has an AFTER ROW trigger. Triggers require all columns,
but the FDW could choose to optimize away returning some or all columns depending on the contents
of the RETURNING clause or WITH CHECK OPTION constraints. Regardless, some slot must be returned to
indicate success, or the query's reported row count will be wrong.

If the ExecForeignInsert pointer is set to NULL, attempts to insert into the foreign table will fail with
an error message.

Note that this function is also called when inserting routed tuples into a foreign-table partition or exe-
cuting COPY FROM on a foreign table, in which case it is called in a different way than it is in the INSERT
case. See the callback functions described below that allow the FDW to support that.

TupleTableSlot **
ExecForeignBatchInsert(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot **slots,
 TupleTableSlot **planSlots,
 int *numSlots);

2260

Writing a Foreign Data Wrapper

Insert multiple tuples in bulk into the foreign table. The parameters are the same for ExecForeignInsert
except slots and planSlots contain multiple tuples and *numSlots specifies the number of tuples in
those arrays.

The return value is an array of slots containing the data that was actually inserted (this might differ from
the data supplied, for example as a result of trigger actions.) The passed-in slots can be re-used for this
purpose. The number of successfully inserted tuples is returned in *numSlots.

The data in the returned slot is used only if the INSERT statement involves a view WITH CHECK OPTION;
or if the foreign table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose
to optimize away returning some or all columns depending on the contents of the WITH CHECK OPTION
constraints.

If the ExecForeignBatchInsert or GetForeignModifyBatchSize pointer is set to NULL, attempts to in-
sert into the foreign table will use ExecForeignInsert. This function is not used if the INSERT has the
RETURNING clause.

Note that this function is also called when inserting routed tuples into a foreign-table partition or exe-
cuting COPY FROM on a foreign table, in which case it is called in a different way than it is in the INSERT
case. See the callback functions described below that allow the FDW to support that.

int
GetForeignModifyBatchSize(ResultRelInfo *rinfo);

Report the maximum number of tuples that a single ExecForeignBatchInsert call can handle for
the specified foreign table. The executor passes at most the given number of tuples to ExecForeign-
BatchInsert. rinfo is the ResultRelInfo struct describing the target foreign table. The FDW is expect-
ed to provide a foreign server and/or foreign table option for the user to set this value, or some hard-
coded value.

If the ExecForeignBatchInsert or GetForeignModifyBatchSize pointer is set to NULL, attempts to in-
sert into the foreign table will use ExecForeignInsert.

TupleTableSlot *
ExecForeignUpdate(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Update one tuple in the foreign table. estate is global execution state for the query. rinfo is the Re-
sultRelInfo struct describing the target foreign table. slot contains the new data for the tuple; it will
match the row-type definition of the foreign table. planSlot contains the tuple that was generated by
the ModifyTable plan node's subplan. Unlike slot, this tuple contains only the new values for columns
changed by the query, so do not rely on attribute numbers of the foreign table to index into planSlot.
Also, planSlot typically contains additional “junk” columns. In particular, any junk columns that were
requested by AddForeignUpdateTargets will be available from this slot.

The return value is either a slot containing the row as it was actually updated (this might differ from
the data supplied, for example as a result of trigger actions), or NULL if no row was actually updated
(again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.

The data in the returned slot is used only if the UPDATE statement has a RETURNING clause or involves a
view WITH CHECK OPTION; or if the foreign table has an AFTER ROW trigger. Triggers require all columns,
but the FDW could choose to optimize away returning some or all columns depending on the contents
of the RETURNING clause or WITH CHECK OPTION constraints. Regardless, some slot must be returned to
indicate success, or the query's reported row count will be wrong.

If the ExecForeignUpdate pointer is set to NULL, attempts to update the foreign table will fail with an
error message.

TupleTableSlot *

2261

Writing a Foreign Data Wrapper

ExecForeignDelete(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Delete one tuple from the foreign table. estate is global execution state for the query. rinfo is the Re-
sultRelInfo struct describing the target foreign table. slot contains nothing useful upon call, but can
be used to hold the returned tuple. planSlot contains the tuple that was generated by the ModifyTable
plan node's subplan; in particular, it will carry any junk columns that were requested by AddForeignUp-
dateTargets. The junk column(s) must be used to identify the tuple to be deleted.

The return value is either a slot containing the row that was deleted, or NULL if no row was deleted
(typically as a result of triggers). The passed-in slot can be used to hold the tuple to be returned.

The data in the returned slot is used only if the DELETE query has a RETURNING clause or the foreign table
has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize away
returning some or all columns depending on the contents of the RETURNING clause. Regardless, some
slot must be returned to indicate success, or the query's reported row count will be wrong.

If the ExecForeignDelete pointer is set to NULL, attempts to delete from the foreign table will fail with
an error message.

void
EndForeignModify(EState *estate,
 ResultRelInfo *rinfo);

End the table update and release resources. It is normally not important to release palloc'd memory, but
for example open files and connections to remote servers should be cleaned up.

If the EndForeignModify pointer is set to NULL, no action is taken during executor shutdown.

Tuples inserted into a partitioned table by INSERT or COPY FROM are routed to partitions. If an FDW
supports routable foreign-table partitions, it should also provide the following callback functions. These
functions are also called when COPY FROM is executed on a foreign table.

void
BeginForeignInsert(ModifyTableState *mtstate,
 ResultRelInfo *rinfo);

Begin executing an insert operation on a foreign table. This routine is called right before the first tuple
is inserted into the foreign table in both cases when it is the partition chosen for tuple routing and the
target specified in a COPY FROM command. It should perform any initialization needed prior to the actual
insertion. Subsequently, ExecForeignInsert or ExecForeignBatchInsert will be called for tuple(s) to
be inserted into the foreign table.

mtstate is the overall state of the ModifyTable plan node being executed; global data about the plan and
execution state is available via this structure. rinfo is the ResultRelInfo struct describing the target
foreign table. (The ri_FdwState field of ResultRelInfo is available for the FDW to store any private
state it needs for this operation.)

When this is called by a COPY FROM command, the plan-related global data in mtstate is not provided
and the planSlot parameter of ExecForeignInsert subsequently called for each inserted tuple is NULL,
whether the foreign table is the partition chosen for tuple routing or the target specified in the command.

If the BeginForeignInsert pointer is set to NULL, no action is taken for the initialization.

Note that if the FDW does not support routable foreign-table partitions and/or executing COPY FROM
on foreign tables, this function or ExecForeignInsert/ExecForeignBatchInsert subsequently called
must throw error as needed.

void

2262

Writing a Foreign Data Wrapper

EndForeignInsert(EState *estate,
 ResultRelInfo *rinfo);

End the insert operation and release resources. It is normally not important to release palloc'd memory,
but for example open files and connections to remote servers should be cleaned up.

If the EndForeignInsert pointer is set to NULL, no action is taken for the termination.

int
IsForeignRelUpdatable(Relation rel);

Report which update operations the specified foreign table supports. The return value should be a bit
mask of rule event numbers indicating which operations are supported by the foreign table, using the
CmdType enumeration; that is, (1 << CMD_UPDATE) = 4 for UPDATE, (1 << CMD_INSERT) = 8 for INSERT,
and (1 << CMD_DELETE) = 16 for DELETE.

If the IsForeignRelUpdatable pointer is set to NULL, foreign tables are assumed to be insertable, up-
datable, or deletable if the FDW provides ExecForeignInsert, ExecForeignUpdate, or ExecForeign-
Delete respectively. This function is only needed if the FDW supports some tables that are updatable
and some that are not. (Even then, it's permissible to throw an error in the execution routine instead
of checking in this function. However, this function is used to determine updatability for display in the
information_schema views.)

Some inserts, updates, and deletes to foreign tables can be optimized by implementing an alternative set
of interfaces. The ordinary interfaces for inserts, updates, and deletes fetch rows from the remote server
and then modify those rows one at a time. In some cases, this row-by-row approach is necessary, but
it can be inefficient. If it is possible for the foreign server to determine which rows should be modified
without actually retrieving them, and if there are no local structures which would affect the operation
(row-level local triggers, stored generated columns, or WITH CHECK OPTION constraints from parent
views), then it is possible to arrange things so that the entire operation is performed on the remote
server. The interfaces described below make this possible.

bool
PlanDirectModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

Decide whether it is safe to execute a direct modification on the remote server. If so, return true after
performing planning actions needed for that. Otherwise, return false. This optional function is called
during query planning. If this function succeeds, BeginDirectModify, IterateDirectModify and End-
DirectModify will be called at the execution stage, instead. Otherwise, the table modification will be
executed using the table-updating functions described above. The parameters are the same as for Plan-
ForeignModify.

To execute the direct modification on the remote server, this function must rewrite the target subplan
with a ForeignScan plan node that executes the direct modification on the remote server. The oper-
ation and resultRelation fields of the ForeignScan must be set appropriately. operation must be
set to the CmdType enumeration corresponding to the statement kind (that is, CMD_UPDATE for UPDATE,
CMD_INSERT for INSERT, and CMD_DELETE for DELETE), and the resultRelation argument must be copied
to the resultRelation field.

See Section 58.4 for additional information.

If the PlanDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

void
BeginDirectModify(ForeignScanState *node,
 int eflags);

2263

Writing a Foreign Data Wrapper

Prepare to execute a direct modification on the remote server. This is called during executor startup.
It should perform any initialization needed prior to the direct modification (that should be done upon
the first call to IterateDirectModify). The ForeignScanState node has already been created, but its
fdw_state field is still NULL. Information about the table to modify is accessible through the ForeignS-
canState node (in particular, from the underlying ForeignScan plan node, which contains any FDW-
private information provided by PlanDirectModify). eflags contains flag bits describing the executor's
operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform any
externally-visible actions; it should only do the minimum required to make the node state valid for Ex-
plainDirectModify and EndDirectModify.

If the BeginDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

TupleTableSlot *
IterateDirectModify(ForeignScanState *node);

When the INSERT, UPDATE or DELETE query doesn't have a RETURNING clause, just return NULL after a
direct modification on the remote server. When the query has the clause, fetch one result containing the
data needed for the RETURNING calculation, returning it in a tuple table slot (the node's ScanTupleSlot
should be used for this purpose). The data that was actually inserted, updated or deleted must be stored
in node->resultRelInfo->ri_projectReturning->pi_exprContext->ecxt_scantuple. Return NULL
if no more rows are available. Note that this is called in a short-lived memory context that will be reset
between invocations. Create a memory context in BeginDirectModify if you need longer-lived storage,
or use the es_query_cxt of the node's EState.

The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they must
match the row type of the foreign table being updated. If you choose to optimize away fetching columns
that are not needed for the RETURNING calculation, you should insert nulls in those column positions, or
else generate a fdw_scan_tlist list with those columns omitted.

Whether the query has the clause or not, the query's reported row count must be incremented by the
FDW itself. When the query doesn't have the clause, the FDW must also increment the row count for the
ForeignScanState node in the EXPLAIN ANALYZE case.

If the IterateDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

void
EndDirectModify(ForeignScanState *node);

Clean up following a direct modification on the remote server. It is normally not important to release
palloc'd memory, but for example open files and connections to the remote server should be cleaned up.

If the EndDirectModify pointer is set to NULL, no attempts to execute a direct modification on the remote
server are taken.

58.2.5. FDW Routines for TRUNCATE
void
ExecForeignTruncate(List *rels,
 DropBehavior behavior,
 bool restart_seqs);

Truncate foreign tables. This function is called when TRUNCATE is executed on a foreign table. rels is
a list of Relation data structures of foreign tables to truncate.

behavior is either DROP_RESTRICT or DROP_CASCADE indicating that the RESTRICT or CASCADE option was
requested in the original TRUNCATE command, respectively.

2264

Writing a Foreign Data Wrapper

If restart_seqs is true, the original TRUNCATE command requested the RESTART IDENTITY behavior,
otherwise the CONTINUE IDENTITY behavior was requested.

Note that the ONLY options specified in the original TRUNCATE command are not passed to ExecForeign-
Truncate. This behavior is similar to the callback functions of SELECT, UPDATE and DELETE on a foreign
table.

ExecForeignTruncate is invoked once per foreign server for which foreign tables are to be truncated.
This means that all foreign tables included in rels must belong to the same server.

If the ExecForeignTruncate pointer is set to NULL, attempts to truncate foreign tables will fail with an
error message.

58.2.6. FDW Routines for Row Locking
If an FDW wishes to support late row locking (as described in Section 58.5), it must provide the following
callback functions:

RowMarkType
GetForeignRowMarkType(RangeTblEntry *rte,
 LockClauseStrength strength);

Report which row-marking option to use for a foreign table. rte is the RangeTblEntry node for the table
and strength describes the lock strength requested by the relevant FOR UPDATE/SHARE clause, if any.
The result must be a member of the RowMarkType enum type.

This function is called during query planning for each foreign table that appears in an UPDATE, DELETE,
or SELECT FOR UPDATE/SHARE query and is not the target of UPDATE or DELETE.

If the GetForeignRowMarkType pointer is set to NULL, the ROW_MARK_COPY option is always used. (This
implies that RefetchForeignRow will never be called, so it need not be provided either.)

See Section 58.5 for more information.

void
RefetchForeignRow(EState *estate,
 ExecRowMark *erm,
 Datum rowid,
 TupleTableSlot *slot,
 bool *updated);

Re-fetch one tuple slot from the foreign table, after locking it if required. estate is global execution
state for the query. erm is the ExecRowMark struct describing the target foreign table and the row lock
type (if any) to acquire. rowid identifies the tuple to be fetched. slot contains nothing useful upon call,
but can be used to hold the returned tuple. updated is an output parameter.

This function should store the tuple into the provided slot, or clear it if the row lock couldn't be obtained.
The row lock type to acquire is defined by erm->markType, which is the value previously returned by
GetForeignRowMarkType. (ROW_MARK_REFERENCE means to just re-fetch the tuple without acquiring any
lock, and ROW_MARK_COPY will never be seen by this routine.)

In addition, *updated should be set to true if what was fetched was an updated version of the tuple rather
than the same version previously obtained. (If the FDW cannot be sure about this, always returning true
is recommended.)

Note that by default, failure to acquire a row lock should result in raising an error; returning with an
empty slot is only appropriate if the SKIP LOCKED option is specified by erm->waitPolicy.

The rowid is the ctid value previously read for the row to be re-fetched. Although the rowid value is
passed as a Datum, it can currently only be a tid. The function API is chosen in hopes that it may be
possible to allow other data types for row IDs in future.

2265

Writing a Foreign Data Wrapper

If the RefetchForeignRow pointer is set to NULL, attempts to re-fetch rows will fail with an error message.

See Section 58.5 for more information.

bool
RecheckForeignScan(ForeignScanState *node,
 TupleTableSlot *slot);

Recheck that a previously-returned tuple still matches the relevant scan and join qualifiers, and possibly
provide a modified version of the tuple. For foreign data wrappers which do not perform join pushdown,
it will typically be more convenient to set this to NULL and instead set fdw_recheck_quals appropriately.
When outer joins are pushed down, however, it isn't sufficient to reapply the checks relevant to all
the base tables to the result tuple, even if all needed attributes are present, because failure to match
some qualifier might result in some attributes going to NULL, rather than in no tuple being returned.
RecheckForeignScan can recheck qualifiers and return true if they are still satisfied and false otherwise,
but it can also store a replacement tuple into the supplied slot.

To implement join pushdown, a foreign data wrapper will typically construct an alternative local join plan
which is used only for rechecks; this will become the outer subplan of the ForeignScan. When a recheck
is required, this subplan can be executed and the resulting tuple can be stored in the slot. This plan need
not be efficient since no base table will return more than one row; for example, it may implement all joins
as nested loops. The function GetExistingLocalJoinPath may be used to search existing paths for a
suitable local join path, which can be used as the alternative local join plan. GetExistingLocalJoinPath
searches for an unparameterized path in the path list of the specified join relation. (If it does not find
such a path, it returns NULL, in which case a foreign data wrapper may build the local path by itself or
may choose not to create access paths for that join.)

58.2.7. FDW Routines for EXPLAIN
void
ExplainForeignScan(ForeignScanState *node,
 ExplainState *es);

Print additional EXPLAIN output for a foreign table scan. This function can call ExplainPropertyText
and related functions to add fields to the EXPLAIN output. The flag fields in es can be used to determine
what to print, and the state of the ForeignScanState node can be inspected to provide run-time statistics
in the EXPLAIN ANALYZE case.

If the ExplainForeignScan pointer is set to NULL, no additional information is printed during EXPLAIN.

void
ExplainForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 struct ExplainState *es);

Print additional EXPLAIN output for a foreign table update. This function can call ExplainPropertyText
and related functions to add fields to the EXPLAIN output. The flag fields in es can be used to determine
what to print, and the state of the ModifyTableState node can be inspected to provide run-time statistics
in the EXPLAIN ANALYZE case. The first four arguments are the same as for BeginForeignModify.

If the ExplainForeignModify pointer is set to NULL, no additional information is printed during EXPLAIN.

void
ExplainDirectModify(ForeignScanState *node,
 ExplainState *es);

Print additional EXPLAIN output for a direct modification on the remote server. This function can call
ExplainPropertyText and related functions to add fields to the EXPLAIN output. The flag fields in es

2266

Writing a Foreign Data Wrapper

can be used to determine what to print, and the state of the ForeignScanState node can be inspected
to provide run-time statistics in the EXPLAIN ANALYZE case.

If the ExplainDirectModify pointer is set to NULL, no additional information is printed during EXPLAIN.

58.2.8. FDW Routines for ANALYZE
bool
AnalyzeForeignTable(Relation relation,
 AcquireSampleRowsFunc *func,
 BlockNumber *totalpages);

This function is called when ANALYZE is executed on a foreign table. If the FDW can collect statistics
for this foreign table, it should return true, and provide a pointer to a function that will collect sample
rows from the table in func, plus the estimated size of the table in pages in totalpages. Otherwise,
return false.

If the FDW does not support collecting statistics for any tables, the AnalyzeForeignTable pointer can
be set to NULL.

If provided, the sample collection function must have the signature

int
AcquireSampleRowsFunc(Relation relation,
 int elevel,
 HeapTuple *rows,
 int targrows,
 double *totalrows,
 double *totaldeadrows);

A random sample of up to targrows rows should be collected from the table and stored into the caller-
provided rows array. The actual number of rows collected must be returned. In addition, store estimates
of the total numbers of live and dead rows in the table into the output parameters totalrows and to-
taldeadrows. (Set totaldeadrows to zero if the FDW does not have any concept of dead rows.)

58.2.9. FDW Routines for IMPORT FOREIGN SCHEMA
List *
ImportForeignSchema(ImportForeignSchemaStmt *stmt, Oid serverOid);

Obtain a list of foreign table creation commands. This function is called when executing IMPORT
FOREIGN SCHEMA, and is passed the parse tree for that statement, as well as the OID of the foreign
server to use. It should return a list of C strings, each of which must contain a CREATE FOREIGN TABLE
command. These strings will be parsed and executed by the core server.

Within the ImportForeignSchemaStmt struct, remote_schema is the name of the remote schema from
which tables are to be imported. list_type identifies how to filter table names: FDW_IMPORT_SCHEMA_ALL
means that all tables in the remote schema should be imported (in this case table_list is emp-
ty), FDW_IMPORT_SCHEMA_LIMIT_TO means to include only tables listed in table_list, and FDW_IM-
PORT_SCHEMA_EXCEPT means to exclude the tables listed in table_list. options is a list of options used
for the import process. The meanings of the options are up to the FDW. For example, an FDW could use
an option to define whether the NOT NULL attributes of columns should be imported. These options need
not have anything to do with those supported by the FDW as database object options.

The FDW may ignore the local_schema field of the ImportForeignSchemaStmt, because the core server
will automatically insert that name into the parsed CREATE FOREIGN TABLE commands.

The FDW does not have to concern itself with implementing the filtering specified by list_type and
table_list, either, as the core server will automatically skip any returned commands for tables ex-
cluded according to those options. However, it's often useful to avoid the work of creating commands

2267

Writing a Foreign Data Wrapper

for excluded tables in the first place. The function IsImportableForeignTable() may be useful to test
whether a given foreign-table name will pass the filter.

If the FDW does not support importing table definitions, the ImportForeignSchema pointer can be set
to NULL.

58.2.10. FDW Routines for Parallel Execution
A ForeignScan node can, optionally, support parallel execution. A parallel ForeignScan will be executed
in multiple processes and must return each row exactly once across all cooperating processes. To do this,
processes can coordinate through fixed-size chunks of dynamic shared memory. This shared memory is
not guaranteed to be mapped at the same address in every process, so it must not contain pointers. The
following functions are all optional, but most are required if parallel execution is to be supported.

bool
IsForeignScanParallelSafe(PlannerInfo *root, RelOptInfo *rel,
 RangeTblEntry *rte);

Test whether a scan can be performed within a parallel worker. This function will only be called when
the planner believes that a parallel plan might be possible, and should return true if it is safe for that
scan to run within a parallel worker. This will generally not be the case if the remote data source has
transaction semantics, unless the worker's connection to the data can somehow be made to share the
same transaction context as the leader.

If this function is not defined, it is assumed that the scan must take place within the parallel leader.
Note that returning true does not mean that the scan itself can be done in parallel, only that the scan
can be performed within a parallel worker. Therefore, it can be useful to define this method even when
parallel execution is not supported.

Size
EstimateDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt);

Estimate the amount of dynamic shared memory that will be required for parallel operation. This may be
higher than the amount that will actually be used, but it must not be lower. The return value is in bytes.
This function is optional, and can be omitted if not needed; but if it is omitted, the next three functions
must be omitted as well, because no shared memory will be allocated for the FDW's use.

void
InitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
 void *coordinate);

Initialize the dynamic shared memory that will be required for parallel operation. coordinate points to
a shared memory area of size equal to the return value of EstimateDSMForeignScan. This function is
optional, and can be omitted if not needed.

void
ReInitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
 void *coordinate);

Re-initialize the dynamic shared memory required for parallel operation when the foreign-scan plan node
is about to be re-scanned. This function is optional, and can be omitted if not needed. Recommended
practice is that this function reset only shared state, while the ReScanForeignScan function resets only
local state. Currently, this function will be called before ReScanForeignScan, but it's best not to rely
on that ordering.

void
InitializeWorkerForeignScan(ForeignScanState *node, shm_toc *toc,
 void *coordinate);

Initialize a parallel worker's local state based on the shared state set up by the leader during Initial-
izeDSMForeignScan. This function is optional, and can be omitted if not needed.

void

2268

Writing a Foreign Data Wrapper

ShutdownForeignScan(ForeignScanState *node);

Release resources when it is anticipated the node will not be executed to completion. This is not called
in all cases; sometimes, EndForeignScan may be called without this function having been called first.
Since the DSM segment used by parallel query is destroyed just after this callback is invoked, foreign
data wrappers that wish to take some action before the DSM segment goes away should implement this
method.

58.2.11. FDW Routines for Asynchronous Execution
A ForeignScan node can, optionally, support asynchronous execution as described in src/backend/ex-
ecutor/README. The following functions are all optional, but are all required if asynchronous execution
is to be supported.

bool
IsForeignPathAsyncCapable(ForeignPath *path);

Test whether a given ForeignPath path can scan the underlying foreign relation asynchronously. This
function will only be called at the end of query planning when the given path is a direct child of an
AppendPath path and when the planner believes that asynchronous execution improves performance,
and should return true if the given path is able to scan the foreign relation asynchronously.

If this function is not defined, it is assumed that the given path scans the foreign relation using Iter-
ateForeignScan. (This implies that the callback functions described below will never be called, so they
need not be provided either.)

void
ForeignAsyncRequest(AsyncRequest *areq);

Produce one tuple asynchronously from the ForeignScan node. areq is the AsyncRequest struct describ-
ing the ForeignScan node and the parent Append node that requested the tuple from it. This function
should store the tuple into the slot specified by areq->result, and set areq->request_complete to true;
or if it needs to wait on an event external to the core server such as network I/O, and cannot produce any
tuple immediately, set the flag to false, and set areq->callback_pending to true for the ForeignScan
node to get a callback from the callback functions described below. If no more tuples are available, set
the slot to NULL or an empty slot, and the areq->request_complete flag to true. It's recommended to
use ExecAsyncRequestDone or ExecAsyncRequestPending to set the output parameters in the areq.

void
ForeignAsyncConfigureWait(AsyncRequest *areq);

Configure a file descriptor event for which the ForeignScan node wishes to wait. This function will
only be called when the ForeignScan node has the areq->callback_pending flag set, and should add
the event to the as_eventset of the parent Append node described by the areq. See the comments for
ExecAsyncConfigureWait in src/backend/executor/execAsync.c for additional information. When the
file descriptor event occurs, ForeignAsyncNotify will be called.

void
ForeignAsyncNotify(AsyncRequest *areq);

Process a relevant event that has occurred, then produce one tuple asynchronously from the ForeignS-
can node. This function should set the output parameters in the areq in the same way as ForeignAsyn-
cRequest.

58.2.12. FDW Routines for Reparameterization of Paths
List *
ReparameterizeForeignPathByChild(PlannerInfo *root, List *fdw_private,
 RelOptInfo *child_rel);

This function is called while converting a path parameterized by the top-most parent of the given child
relation child_rel to be parameterized by the child relation. The function is used to reparameterize

2269

Writing a Foreign Data Wrapper

any paths or translate any expression nodes saved in the given fdw_private member of a Foreign-
Path. The callback may use reparameterize_path_by_child, adjust_appendrel_attrs or adjust_ap-
pendrel_attrs_multilevel as required.

58.3. Foreign Data Wrapper Helper Functions
Several helper functions are exported from the core server so that authors of foreign data wrappers can
get easy access to attributes of FDW-related objects, such as FDW options. To use any of these functions,
you need to include the header file foreign/foreign.h in your source file. That header also defines the
struct types that are returned by these functions.

ForeignDataWrapper *
GetForeignDataWrapperExtended(Oid fdwid, bits16 flags);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given OID. A
ForeignDataWrapper object contains properties of the FDW (see foreign/foreign.h for details). flags
is a bitwise-or'd bit mask indicating an extra set of options. It can take the value FDW_MISSING_OK, in
which case a NULL result is returned to the caller instead of an error for an undefined object.

ForeignDataWrapper *
GetForeignDataWrapper(Oid fdwid);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given OID. A
ForeignDataWrapper object contains properties of the FDW (see foreign/foreign.h for details).

ForeignServer *
GetForeignServerExtended(Oid serverid, bits16 flags);

This function returns a ForeignServer object for the foreign server with the given OID. A ForeignServer
object contains properties of the server (see foreign/foreign.h for details). flags is a bitwise-or'd bit
mask indicating an extra set of options. It can take the value FSV_MISSING_OK, in which case a NULL
result is returned to the caller instead of an error for an undefined object.

ForeignServer *
GetForeignServer(Oid serverid);

This function returns a ForeignServer object for the foreign server with the given OID. A ForeignServer
object contains properties of the server (see foreign/foreign.h for details).

UserMapping *
GetUserMapping(Oid userid, Oid serverid);

This function returns a UserMapping object for the user mapping of the given role on the given server.
(If there is no mapping for the specific user, it will return the mapping for PUBLIC, or throw error if
there is none.) A UserMapping object contains properties of the user mapping (see foreign/foreign.h
for details).

ForeignTable *
GetForeignTable(Oid relid);

This function returns a ForeignTable object for the foreign table with the given OID. A ForeignTable
object contains properties of the foreign table (see foreign/foreign.h for details).

List *
GetForeignColumnOptions(Oid relid, AttrNumber attnum);

This function returns the per-column FDW options for the column with the given foreign table OID and
attribute number, in the form of a list of DefElem. NIL is returned if the column has no options.

Some object types have name-based lookup functions in addition to the OID-based ones:

ForeignDataWrapper *

2270

Writing a Foreign Data Wrapper

GetForeignDataWrapperByName(const char *name, bool missing_ok);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given name.
If the wrapper is not found, return NULL if missing_ok is true, otherwise raise an error.

ForeignServer *
GetForeignServerByName(const char *name, bool missing_ok);

This function returns a ForeignServer object for the foreign server with the given name. If the server
is not found, return NULL if missing_ok is true, otherwise raise an error.

58.4. Foreign Data Wrapper Query Planning
The FDW callback functions GetForeignRelSize, GetForeignPaths, GetForeignPlan, PlanForeignMod-
ify, GetForeignJoinPaths, GetForeignUpperPaths, and PlanDirectModify must fit into the workings
of the PostgreSQL planner. Here are some notes about what they must do.

The information in root and baserel can be used to reduce the amount of information that has to be
fetched from the foreign table (and therefore reduce the cost). baserel->baserestrictinfo is particu-
larly interesting, as it contains restriction quals (WHERE clauses) that should be used to filter the rows to
be fetched. (The FDW itself is not required to enforce these quals, as the core executor can check them
instead.) baserel->reltarget->exprs can be used to determine which columns need to be fetched; but
note that it only lists columns that have to be emitted by the ForeignScan plan node, not columns that
are used in qual evaluation but not output by the query.

Various private fields are available for the FDW planning functions to keep information in. Generally,
whatever you store in FDW private fields should be palloc'd, so that it will be reclaimed at the end of
planning.

baserel->fdw_private is a void pointer that is available for FDW planning functions to store informa-
tion relevant to the particular foreign table. The core planner does not touch it except to initialize it to
NULL when the RelOptInfo node is created. It is useful for passing information forward from GetFor-
eignRelSize to GetForeignPaths and/or GetForeignPaths to GetForeignPlan, thereby avoiding recal-
culation.

GetForeignPaths can identify the meaning of different access paths by storing private information in the
fdw_private field of ForeignPath nodes. fdw_private is declared as a List pointer, but could actually
contain anything since the core planner does not touch it. However, best practice is to use a represen-
tation that's dumpable by nodeToString, for use with debugging support available in the backend.

GetForeignPlan can examine the fdw_private field of the selected ForeignPath node, and can generate
fdw_exprs and fdw_private lists to be placed in the ForeignScan plan node, where they will be available
at execution time. Both of these lists must be represented in a form that copyObject knows how to copy.
The fdw_private list has no other restrictions and is not interpreted by the core backend in any way.
The fdw_exprs list, if not NIL, is expected to contain expression trees that are intended to be executed
at run time. These trees will undergo post-processing by the planner to make them fully executable.

In GetForeignPlan, generally the passed-in target list can be copied into the plan node as-is. The passed
scan_clauses list contains the same clauses as baserel->baserestrictinfo, but may be re-ordered
for better execution efficiency. In simple cases the FDW can just strip RestrictInfo nodes from the
scan_clauses list (using extract_actual_clauses) and put all the clauses into the plan node's qual list,
which means that all the clauses will be checked by the executor at run time. More complex FDWs may
be able to check some of the clauses internally, in which case those clauses can be removed from the
plan node's qual list so that the executor doesn't waste time rechecking them.

As an example, the FDW might identify some restriction clauses of the form foreign_variable = sub_ex-
pression, which it determines can be executed on the remote server given the locally-evaluated value of
the sub_expression. The actual identification of such a clause should happen during GetForeignPaths,
since it would affect the cost estimate for the path. The path's fdw_private field would probably include

2271

Writing a Foreign Data Wrapper

a pointer to the identified clause's RestrictInfo node. Then GetForeignPlan would remove that clause
from scan_clauses, but add the sub_expression to fdw_exprs to ensure that it gets massaged into
executable form. It would probably also put control information into the plan node's fdw_private field
to tell the execution functions what to do at run time. The query transmitted to the remote server would
involve something like WHERE foreign_variable = $1, with the parameter value obtained at run time
from evaluation of the fdw_exprs expression tree.

Any clauses removed from the plan node's qual list must instead be added to fdw_recheck_quals or
rechecked by RecheckForeignScan in order to ensure correct behavior at the READ COMMITTED isolation
level. When a concurrent update occurs for some other table involved in the query, the executor may
need to verify that all of the original quals are still satisfied for the tuple, possibly against a different
set of parameter values. Using fdw_recheck_quals is typically easier than implementing checks inside
RecheckForeignScan, but this method will be insufficient when outer joins have been pushed down,
since the join tuples in that case might have some fields go to NULL without rejecting the tuple entirely.

Another ForeignScan field that can be filled by FDWs is fdw_scan_tlist, which describes the tuples
returned by the FDW for this plan node. For simple foreign table scans this can be set to NIL, implying
that the returned tuples have the row type declared for the foreign table. A non-NIL value must be a
target list (list of TargetEntrys) containing Vars and/or expressions representing the returned columns.
This might be used, for example, to show that the FDW has omitted some columns that it noticed won't
be needed for the query. Also, if the FDW can compute expressions used by the query more cheaply than
can be done locally, it could add those expressions to fdw_scan_tlist. Note that join plans (created
from paths made by GetForeignJoinPaths) must always supply fdw_scan_tlist to describe the set of
columns they will return.

The FDW should always construct at least one path that depends only on the table's restriction clauses.
In join queries, it might also choose to construct path(s) that depend on join clauses, for example for-
eign_variable = local_variable. Such clauses will not be found in baserel->baserestrictinfo but
must be sought in the relation's join lists. A path using such a clause is called a “parameterized path”. It
must identify the other relations used in the selected join clause(s) with a suitable value of param_info;
use get_baserel_parampathinfo to compute that value. In GetForeignPlan, the local_variable por-
tion of the join clause would be added to fdw_exprs, and then at run time the case works the same as
for an ordinary restriction clause.

If an FDW supports remote joins, GetForeignJoinPaths should produce ForeignPaths for potential
remote joins in much the same way as GetForeignPaths works for base tables. Information about the
intended join can be passed forward to GetForeignPlan in the same ways described above. However,
baserestrictinfo is not relevant for join relations; instead, the relevant join clauses for a particular
join are passed to GetForeignJoinPaths as a separate parameter (extra->restrictlist).

An FDW might additionally support direct execution of some plan actions that are above the level of scans
and joins, such as grouping or aggregation. To offer such options, the FDW should generate paths and
insert them into the appropriate upper relation. For example, a path representing remote aggregation
should be inserted into the UPPERREL_GROUP_AGG relation, using add_path. This path will be compared
on a cost basis with local aggregation performed by reading a simple scan path for the foreign relation
(note that such a path must also be supplied, else there will be an error at plan time). If the remote-ag-
gregation path wins, which it usually would, it will be converted into a plan in the usual way, by calling
GetForeignPlan. The recommended place to generate such paths is in the GetForeignUpperPaths call-
back function, which is called for each upper relation (i.e., each post-scan/join processing step), if all
the base relations of the query come from the same FDW.

PlanForeignModify and the other callbacks described in Section 58.2.4 are designed around the as-
sumption that the foreign relation will be scanned in the usual way and then individual row updates
will be driven by a local ModifyTable plan node. This approach is necessary for the general case where
an update requires reading local tables as well as foreign tables. However, if the operation could be
executed entirely by the foreign server, the FDW could generate a path representing that and insert it
into the UPPERREL_FINAL upper relation, where it would compete against the ModifyTable approach.
This approach could also be used to implement remote SELECT FOR UPDATE, rather than using the row

2272

Writing a Foreign Data Wrapper

locking callbacks described in Section 58.2.6. Keep in mind that a path inserted into UPPERREL_FINAL is
responsible for implementing all behavior of the query.

When planning an UPDATE or DELETE, PlanForeignModify and PlanDirectModify can look up the RelOp-
tInfo struct for the foreign table and make use of the baserel->fdw_private data previously created
by the scan-planning functions. However, in INSERT the target table is not scanned so there is no RelOp-
tInfo for it. The List returned by PlanForeignModify has the same restrictions as the fdw_private list
of a ForeignScan plan node, that is it must contain only structures that copyObject knows how to copy.

INSERT with an ON CONFLICT clause does not support specifying the conflict target, as unique constraints
or exclusion constraints on remote tables are not locally known. This in turn implies that ON CONFLICT
DO UPDATE is not supported, since the specification is mandatory there.

58.5. Row Locking in Foreign Data Wrappers
If an FDW's underlying storage mechanism has a concept of locking individual rows to prevent concur-
rent updates of those rows, it is usually worthwhile for the FDW to perform row-level locking with as
close an approximation as practical to the semantics used in ordinary PostgreSQL tables. There are
multiple considerations involved in this.

One key decision to be made is whether to perform early locking or late locking. In early locking, a row
is locked when it is first retrieved from the underlying store, while in late locking, the row is locked only
when it is known that it needs to be locked. (The difference arises because some rows may be discarded
by locally-checked restriction or join conditions.) Early locking is much simpler and avoids extra round
trips to a remote store, but it can cause locking of rows that need not have been locked, resulting in
reduced concurrency or even unexpected deadlocks. Also, late locking is only possible if the row to be
locked can be uniquely re-identified later. Preferably the row identifier should identify a specific version
of the row, as PostgreSQL TIDs do.

By default, PostgreSQL ignores locking considerations when interfacing to FDWs, but an FDW can per-
form early locking without any explicit support from the core code. The API functions described in Sec-
tion 58.2.6, which were added in PostgreSQL 9.5, allow an FDW to use late locking if it wishes.

An additional consideration is that in READ COMMITTED isolation mode, PostgreSQL may need to re-check
restriction and join conditions against an updated version of some target tuple. Rechecking join condi-
tions requires re-obtaining copies of the non-target rows that were previously joined to the target tuple.
When working with standard PostgreSQL tables, this is done by including the TIDs of the non-target
tables in the column list projected through the join, and then re-fetching non-target rows when required.
This approach keeps the join data set compact, but it requires inexpensive re-fetch capability, as well
as a TID that can uniquely identify the row version to be re-fetched. By default, therefore, the approach
used with foreign tables is to include a copy of the entire row fetched from a foreign table in the column
list projected through the join. This puts no special demands on the FDW but can result in reduced
performance of merge and hash joins. An FDW that is capable of meeting the re-fetch requirements can
choose to do it the first way.

For an UPDATE or DELETE on a foreign table, it is recommended that the ForeignScan operation on the
target table perform early locking on the rows that it fetches, perhaps via the equivalent of SELECT FOR
UPDATE. An FDW can detect whether a table is an UPDATE/DELETE target at plan time by comparing its relid
to root->parse->resultRelation, or at execution time by using ExecRelationIsTargetRelation(). An
alternative possibility is to perform late locking within the ExecForeignUpdate or ExecForeignDelete
callback, but no special support is provided for this.

For foreign tables that are specified to be locked by a SELECT FOR UPDATE/SHARE command, the For-
eignScan operation can again perform early locking by fetching tuples with the equivalent of SELECT FOR
UPDATE/SHARE. To perform late locking instead, provide the callback functions defined in Section 58.2.6.
In GetForeignRowMarkType, select rowmark option ROW_MARK_EXCLUSIVE, ROW_MARK_NOKEYEXCLUSIVE,
ROW_MARK_SHARE, or ROW_MARK_KEYSHARE depending on the requested lock strength. (The core code will
act the same regardless of which of these four options you choose.) Elsewhere, you can detect whether
a foreign table was specified to be locked by this type of command by using get_plan_rowmark at plan

2273

Writing a Foreign Data Wrapper

time, or ExecFindRowMark at execution time; you must check not only whether a non-null rowmark struct
is returned, but that its strength field is not LCS_NONE.

Lastly, for foreign tables that are used in an UPDATE, DELETE or SELECT FOR UPDATE/SHARE command
but are not specified to be row-locked, you can override the default choice to copy entire rows by having
GetForeignRowMarkType select option ROW_MARK_REFERENCE when it sees lock strength LCS_NONE. This
will cause RefetchForeignRow to be called with that value for markType; it should then re-fetch the row
without acquiring any new lock. (If you have a GetForeignRowMarkType function but don't wish to re-
fetch unlocked rows, select option ROW_MARK_COPY for LCS_NONE.)

See src/include/nodes/lockoptions.h, the comments for RowMarkType and PlanRowMark in src/in-
clude/nodes/plannodes.h, and the comments for ExecRowMark in src/include/nodes/execnodes.h
for additional information.

2274

Chapter 59. Writing a Table Sampling
Method

PostgreSQL's implementation of the TABLESAMPLE clause supports custom table sampling methods, in
addition to the BERNOULLI and SYSTEM methods that are required by the SQL standard. The sampling
method determines which rows of the table will be selected when the TABLESAMPLE clause is used.

At the SQL level, a table sampling method is represented by a single SQL function, typically implemented
in C, having the signature

method_name(internal) RETURNS tsm_handler

The name of the function is the same method name appearing in the TABLESAMPLE clause. The internal
argument is a dummy (always having value zero) that simply serves to prevent this function from being
called directly from an SQL command. The result of the function must be a palloc'd struct of type Tsm-
Routine, which contains pointers to support functions for the sampling method. These support functions
are plain C functions and are not visible or callable at the SQL level. The support functions are described
in Section 59.1.

In addition to function pointers, the TsmRoutine struct must provide these additional fields:

List *parameterTypes

This is an OID list containing the data type OIDs of the parameter(s) that will be accepted by the
TABLESAMPLE clause when this sampling method is used. For example, for the built-in methods, this
list contains a single item with value FLOAT4OID, which represents the sampling percentage. Custom
sampling methods can have more or different parameters.

bool repeatable_across_queries

If true, the sampling method can deliver identical samples across successive queries, if the same pa-
rameters and REPEATABLE seed value are supplied each time and the table contents have not changed.
When this is false, the REPEATABLE clause is not accepted for use with the sampling method.

bool repeatable_across_scans

If true, the sampling method can deliver identical samples across successive scans in the same query
(assuming unchanging parameters, seed value, and snapshot). When this is false, the planner will
not select plans that would require scanning the sampled table more than once, since that might
result in inconsistent query output.

The TsmRoutine struct type is declared in src/include/access/tsmapi.h, which see for additional de-
tails.

The table sampling methods included in the standard distribution are good references when trying to
write your own. Look into the src/backend/access/tablesample subdirectory of the source tree for the
built-in sampling methods, and into the contrib subdirectory for add-on methods.

59.1. Sampling Method Support Functions
The TSM handler function returns a palloc'd TsmRoutine struct containing pointers to the support func-
tions described below. Most of the functions are required, but some are optional, and those pointers
can be NULL.

void
SampleScanGetSampleSize (PlannerInfo *root,
 RelOptInfo *baserel,
 List *paramexprs,
 BlockNumber *pages,

2275

Writing a Table Sampling Method

 double *tuples);

This function is called during planning. It must estimate the number of relation pages that will be read
during a sample scan, and the number of tuples that will be selected by the scan. (For example, these
might be determined by estimating the sampling fraction, and then multiplying the baserel->pages and
baserel->tuples numbers by that, being sure to round the results to integral values.) The paramexprs
list holds the expression(s) that are parameters to the TABLESAMPLE clause. It is recommended to use
estimate_expression_value() to try to reduce these expressions to constants, if their values are need-
ed for estimation purposes; but the function must provide size estimates even if they cannot be reduced,
and it should not fail even if the values appear invalid (remember that they're only estimates of what the
run-time values will be). The pages and tuples parameters are outputs.

void
InitSampleScan (SampleScanState *node,
 int eflags);

Initialize for execution of a SampleScan plan node. This is called during executor startup. It should
perform any initialization needed before processing can start. The SampleScanState node has already
been created, but its tsm_state field is NULL. The InitSampleScan function can palloc whatever internal
state data is needed by the sampling method, and store a pointer to it in node->tsm_state. Information
about the table to scan is accessible through other fields of the SampleScanState node (but note that the
node->ss.ss_currentScanDesc scan descriptor is not set up yet). eflags contains flag bits describing
the executor's operating mode for this plan node.

When (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, the scan will not actually be performed, so this
function should only do the minimum required to make the node state valid for EXPLAIN and EndSam-
pleScan.

This function can be omitted (set the pointer to NULL), in which case BeginSampleScan must perform
all initialization needed by the sampling method.

void
BeginSampleScan (SampleScanState *node,
 Datum *params,
 int nparams,
 uint32 seed);

Begin execution of a sampling scan. This is called just before the first attempt to fetch a tuple, and may be
called again if the scan needs to be restarted. Information about the table to scan is accessible through
fields of the SampleScanState node (but note that the node->ss.ss_currentScanDesc scan descriptor
is not set up yet). The params array, of length nparams, contains the values of the parameters supplied
in the TABLESAMPLE clause. These will have the number and types specified in the sampling method's
parameterTypes list, and have been checked to not be null. seed contains a seed to use for any random
numbers generated within the sampling method; it is either a hash derived from the REPEATABLE value
if one was given, or the result of random() if not.

This function may adjust the fields node->use_bulkread and node->use_pagemode. If node-
>use_bulkread is true, which it is by default, the scan will use a buffer access strategy that encourages
recycling buffers after use. It might be reasonable to set this to false if the scan will visit only a small
fraction of the table's pages. If node->use_pagemode is true, which it is by default, the scan will perform
visibility checking in a single pass for all tuples on each visited page. It might be reasonable to set this
to false if the scan will select only a small fraction of the tuples on each visited page. That will result
in fewer tuple visibility checks being performed, though each one will be more expensive because it will
require more locking.

If the sampling method is marked repeatable_across_scans, it must be able to select the same set of
tuples during a rescan as it did originally, that is a fresh call of BeginSampleScan must lead to selecting
the same tuples as before (if the TABLESAMPLE parameters and seed don't change).

BlockNumber

2276

Writing a Table Sampling Method

NextSampleBlock (SampleScanState *node, BlockNumber nblocks);

Returns the block number of the next page to be scanned, or InvalidBlockNumber if no pages remain
to be scanned.

This function can be omitted (set the pointer to NULL), in which case the core code will perform a
sequential scan of the entire relation. Such a scan can use synchronized scanning, so that the sampling
method cannot assume that the relation pages are visited in the same order on each scan.

OffsetNumber
NextSampleTuple (SampleScanState *node,
 BlockNumber blockno,
 OffsetNumber maxoffset);

Returns the offset number of the next tuple to be sampled on the specified page, or InvalidOffsetNum-
ber if no tuples remain to be sampled. maxoffset is the largest offset number in use on the page.

Note
NextSampleTuple is not explicitly told which of the offset numbers in the range 1 .. maxoffset
actually contain valid tuples. This is not normally a problem since the core code ignores requests
to sample missing or invisible tuples; that should not result in any bias in the sample. However, if
necessary, the function can use node->donetuples to examine how many of the tuples it returned
were valid and visible.

Note
NextSampleTuple must not assume that blockno is the same page number returned by the most
recent NextSampleBlock call. It was returned by some previous NextSampleBlock call, but the
core code is allowed to call NextSampleBlock in advance of actually scanning pages, so as to
support prefetching. It is OK to assume that once sampling of a given page begins, successive
NextSampleTuple calls all refer to the same page until InvalidOffsetNumber is returned.

void
EndSampleScan (SampleScanState *node);

End the scan and release resources. It is normally not important to release palloc'd memory, but any
externally-visible resources should be cleaned up. This function can be omitted (set the pointer to NULL)
in the common case where no such resources exist.

2277

Chapter 60. Writing a Custom Scan Provider
PostgreSQL supports a set of experimental facilities which are intended to allow extension modules to
add new scan types to the system. Unlike a foreign data wrapper, which is only responsible for knowing
how to scan its own foreign tables, a custom scan provider can provide an alternative method of scanning
any relation in the system. Typically, the motivation for writing a custom scan provider will be to allow
the use of some optimization not supported by the core system, such as caching or some form of hardware
acceleration. This chapter outlines how to write a new custom scan provider.

Implementing a new type of custom scan is a three-step process. First, during planning, it is necessary
to generate access paths representing a scan using the proposed strategy. Second, if one of those access
paths is selected by the planner as the optimal strategy for scanning a particular relation, the access
path must be converted to a plan. Finally, it must be possible to execute the plan and generate the same
results that would have been generated for any other access path targeting the same relation.

60.1. Creating Custom Scan Paths
A custom scan provider will typically add paths for a base relation by setting the following hook, which is
called after the core code has generated all the access paths it can for the relation (except for Gather and
Gather Merge paths, which are made after this call so that they can use partial paths added by the hook):

typedef void (*set_rel_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *rel,
 Index rti,
 RangeTblEntry *rte);
extern PGDLLIMPORT set_rel_pathlist_hook_type set_rel_pathlist_hook;

Although this hook function can be used to examine, modify, or remove paths generated by the core
system, a custom scan provider will typically confine itself to generating CustomPath objects and adding
them to rel using add_path, or add_partial_path if they are partial paths. The custom scan provider
is responsible for initializing the CustomPath object, which is declared like this:

typedef struct CustomPath
{
 Path path;
 uint32 flags;
 List *custom_paths;
 List *custom_restrictinfo;
 List *custom_private;
 const CustomPathMethods *methods;
} CustomPath;

path must be initialized as for any other path, including the row-count estimate, start and total cost, and
sort ordering provided by this path. flags is a bit mask, which specifies whether the scan provider can
support certain optional capabilities. flags should include CUSTOMPATH_SUPPORT_BACKWARD_SCAN if the
custom path can support a backward scan, CUSTOMPATH_SUPPORT_MARK_RESTORE if it can support mark
and restore, and CUSTOMPATH_SUPPORT_PROJECTION if it can perform projections. (If CUSTOMPATH_SUP-
PORT_PROJECTION is not set, the scan node will only be asked to produce Vars of the scanned relation;
while if that flag is set, the scan node must be able to evaluate scalar expressions over these Vars.) An
optional custom_paths is a list of Path nodes used by this custom-path node; these will be transformed
into Plan nodes by planner. As described below, custom paths can be created for join relations as well.
In such a case, custom_restrictinfo should be used to store the set of join clauses to apply to the join
the custom path replaces. Otherwise it should be NIL. custom_private can be used to store the custom
path's private data. Private data should be stored in a form that can be handled by nodeToString, so
that debugging routines that attempt to print the custom path will work as designed. methods must
point to a (usually statically allocated) object implementing the required custom path methods, which
are further detailed below.

2278

Writing a Custom Scan Provider

A custom scan provider can also provide join paths. Just as for base relations, such a path must produce
the same output as would normally be produced by the join it replaces. To do this, the join provider should
set the following hook, and then within the hook function, create CustomPath path(s) for the join relation.

typedef void (*set_join_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData *extra);
extern PGDLLIMPORT set_join_pathlist_hook_type set_join_pathlist_hook;

This hook will be invoked repeatedly for the same join relation, with different combinations of inner and
outer relations; it is the responsibility of the hook to minimize duplicated work.

Note also that the set of join clauses to apply to the join, which is passed as extra->restrictlist,
varies depending on the combination of inner and outer relations. A CustomPath path generated for the
joinrel must contain the set of join clauses it uses, which will be used by the planner to convert the
CustomPath path into a plan, if it is selected by the planner as the best path for the joinrel.

60.1.1. Custom Scan Path Callbacks
Plan *(*PlanCustomPath) (PlannerInfo *root,
 RelOptInfo *rel,
 CustomPath *best_path,
 List *tlist,
 List *clauses,
 List *custom_plans);

Convert a custom path to a finished plan. The return value will generally be a CustomScan object, which
the callback must allocate and initialize. See Section 60.2 for more details.

List *(*ReparameterizeCustomPathByChild) (PlannerInfo *root,
 List *custom_private,
 RelOptInfo *child_rel);

This callback is called while converting a path parameterized by the top-most parent of the given child
relation child_rel to be parameterized by the child relation. The callback is used to reparameterize
any paths or translate any expression nodes saved in the given custom_private member of a Custom-
Path. The callback may use reparameterize_path_by_child, adjust_appendrel_attrs or adjust_ap-
pendrel_attrs_multilevel as required.

60.2. Creating Custom Scan Plans
A custom scan is represented in a finished plan tree using the following structure:

typedef struct CustomScan
{
 Scan scan;
 uint32 flags;
 List *custom_plans;
 List *custom_exprs;
 List *custom_private;
 List *custom_scan_tlist;
 Bitmapset *custom_relids;
 const CustomScanMethods *methods;
} CustomScan;

scan must be initialized as for any other scan, including estimated costs, target lists, qualifications, and
so on. flags is a bit mask with the same meaning as in CustomPath. custom_plans can be used to store
child Plan nodes. custom_exprs should be used to store expression trees that will need to be fixed up

2279

Writing a Custom Scan Provider

by setrefs.c and subselect.c, while custom_private should be used to store other private data that
is only used by the custom scan provider itself. custom_scan_tlist can be NIL when scanning a base
relation, indicating that the custom scan returns scan tuples that match the base relation's row type.
Otherwise it is a target list describing the actual scan tuples. custom_scan_tlist must be provided for
joins, and could be provided for scans if the custom scan provider can compute some non-Var expressions.
custom_relids is set by the core code to the set of relations (range table indexes) that this scan node
handles; except when this scan is replacing a join, it will have only one member. methods must point to a
(usually statically allocated) object implementing the required custom scan methods, which are further
detailed below.

When a CustomScan scans a single relation, scan.scanrelid must be the range table index of the table
to be scanned. When it replaces a join, scan.scanrelid should be zero.

Plan trees must be able to be duplicated using copyObject, so all the data stored within the “custom”
fields must consist of nodes that that function can handle. Furthermore, custom scan providers cannot
substitute a larger structure that embeds a CustomScan for the structure itself, as would be possible for
a CustomPath or CustomScanState.

60.2.1. Custom Scan Plan Callbacks
Node *(*CreateCustomScanState) (CustomScan *cscan);

Allocate a CustomScanState for this CustomScan. The actual allocation will often be larger than required
for an ordinary CustomScanState, because many providers will wish to embed that as the first field of a
larger structure. The value returned must have the node tag and methods set appropriately, but other
fields should be left as zeroes at this stage; after ExecInitCustomScan performs basic initialization, the
BeginCustomScan callback will be invoked to give the custom scan provider a chance to do whatever
else is needed.

60.3. Executing Custom Scans
When a CustomScan is executed, its execution state is represented by a CustomScanState, which is
declared as follows:

typedef struct CustomScanState
{
 ScanState ss;
 uint32 flags;
 const CustomExecMethods *methods;
} CustomScanState;

ss is initialized as for any other scan state, except that if the scan is for a join rather than a base relation,
ss.ss_currentRelation is left NULL. flags is a bit mask with the same meaning as in CustomPath
and CustomScan. methods must point to a (usually statically allocated) object implementing the required
custom scan state methods, which are further detailed below. Typically, a CustomScanState, which need
not support copyObject, will actually be a larger structure embedding the above as its first member.

60.3.1. Custom Scan Execution Callbacks
void (*BeginCustomScan) (CustomScanState *node,
 EState *estate,
 int eflags);

Complete initialization of the supplied CustomScanState. Standard fields have been initialized by Ex-
ecInitCustomScan, but any private fields should be initialized here.

TupleTableSlot *(*ExecCustomScan) (CustomScanState *node);

Fetch the next scan tuple. If any tuples remain, it should fill ps_ResultTupleSlot with the next tuple in
the current scan direction, and then return the tuple slot. If not, NULL or an empty slot should be returned.

2280

Writing a Custom Scan Provider

void (*EndCustomScan) (CustomScanState *node);

Clean up any private data associated with the CustomScanState. This method is required, but it does
not need to do anything if there is no associated data or it will be cleaned up automatically.

void (*ReScanCustomScan) (CustomScanState *node);

Rewind the current scan to the beginning and prepare to rescan the relation.

void (*MarkPosCustomScan) (CustomScanState *node);

Save the current scan position so that it can subsequently be restored by the RestrPosCustomScan
callback. This callback is optional, and need only be supplied if the CUSTOMPATH_SUPPORT_MARK_RESTORE
flag is set.

void (*RestrPosCustomScan) (CustomScanState *node);

Restore the previous scan position as saved by the MarkPosCustomScan callback. This callback is option-
al, and need only be supplied if the CUSTOMPATH_SUPPORT_MARK_RESTORE flag is set.

Size (*EstimateDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt);

Estimate the amount of dynamic shared memory that will be required for parallel operation. This may
be higher than the amount that will actually be used, but it must not be lower. The return value is in
bytes. This callback is optional, and need only be supplied if this custom scan provider supports parallel
execution.

void (*InitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

Initialize the dynamic shared memory that will be required for parallel operation. coordinate points
to a shared memory area of size equal to the return value of EstimateDSMCustomScan. This callback is
optional, and need only be supplied if this custom scan provider supports parallel execution.

void (*ReInitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

Re-initialize the dynamic shared memory required for parallel operation when the custom-scan plan
node is about to be re-scanned. This callback is optional, and need only be supplied if this custom scan
provider supports parallel execution. Recommended practice is that this callback reset only shared state,
while the ReScanCustomScan callback resets only local state. Currently, this callback will be called before
ReScanCustomScan, but it's best not to rely on that ordering.

void (*InitializeWorkerCustomScan) (CustomScanState *node,
 shm_toc *toc,
 void *coordinate);

Initialize a parallel worker's local state based on the shared state set up by the leader during Initial-
izeDSMCustomScan. This callback is optional, and need only be supplied if this custom scan provider
supports parallel execution.

void (*ShutdownCustomScan) (CustomScanState *node);

Release resources when it is anticipated the node will not be executed to completion. This is not called
in all cases; sometimes, EndCustomScan may be called without this function having been called first.
Since the DSM segment used by parallel query is destroyed just after this callback is invoked, custom
scan providers that wish to take some action before the DSM segment goes away should implement
this method.

void (*ExplainCustomScan) (CustomScanState *node,
 List *ancestors,

2281

Writing a Custom Scan Provider

 ExplainState *es);

Output additional information for EXPLAIN of a custom-scan plan node. This callback is optional. Common
data stored in the ScanState, such as the target list and scan relation, will be shown even without this
callback, but the callback allows the display of additional, private state.

2282

Chapter 61. Genetic Query Optimizer
Author

Written by Martin Utesch (<utesch@aut.tu-freiberg.de>) for the Institute of Automatic Control
at the University of Mining and Technology in Freiberg, Germany.

61.1. Query Handling as a Complex Optimization Problem
Among all relational operators the most difficult one to process and optimize is the join. The number
of possible query plans grows exponentially with the number of joins in the query. Further optimization
effort is caused by the support of a variety of join methods (e.g., nested loop, hash join, merge join in
PostgreSQL) to process individual joins and a diversity of indexes (e.g., B-tree, hash, GiST and GIN in
PostgreSQL) as access paths for relations.

The normal PostgreSQL query optimizer performs a near-exhaustive search over the space of alternative
strategies. This algorithm, first introduced in IBM's System R database, produces a near-optimal join
order, but can take an enormous amount of time and memory space when the number of joins in the
query grows large. This makes the ordinary PostgreSQL query optimizer inappropriate for queries that
join a large number of tables.

The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered some problems when it wanted to use PostgreSQL as the backend for a decision support
knowledge based system for the maintenance of an electrical power grid. The DBMS needed to handle
large join queries for the inference machine of the knowledge based system. The number of joins in
these queries made using the normal query optimizer infeasible.

In the following we describe the implementation of a genetic algorithm to solve the join ordering problem
in a manner that is efficient for queries involving large numbers of joins.

61.2. Genetic Algorithms
The genetic algorithm (GA) is a heuristic optimization method which operates through randomized
search. The set of possible solutions for the optimization problem is considered as a population of indi-
viduals. The degree of adaptation of an individual to its environment is specified by its fitness.

The coordinates of an individual in the search space are represented by chromosomes, in essence a
set of character strings. A gene is a subsection of a chromosome which encodes the value of a single
parameter being optimized. Typical encodings for a gene could be binary or integer.

Through simulation of the evolutionary operations recombination, mutation, and selection new genera-
tions of search points are found that show a higher average fitness than their ancestors. Figure 61.1
illustrates these steps.

2283

Genetic Query Optimizer

Figure 61.1. Structure of a Genetic Algorithm

INITIALIZE t := 0

INITIALIZE P(t)

evaluate FITNESS of P(t)

STOPPING CRITERION

t := t + 1 end

true

P'(t) := RECOMBINATION{P(t)}

false

P''(t) := MUTATION{P'(t)}

P(t+1) := SELECTION{P''(t) + P(t)}

evaluate FITNESS of P''(t)

P(t): generation of ancestors at a time t
P''(t): generation of descendants at a time t

According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure random
search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly non-random
(better than random).

61.3. Genetic Query Optimization (GEQO) in PostgreSQL
The GEQO module approaches the query optimization problem as though it were the well-known travel-
ing salesman problem (TSP). Possible query plans are encoded as integer strings. Each string represents
the join order from one relation of the query to the next. For example, the join tree

 /\
 /\ 2

2284

Genetic Query Optimizer

 /\ 3
4 1

is encoded by the integer string '4-1-3-2', which means, first join relation '4' and '1', then '3', and then
'2', where 1, 2, 3, 4 are relation IDs within the PostgreSQL optimizer.

Specific characteristics of the GEQO implementation in PostgreSQL are:
• Usage of a steady state GA (replacement of the least fit individuals in a population, not whole-gen-

erational replacement) allows fast convergence towards improved query plans. This is essential for
query handling with reasonable time;

• Usage of edge recombination crossover which is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate
legal TSP tours.

Parts of the GEQO module are adapted from D. Whitley's Genitor algorithm.

The GEQO module allows the PostgreSQL query optimizer to support large join queries effectively
through non-exhaustive search.

61.3.1. Generating Possible Plans with GEQO
The GEQO planning process uses the standard planner code to generate plans for scans of individual
relations. Then join plans are developed using the genetic approach. As shown above, each candidate
join plan is represented by a sequence in which to join the base relations. In the initial stage, the GEQO
code simply generates some possible join sequences at random. For each join sequence considered, the
standard planner code is invoked to estimate the cost of performing the query using that join sequence.
(For each step of the join sequence, all three possible join strategies are considered; and all the initial-
ly-determined relation scan plans are available. The estimated cost is the cheapest of these possibilities.)
Join sequences with lower estimated cost are considered “more fit” than those with higher cost. The
genetic algorithm discards the least fit candidates. Then new candidates are generated by combining
genes of more-fit candidates — that is, by using randomly-chosen portions of known low-cost join se-
quences to create new sequences for consideration. This process is repeated until a preset number of
join sequences have been considered; then the best one found at any time during the search is used to
generate the finished plan.

This process is inherently nondeterministic, because of the randomized choices made during both the ini-
tial population selection and subsequent “mutation” of the best candidates. To avoid surprising changes
of the selected plan, each run of the GEQO algorithm restarts its random number generator with the
current geqo_seed parameter setting. As long as geqo_seed and the other GEQO parameters are kept
fixed, the same plan will be generated for a given query (and other planner inputs such as statistics). To
experiment with different search paths, try changing geqo_seed.

61.3.2. Future Implementation Tasks for PostgreSQL GEQO
Work is still needed to improve the genetic algorithm parameter settings. In file src/backend/optimiz-
er/geqo/geqo_main.c, routines gimme_pool_size and gimme_number_generations, we have to find a
compromise for the parameter settings to satisfy two competing demands:
• Optimality of the query plan
• Computing time

In the current implementation, the fitness of each candidate join sequence is estimated by running the
standard planner's join selection and cost estimation code from scratch. To the extent that different
candidates use similar sub-sequences of joins, a great deal of work will be repeated. This could be
made significantly faster by retaining cost estimates for sub-joins. The problem is to avoid expending
unreasonable amounts of memory on retaining that state.

At a more basic level, it is not clear that solving query optimization with a GA algorithm designed for TSP
is appropriate. In the TSP case, the cost associated with any substring (partial tour) is independent of

2285

Genetic Query Optimizer

the rest of the tour, but this is certainly not true for query optimization. Thus it is questionable whether
edge recombination crossover is the most effective mutation procedure.

61.4. Further Reading
The following resources contain additional information about genetic algorithms:
• The Hitch-Hiker's Guide to Evolutionary Computation, (FAQ for news://comp.ai.genetic)
• Evolutionary Computation and its application to art and design, by Craig Reynolds
• elma04
• fong

2286

http://www.faqs.org/faqs/ai-faq/genetic/part1/
news://comp.ai.genetic
https://www.red3d.com/cwr/evolve.html

Chapter 62. Table Access Method Interface
Definition

This chapter explains the interface between the core PostgreSQL system and table access methods,
which manage the storage for tables. The core system knows little about these access methods beyond
what is specified here, so it is possible to develop entirely new access method types by writing add-
on code.

Each table access method is described by a row in the pg_am system catalog. The pg_am entry specifies
a name and a handler function for the table access method. These entries can be created and deleted
using the CREATE ACCESS METHOD and DROP ACCESS METHOD SQL commands.

A table access method handler function must be declared to accept a single argument of type internal
and to return the pseudo-type table_am_handler. The argument is a dummy value that simply serves to
prevent handler functions from being called directly from SQL commands.

Here is how an extension SQL script file might create a table access method handler:

CREATE OR REPLACE FUNCTION my_tableam_handler(internal)
 RETURNS table_am_handler AS 'my_extension', 'my_tableam_handler'
 LANGUAGE C STRICT;

CREATE ACCESS METHOD myam TYPE TABLE HANDLER my_tableam_handler;

The result of the function must be a pointer to a struct of type TableAmRoutine, which contains every-
thing that the core code needs to know to make use of the table access method. The return value needs to
be of server lifetime, which is typically achieved by defining it as a static const variable in global scope.

Here is how a source file with the table access method handler might look like:

#include "postgres.h"

#include "access/tableam.h"
#include "fmgr.h"

PG_MODULE_MAGIC;

static const TableAmRoutine my_tableam_methods = {
 .type = T_TableAmRoutine,

 /* Methods of TableAmRoutine omitted from example, add them here. */
};

PG_FUNCTION_INFO_V1(my_tableam_handler);

Datum
my_tableam_handler(PG_FUNCTION_ARGS)
{
 PG_RETURN_POINTER(&my_tableam_methods);
}

The TableAmRoutine struct, also called the access method's API struct, defines the behavior of the ac-
cess method using callbacks. These callbacks are pointers to plain C functions and are not visible or
callable at the SQL level. All the callbacks and their behavior is defined in the TableAmRoutine structure
(with comments inside the struct defining the requirements for callbacks). Most callbacks have wrapper
functions, which are documented from the point of view of a user (rather than an implementor) of the
table access method. For details, please refer to the src/include/access/tableam.h file.

2287

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/tableam.h;hb=HEAD

Table Access Method
Interface Definition

To implement an access method, an implementor will typically need to implement an AM-specific type of
tuple table slot (see src/include/executor/tuptable.h), which allows code outside the access method
to hold references to tuples of the AM, and to access the columns of the tuple.

Currently, the way an AM actually stores data is fairly unconstrained. For example, it's possible, but
not required, to use postgres' shared buffer cache. In case it is used, it likely makes sense to use Post-
greSQL's standard page layout as described in Section 66.6.

One fairly large constraint of the table access method API is that, currently, if the AM wants to support
modifications and/or indexes, it is necessary for each tuple to have a tuple identifier (TID) consisting
of a block number and an item number (see also Section 66.6). It is not strictly necessary that the sub-
parts of TIDs have the same meaning they e.g., have for heap, but if bitmap scan support is desired (it
is optional), the block number needs to provide locality.

For crash safety, an AM can use postgres' WAL, or a custom implementation. If WAL is chosen, either
Generic WAL Records can be used, or a Custom WAL Resource Manager can be implemented.

To implement transactional support in a manner that allows different table access methods be accessed
within a single transaction, it likely is necessary to closely integrate with the machinery in src/back-
end/access/transam/xlog.c.

Any developer of a new table access method can refer to the existing heap implementation present in
src/backend/access/heap/heapam_handler.c for details of its implementation.

2288

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/executor/tuptable.h;hb=HEAD

Chapter 63. Index Access Method Interface
Definition

This chapter defines the interface between the core PostgreSQL system and index access methods, which
manage individual index types. The core system knows nothing about indexes beyond what is specified
here, so it is possible to develop entirely new index types by writing add-on code.

All indexes in PostgreSQL are what are known technically as secondary indexes; that is, the index is
physically separate from the table file that it describes. Each index is stored as its own physical relation
and so is described by an entry in the pg_class catalog. The contents of an index are entirely under
the control of its index access method. In practice, all index access methods divide indexes into stan-
dard-size pages so that they can use the regular storage manager and buffer manager to access the index
contents. (All the existing index access methods furthermore use the standard page layout described in
Section 66.6, and most use the same format for index tuple headers; but these decisions are not forced
on an access method.)

An index is effectively a mapping from some data key values to tuple identifiers, or TIDs, of row versions
(tuples) in the index's parent table. A TID consists of a block number and an item number within that
block (see Section 66.6). This is sufficient information to fetch a particular row version from the table.
Indexes are not directly aware that under MVCC, there might be multiple extant versions of the same
logical row; to an index, each tuple is an independent object that needs its own index entry. Thus, an
update of a row always creates all-new index entries for the row, even if the key values did not change.
(HOT tuples are an exception to this statement; but indexes do not deal with those, either.) Index entries
for dead tuples are reclaimed (by vacuuming) when the dead tuples themselves are reclaimed.

63.1. Basic API Structure for Indexes
Each index access method is described by a row in the pg_am system catalog. The pg_am entry specifies
a name and a handler function for the index access method. These entries can be created and deleted
using the CREATE ACCESS METHOD and DROP ACCESS METHOD SQL commands.

An index access method handler function must be declared to accept a single argument of type internal
and to return the pseudo-type index_am_handler. The argument is a dummy value that simply serves
to prevent handler functions from being called directly from SQL commands. The result of the function
must be a palloc'd struct of type IndexAmRoutine, which contains everything that the core code needs
to know to make use of the index access method. The IndexAmRoutine struct, also called the access
method's API struct, includes fields specifying assorted fixed properties of the access method, such as
whether it can support multicolumn indexes. More importantly, it contains pointers to support functions
for the access method, which do all of the real work to access indexes. These support functions are
plain C functions and are not visible or callable at the SQL level. The support functions are described
in Section 63.2.

The structure IndexAmRoutine is defined thus:
typedef struct IndexAmRoutine
{
 NodeTag type;

 /*
 * Total number of strategies (operators) by which we can traverse/search
 * this AM. Zero if AM does not have a fixed set of strategy assignments.
 */
 uint16 amstrategies;
 /* total number of support functions that this AM uses */
 uint16 amsupport;
 /* opclass options support function number or 0 */
 uint16 amoptsprocnum;
 /* does AM support ORDER BY indexed column's value? */

2289

Index Access Method
Interface Definition

 bool amcanorder;
 /* does AM support ORDER BY result of an operator on indexed column? */
 bool amcanorderbyop;
 /* does AM support hashing using API consistent with the hash AM? */
 bool amcanhash;
 /* do operators within an opfamily have consistent equality semantics? */
 bool amconsistentequality;
 /* do operators within an opfamily have consistent ordering semantics? */
 bool amconsistentordering;
 /* does AM support backward scanning? */
 bool amcanbackward;
 /* does AM support UNIQUE indexes? */
 bool amcanunique;
 /* does AM support multi-column indexes? */
 bool amcanmulticol;
 /* does AM require scans to have a constraint on the first index column? */
 bool amoptionalkey;
 /* does AM handle ScalarArrayOpExpr quals? */
 bool amsearcharray;
 /* does AM handle IS NULL/IS NOT NULL quals? */
 bool amsearchnulls;
 /* can index storage data type differ from column data type? */
 bool amstorage;
 /* can an index of this type be clustered on? */
 bool amclusterable;
 /* does AM handle predicate locks? */
 bool ampredlocks;
 /* does AM support parallel scan? */
 bool amcanparallel;
 /* does AM support parallel build? */
 bool amcanbuildparallel;
 /* does AM support columns included with clause INCLUDE? */
 bool amcaninclude;
 /* does AM use maintenance_work_mem? */
 bool amusemaintenanceworkmem;
 /* does AM summarize tuples, with at least all tuples in the block
 * summarized in one summary */
 bool amsummarizing;
 /* OR of parallel vacuum flags */
 uint8 amparallelvacuumoptions;
 /* type of data stored in index, or InvalidOid if variable */
 Oid amkeytype;

 /* interface functions */
 ambuild_function ambuild;
 ambuildempty_function ambuildempty;
 aminsert_function aminsert;
 aminsertcleanup_function aminsertcleanup; /* can be NULL */
 ambulkdelete_function ambulkdelete;
 amvacuumcleanup_function amvacuumcleanup;
 amcanreturn_function amcanreturn; /* can be NULL */
 amcostestimate_function amcostestimate;
 amgettreeheight_function amgettreeheight; /* can be NULL */
 amoptions_function amoptions;
 amproperty_function amproperty; /* can be NULL */
 ambuildphasename_function ambuildphasename; /* can be NULL */
 amvalidate_function amvalidate;
 amadjustmembers_function amadjustmembers; /* can be NULL */

2290

Index Access Method
Interface Definition

 ambeginscan_function ambeginscan;
 amrescan_function amrescan;
 amgettuple_function amgettuple; /* can be NULL */
 amgetbitmap_function amgetbitmap; /* can be NULL */
 amendscan_function amendscan;
 ammarkpos_function ammarkpos; /* can be NULL */
 amrestrpos_function amrestrpos; /* can be NULL */

 /* interface functions to support parallel index scans */
 amestimateparallelscan_function amestimateparallelscan; /* can be NULL */
 aminitparallelscan_function aminitparallelscan; /* can be NULL */
 amparallelrescan_function amparallelrescan; /* can be NULL */

 /* interface functions to support planning */
 amtranslate_strategy_function amtranslatestrategy; /* can be NULL */
 amtranslate_cmptype_function amtranslatecmptype; /* can be NULL */
} IndexAmRoutine;

To be useful, an index access method must also have one or more operator families and operator classes
defined in pg_opfamily, pg_opclass, pg_amop, and pg_amproc. These entries allow the planner to deter-
mine what kinds of query qualifications can be used with indexes of this access method. Operator fami-
lies and classes are described in Section 36.16, which is prerequisite material for reading this chapter.

An individual index is defined by a pg_class entry that describes it as a physical relation, plus a pg_index
entry that shows the logical content of the index — that is, the set of index columns it has and the
semantics of those columns, as captured by the associated operator classes. The index columns (key
values) can be either simple columns of the underlying table or expressions over the table rows. The index
access method normally has no interest in where the index key values come from (it is always handed
precomputed key values) but it will be very interested in the operator class information in pg_index.
Both of these catalog entries can be accessed as part of the Relation data structure that is passed to
all operations on the index.

Some of the flag fields of IndexAmRoutine have nonobvious implications. The requirements of amca-
nunique are discussed in Section 63.5. The amcanmulticol flag asserts that the access method supports
multi-key-column indexes, while amoptionalkey asserts that it allows scans where no indexable restric-
tion clause is given for the first index column. When amcanmulticol is false, amoptionalkey essentially
says whether the access method supports full-index scans without any restriction clause. Access meth-
ods that support multiple index columns must support scans that omit restrictions on any or all of the
columns after the first; however they are permitted to require some restriction to appear for the first
index column, and this is signaled by setting amoptionalkey false. One reason that an index AM might
set amoptionalkey false is if it doesn't index null values. Since most indexable operators are strict and
hence cannot return true for null inputs, it is at first sight attractive to not store index entries for null
values: they could never be returned by an index scan anyway. However, this argument fails when an
index scan has no restriction clause for a given index column. In practice this means that indexes that
have amoptionalkey true must index nulls, since the planner might decide to use such an index with
no scan keys at all. A related restriction is that an index access method that supports multiple index
columns must support indexing null values in columns after the first, because the planner will assume
the index can be used for queries that do not restrict these columns. For example, consider an index on
(a,b) and a query with WHERE a = 4. The system will assume the index can be used to scan for rows with
a = 4, which is wrong if the index omits rows where b is null. It is, however, OK to omit rows where the
first indexed column is null. An index access method that does index nulls may also set amsearchnulls,
indicating that it supports IS NULL and IS NOT NULL clauses as search conditions.

The amcaninclude flag indicates whether the access method supports “included” columns, that is it can
store (without processing) additional columns beyond the key column(s). The requirements of the pre-
ceding paragraph apply only to the key columns. In particular, the combination of amcanmulticol=false
and amcaninclude=true is sensible: it means that there can only be one key column, but there can also

2291

Index Access Method
Interface Definition

be included column(s). Also, included columns must be allowed to be null, independently of amoption-
alkey.

The amsummarizing flag indicates whether the access method summarizes the indexed tuples, with sum-
marizing granularity of at least per block. Access methods that do not point to individual tuples, but to
block ranges (like BRIN), may allow the HOT optimization to continue. This does not apply to attributes
referenced in index predicates, an update of such an attribute always disables HOT.

63.2. Index Access Method Functions
The index construction and maintenance functions that an index access method must provide in Index-
AmRoutine are:

IndexBuildResult *
ambuild (Relation heapRelation,
 Relation indexRelation,
 IndexInfo *indexInfo);

Build a new index. The index relation has been physically created, but is empty. It must be filled in with
whatever fixed data the access method requires, plus entries for all tuples already existing in the table.
Ordinarily the ambuild function will call table_index_build_scan() to scan the table for existing tuples
and compute the keys that need to be inserted into the index. The function must return a palloc'd struct
containing statistics about the new index. The amcanbuildparallel flag indicates whether the access
method supports parallel index builds. When set to true, the system will attempt to allocate parallel
workers for the build. Access methods supporting only non-parallel index builds should leave this flag
set to false.

void
ambuildempty (Relation indexRelation);

Build an empty index, and write it to the initialization fork (INIT_FORKNUM) of the given relation. This
method is called only for unlogged indexes; the empty index written to the initialization fork will be
copied over the main relation fork on each server restart.

bool
aminsert (Relation indexRelation,
 Datum *values,
 bool *isnull,
 ItemPointer heap_tid,
 Relation heapRelation,
 IndexUniqueCheck checkUnique,
 bool indexUnchanged,
 IndexInfo *indexInfo);

Insert a new tuple into an existing index. The values and isnull arrays give the key values to be indexed,
and heap_tid is the TID to be indexed. If the access method supports unique indexes (its amcanunique
flag is true) then checkUnique indicates the type of uniqueness check to perform. This varies depending
on whether the unique constraint is deferrable; see Section 63.5 for details. Normally the access method
only needs the heapRelation parameter when performing uniqueness checking (since then it will have
to look into the heap to verify tuple liveness).

The indexUnchanged Boolean value gives a hint about the nature of the tuple to be indexed. When it is
true, the tuple is a duplicate of some existing tuple in the index. The new tuple is a logically unchanged
successor MVCC tuple version. This happens when an UPDATE takes place that does not modify any
columns covered by the index, but nevertheless requires a new version in the index. The index AM may
use this hint to decide to apply bottom-up index deletion in parts of the index where many versions of
the same logical row accumulate. Note that updating a non-key column or a column that only appears in
a partial index predicate does not affect the value of indexUnchanged. The core code determines each
tuple's indexUnchanged value using a low overhead approach that allows both false positives and false

2292

Index Access Method
Interface Definition

negatives. Index AMs must not treat indexUnchanged as an authoritative source of information about
tuple visibility or versioning.

The function's Boolean result value is significant only when checkUnique is UNIQUE_CHECK_PARTIAL. In
this case a true result means the new entry is known unique, whereas false means it might be non-
unique (and a deferred uniqueness check must be scheduled). For other cases a constant false result
is recommended.

Some indexes might not index all tuples. If the tuple is not to be indexed, aminsert should just return
without doing anything.

If the index AM wishes to cache data across successive index insertions within an SQL statement, it can
allocate space in indexInfo->ii_Context and store a pointer to the data in indexInfo->ii_AmCache
(which will be NULL initially). If resources other than memory have to be released after index insertions,
aminsertcleanup may be provided, which will be called before the memory is released.

void
aminsertcleanup (Relation indexRelation,
 IndexInfo *indexInfo);

Clean up state that was maintained across successive inserts in indexInfo->ii_AmCache. This is useful
if the data requires additional cleanup steps (e.g., releasing pinned buffers), and simply releasing the
memory is not sufficient.

IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats,
 IndexBulkDeleteCallback callback,
 void *callback_state);

Delete tuple(s) from the index. This is a “bulk delete” operation that is intended to be implemented by
scanning the whole index and checking each entry to see if it should be deleted. The passed-in callback
function must be called, in the style callback(TID, callback_state) returns bool, to determine
whether any particular index entry, as identified by its referenced TID, is to be deleted. Must return
either NULL or a palloc'd struct containing statistics about the effects of the deletion operation. It is OK
to return NULL if no information needs to be passed on to amvacuumcleanup.

Because of limited maintenance_work_mem, ambulkdelete might need to be called more than once when
many tuples are to be deleted. The stats argument is the result of the previous call for this index (it is
NULL for the first call within a VACUUM operation). This allows the AM to accumulate statistics across
the whole operation. Typically, ambulkdelete will modify and return the same struct if the passed stats
is not null.

IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats);

Clean up after a VACUUM operation (zero or more ambulkdelete calls). This does not have to do anything
beyond returning index statistics, but it might perform bulk cleanup such as reclaiming empty index
pages. stats is whatever the last ambulkdelete call returned, or NULL if ambulkdelete was not called
because no tuples needed to be deleted. If the result is not NULL it must be a palloc'd struct. The
statistics it contains will be used to update pg_class, and will be reported by VACUUM if VERBOSE is given.
It is OK to return NULL if the index was not changed at all during the VACUUM operation, but otherwise
correct stats should be returned.

amvacuumcleanup will also be called at completion of an ANALYZE operation. In this case stats is always
NULL and any return value will be ignored. This case can be distinguished by checking info->ana-
lyze_only. It is recommended that the access method do nothing except post-insert cleanup in such a
call, and that only in an autovacuum worker process.

bool

2293

Index Access Method
Interface Definition

amcanreturn (Relation indexRelation, int attno);

Check whether the index can support index-only scans on the given column, by returning the column's
original indexed value. The attribute number is 1-based, i.e., the first column's attno is 1. Returns true if
supported, else false. This function should always return true for included columns (if those are support-
ed), since there's little point in an included column that can't be retrieved. If the access method does not
support index-only scans at all, the amcanreturn field in its IndexAmRoutine struct can be set to NULL.

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

Estimate the costs of an index scan. This function is described fully in Section 63.6, below.

int
amgettreeheight (Relation rel);

Compute the height of a tree-shaped index. This information is supplied to the amcostestimate function
in path->indexinfo->tree_height and can be used to support the cost estimation. The result is not
used anywhere else, so this function can actually be used to compute any kind of data (that fits into
an integer) about the index that the cost estimation function might want to know. If the computation is
expensive, it could be useful to cache the result as part of RelationData.rd_amcache.

bytea *
amoptions (ArrayType *reloptions,
 bool validate);

Parse and validate the reloptions array for an index. This is called only when a non-null reloptions array
exists for the index. reloptions is a text array containing entries of the form name=value. The function
should construct a bytea value, which will be copied into the rd_options field of the index's relcache
entry. The data contents of the bytea value are open for the access method to define; most of the standard
access methods use struct StdRdOptions. When validate is true, the function should report a suitable
error message if any of the options are unrecognized or have invalid values; when validate is false,
invalid entries should be silently ignored. (validate is false when loading options already stored in
pg_catalog; an invalid entry could only be found if the access method has changed its rules for options,
and in that case ignoring obsolete entries is appropriate.) It is OK to return NULL if default behavior
is wanted.

bool
amproperty (Oid index_oid, int attno,
 IndexAMProperty prop, const char *propname,
 bool *res, bool *isnull);

The amproperty method allows index access methods to override the default behavior of pg_index_col-
umn_has_property and related functions. If the access method does not have any special behavior for in-
dex property inquiries, the amproperty field in its IndexAmRoutine struct can be set to NULL. Otherwise,
the amproperty method will be called with index_oid and attno both zero for pg_indexam_has_prop-
erty calls, or with index_oid valid and attno zero for pg_index_has_property calls, or with index_oid
valid and attno greater than zero for pg_index_column_has_property calls. prop is an enum value
identifying the property being tested, while propname is the original property name string. If the core
code does not recognize the property name then prop is AMPROP_UNKNOWN. Access methods can define
custom property names by checking propname for a match (use pg_strcasecmp to match, for consistency
with the core code); for names known to the core code, it's better to inspect prop. If the amproperty
method returns true then it has determined the property test result: it must set *res to the Boolean
value to return, or set *isnull to true to return a NULL. (Both of the referenced variables are initialized

2294

Index Access Method
Interface Definition

to false before the call.) If the amproperty method returns false then the core code will proceed with
its normal logic for determining the property test result.

Access methods that support ordering operators should implement AMPROP_DISTANCE_ORDERABLE prop-
erty testing, as the core code does not know how to do that and will return NULL. It may also be advan-
tageous to implement AMPROP_RETURNABLE testing, if that can be done more cheaply than by opening the
index and calling amcanreturn, which is the core code's default behavior. The default behavior should
be satisfactory for all other standard properties.

char *
ambuildphasename (int64 phasenum);

Return the textual name of the given build phase number. The phase numbers are those reported during
an index build via the pgstat_progress_update_param interface. The phase names are then exposed in
the pg_stat_progress_create_index view.

bool
amvalidate (Oid opclassoid);

Validate the catalog entries for the specified operator class, so far as the access method can reasonably
do that. For example, this might include testing that all required support functions are provided. The
amvalidate function must return false if the opclass is invalid. Problems should be reported with ereport
messages, typically at INFO level.

void
amadjustmembers (Oid opfamilyoid,
 Oid opclassoid,
 List *operators,
 List *functions);

Validate proposed new operator and function members of an operator family, so far as the access method
can reasonably do that, and set their dependency types if the default is not satisfactory. This is called
during CREATE OPERATOR CLASS and during ALTER OPERATOR FAMILY ADD; in the latter case opclassoid is
InvalidOid. The List arguments are lists of OpFamilyMember structs, as defined in amapi.h. Tests done
by this function will typically be a subset of those performed by amvalidate, since amadjustmembers
cannot assume that it is seeing a complete set of members. For example, it would be reasonable to
check the signature of a support function, but not to check whether all required support functions are
provided. Any problems can be reported by throwing an error. The dependency-related fields of the
OpFamilyMember structs are initialized by the core code to create hard dependencies on the opclass if this
is CREATE OPERATOR CLASS, or soft dependencies on the opfamily if this is ALTER OPERATOR FAMILY ADD.
amadjustmembers can adjust these fields if some other behavior is more appropriate. For example, GIN,
GiST, and SP-GiST always set operator members to have soft dependencies on the opfamily, since the
connection between an operator and an opclass is relatively weak in these index types; so it is reasonable
to allow operator members to be added and removed freely. Optional support functions are typically also
given soft dependencies, so that they can be removed if necessary.

The purpose of an index, of course, is to support scans for tuples matching an indexable WHERE condi-
tion, often called a qualifier or scan key. The semantics of index scanning are described more fully in
Section 63.3, below. An index access method can support “plain” index scans, “bitmap” index scans, or
both. The scan-related functions that an index access method must or may provide are:

IndexScanDesc
ambeginscan (Relation indexRelation,
 int nkeys,
 int norderbys);

Prepare for an index scan. The nkeys and norderbys parameters indicate the number of quals and or-
dering operators that will be used in the scan; these may be useful for space allocation purposes. Note
that the actual values of the scan keys aren't provided yet. The result must be a palloc'd struct. For im-
plementation reasons the index access method must create this struct by calling RelationGetIndexS-

2295

Index Access Method
Interface Definition

can(). In most cases ambeginscan does little beyond making that call and perhaps acquiring locks; the
interesting parts of index-scan startup are in amrescan.

void
amrescan (IndexScanDesc scan,
 ScanKey keys,
 int nkeys,
 ScanKey orderbys,
 int norderbys);

Start or restart an index scan, possibly with new scan keys. (To restart using previously-passed keys,
NULL is passed for keys and/or orderbys.) Note that it is not allowed for the number of keys or order-by
operators to be larger than what was passed to ambeginscan. In practice the restart feature is used
when a new outer tuple is selected by a nested-loop join and so a new key comparison value is needed,
but the scan key structure remains the same.

bool
amgettuple (IndexScanDesc scan,
 ScanDirection direction);

Fetch the next tuple in the given scan, moving in the given direction (forward or backward in the index).
Returns true if a tuple was obtained, false if no matching tuples remain. In the true case the tuple TID
is stored into the scan structure. Note that “success” means only that the index contains an entry that
matches the scan keys, not that the tuple necessarily still exists in the heap or will pass the caller's
snapshot test. On success, amgettuple must also set scan->xs_recheck to true or false. False means it
is certain that the index entry matches the scan keys. True means this is not certain, and the conditions
represented by the scan keys must be rechecked against the heap tuple after fetching it. This provision
supports “lossy” index operators. Note that rechecking will extend only to the scan conditions; a partial
index predicate (if any) is never rechecked by amgettuple callers.

If the index supports index-only scans (i.e., amcanreturn returns true for any of its columns), then on
success the AM must also check scan->xs_want_itup, and if that is true it must return the originally
indexed data for the index entry. Columns for which amcanreturn returns false can be returned as
nulls. The data can be returned in the form of an IndexTuple pointer stored at scan->xs_itup, with
tuple descriptor scan->xs_itupdesc; or in the form of a HeapTuple pointer stored at scan->xs_hitup,
with tuple descriptor scan->xs_hitupdesc. (The latter format should be used when reconstructing data
that might possibly not fit into an IndexTuple.) In either case, management of the data referenced by
the pointer is the access method's responsibility. The data must remain good at least until the next
amgettuple, amrescan, or amendscan call for the scan.

The amgettuple function need only be provided if the access method supports “plain” index scans. If it
doesn't, the amgettuple field in its IndexAmRoutine struct must be set to NULL.

int64
amgetbitmap (IndexScanDesc scan,
 TIDBitmap *tbm);

Fetch all tuples in the given scan and add them to the caller-supplied TIDBitmap (that is, OR the set
of tuple IDs into whatever set is already in the bitmap). The number of tuples fetched is returned (this
might be just an approximate count, for instance some AMs do not detect duplicates). While inserting
tuple IDs into the bitmap, amgetbitmap can indicate that rechecking of the scan conditions is required
for specific tuple IDs. This is analogous to the xs_recheck output parameter of amgettuple. Note: in
the current implementation, support for this feature is conflated with support for lossy storage of the
bitmap itself, and therefore callers recheck both the scan conditions and the partial index predicate
(if any) for recheckable tuples. That might not always be true, however. amgetbitmap and amgettuple
cannot be used in the same index scan; there are other restrictions too when using amgetbitmap, as
explained in Section 63.3.

The amgetbitmap function need only be provided if the access method supports “bitmap” index scans.
If it doesn't, the amgetbitmap field in its IndexAmRoutine struct must be set to NULL.

2296

Index Access Method
Interface Definition

void
amendscan (IndexScanDesc scan);

End a scan and release resources. The scan struct itself should not be freed, but any locks or pins taken
internally by the access method must be released, as well as any other memory allocated by ambeginscan
and other scan-related functions.

void
ammarkpos (IndexScanDesc scan);

Mark current scan position. The access method need only support one remembered scan position per
scan.

The ammarkpos function need only be provided if the access method supports ordered scans. If it doesn't,
the ammarkpos field in its IndexAmRoutine struct may be set to NULL.

void
amrestrpos (IndexScanDesc scan);

Restore the scan to the most recently marked position.

The amrestrpos function need only be provided if the access method supports ordered scans. If it doesn't,
the amrestrpos field in its IndexAmRoutine struct may be set to NULL.

In addition to supporting ordinary index scans, some types of index may wish to support parallel index
scans, which allow multiple backends to cooperate in performing an index scan. The index access method
should arrange things so that each cooperating process returns a subset of the tuples that would be
performed by an ordinary, non-parallel index scan, but in such a way that the union of those subsets is
equal to the set of tuples that would be returned by an ordinary, non-parallel index scan. Furthermore,
while there need not be any global ordering of tuples returned by a parallel scan, the ordering of that
subset of tuples returned within each cooperating backend must match the requested ordering. The
following functions may be implemented to support parallel index scans:

Size
amestimateparallelscan (Relation indexRelation,
 int nkeys,
 int norderbys);

Estimate and return the number of bytes of dynamic shared memory which the access method will be
needed to perform a parallel scan. (This number is in addition to, not in lieu of, the amount of space
needed for AM-independent data in ParallelIndexScanDescData.)

The nkeys and norderbys parameters indicate the number of quals and ordering operators that will be
used in the scan; the same values will be passed to amrescan. Note that the actual values of the scan
keys aren't provided yet.

It is not necessary to implement this function for access methods which do not support parallel scans or
for which the number of additional bytes of storage required is zero.

void
aminitparallelscan (void *target);

This function will be called to initialize dynamic shared memory at the beginning of a parallel scan.
target will point to at least the number of bytes previously returned by amestimateparallelscan, and
this function may use that amount of space to store whatever data it wishes.

It is not necessary to implement this function for access methods which do not support parallel scans or
in cases where the shared memory space required needs no initialization.

void
amparallelrescan (IndexScanDesc scan);

2297

Index Access Method
Interface Definition

This function, if implemented, will be called when a parallel index scan must be restarted. It should reset
any shared state set up by aminitparallelscan such that the scan will be restarted from the beginning.

CompareType
amtranslatestrategy (StrategyNumber strategy, Oid opfamily, Oid opcintype);

StrategyNumber
amtranslatecmptype (CompareType cmptype, Oid opfamily, Oid opcintype);

These functions, if implemented, will be called by the planner and executor to convert between fixed
CompareType values and the specific strategy numbers used by the access method. These functions can
be implemented by access methods that implement functionality similar to the built-in btree or hash
access methods, and by implementing these translations, the system can learn about the semantics of
the access method's operations and can use them in place of btree or hash indexes in various places. If
the functionality of the access method is not similar to those built-in access methods, these functions do
not need to be implemented. If the functions are not implemented, the access method will be ignored
for certain planner and executor decisions, but is otherwise fully functional.

63.3. Index Scanning
In an index scan, the index access method is responsible for regurgitating the TIDs of all the tuples it
has been told about that match the scan keys. The access method is not involved in actually fetching
those tuples from the index's parent table, nor in determining whether they pass the scan's visibility
test or other conditions.

A scan key is the internal representation of a WHERE clause of the form index_key operator constant,
where the index key is one of the columns of the index and the operator is one of the members of the
operator family associated with that index column. An index scan has zero or more scan keys, which are
implicitly ANDed — the returned tuples are expected to satisfy all the indicated conditions.

The access method can report that the index is lossy, or requires rechecks, for a particular query. This
implies that the index scan will return all the entries that pass the scan key, plus possibly additional
entries that do not. The core system's index-scan machinery will then apply the index conditions again to
the heap tuple to verify whether or not it really should be selected. If the recheck option is not specified,
the index scan must return exactly the set of matching entries.

Note that it is entirely up to the access method to ensure that it correctly finds all and only the entries
passing all the given scan keys. Also, the core system will simply hand off all the WHERE clauses that
match the index keys and operator families, without any semantic analysis to determine whether they
are redundant or contradictory. As an example, given WHERE x > 4 AND x > 14 where x is a b-tree
indexed column, it is left to the b-tree amrescan function to realize that the first scan key is redundant
and can be discarded. The extent of preprocessing needed during amrescan will depend on the extent
to which the index access method needs to reduce the scan keys to a “normalized” form.

Some access methods return index entries in a well-defined order, others do not. There are actually two
different ways that an access method can support sorted output:
• Access methods that always return entries in the natural ordering of their data (such as btree)

should set amcanorder to true. Currently, such access methods must use btree-compatible strategy
numbers for their equality and ordering operators.

• Access methods that support ordering operators should set amcanorderbyop to true. This indicates
that the index is capable of returning entries in an order satisfying ORDER BY index_key operator
constant. Scan modifiers of that form can be passed to amrescan as described previously.

The amgettuple function has a direction argument, which can be either ForwardScanDirection (the
normal case) or BackwardScanDirection. If the first call after amrescan specifies BackwardScanDirec-
tion, then the set of matching index entries is to be scanned back-to-front rather than in the normal
front-to-back direction, so amgettuple must return the last matching tuple in the index, rather than the
first one as it normally would. (This will only occur for access methods that set amcanorder to true.)

2298

Index Access Method
Interface Definition

After the first call, amgettuple must be prepared to advance the scan in either direction from the most
recently returned entry. (But if amcanbackward is false, all subsequent calls will have the same direction
as the first one.)

Access methods that support ordered scans must support “marking” a position in a scan and later re-
turning to the marked position. The same position might be restored multiple times. However, only one
position need be remembered per scan; a new ammarkpos call overrides the previously marked position.
An access method that does not support ordered scans need not provide ammarkpos and amrestrpos
functions in IndexAmRoutine; set those pointers to NULL instead.

Both the scan position and the mark position (if any) must be maintained consistently in the face of
concurrent insertions or deletions in the index. It is OK if a freshly-inserted entry is not returned by a
scan that would have found the entry if it had existed when the scan started, or for the scan to return
such an entry upon rescanning or backing up even though it had not been returned the first time through.
Similarly, a concurrent delete might or might not be reflected in the results of a scan. What is important is
that insertions or deletions not cause the scan to miss or multiply return entries that were not themselves
being inserted or deleted.

If the index stores the original indexed data values (and not some lossy representation of them), it is
useful to support index-only scans, in which the index returns the actual data not just the TID of the
heap tuple. This will only avoid I/O if the visibility map shows that the TID is on an all-visible page; else
the heap tuple must be visited anyway to check MVCC visibility. But that is no concern of the access
method's.

Instead of using amgettuple, an index scan can be done with amgetbitmap to fetch all tuples in one call.
This can be noticeably more efficient than amgettuple because it allows avoiding lock/unlock cycles
within the access method. In principle amgetbitmap should have the same effects as repeated amget-
tuple calls, but we impose several restrictions to simplify matters. First of all, amgetbitmap returns all
tuples at once and marking or restoring scan positions isn't supported. Secondly, the tuples are returned
in a bitmap which doesn't have any specific ordering, which is why amgetbitmap doesn't take a direc-
tion argument. (Ordering operators will never be supplied for such a scan, either.) Also, there is no
provision for index-only scans with amgetbitmap, since there is no way to return the contents of index
tuples. Finally, amgetbitmap does not guarantee any locking of the returned tuples, with implications
spelled out in Section 63.4.

Note that it is permitted for an access method to implement only amgetbitmap and not amgettuple, or
vice versa, if its internal implementation is unsuited to one API or the other.

63.4. Index Locking Considerations
Index access methods must handle concurrent updates of the index by multiple processes. The core
PostgreSQL system obtains AccessShareLock on the index during an index scan, and RowExclusiveLock
when updating the index (including plain VACUUM). Since these lock types do not conflict, the access
method is responsible for handling any fine-grained locking it might need. An ACCESS EXCLUSIVE lock
on the index as a whole will be taken only during index creation, destruction, or REINDEX (SHARE UPDATE
EXCLUSIVE is taken instead with CONCURRENTLY).

Building an index type that supports concurrent updates usually requires extensive and subtle analysis
of the required behavior. For the b-tree and hash index types, you can read about the design decisions
involved in src/backend/access/nbtree/README and src/backend/access/hash/README.

Aside from the index's own internal consistency requirements, concurrent updates create issues about
consistency between the parent table (the heap) and the index. Because PostgreSQL separates accesses
and updates of the heap from those of the index, there are windows in which the index might be incon-
sistent with the heap. We handle this problem with the following rules:
• A new heap entry is made before making its index entries. (Therefore a concurrent index scan is

likely to fail to see the heap entry. This is okay because the index reader would be uninterested in
an uncommitted row anyway. But see Section 63.5.)

2299

Index Access Method
Interface Definition

• When a heap entry is to be deleted (by VACUUM), all its index entries must be removed first.
• An index scan must maintain a pin on the index page holding the item last returned by amgettuple,

and ambulkdelete cannot delete entries from pages that are pinned by other backends. The need
for this rule is explained below.

Without the third rule, it is possible for an index reader to see an index entry just before it is removed
by VACUUM, and then to arrive at the corresponding heap entry after that was removed by VACUUM. This
creates no serious problems if that item number is still unused when the reader reaches it, since an
empty item slot will be ignored by heap_fetch(). But what if a third backend has already re-used the
item slot for something else? When using an MVCC-compliant snapshot, there is no problem because
the new occupant of the slot is certain to be too new to pass the snapshot test. However, with a non-
MVCC-compliant snapshot (such as SnapshotAny), it would be possible to accept and return a row that
does not in fact match the scan keys. We could defend against this scenario by requiring the scan keys
to be rechecked against the heap row in all cases, but that is too expensive. Instead, we use a pin on
an index page as a proxy to indicate that the reader might still be “in flight” from the index entry to
the matching heap entry. Making ambulkdelete block on such a pin ensures that VACUUM cannot delete
the heap entry before the reader is done with it. This solution costs little in run time, and adds blocking
overhead only in the rare cases where there actually is a conflict.

This solution requires that index scans be “synchronous”: we have to fetch each heap tuple immediately
after scanning the corresponding index entry. This is expensive for a number of reasons. An “asynchro-
nous” scan in which we collect many TIDs from the index, and only visit the heap tuples sometime lat-
er, requires much less index locking overhead and can allow a more efficient heap access pattern. Per
the above analysis, we must use the synchronous approach for non-MVCC-compliant snapshots, but an
asynchronous scan is workable for a query using an MVCC snapshot.

In an amgetbitmap index scan, the access method does not keep an index pin on any of the returned
tuples. Therefore it is only safe to use such scans with MVCC-compliant snapshots.

When the ampredlocks flag is not set, any scan using that index access method within a serializable
transaction will acquire a nonblocking predicate lock on the full index. This will generate a read-write
conflict with the insert of any tuple into that index by a concurrent serializable transaction. If certain
patterns of read-write conflicts are detected among a set of concurrent serializable transactions, one of
those transactions may be canceled to protect data integrity. When the flag is set, it indicates that the
index access method implements finer-grained predicate locking, which will tend to reduce the frequency
of such transaction cancellations.

63.5. Index Uniqueness Checks
PostgreSQL enforces SQL uniqueness constraints using unique indexes, which are indexes that disallow
multiple entries with identical keys. An access method that supports this feature sets amcanunique true.
(At present, only b-tree supports it.) Columns listed in the INCLUDE clause are not considered when
enforcing uniqueness.

Because of MVCC, it is always necessary to allow duplicate entries to exist physically in an index: the
entries might refer to successive versions of a single logical row. The behavior we actually want to
enforce is that no MVCC snapshot could include two rows with equal index keys. This breaks down into
the following cases that must be checked when inserting a new row into a unique index:
• If a conflicting valid row has been deleted by the current transaction, it's okay. (In particular, since

an UPDATE always deletes the old row version before inserting the new version, this will allow an
UPDATE on a row without changing the key.)

• If a conflicting row has been inserted by an as-yet-uncommitted transaction, the would-be inserter
must wait to see if that transaction commits. If it rolls back then there is no conflict. If it commits
without deleting the conflicting row again, there is a uniqueness violation. (In practice we just wait
for the other transaction to end and then redo the visibility check in toto.)

• Similarly, if a conflicting valid row has been deleted by an as-yet-uncommitted transaction, the
would-be inserter must wait for that transaction to commit or abort, and then repeat the test.

2300

Index Access Method
Interface Definition

Furthermore, immediately before reporting a uniqueness violation according to the above rules, the
access method must recheck the liveness of the row being inserted. If it is committed dead then no
violation should be reported. (This case cannot occur during the ordinary scenario of inserting a row
that's just been created by the current transaction. It can happen during CREATE UNIQUE INDEX CON-
CURRENTLY, however.)

We require the index access method to apply these tests itself, which means that it must reach into the
heap to check the commit status of any row that is shown to have a duplicate key according to the index
contents. This is without a doubt ugly and non-modular, but it saves redundant work: if we did a separate
probe then the index lookup for a conflicting row would be essentially repeated while finding the place
to insert the new row's index entry. What's more, there is no obvious way to avoid race conditions unless
the conflict check is an integral part of insertion of the new index entry.

If the unique constraint is deferrable, there is additional complexity: we need to be able to insert an
index entry for a new row, but defer any uniqueness-violation error until end of statement or even later.
To avoid unnecessary repeat searches of the index, the index access method should do a preliminary
uniqueness check during the initial insertion. If this shows that there is definitely no conflicting live
tuple, we are done. Otherwise, we schedule a recheck to occur when it is time to enforce the constraint.
If, at the time of the recheck, both the inserted tuple and some other tuple with the same key are live,
then the error must be reported. (Note that for this purpose, “live” actually means “any tuple in the
index entry's HOT chain is live”.) To implement this, the aminsert function is passed a checkUnique
parameter having one of the following values:
• UNIQUE_CHECK_NO indicates that no uniqueness checking should be done (this is not a unique in-

dex).
• UNIQUE_CHECK_YES indicates that this is a non-deferrable unique index, and the uniqueness check

must be done immediately, as described above.
• UNIQUE_CHECK_PARTIAL indicates that the unique constraint is deferrable. PostgreSQL will use this

mode to insert each row's index entry. The access method must allow duplicate entries into the in-
dex, and report any potential duplicates by returning false from aminsert. For each row for which
false is returned, a deferred recheck will be scheduled.

The access method must identify any rows which might violate the unique constraint, but it is not
an error for it to report false positives. This allows the check to be done without waiting for other
transactions to finish; conflicts reported here are not treated as errors and will be rechecked later,
by which time they may no longer be conflicts.

• UNIQUE_CHECK_EXISTING indicates that this is a deferred recheck of a row that was reported as
a potential uniqueness violation. Although this is implemented by calling aminsert, the access
method must not insert a new index entry in this case. The index entry is already present. Rather,
the access method must check to see if there is another live index entry. If so, and if the target row
is also still live, report error.

It is recommended that in a UNIQUE_CHECK_EXISTING call, the access method further verify that the
target row actually does have an existing entry in the index, and report error if not. This is a good
idea because the index tuple values passed to aminsert will have been recomputed. If the index de-
finition involves functions that are not really immutable, we might be checking the wrong area of
the index. Checking that the target row is found in the recheck verifies that we are scanning for the
same tuple values as were used in the original insertion.

63.6. Index Cost Estimation Functions
The amcostestimate function is given information describing a possible index scan, including lists of
WHERE and ORDER BY clauses that have been determined to be usable with the index. It must return
estimates of the cost of accessing the index and the selectivity of the WHERE clauses (that is, the fraction
of parent-table rows that will be retrieved during the index scan). For simple cases, nearly all the work
of the cost estimator can be done by calling standard routines in the optimizer; the point of having an
amcostestimate function is to allow index access methods to provide index-type-specific knowledge, in
case it is possible to improve on the standard estimates.

2301

Index Access Method
Interface Definition

Each amcostestimate function must have the signature:
void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

The first three parameters are inputs:
root

The planner's information about the query being processed.

path

The index access path being considered. All fields except cost and selectivity values are valid.

loop_count

The number of repetitions of the index scan that should be factored into the cost estimates. This
will typically be greater than one when considering a parameterized scan for use in the inside of
a nestloop join. Note that the cost estimates should still be for just one scan; a larger loop_count
means that it may be appropriate to allow for some caching effects across multiple scans.

The last five parameters are pass-by-reference outputs:
*indexStartupCost

Set to cost of index start-up processing

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

*indexCorrelation

Set to correlation coefficient between index scan order and underlying table's order

*indexPages

Set to number of index leaf pages

Note that cost estimate functions must be written in C, not in SQL or any available procedural language,
because they must access internal data structures of the planner/optimizer.

The index access costs should be computed using the parameters used by src/backend/optimiz-
er/path/costsize.c: a sequential disk block fetch has cost seq_page_cost, a nonsequential fetch has
cost random_page_cost, and the cost of processing one index row should usually be taken as cpu_in-
dex_tuple_cost. In addition, an appropriate multiple of cpu_operator_cost should be charged for any
comparison operators invoked during index processing (especially evaluation of the indexquals them-
selves).

The access costs should include all disk and CPU costs associated with scanning the index itself, but not
the costs of retrieving or processing the parent-table rows that are identified by the index.

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to fetch
the first row. For most indexes this can be taken as zero, but an index type with a high start-up cost
might want to set it nonzero.

2302

Index Access Method
Interface Definition

The indexSelectivity should be set to the estimated fraction of the parent table rows that will be
retrieved during the index scan. In the case of a lossy query, this will typically be higher than the fraction
of rows that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching rows from
the parent table.

The indexPages should be set to the number of leaf pages. This is used to estimate the number of workers
for parallel index scan.

When loop_count is greater than one, the returned numbers should be averages expected for any one
scan of the index.

Cost Estimation

A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of parent-table rows that will be visited based on the given qual
conditions. In the absence of any index-type-specific knowledge, use the standard optimizer function
clauselist_selectivity():

*indexSelectivity = clauselist_selectivity(root, path->indexquals,
 path->indexinfo->rel->relid,
 JOIN_INNER, NULL);

2. Estimate the number of index rows that will be visited during the scan. For many index types this is
the same as indexSelectivity times the number of rows in the index, but it might be more. (Note
that the index's size in pages and rows is available from the path->indexinfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just in-
dexSelectivity times the index's size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*
 * Our generic assumption is that the index pages will be read
 * sequentially, so they cost seq_page_cost each, not random_page_cost.
 * Also, we charge for evaluation of the indexquals at each index row.
 * All the costs are assumed to be paid incrementally during the scan.
 */
cost_qual_eval(&index_qual_cost, path->indexquals, root);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = seq_page_cost * numIndexPages +
 (cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;

However, the above does not account for amortization of index reads across repeated index scans.
5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved

from pg_statistic. If the correlation is not known, the conservative estimate is zero (no correlation).

Examples of cost estimator functions can be found in src/backend/utils/adt/selfuncs.c.

2303

Chapter 64. Write Ahead Logging for
Extensions

Certain extensions, principally extensions that implement custom access methods, may need to perform
write-ahead logging in order to ensure crash-safety. PostgreSQL provides two ways for extensions to
achieve this goal.

First, extensions can choose to use generic WAL, a special type of WAL record which describes changes
to pages in a generic way. This method is simple to implement and does not require that an extension
library be loaded in order to apply the records. However, generic WAL records will be ignored when
performing logical decoding.

Second, extensions can choose to use a custom resource manager. This method is more flexible, supports
logical decoding, and can sometimes generate much smaller write-ahead log records than would be
possible with generic WAL. However, it is more complex for an extension to implement.

64.1. Generic WAL Records
Although all built-in WAL-logged modules have their own types of WAL records, there is also a generic
WAL record type, which describes changes to pages in a generic way.

Note
Generic WAL records are ignored during Logical Decoding. If logical decoding is required for your
extension, consider a Custom WAL Resource Manager.

The API for constructing generic WAL records is defined in access/generic_xlog.h and implemented
in access/transam/generic_xlog.c.

To perform a WAL-logged data update using the generic WAL record facility, follow these steps:

1. state = GenericXLogStart(relation) — start construction of a generic WAL record for the given
relation.

2. page = GenericXLogRegisterBuffer(state, buffer, flags) — register a buffer to be modified
within the current generic WAL record. This function returns a pointer to a temporary copy of the
buffer's page, where modifications should be made. (Do not modify the buffer's contents directly.)
The third argument is a bit mask of flags applicable to the operation. Currently the only such flag is
GENERIC_XLOG_FULL_IMAGE, which indicates that a full-page image rather than a delta update should
be included in the WAL record. Typically this flag would be set if the page is new or has been rewritten
completely. GenericXLogRegisterBuffer can be repeated if the WAL-logged action needs to modify
multiple pages.

3. Apply modifications to the page images obtained in the previous step.

4. GenericXLogFinish(state) — apply the changes to the buffers and emit the generic WAL record.

WAL record construction can be canceled between any of the above steps by calling GenericXLo-
gAbort(state). This will discard all changes to the page image copies.

Please note the following points when using the generic WAL record facility:

• No direct modifications of buffers are allowed! All modifications must be done in copies acquired
from GenericXLogRegisterBuffer(). In other words, code that makes generic WAL records should
never call BufferGetPage() for itself. However, it remains the caller's responsibility to pin/unpin
and lock/unlock the buffers at appropriate times. Exclusive lock must be held on each target buffer
from before GenericXLogRegisterBuffer() until after GenericXLogFinish().

2304

Write Ahead Logging for Extensions

• Registrations of buffers (step 2) and modifications of page images (step 3) can be mixed freely, i.e.,
both steps may be repeated in any sequence. Keep in mind that buffers should be registered in the
same order in which locks are to be obtained on them during replay.

• The maximum number of buffers that can be registered for a generic WAL record is MAX_GEN-
ERIC_XLOG_PAGES. An error will be thrown if this limit is exceeded.

• Generic WAL assumes that the pages to be modified have standard layout, and in particular that
there is no useful data between pd_lower and pd_upper.

• Since you are modifying copies of buffer pages, GenericXLogStart() does not start a critical sec-
tion. Thus, you can safely do memory allocation, error throwing, etc. between GenericXLogStart()
and GenericXLogFinish(). The only actual critical section is present inside GenericXLogFinish().
There is no need to worry about calling GenericXLogAbort() during an error exit, either.

• GenericXLogFinish() takes care of marking buffers dirty and setting their LSNs. You do not need
to do this explicitly.

• For unlogged relations, everything works the same except that no actual WAL record is emitted.
Thus, you typically do not need to do any explicit checks for unlogged relations.

• The generic WAL redo function will acquire exclusive locks to buffers in the same order as they
were registered. After redoing all changes, the locks will be released in the same order.

• If GENERIC_XLOG_FULL_IMAGE is not specified for a registered buffer, the generic WAL record con-
tains a delta between the old and the new page images. This delta is based on byte-by-byte compar-
ison. This is not very compact for the case of moving data within a page, and might be improved in
the future.

64.2. Custom WAL Resource Managers
This section explains the interface between the core PostgreSQL system and custom WAL resource
managers, which enable extensions to integrate directly with the WAL.

An extension, especially a Table Access Method or Index Access Method, may need to use WAL for
recovery, replication, and/or Logical Decoding.

To create a new custom WAL resource manager, first define an RmgrData structure with implementa-
tions for the resource manager methods. Refer to src/backend/access/transam/README and src/in-
clude/access/xlog_internal.h in the PostgreSQL source.

/*
 * Method table for resource managers.
 *
 * This struct must be kept in sync with the PG_RMGR definition in
 * rmgr.c.
 *
 * rm_identify must return a name for the record based on xl_info (without
 * reference to the rmid). For example, XLOG_BTREE_VACUUM would be named
 * "VACUUM". rm_desc can then be called to obtain additional detail for the
 * record, if available (e.g. the last block).
 *
 * rm_mask takes as input a page modified by the resource manager and masks
 * out bits that shouldn't be flagged by wal_consistency_checking.
 *
 * RmgrTable[] is indexed by RmgrId values (see rmgrlist.h). If rm_name is
 * NULL, the corresponding RmgrTable entry is considered invalid.
 */
typedef struct RmgrData
{
 const char *rm_name;
 void (*rm_redo) (XLogReaderState *record);

2305

Write Ahead Logging for Extensions

 void (*rm_desc) (StringInfo buf, XLogReaderState *record);
 const char *(*rm_identify) (uint8 info);
 void (*rm_startup) (void);
 void (*rm_cleanup) (void);
 void (*rm_mask) (char *pagedata, BlockNumber blkno);
 void (*rm_decode) (struct LogicalDecodingContext *ctx,
 struct XLogRecordBuffer *buf);
} RmgrData;

The src/test/modules/test_custom_rmgrs module contains a working example, which demonstrates
usage of custom WAL resource managers.

Then, register your new resource manager.

/*
 * Register a new custom WAL resource manager.
 *
 * Resource manager IDs must be globally unique across all extensions. Refer
 * to https://wiki.postgresql.org/wiki/CustomWALResourceManagers to reserve a
 * unique RmgrId for your extension, to avoid conflicts with other extension
 * developers. During development, use RM_EXPERIMENTAL_ID to avoid needlessly
 * reserving a new ID.
 */
extern void RegisterCustomRmgr(RmgrId rmid, const RmgrData *rmgr);

RegisterCustomRmgr must be called from the extension module's _PG_init function. While developing a
new extension, use RM_EXPERIMENTAL_ID for rmid. When you are ready to release the extension to users,
reserve a new resource manager ID at the Custom WAL Resource Manager page.

Place the extension module implementing the custom resource manager in shared_preload_libraries so
that it will be loaded early during PostgreSQL startup.

Note
The extension must remain in shared_preload_libraries as long as any custom WAL records
may exist in the system. Otherwise PostgreSQL will not be able to apply or decode the custom
WAL records, which may prevent the server from starting.

2306

https://wiki.postgresql.org/wiki/CustomWALResourceManagers

Chapter 65. Built-in Index Access Methods
65.1. B-Tree Indexes
65.1.1. Introduction

PostgreSQL includes an implementation of the standard btree (multi-way balanced tree) index data
structure. Any data type that can be sorted into a well-defined linear order can be indexed by a btree
index. The only limitation is that an index entry cannot exceed approximately one-third of a page (after
TOAST compression, if applicable).

Because each btree operator class imposes a sort order on its data type, btree operator classes (or, really,
operator families) have come to be used as PostgreSQL's general representation and understanding of
sorting semantics. Therefore, they've acquired some features that go beyond what would be needed just
to support btree indexes, and parts of the system that are quite distant from the btree AM make use
of them.

65.1.2. Behavior of B-Tree Operator Classes
As shown in Table 36.3, a btree operator class must provide five comparison operators, <, <=, =, >= and
>. One might expect that <> should also be part of the operator class, but it is not, because it would
almost never be useful to use a <> WHERE clause in an index search. (For some purposes, the planner
treats <> as associated with a btree operator class; but it finds that operator via the = operator's negator
link, rather than from pg_amop.)

When several data types share near-identical sorting semantics, their operator classes can be grouped
into an operator family. Doing so is advantageous because it allows the planner to make deductions
about cross-type comparisons. Each operator class within the family should contain the single-type op-
erators (and associated support functions) for its input data type, while cross-type comparison operators
and support functions are “loose” in the family. It is recommendable that a complete set of cross-type
operators be included in the family, thus ensuring that the planner can represent any comparison con-
ditions that it deduces from transitivity.

There are some basic assumptions that a btree operator family must satisfy:

• An = operator must be an equivalence relation; that is, for all non-null values A, B, C of the data
type:
• A = A is true (reflexive law)
• if A = B, then B = A (symmetric law)
• if A = B and B = C, then A = C (transitive law)

• A < operator must be a strong ordering relation; that is, for all non-null values A, B, C:
• A < A is false (irreflexive law)
• if A < B and B < C, then A < C (transitive law)

• Furthermore, the ordering is total; that is, for all non-null values A, B:
• exactly one of A < B, A = B, and B < A is true (trichotomy law)
(The trichotomy law justifies the definition of the comparison support function, of course.)

The other three operators are defined in terms of = and < in the obvious way, and must act consistently
with them.

For an operator family supporting multiple data types, the above laws must hold when A, B, C are taken
from any data types in the family. The transitive laws are the trickiest to ensure, as in cross-type situa-
tions they represent statements that the behaviors of two or three different operators are consistent. As
an example, it would not work to put float8 and numeric into the same operator family, at least not with

2307

Built-in Index Access Methods

the current semantics that numeric values are converted to float8 for comparison to a float8. Because
of the limited accuracy of float8, this means there are distinct numeric values that will compare equal
to the same float8 value, and thus the transitive law would fail.

Another requirement for a multiple-data-type family is that any implicit or binary-coercion casts that are
defined between data types included in the operator family must not change the associated sort ordering.

It should be fairly clear why a btree index requires these laws to hold within a single data type: without
them there is no ordering to arrange the keys with. Also, index searches using a comparison key of a
different data type require comparisons to behave sanely across two data types. The extensions to three
or more data types within a family are not strictly required by the btree index mechanism itself, but the
planner relies on them for optimization purposes.

65.1.3. B-Tree Support Functions
As shown in Table 36.9, btree defines one required and five optional support functions. The six user-
defined methods are:

order

For each combination of data types that a btree operator family provides comparison operators for, it
must provide a comparison support function, registered in pg_amproc with support function number 1
and amproclefttype/amprocrighttype equal to the left and right data types for the comparison (i.e.,
the same data types that the matching operators are registered with in pg_amop). The comparison
function must take two non-null values A and B and return an int32 value that is < 0, 0, or > 0 when
A < B, A = B, or A > B, respectively. A null result is disallowed: all values of the data type must be
comparable. See src/backend/access/nbtree/nbtcompare.c for examples.

If the compared values are of a collatable data type, the appropriate collation OID will be passed to
the comparison support function, using the standard PG_GET_COLLATION() mechanism.

sortsupport

Optionally, a btree operator family may provide sort support function(s), registered under support
function number 2. These functions allow implementing comparisons for sorting purposes in a more
efficient way than naively calling the comparison support function. The APIs involved in this are
defined in src/include/utils/sortsupport.h.

in_range

Optionally, a btree operator family may provide in_range support function(s), registered under sup-
port function number 3. These are not used during btree index operations; rather, they extend the
semantics of the operator family so that it can support window clauses containing the RANGE offset
PRECEDING and RANGE offset FOLLOWING frame bound types (see Section 4.2.8). Fundamentally, the
extra information provided is how to add or subtract an offset value in a way that is compatible
with the family's data ordering.

An in_range function must have the signature
in_range(val type1, base type1, offset type2, sub bool, less bool)
returns bool

val and base must be of the same type, which is one of the types supported by the operator family
(i.e., a type for which it provides an ordering). However, offset could be of a different type, which
might be one otherwise unsupported by the family. An example is that the built-in time_ops family
provides an in_range function that has offset of type interval. A family can provide in_range
functions for any of its supported types and one or more offset types. Each in_range function should
be entered in pg_amproc with amproclefttype equal to type1 and amprocrighttype equal to type2.

The essential semantics of an in_range function depend on the two Boolean flag parameters. It
should add or subtract base and offset, then compare val to the result, as follows:
• if !sub and !less, return val >= (base + offset)

2308

Built-in Index Access Methods

• if !sub and less, return val <= (base + offset)
• if sub and !less, return val >= (base - offset)
• if sub and less, return val <= (base - offset)
Before doing so, the function should check the sign of offset: if it is less than zero, raise error ER-
RCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE (22013) with error text like “invalid preceding or
following size in window function”. (This is required by the SQL standard, although nonstandard
operator families might perhaps choose to ignore this restriction, since there seems to be little se-
mantic necessity for it.) This requirement is delegated to the in_range function so that the core code
needn't understand what “less than zero” means for a particular data type.

An additional expectation is that in_range functions should, if practical, avoid throwing an error if
base + offset or base - offset would overflow. The correct comparison result can be determined
even if that value would be out of the data type's range. Note that if the data type includes concepts
such as “infinity” or “NaN”, extra care may be needed to ensure that in_range's results agree with
the normal sort order of the operator family.

The results of the in_range function must be consistent with the sort ordering imposed by the oper-
ator family. To be precise, given any fixed values of offset and sub, then:
• If in_range with less = true is true for some val1 and base, it must be true for every val2 <=

val1 with the same base.
• If in_range with less = true is false for some val1 and base, it must be false for every val2 >=

val1 with the same base.
• If in_range with less = true is true for some val and base1, it must be true for every base2 >=

base1 with the same val.
• If in_range with less = true is false for some val and base1, it must be false for every base2 <=

base1 with the same val.
Analogous statements with inverted conditions hold when less = false.

If the type being ordered (type1) is collatable, the appropriate collation OID will be passed to the
in_range function, using the standard PG_GET_COLLATION() mechanism.

in_range functions need not handle NULL inputs, and typically will be marked strict.

equalimage

Optionally, a btree operator family may provide equalimage (“equality implies image equality”) sup-
port functions, registered under support function number 4. These functions allow the core code
to determine when it is safe to apply the btree deduplication optimization. Currently, equalimage
functions are only called when building or rebuilding an index.

An equalimage function must have the signature
equalimage(opcintype oid) returns bool

The return value is static information about an operator class and collation. Returning true indicates
that the order function for the operator class is guaranteed to only return 0 (“arguments are equal”)
when its A and B arguments are also interchangeable without any loss of semantic information. Not
registering an equalimage function or returning false indicates that this condition cannot be as-
sumed to hold.

The opcintype argument is the pg_type.oid of the data type that the operator class indexes. This is
a convenience that allows reuse of the same underlying equalimage function across operator classes.
If opcintype is a collatable data type, the appropriate collation OID will be passed to the equalimage
function, using the standard PG_GET_COLLATION() mechanism.

As far as the operator class is concerned, returning true indicates that deduplication is safe (or safe
for the collation whose OID was passed to its equalimage function). However, the core code will

2309

Built-in Index Access Methods

only deem deduplication safe for an index when every indexed column uses an operator class that
registers an equalimage function, and each function actually returns true when called.

Image equality is almost the same condition as simple bitwise equality. There is one subtle difference:
When indexing a varlena data type, the on-disk representation of two image equal datums may not
be bitwise equal due to inconsistent application of TOAST compression on input. Formally, when an
operator class's equalimage function returns true, it is safe to assume that the datum_image_eq() C
function will always agree with the operator class's order function (provided that the same collation
OID is passed to both the equalimage and order functions).

The core code is fundamentally unable to deduce anything about the “equality implies image equal-
ity” status of an operator class within a multiple-data-type family based on details from other oper-
ator classes in the same family. Also, it is not sensible for an operator family to register a cross-
type equalimage function, and attempting to do so will result in an error. This is because “equality
implies image equality” status does not just depend on sorting/equality semantics, which are more
or less defined at the operator family level. In general, the semantics that one particular data type
implements must be considered separately.

The convention followed by the operator classes included with the core PostgreSQL distribution is to
register a stock, generic equalimage function. Most operator classes register btequalimage(), which
indicates that deduplication is safe unconditionally. Operator classes for collatable data types such as
text register btvarstrequalimage(), which indicates that deduplication is safe with deterministic
collations. Best practice for third-party extensions is to register their own custom function to retain
control.

options

Optionally, a B-tree operator family may provide options (“operator class specific options”) support
functions, registered under support function number 5. These functions define a set of user-visible
parameters that control operator class behavior.

An options support function must have the signature

options(relopts local_relopts *) returns void

The function is passed a pointer to a local_relopts struct, which needs to be filled with a set of
operator class specific options. The options can be accessed from other support functions using the
PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Currently, no B-Tree operator class has an options support function. B-tree doesn't allow flexible
representation of keys like GiST, SP-GiST, GIN and BRIN do. So, options probably doesn't have much
application in the current B-tree index access method. Nevertheless, this support function was added
to B-tree for uniformity, and will probably find uses during further evolution of B-tree in PostgreSQL.

skipsupport

Optionally, a btree operator family may provide a skip support function, registered under support
function number 6. These functions give the B-tree code a way to iterate through every possible
value that can be represented by an operator class's underlying input type, in key space order. This
is used by the core code when it applies the skip scan optimization. The APIs involved in this are
defined in src/include/utils/skipsupport.h.

Operator classes that do not provide a skip support function are still eligible to use skip scan. The
core code can still use its fallback strategy, though that might be suboptimal for some discrete types.
It usually doesn't make sense (and may not even be feasible) for operator classes on continuous types
to provide a skip support function.

It is not sensible for an operator family to register a cross-type skipsupport function, and attempting
to do so will result in an error. This is because determining the next indexable value must happen
by incrementing a value copied from an index tuple. The values generated must all be of the same
underlying data type (the “skipped” index column's opclass input type).

2310

Built-in Index Access Methods

65.1.4. Implementation
This section covers B-Tree index implementation details that may be of use to advanced users. See src/
backend/access/nbtree/README in the source distribution for a much more detailed, internals-focused
description of the B-Tree implementation.

65.1.4.1. B-Tree Structure
PostgreSQL B-Tree indexes are multi-level tree structures, where each level of the tree can be used as a
doubly-linked list of pages. A single metapage is stored in a fixed position at the start of the first segment
file of the index. All other pages are either leaf pages or internal pages. Leaf pages are the pages on
the lowest level of the tree. All other levels consist of internal pages. Each leaf page contains tuples
that point to table rows. Each internal page contains tuples that point to the next level down in the tree.
Typically, over 99% of all pages are leaf pages. Both internal pages and leaf pages use the standard
page format described in Section 66.6.

New leaf pages are added to a B-Tree index when an existing leaf page cannot fit an incoming tuple. A
page split operation makes room for items that originally belonged on the overflowing page by moving
a portion of the items to a new page. Page splits must also insert a new downlink to the new page in the
parent page, which may cause the parent to split in turn. Page splits “cascade upwards” in a recursive
fashion. When the root page finally cannot fit a new downlink, a root page split operation takes place.
This adds a new level to the tree structure by creating a new root page that is one level above the
original root page.

65.1.4.2. Bottom-up Index Deletion
B-Tree indexes are not directly aware that under MVCC, there might be multiple extant versions of the
same logical table row; to an index, each tuple is an independent object that needs its own index entry.
“Version churn” tuples may sometimes accumulate and adversely affect query latency and throughput.
This typically occurs with UPDATE-heavy workloads where most individual updates cannot apply the HOT
optimization. Changing the value of only one column covered by one index during an UPDATE always
necessitates a new set of index tuples — one for each and every index on the table. Note in particular that
this includes indexes that were not “logically modified” by the UPDATE. All indexes will need a successor
physical index tuple that points to the latest version in the table. Each new tuple within each index will
generally need to coexist with the original “updated” tuple for a short period of time (typically until
shortly after the UPDATE transaction commits).

B-Tree indexes incrementally delete version churn index tuples by performing bottom-up index deletion
passes. Each deletion pass is triggered in reaction to an anticipated “version churn page split”. This
only happens with indexes that are not logically modified by UPDATE statements, where concentrated
build up of obsolete versions in particular pages would occur otherwise. A page split will usually be
avoided, though it's possible that certain implementation-level heuristics will fail to identify and delete
even one garbage index tuple (in which case a page split or deduplication pass resolves the issue of
an incoming new tuple not fitting on a leaf page). The worst-case number of versions that any index
scan must traverse (for any single logical row) is an important contributor to overall system responsive-
ness and throughput. A bottom-up index deletion pass targets suspected garbage tuples in a single leaf
page based on qualitative distinctions involving logical rows and versions. This contrasts with the “top-
down” index cleanup performed by autovacuum workers, which is triggered when certain quantitative
table-level thresholds are exceeded (see Section 24.1.6).

Note
Not all deletion operations that are performed within B-Tree indexes are bottom-up deletion op-
erations. There is a distinct category of index tuple deletion: simple index tuple deletion. This is
a deferred maintenance operation that deletes index tuples that are known to be safe to delete
(those whose item identifier's LP_DEAD bit is already set). Like bottom-up index deletion, simple
index deletion takes place at the point that a page split is anticipated as a way of avoiding the split.

Simple deletion is opportunistic in the sense that it can only take place when recent index scans set
the LP_DEAD bits of affected items in passing. Prior to PostgreSQL 14, the only category of B-Tree

2311

Built-in Index Access Methods

deletion was simple deletion. The main differences between it and bottom-up deletion are that only
the former is opportunistically driven by the activity of passing index scans, while only the latter
specifically targets version churn from UPDATEs that do not logically modify indexed columns.

Bottom-up index deletion performs the vast majority of all garbage index tuple cleanup for particular
indexes with certain workloads. This is expected with any B-Tree index that is subject to significant
version churn from UPDATEs that rarely or never logically modify the columns that the index covers. The
average and worst-case number of versions per logical row can be kept low purely through targeted
incremental deletion passes. It's quite possible that the on-disk size of certain indexes will never increase
by even one single page/block despite constant version churn from UPDATEs. Even then, an exhaustive
“clean sweep” by a VACUUM operation (typically run in an autovacuum worker process) will eventually be
required as a part of collective cleanup of the table and each of its indexes.

Unlike VACUUM, bottom-up index deletion does not provide any strong guarantees about how old the oldest
garbage index tuple may be. No index can be permitted to retain “floating garbage” index tuples that
became dead prior to a conservative cutoff point shared by the table and all of its indexes collectively.
This fundamental table-level invariant makes it safe to recycle table TIDs. This is how it is possible for
distinct logical rows to reuse the same table TID over time (though this can never happen with two
logical rows whose lifetimes span the same VACUUM cycle).

65.1.4.3. Deduplication
A duplicate is a leaf page tuple (a tuple that points to a table row) where all indexed key columns have
values that match corresponding column values from at least one other leaf page tuple in the same
index. Duplicate tuples are quite common in practice. B-Tree indexes can use a special, space-efficient
representation for duplicates when an optional technique is enabled: deduplication.

Deduplication works by periodically merging groups of duplicate tuples together, forming a single post-
ing list tuple for each group. The column key value(s) only appear once in this representation. This is
followed by a sorted array of TIDs that point to rows in the table. This significantly reduces the storage
size of indexes where each value (or each distinct combination of column values) appears several times
on average. The latency of queries can be reduced significantly. Overall query throughput may increase
significantly. The overhead of routine index vacuuming may also be reduced significantly.

Note
B-Tree deduplication is just as effective with “duplicates” that contain a NULL value, even though
NULL values are never equal to each other according to the = member of any B-Tree operator
class. As far as any part of the implementation that understands the on-disk B-Tree structure is
concerned, NULL is just another value from the domain of indexed values.

The deduplication process occurs lazily, when a new item is inserted that cannot fit on an existing leaf
page, though only when index tuple deletion could not free sufficient space for the new item (typically
deletion is briefly considered and then skipped over). Unlike GIN posting list tuples, B-Tree posting list
tuples do not need to expand every time a new duplicate is inserted; they are merely an alternative
physical representation of the original logical contents of the leaf page. This design prioritizes consistent
performance with mixed read-write workloads. Most client applications will at least see a moderate
performance benefit from using deduplication. Deduplication is enabled by default.

CREATE INDEX and REINDEX apply deduplication to create posting list tuples, though the strategy they
use is slightly different. Each group of duplicate ordinary tuples encountered in the sorted input taken
from the table is merged into a posting list tuple before being added to the current pending leaf page.
Individual posting list tuples are packed with as many TIDs as possible. Leaf pages are written out in
the usual way, without any separate deduplication pass. This strategy is well-suited to CREATE INDEX
and REINDEX because they are once-off batch operations.

Write-heavy workloads that don't benefit from deduplication due to having few or no duplicate values
in indexes will incur a small, fixed performance penalty (unless deduplication is explicitly disabled). The

2312

Built-in Index Access Methods

deduplicate_items storage parameter can be used to disable deduplication within individual indexes.
There is never any performance penalty with read-only workloads, since reading posting list tuples is
at least as efficient as reading the standard tuple representation. Disabling deduplication isn't usually
helpful.

It is sometimes possible for unique indexes (as well as unique constraints) to use deduplication. This al-
lows leaf pages to temporarily “absorb” extra version churn duplicates. Deduplication in unique indexes
augments bottom-up index deletion, especially in cases where a long-running transaction holds a snap-
shot that blocks garbage collection. The goal is to buy time for the bottom-up index deletion strategy to
become effective again. Delaying page splits until a single long-running transaction naturally goes away
can allow a bottom-up deletion pass to succeed where an earlier deletion pass failed.

Tip
A special heuristic is applied to determine whether a deduplication pass in a unique index should
take place. It can often skip straight to splitting a leaf page, avoiding a performance penalty from
wasting cycles on unhelpful deduplication passes. If you're concerned about the overhead of dedu-
plication, consider setting deduplicate_items = off selectively. Leaving deduplication enabled
in unique indexes has little downside.

Deduplication cannot be used in all cases due to implementation-level restrictions. Deduplication safety
is determined when CREATE INDEX or REINDEX is run.

Note that deduplication is deemed unsafe and cannot be used in the following cases involving semanti-
cally significant differences among equal datums:

• text, varchar, and char cannot use deduplication when a nondeterministic collation is used. Case
and accent differences must be preserved among equal datums.

• numeric cannot use deduplication. Numeric display scale must be preserved among equal datums.
• jsonb cannot use deduplication, since the jsonb B-Tree operator class uses numeric internally.
• float4 and float8 cannot use deduplication. These types have distinct representations for -0 and

0, which are nevertheless considered equal. This difference must be preserved.

There is one further implementation-level restriction that may be lifted in a future version of PostgreSQL:

• Container types (such as composite types, arrays, or range types) cannot use deduplication.

There is one further implementation-level restriction that applies regardless of the operator class or
collation used:

• INCLUDE indexes can never use deduplication.

65.2. GiST Indexes
65.2.1. Introduction

GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method, that acts as
a base template in which to implement arbitrary indexing schemes. B-trees, R-trees and many other
indexing schemes can be implemented in GiST.

One advantage of GiST is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from the University of California at Berkeley's GiST Indexing
Project web site and Marcel Kornacker's thesis, Access Methods for Next-Generation Database Systems.
The GiST implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov,
and there is more information on their web site.

2313

http://gist.cs.berkeley.edu/
http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz
http://www.sai.msu.su/~megera/postgres/gist/

Built-in Index Access Methods

65.2.2. Built-in Operator Classes
The core PostgreSQL distribution includes the GiST operator classes shown in Table 65.1. (Some of the
optional modules described in Appendix F provide additional GiST operator classes.)

Table 65.1. Built-in GiST Operator Classes

Name Indexable Operators Ordering Operators
<< (box, box)

&< (box, box)

&& (box, box)

&> (box, box)

>> (box, box)

~= (box, box)

@> (box, box)

<@ (box, box)

&<| (box, box)

<<| (box, box)

|>> (box, box)

box_ops

|&> (box, box)

<-> (box, point)

<< (circle, circle)

&< (circle, circle)

&> (circle, circle)

>> (circle, circle)

<@ (circle, circle)

@> (circle, circle)

~= (circle, circle)

&& (circle, circle)

|>> (circle, circle)

<<| (circle, circle)

&<| (circle, circle)

circle_ops

|&> (circle, circle)

<-> (circle, point)

<< (inet, inet)

<<= (inet, inet)

>> (inet, inet)

>>= (inet, inet)

= (inet, inet)

<> (inet, inet)

< (inet, inet)

<= (inet, inet)

> (inet, inet)

>= (inet, inet)

inet_ops

&& (inet, inet)

multirange_ops = (anymultirange, anymultirange)

2314

Built-in Index Access Methods

Name Indexable Operators Ordering Operators
&& (anymultirange, anymultirange)

&& (anymultirange, anyrange)

@> (anymultirange, anyelement)

@> (anymultirange, anymultirange)

@> (anymultirange, anyrange)

<@ (anymultirange, anymultirange)

<@ (anymultirange, anyrange)

<< (anymultirange, anymultirange)

<< (anymultirange, anyrange)

>> (anymultirange, anymultirange)

>> (anymultirange, anyrange)

&< (anymultirange, anymultirange)

&< (anymultirange, anyrange)

&> (anymultirange, anymultirange)

&> (anymultirange, anyrange)

-|- (anymultirange, anymultirange)

-|- (anymultirange, anyrange)

|>> (point, point)

<< (point, point)

>> (point, point)

<<| (point, point)

~= (point, point)

<@ (point, box)

<@ (point, polygon)

point_ops

<@ (point, circle)

<-> (point, point)

<< (polygon, polygon)

&< (polygon, polygon)

&> (polygon, polygon)

>> (polygon, polygon)

<@ (polygon, polygon)

@> (polygon, polygon)

~= (polygon, polygon)

&& (polygon, polygon)

<<| (polygon, polygon)

&<| (polygon, polygon)

|&> (polygon, polygon)

poly_ops

|>> (polygon, polygon)

<-> (polygon, point)

= (anyrange, anyrange)

&& (anyrange, anyrange)range_ops

&& (anyrange, anymultirange)

2315

Built-in Index Access Methods

Name Indexable Operators Ordering Operators
@> (anyrange, anyelement)

@> (anyrange, anyrange)

@> (anyrange, anymultirange)

<@ (anyrange, anyrange)

<@ (anyrange, anymultirange)

<< (anyrange, anyrange)

<< (anyrange, anymultirange)

>> (anyrange, anyrange)

>> (anyrange, anymultirange)

&< (anyrange, anyrange)

&< (anyrange, anymultirange)

&> (anyrange, anyrange)

&> (anyrange, anymultirange)

-|- (anyrange, anyrange)

-|- (anyrange, anymultirange)

<@ (tsquery, tsquery)
tsquery_ops

@> (tsquery, tsquery)

tsvector_ops @@ (tsvector, tsquery)

For historical reasons, the inet_ops operator class is not the default class for types inet and cidr. To
use it, mention the class name in CREATE INDEX, for example

CREATE INDEX ON my_table USING GIST (my_inet_column inet_ops);

65.2.3. Extensibility
Traditionally, implementing a new index access method meant a lot of difficult work. It was necessary to
understand the inner workings of the database, such as the lock manager and Write-Ahead Log. The GiST
interface has a high level of abstraction, requiring the access method implementer only to implement
the semantics of the data type being accessed. The GiST layer itself takes care of concurrency, logging
and searching the tree structure.

This extensibility should not be confused with the extensibility of the other standard search trees in terms
of the data they can handle. For example, PostgreSQL supports extensible B-trees and hash indexes.
That means that you can use PostgreSQL to build a B-tree or hash over any data type you want. But B-
trees only support range predicates (<, =, >), and hash indexes only support equality queries.

So if you index, say, an image collection with a PostgreSQL B-tree, you can only issue queries such as “is
imagex equal to imagey”, “is imagex less than imagey” and “is imagex greater than imagey”. Depending
on how you define “equals”, “less than” and “greater than” in this context, this could be useful. However,
by using a GiST based index, you could create ways to ask domain-specific questions, perhaps “find all
images of horses” or “find all over-exposed images”.

All it takes to get a GiST access method up and running is to implement several user-defined methods,
which define the behavior of keys in the tree. Of course these methods have to be pretty fancy to support
fancy queries, but for all the standard queries (B-trees, R-trees, etc.) they're relatively straightforward.
In short, GiST combines extensibility along with generality, code reuse, and a clean interface.

There are five methods that an index operator class for GiST must provide, and seven that are optional.
Correctness of the index is ensured by proper implementation of the same, consistent and union meth-
ods, while efficiency (size and speed) of the index will depend on the penalty and picksplit methods.

2316

Built-in Index Access Methods

Two optional methods are compress and decompress, which allow an index to have internal tree data of
a different type than the data it indexes. The leaves are to be of the indexed data type, while the other
tree nodes can be of any C struct (but you still have to follow PostgreSQL data type rules here, see about
varlena for variable sized data). If the tree's internal data type exists at the SQL level, the STORAGE
option of the CREATE OPERATOR CLASS command can be used. The optional eighth method is distance,
which is needed if the operator class wishes to support ordered scans (nearest-neighbor searches). The
optional ninth method fetch is needed if the operator class wishes to support index-only scans, except
when the compress method is omitted. The optional tenth method options is needed if the operator
class has user-specified parameters. The optional eleventh method sortsupport is used to speed up
building a GiST index. The optional twelfth method stratnum is used to translate compare types (from
src/include/nodes/primnodes.h) into strategy numbers used by the operator class. This lets the core
code look up operators for temporal constraint indexes.

consistent

Given an index entry p and a query value q, this function determines whether the index entry is
“consistent” with the query; that is, could the predicate “indexed_column indexable_operator q”
be true for any row represented by the index entry? For a leaf index entry this is equivalent to testing
the indexable condition, while for an internal tree node this determines whether it is necessary to
scan the subtree of the index represented by the tree node. When the result is true, a recheck flag
must also be returned. This indicates whether the predicate is certainly true or only possibly true.
If recheck = false then the index has tested the predicate condition exactly, whereas if recheck
= true the row is only a candidate match. In that case the system will automatically evaluate the
indexable_operator against the actual row value to see if it is really a match. This convention allows
GiST to support both lossless and lossy index structures.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid,
 internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 bool *recheck = (bool *) PG_GETARG_POINTER(4);
 data_type *key = DatumGetDataType(entry->key);
 bool retval;

 /*
 * determine return value as a function of strategy, key and query.
 *
 * Use GIST_LEAF(entry) to know where you're called in the index tree,
 * which comes handy when supporting the = operator for example (you could
 * check for non empty union() in non-leaf nodes and equality in leaf
 * nodes).
 */

 recheck = true; / or false if check is exact */

2317

Built-in Index Access Methods

 PG_RETURN_BOOL(retval);
}

Here, key is an element in the index and query the value being looked up in the index. The Strat-
egyNumber parameter indicates which operator of your operator class is being applied — it matches
one of the operator numbers in the CREATE OPERATOR CLASS command.

Depending on which operators you have included in the class, the data type of query could vary with
the operator, since it will be whatever type is on the right-hand side of the operator, which might
be different from the indexed data type appearing on the left-hand side. (The above code skeleton
assumes that only one type is possible; if not, fetching the query argument value would have to
depend on the operator.) It is recommended that the SQL declaration of the consistent function
use the opclass's indexed data type for the query argument, even though the actual type might be
something else depending on the operator.

union

This method consolidates information in the tree. Given a set of entries, this function generates a
new index entry that represents all the given entries.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 GISTENTRY *ent = entryvec->vector;
 data_type *out,
 *tmp,
 *old;
 int numranges,
 i = 0;

 numranges = entryvec->n;
 tmp = DatumGetDataType(ent[0].key);
 out = tmp;

 if (numranges == 1)
 {
 out = data_type_deep_copy(tmp);

 PG_RETURN_DATA_TYPE_P(out);
 }

 for (i = 1; i < numranges; i++)
 {
 old = out;
 tmp = DatumGetDataType(ent[i].key);
 out = my_union_implementation(out, tmp);
 }

 PG_RETURN_DATA_TYPE_P(out);

2318

Built-in Index Access Methods

}

As you can see, in this skeleton we're dealing with a data type where union(X, Y, Z) = union(u-
nion(X, Y), Z). It's easy enough to support data types where this is not the case, by implementing
the proper union algorithm in this GiST support method.

The result of the union function must be a value of the index's storage type, whatever that is (it
might or might not be different from the indexed column's type). The union function should return
a pointer to newly palloc()ed memory. You can't just return the input value as-is, even if there is
no type change.

As shown above, the union function's first internal argument is actually a GistEntryVector pointer.
The second argument is a pointer to an integer variable, which can be ignored. (It used to be required
that the union function store the size of its result value into that variable, but this is no longer
necessary.)

compress

Converts a data item into a format suitable for physical storage in an index page. If the compress
method is omitted, data items are stored in the index without modification.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *retval;

 if (entry->leafkey)
 {
 /* replace entry->key with a compressed version */
 compressed_data_type *compressed_data =
 palloc(sizeof(compressed_data_type));

 /* fill *compressed_data from entry->key ... */

 retval = palloc(sizeof(GISTENTRY));
 gistentryinit(*retval, PointerGetDatum(compressed_data),
 entry->rel, entry->page, entry->offset, FALSE);
 }
 else
 {
 /* typically we needn't do anything with non-leaf entries */
 retval = entry;
 }

 PG_RETURN_POINTER(retval);
}

You have to adapt compressed_data_type to the specific type you're converting to in order to com-
press your leaf nodes, of course.

2319

Built-in Index Access Methods

decompress

Converts the stored representation of a data item into a format that can be manipulated by the other
GiST methods in the operator class. If the decompress method is omitted, it is assumed that the other
GiST methods can work directly on the stored data format. (decompress is not necessarily the reverse
of the compress method; in particular, if compress is lossy then it's impossible for decompress to
exactly reconstruct the original data. decompress is not necessarily equivalent to fetch, either, since
the other GiST methods might not require full reconstruction of the data.)

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
 PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}

The above skeleton is suitable for the case where no decompression is needed. (But, of course, omit-
ting the method altogether is even easier, and is recommended in such cases.)

penalty

Returns a value indicating the “cost” of inserting the new entry into a particular branch of the tree.
Items will be inserted down the path of least penalty in the tree. Values returned by penalty should
be non-negative. If a negative value is returned, it will be treated as zero.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT; -- in some cases penalty functions need not be strict

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
 GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
 float *penalty = (float *) PG_GETARG_POINTER(2);
 data_type *orig = DatumGetDataType(origentry->key);
 data_type *new = DatumGetDataType(newentry->key);

 *penalty = my_penalty_implementation(orig, new);
 PG_RETURN_POINTER(penalty);
}

For historical reasons, the penalty function doesn't just return a float result; instead it has to store
the value at the location indicated by the third argument. The return value per se is ignored, though
it's conventional to pass back the address of that argument.

2320

Built-in Index Access Methods

The penalty function is crucial to good performance of the index. It'll get used at insertion time to
determine which branch to follow when choosing where to add the new entry in the tree. At query
time, the more balanced the index, the quicker the lookup.

picksplit

When an index page split is necessary, this function decides which entries on the page are to stay
on the old page, and which are to move to the new page.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
 OffsetNumber maxoff = entryvec->n - 1;
 GISTENTRY *ent = entryvec->vector;
 int i,
 nbytes;
 OffsetNumber *left,
 *right;
 data_type *tmp_union;
 data_type *unionL;
 data_type *unionR;
 GISTENTRY **raw_entryvec;

 maxoff = entryvec->n - 1;
 nbytes = (maxoff + 1) * sizeof(OffsetNumber);

 v->spl_left = (OffsetNumber *) palloc(nbytes);
 left = v->spl_left;
 v->spl_nleft = 0;

 v->spl_right = (OffsetNumber *) palloc(nbytes);
 right = v->spl_right;
 v->spl_nright = 0;

 unionL = NULL;
 unionR = NULL;

 /* Initialize the raw entry vector. */
 raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
 for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 raw_entryvec[i] = &(entryvec->vector[i]);

 for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 {
 int real_index = raw_entryvec[i] - entryvec->vector;

 tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
 Assert(tmp_union != NULL);

2321

Built-in Index Access Methods

 /*
 * Choose where to put the index entries and update unionL and unionR
 * accordingly. Append the entries to either v->spl_left or
 * v->spl_right, and care about the counters.
 */

 if (my_choice_is_left(unionL, curl, unionR, curr))
 {
 if (unionL == NULL)
 unionL = tmp_union;
 else
 unionL = my_union_implementation(unionL, tmp_union);

 *left = real_index;
 ++left;
 ++(v->spl_nleft);
 }
 else
 {
 /*
 * Same on the right
 */
 }
 }

 v->spl_ldatum = DataTypeGetDatum(unionL);
 v->spl_rdatum = DataTypeGetDatum(unionR);
 PG_RETURN_POINTER(v);
}

Notice that the picksplit function's result is delivered by modifying the passed-in v structure. The
return value per se is ignored, though it's conventional to pass back the address of v.

Like penalty, the picksplit function is crucial to good performance of the index. Designing suitable
penalty and picksplit implementations is where the challenge of implementing well-performing
GiST indexes lies.

same

Returns true if two index entries are identical, false otherwise. (An “index entry” is a value of the
index's storage type, not necessarily the original indexed column's type.)

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{
 prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
 prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
 bool *result = (bool *) PG_GETARG_POINTER(2);

 *result = my_eq(v1, v2);

2322

Built-in Index Access Methods

 PG_RETURN_POINTER(result);
}

For historical reasons, the same function doesn't just return a Boolean result; instead it has to store
the flag at the location indicated by the third argument. The return value per se is ignored, though
it's conventional to pass back the address of that argument.

distance

Given an index entry p and a query value q, this function determines the index entry's “distance”
from the query value. This function must be supplied if the operator class contains any ordering
operators. A query using the ordering operator will be implemented by returning index entries with
the smallest “distance” values first, so the results must be consistent with the operator's semantics.
For a leaf index entry the result just represents the distance to the index entry; for an internal tree
node, the result must be the smallest distance that any child entry could have.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 /* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
 data_type *key = DatumGetDataType(entry->key);
 double retval;

 /*
 * determine return value as a function of strategy, key and query.
 */

 PG_RETURN_FLOAT8(retval);
}

The arguments to the distance function are identical to the arguments of the consistent function.

Some approximation is allowed when determining the distance, so long as the result is never greater
than the entry's actual distance. Thus, for example, distance to a bounding box is usually sufficient
in geometric applications. For an internal tree node, the distance returned must not be greater than
the distance to any of the child nodes. If the returned distance is not exact, the function must set
*recheck to true. (This is not necessary for internal tree nodes; for them, the calculation is always
assumed to be inexact.) In this case the executor will calculate the accurate distance after fetching
the tuple from the heap, and reorder the tuples if necessary.

If the distance function returns *recheck = true for any leaf node, the original ordering operator's
return type must be float8 or float4, and the distance function's result values must be comparable
to those of the original ordering operator, since the executor will sort using both distance function
results and recalculated ordering-operator results. Otherwise, the distance function's result values
can be any finite float8 values, so long as the relative order of the result values matches the order
returned by the ordering operator. (Infinity and minus infinity are used internally to handle cases
such as nulls, so it is not recommended that distance functions return these values.)

2323

Built-in Index Access Methods

fetch

Converts the compressed index representation of a data item into the original data type, for index-on-
ly scans. The returned data must be an exact, non-lossy copy of the originally indexed value.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The argument is a pointer to a GISTENTRY struct. On entry, its key field contains a non-NULL leaf
datum in compressed form. The return value is another GISTENTRY struct, whose key field contains
the same datum in its original, uncompressed form. If the opclass's compress function does nothing
for leaf entries, the fetch method can return the argument as-is. Or, if the opclass does not have a
compress function, the fetch method can be omitted as well, since it would necessarily be a no-op.

The matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_fetch);

Datum
my_fetch(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 input_data_type *in = DatumGetPointer(entry->key);
 fetched_data_type *fetched_data;
 GISTENTRY *retval;

 retval = palloc(sizeof(GISTENTRY));
 fetched_data = palloc(sizeof(fetched_data_type));

 /*
 * Convert 'fetched_data' into the a Datum of the original datatype.
 */

 /* fill *retval from fetched_data. */
 gistentryinit(*retval, PointerGetDatum(converted_datum),
 entry->rel, entry->page, entry->offset, FALSE);

 PG_RETURN_POINTER(retval);
}

If the compress method is lossy for leaf entries, the operator class cannot support index-only scans,
and must not define a fetch function.

options

Allows definition of user-visible parameters that control operator class behavior.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The function is passed a pointer to a local_relopts struct, which needs to be filled with a set of
operator class specific options. The options can be accessed from other support functions using the
PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

2324

Built-in Index Access Methods

An example implementation of my_options() and parameters use from other support functions are
given below:

typedef enum MyEnumType
{
 MY_ENUM_ON,
 MY_ENUM_OFF,
 MY_ENUM_AUTO
} MyEnumType;

typedef struct
{
 int32 vl_len_; /* varlena header (do not touch directly!) */
 int int_param; /* integer parameter */
 double real_param; /* real parameter */
 MyEnumType enum_param; /* enum parameter */
 int str_param; /* string parameter */
} MyOptionsStruct;

/* String representation of enum values */
static relopt_enum_elt_def myEnumValues[] =
{
 {"on", MY_ENUM_ON},
 {"off", MY_ENUM_OFF},
 {"auto", MY_ENUM_AUTO},
 {(const char *) NULL} /* list terminator */
};

static char *str_param_default = "default";

/*
 * Sample validator: checks that string is not longer than 8 bytes.
 */
static void
validate_my_string_relopt(const char *value)
{
 if (strlen(value) > 8)
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 errmsg("str_param must be at most 8 bytes")));
}

/*
 * Sample filler: switches characters to lower case.
 */
static Size
fill_my_string_relopt(const char *value, void *ptr)
{
 char *tmp = str_tolower(value, strlen(value), DEFAULT_COLLATION_OID);
 int len = strlen(tmp);

 if (ptr)
 strcpy(ptr, tmp);

 pfree(tmp);
 return len + 1;
}

2325

Built-in Index Access Methods

PG_FUNCTION_INFO_V1(my_options);

Datum
my_options(PG_FUNCTION_ARGS)
{
 local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

 init_local_reloptions(relopts, sizeof(MyOptionsStruct));
 add_local_int_reloption(relopts, "int_param", "integer parameter",
 100, 0, 1000000,
 offsetof(MyOptionsStruct, int_param));
 add_local_real_reloption(relopts, "real_param", "real parameter",
 1.0, 0.0, 1000000.0,
 offsetof(MyOptionsStruct, real_param));
 add_local_enum_reloption(relopts, "enum_param", "enum parameter",
 myEnumValues, MY_ENUM_ON,
 "Valid values are: \"on\", \"off\" and \"auto\".",
 offsetof(MyOptionsStruct, enum_param));
 add_local_string_reloption(relopts, "str_param", "string parameter",
 str_param_default,
 &validate_my_string_relopt,
 &fill_my_string_relopt,
 offsetof(MyOptionsStruct, str_param));

 PG_RETURN_VOID();
}

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 int int_param = 100;
 double real_param = 1.0;
 MyEnumType enum_param = MY_ENUM_ON;
 char *str_param = str_param_default;

 /*
 * Normally, when opclass contains 'options' method, then options are always
 * passed to support functions. However, if you add 'options' method to
 * existing opclass, previously defined indexes have no options, so the
 * check is required.
 */
 if (PG_HAS_OPCLASS_OPTIONS())
 {
 MyOptionsStruct *options = (MyOptionsStruct *) PG_GET_OPCLASS_OPTIONS();

 int_param = options->int_param;
 real_param = options->real_param;
 enum_param = options->enum_param;
 str_param = GET_STRING_RELOPTION(options, str_param);
 }

 /* the rest implementation of support function */
}

2326

Built-in Index Access Methods

Since the representation of the key in GiST is flexible, it may depend on user-specified parameters.
For instance, the length of key signature may be specified. See gtsvector_options() for example.

sortsupport

Returns a comparator function to sort data in a way that preserves locality. It is used by CREATE
INDEX and REINDEX commands. The quality of the created index depends on how well the sort order
determined by the comparator function preserves locality of the inputs.

The sortsupport method is optional. If it is not provided, CREATE INDEX builds the index by inserting
each tuple to the tree using the penalty and picksplit functions, which is much slower.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_sortsupport(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The argument is a pointer to a SortSupport struct. At a minimum, the function must fill in its com-
parator field. The comparator takes three arguments: two Datums to compare, and a pointer to the
SortSupport struct. The Datums are the two indexed values in the format that they are stored in
the index; that is, in the format returned by the compress method. The full API is defined in src/
include/utils/sortsupport.h.

The matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_sortsupport);

static int
my_fastcmp(Datum x, Datum y, SortSupport ssup)
{
 /* establish order between x and y by computing some sorting value z */

 int z1 = ComputeSpatialCode(x);
 int z2 = ComputeSpatialCode(y);

 return z1 == z2 ? 0 : z1 > z2 ? 1 : -1;
}

Datum
my_sortsupport(PG_FUNCTION_ARGS)
{
 SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);

 ssup->comparator = my_fastcmp;
 PG_RETURN_VOID();
}

translate_cmptype

Given a CompareType value from src/include/nodes/primnodes.h, returns a strategy number used
by this operator class for matching functionality. The function should return InvalidStrategy if the
operator class has no matching strategy.

This is used for temporal index constraints (i.e., PRIMARY KEY and UNIQUE). If the operator class pro-
vides this function and it returns results for COMPARE_EQ, it can be used in the non-WITHOUT OVERLAPS
part(s) of an index constraint.

This support function corresponds to the index access method callback function amtranslatecmptype
(see Section 63.2). The amtranslatecmptype callback function for GiST indexes merely calls down

2327

Built-in Index Access Methods

to the translate_cmptype support function of the respective operator family, since the GiST index
access method has no fixed strategy numbers itself.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_translate_cmptype(integer)
RETURNS smallint
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the operator family registration must look like this:

ALTER OPERATOR FAMILY my_opfamily USING gist ADD
 FUNCTION 12 ("any", "any") my_translate_cmptype(int);

The matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_translate_cmptype);

Datum
my_translate_cmptype(PG_FUNCTION_ARGS)
{
 CompareType cmptype = PG_GETARG_INT32(0);
 StrategyNumber ret = InvalidStrategy;

 switch (cmptype)
 {
 case COMPARE_EQ:
 ret = BTEqualStrategyNumber;
 }

 PG_RETURN_UINT16(ret);
}

One translation function is provided by PostgreSQL: gist_translate_cmptype_common is for opera-
tor classes that use the RT*StrategyNumber constants. The btree_gist extension defines a second
translation function, gist_translate_cmptype_btree, for operator classes that use the BT*Strat-
egyNumber constants.

All the GiST support methods are normally called in short-lived memory contexts; that is, CurrentMem-
oryContext will get reset after each tuple is processed. It is therefore not very important to worry about
pfree'ing everything you palloc. However, in some cases it's useful for a support method to cache data
across repeated calls. To do that, allocate the longer-lived data in fcinfo->flinfo->fn_mcxt, and keep
a pointer to it in fcinfo->flinfo->fn_extra. Such data will survive for the life of the index operation
(e.g., a single GiST index scan, index build, or index tuple insertion). Be careful to pfree the previous
value when replacing a fn_extra value, or the leak will accumulate for the duration of the operation.

65.2.4. Implementation
65.2.4.1. GiST Index Build Methods

The simplest way to build a GiST index is just to insert all the entries, one by one. This tends to be slow
for large indexes, because if the index tuples are scattered across the index and the index is large enough
to not fit in cache, a lot of random I/O will be needed. PostgreSQL supports two alternative methods for
initial build of a GiST index: sorted and buffered modes.

The sorted method is only available if each of the opclasses used by the index provides a sortsupport
function, as described in Section 65.2.3. If they do, this method is usually the best, so it is used by default.

The buffered method works by not inserting tuples directly into the index right away. It can dramatically
reduce the amount of random I/O needed for non-ordered data sets. For well-ordered data sets the

2328

Built-in Index Access Methods

benefit is smaller or non-existent, because only a small number of pages receive new tuples at a time,
and those pages fit in cache even if the index as a whole does not.

The buffered method needs to call the penalty function more often than the simple method does, which
consumes some extra CPU resources. Also, the buffers need temporary disk space, up to the size of
the resulting index. Buffering can also influence the quality of the resulting index, in both positive and
negative directions. That influence depends on various factors, like the distribution of the input data
and the operator class implementation.

If sorting is not possible, then by default a GiST index build switches to the buffering method when the
index size reaches effective_cache_size. Buffering can be manually forced or prevented by the buffering
parameter to the CREATE INDEX command. The default behavior is good for most cases, but turning
buffering off might speed up the build somewhat if the input data is ordered.

65.2.5. Examples
The PostgreSQL source distribution includes several examples of index methods implemented using
GiST. The core system currently provides text search support (indexing for tsvector and tsquery) as
well as R-Tree equivalent functionality for some of the built-in geometric data types (see src/back-
end/access/gist/gistproc.c). The following contrib modules also contain GiST operator classes:
btree_gist

B-tree equivalent functionality for several data types

cube

Indexing for multidimensional cubes

hstore

Module for storing (key, value) pairs

intarray

RD-Tree for one-dimensional array of int4 values

ltree

Indexing for tree-like structures

pg_trgm

Text similarity using trigram matching

seg

Indexing for “float ranges”

65.3. SP-GiST Indexes
65.3.1. Introduction

SP-GiST is an abbreviation for space-partitioned GiST. SP-GiST supports partitioned search trees, which
facilitate development of a wide range of different non-balanced data structures, such as quad-trees, k-
d trees, and radix trees (tries). The common feature of these structures is that they repeatedly divide
the search space into partitions that need not be of equal size. Searches that are well matched to the
partitioning rule can be very fast.

These popular data structures were originally developed for in-memory usage. In main memory, they
are usually designed as a set of dynamically allocated nodes linked by pointers. This is not suitable for
direct storing on disk, since these chains of pointers can be rather long which would require too many
disk accesses. In contrast, disk-based data structures should have a high fanout to minimize I/O. The
challenge addressed by SP-GiST is to map search tree nodes to disk pages in such a way that a search
need access only a few disk pages, even if it traverses many nodes.

2329

Built-in Index Access Methods

Like GiST, SP-GiST is meant to allow the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from Purdue University's SP-GiST Indexing Project web site. The
SP-GiST implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov,
and there is more information on their web site.

65.3.2. Built-in Operator Classes
The core PostgreSQL distribution includes the SP-GiST operator classes shown in Table 65.2.

Table 65.2. Built-in SP-GiST Operator Classes

Name Indexable Operators Ordering Operators
<< (box,box)

&< (box,box)

&> (box,box)

>> (box,box)

<@ (box,box)

@> (box,box)

~= (box,box)

&& (box,box)

<<| (box,box)

&<| (box,box)

|&> (box,box)

box_ops

|>> (box,box)

<-> (box,point)

<< (inet,inet)

<<= (inet,inet)

>> (inet,inet)

>>= (inet,inet)

= (inet,inet)

<> (inet,inet)

< (inet,inet)

<= (inet,inet)

> (inet,inet)

>= (inet,inet)

inet_ops

&& (inet,inet)

|>> (point,point)

<< (point,point)

>> (point,point)

<<| (point,point)

~= (point,point)

kd_point_ops

<@ (point,box)

<-> (point,point)

<< (polygon,polygon)

&< (polygon,polygon)poly_ops

&> (polygon,polygon)

<-> (polygon,point)

2330

https://www.cs.purdue.edu/spgist/
http://www.sai.msu.su/~megera/wiki/spgist_dev

Built-in Index Access Methods

Name Indexable Operators Ordering Operators
>> (polygon,polygon)

<@ (polygon,polygon)

@> (polygon,polygon)

~= (polygon,polygon)

&& (polygon,polygon)

<<| (polygon,polygon)

&<| (polygon,polygon)

|>> (polygon,polygon)

|&> (polygon,polygon)

|>> (point,point)

<< (point,point)

>> (point,point)

<<| (point,point)

~= (point,point)

quad_point_ops

<@ (point,box)

<-> (point,point)

= (anyrange,anyrange)

&& (anyrange,anyrange)

@> (anyrange,anyelement)

@> (anyrange,anyrange)

<@ (anyrange,anyrange)

<< (anyrange,anyrange)

>> (anyrange,anyrange)

&< (anyrange,anyrange)

&> (anyrange,anyrange)

range_ops

-|- (anyrange,anyrange)

= (text,text)

< (text,text)

<= (text,text)

> (text,text)

>= (text,text)

~<~ (text,text)

~<=~ (text,text)

~>=~ (text,text)

~>~ (text,text)

text_ops

^@ (text,text)

Of the two operator classes for type point, quad_point_ops is the default. kd_point_ops supports the
same operators but uses a different index data structure that may offer better performance in some
applications.

The quad_point_ops, kd_point_ops and poly_ops operator classes support the <-> ordering operator,
which enables the k-nearest neighbor (k-NN) search over indexed point or polygon data sets.

2331

Built-in Index Access Methods

65.3.3. Extensibility
SP-GiST offers an interface with a high level of abstraction, requiring the access method developer to
implement only methods specific to a given data type. The SP-GiST core is responsible for efficient disk
mapping and searching the tree structure. It also takes care of concurrency and logging considerations.

Leaf tuples of an SP-GiST tree usually contain values of the same data type as the indexed column,
although it is also possible for them to contain lossy representations of the indexed column. Leaf tuples
stored at the root level will directly represent the original indexed data value, but leaf tuples at lower
levels might contain only a partial value, such as a suffix. In that case the operator class support functions
must be able to reconstruct the original value using information accumulated from the inner tuples that
are passed through to reach the leaf level.

When an SP-GiST index is created with INCLUDE columns, the values of those columns are also stored
in leaf tuples. The INCLUDE columns are of no concern to the SP-GiST operator class, so they are not
discussed further here.

Inner tuples are more complex, since they are branching points in the search tree. Each inner tuple
contains a set of one or more nodes, which represent groups of similar leaf values. A node contains a
downlink that leads either to another, lower-level inner tuple, or to a short list of leaf tuples that all lie
on the same index page. Each node normally has a label that describes it; for example, in a radix tree
the node label could be the next character of the string value. (Alternatively, an operator class can omit
the node labels, if it works with a fixed set of nodes for all inner tuples; see Section 65.3.4.2.) Optionally,
an inner tuple can have a prefix value that describes all its members. In a radix tree this could be the
common prefix of the represented strings. The prefix value is not necessarily really a prefix, but can be
any data needed by the operator class; for example, in a quad-tree it can store the central point that
the four quadrants are measured with respect to. A quad-tree inner tuple would then also contain four
nodes corresponding to the quadrants around this central point.

Some tree algorithms require knowledge of level (or depth) of the current tuple, so the SP-GiST core
provides the possibility for operator classes to manage level counting while descending the tree. There
is also support for incrementally reconstructing the represented value when that is needed, and for
passing down additional data (called traverse values) during a tree descent.

Note
The SP-GiST core code takes care of null entries. Although SP-GiST indexes do store entries for
nulls in indexed columns, this is hidden from the index operator class code: no null index entries
or search conditions will ever be passed to the operator class methods. (It is assumed that SP-
GiST operators are strict and so cannot succeed for null values.) Null values are therefore not
discussed further here.

There are five user-defined methods that an index operator class for SP-GiST must provide, and two are
optional. All five mandatory methods follow the convention of accepting two internal arguments, the
first of which is a pointer to a C struct containing input values for the support method, while the second
argument is a pointer to a C struct where output values must be placed. Four of the mandatory methods
just return void, since all their results appear in the output struct; but leaf_consistent returns a
boolean result. The methods must not modify any fields of their input structs. In all cases, the output
struct is initialized to zeroes before calling the user-defined method. The optional sixth method compress
accepts a datum to be indexed as the only argument and returns a value suitable for physical storage
in a leaf tuple. The optional seventh method options accepts an internal pointer to a C struct, where
opclass-specific parameters should be placed, and returns void.

The five mandatory user-defined methods are:

config

Returns static information about the index implementation, including the data type OIDs of the prefix
and node label data types.

2332

Built-in Index Access Methods

The SQL declaration of the function must look like this:
CREATE FUNCTION my_config(internal, internal) RETURNS void ...

The first argument is a pointer to a spgConfigIn C struct, containing input data for the function. The
second argument is a pointer to a spgConfigOut C struct, which the function must fill with result data.
typedef struct spgConfigIn
{
 Oid attType; /* Data type to be indexed */
} spgConfigIn;

typedef struct spgConfigOut
{
 Oid prefixType; /* Data type of inner-tuple prefixes */
 Oid labelType; /* Data type of inner-tuple node labels */
 Oid leafType; /* Data type of leaf-tuple values */
 bool canReturnData; /* Opclass can reconstruct original data */
 bool longValuesOK; /* Opclass can cope with values > 1 page */
} spgConfigOut;

attType is passed in order to support polymorphic index operator classes; for ordinary fixed-da-
ta-type operator classes, it will always have the same value and so can be ignored.

For operator classes that do not use prefixes, prefixType can be set to VOIDOID. Likewise, for oper-
ator classes that do not use node labels, labelType can be set to VOIDOID. canReturnData should be
set true if the operator class is capable of reconstructing the originally-supplied index value. long-
ValuesOK should be set true only when the attType is of variable length and the operator class is
capable of segmenting long values by repeated suffixing (see Section 65.3.4.1).

leafType should match the index storage type defined by the operator class's opckeytype catalog
entry. (Note that opckeytype can be zero, implying the storage type is the same as the operator
class's input type, which is the most common situation.) For reasons of backward compatibility, the
config method can set leafType to some other value, and that value will be used; but this is depre-
cated since the index contents are then incorrectly identified in the catalogs. Also, it's permissible
to leave leafType uninitialized (zero); that is interpreted as meaning the index storage type derived
from opckeytype.

When attType and leafType are different, the optional method compress must be provided. Method
compress is responsible for transformation of datums to be indexed from attType to leafType.

choose

Chooses a method for inserting a new value into an inner tuple.

The SQL declaration of the function must look like this:
CREATE FUNCTION my_choose(internal, internal) RETURNS void ...

The first argument is a pointer to a spgChooseIn C struct, containing input data for the function. The
second argument is a pointer to a spgChooseOut C struct, which the function must fill with result data.
typedef struct spgChooseIn
{
 Datum datum; /* original datum to be indexed */
 Datum leafDatum; /* current datum to be stored at leaf */
 int level; /* current level (counting from zero) */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner tuple */
 Datum *nodeLabels; /* node label values (NULL if none) */

2333

Built-in Index Access Methods

} spgChooseIn;

typedef enum spgChooseResultType
{
 spgMatchNode = 1, /* descend into existing node */
 spgAddNode, /* add a node to the inner tuple */
 spgSplitTuple /* split inner tuple (change its prefix) */
} spgChooseResultType;

typedef struct spgChooseOut
{
 spgChooseResultType resultType; /* action code, see above */
 union
 {
 struct /* results for spgMatchNode */
 {
 int nodeN; /* descend to this node (index from 0) */
 int levelAdd; /* increment level by this much */
 Datum restDatum; /* new leaf datum */
 } matchNode;
 struct /* results for spgAddNode */
 {
 Datum nodeLabel; /* new node's label */
 int nodeN; /* where to insert it (index from 0) */
 } addNode;
 struct /* results for spgSplitTuple */
 {
 /* Info to form new upper-level inner tuple with one child tuple */
 bool prefixHasPrefix; /* tuple should have a prefix? */
 Datum prefixPrefixDatum; /* if so, its value */
 int prefixNNodes; /* number of nodes */
 Datum *prefixNodeLabels; /* their labels (or NULL for
 * no labels) */
 int childNodeN; /* which node gets child tuple */

 /* Info to form new lower-level inner tuple with all old nodes */
 bool postfixHasPrefix; /* tuple should have a prefix? */
 Datum postfixPrefixDatum; /* if so, its value */
 } splitTuple;
 } result;
} spgChooseOut;

datum is the original datum of spgConfigIn.attType type that was to be inserted into the index.
leafDatum is a value of spgConfigOut.leafType type, which is initially a result of method compress
applied to datum when method compress is provided, or the same value as datum otherwise. leaf-
Datum can change at lower levels of the tree if the choose or picksplit methods change it. When
the insertion search reaches a leaf page, the current value of leafDatum is what will be stored in the
newly created leaf tuple. level is the current inner tuple's level, starting at zero for the root level.
allTheSame is true if the current inner tuple is marked as containing multiple equivalent nodes (see
Section 65.3.4.3). hasPrefix is true if the current inner tuple contains a prefix; if so, prefixDatum
is its value. nNodes is the number of child nodes contained in the inner tuple, and nodeLabels is an
array of their label values, or NULL if there are no labels.

The choose function can determine either that the new value matches one of the existing child nodes,
or that a new child node must be added, or that the new value is inconsistent with the tuple prefix
and so the inner tuple must be split to create a less restrictive prefix.

If the new value matches one of the existing child nodes, set resultType to spgMatchNode. Set nodeN
to the index (from zero) of that node in the node array. Set levelAdd to the increment in level

2334

Built-in Index Access Methods

caused by descending through that node, or leave it as zero if the operator class does not use levels.
Set restDatum to equal leafDatum if the operator class does not modify datums from one level to the
next, or otherwise set it to the modified value to be used as leafDatum at the next level.

If a new child node must be added, set resultType to spgAddNode. Set nodeLabel to the label to be
used for the new node, and set nodeN to the index (from zero) at which to insert the node in the node
array. After the node has been added, the choose function will be called again with the modified
inner tuple; that call should result in an spgMatchNode result.

If the new value is inconsistent with the tuple prefix, set resultType to spgSplitTuple. This action
moves all the existing nodes into a new lower-level inner tuple, and replaces the existing inner tuple
with a tuple having a single downlink pointing to the new lower-level inner tuple. Set prefixHasPre-
fix to indicate whether the new upper tuple should have a prefix, and if so set prefixPrefixDatum
to the prefix value. This new prefix value must be sufficiently less restrictive than the original to
accept the new value to be indexed. Set prefixNNodes to the number of nodes needed in the new
tuple, and set prefixNodeLabels to a palloc'd array holding their labels, or to NULL if node labels
are not required. Note that the total size of the new upper tuple must be no more than the total
size of the tuple it is replacing; this constrains the lengths of the new prefix and new labels. Set
childNodeN to the index (from zero) of the node that will downlink to the new lower-level inner tuple.
Set postfixHasPrefix to indicate whether the new lower-level inner tuple should have a prefix, and
if so set postfixPrefixDatum to the prefix value. The combination of these two prefixes and the
downlink node's label (if any) must have the same meaning as the original prefix, because there is no
opportunity to alter the node labels that are moved to the new lower-level tuple, nor to change any
child index entries. After the node has been split, the choose function will be called again with the
replacement inner tuple. That call may return an spgAddNode result, if no suitable node was created
by the spgSplitTuple action. Eventually choose must return spgMatchNode to allow the insertion
to descend to the next level.

picksplit

Decides how to create a new inner tuple over a set of leaf tuples.

The SQL declaration of the function must look like this:
CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...

The first argument is a pointer to a spgPickSplitIn C struct, containing input data for the function.
The second argument is a pointer to a spgPickSplitOut C struct, which the function must fill with
result data.
typedef struct spgPickSplitIn
{
 int nTuples; /* number of leaf tuples */
 Datum *datums; /* their datums (array of length nTuples) */
 int level; /* current level (counting from zero) */
} spgPickSplitIn;

typedef struct spgPickSplitOut
{
 bool hasPrefix; /* new inner tuple should have a prefix? */
 Datum prefixDatum; /* if so, its value */

 int nNodes; /* number of nodes for new inner tuple */
 Datum *nodeLabels; /* their labels (or NULL for no labels) */

 int *mapTuplesToNodes; /* node index for each leaf tuple */
 Datum *leafTupleDatums; /* datum to store in each new leaf tuple */
} spgPickSplitOut;

nTuples is the number of leaf tuples provided. datums is an array of their datum values of spgCon-
figOut.leafType type. level is the current level that all the leaf tuples share, which will become
the level of the new inner tuple.

2335

Built-in Index Access Methods

Set hasPrefix to indicate whether the new inner tuple should have a prefix, and if so set prefixDatum
to the prefix value. Set nNodes to indicate the number of nodes that the new inner tuple will contain,
and set nodeLabels to an array of their label values, or to NULL if node labels are not required.
Set mapTuplesToNodes to an array that gives the index (from zero) of the node that each leaf tuple
should be assigned to. Set leafTupleDatums to an array of the values to be stored in the new leaf
tuples (these will be the same as the input datums if the operator class does not modify datums from
one level to the next). Note that the picksplit function is responsible for palloc'ing the nodeLabels,
mapTuplesToNodes and leafTupleDatums arrays.

If more than one leaf tuple is supplied, it is expected that the picksplit function will classify them
into more than one node; otherwise it is not possible to split the leaf tuples across multiple pages,
which is the ultimate purpose of this operation. Therefore, if the picksplit function ends up placing
all the leaf tuples in the same node, the core SP-GiST code will override that decision and generate an
inner tuple in which the leaf tuples are assigned at random to several identically-labeled nodes. Such
a tuple is marked allTheSame to signify that this has happened. The choose and inner_consistent
functions must take suitable care with such inner tuples. See Section 65.3.4.3 for more information.

picksplit can be applied to a single leaf tuple only in the case that the config function set long-
ValuesOK to true and a larger-than-a-page input value has been supplied. In this case the point of
the operation is to strip off a prefix and produce a new, shorter leaf datum value. The call will be
repeated until a leaf datum short enough to fit on a page has been produced. See Section 65.3.4.1
for more information.

inner_consistent

Returns set of nodes (branches) to follow during tree search.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...

The first argument is a pointer to a spgInnerConsistentIn C struct, containing input data for the
function. The second argument is a pointer to a spgInnerConsistentOut C struct, which the function
must fill with result data.

typedef struct spgInnerConsistentIn
{
 ScanKey scankeys; /* array of operators and comparison values */
 ScanKey orderbys; /* array of ordering operators and comparison
 * values */
 int nkeys; /* length of scankeys array */
 int norderbys; /* length of orderbys array */

 Datum reconstructedValue; /* value reconstructed at parent */
 void *traversalValue; /* opclass-specific traverse value */
 MemoryContext traversalMemoryContext; /* put new traverse values here */
 int level; /* current level (counting from zero) */
 bool returnData; /* original data must be returned? */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner tuple */
 Datum *nodeLabels; /* node label values (NULL if none) */
} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{
 int nNodes; /* number of child nodes to be visited */

2336

Built-in Index Access Methods

 int *nodeNumbers; /* their indexes in the node array */
 int *levelAdds; /* increment level by this much for each */
 Datum *reconstructedValues; /* associated reconstructed values */
 void **traversalValues; /* opclass-specific traverse values */
 double **distances; /* associated distances */
} spgInnerConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions are
combined with AND — only index entries that satisfy all of them are interesting. (Note that nkeys
= 0 implies that all index entries satisfy the query.) Usually the consistent function only cares about
the sk_strategy and sk_argument fields of each array entry, which respectively give the indexable
operator and comparison value. In particular it is not necessary to check sk_flags to see if the
comparison value is NULL, because the SP-GiST core code will filter out such conditions. The array
orderbys, of length norderbys, describes ordering operators (if any) in the same manner. recon-
structedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the root level or
if the inner_consistent function did not provide a value at the parent level. traversalValue is a
pointer to any traverse data passed down from the previous call of inner_consistent on the parent
index tuple, or NULL at the root level. traversalMemoryContext is the memory context in which to
store output traverse values (see below). level is the current inner tuple's level, starting at zero for
the root level. returnData is true if reconstructed data is required for this query; this will only be
so if the config function asserted canReturnData. allTheSame is true if the current inner tuple is
marked “all-the-same”; in this case all the nodes have the same label (if any) and so either all or none
of them match the query (see Section 65.3.4.3). hasPrefix is true if the current inner tuple contains
a prefix; if so, prefixDatum is its value. nNodes is the number of child nodes contained in the inner
tuple, and nodeLabels is an array of their label values, or NULL if the nodes do not have labels.

nNodes must be set to the number of child nodes that need to be visited by the search, and nodeNum-
bers must be set to an array of their indexes. If the operator class keeps track of levels, set levelAdds
to an array of the level increments required when descending to each node to be visited. (Often these
increments will be the same for all the nodes, but that's not necessarily so, so an array is used.) If
value reconstruction is needed, set reconstructedValues to an array of the values reconstructed
for each child node to be visited; otherwise, leave reconstructedValues as NULL. The reconstruct-
ed values are assumed to be of type spgConfigOut.leafType. (However, since the core system will
do nothing with them except possibly copy them, it is sufficient for them to have the same typlen
and typbyval properties as leafType.) If ordered search is performed, set distances to an array of
distance values according to orderbys array (nodes with lowest distances will be processed first).
Leave it NULL otherwise. If it is desired to pass down additional out-of-band information (“traverse
values”) to lower levels of the tree search, set traversalValues to an array of the appropriate tra-
verse values, one for each child node to be visited; otherwise, leave traversalValues as NULL. Note
that the inner_consistent function is responsible for palloc'ing the nodeNumbers, levelAdds, dis-
tances, reconstructedValues, and traversalValues arrays in the current memory context. How-
ever, any output traverse values pointed to by the traversalValues array should be allocated in
traversalMemoryContext. Each traverse value must be a single palloc'd chunk.

leaf_consistent

Returns true if a leaf tuple satisfies a query.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...

The first argument is a pointer to a spgLeafConsistentIn C struct, containing input data for the
function. The second argument is a pointer to a spgLeafConsistentOut C struct, which the function
must fill with result data.

typedef struct spgLeafConsistentIn
{
 ScanKey scankeys; /* array of operators and comparison values */
 ScanKey orderbys; /* array of ordering operators and comparison

2337

Built-in Index Access Methods

 * values */
 int nkeys; /* length of scankeys array */
 int norderbys; /* length of orderbys array */

 Datum reconstructedValue; /* value reconstructed at parent */
 void *traversalValue; /* opclass-specific traverse value */
 int level; /* current level (counting from zero) */
 bool returnData; /* original data must be returned? */

 Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;

typedef struct spgLeafConsistentOut
{
 Datum leafValue; /* reconstructed original data, if any */
 bool recheck; /* set true if operator must be rechecked */
 bool recheckDistances; /* set true if distances must be rechecked */
 double *distances; /* associated distances */
} spgLeafConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions are
combined with AND — only index entries that satisfy all of them satisfy the query. (Note that nkeys
= 0 implies that all index entries satisfy the query.) Usually the consistent function only cares about
the sk_strategy and sk_argument fields of each array entry, which respectively give the indexable
operator and comparison value. In particular it is not necessary to check sk_flags to see if the
comparison value is NULL, because the SP-GiST core code will filter out such conditions. The ar-
ray orderbys, of length norderbys, describes the ordering operators in the same manner. recon-
structedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the root level or
if the inner_consistent function did not provide a value at the parent level. traversalValue is a
pointer to any traverse data passed down from the previous call of inner_consistent on the parent
index tuple, or NULL at the root level. level is the current leaf tuple's level, starting at zero for the
root level. returnData is true if reconstructed data is required for this query; this will only be so if
the config function asserted canReturnData. leafDatum is the key value of spgConfigOut.leafType
stored in the current leaf tuple.

The function must return true if the leaf tuple matches the query, or false if not. In the true case, if
returnData is true then leafValue must be set to the value (of type spgConfigIn.attType) originally
supplied to be indexed for this leaf tuple. Also, recheck may be set to true if the match is uncertain
and so the operator(s) must be re-applied to the actual heap tuple to verify the match. If ordered
search is performed, set distances to an array of distance values according to orderbys array. Leave
it NULL otherwise. If at least one of returned distances is not exact, set recheckDistances to true.
In this case, the executor will calculate the exact distances after fetching the tuple from the heap,
and will reorder the tuples if needed.

The optional user-defined methods are:

Datum compress(Datum in)

Converts a data item into a format suitable for physical storage in a leaf tuple of the index. It accepts
a value of type spgConfigIn.attType and returns a value of type spgConfigOut.leafType. The output
value must not contain an out-of-line TOAST pointer.

Note: the compress method is only applied to values to be stored. The consistent methods receive
query scankeys unchanged, without transformation using compress.

options

Defines a set of user-visible parameters that control operator class behavior.

The SQL declaration of the function must look like this:

2338

Built-in Index Access Methods

CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The function is passed a pointer to a local_relopts struct, which needs to be filled with a set of
operator class specific options. The options can be accessed from other support functions using the
PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Since the representation of the key in SP-GiST is flexible, it may depend on user-specified parameters.

All the SP-GiST support methods are normally called in a short-lived memory context; that is, Current-
MemoryContext will be reset after processing of each tuple. It is therefore not very important to worry
about pfree'ing everything you palloc. (The config method is an exception: it should try to avoid leaking
memory. But usually the config method need do nothing but assign constants into the passed parameter
struct.)

If the indexed column is of a collatable data type, the index collation will be passed to all the support
methods, using the standard PG_GET_COLLATION() mechanism.

65.3.4. Implementation
This section covers implementation details and other tricks that are useful for implementers of SP-GiST
operator classes to know.

65.3.4.1. SP-GiST Limits
Individual leaf tuples and inner tuples must fit on a single index page (8kB by default). Therefore, when
indexing values of variable-length data types, long values can only be supported by methods such as
radix trees, in which each level of the tree includes a prefix that is short enough to fit on a page, and
the final leaf level includes a suffix also short enough to fit on a page. The operator class should set
longValuesOK to true only if it is prepared to arrange for this to happen. Otherwise, the SP-GiST core
will reject any request to index a value that is too large to fit on an index page.

Likewise, it is the operator class's responsibility that inner tuples do not grow too large to fit on an index
page; this limits the number of child nodes that can be used in one inner tuple, as well as the maximum
size of a prefix value.

Another limitation is that when an inner tuple's node points to a set of leaf tuples, those tuples must all
be in the same index page. (This is a design decision to reduce seeking and save space in the links that
chain such tuples together.) If the set of leaf tuples grows too large for a page, a split is performed and
an intermediate inner tuple is inserted. For this to fix the problem, the new inner tuple must divide the
set of leaf values into more than one node group. If the operator class's picksplit function fails to do
that, the SP-GiST core resorts to extraordinary measures described in Section 65.3.4.3.

When longValuesOK is true, it is expected that successive levels of the SP-GiST tree will absorb more and
more information into the prefixes and node labels of the inner tuples, making the required leaf datum
smaller and smaller, so that eventually it will fit on a page. To prevent bugs in operator classes from
causing infinite insertion loops, the SP-GiST core will raise an error if the leaf datum does not become
any smaller within ten cycles of choose method calls.

65.3.4.2. SP-GiST Without Node Labels
Some tree algorithms use a fixed set of nodes for each inner tuple; for example, in a quad-tree there
are always exactly four nodes corresponding to the four quadrants around the inner tuple's centroid
point. In such a case the code typically works with the nodes by number, and there is no need for
explicit node labels. To suppress node labels (and thereby save some space), the picksplit function
can return NULL for the nodeLabels array, and likewise the choose function can return NULL for the
prefixNodeLabels array during a spgSplitTuple action. This will in turn result in nodeLabels being
NULL during subsequent calls to choose and inner_consistent. In principle, node labels could be used
for some inner tuples and omitted for others in the same index.

2339

Built-in Index Access Methods

When working with an inner tuple having unlabeled nodes, it is an error for choose to return spgAddNode,
since the set of nodes is supposed to be fixed in such cases.

65.3.4.3. “All-the-Same” Inner Tuples
The SP-GiST core can override the results of the operator class's picksplit function when picksplit
fails to divide the supplied leaf values into at least two node categories. When this happens, the new
inner tuple is created with multiple nodes that each have the same label (if any) that picksplit gave to
the one node it did use, and the leaf values are divided at random among these equivalent nodes. The
allTheSame flag is set on the inner tuple to warn the choose and inner_consistent functions that the
tuple does not have the node set that they might otherwise expect.

When dealing with an allTheSame tuple, a choose result of spgMatchNode is interpreted to mean that the
new value can be assigned to any of the equivalent nodes; the core code will ignore the supplied nodeN
value and descend into one of the nodes at random (so as to keep the tree balanced). It is an error for
choose to return spgAddNode, since that would make the nodes not all equivalent; the spgSplitTuple
action must be used if the value to be inserted doesn't match the existing nodes.

When dealing with an allTheSame tuple, the inner_consistent function should return either all or none
of the nodes as targets for continuing the index search, since they are all equivalent. This may or may
not require any special-case code, depending on how much the inner_consistent function normally
assumes about the meaning of the nodes.

65.3.5. Examples
The PostgreSQL source distribution includes several examples of index operator classes for SP-GiST,
as described in Table 65.2. Look into src/backend/access/spgist/ and src/backend/utils/adt/ to
see the code.

65.4. GIN Indexes
65.4.1. Introduction

GIN stands for Generalized Inverted Index. GIN is designed for handling cases where the items to be
indexed are composite values, and the queries to be handled by the index need to search for element
values that appear within the composite items. For example, the items could be documents, and the
queries could be searches for documents containing specific words.

We use the word item to refer to a composite value that is to be indexed, and the word key to refer to
an element value. GIN always stores and searches for keys, not item values per se.

A GIN index stores a set of (key, posting list) pairs, where a posting list is a set of row IDs in which the
key occurs. The same row ID can appear in multiple posting lists, since an item can contain more than
one key. Each key value is stored only once, so a GIN index is very compact for cases where the same
key appears many times.

GIN is generalized in the sense that the GIN access method code does not need to know the specific
operations that it accelerates. Instead, it uses custom strategies defined for particular data types. The
strategy defines how keys are extracted from indexed items and query conditions, and how to determine
whether a row that contains some of the key values in a query actually satisfies the query.

One advantage of GIN is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert. This is much the
same advantage as using GiST.

The GIN implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov.
There is more information about GIN on their website.

65.4.2. Built-in Operator Classes
The core PostgreSQL distribution includes the GIN operator classes shown in Table 65.3. (Some of the
optional modules described in Appendix F provide additional GIN operator classes.)

2340

http://www.sai.msu.su/~megera/wiki/Gin

Built-in Index Access Methods

Table 65.3. Built-in GIN Operator Classes

Name Indexable Operators
&& (anyarray,anyarray)

@> (anyarray,anyarray)

<@ (anyarray,anyarray)
array_ops

= (anyarray,anyarray)

@> (jsonb,jsonb)

@? (jsonb,jsonpath)

@@ (jsonb,jsonpath)

? (jsonb,text)

?| (jsonb,text[])

jsonb_ops

?& (jsonb,text[])

@> (jsonb,jsonb)

@? (jsonb,jsonpath)jsonb_path_ops

@@ (jsonb,jsonpath)

tsvector_ops @@ (tsvector,tsquery)

Of the two operator classes for type jsonb, jsonb_ops is the default. jsonb_path_ops supports fewer
operators but offers better performance for those operators. See Section 8.14.4 for details.

65.4.3. Extensibility
The GIN interface has a high level of abstraction, requiring the access method implementer only to
implement the semantics of the data type being accessed. The GIN layer itself takes care of concurrency,
logging and searching the tree structure.

All it takes to get a GIN access method working is to implement a few user-defined methods, which
define the behavior of keys in the tree and the relationships between keys, indexed items, and indexable
queries. In short, GIN combines extensibility with generality, code reuse, and a clean interface.

There are two methods that an operator class for GIN must provide:
Datum *extractValue(Datum itemValue, int32 *nkeys, bool **nullFlags)

Returns a palloc'd array of keys given an item to be indexed. The number of returned keys must be
stored into *nkeys. If any of the keys can be null, also palloc an array of *nkeys bool fields, store its
address at *nullFlags, and set these null flags as needed. *nullFlags can be left NULL (its initial
value) if all keys are non-null. The return value can be NULL if the item contains no keys.

Datum *extractQuery(Datum query, int32 *nkeys, StrategyNumber n, bool **pmatch, Pointer
**extra_data, bool **nullFlags, int32 *searchMode)

Returns a palloc'd array of keys given a value to be queried; that is, query is the value on the right-
hand side of an indexable operator whose left-hand side is the indexed column. n is the strategy
number of the operator within the operator class (see Section 36.16.2). Often, extractQuery will
need to consult n to determine the data type of query and the method it should use to extract key
values. The number of returned keys must be stored into *nkeys. If any of the keys can be null, also
palloc an array of *nkeys bool fields, store its address at *nullFlags, and set these null flags as
needed. *nullFlags can be left NULL (its initial value) if all keys are non-null. The return value can
be NULL if the query contains no keys.

searchMode is an output argument that allows extractQuery to specify details about how the search
will be done. If *searchMode is set to GIN_SEARCH_MODE_DEFAULT (which is the value it is initialized
to before call), only items that match at least one of the returned keys are considered candidate
matches. If *searchMode is set to GIN_SEARCH_MODE_INCLUDE_EMPTY, then in addition to items con-

2341

Built-in Index Access Methods

taining at least one matching key, items that contain no keys at all are considered candidate match-
es. (This mode is useful for implementing is-subset-of operators, for example.) If *searchMode is set
to GIN_SEARCH_MODE_ALL, then all non-null items in the index are considered candidate matches,
whether they match any of the returned keys or not. (This mode is much slower than the other two
choices, since it requires scanning essentially the entire index, but it may be necessary to implement
corner cases correctly. An operator that needs this mode in most cases is probably not a good candi-
date for a GIN operator class.) The symbols to use for setting this mode are defined in access/gin.h.

pmatch is an output argument for use when partial match is supported. To use it, extractQuery must
allocate an array of *nkeys bools and store its address at *pmatch. Each element of the array should
be set to true if the corresponding key requires partial match, false if not. If *pmatch is set to NULL
then GIN assumes partial match is not required. The variable is initialized to NULL before call, so this
argument can simply be ignored by operator classes that do not support partial match.

extra_data is an output argument that allows extractQuery to pass additional data to the consis-
tent and comparePartial methods. To use it, extractQuery must allocate an array of *nkeys point-
ers and store its address at *extra_data, then store whatever it wants to into the individual pointers.
The variable is initialized to NULL before call, so this argument can simply be ignored by operator
classes that do not require extra data. If *extra_data is set, the whole array is passed to the con-
sistent method, and the appropriate element to the comparePartial method.

An operator class must also provide a function to check if an indexed item matches the query. It comes
in two flavors, a Boolean consistent function, and a ternary triConsistent function. triConsistent
covers the functionality of both, so providing triConsistent alone is sufficient. However, if the Boolean
variant is significantly cheaper to calculate, it can be advantageous to provide both. If only the Boolean
variant is provided, some optimizations that depend on refuting index items before fetching all the keys
are disabled.
bool consistent(bool check[], StrategyNumber n, Datum query, int32 nkeys, Pointer ex-
tra_data[], bool *recheck, Datum queryKeys[], bool nullFlags[])

Returns true if an indexed item satisfies the query operator with strategy number n (or might satisfy
it, if the recheck indication is returned). This function does not have direct access to the indexed
item's value, since GIN does not store items explicitly. Rather, what is available is knowledge about
which key values extracted from the query appear in a given indexed item. The check array has length
nkeys, which is the same as the number of keys previously returned by extractQuery for this query
datum. Each element of the check array is true if the indexed item contains the corresponding query
key, i.e., if (check[i] == true) the i-th key of the extractQuery result array is present in the indexed
item. The original query datum is passed in case the consistent method needs to consult it, and so
are the queryKeys[] and nullFlags[] arrays previously returned by extractQuery. extra_data is
the extra-data array returned by extractQuery, or NULL if none.

When extractQuery returns a null key in queryKeys[], the corresponding check[] element is true
if the indexed item contains a null key; that is, the semantics of check[] are like IS NOT DISTINCT
FROM. The consistent function can examine the corresponding nullFlags[] element if it needs to
tell the difference between a regular value match and a null match.

On success, *recheck should be set to true if the heap tuple needs to be rechecked against the query
operator, or false if the index test is exact. That is, a false return value guarantees that the heap
tuple does not match the query; a true return value with *recheck set to false guarantees that the
heap tuple does match the query; and a true return value with *recheck set to true means that the
heap tuple might match the query, so it needs to be fetched and rechecked by evaluating the query
operator directly against the originally indexed item.

GinTernaryValue triConsistent(GinTernaryValue check[], StrategyNumber n, Datum query,
int32 nkeys, Pointer extra_data[], Datum queryKeys[], bool nullFlags[])

triConsistent is similar to consistent, but instead of Booleans in the check vector, there are three
possible values for each key: GIN_TRUE, GIN_FALSE and GIN_MAYBE. GIN_FALSE and GIN_TRUE have
the same meaning as regular Boolean values, while GIN_MAYBE means that the presence of that key is

2342

Built-in Index Access Methods

not known. When GIN_MAYBE values are present, the function should only return GIN_TRUE if the item
certainly matches whether or not the index item contains the corresponding query keys. Likewise,
the function must return GIN_FALSE only if the item certainly does not match, whether or not it
contains the GIN_MAYBE keys. If the result depends on the GIN_MAYBE entries, i.e., the match cannot
be confirmed or refuted based on the known query keys, the function must return GIN_MAYBE.

When there are no GIN_MAYBE values in the check vector, a GIN_MAYBE return value is the equivalent
of setting the recheck flag in the Boolean consistent function.

In addition, GIN must have a way to sort the key values stored in the index. The operator class can define
the sort ordering by specifying a comparison method:
int compare(Datum a, Datum b)

Compares two keys (not indexed items!) and returns an integer less than zero, zero, or greater than
zero, indicating whether the first key is less than, equal to, or greater than the second. Null keys
are never passed to this function.

Alternatively, if the operator class does not provide a compare method, GIN will look up the default btree
operator class for the index key data type, and use its comparison function. It is recommended to specify
the comparison function in a GIN operator class that is meant for just one data type, as looking up the
btree operator class costs a few cycles. However, polymorphic GIN operator classes (such as array_ops)
typically cannot specify a single comparison function.

An operator class for GIN can optionally supply the following methods:
int comparePartial(Datum partial_key, Datum key, StrategyNumber n, Pointer extra_data)

Compare a partial-match query key to an index key. Returns an integer whose sign indicates the
result: less than zero means the index key does not match the query, but the index scan should
continue; zero means that the index key does match the query; greater than zero indicates that the
index scan should stop because no more matches are possible. The strategy number n of the operator
that generated the partial match query is provided, in case its semantics are needed to determine
when to end the scan. Also, extra_data is the corresponding element of the extra-data array made
by extractQuery, or NULL if none. Null keys are never passed to this function.

void options(local_relopts *relopts)

Defines a set of user-visible parameters that control operator class behavior.

The options function is passed a pointer to a local_relopts struct, which needs to be filled with
a set of operator class specific options. The options can be accessed from other support functions
using the PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Since both key extraction of indexed values and representation of the key in GIN are flexible, they
may depend on user-specified parameters.

To support “partial match” queries, an operator class must provide the comparePartial method, and
its extractQuery method must set the pmatch parameter when a partial-match query is encountered.
See Section 65.4.4.2 for details.

The actual data types of the various Datum values mentioned above vary depending on the operator
class. The item values passed to extractValue are always of the operator class's input type, and all key
values must be of the class's STORAGE type. The type of the query argument passed to extractQuery,
consistent and triConsistent is whatever is the right-hand input type of the class member operator
identified by the strategy number. This need not be the same as the indexed type, so long as key values
of the correct type can be extracted from it. However, it is recommended that the SQL declarations of
these three support functions use the opclass's indexed data type for the query argument, even though
the actual type might be something else depending on the operator.

65.4.4. Implementation
Internally, a GIN index contains a B-tree index constructed over keys, where each key is an element of
one or more indexed items (a member of an array, for example) and where each tuple in a leaf page

2343

Built-in Index Access Methods

contains either a pointer to a B-tree of heap pointers (a “posting tree”), or a simple list of heap pointers
(a “posting list”) when the list is small enough to fit into a single index tuple along with the key value.
Figure 65.1 illustrates these components of a GIN index.

As of PostgreSQL 9.1, null key values can be included in the index. Also, placeholder nulls are included
in the index for indexed items that are null or contain no keys according to extractValue. This allows
searches that should find empty items to do so.

Multicolumn GIN indexes are implemented by building a single B-tree over composite values (column
number, key value). The key values for different columns can be of different types.

Figure 65.1. GIN Internals

entry tree

posting tree posting tree posting tree

pending list

meta page

posting list posting list posting list

heap ptr

heap ptr heap ptr heap ptr heap ptr

65.4.4.1. GIN Fast Update Technique
Updating a GIN index tends to be slow because of the intrinsic nature of inverted indexes: inserting
or updating one heap row can cause many inserts into the index (one for each key extracted from the
indexed item). GIN is capable of postponing much of this work by inserting new tuples into a temporary,
unsorted list of pending entries. When the table is vacuumed or autoanalyzed, or when gin_clean_pend-
ing_list function is called, or if the pending list becomes larger than gin_pending_list_limit, the entries
are moved to the main GIN data structure using the same bulk insert techniques used during initial
index creation. This greatly improves GIN index update speed, even counting the additional vacuum
overhead. Moreover the overhead work can be done by a background process instead of in foreground
query processing.

The main disadvantage of this approach is that searches must scan the list of pending entries in addition
to searching the regular index, and so a large list of pending entries will slow searches significantly.
Another disadvantage is that, while most updates are fast, an update that causes the pending list to
become “too large” will incur an immediate cleanup cycle and thus be much slower than other updates.
Proper use of autovacuum can minimize both of these problems.

If consistent response time is more important than update speed, use of pending entries can be disabled
by turning off the fastupdate storage parameter for a GIN index. See CREATE INDEX for details.

65.4.4.2. Partial Match Algorithm
GIN can support “partial match” queries, in which the query does not determine an exact match for one
or more keys, but the possible matches fall within a reasonably narrow range of key values (within the

2344

Built-in Index Access Methods

key sorting order determined by the compare support method). The extractQuery method, instead of
returning a key value to be matched exactly, returns a key value that is the lower bound of the range
to be searched, and sets the pmatch flag true. The key range is then scanned using the comparePartial
method. comparePartial must return zero for a matching index key, less than zero for a non-match
that is still within the range to be searched, or greater than zero if the index key is past the range that
could match.

65.4.5. GIN Tips and Tricks
Create vs. insert

Insertion into a GIN index can be slow due to the likelihood of many keys being inserted for each
item. So, for bulk insertions into a table it is advisable to drop the GIN index and recreate it after
finishing bulk insertion.

When fastupdate is enabled for GIN (see Section 65.4.4.1 for details), the penalty is less than when
it is not. But for very large updates it may still be best to drop and recreate the index.

maintenance_work_mem

Build time for a GIN index is very sensitive to the maintenance_work_mem setting; it doesn't pay to
skimp on work memory during index creation.

gin_pending_list_limit

During a series of insertions into an existing GIN index that has fastupdate enabled, the system
will clean up the pending-entry list whenever the list grows larger than gin_pending_list_limit.
To avoid fluctuations in observed response time, it's desirable to have pending-list cleanup occur in
the background (i.e., via autovacuum). Foreground cleanup operations can be avoided by increasing
gin_pending_list_limit or making autovacuum more aggressive. However, enlarging the thresh-
old of the cleanup operation means that if a foreground cleanup does occur, it will take even longer.

gin_pending_list_limit can be overridden for individual GIN indexes by changing storage para-
meters, which allows each GIN index to have its own cleanup threshold. For example, it's possible
to increase the threshold only for the GIN index which can be updated heavily, and decrease it oth-
erwise.

gin_fuzzy_search_limit

The primary goal of developing GIN indexes was to create support for highly scalable full-text search
in PostgreSQL, and there are often situations when a full-text search returns a very large set of
results. Moreover, this often happens when the query contains very frequent words, so that the large
result set is not even useful. Since reading many tuples from the disk and sorting them could take a
lot of time, this is unacceptable for production. (Note that the index search itself is very fast.)

To facilitate controlled execution of such queries, GIN has a configurable soft upper limit on the num-
ber of rows returned: the gin_fuzzy_search_limit configuration parameter. It is set to 0 (meaning
no limit) by default. If a non-zero limit is set, then the returned set is a subset of the whole result
set, chosen at random.

“Soft” means that the actual number of returned results could differ somewhat from the specified
limit, depending on the query and the quality of the system's random number generator.

From experience, values in the thousands (e.g., 5000 — 20000) work well.

65.4.6. Limitations
GIN assumes that indexable operators are strict. This means that extractValue will not be called at
all on a null item value (instead, a placeholder index entry is created automatically), and extractQuery
will not be called on a null query value either (instead, the query is presumed to be unsatisfiable). Note
however that null key values contained within a non-null composite item or query value are supported.

2345

Built-in Index Access Methods

65.4.7. Examples
The core PostgreSQL distribution includes the GIN operator classes previously shown in Table 65.3. The
following contrib modules also contain GIN operator classes:
btree_gin

B-tree equivalent functionality for several data types

hstore

Module for storing (key, value) pairs

intarray

Enhanced support for int[]

pg_trgm

Text similarity using trigram matching

65.5. BRIN Indexes
65.5.1. Introduction

BRIN stands for Block Range Index. BRIN is designed for handling very large tables in which certain
columns have some natural correlation with their physical location within the table.

BRIN works in terms of block ranges (or “page ranges”). A block range is a group of pages that are
physically adjacent in the table; for each block range, some summary info is stored by the index. For
example, a table storing a store's sale orders might have a date column on which each order was placed,
and most of the time the entries for earlier orders will appear earlier in the table as well; a table storing
a ZIP code column might have all codes for a city grouped together naturally.

BRIN indexes can satisfy queries via regular bitmap index scans, and will return all tuples in all pages
within each range if the summary info stored by the index is consistent with the query conditions. The
query executor is in charge of rechecking these tuples and discarding those that do not match the query
conditions — in other words, these indexes are lossy. Because a BRIN index is very small, scanning the
index adds little overhead compared to a sequential scan, but may avoid scanning large parts of the
table that are known not to contain matching tuples.

The specific data that a BRIN index will store, as well as the specific queries that the index will be able
to satisfy, depend on the operator class selected for each column of the index. Data types having a linear
sort order can have operator classes that store the minimum and maximum value within each block
range, for instance; geometrical types might store the bounding box for all the objects in the block range.

The size of the block range is determined at index creation time by the pages_per_range storage pa-
rameter. The number of index entries will be equal to the size of the relation in pages divided by the
selected value for pages_per_range. Therefore, the smaller the number, the larger the index becomes
(because of the need to store more index entries), but at the same time the summary data stored can be
more precise and more data blocks can be skipped during an index scan.

65.5.1.1. Index Maintenance
At the time of creation, all existing heap pages are scanned and a summary index tuple is created for
each range, including the possibly-incomplete range at the end. As new pages are filled with data, page
ranges that are already summarized will cause the summary information to be updated with data from
the new tuples. When a new page is created that does not fall within the last summarized range, the
range that the new page belongs to does not automatically acquire a summary tuple; those tuples remain
unsummarized until a summarization run is invoked later, creating the initial summary for that range.

There are several ways to trigger the initial summarization of a page range. If the table is vacuumed,
either manually or by autovacuum, all existing unsummarized page ranges are summarized. Also, if the
index's autosummarize parameter is enabled, which it isn't by default, whenever autovacuum runs in that

2346

Built-in Index Access Methods

database, summarization will occur for all unsummarized page ranges that have been filled, regardless
of whether the table itself is processed by autovacuum; see below.

Lastly, the following functions can be used (while these functions run, search_path is temporarily
changed to pg_catalog, pg_temp):
brin_summarize_new_values(regclass) which summarizes all unsummarized ranges;
brin_summarize_range(regclass, bigint) which summarizes only the range containing the given
page, if it is unsummarized.

When autosummarization is enabled, a request is sent to autovacuum to execute a targeted summariza-
tion for a block range when an insertion is detected for the first item of the first page of the next block
range, to be fulfilled the next time an autovacuum worker finishes running in the same database. If the
request queue is full, the request is not recorded and a message is sent to the server log:
LOG: request for BRIN range summarization for index "brin_wi_idx" page 128 was not
 recorded

When this happens, the range will remain unsummarized until the next regular vacuum run on the table,
or one of the functions mentioned above are invoked.

Conversely, a range can be de-summarized using the brin_desummarize_range(regclass, bigint)
function, which is useful when the index tuple is no longer a very good representation because the
existing values have changed. See Section 9.28.8 for details.

65.5.2. Built-in Operator Classes
The core PostgreSQL distribution includes the BRIN operator classes shown in Table 65.4.

The minmax operator classes store the minimum and the maximum values appearing in the indexed
column within the range. The inclusion operator classes store a value which includes the values in the
indexed column within the range. The bloom operator classes build a Bloom filter for all values in the
range. The minmax-multi operator classes store multiple minimum and maximum values, representing
values appearing in the indexed column within the range.

Table 65.4. Built-in BRIN Operator Classes

Name Indexable Operators
= (bit,bit)

< (bit,bit)

> (bit,bit)

<= (bit,bit)

bit_minmax_ops

>= (bit,bit)

@> (box,point)

<< (box,box)

&< (box,box)

&> (box,box)

>> (box,box)

<@ (box,box)

@> (box,box)

~= (box,box)

&& (box,box)

<<| (box,box)

&<| (box,box)

box_inclusion_ops

|&> (box,box)

2347

Built-in Index Access Methods

Name Indexable Operators
|>> (box,box)

bpchar_bloom_ops = (character,character)

= (character,character)

< (character,character)

<= (character,character)

> (character,character)

bpchar_minmax_ops

>= (character,character)

bytea_bloom_ops = (bytea,bytea)

= (bytea,bytea)

< (bytea,bytea)

<= (bytea,bytea)

> (bytea,bytea)

bytea_minmax_ops

>= (bytea,bytea)

char_bloom_ops = ("char","char")

= ("char","char")

< ("char","char")

<= ("char","char")

> ("char","char")

char_minmax_ops

>= ("char","char")

date_bloom_ops = (date,date)

= (date,date)

< (date,date)

<= (date,date)

> (date,date)

date_minmax_ops

>= (date,date)

= (date,date)

< (date,date)

<= (date,date)

> (date,date)

date_minmax_multi_ops

>= (date,date)

float4_bloom_ops = (float4,float4)

= (float4,float4)

< (float4,float4)

> (float4,float4)

<= (float4,float4)

float4_minmax_ops

>= (float4,float4)

= (float4,float4)

< (float4,float4)

> (float4,float4)
float4_minmax_multi_ops

<= (float4,float4)

2348

Built-in Index Access Methods

Name Indexable Operators
>= (float4,float4)

float8_bloom_ops = (float8,float8)

= (float8,float8)

< (float8,float8)

<= (float8,float8)

> (float8,float8)

float8_minmax_ops

>= (float8,float8)

= (float8,float8)

< (float8,float8)

<= (float8,float8)

> (float8,float8)

float8_minmax_multi_ops

>= (float8,float8)

<< (inet,inet)

<<= (inet,inet)

>> (inet,inet)

>>= (inet,inet)

= (inet,inet)

inet_inclusion_ops

&& (inet,inet)

inet_bloom_ops = (inet,inet)

= (inet,inet)

< (inet,inet)

<= (inet,inet)

> (inet,inet)

inet_minmax_ops

>= (inet,inet)

= (inet,inet)

< (inet,inet)

<= (inet,inet)

> (inet,inet)

inet_minmax_multi_ops

>= (inet,inet)

int2_bloom_ops = (int2,int2)

= (int2,int2)

< (int2,int2)

> (int2,int2)

<= (int2,int2)

int2_minmax_ops

>= (int2,int2)

= (int2,int2)

< (int2,int2)

> (int2,int2)

<= (int2,int2)

int2_minmax_multi_ops

>= (int2,int2)

2349

Built-in Index Access Methods

Name Indexable Operators
int4_bloom_ops = (int4,int4)

= (int4,int4)

< (int4,int4)

> (int4,int4)

<= (int4,int4)

int4_minmax_ops

>= (int4,int4)

= (int4,int4)

< (int4,int4)

> (int4,int4)

<= (int4,int4)

int4_minmax_multi_ops

>= (int4,int4)

int8_bloom_ops = (bigint,bigint)

= (bigint,bigint)

< (bigint,bigint)

> (bigint,bigint)

<= (bigint,bigint)

int8_minmax_ops

>= (bigint,bigint)

= (bigint,bigint)

< (bigint,bigint)

> (bigint,bigint)

<= (bigint,bigint)

int8_minmax_multi_ops

>= (bigint,bigint)

interval_bloom_ops = (interval,interval)

= (interval,interval)

< (interval,interval)

<= (interval,interval)

> (interval,interval)

interval_minmax_ops

>= (interval,interval)

= (interval,interval)

< (interval,interval)

<= (interval,interval)

> (interval,interval)

interval_minmax_multi_ops

>= (interval,interval)

macaddr_bloom_ops = (macaddr,macaddr)

= (macaddr,macaddr)

< (macaddr,macaddr)

<= (macaddr,macaddr)

> (macaddr,macaddr)

macaddr_minmax_ops

>= (macaddr,macaddr)

macaddr_minmax_multi_ops = (macaddr,macaddr)

2350

Built-in Index Access Methods

Name Indexable Operators
< (macaddr,macaddr)

<= (macaddr,macaddr)

> (macaddr,macaddr)

>= (macaddr,macaddr)

macaddr8_bloom_ops = (macaddr8,macaddr8)

= (macaddr8,macaddr8)

< (macaddr8,macaddr8)

<= (macaddr8,macaddr8)

> (macaddr8,macaddr8)

macaddr8_minmax_ops

>= (macaddr8,macaddr8)

= (macaddr8,macaddr8)

< (macaddr8,macaddr8)

<= (macaddr8,macaddr8)

> (macaddr8,macaddr8)

macaddr8_minmax_multi_ops

>= (macaddr8,macaddr8)

name_bloom_ops = (name,name)

= (name,name)

< (name,name)

<= (name,name)

> (name,name)

name_minmax_ops

>= (name,name)

numeric_bloom_ops = (numeric,numeric)

= (numeric,numeric)

< (numeric,numeric)

<= (numeric,numeric)

> (numeric,numeric)

numeric_minmax_ops

>= (numeric,numeric)

= (numeric,numeric)

< (numeric,numeric)

<= (numeric,numeric)

> (numeric,numeric)

numeric_minmax_multi_ops

>= (numeric,numeric)

oid_bloom_ops = (oid,oid)

= (oid,oid)

< (oid,oid)

> (oid,oid)

<= (oid,oid)

oid_minmax_ops

>= (oid,oid)

= (oid,oid)
oid_minmax_multi_ops

< (oid,oid)

2351

Built-in Index Access Methods

Name Indexable Operators
> (oid,oid)

<= (oid,oid)

>= (oid,oid)

pg_lsn_bloom_ops = (pg_lsn,pg_lsn)

= (pg_lsn,pg_lsn)

< (pg_lsn,pg_lsn)

> (pg_lsn,pg_lsn)

<= (pg_lsn,pg_lsn)

pg_lsn_minmax_ops

>= (pg_lsn,pg_lsn)

= (pg_lsn,pg_lsn)

< (pg_lsn,pg_lsn)

> (pg_lsn,pg_lsn)

<= (pg_lsn,pg_lsn)

pg_lsn_minmax_multi_ops

>= (pg_lsn,pg_lsn)

= (anyrange,anyrange)

< (anyrange,anyrange)

<= (anyrange,anyrange)

>= (anyrange,anyrange)

> (anyrange,anyrange)

&& (anyrange,anyrange)

@> (anyrange,anyelement)

@> (anyrange,anyrange)

<@ (anyrange,anyrange)

<< (anyrange,anyrange)

>> (anyrange,anyrange)

&< (anyrange,anyrange)

&> (anyrange,anyrange)

range_inclusion_ops

-|- (anyrange,anyrange)

text_bloom_ops = (text,text)

= (text,text)

< (text,text)

<= (text,text)

> (text,text)

text_minmax_ops

>= (text,text)

tid_bloom_ops = (tid,tid)

= (tid,tid)

< (tid,tid)

> (tid,tid)

<= (tid,tid)

tid_minmax_ops

>= (tid,tid)

2352

Built-in Index Access Methods

Name Indexable Operators
= (tid,tid)

< (tid,tid)

> (tid,tid)

<= (tid,tid)

tid_minmax_multi_ops

>= (tid,tid)

timestamp_bloom_ops = (timestamp,timestamp)

= (timestamp,timestamp)

< (timestamp,timestamp)

<= (timestamp,timestamp)

> (timestamp,timestamp)

timestamp_minmax_ops

>= (timestamp,timestamp)

= (timestamp,timestamp)

< (timestamp,timestamp)

<= (timestamp,timestamp)

> (timestamp,timestamp)

timestamp_minmax_multi_ops

>= (timestamp,timestamp)

timestamptz_bloom_ops = (timestamptz,timestamptz)

= (timestamptz,timestamptz)

< (timestamptz,timestamptz)

<= (timestamptz,timestamptz)

> (timestamptz,timestamptz)

timestamptz_minmax_ops

>= (timestamptz,timestamptz)

= (timestamptz,timestamptz)

< (timestamptz,timestamptz)

<= (timestamptz,timestamptz)

> (timestamptz,timestamptz)

timestamptz_minmax_multi_ops

>= (timestamptz,timestamptz)

time_bloom_ops = (time,time)

= (time,time)

< (time,time)

<= (time,time)

> (time,time)

time_minmax_ops

>= (time,time)

= (time,time)

< (time,time)

<= (time,time)

> (time,time)

time_minmax_multi_ops

>= (time,time)

timetz_bloom_ops = (timetz,timetz)

timetz_minmax_ops = (timetz,timetz)

2353

Built-in Index Access Methods

Name Indexable Operators
< (timetz,timetz)

<= (timetz,timetz)

> (timetz,timetz)

>= (timetz,timetz)

= (timetz,timetz)

< (timetz,timetz)

<= (timetz,timetz)

> (timetz,timetz)

timetz_minmax_multi_ops

>= (timetz,timetz)

uuid_bloom_ops = (uuid,uuid)

= (uuid,uuid)

< (uuid,uuid)

> (uuid,uuid)

<= (uuid,uuid)

uuid_minmax_ops

>= (uuid,uuid)

= (uuid,uuid)

< (uuid,uuid)

> (uuid,uuid)

<= (uuid,uuid)

uuid_minmax_multi_ops

>= (uuid,uuid)

= (varbit,varbit)

< (varbit,varbit)

> (varbit,varbit)

<= (varbit,varbit)

varbit_minmax_ops

>= (varbit,varbit)

65.5.2.1. Operator Class Parameters
Some of the built-in operator classes allow specifying parameters affecting behavior of the operator
class. Each operator class has its own set of allowed parameters. Only the bloom and minmax-multi
operator classes allow specifying parameters:

bloom operator classes accept these parameters:

n_distinct_per_range

Defines the estimated number of distinct non-null values in the block range, used by BRIN bloom
indexes for sizing of the Bloom filter. It behaves similarly to n_distinct option for ALTER TABLE.
When set to a positive value, each block range is assumed to contain this number of distinct non-
null values. When set to a negative value, which must be greater than or equal to -1, the number
of distinct non-null values is assumed to grow linearly with the maximum possible number of tuples
in the block range (about 290 rows per block). The default value is -0.1, and the minimum number
of distinct non-null values is 16.

false_positive_rate

Defines the desired false positive rate used by BRIN bloom indexes for sizing of the Bloom filter. The
values must be between 0.0001 and 0.25. The default value is 0.01, which is 1% false positive rate.

2354

Built-in Index Access Methods

minmax-multi operator classes accept these parameters:

values_per_range

Defines the maximum number of values stored by BRIN minmax indexes to summarize a block range.
Each value may represent either a point, or a boundary of an interval. Values must be between 8
and 256, and the default value is 32.

65.5.3. Extensibility
The BRIN interface has a high level of abstraction, requiring the access method implementer only to im-
plement the semantics of the data type being accessed. The BRIN layer itself takes care of concurrency,
logging and searching the index structure.

All it takes to get a BRIN access method working is to implement a few user-defined methods, which
define the behavior of summary values stored in the index and the way they interact with scan keys. In
short, BRIN combines extensibility with generality, code reuse, and a clean interface.

There are four methods that an operator class for BRIN must provide:

BrinOpcInfo *opcInfo(Oid type_oid)

Returns internal information about the indexed columns' summary data. The return value must point
to a palloc'd BrinOpcInfo, which has this definition:

typedef struct BrinOpcInfo
{
 /* Number of columns stored in an index column of this opclass */
 uint16 oi_nstored;

 /* Opaque pointer for the opclass' private use */
 void *oi_opaque;

 /* Type cache entries of the stored columns */
 TypeCacheEntry *oi_typcache[FLEXIBLE_ARRAY_MEMBER];
} BrinOpcInfo;

BrinOpcInfo.oi_opaque can be used by the operator class routines to pass information between
support functions during an index scan.

bool consistent(BrinDesc *bdesc, BrinValues *column, ScanKey *keys, int nkeys)

Returns whether all the ScanKey entries are consistent with the given indexed values for a range. The
attribute number to use is passed as part of the scan key. Multiple scan keys for the same attribute
may be passed at once; the number of entries is determined by the nkeys parameter.

bool consistent(BrinDesc *bdesc, BrinValues *column, ScanKey key)

Returns whether the ScanKey is consistent with the given indexed values for a range. The attribute
number to use is passed as part of the scan key. This is an older backward-compatible variant of the
consistent function.

bool addValue(BrinDesc *bdesc, BrinValues *column, Datum newval, bool isnull)

Given an index tuple and an indexed value, modifies the indicated attribute of the tuple so that it
additionally represents the new value. If any modification was done to the tuple, true is returned.

bool unionTuples(BrinDesc *bdesc, BrinValues *a, BrinValues *b)

Consolidates two index tuples. Given two index tuples, modifies the indicated attribute of the first of
them so that it represents both tuples. The second tuple is not modified.

An operator class for BRIN can optionally specify the following method:

2355

Built-in Index Access Methods

void options(local_relopts *relopts)

Defines a set of user-visible parameters that control operator class behavior.

The options function is passed a pointer to a local_relopts struct, which needs to be filled with
a set of operator class specific options. The options can be accessed from other support functions
using the PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Since both key extraction of indexed values and representation of the key in BRIN are flexible, they
may depend on user-specified parameters.

The core distribution includes support for four types of operator classes: minmax, minmax-multi, inclu-
sion and bloom. Operator class definitions using them are shipped for in-core data types as appropriate.
Additional operator classes can be defined by the user for other data types using equivalent definitions,
without having to write any source code; appropriate catalog entries being declared is enough. Note
that assumptions about the semantics of operator strategies are embedded in the support functions'
source code.

Operator classes that implement completely different semantics are also possible, provided implementa-
tions of the four main support functions described above are written. Note that backwards compatibility
across major releases is not guaranteed: for example, additional support functions might be required
in later releases.

To write an operator class for a data type that implements a totally ordered set, it is possible to use the
minmax support functions alongside the corresponding operators, as shown in Table 65.5. All operator
class members (functions and operators) are mandatory.

Table 65.5. Function and Support Numbers for Minmax Operator Classes

Operator class member Object
Support Function 1 internal function brin_minmax_opcinfo()
Support Function 2 internal function brin_minmax_add_value()
Support Function 3 internal function brin_minmax_consistent()
Support Function 4 internal function brin_minmax_union()
Operator Strategy 1 operator less-than
Operator Strategy 2 operator less-than-or-equal-to
Operator Strategy 3 operator equal-to
Operator Strategy 4 operator greater-than-or-equal-to
Operator Strategy 5 operator greater-than

To write an operator class for a complex data type which has values included within another type, it's
possible to use the inclusion support functions alongside the corresponding operators, as shown in Ta-
ble 65.6. It requires only a single additional function, which can be written in any language. More func-
tions can be defined for additional functionality. All operators are optional. Some operators require other
operators, as shown as dependencies on the table.

Table 65.6. Function and Support Numbers for Inclusion Operator Classes

Operator class mem-
ber

Object Dependency

Support Function 1 internal function brin_inclusion_opcinfo()
Support Function 2 internal function brin_inclusion_add_val-

ue()

Support Function 3 internal function brin_inclusion_consis-
tent()

2356

Built-in Index Access Methods

Operator class mem-
ber

Object Dependency

Support Function 4 internal function brin_inclusion_union()
Support Function 11 function to merge two elements
Support Function 12 optional function to check whether two elements

are mergeable

Support Function 13 optional function to check if an element is con-
tained within another

Support Function 14 optional function to check whether an element is
empty

Operator Strategy 1 operator left-of Operator Strategy 4
Operator Strategy 2 operator does-not-extend-to-the-right-of Operator Strategy 5
Operator Strategy 3 operator overlaps
Operator Strategy 4 operator does-not-extend-to-the-left-of Operator Strategy 1
Operator Strategy 5 operator right-of Operator Strategy 2
Operator Strategy 6, 18 operator same-as-or-equal-to Operator Strategy 7
Operator Strategy 7, 16,
24, 25

operator contains-or-equal-to

Operator Strategy 8, 26,
27

operator is-contained-by-or-equal-to Operator Strategy 3

Operator Strategy 9 operator does-not-extend-above Operator Strategy 11
Operator Strategy 10 operator is-below Operator Strategy 12
Operator Strategy 11 operator is-above Operator Strategy 9
Operator Strategy 12 operator does-not-extend-below Operator Strategy 10
Operator Strategy 20 operator less-than Operator Strategy 5
Operator Strategy 21 operator less-than-or-equal-to Operator Strategy 5
Operator Strategy 22 operator greater-than Operator Strategy 1
Operator Strategy 23 operator greater-than-or-equal-to Operator Strategy 1

Support function numbers 1 through 10 are reserved for the BRIN internal functions, so the SQL level
functions start with number 11. Support function number 11 is the main function required to build the
index. It should accept two arguments with the same data type as the operator class, and return the
union of them. The inclusion operator class can store union values with different data types if it is defined
with the STORAGE parameter. The return value of the union function should match the STORAGE data type.

Support function numbers 12 and 14 are provided to support irregularities of built-in data types. Func-
tion number 12 is used to support network addresses from different families which are not mergeable.
Function number 14 is used to support empty ranges. Function number 13 is an optional but recom-
mended one, which allows the new value to be checked before it is passed to the union function. As the
BRIN framework can shortcut some operations when the union is not changed, using this function can
improve index performance.

To write an operator class for a data type that implements only an equality operator and supports hash-
ing, it is possible to use the bloom support procedures alongside the corresponding operators, as shown
in Table 65.7. All operator class members (procedures and operators) are mandatory.

Table 65.7. Procedure and Support Numbers for Bloom Operator Classes

Operator class member Object
Support Procedure 1 internal function brin_bloom_opcinfo()

2357

Built-in Index Access Methods

Operator class member Object
Support Procedure 2 internal function brin_bloom_add_value()
Support Procedure 3 internal function brin_bloom_consistent()
Support Procedure 4 internal function brin_bloom_union()
Support Procedure 5 internal function brin_bloom_options()
Support Procedure 11 function to compute hash of an element
Operator Strategy 1 operator equal-to

Support procedure numbers 1-10 are reserved for the BRIN internal functions, so the SQL level functions
start with number 11. Support function number 11 is the main function required to build the index. It
should accept one argument with the same data type as the operator class, and return a hash of the value.

The minmax-multi operator class is also intended for data types implementing a totally ordered set,
and may be seen as a simple extension of the minmax operator class. While minmax operator class
summarizes values from each block range into a single contiguous interval, minmax-multi allows sum-
marization into multiple smaller intervals to improve handling of outlier values. It is possible to use the
minmax-multi support procedures alongside the corresponding operators, as shown in Table 65.8. All
operator class members (procedures and operators) are mandatory.

Table 65.8. Procedure and Support Numbers for minmax-multi Operator Classes

Operator class member Object
Support Procedure 1 internal function brin_minmax_multi_opcin-

fo()

Support Procedure 2 internal function brin_minmax_multi_add_
value()

Support Procedure 3 internal function brin_minmax_multi_consis-
tent()

Support Procedure 4 internal function brin_minmax_multi_union(
)

Support Procedure 5 internal function brin_minmax_multi_op-
tions()

Support Procedure 11 function to compute distance between two values
(length of a range)

Operator Strategy 1 operator less-than
Operator Strategy 2 operator less-than-or-equal-to
Operator Strategy 3 operator equal-to
Operator Strategy 4 operator greater-than-or-equal-to
Operator Strategy 5 operator greater-than

Both minmax and inclusion operator classes support cross-data-type operators, though with these the
dependencies become more complicated. The minmax operator class requires a full set of operators
to be defined with both arguments having the same data type. It allows additional data types to be
supported by defining extra sets of operators. Inclusion operator class operator strategies are dependent
on another operator strategy as shown in Table 65.6, or the same operator strategy as themselves. They
require the dependency operator to be defined with the STORAGE data type as the left-hand-side argument
and the other supported data type to be the right-hand-side argument of the supported operator. See
float4_minmax_ops as an example of minmax, and box_inclusion_ops as an example of inclusion.

65.6. Hash Indexes

2358

Built-in Index Access Methods

65.6.1. Overview
PostgreSQL includes an implementation of persistent on-disk hash indexes, which are fully crash recov-
erable. Any data type can be indexed by a hash index, including data types that do not have a well-
defined linear ordering. Hash indexes store only the hash value of the data being indexed, thus there
are no restrictions on the size of the data column being indexed.

Hash indexes support only single-column indexes and do not allow uniqueness checking.

Hash indexes support only the = operator, so WHERE clauses that specify range operations will not be
able to take advantage of hash indexes.

Each hash index tuple stores just the 4-byte hash value, not the actual column value. As a result, hash
indexes may be much smaller than B-trees when indexing longer data items such as UUIDs, URLs, etc.
The absence of the column value also makes all hash index scans lossy. Hash indexes may take part in
bitmap index scans and backward scans.

Hash indexes are best optimized for SELECT and UPDATE-heavy workloads that use equality scans on
larger tables. In a B-tree index, searches must descend through the tree until the leaf page is found. In
tables with millions of rows, this descent can increase access time to data. The equivalent of a leaf page
in a hash index is referred to as a bucket page. In contrast, a hash index allows accessing the bucket
pages directly, thereby potentially reducing index access time in larger tables. This reduction in "logical
I/O" becomes even more pronounced on indexes/data larger than shared_buffers/RAM.

Hash indexes have been designed to cope with uneven distributions of hash values. Direct access to the
bucket pages works well if the hash values are evenly distributed. When inserts mean that the bucket
page becomes full, additional overflow pages are chained to that specific bucket page, locally expanding
the storage for index tuples that match that hash value. When scanning a hash bucket during queries,
we need to scan through all of the overflow pages. Thus an unbalanced hash index might actually be
worse than a B-tree in terms of number of block accesses required, for some data.

As a result of the overflow cases, we can say that hash indexes are most suitable for unique, nearly
unique data or data with a low number of rows per hash bucket. One possible way to avoid problems
is to exclude highly non-unique values from the index using a partial index condition, but this may not
be suitable in many cases.

Like B-Trees, hash indexes perform simple index tuple deletion. This is a deferred maintenance operation
that deletes index tuples that are known to be safe to delete (those whose item identifier's LP_DEAD bit
is already set). If an insert finds no space is available on a page we try to avoid creating a new overflow
page by attempting to remove dead index tuples. Removal cannot occur if the page is pinned at that
time. Deletion of dead index pointers also occurs during VACUUM.

If it can, VACUUM will also try to squeeze the index tuples onto as few overflow pages as possible,
minimizing the overflow chain. If an overflow page becomes empty, overflow pages can be recycled for
reuse in other buckets, though we never return them to the operating system. There is currently no
provision to shrink a hash index, other than by rebuilding it with REINDEX. There is no provision for
reducing the number of buckets, either.

Hash indexes may expand the number of bucket pages as the number of rows indexed grows. The hash
key-to-bucket-number mapping is chosen so that the index can be incrementally expanded. When a new
bucket is to be added to the index, exactly one existing bucket will need to be "split", with some of its
tuples being transferred to the new bucket according to the updated key-to-bucket-number mapping.

The expansion occurs in the foreground, which could increase execution time for user inserts. Thus,
hash indexes may not be suitable for tables with rapidly increasing number of rows.

65.6.2. Implementation
There are four kinds of pages in a hash index: the meta page (page zero), which contains statically
allocated control information; primary bucket pages; overflow pages; and bitmap pages, which keep

2359

Built-in Index Access Methods

track of overflow pages that have been freed and are available for re-use. For addressing purposes,
bitmap pages are regarded as a subset of the overflow pages.

Both scanning the index and inserting tuples require locating the bucket where a given tuple ought to
be located. To do this, we need the bucket count, highmask, and lowmask from the metapage; however,
it's undesirable for performance reasons to have to have to lock and pin the metapage for every such
operation. Instead, we retain a cached copy of the metapage in each backend's relcache entry. This will
produce the correct bucket mapping as long as the target bucket hasn't been split since the last cache
refresh.

Primary bucket pages and overflow pages are allocated independently since any given index might need
more or fewer overflow pages relative to its number of buckets. The hash code uses an interesting set
of addressing rules to support a variable number of overflow pages while not having to move primary
bucket pages around after they are created.

Each row in the table indexed is represented by a single index tuple in the hash index. Hash index tuples
are stored in bucket pages, and if they exist, overflow pages. We speed up searches by keeping the index
entries in any one index page sorted by hash code, thus allowing binary search to be used within an
index page. Note however that there is *no* assumption about the relative ordering of hash codes across
different index pages of a bucket.

The bucket splitting algorithms to expand the hash index are too complex to be worthy of mention here,
though are described in more detail in src/backend/access/hash/README. The split algorithm is crash
safe and can be restarted if not completed successfully.

2360

Chapter 66. Database Physical Storage
This chapter provides an overview of the physical storage format used by PostgreSQL databases.

66.1. Database File Layout
This section describes the storage format at the level of files and directories.

Traditionally, the configuration and data files used by a database cluster are stored together within the
cluster's data directory, commonly referred to as PGDATA (after the name of the environment variable
that can be used to define it). A common location for PGDATA is /var/lib/pgsql/data. Multiple clusters,
managed by different server instances, can exist on the same machine.

The PGDATA directory contains several subdirectories and control files, as shown in Table 66.1. In addi-
tion to these required items, the cluster configuration files postgresql.conf, pg_hba.conf, and pg_i-
dent.conf are traditionally stored in PGDATA, although it is possible to place them elsewhere.

Table 66.1. Contents of PGDATA

Item Description
PG_VERSION A file containing the major version number of

PostgreSQL
base Subdirectory containing per-database subdirecto-

ries
current_logfiles File recording the log file(s) currently written to

by the logging collector
global Subdirectory containing cluster-wide tables, such

as pg_database
pg_commit_ts Subdirectory containing transaction commit time-

stamp data
pg_dynshmem Subdirectory containing files used by the dynamic

shared memory subsystem
pg_logical Subdirectory containing status data for logical de-

coding
pg_multixact Subdirectory containing multitransaction status

data (used for shared row locks)
pg_notify Subdirectory containing LISTEN/NOTIFY status

data
pg_replslot Subdirectory containing replication slot data
pg_serial Subdirectory containing information about com-

mitted serializable transactions
pg_snapshots Subdirectory containing exported snapshots
pg_stat Subdirectory containing permanent files for the

statistics subsystem
pg_stat_tmp Subdirectory containing temporary files for the

statistics subsystem
pg_subtrans Subdirectory containing subtransaction status da-

ta
pg_tblspc Subdirectory containing symbolic links to table-

spaces
pg_twophase Subdirectory containing state files for prepared

transactions

2361

Database Physical Storage

Item Description
pg_wal Subdirectory containing WAL (Write Ahead Log)

files
pg_xact Subdirectory containing transaction commit sta-

tus data
postgresql.auto.conf A file used for storing configuration parameters

that are set by ALTER SYSTEM
postmaster.opts A file recording the command-line options the

server was last started with
postmaster.pid A lock file recording the current postmaster

process ID (PID), cluster data directory path, post-
master start timestamp, port number, Unix-do-
main socket directory path (could be empty), first
valid listen_address (IP address or *, or empty if
not listening on TCP), and shared memory seg-
ment ID (this file is not present after server shut-
down)

For each database in the cluster there is a subdirectory within PGDATA/base, named after the database's
OID in pg_database. This subdirectory is the default location for the database's files; in particular, its
system catalogs are stored there.

Note that the following sections describe the behavior of the builtin heap table access method, and the
builtin index access methods. Due to the extensible nature of PostgreSQL, other access methods might
work differently.

Each table and index is stored in a separate file. For ordinary relations, these files are named after
the table or index's filenode number, which can be found in pg_class.relfilenode. But for temporary
relations, the file name is of the form tBBB_FFF, where BBB is the process number of the backend which
created the file, and FFF is the filenode number. In either case, in addition to the main file (a/k/a main
fork), each table and index has a free space map (see Section 66.3), which stores information about free
space available in the relation. The free space map is stored in a file named with the filenode number
plus the suffix _fsm. Tables also have a visibility map, stored in a fork with the suffix _vm, to track which
pages are known to have no dead tuples. The visibility map is described further in Section 66.4. Unlogged
tables and indexes have a third fork, known as the initialization fork, which is stored in a fork with the
suffix _init (see Section 66.5).

Caution
Note that while a table's filenode often matches its OID, this is not necessarily the case; some
operations, like TRUNCATE, REINDEX, CLUSTER and some forms of ALTER TABLE, can change the
filenode while preserving the OID. Avoid assuming that filenode and table OID are the same. Also,
for certain system catalogs including pg_class itself, pg_class.relfilenode contains zero. The
actual filenode number of these catalogs is stored in a lower-level data structure, and can be
obtained using the pg_relation_filenode() function.

When a table or index exceeds 1 GB, it is divided into gigabyte-sized segments. The first segment's
file name is the same as the filenode; subsequent segments are named filenode.1, filenode.2, etc. This
arrangement avoids problems on platforms that have file size limitations. (Actually, 1 GB is just the
default segment size. The segment size can be adjusted using the configuration option --with-segsize
when building PostgreSQL.) In principle, free space map and visibility map forks could require multiple
segments as well, though this is unlikely to happen in practice.

A table that has columns with potentially large entries will have an associated TOAST table, which is used
for out-of-line storage of field values that are too large to keep in the table rows proper. pg_class.rel-
toastrelid links from a table to its TOAST table, if any. See Section 66.2 for more information.

2362

Database Physical Storage

The contents of tables and indexes are discussed further in Section 66.6.

Tablespaces make the scenario more complicated. Each user-defined tablespace has a symbolic link in-
side the PGDATA/pg_tblspc directory, which points to the physical tablespace directory (i.e., the location
specified in the tablespace's CREATE TABLESPACE command). This symbolic link is named after the table-
space's OID. Inside the physical tablespace directory there is a subdirectory with a name that depends
on the PostgreSQL server version, such as PG_9.0_201008051. (The reason for using this subdirectory is
so that successive versions of the database can use the same CREATE TABLESPACE location value without
conflicts.) Within the version-specific subdirectory, there is a subdirectory for each database that has
elements in the tablespace, named after the database's OID. Tables and indexes are stored within that
directory, using the filenode naming scheme. The pg_default tablespace is not accessed through pg_t-
blspc, but corresponds to PGDATA/base. Similarly, the pg_global tablespace is not accessed through
pg_tblspc, but corresponds to PGDATA/global.

The pg_relation_filepath() function shows the entire path (relative to PGDATA) of any relation. It is
often useful as a substitute for remembering many of the above rules. But keep in mind that this function
just gives the name of the first segment of the main fork of the relation — you may need to append a
segment number and/or _fsm, _vm, or _init to find all the files associated with the relation.

Temporary files (for operations such as sorting more data than can fit in memory) are created within
PGDATA/base/pgsql_tmp, or within a pgsql_tmp subdirectory of a tablespace directory if a tablespace
other than pg_default is specified for them. The name of a temporary file has the form pgsql_tmpPP-
P.NNN, where PPP is the PID of the owning backend and NNN distinguishes different temporary files of
that backend.

66.2. TOAST
This section provides an overview of TOAST (The Oversized-Attribute Storage Technique).

PostgreSQL uses a fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages.
Therefore, it is not possible to store very large field values directly. To overcome this limitation, large
field values are compressed and/or broken up into multiple physical rows. This happens transparently
to the user, with only small impact on most of the backend code. The technique is affectionately known
as TOAST (or “the best thing since sliced bread”). The TOAST infrastructure is also used to improve
handling of large data values in-memory.

Only certain data types support TOAST — there is no need to impose the overhead on data types that
cannot produce large field values. To support TOAST, a data type must have a variable-length (varlena)
representation, in which, ordinarily, the first four-byte word of any stored value contains the total length
of the value in bytes (including itself). TOAST does not constrain the rest of the data type's representa-
tion. The special representations collectively called TOASTed values work by modifying or reinterpret-
ing this initial length word. Therefore, the C-level functions supporting a TOAST-able data type must
be careful about how they handle potentially TOASTed input values: an input might not actually con-
sist of a four-byte length word and contents until after it's been detoasted. (This is normally done by
invoking PG_DETOAST_DATUM before doing anything with an input value, but in some cases more efficient
approaches are possible. See Section 36.13.1 for more detail.)

TOAST usurps two bits of the varlena length word (the high-order bits on big-endian machines, the low-
order bits on little-endian machines), thereby limiting the logical size of any value of a TOAST-able data
type to 1 GB (230 - 1 bytes). When both bits are zero, the value is an ordinary un-TOASTed value of
the data type, and the remaining bits of the length word give the total datum size (including length
word) in bytes. When the highest-order or lowest-order bit is set, the value has only a single-byte header
instead of the normal four-byte header, and the remaining bits of that byte give the total datum size
(including length byte) in bytes. This alternative supports space-efficient storage of values shorter than
127 bytes, while still allowing the data type to grow to 1 GB at need. Values with single-byte headers
aren't aligned on any particular boundary, whereas values with four-byte headers are aligned on at
least a four-byte boundary; this omission of alignment padding provides additional space savings that
is significant compared to short values. As a special case, if the remaining bits of a single-byte header

2363

Database Physical Storage

are all zero (which would be impossible for a self-inclusive length), the value is a pointer to out-of-line
data, with several possible alternatives as described below. The type and size of such a TOAST pointer
are determined by a code stored in the second byte of the datum. Lastly, when the highest-order or
lowest-order bit is clear but the adjacent bit is set, the content of the datum has been compressed and
must be decompressed before use. In this case the remaining bits of the four-byte length word give the
total size of the compressed datum, not the original data. Note that compression is also possible for out-
of-line data but the varlena header does not tell whether it has occurred — the content of the TOAST
pointer tells that, instead.

The compression technique used for either in-line or out-of-line compressed data can be selected for
each column by setting the COMPRESSION column option in CREATE TABLE or ALTER TABLE. The default
for columns with no explicit setting is to consult the default_toast_compression parameter at the time
data is inserted.

As mentioned, there are multiple types of TOAST pointer datums. The oldest and most common type is
a pointer to out-of-line data stored in a TOAST table that is separate from, but associated with, the table
containing the TOAST pointer datum itself. These on-disk pointer datums are created by the TOAST
management code (in access/common/toast_internals.c) when a tuple to be stored on disk is too large
to be stored as-is. Further details appear in Section 66.2.1. Alternatively, a TOAST pointer datum can
contain a pointer to out-of-line data that appears elsewhere in memory. Such datums are necessarily
short-lived, and will never appear on-disk, but they are very useful for avoiding copying and redundant
processing of large data values. Further details appear in Section 66.2.2.

66.2.1. Out-of-Line, On-Disk TOAST Storage
If any of the columns of a table are TOAST-able, the table will have an associated TOAST table, whose
OID is stored in the table's pg_class.reltoastrelid entry. On-disk TOASTed values are kept in the
TOAST table, as described in more detail below.

Out-of-line values are divided (after compression if used) into chunks of at most TOAST_MAX_CHUNK_SIZE
bytes (by default this value is chosen so that four chunk rows will fit on a page, making it about 2000
bytes). Each chunk is stored as a separate row in the TOAST table belonging to the owning table. Every
TOAST table has the columns chunk_id (an OID identifying the particular TOASTed value), chunk_seq (a
sequence number for the chunk within its value), and chunk_data (the actual data of the chunk). A unique
index on chunk_id and chunk_seq provides fast retrieval of the values. A pointer datum representing
an out-of-line on-disk TOASTed value therefore needs to store the OID of the TOAST table in which to
look and the OID of the specific value (its chunk_id). For convenience, pointer datums also store the
logical datum size (original uncompressed data length), physical stored size (different if compression was
applied), and the compression method used, if any. Allowing for the varlena header bytes, the total size
of an on-disk TOAST pointer datum is therefore 18 bytes regardless of the actual size of the represented
value.

The TOAST management code is triggered only when a row value to be stored in a table is wider than
TOAST_TUPLE_THRESHOLD bytes (normally 2 kB). The TOAST code will compress and/or move field values
out-of-line until the row value is shorter than TOAST_TUPLE_TARGET bytes (also normally 2 kB, adjustable)
or no more gains can be had. During an UPDATE operation, values of unchanged fields are normally
preserved as-is; so an UPDATE of a row with out-of-line values incurs no TOAST costs if none of the out-
of-line values change.

The TOAST management code recognizes four different strategies for storing TOAST-able columns on
disk:

• PLAIN prevents either compression or out-of-line storage. This is the only possible strategy for
columns of non-TOAST-able data types.

• EXTENDED allows both compression and out-of-line storage. This is the default for most TOAST-able
data types. Compression will be attempted first, then out-of-line storage if the row is still too big.

• EXTERNAL allows out-of-line storage but not compression. Use of EXTERNAL will make substring oper-
ations on wide text and bytea columns faster (at the penalty of increased storage space) because

2364

Database Physical Storage

these operations are optimized to fetch only the required parts of the out-of-line value when it is
not compressed.

• MAIN allows compression but not out-of-line storage. (Actually, out-of-line storage will still be per-
formed for such columns, but only as a last resort when there is no other way to make the row
small enough to fit on a page.)

Each TOAST-able data type specifies a default strategy for columns of that data type, but the strategy
for a given table column can be altered with ALTER TABLE ... SET STORAGE.

TOAST_TUPLE_TARGET can be adjusted for each table using ALTER TABLE ... SET (toast_tuple_target
= N)

This scheme has a number of advantages compared to a more straightforward approach such as allowing
row values to span pages. Assuming that queries are usually qualified by comparisons against relatively
small key values, most of the work of the executor will be done using the main row entry. The big values
of TOASTed attributes will only be pulled out (if selected at all) at the time the result set is sent to
the client. Thus, the main table is much smaller and more of its rows fit in the shared buffer cache
than would be the case without any out-of-line storage. Sort sets shrink also, and sorts will more often
be done entirely in memory. A little test showed that a table containing typical HTML pages and their
URLs was stored in about half of the raw data size including the TOAST table, and that the main table
contained only about 10% of the entire data (the URLs and some small HTML pages). There was no run
time difference compared to an un-TOASTed comparison table, in which all the HTML pages were cut
down to 7 kB to fit.

66.2.2. Out-of-Line, In-Memory TOAST Storage
TOAST pointers can point to data that is not on disk, but is elsewhere in the memory of the current
server process. Such pointers obviously cannot be long-lived, but they are nonetheless useful. There are
currently two sub-cases: pointers to indirect data and pointers to expanded data.

Indirect TOAST pointers simply point at a non-indirect varlena value stored somewhere in memory. This
case was originally created merely as a proof of concept, but it is currently used during logical decoding
to avoid possibly having to create physical tuples exceeding 1 GB (as pulling all out-of-line field values
into the tuple might do). The case is of limited use since the creator of the pointer datum is entirely
responsible that the referenced data survives for as long as the pointer could exist, and there is no
infrastructure to help with this.

Expanded TOAST pointers are useful for complex data types whose on-disk representation is not espe-
cially suited for computational purposes. As an example, the standard varlena representation of a Post-
greSQL array includes dimensionality information, a nulls bitmap if there are any null elements, then the
values of all the elements in order. When the element type itself is variable-length, the only way to find
the N'th element is to scan through all the preceding elements. This representation is appropriate for
on-disk storage because of its compactness, but for computations with the array it's much nicer to have
an “expanded” or “deconstructed” representation in which all the element starting locations have been
identified. The TOAST pointer mechanism supports this need by allowing a pass-by-reference Datum to
point to either a standard varlena value (the on-disk representation) or a TOAST pointer that points to an
expanded representation somewhere in memory. The details of this expanded representation are up to
the data type, though it must have a standard header and meet the other API requirements given in src/
include/utils/expandeddatum.h. C-level functions working with the data type can choose to handle
either representation. Functions that do not know about the expanded representation, but simply apply
PG_DETOAST_DATUM to their inputs, will automatically receive the traditional varlena representation; so
support for an expanded representation can be introduced incrementally, one function at a time.

TOAST pointers to expanded values are further broken down into read-write and read-only pointers.
The pointed-to representation is the same either way, but a function that receives a read-write pointer
is allowed to modify the referenced value in-place, whereas one that receives a read-only pointer must
not; it must first create a copy if it wants to make a modified version of the value. This distinction and
some associated conventions make it possible to avoid unnecessary copying of expanded values during
query execution.

2365

Database Physical Storage

For all types of in-memory TOAST pointer, the TOAST management code ensures that no such pointer
datum can accidentally get stored on disk. In-memory TOAST pointers are automatically expanded to
normal in-line varlena values before storage — and then possibly converted to on-disk TOAST pointers,
if the containing tuple would otherwise be too big.

66.3. Free Space Map
Each heap and index relation, except for hash indexes, has a Free Space Map (FSM) to keep track of
available space in the relation. It's stored alongside the main relation data in a separate relation fork,
named after the filenode number of the relation, plus a _fsm suffix. For example, if the filenode of a
relation is 12345, the FSM is stored in a file called 12345_fsm, in the same directory as the main relation
file.

The Free Space Map is organized as a tree of FSM pages. The bottom level FSM pages store the free
space available on each heap (or index) page, using one byte to represent each such page. The upper
levels aggregate information from the lower levels.

Within each FSM page is a binary tree, stored in an array with one byte per node. Each leaf node
represents a heap page, or a lower level FSM page. In each non-leaf node, the higher of its children's
values is stored. The maximum value in the leaf nodes is therefore stored at the root.

See src/backend/storage/freespace/README for more details on how the FSM is structured, and how
it's updated and searched. The pg_freespacemap module can be used to examine the information stored
in free space maps.

66.4. Visibility Map
Each heap relation has a Visibility Map (VM) to keep track of which pages contain only tuples that are
known to be visible to all active transactions; it also keeps track of which pages contain only frozen
tuples. It's stored alongside the main relation data in a separate relation fork, named after the filenode
number of the relation, plus a _vm suffix. For example, if the filenode of a relation is 12345, the VM is
stored in a file called 12345_vm, in the same directory as the main relation file. Note that indexes do
not have VMs.

The visibility map stores two bits per heap page. The first bit, if set, indicates that the page is all-visible,
or in other words that the page does not contain any tuples that need to be vacuumed. This information
can also be used by index-only scans to answer queries using only the index tuple. The second bit, if set,
means that all tuples on the page have been frozen. That means that even an anti-wraparound vacuum
need not revisit the page.

The map is conservative in the sense that we make sure that whenever a bit is set, we know the condition
is true, but if a bit is not set, it might or might not be true. Visibility map bits are only set by vacuum,
but are cleared by any data-modifying operations on a page.

The pg_visibility module can be used to examine the information stored in the visibility map.

66.5. The Initialization Fork
Each unlogged table, and each index on an unlogged table, has an initialization fork. The initialization
fork is an empty table or index of the appropriate type. When an unlogged table must be reset to empty
due to a crash, the initialization fork is copied over the main fork, and any other forks are erased (they
will be recreated automatically as needed).

66.6. Database Page Layout
This section provides an overview of the page format used within PostgreSQL tables and indexes.1 Se-
quences and TOAST tables are formatted just like a regular table.

1 Actually, use of this page format is not required for either table or index access methods. The heap table access method always uses this format. All the existing
index methods also use the basic format, but the data kept on index metapages usually doesn't follow the item layout rules.

2366

Database Physical Storage

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to
an individual data value that is stored on a page. In a table, an item is a row; in an index, an item is
an index entry.

Every table and index is stored as an array of pages of a fixed size (usually 8 kB, although a different
page size can be selected when compiling the server). In a table, all the pages are logically equivalent,
so a particular item (row) can be stored in any page. In indexes, the first page is generally reserved
as a metapage holding control information, and there can be different types of pages within the index,
depending on the index access method.

Table 66.2 shows the overall layout of a page. There are five parts to each page.

Table 66.2. Overall Page Layout

Item Description
PageHeaderData 24 bytes long. Contains general information about

the page, including free space pointers.
ItemIdData Array of item identifiers pointing to the actual

items. Each entry is an (offset,length) pair. 4 bytes
per item.

Free space The unallocated space. New item identifiers are
allocated from the start of this area, new items
from the end.

Items The actual items themselves.
Special space Index access method specific data. Different

methods store different data. Empty in ordinary
tables.

The first 24 bytes of each page consists of a page header (PageHeaderData). Its format is detailed in
Table 66.3. The first field tracks the most recent WAL entry related to this page. The second field contains
the page checksum if -k are enabled. Next is a 2-byte field containing flag bits. This is followed by three
2-byte integer fields (pd_lower, pd_upper, and pd_special). These contain byte offsets from the page
start to the start of unallocated space, to the end of unallocated space, and to the start of the special
space. The next 2 bytes of the page header, pd_pagesize_version, store both the page size and a version
indicator. Beginning with PostgreSQL 8.3 the version number is 4; PostgreSQL 8.1 and 8.2 used version
number 3; PostgreSQL 8.0 used version number 2; PostgreSQL 7.3 and 7.4 used version number 1; prior
releases used version number 0. (The basic page layout and header format has not changed in most
of these versions, but the layout of heap row headers has.) The page size is basically only present as
a cross-check; there is no support for having more than one page size in an installation. The last field
is a hint that shows whether pruning the page is likely to be profitable: it tracks the oldest un-pruned
XMAX on the page.

Table 66.3. PageHeaderData Layout

Field Type Length Description
pd_lsn PageXLogRecPtr 8 bytes LSN: next byte after last

byte of WAL record for
last change to this page

pd_checksum uint16 2 bytes Page checksum
pd_flags uint16 2 bytes Flag bits
pd_lower LocationIndex 2 bytes Offset to start of free

space
pd_upper LocationIndex 2 bytes Offset to end of free

space
pd_special LocationIndex 2 bytes Offset to start of special

space

2367

Database Physical Storage

Field Type Length Description
pd_pagesize_version uint16 2 bytes Page size and layout

version number informa-
tion

pd_prune_xid TransactionId 4 bytes Oldest unpruned XMAX
on page, or zero if none

All the details can be found in src/include/storage/bufpage.h.

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item identifier
contains a byte-offset to the start of an item, its length in bytes, and a few attribute bits which affect its
interpretation. New item identifiers are allocated as needed from the beginning of the unallocated space.
The number of item identifiers present can be determined by looking at pd_lower, which is increased
to allocate a new identifier. Because an item identifier is never moved until it is freed, its index can be
used on a long-term basis to reference an item, even when the item itself is moved around on the page
to compact free space. In fact, every pointer to an item (ItemPointer, also known as CTID) created by
PostgreSQL consists of a page number and the index of an item identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The
exact structure varies depending on what the table is to contain. Tables and sequences both use a
structure named HeapTupleHeaderData, described below.

The final section is the “special section” which can contain anything the access method wishes to store.
For example, b-tree indexes store links to the page's left and right siblings, as well as some other data
relevant to the index structure. Ordinary tables do not use a special section at all (indicated by setting
pd_special to equal the page size).

Figure 66.1 illustrates how these parts are laid out in a page.

Figure 66.1. Page Layout

PageHeaderData

Item

ItemId ItemId

Item Special

66.6.1. Table Row Layout
All table rows are structured in the same way. There is a fixed-size header (occupying 23 bytes on most
machines), followed by an optional null bitmap, an optional object ID field, and the user data. The header
is detailed in Table 66.4. The actual user data (columns of the row) begins at the offset indicated by
t_hoff, which must always be a multiple of the MAXALIGN distance for the platform. The null bitmap
is only present if the HEAP_HASNULL bit is set in t_infomask. If it is present it begins just after the
fixed header and occupies enough bytes to have one bit per data column (that is, the number of bits that
equals the attribute count in t_infomask2). In this list of bits, a 1 bit indicates not-null, a 0 bit is a null.
When the bitmap is not present, all columns are assumed not-null. The object ID is only present if the
HEAP_HASOID_OLD bit is set in t_infomask. If present, it appears just before the t_hoff boundary.

2368

Database Physical Storage

Any padding needed to make t_hoff a MAXALIGN multiple will appear between the null bitmap and the
object ID. (This in turn ensures that the object ID is suitably aligned.)

Table 66.4. HeapTupleHeaderData Layout

Field Type Length Description
t_xmin TransactionId 4 bytes insert XID stamp
t_xmax TransactionId 4 bytes delete XID stamp
t_cid CommandId 4 bytes insert and/or delete CID

stamp (overlays with t_
xvac)

t_xvac TransactionId 4 bytes XID for VACUUM oper-
ation moving a row ver-
sion

t_ctid ItemPointerData 6 bytes current TID of this or
newer row version

t_infomask2 uint16 2 bytes number of attributes,
plus various flag bits

t_infomask uint16 2 bytes various flag bits
t_hoff uint8 1 byte offset to user data

All the details can be found in src/include/access/htup_details.h.

Interpreting the actual data can only be done with information obtained from other tables, mostly pg_at-
tribute. The key values needed to identify field locations are attlen and attalign. There is no way to
directly get a particular attribute, except when there are only fixed width fields and no null values. All
this trickery is wrapped up in the functions heap_getattr, fastgetattr and heap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL
according to the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If the
field is a fixed width field, then all the bytes are simply placed. If it's a variable length field (attlen =
-1) then it's a bit more complicated. All variable-length data types share the common header structure
struct varlena, which includes the total length of the stored value and some flag bits. Depending on the
flags, the data can be either inline or in a TOAST table; it might be compressed, too (see Section 66.2).

66.7. Heap-Only Tuples (HOT)
To allow for high concurrency, PostgreSQL uses multiversion concurrency control (MVCC) to store rows.
However, MVCC has some downsides for update queries. Specifically, updates require new versions of
rows to be added to tables. This can also require new index entries for each updated row, and removal
of old versions of rows and their index entries can be expensive.

To help reduce the overhead of updates, PostgreSQL has an optimization called heap-only tuples (HOT).
This optimization is possible when:

• The update does not modify any columns referenced by the table's indexes, not including summa-
rizing indexes. The only summarizing index method in the core PostgreSQL distribution is BRIN.

• There is sufficient free space on the page containing the old row for the updated row.

In such cases, heap-only tuples provide two optimizations:

• New index entries are not needed to represent updated rows, however, summary indexes may still
need to be updated.

• When a row is updated multiple times, row versions other than the oldest and the newest can be
completely removed during normal operation, including SELECTs, instead of requiring periodic vac-
uum operations. (Indexes always refer to the page item identifier of the original row version. The

2369

Database Physical Storage

tuple data associated with that row version is removed, and its item identifier is converted to a
redirect that points to the oldest version that may still be visible to some concurrent transaction.
Intermediate row versions that are no longer visible to anyone are completely removed, and the as-
sociated page item identifiers are made available for reuse.)

You can increase the likelihood of sufficient page space for HOT updates by decreasing a table's fill-
factor. If you don't, HOT updates will still happen because new rows will naturally migrate to new pages
and existing pages with sufficient free space for new row versions. The system view pg_stat_all_tables
allows monitoring of the occurrence of HOT and non-HOT updates.

2370

Chapter 67. Transaction Processing
This chapter provides an overview of the internals of PostgreSQL's transaction management system.
The word transaction is often abbreviated as xact.

67.1. Transactions and Identifiers
Transactions can be created explicitly using BEGIN or START TRANSACTION and ended using COMMIT or
ROLLBACK. SQL statements outside of explicit transactions automatically use single-statement transac-
tions.

Every transaction is identified by a unique VirtualTransactionId (also called virtualXID or vxid),
which is comprised of a backend's process number (or procNumber) and a sequentially-assigned number
local to each backend, known as localXID. For example, the virtual transaction ID 4/12532 has a proc-
Number of 4 and a localXID of 12532.

Non-virtual TransactionIds (or xid), e.g., 278394, are assigned sequentially to transactions from a
global counter used by all databases within the PostgreSQL cluster. This assignment happens when a
transaction first writes to the database. This means lower-numbered xids started writing before high-
er-numbered xids. Note that the order in which transactions perform their first database write might
be different from the order in which the transactions started, particularly if the transaction started with
statements that only performed database reads.

The internal transaction ID type xid is 32 bits wide and wraps around every 4 billion transactions. A 32-
bit epoch is incremented during each wraparound. There is also a 64-bit type xid8 which includes this
epoch and therefore does not wrap around during the life of an installation; it can be converted to xid
by casting. The functions in Table 9.84 return xid8 values. Xids are used as the basis for PostgreSQL's
MVCC concurrency mechanism and streaming replication.

When a top-level transaction with a (non-virtual) xid commits, it is marked as committed in the pg_xact
directory. Additional information is recorded in the pg_commit_ts directory if track_commit_timestamp
is enabled.

In addition to vxid and xid, prepared transactions are also assigned Global Transaction Identifiers (GID).
GIDs are string literals up to 200 bytes long, which must be unique amongst other currently prepared
transactions. The mapping of GID to xid is shown in pg_prepared_xacts.

67.2. Transactions and Locking
The transaction IDs of currently executing transactions are shown in pg_locks in columns virtualxid
and transactionid. Read-only transactions will have virtualxids but NULL transactionids, while
both columns will be set in read-write transactions.

Some lock types wait on virtualxid, while other types wait on transactionid. Row-level read and write
locks are recorded directly in the locked rows and can be inspected using the pgrowlocks extension.
Row-level read locks might also require the assignment of multixact IDs (mxid; see Section 24.1.5.1).

67.3. Subtransactions
Subtransactions are started inside transactions, allowing large transactions to be broken into smaller
units. Subtransactions can commit or abort without affecting their parent transactions, allowing parent
transactions to continue. This allows errors to be handled more easily, which is a common application
development pattern. The word subtransaction is often abbreviated as subxact.

Subtransactions can be started explicitly using the SAVEPOINT command, but can also be started in other
ways, such as PL/pgSQL's EXCEPTION clause. PL/Python and PL/Tcl also support explicit subtransactions.
Subtransactions can also be started from other subtransactions. The top-level transaction and its child
subtransactions form a hierarchy or tree, which is why we refer to the main transaction as the top-level
transaction.

2371

Transaction Processing

If a subtransaction is assigned a non-virtual transaction ID, its transaction ID is referred to as a “subxid”.
Read-only subtransactions are not assigned subxids, but once they attempt to write, they will be assigned
one. This also causes all of a subxid's parents, up to and including the top-level transaction, to be assigned
non-virtual transaction ids. We ensure that a parent xid is always lower than any of its child subxids.

The immediate parent xid of each subxid is recorded in the pg_subtrans directory. No entry is made for
top-level xids since they do not have a parent, nor is an entry made for read-only subtransactions.

When a subtransaction commits, all of its committed child subtransactions with subxids will also be con-
sidered subcommitted in that transaction. When a subtransaction aborts, all of its child subtransactions
will also be considered aborted.

When a top-level transaction with an xid commits, all of its subcommitted child subtransactions are also
persistently recorded as committed in the pg_xact subdirectory. If the top-level transaction aborts, all
its subtransactions are also aborted, even if they were subcommitted.

The more subtransactions each transaction keeps open (not rolled back or released), the greater the
transaction management overhead. Up to 64 open subxids are cached in shared memory for each back-
end; after that point, the storage I/O overhead increases significantly due to additional lookups of subxid
entries in pg_subtrans.

67.4. Two-Phase Transactions
PostgreSQL supports a two-phase commit (2PC) protocol that allows multiple distributed systems to
work together in a transactional manner. The commands are PREPARE TRANSACTION, COMMIT PREPARED
and ROLLBACK PREPARED. Two-phase transactions are intended for use by external transaction manage-
ment systems. PostgreSQL follows the features and model proposed by the X/Open XA standard, but
does not implement some less often used aspects.

When the user executes PREPARE TRANSACTION, the only possible next commands are COMMIT PREPARED
or ROLLBACK PREPARED. In general, this prepared state is intended to be of very short duration, but
external availability issues might mean transactions stay in this state for an extended interval. Short-lived
prepared transactions are stored only in shared memory and WAL. Transactions that span checkpoints
are recorded in the pg_twophase directory. Transactions that are currently prepared can be inspected
using pg_prepared_xacts.

2372

Chapter 68. System Catalog Declarations and
Initial Contents

PostgreSQL uses many different system catalogs to keep track of the existence and properties of data-
base objects, such as tables and functions. Physically there is no difference between a system catalog
and a plain user table, but the backend C code knows the structure and properties of each catalog,
and can manipulate it directly at a low level. Thus, for example, it is inadvisable to attempt to alter the
structure of a catalog on-the-fly; that would break assumptions built into the C code about how rows of
the catalog are laid out. But the structure of the catalogs can change between major versions.

The structures of the catalogs are declared in specially formatted C header files in the src/include/cat-
alog/ directory of the source tree. For each catalog there is a header file named after the catalog (e.g.,
pg_class.h for pg_class), which defines the set of columns the catalog has, as well as some other basic
properties such as its OID.

Many of the catalogs have initial data that must be loaded into them during the “bootstrap” phase of
initdb, to bring the system up to a point where it is capable of executing SQL commands. (For example,
pg_class.h must contain an entry for itself, as well as one for each other system catalog and index.)
This initial data is kept in editable form in data files that are also stored in the src/include/catalog/
directory. For example, pg_proc.dat describes all the initial rows that must be inserted into the pg_proc
catalog.

To create the catalog files and load this initial data into them, a backend running in bootstrap mode
reads a BKI (Backend Interface) file containing commands and initial data. The postgres.bki file used
in this mode is prepared from the aforementioned header and data files, while building a PostgreSQL
distribution, by a Perl script named genbki.pl. Although it's specific to a particular PostgreSQL release,
postgres.bki is platform-independent and is installed in the share subdirectory of the installation tree.

genbki.pl also produces a derived header file for each catalog, for example pg_class_d.h for the
pg_class catalog. This file contains automatically-generated macro definitions, and may contain other
macros, enum declarations, and so on that can be useful for client C code that reads a particular catalog.

Most PostgreSQL developers don't need to be directly concerned with the BKI file, but almost any non-
trivial feature addition in the backend will require modifying the catalog header files and/or initial data
files. The rest of this chapter gives some information about that, and for completeness describes the
BKI file format.

68.1. System Catalog Declaration Rules
The key part of a catalog header file is a C structure definition describing the layout of each row of the
catalog. This begins with a CATALOG macro, which so far as the C compiler is concerned is just shorthand
for typedef struct FormData_catalogname. Each field in the struct gives rise to a catalog column.
Fields can be annotated using the BKI property macros described in genbki.h, for example to define a
default value for a field or mark it as nullable or not nullable. The CATALOG line can also be annotated,
with some other BKI property macros described in genbki.h, to define other properties of the catalog
as a whole, such as whether it is a shared relation.

The system catalog cache code (and most catalog-munging code in general) assumes that the fixed-
length portions of all system catalog tuples are in fact present, because it maps this C struct declaration
onto them. Thus, all variable-length fields and nullable fields must be placed at the end, and they cannot
be accessed as struct fields. For example, if you tried to set pg_type.typrelid to be NULL, it would fail
when some piece of code tried to reference typetup->typrelid (or worse, typetup->typelem, because
that follows typrelid). This would result in random errors or even segmentation violations.

As a partial guard against this type of error, variable-length or nullable fields should not be made directly
visible to the C compiler. This is accomplished by wrapping them in #ifdef CATALOG_VARLEN ... #endif
(where CATALOG_VARLEN is a symbol that is never defined). This prevents C code from carelessly trying

2373

System Catalog Declara-
tions and Initial Contents

to access fields that might not be there or might be at some other offset. As an independent guard
against creating incorrect rows, we require all columns that should be non-nullable to be marked so in
pg_attribute. The bootstrap code will automatically mark catalog columns as NOT NULL if they are fixed-
width and are not preceded by any nullable or variable-width column. Where this rule is inadequate, you
can force correct marking by using BKI_FORCE_NOT_NULL and BKI_FORCE_NULL annotations as needed.

Frontend code should not include any pg_xxx.h catalog header file, as these files may contain C code that
won't compile outside the backend. (Typically, that happens because these files also contain declarations
for functions in src/backend/catalog/ files.) Instead, frontend code may include the corresponding
generated pg_xxx_d.h header, which will contain OID #defines and any other data that might be of use
on the client side. If you want macros or other code in a catalog header to be visible to frontend code,
write #ifdef EXPOSE_TO_CLIENT_CODE ... #endif around that section to instruct genbki.pl to copy that
section to the pg_xxx_d.h header.

A few of the catalogs are so fundamental that they can't even be created by the BKI create command
that's used for most catalogs, because that command needs to write information into these catalogs to
describe the new catalog. These are called bootstrap catalogs, and defining one takes a lot of extra work:
you have to manually prepare appropriate entries for them in the pre-loaded contents of pg_class and
pg_type, and those entries will need to be updated for subsequent changes to the catalog's structure.
(Bootstrap catalogs also need pre-loaded entries in pg_attribute, but fortunately genbki.pl handles
that chore nowadays.) Avoid making new catalogs be bootstrap catalogs if at all possible.

68.2. System Catalog Initial Data
Each catalog that has any manually-created initial data (some do not) has a corresponding .dat file that
contains its initial data in an editable format.

68.2.1. Data File Format
Each .dat file contains Perl data structure literals that are simply eval'd to produce an in-memory data
structure consisting of an array of hash references, one per catalog row. A slightly modified excerpt from
pg_database.dat will demonstrate the key features:

[

A comment could appear here.
{ oid => '1', oid_symbol => 'Template1DbOid',
 descr => 'database\'s default template',
 datname => 'template1', encoding => 'ENCODING',
 datlocprovider => 'LOCALE_PROVIDER', datistemplate => 't',
 datallowconn => 't', dathasloginevt => 'f', datconnlimit => '-1', datfrozenxid =>
 '0',
 datminmxid => '1', dattablespace => 'pg_default', datcollate => 'LC_COLLATE',
 datctype => 'LC_CTYPE', datlocale => 'DATLOCALE', datacl => '_null_' },

]

Points to note:

• The overall file layout is: open square bracket, one or more sets of curly braces each of which rep-
resents a catalog row, close square bracket. Write a comma after each closing curly brace.

• Within each catalog row, write comma-separated key => value pairs. The allowed keys are the
names of the catalog's columns, plus the metadata keys oid, oid_symbol, array_type_oid, and de-
scr. (The use of oid and oid_symbol is described in Section 68.2.2 below, while array_type_oid is
described in Section 68.2.4. descr supplies a description string for the object, which will be insert-
ed into pg_description or pg_shdescription as appropriate.) While the metadata keys are option-
al, the catalog's defined columns must all be provided, except when the catalog's .h file specifies
a default value for the column. (In the example above, the datdba field has been omitted because
pg_database.h supplies a suitable default value for it.)

2374

System Catalog Declara-
tions and Initial Contents

• All values must be single-quoted. Escape single quotes used within a value with a backslash. Back-
slashes meant as data can, but need not, be doubled; this follows Perl's rules for simple quoted lit-
erals. Note that backslashes appearing as data will be treated as escapes by the bootstrap scan-
ner, according to the same rules as for escape string constants (see Section 4.1.2.2); for example
\t converts to a tab character. If you actually want a backslash in the final value, you will need to
write four of them: Perl strips two, leaving \\ for the bootstrap scanner to see.

• Null values are represented by _null_. (Note that there is no way to create a value that is just that
string.)

• Comments are preceded by #, and must be on their own lines.
• Field values that are OIDs of other catalog entries should be represented by symbolic names rather

than actual numeric OIDs. (In the example above, dattablespace contains such a reference.) This
is described in Section 68.2.3 below.

• Since hashes are unordered data structures, field order and line layout aren't semantically signifi-
cant. However, to maintain a consistent appearance, we set a few rules that are applied by the for-
matting script reformat_dat_file.pl:
• Within each pair of curly braces, the metadata fields oid, oid_symbol, array_type_oid, and de-

scr (if present) come first, in that order, then the catalog's own fields appear in their defined or-
der.

• Newlines are inserted between fields as needed to limit line length to 80 characters, if possible.
A newline is also inserted between the metadata fields and the regular fields.

• If the catalog's .h file specifies a default value for a column, and a data entry has that same val-
ue, reformat_dat_file.pl will omit it from the data file. This keeps the data representation
compact.

• reformat_dat_file.pl preserves blank lines and comment lines as-is.

It's recommended to run reformat_dat_file.pl before submitting catalog data patches. For con-
venience, you can simply change to src/include/catalog/ and run make reformat-dat-files.

• If you want to add a new method of making the data representation smaller, you must implement it
in reformat_dat_file.pl and also teach Catalog::ParseData() how to expand the data back into
the full representation.

68.2.2. OID Assignment
A catalog row appearing in the initial data can be given a manually-assigned OID by writing an oid
=> nnnn metadata field. Furthermore, if an OID is assigned, a C macro for that OID can be created by
writing an oid_symbol => name metadata field.

Pre-loaded catalog rows must have preassigned OIDs if there are OID references to them in other pre-
loaded rows. A preassigned OID is also needed if the row's OID must be referenced from C code. If
neither case applies, the oid metadata field can be omitted, in which case the bootstrap code assigns
an OID automatically. In practice we usually preassign OIDs for all or none of the pre-loaded rows in a
given catalog, even if only some of them are actually cross-referenced.

Writing the actual numeric value of any OID in C code is considered very bad form; always use a macro,
instead. Direct references to pg_proc OIDs are common enough that there's a special mechanism to
create the necessary macros automatically; see src/backend/utils/Gen_fmgrtab.pl. Similarly — but,
for historical reasons, not done the same way — there's an automatic method for creating macros for
pg_type OIDs. oid_symbol entries are therefore not necessary in those two catalogs. Likewise, macros
for the pg_class OIDs of system catalogs and indexes are set up automatically. For all other system
catalogs, you have to manually specify any macros you need via oid_symbol entries.

To find an available OID for a new pre-loaded row, run the script src/include/catalog/unused_oids.
It prints inclusive ranges of unused OIDs (e.g., the output line 45-900 means OIDs 45 through 900 have
not been allocated yet). Currently, OIDs 1–9999 are reserved for manual assignment; the unused_oids

2375

System Catalog Declara-
tions and Initial Contents

script simply looks through the catalog headers and .dat files to see which ones do not appear. You can
also use the duplicate_oids script to check for mistakes. (genbki.pl will assign OIDs for any rows that
didn't get one hand-assigned to them, and it will also detect duplicate OIDs at compile time.)

When choosing OIDs for a patch that is not expected to be committed immediately, best practice is to use
a group of more-or-less consecutive OIDs starting with some random choice in the range 8000—9999.
This minimizes the risk of OID collisions with other patches being developed concurrently. To keep the
8000—9999 range free for development purposes, after a patch has been committed to the master git
repository its OIDs should be renumbered into available space below that range. Typically, this will be
done near the end of each development cycle, moving all OIDs consumed by patches committed in that
cycle at the same time. The script renumber_oids.pl can be used for this purpose. If an uncommitted
patch is found to have OID conflicts with some recently-committed patch, renumber_oids.pl may also
be useful for recovering from that situation.

Because of this convention of possibly renumbering OIDs assigned by patches, the OIDs assigned by
a patch should not be considered stable until the patch has been included in an official release. We
do not change manually-assigned object OIDs once released, however, as that would create assorted
compatibility problems.

If genbki.pl needs to assign an OID to a catalog entry that does not have a manually-assigned OID, it
will use a value in the range 10000—11999. The server's OID counter is set to 10000 at the start of a
bootstrap run, so that any objects created on-the-fly during bootstrap processing also receive OIDs in
this range. (The usual OID assignment mechanism takes care of preventing any conflicts.)

Objects with OIDs below FirstUnpinnedObjectId (12000) are considered “pinned”, preventing them
from being deleted. (There are a small number of exceptions, which are hard-wired into IsPinnedOb-
ject().) initdb forces the OID counter up to FirstUnpinnedObjectId as soon as it's ready to create
unpinned objects. Thus objects created during the later phases of initdb, such as objects created while
running the information_schema.sql script, will not be pinned, while all objects known to genbki.pl
will be.

OIDs assigned during normal database operation are constrained to be 16384 or higher. This ensures
that the range 10000—16383 is free for OIDs assigned automatically by genbki.pl or during initdb.
These automatically-assigned OIDs are not considered stable, and may change from one installation to
another.

68.2.3. OID Reference Lookup
In principle, cross-references from one initial catalog row to another could be written just by writing the
preassigned OID of the referenced row in the referencing field. However, that is against project policy,
because it is error-prone, hard to read, and subject to breakage if a newly-assigned OID is renumbered.
Therefore genbki.pl provides mechanisms to write symbolic references instead. The rules are as fol-
lows:

• Use of symbolic references is enabled in a particular catalog column by attaching
BKI_LOOKUP(lookuprule) to the column's definition, where lookuprule is the name of the refer-
enced catalog, e.g., pg_proc. BKI_LOOKUP can be attached to columns of type Oid, regproc, oid-
vector, or Oid[]; in the latter two cases it implies performing a lookup on each element of the ar-
ray.

• It's also permissible to attach BKI_LOOKUP(encoding) to integer columns to reference character set
encodings, which are not currently represented as catalog OIDs, but have a set of values known to
genbki.pl.

• In some catalog columns, it's allowed for entries to be zero instead of a valid reference. If this is al-
lowed, write BKI_LOOKUP_OPT instead of BKI_LOOKUP. Then you can write 0 for an entry. (If the col-
umn is declared regproc, you can optionally write - instead of 0.) Except for this special case, all
entries in a BKI_LOOKUP column must be symbolic references. genbki.pl will warn about unrecog-
nized names.

2376

System Catalog Declara-
tions and Initial Contents

• Most kinds of catalog objects are simply referenced by their names. Note that type names must ex-
actly match the referenced pg_type entry's typname; you do not get to use any aliases such as in-
teger for int4.

• A function can be represented by its proname, if that is unique among the pg_proc.dat entries (this
works like regproc input). Otherwise, write it as proname(argtypename,argtypename,...), like
regprocedure. The argument type names must be spelled exactly as they are in the pg_proc.dat
entry's proargtypes field. Do not insert any spaces.

• Operators are represented by oprname(lefttype,righttype), writing the type names exactly as
they appear in the pg_operator.dat entry's oprleft and oprright fields. (Write 0 for the omitted
operand of a unary operator.)

• The names of opclasses and opfamilies are only unique within an access method, so they are repre-
sented by access_method_name/object_name.

• In none of these cases is there any provision for schema-qualification; all objects created during
bootstrap are expected to be in the pg_catalog schema.

genbki.pl resolves all symbolic references while it runs, and puts simple numeric OIDs into the emitted
BKI file. There is therefore no need for the bootstrap backend to deal with symbolic references.

It's desirable to mark OID reference columns with BKI_LOOKUP or BKI_LOOKUP_OPT even if the catalog has
no initial data that requires lookup. This allows genbki.pl to record the foreign key relationships that ex-
ist in the system catalogs. That information is used in the regression tests to check for incorrect entries.
See also the macros DECLARE_FOREIGN_KEY, DECLARE_FOREIGN_KEY_OPT, DECLARE_ARRAY_FOREIGN_KEY,
and DECLARE_ARRAY_FOREIGN_KEY_OPT, which are used to declare foreign key relationships that are too
complex for BKI_LOOKUP (typically, multi-column foreign keys).

68.2.4. Automatic Creation of Array Types
Most scalar data types should have a corresponding array type (that is, a standard varlena array type
whose element type is the scalar type, and which is referenced by the typarray field of the scalar type's
pg_type entry). genbki.pl is able to generate the pg_type entry for the array type automatically in
most cases.

To use this facility, just write an array_type_oid => nnnn metadata field in the scalar type's pg_type
entry, specifying the OID to use for the array type. You may then omit the typarray field, since it will
be filled automatically with that OID.

The generated array type's name is the scalar type's name with an underscore prepended. The array
entry's other fields are filled from BKI_ARRAY_DEFAULT(value) annotations in pg_type.h, or if there
isn't one, copied from the scalar type. (There's also a special case for typalign.) Then the typelem and
typarray fields of the two entries are set to cross-reference each other.

68.2.5. Recipes for Editing Data Files
Here are some suggestions about the easiest ways to perform common tasks when updating catalog
data files.

Add a new column with a default to a catalog: Add the column to the header file with a BKI_DE-
FAULT(value) annotation. The data file need only be adjusted by adding the field in existing rows where
a non-default value is needed.

Add a default value to an existing column that doesn't have one: Add a BKI_DEFAULT annotation
to the header file, then run make reformat-dat-files to remove now-redundant field entries.

Remove a column, whether it has a default or not: Remove the column from the header, then
run make reformat-dat-files to remove now-useless field entries.

Change or remove an existing default value: You cannot simply change the header file, since that
will cause the current data to be interpreted incorrectly. First run make expand-dat-files to rewrite the

2377

System Catalog Declara-
tions and Initial Contents

data files with all default values inserted explicitly, then change or remove the BKI_DEFAULT annotation,
then run make reformat-dat-files to remove superfluous fields again.

Ad-hoc bulk editing: reformat_dat_file.pl can be adapted to perform many kinds of bulk changes.
Look for its block comments showing where one-off code can be inserted. In the following example, we
are going to consolidate two Boolean fields in pg_proc into a char field:

1. Add the new column, with a default, to pg_proc.h:

+ /* see PROKIND_ categories below */
+ char prokind BKI_DEFAULT(f);

2. Create a new script based on reformat_dat_file.pl to insert appropriate values on-the-fly:

- # At this point we have the full row in memory as a hash
- # and can do any operations we want. As written, it only
- # removes default values, but this script can be adapted to
- # do one-off bulk-editing.
+ # One-off change to migrate to prokind
+ # Default has already been filled in by now, so change to other
+ # values as appropriate
+ if ($values{proisagg} eq 't')
+ {
+ $values{prokind} = 'a';
+ }
+ elsif ($values{proiswindow} eq 't')
+ {
+ $values{prokind} = 'w';
+ }

3. Run the new script:

$ cd src/include/catalog
$ perl rewrite_dat_with_prokind.pl pg_proc.dat

At this point pg_proc.dat has all three columns, prokind, proisagg, and proiswindow, though they
will appear only in rows where they have non-default values.

4. Remove the old columns from pg_proc.h:

- /* is it an aggregate? */
- bool proisagg BKI_DEFAULT(f);
-
- /* is it a window function? */
- bool proiswindow BKI_DEFAULT(f);

5. Finally, run make reformat-dat-files to remove the useless old entries from pg_proc.dat.

For further examples of scripts used for bulk editing, see convert_oid2name.pl and re-
move_pg_type_oid_symbols.pl attached to this message: https://www.postgresql.org/message-id/CA-
JVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com

68.3. BKI File Format
This section describes how the PostgreSQL backend interprets BKI files. This description will be easier
to understand if the postgres.bki file is at hand as an example.

BKI input consists of a sequence of commands. Commands are made up of a number of tokens, depending
on the syntax of the command. Tokens are usually separated by whitespace, but need not be if there is
no ambiguity. There is no special command separator; the next token that syntactically cannot belong
to the preceding command starts a new one. (Usually you would put a new command on a new line, for
clarity.) Tokens can be certain key words, special characters (parentheses, commas, etc.), identifiers,
numbers, or single-quoted strings. Everything is case sensitive.

2378

https://www.postgresql.org/message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com
https://www.postgresql.org/message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com

System Catalog Declara-
tions and Initial Contents

Lines starting with # are ignored.

68.4. BKI Commands
create tablename tableoid [bootstrap] [shared_relation] [rowtype_oid oid] (name1 = type1 [FORCE
NOT NULL | FORCE NULL] [, name2 = type2 [FORCE NOT NULL | FORCE NULL], ...])

Create a table named tablename, and having the OID tableoid, with the columns given in paren-
theses.

The following column types are supported directly by bootstrap.c: bool, bytea, char (1 byte), name,
int2, int4, regproc, regclass, regtype, text, oid, tid, xid, cid, int2vector, oidvector, _int4
(array), _text (array), _oid (array), _char (array), _aclitem (array). Although it is possible to create
tables containing columns of other types, this cannot be done until after pg_type has been created
and filled with appropriate entries. (That effectively means that only these column types can be used
in bootstrap catalogs, but non-bootstrap catalogs can contain any built-in type.)

When bootstrap is specified, the table will only be created on disk; nothing is entered into pg_class,
pg_attribute, etc., for it. Thus the table will not be accessible by ordinary SQL operations until such
entries are made the hard way (with insert commands). This option is used for creating pg_class
etc. themselves.

The table is created as shared if shared_relation is specified. The table's row type OID (pg_type
OID) can optionally be specified via the rowtype_oid clause; if not specified, an OID is automatically
generated for it. (The rowtype_oid clause is useless if bootstrap is specified, but it can be provided
anyway for documentation.)

open tablename
Open the table named tablename for insertion of data. Any currently open table is closed.

close tablename
Close the open table. The name of the table must be given as a cross-check.

insert ([oid_value] value1 value2 ...)
Insert a new row into the open table using value1, value2, etc., for its column values.

NULL values can be specified using the special key word _null_. Values that do not look like iden-
tifiers or digit strings must be single-quoted. (To include a single quote in a value, write it twice.
Escape-string-style backslash escapes are allowed in the string, too.)

declare [unique] index indexname indexoid on tablename using amname (opclass1 name1 [, ...])
Create an index named indexname, having OID indexoid, on the table named tablename, using the
amname access method. The fields to index are called name1, name2 etc., and the operator classes
to use are opclass1, opclass2 etc., respectively. The index file is created and appropriate catalog
entries are made for it, but the index contents are not initialized by this command.

declare toast toasttableoid toastindexoid on tablename
Create a TOAST table for the table named tablename. The TOAST table is assigned OID toast-
tableoid and its index is assigned OID toastindexoid. As with declare index, filling of the index
is postponed.

build indices

Fill in the indices that have previously been declared.

68.5. Structure of the Bootstrap BKI File
The open command cannot be used until the tables it uses exist and have entries for the table that is
to be opened. (These minimum tables are pg_class, pg_attribute, pg_proc, and pg_type.) To allow

2379

System Catalog Declara-
tions and Initial Contents

those tables themselves to be filled, create with the bootstrap option implicitly opens the created table
for data insertion.

Also, the declare index and declare toast commands cannot be used until the system catalogs they
need have been created and filled in.

Thus, the structure of the postgres.bki file has to be:
1. create bootstrap one of the critical tables
2. insert data describing at least the critical tables
3. close

4. Repeat for the other critical tables.
5. create (without bootstrap) a noncritical table
6. open

7. insert desired data
8. close

9. Repeat for the other noncritical tables.
10.Define indexes and toast tables.
11.build indices

There are doubtless other, undocumented ordering dependencies.

68.6. BKI Example
The following sequence of commands will create the table test_table with OID 420, having three
columns oid, cola and colb of type oid, int4 and text, respectively, and insert two rows into the table:

create test_table 420 (oid = oid, cola = int4, colb = text)
open test_table
insert (421 1 'value 1')
insert (422 2 _null_)
close test_table

2380

Chapter 69. How the Planner Uses Statistics
This chapter builds on the material covered in Section 14.1 and Section 14.2 to show some additional
details about how the planner uses the system statistics to estimate the number of rows each part of a
query might return. This is a significant part of the planning process, providing much of the raw material
for cost calculation.

The intent of this chapter is not to document the code in detail, but to present an overview of how it
works. This will perhaps ease the learning curve for someone who subsequently wishes to read the code.

69.1. Row Estimation Examples
The examples shown below use tables in the PostgreSQL regression test database. Note also that since
ANALYZE uses random sampling while producing statistics, the results will change slightly after any new
ANALYZE.

Let's start with a very simple query:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

How the planner determines the cardinality of tenk1 is covered in Section 14.2, but is repeated here for
completeness. The number of pages and rows is looked up in pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 relpages | reltuples
----------+-----------
 358 | 10000

These numbers are current as of the last VACUUM or ANALYZE on the table. The planner then fetches the
actual current number of pages in the table (this is a cheap operation, not requiring a table scan). If
that is different from relpages then reltuples is scaled accordingly to arrive at a current number-of-
rows estimate. In the example above, the value of relpages is up-to-date so the rows estimate is the
same as reltuples.

Let's move on to an example with a range condition in its WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=24.06..394.64 rows=1007 width=244)
 Recheck Cond: (unique1 < 1000)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)
 Index Cond: (unique1 < 1000)

The planner examines the WHERE clause condition and looks up the selectivity function for the operator
< in pg_operator. This is held in the column oprrest, and the entry in this case is scalarltsel. The
scalarltsel function retrieves the histogram for unique1 from pg_statistic. For manual queries it is
more convenient to look in the simpler pg_stats view:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='unique1';

 histogram_bounds
--
 {0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}

2381

How the Planner Uses Statistics

Next the fraction of the histogram occupied by “< 1000” is worked out. This is the selectivity. The
histogram divides the range into equal frequency buckets, so all we have to do is locate the bucket that
our value is in and count part of it and all of the ones before. The value 1000 is clearly in the second
bucket (993–1997). Assuming a linear distribution of values inside each bucket, we can calculate the
selectivity as:
selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max - bucket[2].min))/num_buckets
 = (1 + (1000 - 993)/(1997 - 993))/10
 = 0.100697

that is, one whole bucket plus a linear fraction of the second, divided by the number of buckets. The
estimated number of rows can now be calculated as the product of the selectivity and the cardinality
of tenk1:
rows = rel_cardinality * selectivity
 = 10000 * 0.100697
 = 1007 (rounding off)

Next let's consider an example with an equality condition in its WHERE clause:
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'CRAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=30 width=244)
 Filter: (stringu1 = 'CRAAAA'::name)

Again the planner examines the WHERE clause condition and looks up the selectivity function for =, which
is eqsel. For equality estimation the histogram is not useful; instead the list of most common values
(MCVs) is used to determine the selectivity. Let's have a look at the MCVs, with some additional columns
that will be useful later:
SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

null_frac | 0
n_distinct | 676
most_common_vals | {EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,
JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

Since CRAAAA appears in the list of MCVs, the selectivity is merely the corresponding entry in the list
of most common frequencies (MCFs):
selectivity = mcf[3]
 = 0.003

As before, the estimated number of rows is just the product of this with the cardinality of tenk1:
rows = 10000 * 0.003
 = 30

Now consider the same query, but with a constant that is not in the MCV list:
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'xxx';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=15 width=244)
 Filter: (stringu1 = 'xxx'::name)

This is quite a different problem: how to estimate the selectivity when the value is not in the MCV list.
The approach is to use the fact that the value is not in the list, combined with the knowledge of the
frequencies for all of the MCVs:

2382

How the Planner Uses Statistics

selectivity = (1 - sum(mcv_freqs))/(num_distinct - num_mcv)
 = (1 - (0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003 +
 0.003 + 0.003 + 0.003 + 0.003))/(676 - 10)
 = 0.0014559

That is, add up all the frequencies for the MCVs and subtract them from one, then divide by the number
of other distinct values. This amounts to assuming that the fraction of the column that is not any of the
MCVs is evenly distributed among all the other distinct values. Notice that there are no null values so
we don't have to worry about those (otherwise we'd subtract the null fraction from the numerator as
well). The estimated number of rows is then calculated as usual:

rows = 10000 * 0.0014559
 = 15 (rounding off)

The previous example with unique1 < 1000 was an oversimplification of what scalarltsel really does;
now that we have seen an example of the use of MCVs, we can fill in some more detail. The example
was correct as far as it went, because since unique1 is a unique column it has no MCVs (obviously, no
value is any more common than any other value). For a non-unique column, there will normally be both
a histogram and an MCV list, and the histogram does not include the portion of the column population
represented by the MCVs. We do things this way because it allows more precise estimation. In this
situation scalarltsel directly applies the condition (e.g., “< 1000”) to each value of the MCV list, and
adds up the frequencies of the MCVs for which the condition is true. This gives an exact estimate of the
selectivity within the portion of the table that is MCVs. The histogram is then used in the same way as
above to estimate the selectivity in the portion of the table that is not MCVs, and then the two numbers
are combined to estimate the overall selectivity. For example, consider

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 < 'IAAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=3077 width=244)
 Filter: (stringu1 < 'IAAAAA'::name)

We already saw the MCV information for stringu1, and here is its histogram:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

 histogram_bounds
--
 {AAAAAA,CQAAAA,FRAAAA,IBAAAA,KRAAAA,NFAAAA,PSAAAA,SGAAAA,VAAAAA,XLAAAA,ZZAAAA}

Checking the MCV list, we find that the condition stringu1 < 'IAAAAA' is satisfied by the first six
entries and not the last four, so the selectivity within the MCV part of the population is

selectivity = sum(relevant mvfs)
 = 0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
 = 0.01833333

Summing all the MCFs also tells us that the total fraction of the population represented by MCVs is
0.03033333, and therefore the fraction represented by the histogram is 0.96966667 (again, there are
no nulls, else we'd have to exclude them here). We can see that the value IAAAAA falls nearly at the end
of the third histogram bucket. Using some rather cheesy assumptions about the frequency of different
characters, the planner arrives at the estimate 0.298387 for the portion of the histogram population that
is less than IAAAAA. We then combine the estimates for the MCV and non-MCV populations:

selectivity = mcv_selectivity + histogram_selectivity * histogram_fraction
 = 0.01833333 + 0.298387 * 0.96966667
 = 0.307669

rows = 10000 * 0.307669
 = 3077 (rounding off)

2383

How the Planner Uses Statistics

In this particular example, the correction from the MCV list is fairly small, because the column distrib-
ution is actually quite flat (the statistics showing these particular values as being more common than
others are mostly due to sampling error). In a more typical case where some values are significantly
more common than others, this complicated process gives a useful improvement in accuracy because
the selectivity for the most common values is found exactly.

Now let's consider a case with more than one condition in the WHERE clause:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=23.80..396.91 rows=1 width=244)
 Recheck Cond: (unique1 < 1000)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)
 Index Cond: (unique1 < 1000)

The planner assumes that the two conditions are independent, so that the individual selectivities of the
clauses can be multiplied together:
selectivity = selectivity(unique1 < 1000) * selectivity(stringu1 = 'xxx')
 = 0.100697 * 0.0014559
 = 0.0001466

rows = 10000 * 0.0001466
 = 1 (rounding off)

Notice that the number of rows estimated to be returned from the bitmap index scan reflects only the
condition used with the index; this is important since it affects the cost estimate for the subsequent
heap fetches.

Finally we will examine a query that involves a join:
EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.64..456.23 rows=50 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.64..142.17 rows=50 width=244)
 Recheck Cond: (unique1 < 50)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.63 rows=50 width=0)
 Index Cond: (unique1 < 50)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..6.27 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

The restriction on tenk1, unique1 < 50, is evaluated before the nested-loop join. This is handled anal-
ogously to the previous range example. This time the value 50 falls into the first bucket of the unique1
histogram:
selectivity = (0 + (50 - bucket[1].min)/(bucket[1].max - bucket[1].min))/num_buckets
 = (0 + (50 - 0)/(993 - 0))/10
 = 0.005035

rows = 10000 * 0.005035
 = 50 (rounding off)

The restriction for the join is t2.unique2 = t1.unique2. The operator is just our familiar =, however the
selectivity function is obtained from the oprjoin column of pg_operator, and is eqjoinsel. eqjoinsel
looks up the statistical information for both tenk2 and tenk1:
SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats

2384

How the Planner Uses Statistics

WHERE tablename IN ('tenk1', 'tenk2') AND attname='unique2';

tablename | null_frac | n_distinct | most_common_vals
-----------+-----------+------------+------------------
 tenk1 | 0 | -1 |
 tenk2 | 0 | -1 |

In this case there is no MCV information for unique2 and all the values appear to be unique (n_distinct
= -1), so we use an algorithm that relies on the row count estimates for both relations (num_rows, not
shown, but "tenk") together with the column null fractions (zero for both):

selectivity = (1 - null_frac1) * (1 - null_frac2) / max(num_rows1, num_rows2)
 = (1 - 0) * (1 - 0) / max(10000, 10000)
 = 0.0001

This is, subtract the null fraction from one for each of the relations, and divide by the row count of the
larger relation (this value does get scaled in the non-unique case). The number of rows that the join
is likely to emit is calculated as the cardinality of the Cartesian product of the two inputs, multiplied
by the selectivity:

rows = (outer_cardinality * inner_cardinality) * selectivity
 = (50 * 10000) * 0.0001
 = 50

Had there been MCV lists for the two columns, eqjoinsel would have used direct comparison of the
MCV lists to determine the join selectivity within the part of the column populations represented by the
MCVs. The estimate for the remainder of the populations follows the same approach shown here.

Notice that we showed inner_cardinality as 10000, that is, the unmodified size of tenk2. It might
appear from inspection of the EXPLAIN output that the estimate of join rows comes from 50 * 1, that is,
the number of outer rows times the estimated number of rows obtained by each inner index scan on
tenk2. But this is not the case: the join relation size is estimated before any particular join plan has been
considered. If everything is working well then the two ways of estimating the join size will produce about
the same answer, but due to round-off error and other factors they sometimes diverge significantly.

For those interested in further details, estimation of the size of a table (before any WHERE clauses) is
done in src/backend/optimizer/util/plancat.c. The generic logic for clause selectivities is in src/
backend/optimizer/path/clausesel.c. The operator-specific selectivity functions are mostly found in
src/backend/utils/adt/selfuncs.c.

69.2. Multivariate Statistics Examples
69.2.1. Functional Dependencies

Multivariate correlation can be demonstrated with a very simple data set — a table with two columns,
both containing the same values:

CREATE TABLE t (a INT, b INT);
INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000) s(i);
ANALYZE t;

As explained in Section 14.2, the planner can determine cardinality of t using the number of pages and
rows obtained from pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = 't';

 relpages | reltuples
----------+-----------
 45 | 10000

The data distribution is very simple; there are only 100 distinct values in each column, uniformly dis-
tributed.

2385

How the Planner Uses Statistics

The following example shows the result of estimating a WHERE condition on the a column:

EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..170.00 rows=100 width=8) (actual rows=100.00 loops=1)
 Filter: (a = 1)
 Rows Removed by Filter: 9900

The planner examines the condition and determines the selectivity of this clause to be 1%. By comparing
this estimate and the actual number of rows, we see that the estimate is very accurate (in fact exact, as
the table is very small). Changing the WHERE condition to use the b column, an identical plan is generated.
But observe what happens if we apply the same condition on both columns, combining them with AND:

EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=100.00 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

The planner estimates the selectivity for each condition individually, arriving at the same 1% estimates
as above. Then it assumes that the conditions are independent, and so it multiplies their selectivities,
producing a final selectivity estimate of just 0.01%. This is a significant underestimate, as the actual
number of rows matching the conditions (100) is two orders of magnitude higher.

This problem can be fixed by creating a statistics object that directs ANALYZE to calculate functional-de-
pendency multivariate statistics on the two columns:

CREATE STATISTICS stts (dependencies) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100.00 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

69.2.2. Multivariate N-Distinct Counts
A similar problem occurs with estimation of the cardinality of sets of multiple columns, such as the
number of groups that would be generated by a GROUP BY clause. When GROUP BY lists a single column,
the n-distinct estimate (which is visible as the estimated number of rows returned by the HashAggregate
node) is very accurate:

EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT COUNT(*) FROM t GROUP BY a;
 QUERY PLAN

 HashAggregate (cost=195.00..196.00 rows=100 width=12) (actual rows=100.00 loops=1)
 Group Key: a
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=4) (actual rows=10000.00
 loops=1)

But without multivariate statistics, the estimate for the number of groups in a query with two columns
in GROUP BY, as in the following example, is off by an order of magnitude:

EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN

 HashAggregate (cost=220.00..230.00 rows=1000 width=16) (actual rows=100.00 loops=1)

2386

How the Planner Uses Statistics

 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000.00
 loops=1)

By redefining the statistics object to include n-distinct counts for the two columns, the estimate is much
improved:

DROP STATISTICS stts;
CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN

 HashAggregate (cost=220.00..221.00 rows=100 width=16) (actual rows=100.00 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000.00
 loops=1)

69.2.3. MCV Lists
As explained in Section 69.2.1, functional dependencies are very cheap and efficient type of statistics,
but their main limitation is their global nature (only tracking dependencies at the column level, not
between individual column values).

This section introduces multivariate variant of MCV (most-common values) lists, a straightforward ex-
tension of the per-column statistics described in Section 69.1. These statistics address the limitation by
storing individual values, but it is naturally more expensive, both in terms of building the statistics in
ANALYZE, storage and planning time.

Let's look at the query from Section 69.2.1 again, but this time with a MCV list created on the same
set of columns (be sure to drop the functional dependencies, to make sure the planner uses the newly
created statistics).

DROP STATISTICS stts;
CREATE STATISTICS stts2 (mcv) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100.00 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

The estimate is as accurate as with the functional dependencies, mostly thanks to the table being fairly
small and having a simple distribution with a low number of distinct values. Before looking at the second
query, which was not handled by functional dependencies particularly well, let's inspect the MCV list
a bit.

Inspecting the MCV list is possible using pg_mcv_list_items set-returning function.

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts2';
 index | values | nulls | frequency | base_frequency
-------+----------+-------+-----------+----------------
 0 | {0, 0} | {f,f} | 0.01 | 0.0001
 1 | {1, 1} | {f,f} | 0.01 | 0.0001
 ...
 49 | {49, 49} | {f,f} | 0.01 | 0.0001
 50 | {50, 50} | {f,f} | 0.01 | 0.0001
 ...

2387

How the Planner Uses Statistics

 97 | {97, 97} | {f,f} | 0.01 | 0.0001
 98 | {98, 98} | {f,f} | 0.01 | 0.0001
 99 | {99, 99} | {f,f} | 0.01 | 0.0001
(100 rows)

This confirms there are 100 distinct combinations in the two columns, and all of them are about equally
likely (1% frequency for each one). The base frequency is the frequency computed from per-column
statistics, as if there were no multi-column statistics. Had there been any null values in either of the
columns, this would be identified in the nulls column.

When estimating the selectivity, the planner applies all the conditions on items in the MCV list, and then
sums the frequencies of the matching ones. See mcv_clauselist_selectivity in src/backend/sta-
tistics/mcv.c for details.

Compared to functional dependencies, MCV lists have two major advantages. Firstly, the list stores
actual values, making it possible to decide which combinations are compatible.

EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 10;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0.00 loops=1)
 Filter: ((a = 1) AND (b = 10))
 Rows Removed by Filter: 10000

Secondly, MCV lists handle a wider range of clause types, not just equality clauses like functional de-
pendencies. For example, consider the following range query for the same table:

EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a <= 49 AND b > 49;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0.00 loops=1)
 Filter: ((a <= 49) AND (b > 49))
 Rows Removed by Filter: 10000

69.3. Planner Statistics and Security
Access to the table pg_statistic is restricted to superusers, so that ordinary users cannot learn about
the contents of the tables of other users from it. Some selectivity estimation functions will use a user-
provided operator (either the operator appearing in the query or a related operator) to analyze the stored
statistics. For example, in order to determine whether a stored most common value is applicable, the
selectivity estimator will have to run the appropriate = operator to compare the constant in the query
to the stored value. Thus the data in pg_statistic is potentially passed to user-defined operators. An
appropriately crafted operator can intentionally leak the passed operands (for example, by logging them
or writing them to a different table), or accidentally leak them by showing their values in error messages,
in either case possibly exposing data from pg_statistic to a user who should not be able to see it.

In order to prevent this, the following applies to all built-in selectivity estimation functions. When plan-
ning a query, in order to be able to use stored statistics, the current user must either have SELECT privi-
lege on the table or the involved columns, or the operator used must be LEAKPROOF (more accurately, the
function that the operator is based on). If not, then the selectivity estimator will behave as if no statistics
are available, and the planner will proceed with default or fall-back assumptions. The psql program's
\do+ meta-command is useful to determine which operators are marked as leakproof.

If a user does not have the required privilege on the table or columns, then in many cases the query will
ultimately receive a permission-denied error, in which case this mechanism is invisible in practice. But
if the user is reading from a security-barrier view, then the planner might wish to check the statistics
of an underlying table that is otherwise inaccessible to the user. In that case, the operator should be
leakproof or the statistics will not be used. There is no direct feedback about that, except that the plan
might be suboptimal. If one suspects that this is the case, one could try running the query as a more
privileged user, to see if a different plan results.

2388

How the Planner Uses Statistics

This restriction applies only to cases where the planner would need to execute a user-defined operator
on one or more values from pg_statistic. Thus the planner is permitted to use generic statistical
information, such as the fraction of null values or the number of distinct values in a column, regardless
of access privileges.

Selectivity estimation functions contained in third-party extensions that potentially operate on statistics
with user-defined operators should follow the same security rules. Consult the PostgreSQL source code
for guidance.

2389

Chapter 70. Backup Manifest Format
The backup manifest generated by pg_basebackup is primarily intended to permit the backup to be
verified using pg_verifybackup. However, it is also possible for other tools to read the backup manifest
file and use the information contained therein for their own purposes. To that end, this chapter describes
the format of the backup manifest file.

A backup manifest is a JSON document encoded as UTF-8. (Although in general JSON documents are
required to be Unicode, PostgreSQL permits the json and jsonb data types to be used with any supported
server encoding. There is no similar exception for backup manifests.) The JSON document is always an
object; the keys that are present in this object are described in the next section.

70.1. Backup Manifest Top-level Object
The backup manifest JSON document contains the following keys.

PostgreSQL-Backup-Manifest-Version

The associated value is an integer. Beginning in PostgreSQL 17, it is 2; in older versions, it is 1.

System-Identifier

The database system identifier of the PostgreSQL instance where the backup was taken. This field
is present only when PostgreSQL-Backup-Manifest-Version is 2.

Files

The associated value is always a list of objects, each describing one file that is present in the backup.
No entries are present in this list for the WAL files that are needed in order to use the backup, or for
the backup manifest itself. The structure of each object in the list is described in Section 70.2.

WAL-Ranges

The associated value is always a list of objects, each describing a range of WAL records that must
be readable from a particular timeline in order to make use of the backup. The structure of these
objects is further described in Section 70.3.

Manifest-Checksum

This key is always present on the last line of the backup manifest file. The associated value is a
SHA-256 checksum of all the preceding lines. We use a fixed checksum method here to make it pos-
sible for clients to do incremental parsing of the manifest. While a SHA-256 checksum is significantly
more expensive than a CRC-32C checksum, the manifest should normally be small enough that the
extra computation won't matter very much.

70.2. Backup Manifest File Object
The object which describes a single file contains either a Path key or an Encoded-Path key. Normally,
the Path key will be present. The associated string value is the path of the file relative to the root of the
backup directory. Files located in a user-defined tablespace will have paths whose first two components
are pg_tblspc and the OID of the tablespace. If the path is not a string that is legal in UTF-8, or if the
user requests that encoded paths be used for all files, then the Encoded-Path key will be present instead.
This stores the same data, but it is encoded as a string of hexadecimal digits. Each pair of hexadecimal
digits in the string represents a single octet.

The following two keys are always present:

Size

The expected size of this file, as an integer.

2390

Backup Manifest Format

Last-Modified

The last modification time of the file as reported by the server at the time of the backup. Unlike the
other fields stored in the backup, this field is not used by pg_verifybackup. It is included only for
informational purposes.

If the backup was taken with file checksums enabled, the following keys will be present:

Checksum-Algorithm

The checksum algorithm used to compute a checksum for this file. Currently, this will be the same for
every file in the backup manifest, but this may change in future releases. At present, the supported
checksum algorithms are CRC32C, SHA224, SHA256, SHA384, and SHA512.

Checksum

The checksum computed for this file, stored as a series of hexadecimal characters, two for each byte
of the checksum.

70.3. Backup Manifest WAL Range Object
The object which describes a WAL range always has three keys:

Timeline

The timeline for this range of WAL records, as an integer.

Start-LSN

The LSN at which replay must begin on the indicated timeline in order to make use of this backup.
The LSN is stored in the format normally used by PostgreSQL; that is, it is a string consisting of two
strings of hexadecimal characters, each with a length of between 1 and 8, separated by a slash.

End-LSN

The earliest LSN at which replay on the indicated timeline may end when making use of this backup.
This is stored in the same format as Start-LSN.

Ordinarily, there will be only a single WAL range. However, if a backup is taken from a standby which
switches timelines during the backup due to an upstream promotion, it is possible for multiple ranges
to be present, each with a different timeline. There will never be multiple WAL ranges present for the
same timeline.

2391

Part VIII. Appendixes

Appendix A. PostgreSQL Error Codes
All messages emitted by the PostgreSQL server are assigned five-character error codes that follow the
SQL standard's conventions for “SQLSTATE” codes. Applications that need to know which error condi-
tion has occurred should usually test the error code, rather than looking at the textual error message.
The error codes are less likely to change across PostgreSQL releases, and also are not subject to change
due to localization of error messages. Note that some, but not all, of the error codes produced by Post-
greSQL are defined by the SQL standard; some additional error codes for conditions not defined by the
standard have been invented or borrowed from other databases.

According to the standard, the first two characters of an error code denote a class of errors, while the
last three characters indicate a specific condition within that class. Thus, an application that does not
recognize the specific error code might still be able to infer what to do from the error class.

Table A.1 lists all the error codes defined in PostgreSQL 18.0. (Some are not actually used at present,
but are defined by the SQL standard.) The error classes are also shown. For each error class there is a
“standard” error code having the last three characters 000. This code is used only for error conditions
that fall within the class but do not have any more-specific code assigned.

The symbol shown in the column “Condition Name” is the condition name to use in PL/pgSQL. Condition
names can be written in either upper or lower case. (Note that PL/pgSQL does not recognize warning,
as opposed to error, condition names; those are classes 00, 01, and 02.)

For some types of errors, the server reports the name of a database object (a table, table column, data
type, or constraint) associated with the error; for example, the name of the unique constraint that caused
a unique_violation error. Such names are supplied in separate fields of the error report message so
that applications need not try to extract them from the possibly-localized human-readable text of the
message. As of PostgreSQL 9.3, complete coverage for this feature exists only for errors in SQLSTATE
class 23 (integrity constraint violation), but this is likely to be expanded in future.

Table A.1. PostgreSQL Error Codes

Error
Code

Condition Name

Class 00 — Successful Completion
00000 successful_completion

Class 01 — Warning
01000 warning

0100C dynamic_result_sets_returned

01008 implicit_zero_bit_padding

01003 null_value_eliminated_in_set_function

01007 privilege_not_granted

01006 privilege_not_revoked

01004 string_data_right_truncation

01P01 deprecated_feature

Class 02 — No Data (this is also a warning class per the SQL standard)
02000 no_data

02001 no_additional_dynamic_result_sets_returned

Class 03 — SQL Statement Not Yet Complete
03000 sql_statement_not_yet_complete

Class 08 — Connection Exception
08000 connection_exception

2393

PostgreSQL Error Codes

Error
Code

Condition Name

08003 connection_does_not_exist

08006 connection_failure

08001 sqlclient_unable_to_establish_sqlconnection

08004 sqlserver_rejected_establishment_of_sqlconnection

08007 transaction_resolution_unknown

08P01 protocol_violation

Class 09 — Triggered Action Exception
09000 triggered_action_exception

Class 0A — Feature Not Supported
0A000 feature_not_supported

Class 0B — Invalid Transaction Initiation
0B000 invalid_transaction_initiation

Class 0F — Locator Exception
0F000 locator_exception

0F001 invalid_locator_specification

Class 0L — Invalid Grantor
0L000 invalid_grantor

0LP01 invalid_grant_operation

Class 0P — Invalid Role Specification
0P000 invalid_role_specification

Class 0Z — Diagnostics Exception
0Z000 diagnostics_exception

0Z002 stacked_diagnostics_accessed_without_active_handler

Class 10 — XQuery Error
10608 invalid_argument_for_xquery

Class 20 — Case Not Found
20000 case_not_found

Class 21 — Cardinality Violation
21000 cardinality_violation

Class 22 — Data Exception
22000 data_exception

2202E array_subscript_error

22021 character_not_in_repertoire

22008 datetime_field_overflow

22012 division_by_zero

22005 error_in_assignment

2200B escape_character_conflict

22022 indicator_overflow

22015 interval_field_overflow

2394

PostgreSQL Error Codes

Error
Code

Condition Name

2201E invalid_argument_for_logarithm

22014 invalid_argument_for_ntile_function

22016 invalid_argument_for_nth_value_function

2201F invalid_argument_for_power_function

2201G invalid_argument_for_width_bucket_function

22018 invalid_character_value_for_cast

22007 invalid_datetime_format

22019 invalid_escape_character

2200D invalid_escape_octet

22025 invalid_escape_sequence

22P06 nonstandard_use_of_escape_character

22010 invalid_indicator_parameter_value

22023 invalid_parameter_value

22013 invalid_preceding_or_following_size

2201B invalid_regular_expression

2201W invalid_row_count_in_limit_clause

2201X invalid_row_count_in_result_offset_clause

2202H invalid_tablesample_argument

2202G invalid_tablesample_repeat

22009 invalid_time_zone_displacement_value

2200C invalid_use_of_escape_character

2200G most_specific_type_mismatch

22004 null_value_not_allowed

22002 null_value_no_indicator_parameter

22003 numeric_value_out_of_range

2200H sequence_generator_limit_exceeded

22026 string_data_length_mismatch

22001 string_data_right_truncation

22011 substring_error

22027 trim_error

22024 unterminated_c_string

2200F zero_length_character_string

22P01 floating_point_exception

22P02 invalid_text_representation

22P03 invalid_binary_representation

22P04 bad_copy_file_format

22P05 untranslatable_character

2200L not_an_xml_document

2200M invalid_xml_document

2395

PostgreSQL Error Codes

Error
Code

Condition Name

2200N invalid_xml_content

2200S invalid_xml_comment

2200T invalid_xml_processing_instruction

22030 duplicate_json_object_key_value

22031 invalid_argument_for_sql_json_datetime_function

22032 invalid_json_text

22033 invalid_sql_json_subscript

22034 more_than_one_sql_json_item

22035 no_sql_json_item

22036 non_numeric_sql_json_item

22037 non_unique_keys_in_a_json_object

22038 singleton_sql_json_item_required

22039 sql_json_array_not_found

2203A sql_json_member_not_found

2203B sql_json_number_not_found

2203C sql_json_object_not_found

2203D too_many_json_array_elements

2203E too_many_json_object_members

2203F sql_json_scalar_required

2203G sql_json_item_cannot_be_cast_to_target_type

Class 23 — Integrity Constraint Violation
23000 integrity_constraint_violation

23001 restrict_violation

23502 not_null_violation

23503 foreign_key_violation

23505 unique_violation

23514 check_violation

23P01 exclusion_violation

Class 24 — Invalid Cursor State
24000 invalid_cursor_state

Class 25 — Invalid Transaction State
25000 invalid_transaction_state

25001 active_sql_transaction

25002 branch_transaction_already_active

25008 held_cursor_requires_same_isolation_level

25003 inappropriate_access_mode_for_branch_transaction

25004 inappropriate_isolation_level_for_branch_transaction

25005 no_active_sql_transaction_for_branch_transaction

25006 read_only_sql_transaction

2396

PostgreSQL Error Codes

Error
Code

Condition Name

25007 schema_and_data_statement_mixing_not_supported

25P01 no_active_sql_transaction

25P02 in_failed_sql_transaction

25P03 idle_in_transaction_session_timeout

25P04 transaction_timeout

Class 26 — Invalid SQL Statement Name
26000 invalid_sql_statement_name

Class 27 — Triggered Data Change Violation
27000 triggered_data_change_violation

Class 28 — Invalid Authorization Specification
28000 invalid_authorization_specification

28P01 invalid_password

Class 2B — Dependent Privilege Descriptors Still Exist
2B000 dependent_privilege_descriptors_still_exist

2BP01 dependent_objects_still_exist

Class 2D — Invalid Transaction Termination
2D000 invalid_transaction_termination

Class 2F — SQL Routine Exception
2F000 sql_routine_exception

2F005 function_executed_no_return_statement

2F002 modifying_sql_data_not_permitted

2F003 prohibited_sql_statement_attempted

2F004 reading_sql_data_not_permitted

Class 34 — Invalid Cursor Name
34000 invalid_cursor_name

Class 38 — External Routine Exception
38000 external_routine_exception

38001 containing_sql_not_permitted

38002 modifying_sql_data_not_permitted

38003 prohibited_sql_statement_attempted

38004 reading_sql_data_not_permitted

Class 39 — External Routine Invocation Exception
39000 external_routine_invocation_exception

39001 invalid_sqlstate_returned

39004 null_value_not_allowed

39P01 trigger_protocol_violated

39P02 srf_protocol_violated

39P03 event_trigger_protocol_violated

Class 3B — Savepoint Exception

2397

PostgreSQL Error Codes

Error
Code

Condition Name

3B000 savepoint_exception

3B001 invalid_savepoint_specification

Class 3D — Invalid Catalog Name
3D000 invalid_catalog_name

Class 3F — Invalid Schema Name
3F000 invalid_schema_name

Class 40 — Transaction Rollback
40000 transaction_rollback

40002 transaction_integrity_constraint_violation

40001 serialization_failure

40003 statement_completion_unknown

40P01 deadlock_detected

Class 42 — Syntax Error or Access Rule Violation
42000 syntax_error_or_access_rule_violation

42601 syntax_error

42501 insufficient_privilege

42846 cannot_coerce

42803 grouping_error

42P20 windowing_error

42P19 invalid_recursion

42830 invalid_foreign_key

42602 invalid_name

42622 name_too_long

42939 reserved_name

42804 datatype_mismatch

42P18 indeterminate_datatype

42P21 collation_mismatch

42P22 indeterminate_collation

42809 wrong_object_type

428C9 generated_always

42703 undefined_column

42883 undefined_function

42P01 undefined_table

42P02 undefined_parameter

42704 undefined_object

42701 duplicate_column

42P03 duplicate_cursor

42P04 duplicate_database

42723 duplicate_function

2398

PostgreSQL Error Codes

Error
Code

Condition Name

42P05 duplicate_prepared_statement

42P06 duplicate_schema

42P07 duplicate_table

42712 duplicate_alias

42710 duplicate_object

42702 ambiguous_column

42725 ambiguous_function

42P08 ambiguous_parameter

42P09 ambiguous_alias

42P10 invalid_column_reference

42611 invalid_column_definition

42P11 invalid_cursor_definition

42P12 invalid_database_definition

42P13 invalid_function_definition

42P14 invalid_prepared_statement_definition

42P15 invalid_schema_definition

42P16 invalid_table_definition

42P17 invalid_object_definition

Class 44 — WITH CHECK OPTION Violation
44000 with_check_option_violation

Class 53 — Insufficient Resources
53000 insufficient_resources

53100 disk_full

53200 out_of_memory

53300 too_many_connections

53400 configuration_limit_exceeded

Class 54 — Program Limit Exceeded
54000 program_limit_exceeded

54001 statement_too_complex

54011 too_many_columns

54023 too_many_arguments

Class 55 — Object Not In Prerequisite State
55000 object_not_in_prerequisite_state

55006 object_in_use

55P02 cant_change_runtime_param

55P03 lock_not_available

55P04 unsafe_new_enum_value_usage

Class 57 — Operator Intervention
57000 operator_intervention

2399

PostgreSQL Error Codes

Error
Code

Condition Name

57014 query_canceled

57P01 admin_shutdown

57P02 crash_shutdown

57P03 cannot_connect_now

57P04 database_dropped

57P05 idle_session_timeout

Class 58 — System Error (errors external to PostgreSQL itself)
58000 system_error

58030 io_error

58P01 undefined_file

58P02 duplicate_file

58P03 file_name_too_long

Class F0 — Configuration File Error
F0000 config_file_error

F0001 lock_file_exists

Class HV — Foreign Data Wrapper Error (SQL/MED)
HV000 fdw_error

HV005 fdw_column_name_not_found

HV002 fdw_dynamic_parameter_value_needed

HV010 fdw_function_sequence_error

HV021 fdw_inconsistent_descriptor_information

HV024 fdw_invalid_attribute_value

HV007 fdw_invalid_column_name

HV008 fdw_invalid_column_number

HV004 fdw_invalid_data_type

HV006 fdw_invalid_data_type_descriptors

HV091 fdw_invalid_descriptor_field_identifier

HV00B fdw_invalid_handle

HV00C fdw_invalid_option_index

HV00D fdw_invalid_option_name

HV090 fdw_invalid_string_length_or_buffer_length

HV00A fdw_invalid_string_format

HV009 fdw_invalid_use_of_null_pointer

HV014 fdw_too_many_handles

HV001 fdw_out_of_memory

HV00P fdw_no_schemas

HV00J fdw_option_name_not_found

HV00K fdw_reply_handle

HV00Q fdw_schema_not_found

2400

PostgreSQL Error Codes

Error
Code

Condition Name

HV00R fdw_table_not_found

HV00L fdw_unable_to_create_execution

HV00M fdw_unable_to_create_reply

HV00N fdw_unable_to_establish_connection

Class P0 — PL/pgSQL Error
P0000 plpgsql_error

P0001 raise_exception

P0002 no_data_found

P0003 too_many_rows

P0004 assert_failure

Class XX — Internal Error
XX000 internal_error

XX001 data_corrupted

XX002 index_corrupted

2401

Appendix B. Date/Time Support
PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input
as strings, and are broken up into distinct fields with a preliminary determination of what kind of infor-
mation can be in the field. Each field is interpreted and either assigned a numeric value, ignored, or
rejected. The parser contains internal lookup tables for all textual fields, including months, days of the
week, and time zones.

This appendix includes information on the content of these lookup tables and describes the steps used
by the parser to decode dates and times.

B.1. Date/Time Input Interpretation
Date/time input strings are decoded using the following procedure.

1. Break the input string into tokens and categorize each token as a string, time, time zone, or number.

a. If the numeric token contains a colon (:), this is a time string. Include all subsequent digits and
colons.

b. If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date string
which might have a text month. If a date token has already been seen, it is instead interpreted
as a time zone name (e.g., America/New_York).

c. If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date
(e.g., 19990113 for January 13, 1999) or time (e.g., 141516 for 14:15:16).

d. If the token starts with a plus (+) or minus (-), then it is either a numeric time zone or a special
field.

2. If the token is an alphabetic string, match up with possible strings:

a. See if the token matches any known time zone abbreviation. These abbreviations are determined
by the configuration settings described in Section B.4.

b. If not found, search an internal table to match the token as either a special string (e.g., today),
day (e.g., Thursday), month (e.g., January), or noise word (e.g., at, on).

c. If still not found, throw an error.

3. When the token is a number or number field:

a. If there are eight or six digits, and if no other date fields have been previously read, then interpret
as a “concatenated date” (e.g., 19990118 or 990118). The interpretation is YYYYMMDD or YYMMDD.

b. If the token is three digits and a year has already been read, then interpret as day of year.

c. If four or six digits and a year has already been read, then interpret as a time (HHMM or HHMMSS).

d. If three or more digits and no date fields have yet been found, interpret as a year (this forces
yy-mm-dd ordering of the remaining date fields).

e. Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy, dd-mm-
yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero in
the Gregorian calendar, so numerically 1 BC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

2402

Date/Time Support

Tip
Gregorian years AD 1–99 can be entered by using 4 digits with leading zeros (e.g., 0099 is
AD 99).

B.2. Handling of Invalid or Ambiguous Timestamps
Ordinarily, if a date/time string is syntactically valid but contains out-of-range field values, an error will
be thrown. For example, input specifying the 31st of February will be rejected.

During a daylight-savings-time transition, it is possible for a seemingly valid timestamp string to repre-
sent a nonexistent or ambiguous timestamp. Such cases are not rejected; the ambiguity is resolved by
determining which UTC offset to apply. For example, supposing that the TimeZone parameter is set to
America/New_York, consider

=> SELECT '2018-03-11 02:30'::timestamptz;
 timestamptz

 2018-03-11 03:30:00-04
(1 row)

Because that day was a spring-forward transition date in that time zone, there was no civil time instant
2:30AM; clocks jumped forward from 2AM EST to 3AM EDT. PostgreSQL interprets the given time as if
it were standard time (UTC-5), which then renders as 3:30AM EDT (UTC-4).

Conversely, consider the behavior during a fall-back transition:

=> SELECT '2018-11-04 01:30'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-05
(1 row)

On that date, there were two possible interpretations of 1:30AM; there was 1:30AM EDT, and then an
hour later after clocks jumped back from 2AM EDT to 1AM EST, there was 1:30AM EST. Again, Post-
greSQL interprets the given time as if it were standard time (UTC-5). We can force the other interpre-
tation by specifying daylight-savings time:

=> SELECT '2018-11-04 01:30 EDT'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-04
(1 row)

The precise rule that is applied in such cases is that an invalid timestamp that appears to fall within
a jump-forward daylight savings transition is assigned the UTC offset that prevailed in the time zone
just before the transition, while an ambiguous timestamp that could fall on either side of a jump-back
transition is assigned the UTC offset that prevailed just after the transition. In most time zones this is
equivalent to saying that “the standard-time interpretation is preferred when in doubt”.

In all cases, the UTC offset associated with a timestamp can be specified explicitly, using either a numeric
UTC offset or a time zone abbreviation that corresponds to a fixed UTC offset. The rule just given applies
only when it is necessary to infer a UTC offset for a time zone in which the offset varies.

B.3. Date/Time Key Words
Table B.1 shows the tokens that are recognized as names of months.

2403

Date/Time Support

Table B.1. Month Names

Month Abbreviations
January Jan
February Feb
March Mar
April Apr
May
June Jun
July Jul
August Aug
September Sep, Sept
October Oct
November Nov
December Dec

Table B.2 shows the tokens that are recognized as names of days of the week.

Table B.2. Day of the Week Names

Day Abbreviations
Sunday Sun
Monday Mon
Tuesday Tue, Tues
Wednesday Wed, Weds
Thursday Thu, Thur, Thurs
Friday Fri
Saturday Sat

Table B.3 shows the tokens that serve various modifier purposes.

Table B.3. Date/Time Field Modifiers

Identifier Description
AM Time is before 12:00
AT Ignored
JULIAN, JD, J Next field is Julian Date
ON Ignored
PM Time is on or after 12:00
T Next field is time

B.4. Date/Time Configuration Files
Since timezone abbreviations are not well standardized, PostgreSQL provides a means to customize the
set of abbreviations accepted in datetime input. There are two sources for these abbreviations:

1. The TimeZone run-time parameter is usually set to the name of an entry in the IANA time zone
database. If that zone has widely-used zone abbreviations, they will appear in the IANA data, and
PostgreSQL will preferentially recognize those abbreviations with the meanings given in the IANA

2404

Date/Time Support

data. For example, if timezone is set to America/New_York then EST will be understood as UTC-5 and
EDT will be understood as UTC-4. (These IANA abbreviations will also be used in datetime output, if
DateStyle is set to a style that prefers non-numeric zone abbreviations.)

2. If an abbreviation is not found in the current IANA time zone, it is sought in the list specified by the
timezone_abbreviations run-time parameter. The timezone_abbreviations list is primarily useful for
allowing datetime input to recognize abbreviations for time zones other than the current zone. (These
abbreviations will not be used in datetime output.)

While the timezone_abbreviations parameter can be altered by any database user, the possible values
for it are under the control of the database administrator — they are in fact names of configuration
files stored in .../share/timezonesets/ of the installation directory. By adding or altering files in that
directory, the administrator can set local policy for timezone abbreviations.

timezone_abbreviations can be set to any file name found in .../share/timezonesets/, if the file's
name is entirely alphabetic. (The prohibition against non-alphabetic characters in timezone_abbrevi-
ations prevents reading files outside the intended directory, as well as reading editor backup files and
other extraneous files.)

A timezone abbreviation file can contain blank lines and comments beginning with #. Non-comment lines
must have one of these formats:

zone_abbreviation offset
zone_abbreviation offset D
zone_abbreviation time_zone_name
@INCLUDE file_name
@OVERRIDE

A zone_abbreviation is just the abbreviation being defined. An offset is an integer giving the equiv-
alent offset in seconds from UTC, positive being east from Greenwich and negative being west. For ex-
ample, -18000 would be five hours west of Greenwich, or North American east coast standard time. D
indicates that the zone name represents local daylight-savings time rather than standard time.

Alternatively, a time_zone_name can be given, referencing a zone name defined in the IANA timezone
database. The zone's definition is consulted to see whether the abbreviation is or has been in use in
that zone, and if so, the appropriate meaning is used — that is, the meaning that was currently in use
at the timestamp whose value is being determined, or the meaning in use immediately before that if
it wasn't current at that time, or the oldest meaning if it was used only after that time. This behavior
is essential for dealing with abbreviations whose meaning has historically varied. It is also allowed to
define an abbreviation in terms of a zone name in which that abbreviation does not appear; then using
the abbreviation is just equivalent to writing out the zone name.

Tip
Using a simple integer offset is preferred when defining an abbreviation whose offset from UTC
has never changed, as such abbreviations are much cheaper to process than those that require
consulting a time zone definition.

The @INCLUDE syntax allows inclusion of another file in the .../share/timezonesets/ directory. Inclu-
sion can be nested, to a limited depth.

The @OVERRIDE syntax indicates that subsequent entries in the file can override previous entries (typi-
cally, entries obtained from included files). Without this, conflicting definitions of the same timezone
abbreviation are considered an error.

In an unmodified installation, the file Default contains all the non-conflicting time zone abbreviations
for most of the world. Additional files Australia and India are provided for those regions: these files
first include the Default file and then add or modify abbreviations as needed.

2405

Date/Time Support

For reference purposes, a standard installation also contains files Africa.txt, America.txt, etc., con-
taining information about every time zone abbreviation known to be in use according to the IANA time-
zone database. The zone name definitions found in these files can be copied and pasted into a custom
configuration file as needed. Note that these files cannot be directly referenced as timezone_abbrevi-
ations settings, because of the dot embedded in their names.

Note
If an error occurs while reading the time zone abbreviation set, no new value is applied and the
old set is kept. If the error occurs while starting the database, startup fails.

Caution
Time zone abbreviations defined in the configuration file override non-timezone meanings built
into PostgreSQL. For example, the Australia configuration file defines SAT (for South Australian
Standard Time). When this file is active, SAT will not be recognized as an abbreviation for Saturday.

Caution
If you modify files in .../share/timezonesets/, it is up to you to make backups — a normal
database dump will not include this directory.

B.5. POSIX Time Zone Specifications
PostgreSQL can accept time zone specifications that are written according to the POSIX standard's
rules for the TZ environment variable. POSIX time zone specifications are inadequate to deal with the
complexity of real-world time zone history, but there are sometimes reasons to use them.

A POSIX time zone specification has the form
STD offset [DST [dstoffset] [, rule]]

(For readability, we show spaces between the fields, but spaces should not be used in practice.) The
fields are:
• STD is the zone abbreviation to be used for standard time.
• offset is the zone's standard-time offset from UTC.
• DST is the zone abbreviation to be used for daylight-savings time. If this field and the following ones

are omitted, the zone uses a fixed UTC offset with no daylight-savings rule.
• dstoffset is the daylight-savings offset from UTC. This field is typically omitted, since it defaults to

one hour less than the standard-time offset, which is usually the right thing.
• rule defines the rule for when daylight savings is in effect, as described below.

In this syntax, a zone abbreviation can be a string of letters, such as EST, or an arbitrary string surround-
ed by angle brackets, such as <UTC-05>. Note that the zone abbreviations given here are only used for
output, and even then only in some timestamp output formats. The zone abbreviations recognized in
timestamp input are determined as explained in Section B.4.

The offset fields specify the hours, and optionally minutes and seconds, difference from UTC. They have
the format hh[:mm[:ss]] optionally with a leading sign (+ or -). The positive sign is used for zones west
of Greenwich. (Note that this is the opposite of the ISO-8601 sign convention used elsewhere in Post-
greSQL.) hh can have one or two digits; mm and ss (if used) must have two.

The daylight-savings transition rule has the format

2406

Date/Time Support

dstdate [/ dsttime] , stddate [/ stdtime]

(As before, spaces should not be included in practice.) The dstdate and dsttime fields define when
daylight-savings time starts, while stddate and stdtime define when standard time starts. (In some
cases, notably in zones south of the equator, the former might be later in the year than the latter.) The
date fields have one of these formats:
n

A plain integer denotes a day of the year, counting from zero to 364, or to 365 in leap years.

Jn

In this form, n counts from 1 to 365, and February 29 is not counted even if it is present. (Thus, a
transition occurring on February 29 could not be specified this way. However, days after February
have the same numbers whether it's a leap year or not, so that this form is usually more useful than
the plain-integer form for transitions on fixed dates.)

Mm.n.d

This form specifies a transition that always happens during the same month and on the same day
of the week. m identifies the month, from 1 to 12. n specifies the n'th occurrence of the weekday
identified by d. n is a number between 1 and 4, or 5 meaning the last occurrence of that weekday in
the month (which could be the fourth or the fifth). d is a number between 0 and 6, with 0 indicating
Sunday. For example, M3.2.0 means “the second Sunday in March”.

Note
The M format is sufficient to describe many common daylight-savings transition laws. But note that
none of these variants can deal with daylight-savings law changes, so in practice the historical
data stored for named time zones (in the IANA time zone database) is necessary to interpret past
time stamps correctly.

The time fields in a transition rule have the same format as the offset fields described previously, except
that they cannot contain signs. They define the current local time at which the change to the other time
occurs. If omitted, they default to 02:00:00.

If a daylight-savings abbreviation is given but the transition rule field is omitted, the fallback behavior
is to use the rule M3.2.0,M11.1.0, which corresponds to USA practice as of 2020 (that is, spring forward
on the second Sunday of March, fall back on the first Sunday of November, both transitions occurring
at 2AM prevailing time). Note that this rule does not give correct USA transition dates for years before
2007.

As an example, CET-1CEST,M3.5.0,M10.5.0/3 describes the current (as of 2020) timekeeping practice
in Paris. This specification says that standard time has the abbreviation CET and is one hour ahead
(east) of UTC; daylight savings time has the abbreviation CEST and is implicitly two hours ahead of UTC;
daylight savings time begins on the last Sunday in March at 2AM CET and ends on the last Sunday in
October at 3AM CEST.

The four timezone names EST5EDT, CST6CDT, MST7MDT, and PST8PDT look like they are POSIX zone speci-
fications. However, they actually are treated as named time zones because (for historical reasons) there
are files by those names in the IANA time zone database. The practical implication of this is that these
zone names will produce valid historical USA daylight-savings transitions, even when a plain POSIX
specification would not.

One should be wary that it is easy to misspell a POSIX-style time zone specification, since there is no
check on the reasonableness of the zone abbreviation(s). For example, SET TIMEZONE TO FOOBAR0 will
work, leaving the system effectively using a rather peculiar abbreviation for UTC.

B.6. History of Units

2407

Date/Time Support

The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime values’ are
constrained by the natural rules for dates and times according to the Gregorian calendar”. PostgreSQL
follows the SQL standard's lead by counting dates exclusively in the Gregorian calendar, even for years
before that calendar was in use. This rule is known as the proleptic Gregorian calendar.

The Julian calendar was introduced by Julius Caesar in 45 BC. It was in common use in the Western
world until the year 1582, when countries started changing to the Gregorian calendar. In the Julian
calendar, the tropical year is approximated as 365 1/4 days = 365.25 days. This gives an error of about
1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance with
instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approximated as
365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical year to
shift one day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the following
rules:
Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years. By
contrast, in the older Julian calendar all years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal, and
Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to change,
and the Greek Orthodox countries didn't change until the start of the 20th century. The reform was
observed by Great Britain and its dominions (including what is now the USA) in 1752. Thus 2 September
1752 was followed by 14 September 1752. This is why Unix systems that have the cal program produce
the following:

$ cal 9 1752
 September 1752
 S M Tu W Th F S
 1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

But, of course, this calendar is only valid for Great Britain and dominions, not other places. Since it
would be difficult and confusing to try to track the actual calendars that were in use in various places
at various times, PostgreSQL does not try, but rather follows the Gregorian calendar rules for all dates,
even though this method is not historically accurate.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century
BC. Legend has it that the Emperor Huangdi invented that calendar in 2637 BC. The People's Republic
of China uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining
festivals.

B.7. Julian Dates
The Julian Date system is a method for numbering days. It is unrelated to the Julian calendar, though
it is confusingly named similarly to that calendar. The Julian Date system was invented by the French
scholar Joseph Justus Scaliger (1540–1609) and probably takes its name from Scaliger's father, the
Italian scholar Julius Caesar Scaliger (1484–1558).

In the Julian Date system, each day has a sequential number, starting from JD 0 (which is sometimes
called the Julian Date). JD 0 corresponds to 1 January 4713 BC in the Julian calendar, or 24 November
4714 BC in the Gregorian calendar. Julian Date counting is most often used by astronomers for labeling

2408

Date/Time Support

their nightly observations, and therefore a date runs from noon UTC to the next noon UTC, rather than
from midnight to midnight: JD 0 designates the 24 hours from noon UTC on 24 November 4714 BC to
noon UTC on 25 November 4714 BC.

Although PostgreSQL supports Julian Date notation for input and output of dates (and also uses Julian
dates for some internal datetime calculations), it does not observe the nicety of having dates run from
noon to noon. PostgreSQL treats a Julian Date as running from local midnight to local midnight, the
same as a normal date.

This definition does, however, provide a way to obtain the astronomical definition when you need it: do
the arithmetic in time zone UTC+12. For example,

=> SELECT extract(julian from '2021-06-23 7:00:00-04'::timestamptz at time zone 'UTC
+12');
 extract

 2459388.95833333333333333333
(1 row)
=> SELECT extract(julian from '2021-06-23 8:00:00-04'::timestamptz at time zone 'UTC
+12');
 extract

 2459389.0000000000000000000000000000
(1 row)
=> SELECT extract(julian from date '2021-06-23');
 extract

 2459389
(1 row)

2409

Appendix C. SQL Key Words
Table C.1 lists all tokens that are key words in the SQL standard and in PostgreSQL 18.0. Background
information can be found in Section 4.1.1. (For space reasons, only the latest two versions of the SQL
standard, and SQL-92 for historical comparison, are included. The differences between those and the
other intermediate standard versions are small.)

SQL distinguishes between reserved and non-reserved key words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Non-reserved key words
only have a special meaning in particular contexts and can be used as identifiers in other contexts. Most
non-reserved key words are actually the names of built-in tables and functions specified by SQL. The
concept of non-reserved key words essentially only exists to declare that some predefined meaning is
attached to a word in some contexts.

In the PostgreSQL parser, life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special
status in the parser, but are considered ordinary identifiers. (The latter is usually the case for functions
specified by SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be used
as column labels (for example, SELECT 55 AS CHECK, even though CHECK is a reserved key word).

In Table C.1 in the column for PostgreSQL we classify as “non-reserved” those key words that are explic-
itly known to the parser but are allowed as column or table names. Some key words that are otherwise
non-reserved cannot be used as function or data type names and are marked accordingly. (Most of these
words represent built-in functions or data types with special syntax. The function or type is still available
but it cannot be redefined by the user.) Labeled “reserved” are those tokens that are not allowed as
column or table names. Some reserved key words are allowable as names for functions or data types;
this is also shown in the table. If not so marked, a reserved key word is only allowed as a column label.
A blank entry in this column means that the word is treated as an ordinary identifier by PostgreSQL.

Furthermore, while most key words can be used as “bare” column labels without writing AS before them
(as described in Section 7.3.2), there are a few that require a leading AS to avoid ambiguity. These are
marked in the table as “requires AS”.

As a general rule, if you get spurious parser errors for commands that use any of the listed key words
as an identifier, you should try quoting the identifier to see if the problem goes away.

It is important to understand before studying Table C.1 that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table C.1. SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
A non-reserved non-reserved
ABORT non-reserved
ABS reserved reserved
ABSENT non-reserved reserved reserved
ABSOLUTE non-reserved non-reserved non-reserved reserved
ACCESS non-reserved
ACCORDING non-reserved non-reserved
ACOS reserved reserved
ACTION non-reserved non-reserved non-reserved reserved
ADA non-reserved non-reserved non-reserved
ADD non-reserved non-reserved non-reserved reserved

2410

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
ADMIN non-reserved non-reserved non-reserved
AFTER non-reserved non-reserved non-reserved
AGGREGATE non-reserved
ALL reserved reserved reserved reserved
ALLOCATE reserved reserved reserved
ALSO non-reserved
ALTER non-reserved reserved reserved reserved
ALWAYS non-reserved non-reserved non-reserved
ANALYSE reserved
ANALYZE reserved
AND reserved reserved reserved reserved
ANY reserved reserved reserved reserved
ANY_VALUE reserved
ARE reserved reserved reserved
ARRAY reserved, requires

AS
reserved reserved

ARRAY_AGG reserved reserved
ARRAY_MAX_CARDINALITY reserved reserved
AS reserved, requires

AS
reserved reserved reserved

ASC reserved non-reserved non-reserved reserved
ASENSITIVE non-reserved reserved reserved
ASIN reserved reserved
ASSERTION non-reserved non-reserved non-reserved reserved
ASSIGNMENT non-reserved non-reserved non-reserved
ASYMMETRIC reserved reserved reserved
AT non-reserved reserved reserved reserved
ATAN reserved reserved
ATOMIC non-reserved reserved reserved
ATTACH non-reserved
ATTRIBUTE non-reserved non-reserved non-reserved
ATTRIBUTES non-reserved non-reserved
AUTHORIZATION reserved (can be

function or type)
reserved reserved reserved

AVG reserved reserved reserved
BACKWARD non-reserved
BASE64 non-reserved non-reserved
BEFORE non-reserved non-reserved non-reserved
BEGIN non-reserved reserved reserved reserved
BEGIN_FRAME reserved reserved
BEGIN_PARTITION reserved reserved

2411

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
BERNOULLI non-reserved non-reserved
BETWEEN non-reserved (can-

not be function or
type)

reserved reserved reserved

BIGINT non-reserved (can-
not be function or
type)

reserved reserved

BINARY reserved (can be
function or type)

reserved reserved

BIT non-reserved (can-
not be function or
type)

 reserved

BIT_LENGTH reserved
BLOB reserved reserved
BLOCKED non-reserved non-reserved
BOM non-reserved non-reserved
BOOLEAN non-reserved (can-

not be function or
type)

reserved reserved

BOTH reserved reserved reserved reserved
BREADTH non-reserved non-reserved non-reserved
BTRIM reserved
BY non-reserved reserved reserved reserved
C non-reserved non-reserved non-reserved
CACHE non-reserved
CALL non-reserved reserved reserved
CALLED non-reserved reserved reserved
CARDINALITY reserved reserved
CASCADE non-reserved non-reserved non-reserved reserved
CASCADED non-reserved reserved reserved reserved
CASE reserved reserved reserved reserved
CAST reserved reserved reserved reserved
CATALOG non-reserved non-reserved non-reserved reserved
CATALOG_NAME non-reserved non-reserved non-reserved
CEIL reserved reserved
CEILING reserved reserved
CHAIN non-reserved non-reserved non-reserved
CHAINING non-reserved non-reserved
CHAR non-reserved (can-

not be function or
type), requires AS

reserved reserved reserved

CHARACTER non-reserved (can-
not be function or
type), requires AS

reserved reserved reserved

2412

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
CHARACTERISTICS non-reserved non-reserved non-reserved
CHARACTERS non-reserved non-reserved
CHARACTER_LENGTH reserved reserved reserved
CHARACTER_SET_CATALOG non-reserved non-reserved non-reserved
CHARACTER_SET_NAME non-reserved non-reserved non-reserved
CHARACTER_SET_SCHEMA non-reserved non-reserved non-reserved
CHAR_LENGTH reserved reserved reserved
CHECK reserved reserved reserved reserved
CHECKPOINT non-reserved
CLASS non-reserved
CLASSIFIER reserved reserved
CLASS_ORIGIN non-reserved non-reserved non-reserved
CLOB reserved reserved
CLOSE non-reserved reserved reserved reserved
CLUSTER non-reserved
COALESCE non-reserved (can-

not be function or
type)

reserved reserved reserved

COBOL non-reserved non-reserved non-reserved
COLLATE reserved reserved reserved reserved
COLLATION reserved (can be

function or type)
non-reserved non-reserved reserved

COLLATION_CATALOG non-reserved non-reserved non-reserved
COLLATION_NAME non-reserved non-reserved non-reserved
COLLATION_SCHEMA non-reserved non-reserved non-reserved
COLLECT reserved reserved
COLUMN reserved reserved reserved reserved
COLUMNS non-reserved non-reserved non-reserved
COLUMN_NAME non-reserved non-reserved non-reserved
COMMAND_FUNCTION non-reserved non-reserved non-reserved
COMMAND_FUNCTION_CODE non-reserved non-reserved
COMMENT non-reserved
COMMENTS non-reserved
COMMIT non-reserved reserved reserved reserved
COMMITTED non-reserved non-reserved non-reserved non-reserved
COMPRESSION non-reserved
CONCURRENTLY reserved (can be

function or type)

CONDITION reserved reserved
CONDITIONAL non-reserved non-reserved non-reserved
CONDITION_NUMBER non-reserved non-reserved non-reserved

2413

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
CONFIGURATION non-reserved
CONFLICT non-reserved
CONNECT reserved reserved reserved
CONNECTION non-reserved non-reserved non-reserved reserved
CONNECTION_NAME non-reserved non-reserved non-reserved
CONSTRAINT reserved reserved reserved reserved
CONSTRAINTS non-reserved non-reserved non-reserved reserved
CONSTRAINT_CATALOG non-reserved non-reserved non-reserved
CONSTRAINT_NAME non-reserved non-reserved non-reserved
CONSTRAINT_SCHEMA non-reserved non-reserved non-reserved
CONSTRUCTOR non-reserved non-reserved
CONTAINS reserved reserved
CONTENT non-reserved non-reserved non-reserved
CONTINUE non-reserved non-reserved non-reserved reserved
CONTROL non-reserved non-reserved
CONVERSION non-reserved
CONVERT reserved reserved reserved
COPARTITION non-reserved
COPY non-reserved reserved reserved
CORR reserved reserved
CORRESPONDING reserved reserved reserved
COS reserved reserved
COSH reserved reserved
COST non-reserved
COUNT reserved reserved reserved
COVAR_POP reserved reserved
COVAR_SAMP reserved reserved
CREATE reserved, requires

AS
reserved reserved reserved

CROSS reserved (can be
function or type)

reserved reserved reserved

CSV non-reserved
CUBE non-reserved reserved reserved
CUME_DIST reserved reserved
CURRENT non-reserved reserved reserved reserved
CURRENT_CATALOG reserved reserved reserved
CURRENT_DATE reserved reserved reserved reserved
CURRENT_DEFAULT_TRANS-
FORM_GROUP

 reserved reserved

CURRENT_PATH reserved reserved
CURRENT_ROLE reserved reserved reserved

2414

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
CURRENT_ROW reserved reserved
CURRENT_SCHEMA reserved (can be

function or type)
reserved reserved

CURRENT_TIME reserved reserved reserved reserved
CURRENT_TIMESTAMP reserved reserved reserved reserved
CURRENT_TRANSFORM_GROUP_
FOR_TYPE

 reserved reserved

CURRENT_USER reserved reserved reserved reserved
CURSOR non-reserved reserved reserved reserved
CURSOR_NAME non-reserved non-reserved non-reserved
CYCLE non-reserved reserved reserved
DATA non-reserved non-reserved non-reserved non-reserved
DATABASE non-reserved
DATALINK reserved reserved
DATE reserved reserved reserved
DATETIME_INTERVAL_CODE non-reserved non-reserved non-reserved
DATETIME_INTERVAL_
PRECISION

 non-reserved non-reserved non-reserved

DAY non-reserved, re-
quires AS

reserved reserved reserved

DB non-reserved non-reserved
DEALLOCATE non-reserved reserved reserved reserved
DEC non-reserved (can-

not be function or
type)

reserved reserved reserved

DECFLOAT reserved reserved
DECIMAL non-reserved (can-

not be function or
type)

reserved reserved reserved

DECLARE non-reserved reserved reserved reserved
DEFAULT reserved reserved reserved reserved
DEFAULTS non-reserved non-reserved non-reserved
DEFERRABLE reserved non-reserved non-reserved reserved
DEFERRED non-reserved non-reserved non-reserved reserved
DEFINE reserved reserved
DEFINED non-reserved non-reserved
DEFINER non-reserved non-reserved non-reserved
DEGREE non-reserved non-reserved
DELETE non-reserved reserved reserved reserved
DELIMITER non-reserved
DELIMITERS non-reserved
DENSE_RANK reserved reserved

2415

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
DEPENDS non-reserved
DEPTH non-reserved non-reserved non-reserved
DEREF reserved reserved
DERIVED non-reserved non-reserved
DESC reserved non-reserved non-reserved reserved
DESCRIBE reserved reserved reserved
DESCRIPTOR non-reserved non-reserved reserved
DETACH non-reserved
DETERMINISTIC reserved reserved
DIAGNOSTICS non-reserved non-reserved reserved
DICTIONARY non-reserved
DISABLE non-reserved
DISCARD non-reserved
DISCONNECT reserved reserved reserved
DISPATCH non-reserved non-reserved
DISTINCT reserved reserved reserved reserved
DLNEWCOPY reserved reserved
DLPREVIOUSCOPY reserved reserved
DLURLCOMPLETE reserved reserved
DLURLCOMPLETEONLY reserved reserved
DLURLCOMPLETEWRITE reserved reserved
DLURLPATH reserved reserved
DLURLPATHONLY reserved reserved
DLURLPATHWRITE reserved reserved
DLURLSCHEME reserved reserved
DLURLSERVER reserved reserved
DLVALUE reserved reserved
DO reserved
DOCUMENT non-reserved non-reserved non-reserved
DOMAIN non-reserved non-reserved non-reserved reserved
DOUBLE non-reserved reserved reserved reserved
DROP non-reserved reserved reserved reserved
DYNAMIC reserved reserved
DYNAMIC_FUNCTION non-reserved non-reserved non-reserved
DYNAMIC_FUNCTION_CODE non-reserved non-reserved
EACH non-reserved reserved reserved
ELEMENT reserved reserved
ELSE reserved reserved reserved reserved
EMPTY non-reserved reserved reserved
ENABLE non-reserved

2416

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
ENCODING non-reserved non-reserved non-reserved
ENCRYPTED non-reserved
END reserved reserved reserved reserved
END-EXEC reserved reserved reserved
END_FRAME reserved reserved
END_PARTITION reserved reserved
ENFORCED non-reserved non-reserved non-reserved
ENUM non-reserved
EQUALS reserved reserved
ERROR non-reserved non-reserved non-reserved
ESCAPE non-reserved reserved reserved reserved
EVENT non-reserved
EVERY reserved reserved
EXCEPT reserved, requires

AS
reserved reserved reserved

EXCEPTION reserved
EXCLUDE non-reserved non-reserved non-reserved
EXCLUDING non-reserved non-reserved non-reserved
EXCLUSIVE non-reserved
EXEC reserved reserved reserved
EXECUTE non-reserved reserved reserved reserved
EXISTS non-reserved (can-

not be function or
type)

reserved reserved reserved

EXP reserved reserved
EXPLAIN non-reserved
EXPRESSION non-reserved non-reserved non-reserved
EXTENSION non-reserved
EXTERNAL non-reserved reserved reserved reserved
EXTRACT non-reserved (can-

not be function or
type)

reserved reserved reserved

FALSE reserved reserved reserved reserved
FAMILY non-reserved
FETCH reserved, requires

AS
reserved reserved reserved

FILE non-reserved non-reserved
FILTER non-reserved, re-

quires AS
reserved reserved

FINAL non-reserved non-reserved
FINALIZE non-reserved
FINISH non-reserved non-reserved

2417

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
FIRST non-reserved non-reserved non-reserved reserved
FIRST_VALUE reserved reserved
FLAG non-reserved non-reserved
FLOAT non-reserved (can-

not be function or
type)

reserved reserved reserved

FLOOR reserved reserved
FOLLOWING non-reserved non-reserved non-reserved
FOR reserved, requires

AS
reserved reserved reserved

FORCE non-reserved
FOREIGN reserved reserved reserved reserved
FORMAT non-reserved non-reserved non-reserved
FORTRAN non-reserved non-reserved non-reserved
FORWARD non-reserved
FOUND non-reserved non-reserved reserved
FRAME_ROW reserved reserved
FREE reserved reserved
FREEZE reserved (can be

function or type)

FROM reserved, requires
AS

reserved reserved reserved

FS non-reserved non-reserved
FULFILL non-reserved non-reserved
FULL reserved (can be

function or type)
reserved reserved reserved

FUNCTION non-reserved reserved reserved
FUNCTIONS non-reserved
FUSION reserved reserved
G non-reserved non-reserved
GENERAL non-reserved non-reserved
GENERATED non-reserved non-reserved non-reserved
GET reserved reserved reserved
GLOBAL non-reserved reserved reserved reserved
GO non-reserved non-reserved reserved
GOTO non-reserved non-reserved reserved
GRANT reserved, requires

AS
reserved reserved reserved

GRANTED non-reserved non-reserved non-reserved
GREATEST non-reserved (can-

not be function or
type)

reserved

2418

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
GROUP reserved, requires

AS
reserved reserved reserved

GROUPING non-reserved (can-
not be function or
type)

reserved reserved

GROUPS non-reserved reserved reserved
HANDLER non-reserved
HAVING reserved, requires

AS
reserved reserved reserved

HEADER non-reserved
HEX non-reserved non-reserved
HIERARCHY non-reserved non-reserved
HOLD non-reserved reserved reserved
HOUR non-reserved, re-

quires AS
reserved reserved reserved

ID non-reserved non-reserved
IDENTITY non-reserved reserved reserved reserved
IF non-reserved
IGNORE non-reserved non-reserved
ILIKE reserved (can be

function or type)

IMMEDIATE non-reserved non-reserved non-reserved reserved
IMMEDIATELY non-reserved non-reserved
IMMUTABLE non-reserved
IMPLEMENTATION non-reserved non-reserved
IMPLICIT non-reserved
IMPORT non-reserved reserved reserved
IN reserved reserved reserved reserved
INCLUDE non-reserved
INCLUDING non-reserved non-reserved non-reserved
INCREMENT non-reserved non-reserved non-reserved
INDENT non-reserved non-reserved non-reserved
INDEX non-reserved
INDEXES non-reserved
INDICATOR reserved reserved reserved
INHERIT non-reserved
INHERITS non-reserved
INITIAL reserved reserved
INITIALLY reserved non-reserved non-reserved reserved
INLINE non-reserved
INNER reserved (can be

function or type)
reserved reserved reserved

2419

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
INOUT non-reserved (can-

not be function or
type)

reserved reserved

INPUT non-reserved non-reserved non-reserved reserved
INSENSITIVE non-reserved reserved reserved reserved
INSERT non-reserved reserved reserved reserved
INSTANCE non-reserved non-reserved
INSTANTIABLE non-reserved non-reserved
INSTEAD non-reserved non-reserved non-reserved
INT non-reserved (can-

not be function or
type)

reserved reserved reserved

INTEGER non-reserved (can-
not be function or
type)

reserved reserved reserved

INTEGRITY non-reserved non-reserved
INTERSECT reserved, requires

AS
reserved reserved reserved

INTERSECTION reserved reserved
INTERVAL non-reserved (can-

not be function or
type)

reserved reserved reserved

INTO reserved, requires
AS

reserved reserved reserved

INVOKER non-reserved non-reserved non-reserved
IS reserved (can be

function or type)
reserved reserved reserved

ISNULL reserved (can be
function or type), re-
quires AS

ISOLATION non-reserved non-reserved non-reserved reserved
JOIN reserved (can be

function or type)
reserved reserved reserved

JSON non-reserved (can-
not be function or
type)

reserved

JSON_ARRAY non-reserved (can-
not be function or
type)

reserved reserved

JSON_ARRAYAGG non-reserved (can-
not be function or
type)

reserved reserved

JSON_EXISTS non-reserved (can-
not be function or
type)

reserved reserved

2420

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
JSON_OBJECT non-reserved (can-

not be function or
type)

reserved reserved

JSON_OBJECTAGG non-reserved (can-
not be function or
type)

reserved reserved

JSON_QUERY non-reserved (can-
not be function or
type)

reserved reserved

JSON_SCALAR non-reserved (can-
not be function or
type)

reserved

JSON_SERIALIZE non-reserved (can-
not be function or
type)

reserved

JSON_TABLE non-reserved (can-
not be function or
type)

reserved reserved

JSON_TABLE_PRIMITIVE reserved reserved
JSON_VALUE non-reserved (can-

not be function or
type)

reserved reserved

K non-reserved non-reserved
KEEP non-reserved non-reserved non-reserved
KEY non-reserved non-reserved non-reserved reserved
KEYS non-reserved non-reserved non-reserved
KEY_MEMBER non-reserved non-reserved
KEY_TYPE non-reserved non-reserved
LABEL non-reserved
LAG reserved reserved
LANGUAGE non-reserved reserved reserved reserved
LARGE non-reserved reserved reserved
LAST non-reserved non-reserved non-reserved reserved
LAST_VALUE reserved reserved
LATERAL reserved reserved reserved
LEAD reserved reserved
LEADING reserved reserved reserved reserved
LEAKPROOF non-reserved
LEAST non-reserved (can-

not be function or
type)

reserved

LEFT reserved (can be
function or type)

reserved reserved reserved

LENGTH non-reserved non-reserved non-reserved
LEVEL non-reserved non-reserved non-reserved reserved

2421

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
LIBRARY non-reserved non-reserved
LIKE reserved (can be

function or type)
reserved reserved reserved

LIKE_REGEX reserved reserved
LIMIT reserved, requires

AS
non-reserved non-reserved

LINK non-reserved non-reserved
LISTAGG reserved reserved
LISTEN non-reserved
LN reserved reserved
LOAD non-reserved
LOCAL non-reserved reserved reserved reserved
LOCALTIME reserved reserved reserved
LOCALTIMESTAMP reserved reserved reserved
LOCATION non-reserved non-reserved non-reserved
LOCATOR non-reserved non-reserved
LOCK non-reserved
LOCKED non-reserved
LOG reserved reserved
LOG10 reserved reserved
LOGGED non-reserved
LOWER reserved reserved reserved
LPAD reserved
LTRIM reserved
M non-reserved non-reserved
MAP non-reserved non-reserved
MAPPING non-reserved non-reserved non-reserved
MATCH non-reserved reserved reserved reserved
MATCHED non-reserved non-reserved non-reserved
MATCHES reserved reserved
MATCH_NUMBER reserved reserved
MATCH_RECOGNIZE reserved reserved
MATERIALIZED non-reserved
MAX reserved reserved reserved
MAXVALUE non-reserved non-reserved non-reserved
MEASURES non-reserved non-reserved
MEMBER reserved reserved
MERGE non-reserved reserved reserved
MERGE_ACTION non-reserved (can-

not be function or
type)

2422

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
MESSAGE_LENGTH non-reserved non-reserved non-reserved
MESSAGE_OCTET_LENGTH non-reserved non-reserved non-reserved
MESSAGE_TEXT non-reserved non-reserved non-reserved
METHOD non-reserved reserved reserved
MIN reserved reserved reserved
MINUTE non-reserved, re-

quires AS
reserved reserved reserved

MINVALUE non-reserved non-reserved non-reserved
MOD reserved reserved
MODE non-reserved
MODIFIES reserved reserved
MODULE reserved reserved reserved
MONTH non-reserved, re-

quires AS
reserved reserved reserved

MORE non-reserved non-reserved non-reserved
MOVE non-reserved
MULTISET reserved reserved
MUMPS non-reserved non-reserved non-reserved
NAME non-reserved non-reserved non-reserved non-reserved
NAMES non-reserved non-reserved non-reserved reserved
NAMESPACE non-reserved non-reserved
NATIONAL non-reserved (can-

not be function or
type)

reserved reserved reserved

NATURAL reserved (can be
function or type)

reserved reserved reserved

NCHAR non-reserved (can-
not be function or
type)

reserved reserved reserved

NCLOB reserved reserved
NESTED non-reserved non-reserved non-reserved
NESTING non-reserved non-reserved
NEW non-reserved reserved reserved
NEXT non-reserved non-reserved non-reserved reserved
NFC non-reserved non-reserved non-reserved
NFD non-reserved non-reserved non-reserved
NFKC non-reserved non-reserved non-reserved
NFKD non-reserved non-reserved non-reserved
NIL non-reserved non-reserved
NO non-reserved reserved reserved reserved
NONE non-reserved (can-

not be function or
type)

reserved reserved

2423

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
NORMALIZE non-reserved (can-

not be function or
type)

reserved reserved

NORMALIZED non-reserved non-reserved non-reserved
NOT reserved reserved reserved reserved
NOTHING non-reserved
NOTIFY non-reserved
NOTNULL reserved (can be

function or type), re-
quires AS

NOWAIT non-reserved
NTH_VALUE reserved reserved
NTILE reserved reserved
NULL reserved reserved reserved reserved
NULLABLE non-reserved non-reserved non-reserved
NULLIF non-reserved (can-

not be function or
type)

reserved reserved reserved

NULLS non-reserved non-reserved non-reserved
NULL_ORDERING non-reserved non-reserved
NUMBER non-reserved non-reserved non-reserved
NUMERIC non-reserved (can-

not be function or
type)

reserved reserved reserved

OBJECT non-reserved non-reserved non-reserved
OBJECTS non-reserved
OCCURRENCE non-reserved non-reserved
OCCURRENCES_REGEX reserved reserved
OCTETS non-reserved non-reserved
OCTET_LENGTH reserved reserved reserved
OF non-reserved reserved reserved reserved
OFF non-reserved non-reserved non-reserved
OFFSET reserved, requires

AS
reserved reserved

OIDS non-reserved
OLD non-reserved reserved reserved
OMIT non-reserved reserved reserved
ON reserved, requires

AS
reserved reserved reserved

ONE reserved reserved
ONLY reserved reserved reserved reserved
OPEN reserved reserved reserved
OPERATOR non-reserved

2424

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
OPTION non-reserved non-reserved non-reserved reserved
OPTIONS non-reserved non-reserved non-reserved
OR reserved reserved reserved reserved
ORDER reserved, requires

AS
reserved reserved reserved

ORDERING non-reserved non-reserved
ORDINALITY non-reserved non-reserved non-reserved
OTHERS non-reserved non-reserved non-reserved
OUT non-reserved (can-

not be function or
type)

reserved reserved

OUTER reserved (can be
function or type)

reserved reserved reserved

OUTPUT non-reserved non-reserved reserved
OVER non-reserved, re-

quires AS
reserved reserved

OVERFLOW non-reserved non-reserved
OVERLAPS reserved (can be

function or type), re-
quires AS

reserved reserved reserved

OVERLAY non-reserved (can-
not be function or
type)

reserved reserved

OVERRIDING non-reserved non-reserved non-reserved
OWNED non-reserved
OWNER non-reserved
P non-reserved non-reserved
PAD non-reserved non-reserved reserved
PARALLEL non-reserved
PARAMETER non-reserved reserved reserved
PARAMETER_MODE non-reserved non-reserved
PARAMETER_NAME non-reserved non-reserved
PARAMETER_ORDINAL_POSITION non-reserved non-reserved
PARAMETER_SPECIFIC_CATALOG non-reserved non-reserved
PARAMETER_SPECIFIC_NAME non-reserved non-reserved
PARAMETER_SPECIFIC_SCHEMA non-reserved non-reserved
PARSER non-reserved
PARTIAL non-reserved non-reserved non-reserved reserved
PARTITION non-reserved reserved reserved
PASCAL non-reserved non-reserved non-reserved
PASS non-reserved non-reserved
PASSING non-reserved non-reserved non-reserved

2425

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
PASSTHROUGH non-reserved non-reserved
PASSWORD non-reserved
PAST non-reserved non-reserved
PATH non-reserved non-reserved non-reserved
PATTERN reserved reserved
PER reserved reserved
PERCENT reserved reserved
PERCENTILE_CONT reserved reserved
PERCENTILE_DISC reserved reserved
PERCENT_RANK reserved reserved
PERIOD non-reserved reserved reserved
PERMISSION non-reserved non-reserved
PERMUTE non-reserved non-reserved
PIPE non-reserved non-reserved
PLACING reserved non-reserved non-reserved
PLAN non-reserved non-reserved non-reserved
PLANS non-reserved
PLI non-reserved non-reserved non-reserved
POLICY non-reserved
PORTION reserved reserved
POSITION non-reserved (can-

not be function or
type)

reserved reserved reserved

POSITION_REGEX reserved reserved
POWER reserved reserved
PRECEDES reserved reserved
PRECEDING non-reserved non-reserved non-reserved
PRECISION non-reserved (can-

not be function or
type), requires AS

reserved reserved reserved

PREPARE non-reserved reserved reserved reserved
PREPARED non-reserved
PRESERVE non-reserved non-reserved non-reserved reserved
PREV non-reserved non-reserved
PRIMARY reserved reserved reserved reserved
PRIOR non-reserved non-reserved non-reserved reserved
PRIVATE non-reserved non-reserved
PRIVILEGES non-reserved non-reserved non-reserved reserved
PROCEDURAL non-reserved
PROCEDURE non-reserved reserved reserved reserved
PROCEDURES non-reserved

2426

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
PROGRAM non-reserved
PRUNE non-reserved non-reserved
PTF reserved reserved
PUBLIC non-reserved non-reserved reserved
PUBLICATION non-reserved
QUOTE non-reserved
QUOTES non-reserved non-reserved non-reserved
RANGE non-reserved reserved reserved
RANK reserved reserved
READ non-reserved non-reserved non-reserved reserved
READS reserved reserved
REAL non-reserved (can-

not be function or
type)

reserved reserved reserved

REASSIGN non-reserved
RECOVERY non-reserved non-reserved
RECURSIVE non-reserved reserved reserved
REF non-reserved reserved reserved
REFERENCES reserved reserved reserved reserved
REFERENCING non-reserved reserved reserved
REFRESH non-reserved
REGR_AVGX reserved reserved
REGR_AVGY reserved reserved
REGR_COUNT reserved reserved
REGR_INTERCEPT reserved reserved
REGR_R2 reserved reserved
REGR_SLOPE reserved reserved
REGR_SXX reserved reserved
REGR_SXY reserved reserved
REGR_SYY reserved reserved
REINDEX non-reserved
RELATIVE non-reserved non-reserved non-reserved reserved
RELEASE non-reserved reserved reserved
RENAME non-reserved
REPEATABLE non-reserved non-reserved non-reserved non-reserved
REPLACE non-reserved
REPLICA non-reserved
REQUIRING non-reserved non-reserved
RESET non-reserved
RESPECT non-reserved non-reserved

2427

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
RESTART non-reserved non-reserved non-reserved
RESTORE non-reserved non-reserved
RESTRICT non-reserved non-reserved non-reserved reserved
RESULT reserved reserved
RETURN non-reserved reserved reserved
RETURNED_CARDINALITY non-reserved non-reserved
RETURNED_LENGTH non-reserved non-reserved non-reserved
RETURNED_OCTET_LENGTH non-reserved non-reserved non-reserved
RETURNED_SQLSTATE non-reserved non-reserved non-reserved
RETURNING reserved, requires

AS
non-reserved non-reserved

RETURNS non-reserved reserved reserved
REVOKE non-reserved reserved reserved reserved
RIGHT reserved (can be

function or type)
reserved reserved reserved

ROLE non-reserved non-reserved non-reserved
ROLLBACK non-reserved reserved reserved reserved
ROLLUP non-reserved reserved reserved
ROUTINE non-reserved non-reserved non-reserved
ROUTINES non-reserved
ROUTINE_CATALOG non-reserved non-reserved
ROUTINE_NAME non-reserved non-reserved
ROUTINE_SCHEMA non-reserved non-reserved
ROW non-reserved (can-

not be function or
type)

reserved reserved

ROWS non-reserved reserved reserved reserved
ROW_COUNT non-reserved non-reserved non-reserved
ROW_NUMBER reserved reserved
RPAD reserved
RTRIM reserved
RULE non-reserved
RUNNING reserved reserved
SAVEPOINT non-reserved reserved reserved
SCALAR non-reserved non-reserved non-reserved
SCALE non-reserved non-reserved non-reserved
SCHEMA non-reserved non-reserved non-reserved reserved
SCHEMAS non-reserved
SCHEMA_NAME non-reserved non-reserved non-reserved
SCOPE reserved reserved
SCOPE_CATALOG non-reserved non-reserved

2428

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
SCOPE_NAME non-reserved non-reserved
SCOPE_SCHEMA non-reserved non-reserved
SCROLL non-reserved reserved reserved reserved
SEARCH non-reserved reserved reserved
SECOND non-reserved, re-

quires AS
reserved reserved reserved

SECTION non-reserved non-reserved reserved
SECURITY non-reserved non-reserved non-reserved
SEEK reserved reserved
SELECT reserved reserved reserved reserved
SELECTIVE non-reserved non-reserved
SELF non-reserved non-reserved
SEMANTICS non-reserved non-reserved
SENSITIVE reserved reserved
SEQUENCE non-reserved non-reserved non-reserved
SEQUENCES non-reserved
SERIALIZABLE non-reserved non-reserved non-reserved non-reserved
SERVER non-reserved non-reserved non-reserved
SERVER_NAME non-reserved non-reserved non-reserved
SESSION non-reserved non-reserved non-reserved reserved
SESSION_USER reserved reserved reserved reserved
SET non-reserved reserved reserved reserved
SETOF non-reserved (can-

not be function or
type)

SETS non-reserved non-reserved non-reserved
SHARE non-reserved
SHOW non-reserved reserved reserved
SIMILAR reserved (can be

function or type)
reserved reserved

SIMPLE non-reserved non-reserved non-reserved
SIN reserved reserved
SINH reserved reserved
SIZE non-reserved non-reserved reserved
SKIP non-reserved reserved reserved
SMALLINT non-reserved (can-

not be function or
type)

reserved reserved reserved

SNAPSHOT non-reserved
SOME reserved reserved reserved reserved
SORT_DIRECTION non-reserved non-reserved
SOURCE non-reserved non-reserved non-reserved

2429

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
SPACE non-reserved non-reserved reserved
SPECIFIC reserved reserved
SPECIFICTYPE reserved reserved
SPECIFIC_NAME non-reserved non-reserved
SQL non-reserved reserved reserved reserved
SQLCODE reserved
SQLERROR reserved
SQLEXCEPTION reserved reserved
SQLSTATE reserved reserved reserved
SQLWARNING reserved reserved
SQRT reserved reserved
STABLE non-reserved
STANDALONE non-reserved non-reserved non-reserved
START non-reserved reserved reserved
STATE non-reserved non-reserved
STATEMENT non-reserved non-reserved non-reserved
STATIC reserved reserved
STATISTICS non-reserved
STDDEV_POP reserved reserved
STDDEV_SAMP reserved reserved
STDIN non-reserved
STDOUT non-reserved
STORAGE non-reserved
STORED non-reserved
STRICT non-reserved
STRING non-reserved non-reserved non-reserved
STRIP non-reserved non-reserved non-reserved
STRUCTURE non-reserved non-reserved
STYLE non-reserved non-reserved
SUBCLASS_ORIGIN non-reserved non-reserved non-reserved
SUBMULTISET reserved reserved
SUBSCRIPTION non-reserved
SUBSET reserved reserved
SUBSTRING non-reserved (can-

not be function or
type)

reserved reserved reserved

SUBSTRING_REGEX reserved reserved
SUCCEEDS reserved reserved
SUM reserved reserved reserved
SUPPORT non-reserved

2430

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
SYMMETRIC reserved reserved reserved
SYSID non-reserved
SYSTEM non-reserved reserved reserved
SYSTEM_TIME reserved reserved
SYSTEM_USER reserved reserved reserved reserved
T non-reserved non-reserved
TABLE reserved reserved reserved reserved
TABLES non-reserved
TABLESAMPLE reserved (can be

function or type)
reserved reserved

TABLESPACE non-reserved
TABLE_NAME non-reserved non-reserved non-reserved
TAN reserved reserved
TANH reserved reserved
TARGET non-reserved
TEMP non-reserved
TEMPLATE non-reserved
TEMPORARY non-reserved non-reserved non-reserved reserved
TEXT non-reserved
THEN reserved reserved reserved reserved
THROUGH non-reserved non-reserved
TIES non-reserved non-reserved non-reserved
TIME non-reserved (can-

not be function or
type)

reserved reserved reserved

TIMESTAMP non-reserved (can-
not be function or
type)

reserved reserved reserved

TIMEZONE_HOUR reserved reserved reserved
TIMEZONE_MINUTE reserved reserved reserved
TO reserved, requires

AS
reserved reserved reserved

TOKEN non-reserved non-reserved
TOP_LEVEL_COUNT non-reserved non-reserved
TRAILING reserved reserved reserved reserved
TRANSACTION non-reserved non-reserved non-reserved reserved
TRANSACTIONS_COMMITTED non-reserved non-reserved
TRANSACTIONS_ROLLED_BACK non-reserved non-reserved
TRANSACTION_ACTIVE non-reserved non-reserved
TRANSFORM non-reserved non-reserved non-reserved
TRANSFORMS non-reserved non-reserved
TRANSLATE reserved reserved reserved

2431

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
TRANSLATE_REGEX reserved reserved
TRANSLATION reserved reserved reserved
TREAT non-reserved (can-

not be function or
type)

reserved reserved

TRIGGER non-reserved reserved reserved
TRIGGER_CATALOG non-reserved non-reserved
TRIGGER_NAME non-reserved non-reserved
TRIGGER_SCHEMA non-reserved non-reserved
TRIM non-reserved (can-

not be function or
type)

reserved reserved reserved

TRIM_ARRAY reserved reserved
TRUE reserved reserved reserved reserved
TRUNCATE non-reserved reserved reserved
TRUSTED non-reserved
TYPE non-reserved non-reserved non-reserved non-reserved
TYPES non-reserved
UESCAPE non-reserved reserved reserved
UNBOUNDED non-reserved non-reserved non-reserved
UNCOMMITTED non-reserved non-reserved non-reserved non-reserved
UNCONDITIONAL non-reserved non-reserved non-reserved
UNDER non-reserved non-reserved
UNENCRYPTED non-reserved
UNION reserved, requires

AS
reserved reserved reserved

UNIQUE reserved reserved reserved reserved
UNKNOWN non-reserved reserved reserved reserved
UNLINK non-reserved non-reserved
UNLISTEN non-reserved
UNLOGGED non-reserved
UNMATCHED non-reserved non-reserved
UNNAMED non-reserved non-reserved non-reserved
UNNEST reserved reserved
UNTIL non-reserved
UNTYPED non-reserved non-reserved
UPDATE non-reserved reserved reserved reserved
UPPER reserved reserved reserved
URI non-reserved non-reserved
USAGE non-reserved non-reserved reserved
USER reserved reserved reserved reserved

2432

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
USER_DEFINED_TYPE_CATA-
LOG

 non-reserved non-reserved

USER_DEFINED_TYPE_CODE non-reserved non-reserved
USER_DEFINED_TYPE_NAME non-reserved non-reserved
USER_DEFINED_TYPE_SCHEMA non-reserved non-reserved
USING reserved reserved reserved reserved
UTF16 non-reserved non-reserved
UTF32 non-reserved non-reserved
UTF8 non-reserved non-reserved
VACUUM non-reserved
VALID non-reserved non-reserved non-reserved
VALIDATE non-reserved
VALIDATOR non-reserved
VALUE non-reserved reserved reserved reserved
VALUES non-reserved (can-

not be function or
type)

reserved reserved reserved

VALUE_OF reserved reserved
VARBINARY reserved reserved
VARCHAR non-reserved (can-

not be function or
type)

reserved reserved reserved

VARIADIC reserved
VARYING non-reserved, re-

quires AS
reserved reserved reserved

VAR_POP reserved reserved
VAR_SAMP reserved reserved
VERBOSE reserved (can be

function or type)

VERSION non-reserved non-reserved non-reserved
VERSIONING reserved reserved
VIEW non-reserved non-reserved non-reserved reserved
VIEWS non-reserved
VIRTUAL non-reserved
VOLATILE non-reserved
WHEN reserved reserved reserved reserved
WHENEVER reserved reserved reserved
WHERE reserved, requires

AS
reserved reserved reserved

WHITESPACE non-reserved non-reserved non-reserved
WIDTH_BUCKET reserved reserved

2433

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
WINDOW reserved, requires

AS
reserved reserved

WITH reserved, requires
AS

reserved reserved reserved

WITHIN non-reserved, re-
quires AS

reserved reserved

WITHOUT non-reserved, re-
quires AS

reserved reserved

WORK non-reserved non-reserved non-reserved reserved
WRAPPER non-reserved non-reserved non-reserved
WRITE non-reserved non-reserved non-reserved reserved
XML non-reserved reserved reserved
XMLAGG reserved reserved
XMLATTRIBUTES non-reserved (can-

not be function or
type)

reserved reserved

XMLBINARY reserved reserved
XMLCAST reserved reserved
XMLCOMMENT reserved reserved
XMLCONCAT non-reserved (can-

not be function or
type)

reserved reserved

XMLDECLARATION non-reserved non-reserved
XMLDOCUMENT reserved reserved
XMLELEMENT non-reserved (can-

not be function or
type)

reserved reserved

XMLEXISTS non-reserved (can-
not be function or
type)

reserved reserved

XMLFOREST non-reserved (can-
not be function or
type)

reserved reserved

XMLITERATE reserved reserved
XMLNAMESPACES non-reserved (can-

not be function or
type)

reserved reserved

XMLPARSE non-reserved (can-
not be function or
type)

reserved reserved

XMLPI non-reserved (can-
not be function or
type)

reserved reserved

XMLQUERY reserved reserved

2434

SQL Key Words

Key Word PostgreSQL SQL:2023 SQL:2016 SQL-92
XMLROOT non-reserved (can-

not be function or
type)

XMLSCHEMA non-reserved non-reserved
XMLSERIALIZE non-reserved (can-

not be function or
type)

reserved reserved

XMLTABLE non-reserved (can-
not be function or
type)

reserved reserved

XMLTEXT reserved reserved
XMLVALIDATE reserved reserved
YEAR non-reserved, re-

quires AS
reserved reserved reserved

YES non-reserved non-reserved non-reserved
ZONE non-reserved non-reserved non-reserved reserved

2435

Appendix D. SQL Conformance
This section attempts to outline to what extent PostgreSQL conforms to the current SQL standard. The
following information is not a full statement of conformance, but it presents the main topics in as much
detail as is both reasonable and useful for users.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL”. A revised version of
the standard is released from time to time; the most recent update appearing in 2023. The 2023 version
is referred to as ISO/IEC 9075:2023, or simply as SQL:2023. The versions prior to that were SQL:2016,
SQL:2011, SQL:2008, SQL:2006, SQL:2003, SQL:1999, and SQL-92. Each version replaces the previous
one, so claims of conformance to earlier versions have no official merit. PostgreSQL development aims
for conformance with the latest official version of the standard where such conformance does not con-
tradict traditional features or common sense. Many of the features required by the SQL standard are
supported, though sometimes with slightly differing syntax or function. Further moves towards confor-
mance can be expected over time.

SQL-92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database man-
agement systems claiming SQL standard conformance were conforming at only the Entry level, since
the entire set of features in the Intermediate and Full levels was either too voluminous or in conflict
with legacy behaviors.

Starting with SQL:1999, the SQL standard defines a large set of individual features rather than the
ineffectively broad three levels found in SQL-92. A large subset of these features represents the “Core”
features, which every conforming SQL implementation must supply. The rest of the features are purely
optional.

The standard is split into a number of parts, each also known by a shorthand name:
• ISO/IEC 9075-1 Framework (SQL/Framework)

• ISO/IEC 9075-2 Foundation (SQL/Foundation)

• ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

• ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9 Management of External Data (SQL/MED)

• ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

• ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

• ISO/IEC 9075-14 XML-related specifications (SQL/XML)

• ISO/IEC 9075-15 Multi-dimensional arrays (SQL/MDA)

• ISO/IEC 9075-16 Property Graph Queries (SQL/PGQ)

Note that some part numbers are not (or no longer) used.

The PostgreSQL core covers parts 1, 2, 9, 11, and 14. Part 3 is covered by the ODBC driver, and part
13 is covered by the PL/Java plug-in, but exact conformance is currently not being verified for these
components. There are currently no implementations of parts 4, 10, 15, and 16 for PostgreSQL.

PostgreSQL supports most of the major features of SQL:2023. Out of 177 mandatory features required
for full Core conformance, PostgreSQL conforms to at least 170. In addition, there is a long list of sup-

2436

SQL Conformance

ported optional features. It might be worth noting that at the time of writing, no current version of any
database management system claims full conformance to Core SQL:2023.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed by
a list of the features defined in SQL:2023 which are not yet supported in PostgreSQL. Both of these lists
are approximate: There might be minor details that are nonconforming for a feature that is listed as
supported, and large parts of an unsupported feature might in fact be implemented. The main body of
the documentation always contains the most accurate information about what does and does not work.

Note
Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature is not
supported, the main feature is listed as unsupported even if some other subfeatures are supported.

D.1. Supported Features
Identifier Core? Description Comment
B012 Embedded C
B021 Direct SQL
B128 Routine language SQL
E011 Core Numeric data types
E011-01 Core INTEGER and SMALLINT data types
E011-02 Core REAL, DOUBLE PRECISION, and FLOAT data types
E011-03 Core DECIMAL and NUMERIC data types
E011-04 Core Arithmetic operators
E011-05 Core Numeric comparison
E011-06 Core Implicit casting among the numeric data types
E021 Core Character data types
E021-01 Core CHARACTER data type
E021-02 Core CHARACTER VARYING data type
E021-03 Core Character literals
E021-04 Core CHARACTER_LENGTH function trims trailing spaces

from CHARACTER val-
ues before counting

E021-05 Core OCTET_LENGTH function
E021-06 Core SUBSTRING function
E021-07 Core Character concatenation
E021-08 Core UPPER and LOWER functions
E021-09 Core TRIM function
E021-10 Core Implicit casting among the character string types
E021-11 Core POSITION function
E021-12 Core Character comparison
E031 Core Identifiers
E031-01 Core Delimited identifiers
E031-02 Core Lower case identifiers
E031-03 Core Trailing underscore

2437

SQL Conformance

Identifier Core? Description Comment
E051 Core Basic query specification
E051-01 Core SELECT DISTINCT
E051-02 Core GROUP BY clause
E051-04 Core GROUP BY can contain columns not in <select list>
E051-05 Core Select list items can be renamed
E051-06 Core HAVING clause
E051-07 Core Qualified * in select list
E051-08 Core Correlation names in the FROM clause
E051-09 Core Rename columns in the FROM clause
E061 Core Basic predicates and search conditions
E061-01 Core Comparison predicate
E061-02 Core BETWEEN predicate
E061-03 Core IN predicate with list of values
E061-04 Core LIKE predicate
E061-05 Core LIKE predicate ESCAPE clause
E061-06 Core NULL predicate
E061-07 Core Quantified comparison predicate
E061-08 Core EXISTS predicate
E061-09 Core Subqueries in comparison predicate
E061-11 Core Subqueries in IN predicate
E061-12 Core Subqueries in quantified comparison predicate
E061-13 Core Correlated subqueries
E061-14 Core Search condition
E071 Core Basic query expressions
E071-01 Core UNION DISTINCT table operator
E071-02 Core UNION ALL table operator
E071-03 Core EXCEPT DISTINCT table operator
E071-05 Core Columns combined via table operators need not have ex-

actly the same data type

E071-06 Core Table operators in subqueries
E081 Core Basic Privileges
E081-01 Core SELECT privilege
E081-02 Core DELETE privilege
E081-03 Core INSERT privilege at the table level
E081-04 Core UPDATE privilege at the table level
E081-05 Core UPDATE privilege at the column level
E081-06 Core REFERENCES privilege at the table level
E081-07 Core REFERENCES privilege at the column level
E081-08 Core WITH GRANT OPTION
E081-09 Core USAGE privilege
E081-10 Core EXECUTE privilege

2438

SQL Conformance

Identifier Core? Description Comment
E091 Core Set functions
E091-01 Core AVG
E091-02 Core COUNT
E091-03 Core MAX
E091-04 Core MIN
E091-05 Core SUM
E091-06 Core ALL quantifier
E091-07 Core DISTINCT quantifier
E101 Core Basic data manipulation
E101-01 Core INSERT statement
E101-03 Core Searched UPDATE statement
E101-04 Core Searched DELETE statement
E111 Core Single row SELECT statement
E121 Core Basic cursor support
E121-01 Core DECLARE CURSOR
E121-02 Core ORDER BY columns need not be in select list
E121-03 Core Value expressions in ORDER BY clause
E121-04 Core OPEN statement
E121-06 Core Positioned UPDATE statement
E121-07 Core Positioned DELETE statement
E121-08 Core CLOSE statement
E121-10 Core FETCH statement implicit NEXT
E121-17 Core WITH HOLD cursors
E131 Core Null value support (nulls in lieu of values)
E141 Core Basic integrity constraints
E141-01 Core NOT NULL constraints
E141-02 Core UNIQUE constraints of NOT NULL columns
E141-03 Core PRIMARY KEY constraints
E141-04 Core Basic FOREIGN KEY constraint with the NO ACTION

default for both referential delete action and referential
update action

E141-06 Core CHECK constraints
E141-07 Core Column defaults
E141-08 Core NOT NULL inferred on PRIMARY KEY
E141-10 Core Names in a foreign key can be specified in any order
E151 Core Transaction support
E151-01 Core COMMIT statement
E151-02 Core ROLLBACK statement
E152 Core Basic SET TRANSACTION statement
E152-01 Core SET TRANSACTION statement: ISOLATION LEVEL

SERIALIZABLE clause

2439

SQL Conformance

Identifier Core? Description Comment
E152-02 Core SET TRANSACTION statement: READ ONLY and READ

WRITE clauses

E153 Core Updatable queries with subqueries
E161 Core SQL comments using leading double minus
E171 Core SQLSTATE support
E182 Core Host language binding
F021 Core Basic information schema
F021-01 Core COLUMNS view
F021-02 Core TABLES view
F021-03 Core VIEWS view
F021-04 Core TABLE_CONSTRAINTS view
F021-05 Core REFERENTIAL_CONSTRAINTS view
F021-06 Core CHECK_CONSTRAINTS view
F031 Core Basic schema manipulation
F031-01 Core CREATE TABLE statement to create persistent base ta-

bles

F031-02 Core CREATE VIEW statement
F031-03 Core GRANT statement
F031-04 Core ALTER TABLE statement: ADD COLUMN clause
F031-13 Core DROP TABLE statement: RESTRICT clause
F031-16 Core DROP VIEW statement: RESTRICT clause
F031-19 Core REVOKE statement: RESTRICT clause
F032 CASCADE drop behavior
F033 ALTER TABLE statement: DROP COLUMN clause
F034 Extended REVOKE statement
F035 REVOKE with CASCADE
F036 REVOKE statement performed by non-owner
F037 REVOKE statement: GRANT OPTION FOR clause
F038 REVOKE of a WITH GRANT OPTION privilege
F041 Core Basic joined table
F041-01 Core Inner join (but not necessarily the INNER keyword)
F041-02 Core INNER keyword
F041-03 Core LEFT OUTER JOIN
F041-04 Core RIGHT OUTER JOIN
F041-05 Core Outer joins can be nested
F041-07 Core The inner table in a left or right outer join can also be

used in an inner join

F041-08 Core All comparison operators are supported (rather than
just =)

F051 Core Basic date and time
F051-01 Core DATE data type (including support of DATE literal)

2440

SQL Conformance

Identifier Core? Description Comment
F051-02 Core TIME data type (including support of TIME literal) with

fractional seconds precision of at least 0

F051-03 Core TIMESTAMP data type (including support of TIMES-
TAMP literal) with fractional seconds precision of at
least 0 and 6

F051-04 Core Comparison predicate on DATE, TIME, and TIMESTAMP
data types

F051-05 Core Explicit CAST between datetime types and character
string types

F051-06 Core CURRENT_DATE
F051-07 Core LOCALTIME
F051-08 Core LOCALTIMESTAMP
F052 Intervals and datetime arithmetic
F053 OVERLAPS predicate
F081 Core UNION and EXCEPT in views
F111 Isolation levels other than SERIALIZABLE
F112 Isolation level READ UNCOMMITTED
F113 Isolation level READ COMMITTED
F114 Isolation level REPEATABLE READ
F131 Core Grouped operations
F131-01 Core WHERE, GROUP BY, and HAVING clauses supported in

queries with grouped views

F131-02 Core Multiple tables supported in queries with grouped views
F131-03 Core Set functions supported in queries with grouped views
F131-04 Core Subqueries with GROUP BY and HAVING clauses and

grouped views

F131-05 Core Single row SELECT with GROUP BY and HAVING claus-
es and grouped views

F171 Multiple schemas per user
F181 Core Multiple module support
F191 Referential delete actions
F200 TRUNCATE TABLE statement
F201 Core CAST function
F202 TRUNCATE TABLE: identity column restart option
F221 Core Explicit defaults
F222 INSERT statement: DEFAULT VALUES clause
F231 Privilege tables
F251 Domain support
F261 Core CASE expression
F261-01 Core Simple CASE
F261-02 Core Searched CASE
F261-03 Core NULLIF
F261-04 Core COALESCE

2441

SQL Conformance

Identifier Core? Description Comment
F262 Extended CASE expression
F271 Compound character literals
F281 LIKE enhancements
F292 UNIQUE null treatment
F302 INTERSECT table operator
F303 INTERSECT DISTINCT table operator
F304 EXCEPT ALL table operator
F305 INTERSECT ALL table operator
F311 Core Schema definition statement
F311-01 Core CREATE SCHEMA
F311-02 Core CREATE TABLE for persistent base tables
F311-03 Core CREATE VIEW
F311-04 Core CREATE VIEW: WITH CHECK OPTION
F311-05 Core GRANT statement
F312 MERGE statement
F313 Enhanced MERGE statement
F314 MERGE statement with DELETE branch
F321 User authorization
F341 Usage tables
F361 Subprogram support
F381 Extended schema manipulation
F382 Alter column data type
F383 Set column not null clause
F384 Drop identity property clause
F385 Drop column generation expression clause
F386 Set identity column generation clause
F387 ALTER TABLE statement: ALTER COLUMN clause
F388 ALTER TABLE statement: ADD/DROP CONSTRAINT

clause

F391 Long identifiers
F392 Unicode escapes in identifiers
F393 Unicode escapes in literals
F394 Optional normal form specification
F401 Extended joined table
F402 Named column joins for LOBs, arrays, and multisets
F404 Range variable for common column names
F405 NATURAL JOIN
F406 FULL OUTER JOIN
F407 CROSS JOIN
F411 Time zone specification differences regarding

literal interpretation

2442

SQL Conformance

Identifier Core? Description Comment
F421 National character
F431 Read-only scrollable cursors
F432 FETCH with explicit NEXT
F433 FETCH FIRST
F434 FETCH LAST
F435 FETCH PRIOR
F436 FETCH ABSOLUTE
F437 FETCH RELATIVE
F438 Scrollable cursors
F441 Extended set function support
F442 Mixed column references in set functions
F471 Core Scalar subquery values
F481 Core Expanded NULL predicate
F491 Constraint management
F492 Optional table constraint enforcement except not-null con-

straints
F501 Core Features and conformance views
F501-01 Core SQL_FEATURES view
F501-02 Core SQL_SIZING view
F502 Enhanced documentation tables
F531 Temporary tables
F555 Enhanced seconds precision
F561 Full value expressions
F571 Truth value tests
F591 Derived tables
F611 Indicator data types
F641 Row and table constructors
F651 Catalog name qualifiers
F661 Simple tables
F672 Retrospective CHECK constraints
F690 Collation support
F692 Extended collation support
F701 Referential update actions
F711 ALTER domain
F731 INSERT column privileges
F751 View CHECK enhancements
F761 Session management
F762 CURRENT_CATALOG
F763 CURRENT_SCHEMA
F771 Connection management
F781 Self-referencing operations

2443

SQL Conformance

Identifier Core? Description Comment
F791 Insensitive cursors
F801 Full set function
F850 Top-level ORDER BY in query expression
F851 ORDER BY in subqueries
F852 Top-level ORDER BY in views
F855 Nested ORDER BY in query expression
F856 Nested FETCH FIRST in query expression
F857 Top-level FETCH FIRST in query expression
F858 FETCH FIRST in subqueries
F859 Top-level FETCH FIRST in views
F860 Dynamic FETCH FIRST row count
F861 Top-level OFFSET in query expression
F862 OFFSET in subqueries
F863 Nested OFFSET in query expression
F864 Top-level OFFSET in views
F865 Dynamic offset row count in OFFSET
F867 FETCH FIRST clause: WITH TIES option
F868 ORDER BY in grouped table
F869 SQL implementation info population
S071 SQL paths in function and type name resolution
S090 Minimal array support
S092 Arrays of user-defined types
S095 Array constructors by query
S096 Optional array bounds
S098 ARRAY_AGG
S099 Array expressions
S111 ONLY in query expressions
S201 SQL-invoked routines on arrays
S203 Array parameters
S204 Array as result type of functions
S211 User-defined cast functions
S301 Enhanced UNNEST
S404 TRIM_ARRAY
T031 BOOLEAN data type
T054 GREATEST and LEAST different null handling
T055 String padding functions
T056 Multi-character TRIM functions
T061 UCS support
T071 BIGINT data type
T081 Optional string types maximum length
T121 WITH (excluding RECURSIVE) in query expression

2444

SQL Conformance

Identifier Core? Description Comment
T122 WITH (excluding RECURSIVE) in subquery
T131 Recursive query
T132 Recursive query in subquery
T133 Enhanced cycle mark values
T141 SIMILAR predicate
T151 DISTINCT predicate
T152 DISTINCT predicate with negation
T171 LIKE clause in table definition
T172 AS subquery clause in table definition
T173 Extended LIKE clause in table definition
T174 Identity columns
T177 Sequence generator support: simple restart option
T178 Identity columns: simple restart option
T191 Referential action RESTRICT
T201 Comparable data types for referential constraints
T212 Enhanced trigger capability
T213 INSTEAD OF triggers
T214 BEFORE triggers
T215 AFTER triggers
T216 Ability to require true search condition before trigger is

invoked

T217 TRIGGER privilege
T241 START TRANSACTION statement
T261 Chained transactions
T271 Savepoints
T281 SELECT privilege with column granularity
T285 Enhanced derived column names
T312 OVERLAY function
T321-01 Core User-defined functions with no overloading
T321-02 Core User-defined stored procedures with no overloading
T321-03 Core Function invocation
T321-04 Core CALL statement
T321-05 Core RETURN statement
T321-06 Core ROUTINES view
T321-07 Core PARAMETERS view
T323 Explicit security for external routines
T325 Qualified SQL parameter references
T331 Basic roles
T332 Extended roles
T341 Overloading of SQL-invoked functions and SQL-invoked

procedures

2445

SQL Conformance

Identifier Core? Description Comment
T351 Bracketed comments
T431 Extended grouping capabilities
T432 Nested and concatenated GROUPING SETS
T433 Multi-argument GROUPING function
T434 GROUP BY DISTINCT
T441 ABS and MOD functions
T461 Symmetric BETWEEN predicate
T491 LATERAL derived table
T501 Enhanced EXISTS predicate
T521 Named arguments in CALL statement
T523 Default values for INOUT parameters of SQL-invoked

procedures

T524 Named arguments in routine invocations other than a
CALL statement

T525 Default values for parameters of SQL-invoked functions
T551 Optional key words for default syntax
T581 Regular expression substring function
T591 UNIQUE constraints of possibly null columns
T611 Elementary OLAP operations
T612 Advanced OLAP operations
T613 Sampling
T614 NTILE function
T615 LEAD and LAG functions
T617 FIRST_VALUE and LAST_VALUE functions
T620 WINDOW clause: GROUPS option
T621 Enhanced numeric functions
T622 Trigonometric functions
T623 General logarithm functions
T624 Common logarithm functions
T626 ANY_VALUE
T627 Window framed COUNT DISTINCT
T631 Core IN predicate with one list element
T651 SQL-schema statements in SQL routines
T653 SQL-schema statements in external routines
T655 Cyclically dependent routines
T661 Non-decimal integer literals
T662 Underscores in numeric literals
T670 Schema and data statement mixing
T803 String-based JSON
T811 Basic SQL/JSON constructor functions
T812 SQL/JSON: JSON_OBJECTAGG

2446

SQL Conformance

Identifier Core? Description Comment
T813 SQL/JSON: JSON_ARRAYAGG with ORDER BY
T814 Colon in JSON_OBJECT or JSON_OBJECTAGG
T821 Basic SQL/JSON query operators
T822 SQL/JSON: IS JSON WITH UNIQUE KEYS predicate
T823 SQL/JSON: PASSING clause
T825 SQL/JSON: ON EMPTY and ON ERROR clauses
T826 General value expression in ON ERROR or ON EMPTY

clauses

T827 JSON_TABLE: sibling NESTED COLUMNS clauses
T828 JSON_QUERY
T829 JSON_QUERY: array wrapper options
T830 Enforcing unique keys in SQL/JSON constructor func-

tions

T831 SQL/JSON path language: strict mode
T832 SQL/JSON path language: item method
T833 SQL/JSON path language: multiple subscripts
T834 SQL/JSON path language: wildcard member accessor
T835 SQL/JSON path language: filter expressions
T836 SQL/JSON path language: starts with predicate
T837 SQL/JSON path language: regex_like predicate
T840 Hex integer literals in SQL/JSON path language
T851 SQL/JSON: optional keywords for default syntax
T865 SQL/JSON item method: bigint()
T866 SQL/JSON item method: boolean()
T867 SQL/JSON item method: date()
T868 SQL/JSON item method: decimal()
T869 SQL/JSON item method: decimal() with precision and

scale

T870 SQL/JSON item method: integer()
T871 SQL/JSON item method: number()
T872 SQL/JSON item method: string()
T873 SQL/JSON item method: time()
T874 SQL/JSON item method: time_tz()
T875 SQL/JSON item method: time precision
T876 SQL/JSON item method: timestamp()
T877 SQL/JSON item method: timestamp_tz()
T878 SQL/JSON item method: timestamp precision
T879 JSON in equality operations with jsonb
T880 JSON in grouping operations with jsonb
X010 XML type
X011 Arrays of XML type
X014 Attributes of XML type

2447

SQL Conformance

Identifier Core? Description Comment
X016 Persistent XML values
X020 XMLConcat
X031 XMLElement
X032 XMLForest
X034 XMLAgg
X035 XMLAgg: ORDER BY option
X036 XMLComment
X037 XMLPI
X038 XMLText supported except for

RETURNING
X040 Basic table mapping
X041 Basic table mapping: null absent
X042 Basic table mapping: null as nil
X043 Basic table mapping: table as forest
X044 Basic table mapping: table as element
X045 Basic table mapping: with target namespace
X046 Basic table mapping: data mapping
X047 Basic table mapping: metadata mapping
X048 Basic table mapping: base64 encoding of binary strings
X049 Basic table mapping: hex encoding of binary strings
X050 Advanced table mapping
X051 Advanced table mapping: null absent
X052 Advanced table mapping: null as nil
X053 Advanced table mapping: table as forest
X054 Advanced table mapping: table as element
X055 Advanced table mapping: with target namespace
X056 Advanced table mapping: data mapping
X057 Advanced table mapping: metadata mapping
X058 Advanced table mapping: base64 encoding of binary

strings

X059 Advanced table mapping: hex encoding of binary strings
X060 XMLParse: character string input and CONTENT option
X061 XMLParse: character string input and DOCUMENT op-

tion

X069 XMLSerialize: INDENT
X070 XMLSerialize: character string serialization and CON-

TENT option

X071 XMLSerialize: character string serialization and DOCU-
MENT option

X072 XMLSerialize: character string serialization
X090 XML document predicate
X120 XML parameters in SQL routines

2448

SQL Conformance

Identifier Core? Description Comment
X121 XML parameters in external routines
X221 XML passing mechanism BY VALUE
X301 XMLTable: derived column list option
X302 XMLTable: ordinality column option
X303 XMLTable: column default option
X304 XMLTable: passing a context item must be XML DOCU-

MENT
X400 Name and identifier mapping
X410 Alter column data type: XML type

D.2. Unsupported Features
The following features defined in SQL:2023 are not implemented in this release of PostgreSQL. In a few
cases, equivalent functionality is available.

Identifier Core? Description Comment
B011 Embedded Ada
B013 Embedded COBOL
B014 Embedded Fortran
B015 Embedded MUMPS
B016 Embedded Pascal
B017 Embedded PL/I
B030 Enhanced dynamic SQL
B031 Basic dynamic SQL
B032 Extended dynamic SQL
B033 Untyped SQL-invoked function arguments
B034 Dynamic specification of cursor attributes
B035 Non-extended descriptor names
B036 Describe input statement
B041 Extensions to embedded SQL exception declarations
B051 Enhanced execution rights
B111 Module language Ada
B112 Module language C
B113 Module language COBOL
B114 Module language Fortran
B115 Module language MUMPS
B116 Module language Pascal
B117 Module language PL/I
B121 Routine language Ada
B122 Routine language C
B123 Routine language COBOL
B124 Routine language Fortran
B125 Routine language MUMPS

2449

SQL Conformance

Identifier Core? Description Comment
B126 Routine language Pascal
B127 Routine language PL/I
B200 Polymorphic table functions
B201 More than one PTF generic table parameter
B202 PTF copartitioning
B203 More than one copartition specification
B204 PRUNE WHEN EMPTY
B205 Pass-through columns
B206 PTF descriptor parameters
B207 Cross products of partitionings
B208 PTF component procedure interface
B209 PTF extended names
B211 Module language Ada: VARCHAR and NUMERIC sup-

port

B221 Routine language Ada: VARCHAR and NUMERIC sup-
port

F054 TIMESTAMP in DATE type precedence list
F120 Get diagnostics statement
F121 Basic diagnostics management
F122 Enhanced diagnostics management
F123 All diagnostics
F124 SET TRANSACTION statement: DIAGNOSTICS SIZE

clause

F263 Comma-separated predicates in simple CASE expression
F291 UNIQUE predicate
F301 CORRESPONDING in query expressions
F403 Partitioned join tables
F451 Character set definition
F461 Named character sets
F521 Assertions
F671 Subqueries in CHECK constraints intentionally omitted
F673 Reads SQL-data routine invocations in CHECK con-

straints

F693 SQL-session and client module collations
F695 Translation support
F696 Additional translation documentation
F721 Deferrable constraints foreign and unique

keys only
F741 Referential MATCH types no partial match yet
F812 Basic flagging
F813 Extended flagging
F821 Local table references

2450

SQL Conformance

Identifier Core? Description Comment
F831 Full cursor update
F832 Updatable scrollable cursors
F833 Updatable ordered cursors
F841 LIKE_REGEX predicate consider regexp_like()
F842 OCCURRENCES_REGEX function consider regexp_

matches()
F843 POSITION_REGEX function consider regexp_instr()
F844 SUBSTRING_REGEX function consider regexp_sub-

str()
F845 TRANSLATE_REGEX function consider regexp_re-

place()
F846 Octet support in regular expression operators
F847 Non-constant regular expressions
F866 FETCH FIRST clause: PERCENT option
R010 Row pattern recognition: FROM clause
R020 Row pattern recognition: WINDOW clause
R030 Row pattern recognition: full aggregate support
S011 Core Distinct data types
S011-01 Core USER_DEFINED_TYPES view
S023 Basic structured types
S024 Enhanced structured types
S025 Final structured types
S026 Self-referencing structured types
S027 Create method by specific method name
S028 Permutable UDT options list
S041 Basic reference types
S043 Enhanced reference types
S051 Create table of type partially supported
S081 Subtables
S091 Basic array support partially supported
S093 Arrays of distinct types
S094 Arrays of reference types
S097 Array element assignment
S151 Type predicate see pg_typeof()
S161 Subtype treatment
S162 Subtype treatment for references
S202 SQL-invoked routines on multisets
S231 Structured type locators
S232 Array locators
S233 Multiset locators
S241 Transform functions
S242 Alter transform statement

2451

SQL Conformance

Identifier Core? Description Comment
S251 User-defined orderings
S261 Specific type method
S271 Basic multiset support
S272 Multisets of user-defined types
S274 Multisets of reference types
S275 Advanced multiset support
S281 Nested collection types
S291 Unique constraint on entire row
S401 Distinct types based on array types
S402 Distinct types based on multiset types
S403 ARRAY_MAX_CARDINALITY
T011 Timestamp in Information Schema
T021 BINARY and VARBINARY data types
T022 Advanced support for BINARY and VARBINARY data

types

T023 Compound binary literals
T024 Spaces in binary literals
T039 CLOB locator: non-holdable
T040 Concatenation of CLOBs
T041 Basic LOB data type support
T042 Extended LOB data type support
T043 Multiplier T
T044 Multiplier P
T045 BLOB data type
T046 CLOB data type
T047 POSITION, OCTET_LENGTH, TRIM, and SUBSTRING

for BLOBs

T048 Concatenation of BLOBs
T049 BLOB locator: non-holdable
T050 POSITION, CHAR_LENGTH, OCTET_LENGTH, LOWER,

TRIM, UPPER, and SUBSTRING for CLOBs

T051 Row types
T053 Explicit aliases for all-fields reference
T062 Character length units
T076 DECFLOAT data type
T101 Enhanced nullability determination
T111 Updatable joins, unions, and columns
T175 Generated columns mostly supported
T176 Sequence generator support supported except for

NEXT VALUE FOR
T180 System-versioned tables
T181 Application-time period tables

2452

SQL Conformance

Identifier Core? Description Comment
T200 Trigger DDL similar but not fully

compatible
T211 Basic trigger capability
T218 Multiple triggers for the same event executed in the or-

der created
intentionally omitted

T231 Sensitive cursors
T251 SET TRANSACTION statement: LOCAL option
T262 Multiple server transactions
T272 Enhanced savepoint management
T301 Functional dependencies partially supported
T321 Core Basic SQL-invoked routines partially supported
T322 Declared data type attributes
T324 Explicit security for SQL routines
T326 Table functions
T471 Result sets return value
T472 DESCRIBE CURSOR
T495 Combined data change and retrieval different syntax
T502 Period predicates
T511 Transaction counts
T522 Default values for IN parameters of SQL-invoked proce-

dures
supported except DE-
FAULT key word in in-
vocation

T561 Holdable locators
T571 Array-returning external SQL-invoked functions
T572 Multiset-returning external SQL-invoked functions
T601 Local cursor references
T616 Null treatment option for LEAD and LAG functions
T618 NTH_VALUE function function exists, but

some options missing
T619 Nested window functions
T625 LISTAGG
T641 Multiple column assignment only some syntax vari-

ants supported
T652 SQL-dynamic statements in SQL routines
T654 SQL-dynamic statements in external routines
T801 JSON data type
T802 Enhanced JSON data type
T824 JSON_TABLE: specific PLAN clause
T838 JSON_TABLE: PLAN DEFAULT clause
T839 Formatted cast of datetimes to/from character strings
T860 SQL/JSON simplified accessor: column reference only
T861 SQL/JSON simplified accessor: case-sensitive JSON

member accessor

2453

SQL Conformance

Identifier Core? Description Comment
T862 SQL/JSON simplified accessor: wildcard member acces-

sor

T863 SQL/JSON simplified accessor: single-quoted string lit-
eral as member accessor

T864 SQL/JSON simplified accessor
T881 JSON in ordering operations with jsonb, partially

supported
T882 JSON in multiset element grouping operations
M001 Datalinks
M002 Datalinks via SQL/CLI
M003 Datalinks via Embedded SQL
M004 Foreign data support partially supported
M005 Foreign schema support
M006 GetSQLString routine
M007 TransmitRequest
M009 GetOpts and GetStatistics routines
M010 Foreign-data wrapper support different API
M011 Datalinks via Ada
M012 Datalinks via C
M013 Datalinks via COBOL
M014 Datalinks via Fortran
M015 Datalinks via M
M016 Datalinks via Pascal
M017 Datalinks via PL/I
M018 Foreign-data wrapper interface routines in Ada
M019 Foreign-data wrapper interface routines in C different API
M020 Foreign-data wrapper interface routines in COBOL
M021 Foreign-data wrapper interface routines in Fortran
M022 Foreign-data wrapper interface routines in MUMPS
M023 Foreign-data wrapper interface routines in Pascal
M024 Foreign-data wrapper interface routines in PL/I
M030 SQL-server foreign data support
M031 Foreign-data wrapper general routines
X012 Multisets of XML type
X013 Distinct types of XML type
X015 Fields of XML type
X025 XMLCast
X030 XMLDocument
X065 XMLParse: binary string input and CONTENT option
X066 XMLParse: binary string input and DOCUMENT option
X068 XMLSerialize: BOM

2454

SQL Conformance

Identifier Core? Description Comment
X073 XMLSerialize: binary string serialization and CONTENT

option

X074 XMLSerialize: binary string serialization and DOCU-
MENT option

X075 XMLSerialize: binary string serialization
X076 XMLSerialize: VERSION
X077 XMLSerialize: explicit ENCODING option
X078 XMLSerialize: explicit XML declaration
X080 Namespaces in XML publishing
X081 Query-level XML namespace declarations
X082 XML namespace declarations in DML
X083 XML namespace declarations in DDL
X084 XML namespace declarations in compound statements
X085 Predefined namespace prefixes
X086 XML namespace declarations in XMLTable
X091 XML content predicate
X096 XMLExists XPath 1.0 only
X100 Host language support for XML: CONTENT option
X101 Host language support for XML: DOCUMENT option
X110 Host language support for XML: VARCHAR mapping
X111 Host language support for XML: CLOB mapping
X112 Host language support for XML: BLOB mapping
X113 Host language support for XML: STRIP WHITESPACE

option

X114 Host language support for XML: PRESERVE WHITES-
PACE option

X131 Query-level XMLBINARY clause
X132 XMLBINARY clause in DML
X133 XMLBINARY clause in DDL
X134 XMLBINARY clause in compound statements
X135 XMLBINARY clause in subqueries
X141 IS VALID predicate: data-driven case
X142 IS VALID predicate: ACCORDING TO clause
X143 IS VALID predicate: ELEMENT clause
X144 IS VALID predicate: schema location
X145 IS VALID predicate outside check constraints
X151 IS VALID predicate: with DOCUMENT option
X152 IS VALID predicate: with CONTENT option
X153 IS VALID predicate: with SEQUENCE option
X155 IS VALID predicate: NAMESPACE without ELEMENT

clause

2455

SQL Conformance

Identifier Core? Description Comment
X157 IS VALID predicate: NO NAMESPACE with ELEMENT

clause

X160 Basic Information Schema for registered XML schemas
X161 Advanced Information Schema for registered XML

schemas

X170 XML null handling options
X171 NIL ON NO CONTENT option
X181 XML(DOCUMENT(UNTYPED)) type
X182 XML(DOCUMENT(ANY)) type
X190 XML(SEQUENCE) type
X191 XML(DOCUMENT(XMLSCHEMA)) type
X192 XML(CONTENT(XMLSCHEMA)) type
X200 XMLQuery
X201 XMLQuery: RETURNING CONTENT
X202 XMLQuery: RETURNING SEQUENCE
X203 XMLQuery: passing a context item
X204 XMLQuery: initializing an XQuery variable
X205 XMLQuery: EMPTY ON EMPTY option
X206 XMLQuery: NULL ON EMPTY option
X211 XML 1.1 support
X222 XML passing mechanism BY REF parser accepts BY REF

but ignores it; passing
is always BY VALUE

X231 XML(CONTENT(UNTYPED)) type
X232 XML(CONTENT(ANY)) type
X241 RETURNING CONTENT in XML publishing
X242 RETURNING SEQUENCE in XML publishing
X251 Persistent XML values of XML(DOCUMENT(UNTYPED))

type

X252 Persistent XML values of XML(DOCUMENT(ANY)) type
X253 Persistent XML values of XML(CONTENT(UNTYPED))

type

X254 Persistent XML values of XML(CONTENT(ANY)) type
X255 Persistent XML values of XML(SEQUENCE) type
X256 Persistent XML values of XML(DOCUMENT(XM-

LSCHEMA)) type

X257 Persistent XML values of XML(CONTENT(XM-
LSCHEMA)) type

X260 XML type: ELEMENT clause
X261 XML type: NAMESPACE without ELEMENT clause
X263 XML type: NO NAMESPACE with ELEMENT clause
X264 XML type: schema location
X271 XMLValidate: data-driven case

2456

SQL Conformance

Identifier Core? Description Comment
X272 XMLValidate: ACCORDING TO clause
X273 XMLValidate: ELEMENT clause
X274 XMLValidate: schema location
X281 XMLValidate with DOCUMENT option
X282 XMLValidate with CONTENT option
X283 XMLValidate with SEQUENCE option
X284 XMLValidate: NAMESPACE without ELEMENT clause
X286 XMLValidate: NO NAMESPACE with ELEMENT clause
X300 XMLTable XPath 1.0 only
X305 XMLTable: initializing an XQuery variable

D.3. XML Limits and Conformance to SQL/XML
Significant revisions to the XML-related specifications in ISO/IEC 9075-14 (SQL/XML) were introduced
with SQL:2006. PostgreSQL's implementation of the XML data type and related functions largely follows
the earlier 2003 edition, with some borrowing from later editions. In particular:
• Where the current standard provides a family of XML data types to hold “document” or “content” in

untyped or XML Schema-typed variants, and a type XML(SEQUENCE) to hold arbitrary pieces of XML
content, PostgreSQL provides the single xml type, which can hold “document” or “content”. There
is no equivalent of the standard's “sequence” type.

• PostgreSQL provides two functions introduced in SQL:2006, but in variants that use the XPath 1.0
language, rather than XML Query as specified for them in the standard.

• PostgreSQL does not support the RETURNING CONTENT or RETURNING SEQUENCE clauses, functions
which are defined to have these in the specification are implicitly returning content.

This section presents some of the resulting differences you may encounter.

D.3.1. Queries Are Restricted to XPath 1.0
The PostgreSQL-specific functions xpath() and xpath_exists() query XML documents using the XPath
language. PostgreSQL also provides XPath-only variants of the standard functions XMLEXISTS and
XMLTABLE, which officially use the XQuery language. For all of these functions, PostgreSQL relies on the
libxml2 library, which provides only XPath 1.0.

There is a strong connection between the XQuery language and XPath versions 2.0 and later: any ex-
pression that is syntactically valid and executes successfully in both produces the same result (with
a minor exception for expressions containing numeric character references or predefined entity refer-
ences, which XQuery replaces with the corresponding character while XPath leaves them alone). But
there is no such connection between these languages and XPath 1.0; it was an earlier language and
differs in many respects.

There are two categories of limitation to keep in mind: the restriction from XQuery to XPath for the
functions specified in the SQL standard, and the restriction of XPath to version 1.0 for both the standard
and the PostgreSQL-specific functions.

D.3.1.1. Restriction of XQuery to XPath
Features of XQuery beyond those of XPath include:
• XQuery expressions can construct and return new XML nodes, in addition to all possible XPath val-

ues. XPath can create and return values of the atomic types (numbers, strings, and so on) but can
only return XML nodes that were already present in documents supplied as input to the expression.

• XQuery has control constructs for iteration, sorting, and grouping.

2457

SQL Conformance

• XQuery allows declaration and use of local functions.

Recent XPath versions begin to offer capabilities overlapping with these (such as functional-style for-
each and sort, anonymous functions, and parse-xml to create a node from a string), but such features
were not available before XPath 3.0.

D.3.1.2. Restriction of XPath to 1.0
For developers familiar with XQuery and XPath 2.0 or later, XPath 1.0 presents a number of differences
to contend with:
• The fundamental type of an XQuery/XPath expression, the sequence, which can contain XML nodes,

atomic values, or both, does not exist in XPath 1.0. A 1.0 expression can only produce a node-set
(containing zero or more XML nodes), or a single atomic value.

• Unlike an XQuery/XPath sequence, which can contain any desired items in any desired order, an
XPath 1.0 node-set has no guaranteed order and, like any set, does not allow multiple appearances
of the same item.

Note
The libxml2 library does seem to always return node-sets to PostgreSQL with their members
in the same relative order they had in the input document. Its documentation does not com-
mit to this behavior, and an XPath 1.0 expression cannot control it.

• While XQuery/XPath provides all of the types defined in XML Schema and many operators and func-
tions over those types, XPath 1.0 has only node-sets and the three atomic types boolean, double,
and string.

• XPath 1.0 has no conditional operator. An XQuery/XPath expression such as if (hat) then hat/
@size else "no hat" has no XPath 1.0 equivalent.

• XPath 1.0 has no ordering comparison operator for strings. Both "cat" < "dog" and "cat" >
"dog" are false, because each is a numeric comparison of two NaNs. In contrast, = and != do com-
pare the strings as strings.

• XPath 1.0 blurs the distinction between value comparisons and general comparisons as XQuery/
XPath define them. Both sale/@hatsize = 7 and sale/@customer = "alice" are existentially
quantified comparisons, true if there is any sale with the given value for the attribute, but sale/
@taxable = false() is a value comparison to the effective boolean value of a whole node-set. It is
true only if no sale has a taxable attribute at all.

• In the XQuery/XPath data model, a document node can have either document form (i.e., exactly one
top-level element, with only comments and processing instructions outside of it) or content form
(with those constraints relaxed). Its equivalent in XPath 1.0, the root node, can only be in document
form. This is part of the reason an xml value passed as the context item to any PostgreSQL XPath-
based function must be in document form.

The differences highlighted here are not all of them. In XQuery and the 2.0 and later versions of XPath,
there is an XPath 1.0 compatibility mode, and the W3C lists of function library changes and language
changes applied in that mode offer a more complete (but still not exhaustive) account of the differences.
The compatibility mode cannot make the later languages exactly equivalent to XPath 1.0.

D.3.1.3. Mappings between SQL and XML Data Types and Values
In SQL:2006 and later, both directions of conversion between standard SQL data types and the XML
Schema types are specified precisely. However, the rules are expressed using the types and semantics
of XQuery/XPath, and have no direct application to the different data model of XPath 1.0.

When PostgreSQL maps SQL data values to XML (as in xmlelement), or XML to SQL (as in the output
columns of xmltable), except for a few cases treated specially, PostgreSQL simply assumes that the

2458

https://www.w3.org/TR/2010/REC-xpath-functions-20101214/#xpath1-compatibility
https://www.w3.org/TR/xpath20/#id-backwards-compatibility
https://www.w3.org/TR/xpath20/#id-backwards-compatibility

SQL Conformance

XML data type's XPath 1.0 string form will be valid as the text-input form of the SQL datatype, and
conversely. This rule has the virtue of simplicity while producing, for many data types, results similar
to the mappings specified in the standard.

Where interoperability with other systems is a concern, for some data types, it may be necessary to use
data type formatting functions (such as those in Section 9.8) explicitly to produce the standard mappings.

D.3.2. Incidental Limits of the Implementation
This section concerns limits that are not inherent in the libxml2 library, but apply to the current imple-
mentation in PostgreSQL.

D.3.2.1. Only BY VALUE Passing Mechanism Is Supported
The SQL standard defines two passing mechanisms that apply when passing an XML argument from
SQL to an XML function or receiving a result: BY REF, in which a particular XML value retains its node
identity, and BY VALUE, in which the content of the XML is passed but node identity is not preserved.
A mechanism can be specified before a list of parameters, as the default mechanism for all of them, or
after any parameter, to override the default.

To illustrate the difference, if x is an XML value, these two queries in an SQL:2006 environment would
produce true and false, respectively:

SELECT XMLQUERY('$a is $b' PASSING BY REF x AS a, x AS b NULL ON EMPTY);
SELECT XMLQUERY('$a is $b' PASSING BY VALUE x AS a, x AS b NULL ON EMPTY);

PostgreSQL will accept BY VALUE or BY REF in an XMLEXISTS or XMLTABLE construct, but it ignores them.
The xml data type holds a character-string serialized representation, so there is no node identity to
preserve, and passing is always effectively BY VALUE.

D.3.2.2. Cannot Pass Named Parameters to Queries
The XPath-based functions support passing one parameter to serve as the XPath expression's context
item, but do not support passing additional values to be available to the expression as named parameters.

D.3.2.3. No XML(SEQUENCE) Type
The PostgreSQL xml data type can only hold a value in DOCUMENT or CONTENT form. An XQuery/XPath
expression context item must be a single XML node or atomic value, but XPath 1.0 further restricts it to
be only an XML node, and has no node type allowing CONTENT. The upshot is that a well-formed DOCUMENT
is the only form of XML value that PostgreSQL can supply as an XPath context item.

2459

Appendix E. Release Notes
The release notes contain the significant changes in each PostgreSQL release, with major features and
migration issues listed at the top. The release notes do not contain changes that affect only a few users
or changes that are internal and therefore not user-visible. For example, the optimizer is improved in
almost every release, but the improvements are usually observed by users as simply faster queries.

A complete list of changes for each release can be obtained by viewing the Git logs for each release.
The pgsql-committers email list records all source code changes as well. There is also a web interface
that shows changes to specific files.

The name appearing next to each item represents the major developer for that item. Of course all changes
involve community discussion and patch review, so each item is truly a community effort.

E.1. Release 18
Release date: 2025-09-25

E.1.1. Overview
PostgreSQL 18 contains many new features and enhancements, including:

• An asynchronous I/O (AIO) subsystem that can improve performance of sequential scans, bitmap
heap scans, vacuums, and other operations.

• pg_upgrade now retains optimizer statistics.
• Support for "skip scan" lookups that allow using multicolumn B-tree indexes in more cases.
• uuidv7() function for generating timestamp-ordered UUIDs.
• Virtual generated columns that compute their values during read operations. This is now the de-

fault for generated columns.
• OAuth authentication support.
• OLD and NEW support for RETURNING clauses in INSERT, UPDATE, DELETE, and MERGE commands.
• Temporal constraints, or constraints over ranges, for PRIMARY KEY, UNIQUE, and FOREIGN KEY

constraints.
The above items and other new features of PostgreSQL 18 are explained in more detail in the sections
below.

E.1.2. Migration to Version 18
A dump/restore using pg_dumpall or use of pg_upgrade or logical replication is required for those wish-
ing to migrate data from any previous release. See Section 18.6 for general information on migrating
to new major releases.

Version 18 contains a number of changes that may affect compatibility with previous releases. Observe
the following incompatibilities:

• Change initdb default to enable data checksums (Greg Sabino Mullane)

Checksums can be disabled with the new initdb option --no-data-checksums. pg_upgrade requires
matching cluster checksum settings, so this new option can be useful to upgrade non-checksum old
clusters.

• Change time zone abbreviation handling (Tom Lane)

The system will now favor the current session's time zone abbreviations before checking the server
variable timezone_abbreviations. Previously timezone_abbreviations was checked first.

2460

https://www.postgresql.org/list/pgsql-committers/
https://git.postgresql.org/gitweb/?p=postgresql.git;a=summary

Release Notes

• Deprecate MD5 password authentication (Nathan Bossart)

Support for MD5 passwords will be removed in a future major version release. CREATE ROLE and
ALTER ROLE now emit deprecation warnings when setting MD5 passwords. These warnings can be
disabled by setting the md5_password_warnings parameter to off.

• Change VACUUM and ANALYZE to process the inheritance children of a parent (Michael Harris)

The previous behavior can be performed by using the new ONLY option.
• Prevent COPY FROM from treating \. as an end-of-file marker when reading CSV files (Daniel Vérité,

Tom Lane)

psql will still treat \. as an end-of-file marker when reading CSV files from STDIN. Older psql clients
connecting to PostgreSQL 18 servers might experience \copy problems. This release also enforces
that \. must appear alone on a line.

• Disallow unlogged partitioned tables (Michael Paquier)

Previously ALTER TABLE SET [UN]LOGGED did nothing, and the creation of an unlogged partitioned
table did not cause its children to be unlogged.

• Execute AFTER triggers as the role that was active when trigger events were queued (Laurenz Albe)

Previously such triggers were run as the role that was active at trigger execution time (e.g., at
COMMIT). This is significant for cases where the role is changed between queue time and transac-
tion commit.

• Remove non-functional support for rule privileges in GRANT/REVOKE (Fujii Masao)

These have been non-functional since PostgreSQL 8.2.
• Remove column pg_backend_memory_contexts.parent (Melih Mutlu)

This is no longer needed since pg_backend_memory_contexts.path was added.
• Change pg_backend_memory_contexts.level and pg_log_backend_memory_contexts() to be one-

based (Melih Mutlu, Atsushi Torikoshi, David Rowley, Fujii Masao)

These were previously zero-based.
• Change full text search to use the default collation provider of the cluster to read configuration

files and dictionaries, rather than always using libc (Peter Eisentraut)

Clusters that default to non-libc collation providers (e.g., ICU, builtin) that behave differently than
libc for characters processed by LC_CTYPE could observe changes in behavior of some full-text
search functions, as well as the pg_trgm extension. When upgrading such clusters using pg_up-
grade, it is recommended to reindex all indexes related to full-text search and pg_trgm after the up-
grade.

E.1.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 18 and the previous major
release.

E.1.3.1. Server

E.1.3.1.1. Optimizer
• Automatically remove some unnecessary table self-joins (Andrey Lepikhov, Alexander Kuzmenkov,

Alexander Korotkov, Alena Rybakina)

This optimization can be disabled using server variable enable_self_join_elimination.
• Convert some IN (VALUES ...) to x = ANY ... for better optimizer statistics (Alena Rybakina, An-

drei Lepikhov)

2461

Release Notes

• Allow transforming OR-clauses to arrays for faster index processing (Alexander Korotkov, Andrey
Lepikhov)

• Speed up the processing of INTERSECT, EXCEPT, window aggregates, and view column aliases (Tom
Lane, David Rowley)

• Allow the keys of SELECT DISTINCT to be internally reordered to avoid sorting (Richard Guo)

This optimization can be disabled using enable_distinct_reordering.
• Ignore GROUP BY columns that are functionally dependent on other columns (Zhang Mingli, Jian He,

David Rowley)

If a GROUP BY clause includes all columns of a unique index, as well as other columns of the same
table, those other columns are redundant and can be dropped from the grouping. This was already
true for non-deferred primary keys.

• Allow some HAVING clauses on GROUPING SETS to be pushed to WHERE clauses (Richard Guo)

This allows earlier row filtering. This release also fixes some GROUPING SETS queries that used to
return incorrect results.

• Improve row estimates for generate_series() using numeric and timestamp values (David Row-
ley, Song Jinzhou)

• Allow the optimizer to use Right Semi Join plans (Richard Guo)

Semi-joins are used when needing to find if there is at least one match.
• Allow merge joins to use incremental sorts (Richard Guo)
• Improve the efficiency of planning queries accessing many partitions (Ashutosh Bapat, Yuya Watari,

David Rowley)
• Allow partitionwise joins in more cases, and reduce its memory usage (Richard Guo, Tom Lane,

Ashutosh Bapat)
• Improve cost estimates of partition queries (Nikita Malakhov, Andrei Lepikhov)
• Improve SQL-language function plan caching (Alexander Pyhalov, Tom Lane)
• Improve handling of disabled optimizer features (Robert Haas)

E.1.3.1.2. Indexes

• Allow skip scans of btree indexes (Peter Geoghegan)

This allows multi-column btree indexes to be used in more cases such as when there are no restric-
tions on the first or early indexed columns (or there are non-equality ones), and there are useful re-
strictions on later indexed columns.

• Allow non-btree unique indexes to be used as partition keys and in materialized views (Mark Dilger)

The index type must still support equality.
• Allow GIN indexes to be created in parallel (Tomas Vondra, Matthias van de Meent)
• Allow values to be sorted to speed range-type GiST and btree index builds (Bernd Helmle)

E.1.3.1.3. General Performance

• Add an asynchronous I/O subsystem (Andres Freund, Thomas Munro, Nazir Bilal Yavuz, Melanie
Plageman)

This feature allows backends to queue multiple read requests, which allows for more efficient se-
quential scans, bitmap heap scans, vacuums, etc. This is enabled by server variable io_method, with
server variables io_combine_limit and io_max_combine_limit added to control it. This also enables
effective_io_concurrency and maintenance_io_concurrency values greater than zero for systems

2462

Release Notes

without fadvise() support. The new system view pg_aios shows the file handles being used for
asynchronous I/O.

• Improve the locking performance of queries that access many relations (Tomas Vondra)
• Improve the performance and reduce memory usage of hash joins and GROUP BY (David Rowley, Jeff

Davis)

This also improves hash set operations used by EXCEPT, and hash lookups of subplan values.
• Allow normal vacuums to freeze some pages, even though they are all-visible (Melanie Plageman)

This reduces the overhead of later full-relation freezing. The aggressiveness of this can be con-
trolled by server variable and per-table setting vacuum_max_eager_freeze_failure_rate. Previously
vacuum never processed all-visible pages until freezing was required.

• Add server variable vacuum_truncate to control file truncation during VACUUM (Nathan Bossart,
Gurjeet Singh)

A storage-level parameter with the same name and behavior already existed.
• Increase server variables effective_io_concurrency's and maintenance_io_concurrency's default val-

ues to 16 (Melanie Plageman)

This more accurately reflects modern hardware.

E.1.3.1.4. Monitoring
• Increase the logging granularity of server variable log_connections (Melanie Plageman)

This server variable was previously only boolean, which is still supported.
• Add log_connections option to report the duration of connection stages (Melanie Plageman)
• Add log_line_prefix escape %L to output the client IP address (Greg Sabino Mullane)
• Add server variable log_lock_failures to log lock acquisition failures (Yuki Seino, Fujii Masao)

Specifically it reports SELECT ... NOWAIT lock failures.
• Modify pg_stat_all_tables and its variants to report the time spent in VACUUM, ANALYZE, and

their automatic variants (Sami Imseih)

The new columns are total_vacuum_time, total_autovacuum_time, total_analyze_time, and to-
tal_autoanalyze_time.

• Add delay time reporting to VACUUM and ANALYZE (Bertrand Drouvot, Nathan Bossart)

This information appears in the server log, the system views pg_stat_progress_vacuum and pg_s-
tat_progress_analyze, and the output of VACUUM and ANALYZE when in VERBOSE mode; track-
ing must be enabled with the server variable track_cost_delay_timing.

• Add WAL, CPU, and average read statistics output to ANALYZE VERBOSE (Anthonin Bonnefoy)
• Add full WAL buffer count to VACUUM/ANALYZE (VERBOSE) and autovacuum log output (Bertrand

Drouvot)
• Add per-backend I/O statistics reporting (Bertrand Drouvot)

The statistics are accessed via pg_stat_get_backend_io(). Per-backend I/O statistics can be
cleared via pg_stat_reset_backend_stats().

• Add pg_stat_io columns to report I/O activity in bytes (Nazir Bilal Yavuz)

The new columns are read_bytes, write_bytes, and extend_bytes. The op_bytes column, which
always equaled BLCKSZ, has been removed.

• Add WAL I/O activity rows to pg_stat_io (Nazir Bilal Yavuz, Bertrand Drouvot, Michael Paquier)

2463

Release Notes

This includes WAL receiver activity and a wait event for such writes.
• Change server variable track_wal_io_timing to control tracking WAL timing in pg_stat_io instead

of pg_stat_wal (Bertrand Drouvot)
• Remove read/sync columns from pg_stat_wal (Bertrand Drouvot)

This removes columns wal_write, wal_sync, wal_write_time, and wal_sync_time.
• Add function pg_stat_get_backend_wal() to return per-backend WAL statistics (Bertrand Drou-

vot)

Per-backend WAL statistics can be cleared via pg_stat_reset_backend_stats().
• Add function pg_ls_summariesdir() to specifically list the contents of PGDATA/pg_wal/summaries

(Yushi Ogiwara)
• Add column pg_stat_checkpointer.num_done to report the number of completed checkpoints (An-

ton A. Melnikov)

Columns num_timed and num_requested count both completed and skipped checkpoints.
• Add column pg_stat_checkpointer.slru_written to report SLRU buffers written (Nitin Jadhav)

Also, modify the checkpoint server log message to report separate shared buffer and SLRU buffer
values.

• Add columns to pg_stat_database to report parallel worker activity (Benoit Lobréau)

The new columns are parallel_workers_to_launch and parallel_workers_launched.
• Have query id computation of constant lists consider only the first and last constants (Dmitry Dol-

gov, Sami Imseih)

Jumbling is used by pg_stat_statements.
• Adjust query id computations to group together queries using the same relation name (Michael

Paquier, Sami Imseih)

This is true even if the tables in different schemas have different column names.
• Add column pg_backend_memory_contexts.type to report the type of memory context (David Row-

ley)
• Add column pg_backend_memory_contexts.path to show memory context parents (Melih Mutlu)

E.1.3.1.5. Privileges

• Add function pg_get_acl() to retrieve database access control details (Joel Jacobson)
• Add function has_largeobject_privilege() to check large object privileges (Yugo Nagata)
• Allow ALTER DEFAULT PRIVILEGES to define large object default privileges (Takatsuka Haruka,

Yugo Nagata, Laurenz Albe)
• Add predefined role pg_signal_autovacuum_worker (Kirill Reshke)

This allows sending signals to autovacuum workers.

E.1.3.1.6. Server Configuration

• Add support for the OAuth authentication method (Jacob Champion, Daniel Gustafsson, Thomas
Munro)

This adds an oauth authentication method to pg_hba.conf, libpq OAuth options, a server variable
oauth_validator_libraries to load token validation libraries, and a configure flag --with-libcurl to
add the required compile-time libraries.

2464

Release Notes

• Add server variable ssl_tls13_ciphers to allow specification of multiple colon-separated TLSv1.3 ci-
pher suites (Erica Zhang, Daniel Gustafsson)

• Change server variable ssl_groups's default to include elliptic curve X25519 (Daniel Gustafsson, Ja-
cob Champion)

• Rename server variable ssl_ecdh_curve to ssl_groups and allow multiple colon-separated ECDH
curves to be specified (Erica Zhang, Daniel Gustafsson)

The previous name still works.
• Make cancel request keys 256 bits (Heikki Linnakangas, Jelte Fennema-Nio)

This is only possible when the server and client support wire protocol version 3.2, introduced in
this release.

• Add server variable autovacuum_worker_slots to specify the maximum number of background
workers (Nathan Bossart)

With this variable set, autovacuum_max_workers can be adjusted at runtime up to this maximum
without a server restart.

• Allow specification of the fixed number of dead tuples that will trigger an autovacuum (Nathan
Bossart, Frédéric Yhuel)

The server variable is autovacuum_vacuum_max_threshold. Percentages are still used for trigger-
ing.

• Change server variable max_files_per_process to limit only files opened by a backend (Andres Fre-
und)

Previously files opened by the postmaster were also counted toward this limit.
• Add server variable num_os_semaphores to report the required number of semaphores (Nathan

Bossart)

This is useful for operating system configuration.
• Add server variable extension_control_path to specify the location of extension control files (Peter

Eisentraut, Matheus Alcantara)

E.1.3.1.7. Streaming Replication and Recovery
• Allow inactive replication slots to be automatically invalidated using server variable idle_replica-

tion_slot_timeout (Nisha Moond, Bharath Rupireddy)
• Add server variable max_active_replication_origins to control the maximum active replication ori-

gins (Euler Taveira)

This was previously controlled by max_replication_slots, but this new setting allows a higher origin
count in cases where fewer slots are required.

E.1.3.1.8. Logical Replication
• Allow the values of generated columns to be logically replicated (Shubham Khanna, Vignesh C, Zhi-

jie Hou, Shlok Kyal, Peter Smith)

If the publication specifies a column list, all specified columns, generated and non-generated, are
published. Without a specified column list, publication option publish_generated_columns con-
trols whether generated columns are published. Previously generated columns were not replicat-
ed and the subscriber had to compute the values if possible; this is particularly useful for non-Post-
greSQL subscribers which lack such a capability.

• Change the default CREATE SUBSCRIPTION streaming option from off to parallel (Vignesh C)
• Allow ALTER SUBSCRIPTION to change the replication slot's two-phase commit behavior (Hayato

Kuroda, Ajin Cherian, Amit Kapila, Zhijie Hou)

2465

Release Notes

• Log conflicts while applying logical replication changes (Zhijie Hou, Nisha Moond)

Also report in new columns of pg_stat_subscription_stats.

E.1.3.2. Utility Commands
• Allow generated columns to be virtual, and make them the default (Peter Eisentraut, Jian He,

Richard Guo, Dean Rasheed)

Virtual generated columns generate their values when the columns are read, not written. The write
behavior can still be specified via the STORED option.

• Add OLD/NEW support to RETURNING in DML queries (Dean Rasheed)

Previously RETURNING only returned new values for INSERT and UPDATE, and old values for
DELETE; MERGE would return the appropriate value for the internal query executed. This new
syntax allows the RETURNING list of INSERT/UPDATE/DELETE/MERGE to explicitly return old and new
values by using the special aliases old and new. These aliases can be renamed to avoid identifier
conflicts.

• Allow foreign tables to be created like existing local tables (Zhang Mingli)

The syntax is CREATE FOREIGN TABLE ... LIKE.
• Allow LIKE with nondeterministic collations (Peter Eisentraut)
• Allow text position search functions with nondeterministic collations (Peter Eisentraut)

These used to generate an error.
• Add builtin collation provider PG_UNICODE_FAST (Jeff Davis)

This locale supports case mapping, but sorts in code point order, not natural language order.
• Allow VACUUM and ANALYZE to process partitioned tables without processing their children

(Michael Harris)

This is enabled with the new ONLY option. This is useful since autovacuum does not process parti-
tioned tables, just its children.

• Add functions to modify per-relation and per-column optimizer statistics (Corey Huinker)

The functions are pg_restore_relation_stats(), pg_restore_attribute_stats(), pg_clear_re-
lation_stats(), and pg_clear_attribute_stats().

• Add server variable file_copy_method to control the file copying method (Nazir Bilal Yavuz)

This controls whether CREATE DATABASE ... STRATEGY=FILE_COPY and ALTER DATABASE ... SET
TABLESPACE uses file copy or clone.

E.1.3.2.1. Constraints
• Allow the specification of non-overlapping PRIMARY KEY, UNIQUE, and foreign key constraints (Paul

A. Jungwirth)

This is specified by WITHOUT OVERLAPS for PRIMARY KEY and UNIQUE, and by PERIOD for foreign
keys, all applied to the last specified column.

• Allow CHECK and foreign key constraints to be specified as NOT ENFORCED (Amul Sul)

This also adds column pg_constraint.conenforced.
• Require primary/foreign key relationships to use either deterministic collations or the the same

nondeterministic collations (Peter Eisentraut)

The restore of a pg_dump, also used by pg_upgrade, will fail if these requirements are not met;
schema changes must be made for these upgrade methods to succeed.

2466

Release Notes

• Store column NOT NULL specifications in pg_constraint (Álvaro Herrera, Bernd Helmle)

This allows names to be specified for NOT NULL constraint. This also adds NOT NULL constraints to
foreign tables and NOT NULL inheritance control to local tables.

• Allow ALTER TABLE to set the NOT VALID attribute of NOT NULL constraints (Rushabh Lathia, Jian
He)

• Allow modification of the inheritability of NOT NULL constraints (Suraj Kharage, Álvaro Herrera)

The syntax is ALTER TABLE ... ALTER CONSTRAINT ... [NO] INHERIT.

• Allow NOT VALID foreign key constraints on partitioned tables (Amul Sul)

• Allow dropping of constraints ONLY on partitioned tables (Álvaro Herrera)

This was previously erroneously prohibited.

• Add REJECT_LIMIT to control the number of invalid rows COPY FROM can ignore (Atsushi Torikoshi)

This is available when ON_ERROR = 'ignore'.

• Allow COPY TO to copy rows from populated materialized views (Jian He)

• Add COPY LOG_VERBOSITY level silent to suppress log output of ignored rows (Atsushi Torikoshi)

This new level suppresses output for discarded input rows when on_error = 'ignore'.

• Disallow COPY FREEZE on foreign tables (Nathan Bossart)

Previously, the COPY worked but the FREEZE was ignored, so disallow this command.

• Automatically include BUFFERS output in EXPLAIN ANALYZE (Guillaume Lelarge, David Rowley)

• Add full WAL buffer count to EXPLAIN (WAL) output (Bertrand Drouvot)

• In EXPLAIN ANALYZE, report the number of index lookups used per index scan node (Peter Geoghe-
gan)

• Modify EXPLAIN to output fractional row counts (Ibrar Ahmed, Ilia Evdokimov, Robert Haas)

• Add memory and disk usage details to Material, Window Aggregate, and common table expression
nodes to EXPLAIN output (David Rowley, Tatsuo Ishii)

• Add details about window function arguments to EXPLAIN output (Tom Lane)

• Add Parallel Bitmap Heap Scan worker cache statistics to EXPLAIN ANALYZE (David Geier, Heikki
Linnakangas, Donghang Lin, Alena Rybakina, David Rowley)

• Indicate disabled nodes in EXPLAIN ANALYZE output (Robert Haas, David Rowley, Laurenz Albe)

E.1.3.3. Data Types
• Improve Unicode full case mapping and conversion (Jeff Davis)

This adds the ability to do conditional and title case mapping, and case map single characters to
multiple characters.

• Allow jsonb null values to be cast to scalar types as NULL (Tom Lane)

Previously such casts generated an error.

• Add optional parameter to json{b}_strip_nulls to allow removal of null array elements (Florents
Tselai)

• Add function array_sort() which sorts an array's first dimension (Junwang Zhao, Jian He)

2467

Release Notes

• Add function array_reverse() which reverses an array's first dimension (Aleksander Alekseev)

• Add function reverse() to reverse bytea bytes (Aleksander Alekseev)

• Allow casting between integer types and bytea (Aleksander Alekseev)

The integer values are stored as bytea two's complement values.

• Update Unicode data to Unicode 16.0.0 (Peter Eisentraut)

• Add full text search stemming for Estonian (Tom Lane)

• Improve the XML error codes to more closely match the SQL standard (Tom Lane)

These errors are reported via SQLSTATE.

E.1.3.4. Functions
• Add function casefold() to allow for more sophisticated case-insensitive matching (Jeff Davis)

This allows more accurate comparisons, i.e., a character can have multiple upper or lower case
equivalents, or upper or lower case conversion changes the number of characters.

• Allow MIN()/MAX() aggregates on arrays and composite types (Aleksander Alekseev, Marat
Buharov)

• Add a WEEK option to EXTRACT() (Tom Lane)

• Improve the output EXTRACT(QUARTER ...) for negative values (Tom Lane)

• Add roman numeral support to to_number() (Hunaid Sohail)

This is accessed via the RN pattern.

• Add UUID version 7 generation function uuidv7() (Andrey Borodin)

This UUID value is temporally sortable. Function alias uuidv4() has been added to explicitly gener-
ate version 4 UUIDs.

• Add functions crc32() and crc32c() to compute CRC values (Aleksander Alekseev)

• Add math functions gamma() and lgamma() (Dean Rasheed)

• Allow => syntax for named cursor arguments in PL/pgSQL (Pavel Stehule)

We previously only accepted :=.

• Allow regexp_match[es]()/regexp_like()/regexp_replace()/regexp_count()/regexp_in-
str()/regexp_substr()/regexp_split_to_table()/regexp_split_to_array() to use named argu-
ments (Jian He)

• Add function PQfullProtocolVersion() to report the full, including minor, protocol version num-
ber (Jacob Champion, Jelte Fennema-Nio)

• Add libpq connection parameters and environment variables to specify the minimum and maximum
acceptable protocol version for connections (Jelte Fennema-Nio)

• Report search_path changes to the client (Alexander Kukushkin, Jelte Fennema-Nio, Tomas Vondra)

• Add PQtrace() output for all message types, including authentication (Jelte Fennema-Nio)

• Add libpq connection parameter sslkeylogfile which dumps out SSL key material (Abhishek
Chanda, Daniel Gustafsson)

This is useful for debugging.

• Modify some libpq function signatures to use int64_t (Thomas Munro)

2468

Release Notes

These previously used pg_int64, which is now deprecated.

• Allow psql to parse, bind, and close named prepared statements (Anthonin Bonnefoy, Michael
Paquier)

This is accomplished with new commands \parse, \bind_named, and \close_prepared.

• Add psql backslash commands to allowing issuance of pipeline queries (Anthonin Bonnefoy)

The new commands are \startpipeline, \syncpipeline, \sendpipeline, \endpipeline,
\flushrequest, \flush, and \getresults.

• Allow adding pipeline status to the psql prompt and add related state variables (Anthonin Bon-
nefoy)

The new prompt character is %P and the new psql variables are PIPELINE_SYNC_COUNT,
PIPELINE_COMMAND_COUNT, and PIPELINE_RESULT_COUNT.

• Allow adding the connection service name to the psql prompt or access it via psql variable (Michael
Banck)

• Add psql option to use expanded mode on all list commands (Dean Rasheed)

Adding backslash suffix x enables this.

• Change psql's \conninfo to use tabular format and include more information (Álvaro Herrera,
Maiquel Grassi, Hunaid Sohail)

• Add function's leakproof indicator to psql's \df+, \do+, \dAo+, and \dC+ outputs (Yugo Nagata)

• Add access method details for partitioned relations in \dP+ (Justin Pryzby)

• Add default_version to the psql \dx extension output (Magnus Hagander)

• Add psql variable WATCH_INTERVAL to set the default \watch wait time (Daniel Gustafsson)

E.1.3.7. Server Applications
• Change initdb to default to enabling checksums (Greg Sabino Mullane)

The new initdb option --no-data-checksums disables checksums.

• Add initdb option --no-sync-data-files to avoid syncing heap/index files (Nathan Bossart)

initdb option --no-sync is still available to avoid syncing any files.

• Add vacuumdb option --missing-stats-only to compute only missing optimizer statistics (Corey
Huinker, Nathan Bossart)

This option can only be run by superusers and can only be used with options --analyze-only and
--analyze-in-stages.

• Add pg_combinebackup option -k/--link to enable hard linking (Israel Barth Rubio, Robert Haas)

Only some files can be hard linked. This should not be used if the backups will be used indepen-
dently.

• Allow pg_verifybackup to verify tar-format backups (Amul Sul)

• If pg_rewind's --source-server specifies a database name, use it in --write-recovery-conf out-
put (Masahiko Sawada)

• Add pg_resetwal option --char-signedness to change the default char signedness (Masahiko
Sawada)

2469

Release Notes

E.1.3.7.1. pg_dump/pg_dumpall/pg_restore

• Add pg_dump option --statistics (Jeff Davis)
• Add pg_dump and pg_dumpall option --sequence-data to dump sequence data that would normally

be excluded (Nathan Bossart)
• Add pg_dump, pg_dumpall, and pg_restore options --statistics-only, --no-statistics, --no-

data, and --no-schema (Corey Huinker, Jeff Davis)
• Add option --no-policies to disable row level security policy processing in pg_dump, pg_dumpall,

pg_restore (Nikolay Samokhvalov)

This is useful for migrating to systems with different policies.

• Allow pg_upgrade to preserve optimizer statistics (Corey Huinker, Jeff Davis, Nathan Bossart)

Extended statistics are not preserved. Also add pg_upgrade option --no-statistics to disable sta-
tistics preservation.

• Allow pg_upgrade to process database checks in parallel (Nathan Bossart)

This is controlled by the existing --jobs option.
• Add pg_upgrade option --swap to swap directories rather than copy, clone, or link files (Nathan

Bossart)

This mode is potentially the fastest.
• Add pg_upgrade option --set-char-signedness to set the default char signedness of new cluster

(Masahiko Sawada)

This is to handle cases where a pre-PostgreSQL 18 cluster's default CPU signedness does not
match the new cluster.

E.1.3.7.3. Logical Replication Applications

• Add pg_createsubscriber option --all to create logical replicas for all databases (Shubham Khan-
na)

• Add pg_createsubscriber option --clean to remove publications (Shubham Khanna)
• Add pg_createsubscriber option --enable-two-phase to enable prepared transactions (Shubham

Khanna)
• Add pg_recvlogical option --enable-failover to specify failover slots (Hayato Kuroda)

Also add option --enable-two-phase as a synonym for --two-phase, and deprecate the latter.
• Allow pg_recvlogical --drop-slot to work without --dbname (Hayato Kuroda)

E.1.3.8. Source Code
• Separate the loading and running of injection points (Michael Paquier, Heikki Linnakangas)

Injection points can now be created, but not run, via INJECTION_POINT_LOAD(), and such injection
points can be run via INJECTION_POINT_CACHED().

• Support runtime arguments in injection points (Michael Paquier)
• Allow inline injection point test code with IS_INJECTION_POINT_ATTACHED() (Heikki Linnakangas)
• Improve the performance of processing long JSON strings using SIMD (Single Instruction Multiple

Data) (David Rowley)
• Speed up CRC32C calculations using x86 AVX-512 instructions (Raghuveer Devulapalli, Paul Amon-

son)

2470

Release Notes

• Add ARM Neon and SVE CPU intrinsics for popcount (integer bit counting) (Chiranmoy Bhat-
tacharya, Devanga Susmitha, Rama Malladi)

• Improve the speed of numeric multiplication and division (Joel Jacobson, Dean Rasheed)

• Add configure option --with-libnuma to enable NUMA awareness (Jakub Wartak, Bertrand Drou-
vot)

The function pg_numa_available() reports on NUMA awareness, and system views pg_shmem_al-
locations_numa and pg_buffercache_numa which report on shared memory distribution across
NUMA nodes.

• Add TOAST table to pg_index to allow for very large expression indexes (Nathan Bossart)

• Remove column pg_attribute.attcacheoff (David Rowley)

• Add column pg_class.relallfrozen (Melanie Plageman)

• Add amgettreeheight, amconsistentequality, and amconsistentordering to the index access
method API (Mark Dilger)

• Add GiST support function stratnum() (Paul A. Jungwirth)

• Record the default CPU signedness of char in pg_controldata (Masahiko Sawada)

• Add support for Python "Limited API" in PL/Python (Peter Eisentraut)

This helps prevent problems caused by Python 3.x version mismatches.

• Change the minimum supported Python version to 3.6.8 (Jacob Champion)

• Remove support for OpenSSL versions older than 1.1.1 (Daniel Gustafsson)

• If LLVM is enabled, require version 14 or later (Thomas Munro)

• Add macro PG_MODULE_MAGIC_EXT to allow extensions to report their name and version (Andrei Lep-
ikhov)

This information can be access via the new function pg_get_loaded_modules().

• Document that SPI_connect()/SPI_connect_ext() always returns success (SPI_OK_CONNECT)
(Stepan Neretin)

Errors are always reported via ereport().

• Add documentation section about API and ABI compatibility (David Wheeler, Peter Eisentraut)

• Remove the experimental designation of Meson builds on Windows (Aleksander Alekseev)

• Remove configure options --disable-spinlocks and --disable-atomics (Thomas Munro)

Thirty-two-bit atomic operations are now required.

• Remove support for the HPPA/PA-RISC architecture (Tom Lane)

E.1.3.9. Additional Modules
• Add extension pg_logicalinspect to inspect logical snapshots (Bertrand Drouvot)

• Add extension pg_overexplain which adds debug details to EXPLAIN output (Robert Haas)

• Add output columns to postgres_fdw_get_connections() (Hayato Kuroda, Sagar Dilip Shedge)

New output column used_in_xact indicates if the foreign data wrapper is being used by a current
transaction, closed indicates if it is closed, user_name indicates the user name, and remote_back-
end_pid indicates the remote backend process identifier.

• Allow SCRAM authentication from the client to be passed to postgres_fdw servers (Matheus Alcan-
tara, Peter Eisentraut)

2471

Release Notes

This avoids storing postgres_fdw authentication information in the database, and is enabled with
the postgres_fdw use_scram_passthrough connection option. libpq uses new connection parame-
ters scram_client_key and scram_server_key.

• Allow SCRAM authentication from the client to be passed to dblink servers (Matheus Alcantara)
• Add on_error and log_verbosity options to file_fdw (Atsushi Torikoshi)

These control how file_fdw handles and reports invalid file rows.
• Add reject_limit to control the number of invalid rows file_fdw can ignore (Atsushi Torikoshi)

This is active when ON_ERROR = 'ignore'.
• Add configurable variable min_password_length to passwordcheck (Emanuele Musella, Maurizio

Boriani)

This controls the minimum password length.
• Have pgbench report the number of failed, retried, or skipped transactions in per-script reports

(Yugo Nagata)
• Add isn server variable weak to control invalid check digit acceptance (Viktor Holmberg)

This was previously only controlled by function isn_weak().
• Allow values to be sorted to speed btree_gist index builds (Bernd Helmle, Andrey Borodin)
• Add amcheck check function gin_index_check() to verify GIN indexes (Grigory Kryachko, Heikki

Linnakangas, Andrey Borodin)
• Add functions pg_buffercache_evict_relation() and pg_buffercache_evict_all() to evict un-

pinned shared buffers (Nazir Bilal Yavuz)

The existing function pg_buffercache_evict() now returns the buffer flush status.
• Allow extensions to install custom EXPLAIN options (Robert Haas, Sami Imseih)
• Allow extensions to use the server's cumulative statistics API (Michael Paquier)

• Allow the queries of CREATE TABLE AS and DECLARE to be tracked by pg_stat_statements (An-
thonin Bonnefoy)

They are also now assigned query ids.
• Allow the parameterization of SET values in pg_stat_statements (Greg Sabino Mullane, Michael

Paquier)

This reduces the bloat caused by SET statements with differing constants.
• Add pg_stat_statements columns to report parallel activity (Guillaume Lelarge)

The new columns are parallel_workers_to_launch and parallel_workers_launched.
• Add pg_stat_statements.wal_buffers_full to report full WAL buffers (Bertrand Drouvot)

• Add pgcrypto algorithms sha256crypt and sha512crypt (Bernd Helmle)
• Add CFB mode to pgcrypto encryption and decryption (Umar Hayat)
• Add function fips_mode() to report the server's FIPS mode (Daniel Gustafsson)
• Add pgcrypto server variable builtin_crypto_enabled to allow disabling builtin non-FIPS mode

cryptographic functions (Daniel Gustafsson, Joe Conway)

This is useful for guaranteeing FIPS mode behavior.

2472

Release Notes

E.1.4. Acknowledgments
The following individuals (in alphabetical order) have contributed to this release as patch authors, com-
mitters, reviewers, testers, or reporters of issues.

Abhishek Chanda
Adam Guo
Adam Rauch
Aidar Imamov
Ajin Cherian
Alastair Turner
Alec Cozens
Aleksander Alekseev
Alena Rybakina
Alex Friedman
Alex Richman
Alexander Alehin
Alexander Borisov
Alexander Korotkov
Alexander Kozhemyakin
Alexander Kukushkin
Alexander Kuzmenkov
Alexander Kuznetsov
Alexander Lakhin
Alexander Pyhalov
Alexandra Wang
Alexey Dvoichenkov
Alexey Makhmutov
Alexey Shishkin
Ali Akbar
Álvaro Herrera
Álvaro Mongil
Amit Kapila
Amit Langote
Amul Sul
Andreas Karlsson
Andreas Scherbaum
Andreas Ulbrich
Andrei Lepikhov
Andres Freund
Andrew
Andrew Bille
Andrew Dunstan
Andrew Jackson
Andrew Kane
Andrew Watkins
Andrey Borodin
Andrey Chudnovsky
Andrey Rachitskiy
Andrey Rudometov
Andy Alsup
Andy Fan
Anthonin Bonnefoy
Anthony Hsu
Anthony Leung
Anton Melnikov
Anton Voloshin
Antonin Houska

2473

Release Notes

Antti Lampinen
Arseniy Mukhin
Artur Zakirov
Arun Thirupathi
Ashutosh Bapat
Asphator
Atsushi Torikoshi
Avi Weinberg
Aya Iwata
Ayush Tiwari
Ayush Vatsa
Bastien Roucariès
Ben Peachey Higdon
Benoit Lobréau
Bernd Helmle
Bernd Reiß
Bernhard Wiedemann
Bertrand Drouvot
Bertrand Mamasam
Bharath Rupireddy
Bogdan Grigorenko
Boyu Yang
Braulio Fdo Gonzalez
Bruce Momjian
Bykov Ivan
Cameron Vogt
Cary Huang
Cédric Villemain
Cees van Zeeland
ChangAo Chen
Chao Li
Chapman Flack
Charles Samborski
Chengwen Wu
Chengxi Sun
Chiranmoy Bhattacharya
Chris Gooch
Christian Charukiewicz
Christoph Berg
Christophe Courtois
Christopher Inokuchi
Clemens Ruck
Corey Huinker
Craig Milhiser
Crisp Lee
Dagfinn Ilmari Mannsåker
Daniel Elishakov
Daniel Gustafsson
Daniel Vérité
Daniel Westermann
Daniele Varrazzo
Daniil Davydov
Daria Shanina
Dave Cramer
Dave Page
David Benjamin
David Christensen
David Fiedler

2474

Release Notes

David G. Johnston
David Geier
David Rowley
David Steele
David Wheeler
David Zhang
Davinder Singh
Dean Rasheed
Devanga Susmitha
Devrim Gündüz
Dian Fay
Dilip Kumar
Dimitrios Apostolou
Dipesh Dhameliya
Dmitrii Bondar
Dmitry Dolgov
Dmitry Koval
Dmitry Kovalenko
Dmitry Yurichev
Dominique Devienne
Donghang Lin
Dorjpalam Batbaatar
Drew Callahan
Duncan Sands
Dwayne Towell
Dzmitry Jachnik
Egor Chindyaskin
Egor Rogov
Emanuel Ionescu
Emanuele Musella
Emre Hasegeli
Eric Cyr
Erica Zhang
Erik Nordström
Erik Rijkers
Erik Wienhold
Erki Eessaar
Ethan Mertz
Etienne LAFARGE
Etsuro Fujita
Euler Taveira
Evan Si
Evgeniy Gorbanev
Fabio R. Sluzala
Fabrízio de Royes Mello
Feike Steenbergen
Feliphe Pozzer
Felix
Fire Emerald
Florents Tselai
Francesco Degrassi
Frank Streitzig
Frédéric Yhuel
Fredrik Widlert
Gabriele Bartolini
Gavin Panella
Geoff Winkless
George MacKerron

2475

Release Notes

Gilles Darold
Grant Gryczan
Greg Burd
Greg Sabino Mullane
Greg Stark
Grigory Kryachko
Guillaume Lelarge
Gunnar Morling
Gunnar Wagner
Gurjeet Singh
Haifang Wang
Hajime Matsunaga
Hamid Akhtar
Hannu Krosing
Hari Krishna Sunder
Haruka Takatsuka
Hayato Kuroda
Heikki Linnakangas
Hironobu Suzuki
Holger Jakobs
Hubert Lubaczewski
Hugo Dubois
Hugo Zhang
Hunaid Sohail
Hywel Carver
Ian Barwick
Ibrar Ahmed
Igor Gnatyuk
Igor Korot
Ilia Evdokimov
Ilya Gladyshev
Ilyasov Ian
Imran Zaheer
Isaac Morland
Israel Barth Rubio
Ivan Kush
Jacob Brazeal
Jacob Champion
Jaime Casanova
Jakob Egger
Jakub Wartak
James Coleman
James Hunter
Jan Behrens
Japin Li
Jason Smith
Jayesh Dehankar
Jeevan Chalke
Jeff Davis
Jehan-Guillaume de Rorthais
Jelte Fennema-Nio
Jian He
Jianghua Yang
Jiao Shuntian
Jim Jones
Jim Nasby
Jingtang Zhang
Jingzhou Fu

2476

Release Notes

Joe Conway
Joel Jacobson
John Hutchins
John Naylor
Jonathan Katz
Jorge Solórzano
José Villanova
Josef Šimánek
Joseph Koshakow
Julien Rouhaud
Junwang Zhao
Justin Pryzby
Kaido Vaikla
Kaimeh
Karina Litskevich
Karthik S
Kartyshov Ivan
Kashif Zeeshan
Keisuke Kuroda
Kevin Hale Boyes
Kevin K Biju
Kirill Reshke
Kirill Zdornyy
Koen De Groote
Koichi Suzuki
Koki Nakamura
Konstantin Knizhnik
Kouhei Sutou
Kuntal Ghosh
Kyotaro Horiguchi
Lakshmi Narayana Velayudam
Lars Kanis
Laurence Parry
Laurenz Albe
Lele Gaifax
Li Yong
Lilian Ontowhee
Lingbin Meng
Luboslav Špilák
Luca Vallisa
Lukas Fittl
Maciek Sakrejda
Magnus Hagander
Mahendra Singh Thalor
Mahendrakar Srinivasarao
Maiquel Grassi
Maksim Korotkov
Maksim Melnikov
Man Zeng
Marat Buharov
Marc Balmer
Marco Nenciarini
Marcos Pegoraro
Marina Polyakova
Mark Callaghan
Mark Dilger
Marlene Brandstaetter
Marlene Reiterer

2477

Release Notes

Martin Rakhmanov
Masahiko Sawada
Masahiro Ikeda
Masao Fujii
Mason Mackaman
Mat Arye
Matheus Alcantara
Mats Kindahl
Matthew Gabeler-Lee
Matthew Kim
Matthew Sterrett
Matthew Woodcraft
Matthias van de Meent
Matthieu Denais
Maurizio Boriani
Max Johnson
Max Madden
Maxim Boguk
Maxim Orlov
Maximilian Chrzan
Melanie Plageman
Melih Mutlu
Mert Alev
Michael Banck
Michael Bondarenko
Michael Christofides
Michael Guissine
Michael Harris
Michaël Paquier
Michail Nikolaev
Michal Kleczek
Michel Pelletier
Mikaël Gourlaouen
Mikhail Gribkov
Mikhail Kot
Milosz Chmura
Muralikrishna Bandaru
Murat Efendioglu
Mutaamba Maasha
Naeem Akhter
Nat Makarevitch
Nathan Bossart
Navneet Kumar
Nazir Bilal Yavuz
Neil Conway
Niccolò Fei
Nick Davies
Nicolas Maus
Niek Brasa
Nikhil Raj
Nikita
Nikita Kalinin
Nikita Malakhov
Nikolay Samokhvalov
Nikolay Shaplov
Nisha Moond
Nitin Jadhav
Nitin Motiani

2478

Release Notes

Noah Misch
Noboru Saito
Noriyoshi Shinoda
Ole Peder Brandtzæg
Oleg Sibiryakov
Oleg Tselebrovskiy
Olleg Samoylov
Onder Kalaci
Ondrej Navratil
Patrick Stählin
Paul Amonson
Paul Jungwirth
Paul Ramsey
Pavel Borisov
Pavel Luzanov
Pavel Nekrasov
Pavel Stehule
Peter Eisentraut
Peter Geoghegan
Peter Mittere
Peter Smith
Phil Eaton
Philipp Salvisberg
Philippe Beaudoin
Pierre Giraud
Pixian Shi
Polina Bungina
Przemyslaw Sztoch
Quynh Tran
Rafia Sabih
Raghuveer Devulapalli
Rahila Syed
Rama Malladi
Ran Benita
Ranier Vilela
Renan Alves Fonseca
Richard Guo
Richard Neill
Rintaro Ikeda
Robert Haas
Robert Treat
Robins Tharakan
Roman Zharkov
Ronald Cruz
Ronan Dunklau
Rui Zhao
Rushabh Lathia
Rustam Allakov
Ryo Kanbayashi
Ryohei Takahashi
RyotaK
Sagar Dilip Shedge
Salvatore Dipietro
Sam Gabrielsson
Sam James
Sameer Kumar
Sami Imseih
Samuel Thibault

2479

Release Notes

Satyanarayana Narlapuram
Sebastian Skalacki
Senglee Choi
Sergei Kornilov
Sergey Belyashov
Sergey Dudoladov
Sergey Prokhorenko
Sergey Sargsyan
Sergey Soloviev
Sergey Tatarintsev
Shaik Mohammad Mujeeb
Shawn McCoy
Shenhao Wang
Shihao Zhong
Shinya Kato
Shlok Kyal
Shubham Khanna
Shveta Malik
Simon Riggs
Smolkin Grigory
Sofia Kopikova
Song Hongyu
Song Jinzhou
Soumyadeep Chakraborty
Sravan Kumar
Srinath Reddy
Stan Hu
Stepan Neretin
Stephen Fewer
Stephen Frost
Steve Chavez
Steven Niu
Suraj Kharage
Sven Klemm
Takamichi Osumi
Takeshi Ideriha
Tatsuo Ishii
Ted Yu
Tels
Tender Wang
Teodor Sigaev
Thom Brown
Thomas Baehler
Thomas Krennwallner
Thomas Munro
Tim Wood
Timur Magomedov
Tobias Wendorff
Todd Cook
Tofig Aliev
Tom Lane
Tomas Vondra
Tomasz Rybak
Tomasz Szypowski
Torsten Foertsch
Toshi Harada
Tristan Partin
Triveni N

2480

Release Notes

Umar Hayat
Vallimaharajan G
Vasya Boytsov
Victor Yegorov
Vignesh C
Viktor Holmberg
Vinícius Abrahão
Vinod Sridharan
Virender Singla
Vitaly Davydov
Vladlen Popolitov
Vladyslav Nebozhyn
Walid Ibrahim
Webbo Han
Wenhui Qiu
Will Mortensen
Will Storey
Wolfgang Walther
Xin Zhang
Xing Guo
Xuneng Zhou
Yan Chengpen
Yang Lei
Yaroslav Saburov
Yaroslav Syrytsia
Yasir Hussain
Yasuo Honda
Yogesh Sharma
Yonghao Lee
Yoran Heling
Yu Liang
Yugo Nagata
Yuhang Qiu
Yuki Seino
Yura Sokolov
Yurii Rashkovskii
Yushi Ogiwara
Yusuke Sugie
Yuta Katsuragi
Yuto Sasaki
Yuuki Fujii
Yuya Watari
Zane Duffield
Zeyuan Hu
Zhang Mingli
Zhihong Yu
Zhijie Hou
Zsolt Parragi

E.2. Prior Releases
Release notes for prior release branches can be found at https://www.postgresql.org/docs/release/

2481

https://www.postgresql.org/docs/release/

Appendix F. Additional Supplied
Modules and Extensions

This appendix and the next one contain information on the optional components found in the contrib
directory of the PostgreSQL distribution. These include porting tools, analysis utilities, and plug-in fea-
tures that are not part of the core PostgreSQL system. They are separate mainly because they address
a limited audience or are too experimental to be part of the main source tree. This does not preclude
their usefulness.

This appendix covers extensions and other server plug-in module libraries found in contrib. Appendix G
covers utility programs.

When building from the source distribution, these optional components are not built automatically, un-
less you build the "world" target (see Step 2). You can build and install all of them by running:

make
make install

in the contrib directory of a configured source tree; or to build and install just one selected module,
do the same in that module's subdirectory. Many of the modules have regression tests, which can be
executed by running:

make check

before installation or

make installcheck

once you have a PostgreSQL server running.

If you are using a pre-packaged version of PostgreSQL, these components are typically made available
as a separate subpackage, such as postgresql-contrib.

Many components supply new user-defined functions, operators, or types, packaged as extensions. To
make use of one of these extensions, after you have installed the code you need to register the new SQL
objects in the database system. This is done by executing a CREATE EXTENSION command. In a fresh
database, you can simply do

CREATE EXTENSION extension_name;

This command registers the new SQL objects in the current database only, so you need to run it in every
database in which you want the extension's facilities to be available. Alternatively, run it in database
template1 so that the extension will be copied into subsequently-created databases by default.

For all extensions, the CREATE EXTENSION command must be run by a database superuser, unless the
extension is considered “trusted”. Trusted extensions can be run by any user who has CREATE privilege
on the current database. Extensions that are trusted are identified as such in the sections that follow.
Generally, trusted extensions are ones that cannot provide access to outside-the-database functionality.

The following extensions are trusted in a default installation:

btree_gin fuzzystrmatch ltree tcn
btree_gist hstore pgcrypto tsm_system_rows
citext intarray pg_trgm tsm_system_time
cube isn seg unaccent
dict_int lo tablefunc uuid-ossp

Many extensions allow you to install their objects in a schema of your choice. To do that, add SCHEMA
schema_name to the CREATE EXTENSION command. By default, the objects will be placed in your current
creation target schema, which in turn defaults to public.

2482

Additional Supplied Mod-
ules and Extensions

Note, however, that some of these components are not “extensions” in this sense, but are loaded into
the server in some other way, for instance by way of shared_preload_libraries. See the documentation
of each component for details.

2483

Additional Supplied Mod-
ules and Extensions

F.1. amcheck — tools to verify table and index consisten-
cy

The amcheck module provides functions that allow you to verify the logical consistency of the structure
of relations.

The B-Tree checking functions verify various invariants in the structure of the representation of partic-
ular relations. The correctness of the access method functions behind index scans and other important
operations relies on these invariants always holding. For example, certain functions verify, among other
things, that all B-Tree pages have items in “logical” order (e.g., for B-Tree indexes on text, index tuples
should be in collated lexical order). If that particular invariant somehow fails to hold, we can expect
binary searches on the affected page to incorrectly guide index scans, resulting in wrong answers to
SQL queries. If the structure appears to be valid, no error is raised. While these checking functions are
run, the search_path is temporarily changed to pg_catalog, pg_temp.

Verification is performed using the same procedures as those used by index scans themselves, which
may be user-defined operator class code. For example, B-Tree index verification relies on comparisons
made with one or more B-Tree support function 1 routines. See Section 36.16.3 for details of operator
class support functions.

Unlike the B-Tree checking functions which report corruption by raising errors, the heap checking func-
tion verify_heapam checks a table and attempts to return a set of rows, one row per corruption detected.
Despite this, if facilities that verify_heapam relies upon are themselves corrupted, the function may be
unable to continue and may instead raise an error.

Permission to execute amcheck functions may be granted to non-superusers, but before granting such
permissions careful consideration should be given to data security and privacy concerns. Although the
corruption reports generated by these functions do not focus on the contents of the corrupted data so
much as on the structure of that data and the nature of the corruptions found, an attacker who gains
permission to execute these functions, particularly if the attacker can also induce corruption, might be
able to infer something of the data itself from such messages.

F.1.1. Functions
bt_index_check(index regclass, heapallindexed boolean, checkunique boolean) returns void

bt_index_check tests that its target, a B-Tree index, respects a variety of invariants. Example usage:

test=# SELECT bt_index_check(index => c.oid, heapallindexed => i.indisunique),
 c.relname,
 c.relpages
FROM pg_index i
JOIN pg_opclass op ON i.indclass[0] = op.oid
JOIN pg_am am ON op.opcmethod = am.oid
JOIN pg_class c ON i.indexrelid = c.oid
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE am.amname = 'btree' AND n.nspname = 'pg_catalog'
-- Don't check temp tables, which may be from another session:
AND c.relpersistence != 't'
-- Function may throw an error when this is omitted:
AND c.relkind = 'i' AND i.indisready AND i.indisvalid
ORDER BY c.relpages DESC LIMIT 10;
 bt_index_check | relname | relpages
----------------+---------------------------------+----------
 | pg_depend_reference_index | 43
 | pg_depend_depender_index | 40
 | pg_proc_proname_args_nsp_index | 31
 | pg_description_o_c_o_index | 21
 | pg_attribute_relid_attnam_index | 14

2484

Additional Supplied Mod-
ules and Extensions

 | pg_proc_oid_index | 10
 | pg_attribute_relid_attnum_index | 9
 | pg_amproc_fam_proc_index | 5
 | pg_amop_opr_fam_index | 5
 | pg_amop_fam_strat_index | 5
(10 rows)

This example shows a session that performs verification of the 10 largest catalog indexes in the
database “test”. Verification of the presence of heap tuples as index tuples is requested for the subset
that are unique indexes. Since no error is raised, all indexes tested appear to be logically consistent.
Naturally, this query could easily be changed to call bt_index_check for every index in the database
where verification is supported.

bt_index_check acquires an AccessShareLock on the target index and the heap relation it belongs
to. This lock mode is the same lock mode acquired on relations by simple SELECT statements. bt_in-
dex_check does not verify invariants that span child/parent relationships, but will verify the presence
of all heap tuples as index tuples within the index when heapallindexed is true. When checkunique
is true bt_index_check will check that no more than one among duplicate entries in unique index is
visible. When a routine, lightweight test for corruption is required in a live production environment,
using bt_index_check often provides the best trade-off between thoroughness of verification and
limiting the impact on application performance and availability.

bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, check-
unique boolean) returns void

bt_index_parent_check tests that its target, a B-Tree index, respects a variety of invariants. Option-
ally, when the heapallindexed argument is true, the function verifies the presence of all heap tuples
that should be found within the index. When checkunique is true bt_index_parent_check will check
that no more than one among duplicate entries in unique index is visible. When the optional root-
descend argument is true, verification re-finds tuples on the leaf level by performing a new search
from the root page for each tuple. The checks that can be performed by bt_index_parent_check are
a superset of the checks that can be performed by bt_index_check. bt_index_parent_check can be
thought of as a more thorough variant of bt_index_check: unlike bt_index_check, bt_index_par-
ent_check also checks invariants that span parent/child relationships, including checking that there
are no missing downlinks in the index structure. bt_index_parent_check follows the general con-
vention of raising an error if it finds a logical inconsistency or other problem.

A ShareLock is required on the target index by bt_index_parent_check (a ShareLock is also acquired
on the heap relation). These locks prevent concurrent data modification from INSERT, UPDATE, and
DELETE commands. The locks also prevent the underlying relation from being concurrently processed
by VACUUM, as well as all other utility commands. Note that the function holds locks only while running,
not for the entire transaction.

bt_index_parent_check's additional verification is more likely to detect various pathological cases.
These cases may involve an incorrectly implemented B-Tree operator class used by the index that is
checked, or, hypothetically, undiscovered bugs in the underlying B-Tree index access method code.
Note that bt_index_parent_check cannot be used when hot standby mode is enabled (i.e., on read-
only physical replicas), unlike bt_index_check.

gin_index_check(index regclass) returns void

gin_index_check tests that its target GIN index has consistent parent-child tuples relations (no
parent tuples require tuple adjustment) and page graph respects balanced-tree invariants (internal
pages reference only leaf page or only internal pages).

Tip
bt_index_check and bt_index_parent_check both output log messages about the verification
process at DEBUG1 and DEBUG2 severity levels. These messages provide detailed information about

2485

Additional Supplied Mod-
ules and Extensions

the verification process that may be of interest to PostgreSQL developers. Advanced users may
also find this information helpful, since it provides additional context should verification actually
detect an inconsistency. Running:
SET client_min_messages = DEBUG1;

in an interactive psql session before running a verification query will display messages about the
progress of verification with a manageable level of detail.

verify_heapam(relation regclass, on_error_stop boolean, check_toast boolean, skip text,
startblock bigint, endblock bigint, blkno OUT bigint, offnum OUT integer, attnum OUT
integer, msg OUT text) returns setof record

Checks a table, sequence, or materialized view for structural corruption, where pages in the relation
contain data that is invalidly formatted, and for logical corruption, where pages are structurally valid
but inconsistent with the rest of the database cluster.

The following optional arguments are recognized:

on_error_stop

If true, corruption checking stops at the end of the first block in which any corruptions are found.

Defaults to false.

check_toast

If true, toasted values are checked against the target relation's TOAST table.

This option is known to be slow. Also, if the toast table or its index is corrupt, checking it against
toast values could conceivably crash the server, although in many cases this would just produce
an error.

Defaults to false.

skip

If not none, corruption checking skips blocks that are marked as all-visible or all-frozen, as spec-
ified. Valid options are all-visible, all-frozen and none.

Defaults to none.

startblock

If specified, corruption checking begins at the specified block, skipping all previous blocks. It is
an error to specify a startblock outside the range of blocks in the target table.

By default, checking begins at the first block.

endblock

If specified, corruption checking ends at the specified block, skipping all remaining blocks. It is
an error to specify an endblock outside the range of blocks in the target table.

By default, all blocks are checked.

For each corruption detected, verify_heapam returns a row with the following columns:

blkno

The number of the block containing the corrupt page.

offnum

The OffsetNumber of the corrupt tuple.

2486

Additional Supplied Mod-
ules and Extensions

attnum

The attribute number of the corrupt column in the tuple, if the corruption is specific to a column
and not the tuple as a whole.

msg

A message describing the problem detected.

F.1.2. Optional heapallindexed Verification
When the heapallindexed argument to B-Tree verification functions is true, an additional phase of
verification is performed against the table associated with the target index relation. This consists of a
“dummy” CREATE INDEX operation, which checks for the presence of all hypothetical new index tuples
against a temporary, in-memory summarizing structure (this is built when needed during the basic first
phase of verification). The summarizing structure “fingerprints” every tuple found within the target
index. The high level principle behind heapallindexed verification is that a new index that is equivalent
to the existing, target index must only have entries that can be found in the existing structure.

The additional heapallindexed phase adds significant overhead: verification will typically take several
times longer. However, there is no change to the relation-level locks acquired when heapallindexed
verification is performed.

The summarizing structure is bound in size by maintenance_work_mem. In order to ensure that there is
no more than a 2% probability of failure to detect an inconsistency for each heap tuple that should be
represented in the index, approximately 2 bytes of memory are needed per tuple. As less memory is made
available per tuple, the probability of missing an inconsistency slowly increases. This approach limits the
overhead of verification significantly, while only slightly reducing the probability of detecting a problem,
especially for installations where verification is treated as a routine maintenance task. Any single absent
or malformed tuple has a new opportunity to be detected with each new verification attempt.

F.1.3. Using amcheck Effectively
amcheck can be effective at detecting various types of failure modes that data checksums will fail to
catch. These include:
• Structural inconsistencies caused by incorrect operator class implementations.

This includes issues caused by the comparison rules of operating system collations changing. Com-
parisons of datums of a collatable type like text must be immutable (just as all comparisons used
for B-Tree index scans must be immutable), which implies that operating system collation rules
must never change. Though rare, updates to operating system collation rules can cause these is-
sues. More commonly, an inconsistency in the collation order between a primary server and a
standby server is implicated, possibly because the major operating system version in use is incon-
sistent. Such inconsistencies will generally only arise on standby servers, and so can generally only
be detected on standby servers.

If a problem like this arises, it may not affect each individual index that is ordered using an affected
collation, simply because indexed values might happen to have the same absolute ordering regard-
less of the behavioral inconsistency. See Section 23.1 and Section 23.2 for further details about
how PostgreSQL uses operating system locales and collations.

• Structural inconsistencies between indexes and the heap relations that are indexed (when hea-
pallindexed verification is performed).

There is no cross-checking of indexes against their heap relation during normal operation. Symp-
toms of heap corruption can be subtle.

• Corruption caused by hypothetical undiscovered bugs in the underlying PostgreSQL access method
code, sort code, or transaction management code.

Automatic verification of the structural integrity of indexes plays a role in the general testing of
new or proposed PostgreSQL features that could plausibly allow a logical inconsistency to be intro-

2487

Additional Supplied Mod-
ules and Extensions

duced. Verification of table structure and associated visibility and transaction status information
plays a similar role. One obvious testing strategy is to call amcheck functions continuously when
running the standard regression tests. See Section 31.1 for details on running the tests.

• File system or storage subsystem faults when data checksums are disabled.

Note that amcheck examines a page as represented in some shared memory buffer at the time of
verification if there is only a shared buffer hit when accessing the block. Consequently, amcheck
does not necessarily examine data read from the file system at the time of verification. Note that
when checksums are enabled, amcheck may raise an error due to a checksum failure when a cor-
rupt block is read into a buffer.

• Corruption caused by faulty RAM, or the broader memory subsystem.

PostgreSQL does not protect against correctable memory errors and it is assumed you will operate
using RAM that uses industry standard Error Correcting Codes (ECC) or better protection. Howev-
er, ECC memory is typically only immune to single-bit errors, and should not be assumed to provide
absolute protection against failures that result in memory corruption.

When heapallindexed verification is performed, there is generally a greatly increased chance of
detecting single-bit errors, since strict binary equality is tested, and the indexed attributes within
the heap are tested.

Structural corruption can happen due to faulty storage hardware, or relation files being overwritten or
modified by unrelated software. This kind of corruption can also be detected with data page checksums.

Relation pages which are correctly formatted, internally consistent, and correct relative to their own
internal checksums may still contain logical corruption. As such, this kind of corruption cannot be de-
tected with checksums. Examples include toasted values in the main table which lack a corresponding
entry in the toast table, and tuples in the main table with a Transaction ID that is older than the oldest
valid Transaction ID in the database or cluster.

Multiple causes of logical corruption have been observed in production systems, including bugs in the
PostgreSQL server software, faulty and ill-conceived backup and restore tools, and user error.

Corrupt relations are most concerning in live production environments, precisely the same environments
where high risk activities are least welcome. For this reason, verify_heapam has been designed to di-
agnose corruption without undue risk. It cannot guard against all causes of backend crashes, as even
executing the calling query could be unsafe on a badly corrupted system. Access to catalog tables is
performed and could be problematic if the catalogs themselves are corrupted.

In general, amcheck can only prove the presence of corruption; it cannot prove its absence.

F.1.4. Repairing Corruption
No error concerning corruption raised by amcheck should ever be a false positive. amcheck raises errors
in the event of conditions that, by definition, should never happen, and so careful analysis of amcheck
errors is often required.

There is no general method of repairing problems that amcheck detects. An explanation for the root cause
of an invariant violation should be sought. pageinspect may play a useful role in diagnosing corruption
that amcheck detects. A REINDEX may not be effective in repairing corruption.

2488

Additional Supplied Mod-
ules and Extensions

F.2. auth_delay — pause on authentication failure
auth_delay causes the server to pause briefly before reporting authentication failure, to make brute-
force attacks on database passwords more difficult. Note that it does nothing to prevent denial-of-service
attacks, and may even exacerbate them, since processes that are waiting before reporting authentication
failure will still consume connection slots.

In order to function, this module must be loaded via shared_preload_libraries in postgresql.conf.

F.2.1. Configuration Parameters
auth_delay.milliseconds (integer)

The number of milliseconds to wait before reporting an authentication failure. The default is 0.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = 'auth_delay'

auth_delay.milliseconds = '500'

F.2.2. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

2489

Additional Supplied Mod-
ules and Extensions

F.3. auto_explain — log execution plans of slow queries
The auto_explain module provides a means for logging execution plans of slow statements automati-
cally, without having to run EXPLAIN by hand. This is especially helpful for tracking down un-optimized
queries in large applications.

The module provides no SQL-accessible functions. To use it, simply load it into the server. You can load
it into an individual session:
LOAD 'auto_explain';

(You must be superuser to do that.) More typical usage is to preload it into some or all sessions by
including auto_explain in session_preload_libraries or shared_preload_libraries in postgresql.conf.
Then you can track unexpectedly slow queries no matter when they happen. Of course there is a price
in overhead for that.

F.3.1. Configuration Parameters
There are several configuration parameters that control the behavior of auto_explain. Note that the
default behavior is to do nothing, so you must set at least auto_explain.log_min_duration if you want
any results.

auto_explain.log_min_duration (integer)
auto_explain.log_min_duration is the minimum statement execution time, in milliseconds, that
will cause the statement's plan to be logged. Setting this to 0 logs all plans. -1 (the default) disables
logging of plans. For example, if you set it to 250ms then all statements that run 250ms or longer will
be logged. Only superusers can change this setting.

auto_explain.log_parameter_max_length (integer)
auto_explain.log_parameter_max_length controls the logging of query parameter values. A value
of -1 (the default) logs the parameter values in full. 0 disables logging of parameter values. A value
greater than zero truncates each parameter value to that many bytes. Only superusers can change
this setting.

auto_explain.log_analyze (boolean)
auto_explain.log_analyze causes EXPLAIN ANALYZE output, rather than just EXPLAIN output, to
be printed when an execution plan is logged. This parameter is off by default. Only superusers can
change this setting.

Note
When this parameter is on, per-plan-node timing occurs for all statements executed, whether
or not they run long enough to actually get logged. This can have an extremely negative impact
on performance. Turning off auto_explain.log_timing ameliorates the performance cost, at
the price of obtaining less information.

auto_explain.log_buffers (boolean)
auto_explain.log_buffers controls whether buffer usage statistics are printed when an execution
plan is logged; it's equivalent to the BUFFERS option of EXPLAIN. This parameter has no effect unless
auto_explain.log_analyze is enabled. This parameter is off by default. Only superusers can change
this setting.

auto_explain.log_wal (boolean)
auto_explain.log_wal controls whether WAL usage statistics are printed when an execution plan
is logged; it's equivalent to the WAL option of EXPLAIN. This parameter has no effect unless auto_ex-
plain.log_analyze is enabled. This parameter is off by default. Only superusers can change this
setting.

2490

Additional Supplied Mod-
ules and Extensions

auto_explain.log_timing (boolean)

auto_explain.log_timing controls whether per-node timing information is printed when an execu-
tion plan is logged; it's equivalent to the TIMING option of EXPLAIN. The overhead of repeatedly read-
ing the system clock can slow down queries significantly on some systems, so it may be useful to set
this parameter to off when only actual row counts, and not exact times, are needed. This parameter
has no effect unless auto_explain.log_analyze is enabled. This parameter is on by default. Only
superusers can change this setting.

auto_explain.log_triggers (boolean)

auto_explain.log_triggers causes trigger execution statistics to be included when an execution
plan is logged. This parameter has no effect unless auto_explain.log_analyze is enabled. This
parameter is off by default. Only superusers can change this setting.

auto_explain.log_verbose (boolean)

auto_explain.log_verbose controls whether verbose details are printed when an execution plan
is logged; it's equivalent to the VERBOSE option of EXPLAIN. This parameter is off by default. Only
superusers can change this setting.

auto_explain.log_settings (boolean)

auto_explain.log_settings controls whether information about modified configuration options is
printed when an execution plan is logged. Only options affecting query planning with value different
from the built-in default value are included in the output. This parameter is off by default. Only
superusers can change this setting.

auto_explain.log_format (enum)

auto_explain.log_format selects the EXPLAIN output format to be used. The allowed values are
text, xml, json, and yaml. The default is text. Only superusers can change this setting.

auto_explain.log_level (enum)

auto_explain.log_level selects the log level at which auto_explain will log the query plan. Valid
values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, and LOG. The default is
LOG. Only superusers can change this setting.

auto_explain.log_nested_statements (boolean)

auto_explain.log_nested_statements causes nested statements (statements executed inside a
function) to be considered for logging. When it is off, only top-level query plans are logged. This
parameter is off by default. Only superusers can change this setting.

auto_explain.sample_rate (real)

auto_explain.sample_rate causes auto_explain to only explain a fraction of the statements in each
session. The default is 1, meaning explain all the queries. In case of nested statements, either all will
be explained or none. Only superusers can change this setting.

In ordinary usage, these parameters are set in postgresql.conf, although superusers can alter them
on-the-fly within their own sessions. Typical usage might be:

postgresql.conf
session_preload_libraries = 'auto_explain'

auto_explain.log_min_duration = '3s'

F.3.2. Example
postgres=# LOAD 'auto_explain';
postgres=# SET auto_explain.log_min_duration = 0;

2491

Additional Supplied Mod-
ules and Extensions

postgres=# SET auto_explain.log_analyze = true;
postgres=# SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;

This might produce log output such as:

LOG: duration: 3.651 ms plan:
 Query Text: SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;
 Aggregate (cost=16.79..16.80 rows=1 width=0) (actual time=3.626..3.627 rows=1.00
 loops=1)
 -> Hash Join (cost=4.17..16.55 rows=92 width=0) (actual time=3.349..3.594
 rows=92.00 loops=1)
 Hash Cond: (pg_class.oid = pg_index.indrelid)
 -> Seq Scan on pg_class (cost=0.00..9.55 rows=255 width=4) (actual
 time=0.016..0.140 rows=255.00 loops=1)
 -> Hash (cost=3.02..3.02 rows=92 width=4) (actual time=3.238..3.238
 rows=92.00 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 4kB
 -> Seq Scan on pg_index (cost=0.00..3.02 rows=92 width=4) (actual
 time=0.008..3.187 rows=92.00 loops=1)
 Filter: indisunique

F.3.3. Author
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>

2492

Additional Supplied Mod-
ules and Extensions

F.4. basebackup_to_shell — example "shell" pg_baseback-
up module

basebackup_to_shell adds a custom basebackup target called shell. This makes it possible to run
pg_basebackup --target=shell or, depending on how this module is configured, pg_basebackup --
target=shell:DETAIL_STRING, and cause a server command chosen by the server administrator to be
executed for each tar archive generated by the backup process. The command will receive the contents
of the archive via standard input.

This module is primarily intended as an example of how to create a new backup targets via an extension
module, but in some scenarios it may be useful for its own sake. In order to function, this module must
be loaded via shared_preload_libraries or local_preload_libraries.

F.4.1. Configuration Parameters
basebackup_to_shell.command (string)

The command which the server should execute for each archive generated by the backup process.
If %f occurs in the command string, it will be replaced by the name of the archive (e.g. base.tar).
If %d occurs in the command string, it will be replaced by the target detail provided by the user. A
target detail is required if %d is used in the command string, and prohibited otherwise. For security
reasons, it may contain only alphanumeric characters. If %% occurs in the command string, it will be
replaced by a single %. If % occurs in the command string followed by any other character or at the
end of the string, an error occurs.

basebackup_to_shell.required_role (string)

The role required in order to make use of the shell backup target. If this is not set, any replication
user may make use of the shell backup target.

F.4.2. Author
Robert Haas <rhaas@postgresql.org>

2493

Additional Supplied Mod-
ules and Extensions

F.5. basic_archive — an example WAL archive module
basic_archive is an example of an archive module. This module copies completed WAL segment files
to the specified directory. This may not be especially useful, but it can serve as a starting point for
developing your own archive module. For more information about archive modules, see Chapter 49.

In order to function, this module must be loaded via archive_library, and archive_mode must be enabled.

F.5.1. Configuration Parameters
basic_archive.archive_directory (string)

The directory where the server should copy WAL segment files. This directory must already exist.
The default is an empty string, which effectively halts WAL archiving, but if archive_mode is enabled,
the server will accumulate WAL segment files in the expectation that a value will soon be provided.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
archive_mode = 'on'
archive_library = 'basic_archive'
basic_archive.archive_directory = '/path/to/archive/directory'

F.5.2. Notes
Server crashes may leave temporary files with the prefix archtemp in the archive directory. It is recom-
mended to delete such files before restarting the server after a crash. It is safe to remove such files
while the server is running as long as they are unrelated to any archiving still in progress, but users
should use extra caution when doing so.

F.5.3. Author
Nathan Bossart

2494

Additional Supplied Mod-
ules and Extensions

F.6. bloom — bloom filter index access method
bloom provides an index access method based on Bloom filters.

A Bloom filter is a space-efficient data structure that is used to test whether an element is a member of a
set. In the case of an index access method, it allows fast exclusion of non-matching tuples via signatures
whose size is determined at index creation.

A signature is a lossy representation of the indexed attribute(s), and as such is prone to reporting false
positives; that is, it may be reported that an element is in the set, when it is not. So index search results
must always be rechecked using the actual attribute values from the heap entry. Larger signatures
reduce the odds of a false positive and thus reduce the number of useless heap visits, but of course also
make the index larger and hence slower to scan.

This type of index is most useful when a table has many attributes and queries test arbitrary combinations
of them. A traditional btree index is faster than a bloom index, but it can require many btree indexes to
support all possible queries where one needs only a single bloom index. Note however that bloom indexes
only support equality queries, whereas btree indexes can also perform inequality and range searches.

F.6.1. Parameters
A bloom index accepts the following parameters in its WITH clause:

length

Length of each signature (index entry) in bits. It is rounded up to the nearest multiple of 16. The
default is 80 bits and the maximum is 4096.

col1 — col32

Number of bits generated for each index column. Each parameter's name refers to the number of the
index column that it controls. The default is 2 bits and the maximum is 4095. Parameters for index
columns not actually used are ignored.

F.6.2. Examples
This is an example of creating a bloom index:

CREATE INDEX bloomidx ON tbloom USING bloom (i1,i2,i3)
 WITH (length=80, col1=2, col2=2, col3=4);

The index is created with a signature length of 80 bits, with attributes i1 and i2 mapped to 2 bits, and
attribute i3 mapped to 4 bits. We could have omitted the length, col1, and col2 specifications since
those have the default values.

Here is a more complete example of bloom index definition and usage, as well as a comparison with
equivalent btree indexes. The bloom index is considerably smaller than the btree index, and can perform
better.

=# CREATE TABLE tbloom AS
 SELECT
 (random() * 1000000)::int as i1,
 (random() * 1000000)::int as i2,
 (random() * 1000000)::int as i3,
 (random() * 1000000)::int as i4,
 (random() * 1000000)::int as i5,
 (random() * 1000000)::int as i6
 FROM
 generate_series(1,10000000);
SELECT 10000000

2495

https://en.wikipedia.org/wiki/Bloom_filter

Additional Supplied Mod-
ules and Extensions

A sequential scan over this large table takes a long time:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

 Seq Scan on tbloom (cost=0.00..213744.00 rows=250 width=24) (actual
 time=357.059..357.059 rows=0.00 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Filter: 10000000
 Buffers: shared hit=63744
 Planning Time: 0.346 ms
 Execution Time: 357.076 ms
(6 rows)

Even with the btree index defined the result will still be a sequential scan:

=# CREATE INDEX btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
 pg_size_pretty

 386 MB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

 Seq Scan on tbloom (cost=0.00..213744.00 rows=2 width=24) (actual
 time=351.016..351.017 rows=0.00 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Filter: 10000000
 Buffers: shared hit=63744
 Planning Time: 0.138 ms
 Execution Time: 351.035 ms
(6 rows)

Having the bloom index defined on the table is better than btree in handling this type of search:

=# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
 pg_size_pretty

 153 MB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

--
 Bitmap Heap Scan on tbloom (cost=1792.00..1799.69 rows=2 width=24) (actual
 time=22.605..22.606 rows=0.00 loops=1)
 Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Index Recheck: 2300
 Heap Blocks: exact=2256
 Buffers: shared hit=21864
 -> Bitmap Index Scan on bloomidx (cost=0.00..178436.00 rows=1 width=0) (actual
 time=20.005..20.005 rows=2300.00 loops=1)
 Index Cond: ((i2 = 898732) AND (i5 = 123451))
 Index Searches: 1

2496

Additional Supplied Mod-
ules and Extensions

 Buffers: shared hit=19608
 Planning Time: 0.099 ms
 Execution Time: 22.632 ms
(11 rows)

Now, the main problem with the btree search is that btree is inefficient when the search conditions do
not constrain the leading index column(s). A better strategy for btree is to create a separate index on
each column. Then the planner will choose something like this:

=# CREATE INDEX btreeidx1 ON tbloom (i1);
CREATE INDEX
=# CREATE INDEX btreeidx2 ON tbloom (i2);
CREATE INDEX
=# CREATE INDEX btreeidx3 ON tbloom (i3);
CREATE INDEX
=# CREATE INDEX btreeidx4 ON tbloom (i4);
CREATE INDEX
=# CREATE INDEX btreeidx5 ON tbloom (i5);
CREATE INDEX
=# CREATE INDEX btreeidx6 ON tbloom (i6);
CREATE INDEX
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

--
 Bitmap Heap Scan on tbloom (cost=9.29..13.30 rows=1 width=24) (actual
 time=0.032..0.033 rows=0.00 loops=1)
 Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
 Buffers: shared read=6
 -> BitmapAnd (cost=9.29..9.29 rows=1 width=0) (actual time=0.047..0.047 rows=0.00
 loops=1)
 Buffers: shared hit=6
 -> Bitmap Index Scan on btreeidx5 (cost=0.00..4.52 rows=11 width=0) (actual
 time=0.026..0.026 rows=7.00 loops=1)
 Index Cond: (i5 = 123451)
 Index Searches: 1
 Buffers: shared hit=3
 -> Bitmap Index Scan on btreeidx2 (cost=0.00..4.52 rows=11 width=0) (actual
 time=0.007..0.007 rows=8.00 loops=1)
 Index Cond: (i2 = 898732)
 Index Searches: 1
 Buffers: shared hit=3
 Planning Time: 0.264 ms
 Execution Time: 0.047 ms
(15 rows)

Although this query runs much faster than with either of the single indexes, we pay a penalty in index
size. Each of the single-column btree indexes occupies 88.5 MB, so the total space needed is 531 MB,
over three times the space used by the bloom index.

F.6.3. Operator Class Interface
An operator class for bloom indexes requires only a hash function for the indexed data type and an
equality operator for searching. This example shows the operator class definition for the text data type:

CREATE OPERATOR CLASS text_ops
DEFAULT FOR TYPE text USING bloom AS
 OPERATOR 1 =(text, text),
 FUNCTION 1 hashtext(text);

2497

Additional Supplied Mod-
ules and Extensions

F.6.4. Limitations
• Only operator classes for int4 and text are included with the module.
• Only the = operator is supported for search. But it is possible to add support for arrays with union

and intersection operations in the future.
• bloom access method doesn't support UNIQUE indexes.
• bloom access method doesn't support searching for NULL values.

F.6.5. Authors
Teodor Sigaev <teodor@postgrespro.ru>, Postgres Professional, Moscow, Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Postgres Professional, Moscow, Russia

Oleg Bartunov <obartunov@postgrespro.ru>, Postgres Professional, Moscow, Russia

2498

Additional Supplied Mod-
ules and Extensions

F.7. btree_gin — GIN operator classes with B-tree behav-
ior

btree_gin provides GIN operator classes that implement B-tree equivalent behavior for the data types
int2, int4, int8, float4, float8, timestamp with time zone, timestamp without time zone, time
with time zone, time without time zone, date, interval, oid, money, "char", varchar, text, bytea,
bit, varbit, macaddr, macaddr8, inet, cidr, uuid, name, bool, bpchar, and all enum types.

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
are useful for GIN testing and as a base for developing other GIN operator classes. Also, for queries that
test both a GIN-indexable column and a B-tree-indexable column, it might be more efficient to create a
multicolumn GIN index that uses one of these operator classes than to create two separate indexes that
would have to be combined via bitmap ANDing.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.7.1. Example Usage
CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIN (a);
-- query
SELECT * FROM test WHERE a < 10;

F.7.2. Authors
Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov (<oleg@sai.msu.su>). See http://www.sai.m-
su.su/~megera/oddmuse/index.cgi/Gin for additional information.

2499

http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin
http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin

Additional Supplied Mod-
ules and Extensions

F.8. btree_gist — GiST operator classes with B-tree be-
havior

btree_gist provides GiST index operator classes that implement B-tree equivalent behavior for the data
types int2, int4, int8, float4, float8, numeric, timestamp with time zone, timestamp without time
zone, time with time zone, time without time zone, date, interval, oid, money, char, varchar,
text, bytea, bit, varbit, macaddr, macaddr8, inet, cidr, uuid, bool and all enum types.

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
provide some other features that are not available with a B-tree index, as described below. Also, these
operator classes are useful when a multicolumn GiST index is needed, wherein some of the columns are
of data types that are only indexable with GiST but other columns are just simple data types. Lastly, these
operator classes are useful for GiST testing and as a base for developing other GiST operator classes.

In addition to the typical B-tree search operators, btree_gist also provides index support for <> (“not
equals”). This may be useful in combination with an exclusion constraint, as described below.

Also, for data types for which there is a natural distance metric, btree_gist defines a distance opera-
tor <->, and provides GiST index support for nearest-neighbor searches using this operator. Distance
operators are provided for int2, int4, int8, float4, float8, timestamp with time zone, timestamp
without time zone, time without time zone, date, interval, oid, and money.

By default btree_gist builds GiST index with sortsupport in sorted mode. This usually results in much
faster index built speed. It is still possible to revert to buffered built strategy by using the buffering
parameter when creating the index.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.8.1. Example Usage
Simple example using btree_gist instead of btree:

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIST (a);
-- query
SELECT * FROM test WHERE a < 10;
-- nearest-neighbor search: find the ten entries closest to "42"
SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;

Use an exclusion constraint to enforce the rule that a cage at a zoo can contain only one kind of animal:

=> CREATE TABLE zoo (
 cage INTEGER,
 animal TEXT,
 EXCLUDE USING GIST (cage WITH =, animal WITH <>)
);

=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'lion');
ERROR: conflicting key value violates exclusion constraint "zoo_cage_animal_excl"
DETAIL: Key (cage, animal)=(123, lion) conflicts with existing key (cage,
 animal)=(123, zebra).
=> INSERT INTO zoo VALUES(124, 'lion');

2500

Additional Supplied Mod-
ules and Extensions

INSERT 0 1

F.8.2. Authors
Teodor Sigaev (<teodor@stack.net>), Oleg Bartunov (<oleg@sai.msu.su>), Janko Richter (<janko-
richter@yahoo.de>), and Paul Jungwirth (<pj@illuminatedcomputing.com>). See http://www.sai.m-
su.su/~megera/postgres/gist/ for additional information.

2501

http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Mod-
ules and Extensions

F.9. citext — a case-insensitive character string type
The citext module provides a case-insensitive character string type, citext. Essentially, it internally
calls lower when comparing values. Otherwise, it behaves almost exactly like text.

Tip
Consider using nondeterministic collations (see Section 23.2.2.4) instead of this module. They can
be used for case-insensitive comparisons, accent-insensitive comparisons, and other combinations,
and they handle more Unicode special cases correctly.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.9.1. Rationale
The standard approach to doing case-insensitive matches in PostgreSQL has been to use the lower
function when comparing values, for example
SELECT * FROM tab WHERE lower(col) = LOWER(?);

This works reasonably well, but has a number of drawbacks:

• It makes your SQL statements verbose, and you always have to remember to use lower on both the
column and the query value.

• It won't use an index, unless you create a functional index using lower.
• If you declare a column as UNIQUE or PRIMARY KEY, the implicitly generated index is case-sensitive.

So it's useless for case-insensitive searches, and it won't enforce uniqueness case-insensitively.
The citext data type allows you to eliminate calls to lower in SQL queries, and allows a primary key
to be case-insensitive. citext is locale-aware, just like text, which means that the matching of upper
case and lower case characters is dependent on the rules of the database's LC_CTYPE setting. Again, this
behavior is identical to the use of lower in queries. But because it's done transparently by the data type,
you don't have to remember to do anything special in your queries.

F.9.2. How to Use It
Here's a simple example of usage:
CREATE TABLE users (
 nick CITEXT PRIMARY KEY,
 pass TEXT NOT NULL
);

INSERT INTO users VALUES ('larry', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Tom', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Damian', sha256(random()::text::bytea));
INSERT INTO users VALUES ('NEAL', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Bjørn', sha256(random()::text::bytea));

SELECT * FROM users WHERE nick = 'Larry';

The SELECT statement will return one tuple, even though the nick column was set to larry and the
query was for Larry.

F.9.3. String Comparison Behavior
citext performs comparisons by converting each string to lower case (as though lower were called)
and then comparing the results normally. Thus, for example, two strings are considered equal if lower
would produce identical results for them.

2502

Additional Supplied Mod-
ules and Extensions

In order to emulate a case-insensitive collation as closely as possible, there are citext-specific versions
of a number of string-processing operators and functions. So, for example, the regular expression oper-
ators ~ and ~* exhibit the same behavior when applied to citext: they both match case-insensitively.
The same is true for !~ and !~*, as well as for the LIKE operators ~~ and ~~*, and !~~ and !~~*. If you'd
like to match case-sensitively, you can cast the operator's arguments to text.

Similarly, all of the following functions perform matching case-insensitively if their arguments are ci-
text:

• regexp_match()

• regexp_matches()

• regexp_replace()

• regexp_split_to_array()

• regexp_split_to_table()

• replace()

• split_part()

• strpos()

• translate()

For the regexp functions, if you want to match case-sensitively, you can specify the “c” flag to force a
case-sensitive match. Otherwise, you must cast to text before using one of these functions if you want
case-sensitive behavior.

F.9.4. Limitations
• citext's case-folding behavior depends on the LC_CTYPE setting of your database. How it compares

values is therefore determined when the database is created. It is not truly case-insensitive in the
terms defined by the Unicode standard. Effectively, what this means is that, as long as you're happy
with your collation, you should be happy with citext's comparisons. But if you have data in differ-
ent languages stored in your database, users of one language may find their query results are not
as expected if the collation is for another language.

• As of PostgreSQL 9.1, you can attach a COLLATE specification to citext columns or data values.
Currently, citext operators will honor a non-default COLLATE specification while comparing case-
folded strings, but the initial folding to lower case is always done according to the database's LC_C-
TYPE setting (that is, as though COLLATE "default" were given). This may be changed in a future
release so that both steps follow the input COLLATE specification.

• citext is not as efficient as text because the operator functions and the B-tree comparison func-
tions must make copies of the data and convert it to lower case for comparisons. Also, only text
can support B-Tree deduplication. However, citext is slightly more efficient than using lower to
get case-insensitive matching.

• citext doesn't help much if you need data to compare case-sensitively in some contexts and case-
insensitively in other contexts. The standard answer is to use the text type and manually use the
lower function when you need to compare case-insensitively; this works all right if case-insensitive
comparison is needed only infrequently. If you need case-insensitive behavior most of the time and
case-sensitive infrequently, consider storing the data as citext and explicitly casting the column to
text when you want case-sensitive comparison. In either situation, you will need two indexes if you
want both types of searches to be fast.

• The schema containing the citext operators must be in the current search_path (typically pub-
lic); if it is not, the normal case-sensitive text operators will be invoked instead.

• The approach of lower-casing strings for comparison does not handle some Unicode special cases
correctly, for example when one upper-case letter has two lower-case letter equivalents. Unicode

2503

Additional Supplied Mod-
ules and Extensions

distinguishes between case mapping and case folding for this reason. Use nondeterministic colla-
tions instead of citext to handle that correctly.

F.9.5. Author
David E. Wheeler <david@kineticode.com>

Inspired by the original citext module by Donald Fraser.

2504

Additional Supplied Mod-
ules and Extensions

F.10. cube — a multi-dimensional cube data type
This module implements a data type cube for representing multidimensional cubes.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.10.1. Syntax
Table F.1 shows the valid external representations for the cube type. x, y, etc. denote floating-point
numbers.

Table F.1. Cube External Representations

External Syntax Meaning
x A one-dimensional point (or, zero-length one-di-

mensional interval)
(x) Same as above
x1, x2,..., xn A point in n-dimensional space, represented inter-

nally as a zero-volume cube
(x1, x2,..., xn) Same as above
(x),(y) A one-dimensional interval starting at x and end-

ing at y or vice versa; the order does not matter
[(x),(y)] Same as above
(x1,..., xn),(y1,..., yn) An n-dimensional cube represented by a pair of its

diagonally opposite corners
[(x1,..., xn),(y1,..., yn)] Same as above

It does not matter which order the opposite corners of a cube are entered in. The cube functions auto-
matically swap values if needed to create a uniform “lower left — upper right” internal representation.
When the corners coincide, cube stores only one corner along with an “is point” flag to avoid wasting
space.

White space is ignored on input, so [(x),(y)] is the same as [(x), (y)].

F.10.2. Precision
Values are stored internally as 64-bit floating point numbers. This means that numbers with more than
about 16 significant digits will be truncated.

F.10.3. Usage
Table F.2 shows the specialized operators provided for type cube.

Table F.2. Cube Operators

Operator
Description

cube && cube → boolean
Do the cubes overlap?

cube @> cube → boolean
Does the first cube contain the second?

cube <@ cube → boolean
Is the first cube contained in the second?

cube -> integer → float8
Extracts the n-th coordinate of the cube (counting from 1).

2505

Additional Supplied Mod-
ules and Extensions

Operator
Description

cube ~> integer → float8
Extracts the n-th coordinate of the cube, counting in the following way: n = 2 * k - 1 means
lower bound of k-th dimension, n = 2 * k means upper bound of k-th dimension. Negative n
denotes the inverse value of the corresponding positive coordinate. This operator is designed
for KNN-GiST support.

cube <-> cube → float8
Computes the Euclidean distance between the two cubes.

cube <#> cube → float8
Computes the taxicab (L-1 metric) distance between the two cubes.

cube <=> cube → float8
Computes the Chebyshev (L-inf metric) distance between the two cubes.

In addition to the above operators, the usual comparison operators shown in Table 9.1 are available
for type cube. These operators first compare the first coordinates, and if those are equal, compare the
second coordinates, etc. They exist mainly to support the b-tree index operator class for cube, which can
be useful for example if you would like a UNIQUE constraint on a cube column. Otherwise, this ordering
is not of much practical use.

The cube module also provides a GiST index operator class for cube values. A cube GiST index can be
used to search for values using the =, &&, @>, and <@ operators in WHERE clauses.

In addition, a cube GiST index can be used to find nearest neighbors using the metric operators <->,
<#>, and <=> in ORDER BY clauses. For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5)
could be found efficiently with:
SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;

The ~> operator can also be used in this way to efficiently retrieve the first few values sorted by a selected
coordinate. For example, to get the first few cubes ordered by the first coordinate (lower left corner)
ascending one could use the following query:
SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;

And to get 2-D cubes ordered by the first coordinate of the upper right corner descending:
SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;

Table F.3 shows the available functions.

Table F.3. Cube Functions

Function
Description
Example(s)

cube (float8) → cube
Makes a one dimensional cube with both coordinates the same.
cube(1) → (1)

cube (float8, float8) → cube
Makes a one dimensional cube.
cube(1, 2) → (1),(2)

cube (float8[]) → cube
Makes a zero-volume cube using the coordinates defined by the array.
cube(ARRAY[1,2,3]) → (1, 2, 3)

cube (float8[], float8[]) → cube

2506

Additional Supplied Mod-
ules and Extensions

Function
Description
Example(s)
Makes a cube with upper right and lower left coordinates as defined by the two arrays, which
must be of the same length.
cube(ARRAY[1,2], ARRAY[3,4]) → (1, 2),(3, 4)

cube (cube, float8) → cube
Makes a new cube by adding a dimension on to an existing cube, with the same values for
both endpoints of the new coordinate. This is useful for building cubes piece by piece from
calculated values.
cube('(1,2),(3,4)'::cube, 5) → (1, 2, 5),(3, 4, 5)

cube (cube, float8, float8) → cube
Makes a new cube by adding a dimension on to an existing cube. This is useful for building
cubes piece by piece from calculated values.
cube('(1,2),(3,4)'::cube, 5, 6) → (1, 2, 5),(3, 4, 6)

cube_dim (cube) → integer
Returns the number of dimensions of the cube.
cube_dim('(1,2),(3,4)') → 2

cube_ll_coord (cube, integer) → float8
Returns the n-th coordinate value for the lower left corner of the cube.
cube_ll_coord('(1,2),(3,4)', 2) → 2

cube_ur_coord (cube, integer) → float8
Returns the n-th coordinate value for the upper right corner of the cube.
cube_ur_coord('(1,2),(3,4)', 2) → 4

cube_is_point (cube) → boolean
Returns true if the cube is a point, that is, the two defining corners are the same.
cube_is_point(cube(1,1)) → t

cube_distance (cube, cube) → float8
Returns the distance between two cubes. If both cubes are points, this is the normal distance
function.
cube_distance('(1,2)', '(3,4)') → 2.8284271247461903

cube_subset (cube, integer[]) → cube
Makes a new cube from an existing cube, using a list of dimension indexes from an array. Can
be used to extract the endpoints of a single dimension, or to drop dimensions, or to reorder
them as desired.
cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2]) → (3),(7)
cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]) → (5, 3,
1, 1),(8, 7, 6, 6)

cube_union (cube, cube) → cube
Produces the union of two cubes.
cube_union('(1,2)', '(3,4)') → (1, 2),(3, 4)

cube_inter (cube, cube) → cube
Produces the intersection of two cubes.
cube_inter('(1,2)', '(3,4)') → (3, 4),(1, 2)

cube_enlarge (c cube, r double, n integer) → cube
Increases the size of the cube by the specified radius r in at least n dimensions. If the radius
is negative the cube is shrunk instead. All defined dimensions are changed by the radius r.

2507

Additional Supplied Mod-
ules and Extensions

Function
Description
Example(s)
Lower-left coordinates are decreased by r and upper-right coordinates are increased by r.
If a lower-left coordinate is increased to more than the corresponding upper-right coordi-
nate (this can only happen when r < 0) than both coordinates are set to their average. If n is
greater than the number of defined dimensions and the cube is being enlarged (r > 0), then
extra dimensions are added to make n altogether; 0 is used as the initial value for the extra
coordinates. This function is useful for creating bounding boxes around a point for searching
for nearby points.
cube_enlarge('(1,2),(3,4)', 0.5, 3) → (0.5, 1.5, -0.5),(3.5, 4.5,
 0.5)

F.10.4. Defaults
This union:

select cube_union('(0,5,2),(2,3,1)', '0');
cube_union

(0, 0, 0),(2, 5, 2)
(1 row)

does not contradict common sense, neither does the intersection:

select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter

(0, 0),(1, 0)
(1 row)

In all binary operations on differently-dimensioned cubes, the lower-dimensional one is assumed to be
a Cartesian projection, i. e., having zeroes in place of coordinates omitted in the string representation.
The above examples are equivalent to:

cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');

The following containment predicate uses the point syntax, while in fact the second argument is inter-
nally represented by a box. This syntax makes it unnecessary to define a separate point type and func-
tions for (box,point) predicates.

select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains

t
(1 row)

F.10.5. Notes
For examples of usage, see the regression test sql/cube.sql.

To make it harder for people to break things, there is a limit of 100 on the number of dimensions of
cubes. This is set in cubedata.h if you need something bigger.

F.10.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory.

2508

Additional Supplied Mod-
ules and Extensions

My thanks are primarily to Prof. Joe Hellerstein (https://dsf.berkeley.edu/jmh/) for elucidating the gist
of the GiST (http://gist.cs.berkeley.edu/), and to his former student Andy Dong for his example written
for Illustra. I am also grateful to all Postgres developers, present and past, for enabling myself to create
my own world and live undisturbed in it. And I would like to acknowledge my gratitude to Argonne Lab
and to the U.S. Department of Energy for the years of faithful support of my database research.

Minor updates to this package were made by Bruno Wolff III <bruno@wolff.to> in August/September of
2002. These include changing the precision from single precision to double precision and adding some
new functions.

Additional updates were made by Joshua Reich <josh@root.net> in July 2006. These include
cube(float8[], float8[]) and cleaning up the code to use the V1 call protocol instead of the depre-
cated V0 protocol.

2509

https://dsf.berkeley.edu/jmh/
http://gist.cs.berkeley.edu/

Additional Supplied Mod-
ules and Extensions

F.11. dblink — connect to other PostgreSQL databases
dblink is a module that supports connections to other PostgreSQL databases from within a database
session.

dblink can report the following wait events under the wait event type Extension.

DblinkConnect

Waiting to establish a connection to a remote server.

DblinkGetConnect

Waiting to establish a connection to a remote server when it could not be found in the list of al-
ready-opened connections.

DblinkGetResult

Waiting to receive the results of a query from a remote server.

See also postgres_fdw, which provides roughly the same functionality using a more modern and stan-
dards-compliant infrastructure.

2510

Additional Supplied Mod-
ules and Extensions

dblink_connect
dblink_connect — opens a persistent connection to a remote database

Synopsis
dblink_connect(text connstr) returns text
dblink_connect(text connname, text connstr) returns text

Description
dblink_connect() establishes a connection to a remote PostgreSQL database. The server and database
to be contacted are identified through a standard libpq connection string. Optionally, a name can be
assigned to the connection. Multiple named connections can be open at once, but only one unnamed
connection is permitted at a time. The connection will persist until closed or until the database session
is ended.

The connection string may also be the name of an existing foreign server. It is recommended to use the
foreign-data wrapper dblink_fdw when defining the foreign server. See the example below, as well as
CREATE SERVER and CREATE USER MAPPING.

Arguments
connname

The name to use for this connection; if omitted, an unnamed connection is opened, replacing any
existing unnamed connection.

connstr

libpq-style connection info string, for example hostaddr=127.0.0.1 port=5432 dbname=mydb
user=postgres password=mypasswd options=-csearch_path=. For details see Section 32.1.1. Al-
ternatively, the name of a foreign server.

Return Value
Returns status, which is always OK (since any error causes the function to throw an error instead of
returning).

Notes
If untrusted users have access to a database that has not adopted a secure schema usage pattern, begin
each session by removing publicly-writable schemas from search_path. One could, for example, add
options=-csearch_path= to connstr. This consideration is not specific to dblink; it applies to every
interface for executing arbitrary SQL commands.

The foreign-data wrapper dblink_fdw has an additional Boolean option use_scram_passthrough that
controls whether dblink will use the SCRAM pass-through authentication to connect to the remote
database. With SCRAM pass-through authentication, dblink uses SCRAM-hashed secrets instead of
plain-text user passwords to connect to the remote server. This avoids storing plain-text user passwords
in PostgreSQL system catalogs. See the documentation of the equivalent use_scram_passthrough option
of postgres_fdw for further details and restrictions.

Only superusers may use dblink_connect to create connections that use neither password authenti-
cation, SCRAM pass-through, nor GSSAPI-authentication. If non-superusers need this capability, use
dblink_connect_u instead.

It is unwise to choose connection names that contain equal signs, as this opens a risk of confusion with
connection info strings in other dblink functions.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

2511

Additional Supplied Mod-
ules and Extensions

 OK
(1 row)

SELECT dblink_connect('myconn', 'dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

-- FOREIGN DATA WRAPPER functionality
-- Note: local connections that don't use SCRAM pass-through require password
-- authentication for this to work properly. Otherwise, you will receive
-- the following error from dblink_connect():
-- ERROR: password is required
-- DETAIL: Non-superuser cannot connect if the server does not request a
 password.
-- HINT: Target server's authentication method must be changed.

CREATE SERVER fdtest FOREIGN DATA WRAPPER dblink_fdw OPTIONS (hostaddr '127.0.0.1',
 dbname 'contrib_regression');

CREATE USER regress_dblink_user WITH PASSWORD 'secret';
CREATE USER MAPPING FOR regress_dblink_user SERVER fdtest OPTIONS (user
 'regress_dblink_user', password 'secret');
GRANT USAGE ON FOREIGN SERVER fdtest TO regress_dblink_user;
GRANT SELECT ON TABLE foo TO regress_dblink_user;

\set ORIGINAL_USER :USER
\c - regress_dblink_user
SELECT dblink_connect('myconn', 'fdtest');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'SELECT * FROM foo') AS t(a int, b text, c text[]);
 a | b | c
----+---+---------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
 3 | d | {a3,b3,c3}
 4 | e | {a4,b4,c4}
 5 | f | {a5,b5,c5}
 6 | g | {a6,b6,c6}
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(11 rows)

\c - :ORIGINAL_USER
REVOKE USAGE ON FOREIGN SERVER fdtest FROM regress_dblink_user;
REVOKE SELECT ON TABLE foo FROM regress_dblink_user;
DROP USER MAPPING FOR regress_dblink_user SERVER fdtest;
DROP USER regress_dblink_user;
DROP SERVER fdtest;

2512

Additional Supplied Mod-
ules and Extensions

dblink_connect_u
dblink_connect_u — opens a persistent connection to a remote database, insecurely

Synopsis
dblink_connect_u(text connstr) returns text
dblink_connect_u(text connname, text connstr) returns text

Description
dblink_connect_u() is identical to dblink_connect(), except that it will allow non-superusers to con-
nect using any authentication method.

If the remote server selects an authentication method that does not involve a password, then imperson-
ation and subsequent escalation of privileges can occur, because the session will appear to have origi-
nated from the user as which the local PostgreSQL server runs. Also, even if the remote server does
demand a password, it is possible for the password to be supplied from the server environment, such as
a ~/.pgpass file belonging to the server's user. This opens not only a risk of impersonation, but the pos-
sibility of exposing a password to an untrustworthy remote server. Therefore, dblink_connect_u() is
initially installed with all privileges revoked from PUBLIC, making it un-callable except by superusers. In
some situations it may be appropriate to grant EXECUTE permission for dblink_connect_u() to specific
users who are considered trustworthy, but this should be done with care. It is also recommended that any
~/.pgpass file belonging to the server's user not contain any records specifying a wildcard host name.

For further details see dblink_connect().

2513

Additional Supplied Mod-
ules and Extensions

dblink_disconnect
dblink_disconnect — closes a persistent connection to a remote database

Synopsis
dblink_disconnect() returns text
dblink_disconnect(text connname) returns text

Description
dblink_disconnect() closes a connection previously opened by dblink_connect(). The form with no
arguments closes an unnamed connection.

Arguments
connname

The name of a named connection to be closed.

Return Value
Returns status, which is always OK (since any error causes the function to throw an error instead of
returning).

Examples
SELECT dblink_disconnect();
 dblink_disconnect

 OK
(1 row)

SELECT dblink_disconnect('myconn');
 dblink_disconnect

 OK
(1 row)

2514

Additional Supplied Mod-
ules and Extensions

dblink
dblink — executes a query in a remote database

Synopsis
dblink(text connname, text sql [, bool fail_on_error]) returns setof record
dblink(text connstr, text sql [, bool fail_on_error]) returns setof record
dblink(text sql [, bool fail_on_error]) returns setof record

Description
dblink executes a query (usually a SELECT, but it can be any SQL statement that returns rows) in a
remote database.

When two text arguments are given, the first one is first looked up as a persistent connection's name;
if found, the command is executed on that connection. If not found, the first argument is treated as a
connection info string as for dblink_connect, and the indicated connection is made just for the duration
of this command.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL query that you wish to execute in the remote database, for example select * from foo.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and
the function returns no rows.

Return Value
The function returns the row(s) produced by the query. Since dblink can be used with any query, it is
declared to return record, rather than specifying any particular set of columns. This means that you
must specify the expected set of columns in the calling query — otherwise PostgreSQL would not know
what to expect. Here is an example:

SELECT *
 FROM dblink('dbname=mydb options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

The “alias” part of the FROM clause must specify the column names and types that the function will
return. (Specifying column names in an alias is actually standard SQL syntax, but specifying column
types is a PostgreSQL extension.) This allows the system to understand what * should expand to, and
what proname in the WHERE clause refers to, in advance of trying to execute the function. At run time, an
error will be thrown if the actual query result from the remote database does not have the same number
of columns shown in the FROM clause. The column names need not match, however, and dblink does not
insist on exact type matches either. It will succeed so long as the returned data strings are valid input
for the column type declared in the FROM clause.

2515

Additional Supplied Mod-
ules and Extensions

Notes
A convenient way to use dblink with predetermined queries is to create a view. This allows the column
type information to be buried in the view, instead of having to spell it out in every query. For example,

CREATE VIEW myremote_pg_proc AS
 SELECT *
 FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text);

SELECT * FROM myremote_pg_proc WHERE proname LIKE 'bytea%';

Examples
SELECT * FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('myconn', 'dbname=regression options=-csearch_path=');

2516

Additional Supplied Mod-
ules and Extensions

 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 bytearecv | bytearecv
 byteasend | byteasend
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteain | byteain
 byteaout | byteaout
(14 rows)

2517

Additional Supplied Mod-
ules and Extensions

dblink_exec
dblink_exec — executes a command in a remote database

Synopsis
dblink_exec(text connname, text sql [, bool fail_on_error]) returns text
dblink_exec(text connstr, text sql [, bool fail_on_error]) returns text
dblink_exec(text sql [, bool fail_on_error]) returns text

Description
dblink_exec executes a command (that is, any SQL statement that doesn't return rows) in a remote
database.

When two text arguments are given, the first one is first looked up as a persistent connection's name;
if found, the command is executed on that connection. If not found, the first argument is treated as a
connection info string as for dblink_connect, and the indicated connection is made just for the duration
of this command.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL command that you wish to execute in the remote database, for example insert into foo
values(0, 'a', '{"a0","b0","c0"}').

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value
Returns status, either the command's status string or ERROR.

Examples
SELECT dblink_connect('dbname=dblink_test_standby');
 dblink_connect

 OK
(1 row)

SELECT dblink_exec('insert into foo values(21, ''z'', ''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 943366 1
(1 row)

SELECT dblink_connect('myconn', 'dbname=regression');
 dblink_connect

2518

Additional Supplied Mod-
ules and Extensions

 OK
(1 row)

SELECT dblink_exec('myconn', 'insert into foo values(21, ''z'',
 ''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 6432584 1
(1 row)

SELECT dblink_exec('myconn', 'insert into pg_class values (''foo'')',false);
NOTICE: sql error
DETAIL: ERROR: null value in column "relnamespace" violates not-null constraint

 dblink_exec

 ERROR
(1 row)

2519

Additional Supplied Mod-
ules and Extensions

dblink_open
dblink_open — opens a cursor in a remote database

Synopsis
dblink_open(text cursorname, text sql [, bool fail_on_error]) returns text
dblink_open(text connname, text cursorname, text sql [, bool fail_on_error]) returns
 text

Description
dblink_open() opens a cursor in a remote database. The cursor can subsequently be manipulated with
dblink_fetch() and dblink_close().

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name to assign to this cursor.

sql

The SELECT statement that you wish to execute in the remote database, for example select * from
pg_class.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value
Returns status, either OK or ERROR.

Notes
Since a cursor can only persist within a transaction, dblink_open starts an explicit transaction block
(BEGIN) on the remote side, if the remote side was not already within a transaction. This transaction
will be closed again when the matching dblink_close is executed. Note that if you use dblink_exec to
change data between dblink_open and dblink_close, and then an error occurs or you use dblink_dis-
connect before dblink_close, your change will be lost because the transaction will be aborted.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK
(1 row)

2520

Additional Supplied Mod-
ules and Extensions

dblink_fetch
dblink_fetch — returns rows from an open cursor in a remote database

Synopsis
dblink_fetch(text cursorname, int howmany [, bool fail_on_error]) returns setof record
dblink_fetch(text connname, text cursorname, int howmany [, bool fail_on_error])
 returns setof record

Description
dblink_fetch fetches rows from a cursor previously established by dblink_open.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to fetch from.

howmany

The maximum number of rows to retrieve. The next howmany rows are fetched, starting at the current
cursor position, moving forward. Once the cursor has reached its end, no more rows are produced.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and
the function returns no rows.

Return Value
The function returns the row(s) fetched from the cursor. To use this function, you will need to specify
the expected set of columns, as previously discussed for dblink.

Notes
On a mismatch between the number of return columns specified in the FROM clause, and the actual
number of columns returned by the remote cursor, an error will be thrown. In this event, the remote
cursor is still advanced by as many rows as it would have been if the error had not occurred. The same
is true for any other error occurring in the local query after the remote FETCH has been done.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc where proname like
 ''bytea%''');
 dblink_open

 OK
(1 row)

2521

Additional Supplied Mod-
ules and Extensions

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+----------
 byteacat | byteacat
 byteacmp | byteacmp
 byteaeq | byteaeq
 byteage | byteage
 byteagt | byteagt
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
-----------+-----------
 byteain | byteain
 byteale | byteale
 bytealike | bytealike
 bytealt | bytealt
 byteane | byteane
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
------------+------------
 byteanlike | byteanlike
 byteaout | byteaout
(2 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+--------
(0 rows)

2522

Additional Supplied Mod-
ules and Extensions

dblink_close
dblink_close — closes a cursor in a remote database

Synopsis
dblink_close(text cursorname [, bool fail_on_error]) returns text
dblink_close(text connname, text cursorname [, bool fail_on_error]) returns text

Description
dblink_close closes a cursor previously opened with dblink_open.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to close.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value
Returns status, either OK or ERROR.

Notes
If dblink_open started an explicit transaction block, and this is the last remaining open cursor in this
connection, dblink_close will issue the matching COMMIT.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK
(1 row)

SELECT dblink_close('foo');
 dblink_close

 OK
(1 row)

2523

Additional Supplied Mod-
ules and Extensions

dblink_get_connections
dblink_get_connections — returns the names of all open named dblink connections

Synopsis
dblink_get_connections() returns text[]

Description
dblink_get_connections returns an array of the names of all open named dblink connections.

Return Value
Returns a text array of connection names, or NULL if none.

Examples
SELECT dblink_get_connections();

2524

Additional Supplied Mod-
ules and Extensions

dblink_error_message
dblink_error_message — gets last error message on the named connection

Synopsis
dblink_error_message(text connname) returns text

Description
dblink_error_message fetches the most recent remote error message for a given connection.

Arguments
connname

Name of the connection to use.

Return Value
Returns last error message, or OK if there has been no error in this connection.

Notes
When asynchronous queries are initiated by dblink_send_query, the error message associated with the
connection might not get updated until the server's response message is consumed. This typically means
that dblink_is_busy or dblink_get_result should be called prior to dblink_error_message, so that
any error generated by the asynchronous query will be visible.

Examples
SELECT dblink_error_message('dtest1');

2525

Additional Supplied Mod-
ules and Extensions

dblink_send_query
dblink_send_query — sends an async query to a remote database

Synopsis
dblink_send_query(text connname, text sql) returns int

Description
dblink_send_query sends a query to be executed asynchronously, that is, without immediately waiting
for the result. There must not be an async query already in progress on the connection.

After successfully dispatching an async query, completion status can be checked with dblink_is_busy,
and the results are ultimately collected with dblink_get_result. It is also possible to attempt to cancel
an active async query using dblink_cancel_query.

Arguments
connname

Name of the connection to use.

sql

The SQL statement that you wish to execute in the remote database, for example select * from
pg_class.

Return Value
Returns 1 if the query was successfully dispatched, 0 otherwise.

Examples
SELECT dblink_send_query('dtest1', 'SELECT * FROM foo WHERE f1 < 3');

2526

Additional Supplied Mod-
ules and Extensions

dblink_is_busy
dblink_is_busy — checks if connection is busy with an async query

Synopsis
dblink_is_busy(text connname) returns int

Description
dblink_is_busy tests whether an async query is in progress.

Arguments
connname

Name of the connection to check.

Return Value
Returns 1 if connection is busy, 0 if it is not busy. If this function returns 0, it is guaranteed that
dblink_get_result will not block.

Examples
SELECT dblink_is_busy('dtest1');

2527

Additional Supplied Mod-
ules and Extensions

dblink_get_notify
dblink_get_notify — retrieve async notifications on a connection

Synopsis
dblink_get_notify() returns setof (notify_name text, be_pid int, extra text)
dblink_get_notify(text connname) returns setof (notify_name text, be_pid int, extra
 text)

Description
dblink_get_notify retrieves notifications on either the unnamed connection, or on a named connection
if specified. To receive notifications via dblink, LISTEN must first be issued, using dblink_exec. For
details see LISTEN and NOTIFY.

Arguments
connname

The name of a named connection to get notifications on.

Return Value
Returns setof (notify_name text, be_pid int, extra text), or an empty set if none.

Examples
SELECT dblink_exec('LISTEN virtual');
 dblink_exec

 LISTEN
(1 row)

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
(0 rows)

NOTIFY virtual;
NOTIFY

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
 virtual | 1229 |
(1 row)

2528

Additional Supplied Mod-
ules and Extensions

dblink_get_result
dblink_get_result — gets an async query result

Synopsis
dblink_get_result(text connname [, bool fail_on_error]) returns setof record

Description
dblink_get_result collects the results of an asynchronous query previously sent with
dblink_send_query. If the query is not already completed, dblink_get_result will wait until it is.

Arguments
connname

Name of the connection to use.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and
the function returns no rows.

Return Value
For an async query (that is, an SQL statement returning rows), the function returns the row(s) produced
by the query. To use this function, you will need to specify the expected set of columns, as previously
discussed for dblink.

For an async command (that is, an SQL statement not returning rows), the function returns a single row
with a single text column containing the command's status string. It is still necessary to specify that the
result will have a single text column in the calling FROM clause.

Notes
This function must be called if dblink_send_query returned 1. It must be called once for each query
sent, and one additional time to obtain an empty set result, before the connection can be used again.

When using dblink_send_query and dblink_get_result, dblink fetches the entire remote query result
before returning any of it to the local query processor. If the query returns a large number of rows, this
can result in transient memory bloat in the local session. It may be better to open such a query as a
cursor with dblink_open and then fetch a manageable number of rows at a time. Alternatively, use plain
dblink(), which avoids memory bloat by spooling large result sets to disk.

Examples
contrib_regression=# SELECT dblink_connect('dtest1', 'dbname=contrib_regression');
 dblink_connect

 OK
(1 row)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3') AS
 t1;
 t1

 1
(1 row)

2529

Additional Supplied Mod-
ules and Extensions

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3;
 select * from foo where f1 > 6') AS t1;
 t1

 1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+---------------
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(4 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

2530

Additional Supplied Mod-
ules and Extensions

dblink_cancel_query
dblink_cancel_query — cancels any active query on the named connection

Synopsis
dblink_cancel_query(text connname) returns text

Description
dblink_cancel_query attempts to cancel any query that is in progress on the named connection. Note
that this is not certain to succeed (since, for example, the remote query might already have finished). A
cancel request simply improves the odds that the query will fail soon. You must still complete the normal
query protocol, for example by calling dblink_get_result.

Arguments
connname

Name of the connection to use.

Return Value
Returns OK if the cancel request has been sent, or the text of an error message on failure.

Examples
SELECT dblink_cancel_query('dtest1');

2531

Additional Supplied Mod-
ules and Extensions

dblink_get_pkey
dblink_get_pkey — returns the positions and field names of a relation's primary key fields

Synopsis
dblink_get_pkey(text relname) returns setof dblink_pkey_results

Description
dblink_get_pkey provides information about the primary key of a relation in the local database. This is
sometimes useful in generating queries to be sent to remote databases.

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

Return Value
Returns one row for each primary key field, or no rows if the relation has no primary key. The result
row type is defined as

CREATE TYPE dblink_pkey_results AS (position int, colname text);

The position column simply runs from 1 to N; it is the number of the field within the primary key, not
the number within the table's columns.

Examples
CREATE TABLE foobar (
 f1 int,
 f2 int,
 f3 int,
 PRIMARY KEY (f1, f2, f3)
);
CREATE TABLE

SELECT * FROM dblink_get_pkey('foobar');
 position | colname
----------+---------
 1 | f1
 2 | f2
 3 | f3
(3 rows)

2532

Additional Supplied Mod-
ules and Extensions

dblink_build_sql_insert
dblink_build_sql_insert — builds an INSERT statement using a local tuple, replacing the primary key
field values with alternative supplied values

Synopsis
dblink_build_sql_insert(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_insert can be useful in doing selective replication of a local table to a remote data-
base. It selects a row from the local table based on primary key, and then builds an SQL INSERT command
that will duplicate that row, but with the primary key values replaced by the values in the last argument.
(To make an exact copy of the row, just specify the same values for the last two arguments.)

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting INSERT command. Each field is repre-
sented in text form.

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical column
numbers, corresponding to the column's position in SELECT * FROM relname. Previous versions inter-
preted the numbers as physical column positions. There is a difference if any column(s) to the left of the
indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_insert('foo', '1 2', 2, '{"1", "a"}', '{"1", "b''a"}');
 dblink_build_sql_insert
--

2533

Additional Supplied Mod-
ules and Extensions

 INSERT INTO foo(f1,f2,f3) VALUES('1','b''a','1')
(1 row)

2534

Additional Supplied Mod-
ules and Extensions

dblink_build_sql_delete
dblink_build_sql_delete — builds a DELETE statement using supplied values for primary key field values

Synopsis
dblink_build_sql_delete(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_delete can be useful in doing selective replication of a local table to a remote data-
base. It builds an SQL DELETE command that will delete the row with the given primary key values.

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

tgt_pk_att_vals_array

Values of the primary key fields to be used in the resulting DELETE command. Each field is represented
in text form.

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical column
numbers, corresponding to the column's position in SELECT * FROM relname. Previous versions inter-
preted the numbers as physical column positions. There is a difference if any column(s) to the left of the
indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_delete('"MyFoo"', '1 2', 2, '{"1", "b"}');
 dblink_build_sql_delete

 DELETE FROM "MyFoo" WHERE f1='1' AND f2='b'
(1 row)

2535

Additional Supplied Mod-
ules and Extensions

dblink_build_sql_update
dblink_build_sql_update — builds an UPDATE statement using a local tuple, replacing the primary key
field values with alternative supplied values

Synopsis
dblink_build_sql_update(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_update can be useful in doing selective replication of a local table to a remote data-
base. It selects a row from the local table based on primary key, and then builds an SQL UPDATE com-
mand that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)
The UPDATE command always assigns all fields of the row — the main difference between this and
dblink_build_sql_insert is that it's assumed that the target row already exists in the remote table.

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting UPDATE command. Each field is repre-
sented in text form.

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical column
numbers, corresponding to the column's position in SELECT * FROM relname. Previous versions inter-
preted the numbers as physical column positions. There is a difference if any column(s) to the left of the
indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_update('foo', '1 2', 2, '{"1", "a"}', '{"1", "b"}');

2536

Additional Supplied Mod-
ules and Extensions

 dblink_build_sql_update

 UPDATE foo SET f1='1',f2='b',f3='1' WHERE f1='1' AND f2='b'
(1 row)

2537

Additional Supplied Mod-
ules and Extensions

F.12. dict_int — example full-text search dictionary for in-
tegers

dict_int is an example of an add-on dictionary template for full-text search. The motivation for this
example dictionary is to control the indexing of integers (signed and unsigned), allowing such numbers
to be indexed while preventing excessive growth in the number of unique words, which greatly affects
the performance of searching.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.12.1. Configuration
The dictionary accepts three options:

• The maxlen parameter specifies the maximum number of digits allowed in an integer word. The de-
fault value is 6.

• The rejectlong parameter specifies whether an overlength integer should be truncated or ignored.
If rejectlong is false (the default), the dictionary returns the first maxlen digits of the integer. If
rejectlong is true, the dictionary treats an overlength integer as a stop word, so that it will not be
indexed. Note that this also means that such an integer cannot be searched for.

• The absval parameter specifies whether leading “+” or “-” signs should be removed from integer
words. The default is false. When true, the sign is removed before maxlen is applied.

F.12.2. Usage
Installing the dict_int extension creates a text search template intdict_template and a dictionary
intdict based on it, with the default parameters. You can alter the parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY intdict (MAXLEN = 4, REJECTLONG = true);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try

mydb# select ts_lexize('intdict', '12345678');
 ts_lexize

 {123456}

but real-world usage will involve including it in a text search configuration as described in Chapter 12.
That might look like this:

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR int, uint WITH intdict;

2538

Additional Supplied Mod-
ules and Extensions

F.13. dict_xsyn — example synonym full-text search dic-
tionary

dict_xsyn (Extended Synonym Dictionary) is an example of an add-on dictionary template for full-text
search. This dictionary type replaces words with groups of their synonyms, and so makes it possible to
search for a word using any of its synonyms.

F.13.1. Configuration
A dict_xsyn dictionary accepts the following options:

• matchorig controls whether the original word is accepted by the dictionary. Default is true.

• matchsynonyms controls whether the synonyms are accepted by the dictionary. Default is false.

• keeporig controls whether the original word is included in the dictionary's output. Default is true.

• keepsynonyms controls whether the synonyms are included in the dictionary's output. Default is
true.

• rules is the base name of the file containing the list of synonyms. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the PostgreSQL installation's shared-data di-
rectory). Its name must end in .rules (which is not to be included in the rules parameter).

The rules file has the following format:

• Each line represents a group of synonyms for a single word, which is given first on the line.
Synonyms are separated by whitespace, thus:

word syn1 syn2 syn3

• The sharp (#) sign is a comment delimiter. It may appear at any position in a line. The rest of the
line will be skipped.

Look at xsyn_sample.rules, which is installed in $SHAREDIR/tsearch_data/, for an example.

F.13.2. Usage
Installing the dict_xsyn extension creates a text search template xsyn_template and a dictionary xsyn
based on it, with default parameters. You can alter the parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {word,syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false,
 MATCHSYNONYMS=true);

2539

Additional Supplied Mod-
ules and Extensions

ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true,
 MATCHORIG=false, KEEPSYNONYMS=false);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {word}

Real-world usage will involve including it in a text search configuration as described in Chapter 12. That
might look like this:

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR word, asciiword WITH xsyn, english_stem;

2540

Additional Supplied Mod-
ules and Extensions

F.14. earthdistance — calculate great-circle distances
The earthdistance module provides two different approaches to calculating great circle distances on
the surface of the Earth. The one described first depends on the cube module. The second one is based
on the built-in point data type, using longitude and latitude for the coordinates.

In this module, the Earth is assumed to be perfectly spherical. (If that's too inaccurate for you, you might
want to look at the PostGIS project.)

The cube module must be installed before earthdistance can be installed (although you can use the
CASCADE option of CREATE EXTENSION to install both in one command).

Caution
It is strongly recommended that earthdistance and cube be installed in the same schema, and
that that schema be one for which CREATE privilege has not been and will not be granted to any
untrusted users. Otherwise there are installation-time security hazards if earthdistance's schema
contains objects defined by a hostile user. Furthermore, when using earthdistance's functions
after installation, the entire search path should contain only trusted schemas.

F.14.1. Cube-Based Earth Distances
Data is stored in cubes that are points (both corners are the same) using 3 coordinates representing
the x, y, and z distance from the center of the Earth. A domain earth over type cube is provided, which
includes constraint checks that the value meets these restrictions and is reasonably close to the actual
surface of the Earth.

The radius of the Earth is obtained from the earth() function. It is given in meters. But by changing
this one function you can change the module to use some other units, or to use a different value of the
radius that you feel is more appropriate.

This package has applications to astronomical databases as well. Astronomers will probably want to
change earth() to return a radius of 180/pi() so that distances are in degrees.

Functions are provided to support input in latitude and longitude (in degrees), to support output of
latitude and longitude, to calculate the great circle distance between two points and to easily specify a
bounding box usable for index searches.

The provided functions are shown in Table F.4.

Table F.4. Cube-Based Earthdistance Functions

Function
Description

earth () → float8
Returns the assumed radius of the Earth.

sec_to_gc (float8) → float8
Converts the normal straight line (secant) distance between two points on the surface of the
Earth to the great circle distance between them.

gc_to_sec (float8) → float8
Converts the great circle distance between two points on the surface of the Earth to the nor-
mal straight line (secant) distance between them.

ll_to_earth (float8, float8) → earth
Returns the location of a point on the surface of the Earth given its latitude (argument 1) and
longitude (argument 2) in degrees.

2541

https://postgis.net/

Additional Supplied Mod-
ules and Extensions

Function
Description

latitude (earth) → float8
Returns the latitude in degrees of a point on the surface of the Earth.

longitude (earth) → float8
Returns the longitude in degrees of a point on the surface of the Earth.

earth_distance (earth, earth) → float8
Returns the great circle distance between two points on the surface of the Earth.

earth_box (earth, float8) → cube
Returns a box suitable for an indexed search using the cube @> operator for points within a
given great circle distance of a location. Some points in this box are further than the specified
great circle distance from the location, so a second check using earth_distance should be
included in the query.

F.14.2. Point-Based Earth Distances
The second part of the module relies on representing Earth locations as values of type point, in which
the first component is taken to represent longitude in degrees, and the second component is taken
to represent latitude in degrees. Points are taken as (longitude, latitude) and not vice versa because
longitude is closer to the intuitive idea of x-axis and latitude to y-axis.

A single operator is provided, shown in Table F.5.

Table F.5. Point-Based Earthdistance Operators

Operator
Description

point <@> point → float8
Computes the distance in statute miles between two points on the Earth's surface.

Note that unlike the cube-based part of the module, units are hardwired here: changing the earth()
function will not affect the results of this operator.

One disadvantage of the longitude/latitude representation is that you need to be careful about the edge
conditions near the poles and near +/- 180 degrees of longitude. The cube-based representation avoids
these discontinuities.

2542

Additional Supplied Mod-
ules and Extensions

F.15. file_fdw — access data files in the server's file sys-
tem

The file_fdw module provides the foreign-data wrapper file_fdw, which can be used to access data
files in the server's file system, or to execute programs on the server and read their output. The data
file or program output must be in a format that can be read by COPY FROM; see COPY for details. Access
to data files is currently read-only.

A foreign table created using this wrapper can have the following options:

filename

Specifies the file to be read. Relative paths are relative to the data directory. Either filename or
program must be specified, but not both.

program

Specifies the command to be executed. The standard output of this command will be read as though
COPY FROM PROGRAM were used. Either program or filename must be specified, but not both.

format

Specifies the data format, the same as COPY's FORMAT option.

header

Specifies whether the data has a header line, the same as COPY's HEADER option.

delimiter

Specifies the data delimiter character, the same as COPY's DELIMITER option.

quote

Specifies the data quote character, the same as COPY's QUOTE option.

escape

Specifies the data escape character, the same as COPY's ESCAPE option.

null

Specifies the data null string, the same as COPY's NULL option.

encoding

Specifies the data encoding, the same as COPY's ENCODING option.

on_error

Specifies how to behave when encountering an error converting a column's input value into its data
type, the same as COPY's ON_ERROR option.

reject_limit

Specifies the maximum number of errors tolerated while converting a column's input value to its
data type, the same as COPY's REJECT_LIMIT option.

log_verbosity

Specifies the amount of messages emitted by file_fdw, the same as COPY's LOG_VERBOSITY option.

Note that while COPY allows options such as HEADER to be specified without a corresponding value, the
foreign table option syntax requires a value to be present in all cases. To activate COPY options typically
written without a value, you can pass the value TRUE, since all such options are Booleans.

2543

Additional Supplied Mod-
ules and Extensions

A column of a foreign table created using this wrapper can have the following options:

force_not_null

This is a Boolean option. If true, it specifies that values of the column should not be matched against
the null string (that is, the table-level null option). This has the same effect as listing the column
in COPY's FORCE_NOT_NULL option.

force_null

This is a Boolean option. If true, it specifies that values of the column which match the null string are
returned as NULL even if the value is quoted. Without this option, only unquoted values matching the
null string are returned as NULL. This has the same effect as listing the column in COPY's FORCE_NULL
option.

COPY's FORCE_QUOTE option is currently not supported by file_fdw.

These options can only be specified for a foreign table or its columns, not in the options of the file_fdw
foreign-data wrapper, nor in the options of a server or user mapping using the wrapper.

Changing table-level options requires being a superuser or having the privileges of the role
pg_read_server_files (to use a filename) or the role pg_execute_server_program (to use a program),
for security reasons: only certain users should be able to control which file is read or which program is
run. In principle regular users could be allowed to change the other options, but that's not supported
at present.

When specifying the program option, keep in mind that the option string is executed by the shell. If you
need to pass any arguments to the command that come from an untrusted source, you must be careful
to strip or escape any characters that might have special meaning to the shell. For security reasons, it
is best to use a fixed command string, or at least avoid passing any user input in it.

For a foreign table using file_fdw, EXPLAIN shows the name of the file to be read or program to be run.
For a file, unless COSTS OFF is specified, the file size (in bytes) is shown as well.

Example F.1. Create a Foreign Table for PostgreSQL CSV Logs

One of the obvious uses for file_fdw is to make the PostgreSQL activity log available as a table for
querying. To do this, first you must be logging to a CSV file, which here we will call pglog.csv. First,
install file_fdw as an extension:

CREATE EXTENSION file_fdw;

Then create a foreign server:

CREATE SERVER pglog FOREIGN DATA WRAPPER file_fdw;

Now you are ready to create the foreign data table. Using the CREATE FOREIGN TABLE command, you
will need to define the columns for the table, the CSV file name, and its format:

CREATE FOREIGN TABLE pglog (
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,

2544

Additional Supplied Mod-
ules and Extensions

 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,
 backend_type text,
 leader_pid integer,
 query_id bigint
) SERVER pglog
OPTIONS (filename 'log/pglog.csv', format 'csv');

That's it — now you can query your log directly. In production, of course, you would need to define some
way to deal with log rotation.

Example F.2. Create a Foreign Table with an Option on a Column

To set the force_null option for a column, use the OPTIONS keyword.

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title text NOT NULL,
 rating text OPTIONS (force_null 'true')
) SERVER film_server
OPTIONS (filename 'films/db.csv', format 'csv');

2545

Additional Supplied Mod-
ules and Extensions

F.16. fuzzystrmatch — determine string similarities and
distance

The fuzzystrmatch module provides several functions to determine similarities and distance between
strings.

Caution
At present, the soundex, metaphone, dmetaphone, and dmetaphone_alt functions do not work well
with multibyte encodings (such as UTF-8). Use daitch_mokotoff or levenshtein with such data.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.16.1. Soundex
The Soundex system is a method of matching similar-sounding names by converting them to the same
code. It was initially used by the United States Census in 1880, 1900, and 1910. Note that Soundex is
not very useful for non-English names.

The fuzzystrmatch module provides two functions for working with Soundex codes:

soundex(text) returns text
difference(text, text) returns int

The soundex function converts a string to its Soundex code. The difference function converts two
strings to their Soundex codes and then reports the number of matching code positions. Since Soundex
codes have four characters, the result ranges from zero to four, with zero being no match and four being
an exact match. (Thus, the function is misnamed — similarity would have been a better name.)

Here are some usage examples:

SELECT soundex('hello world!');

SELECT soundex('Anne'), soundex('Ann'), difference('Anne', 'Ann');
SELECT soundex('Anne'), soundex('Andrew'), difference('Anne', 'Andrew');
SELECT soundex('Anne'), soundex('Margaret'), difference('Anne', 'Margaret');

CREATE TABLE s (nm text);

INSERT INTO s VALUES ('john');
INSERT INTO s VALUES ('joan');
INSERT INTO s VALUES ('wobbly');
INSERT INTO s VALUES ('jack');

SELECT * FROM s WHERE soundex(nm) = soundex('john');

SELECT * FROM s WHERE difference(s.nm, 'john') > 2;

F.16.2. Daitch-Mokotoff Soundex
Like the original Soundex system, Daitch-Mokotoff Soundex matches similar-sounding names by con-
verting them to the same code. However, Daitch-Mokotoff Soundex is significantly more useful for non-
English names than the original system. Major improvements over the original system include:
• The code is based on the first six meaningful letters rather than four.
• A letter or combination of letters maps into ten possible codes rather than seven.
• Where two consecutive letters have a single sound, they are coded as a single number.

2546

Additional Supplied Mod-
ules and Extensions

• When a letter or combination of letters may have different sounds, multiple codes are emitted to
cover all possibilities.

This function generates the Daitch-Mokotoff soundex codes for its input:

daitch_mokotoff(source text) returns text[]

The result may contain one or more codes depending on how many plausible pronunciations there are,
so it is represented as an array.

Since a Daitch-Mokotoff soundex code consists of only 6 digits, source should be preferably a single
word or name.

Here are some examples:

SELECT daitch_mokotoff('George');
 daitch_mokotoff

 {595000}

SELECT daitch_mokotoff('John');
 daitch_mokotoff

 {160000,460000}

SELECT daitch_mokotoff('Bierschbach');
 daitch_mokotoff

 {794575,794574,794750,794740,745750,745740,747500,747400}

SELECT daitch_mokotoff('Schwartzenegger');
 daitch_mokotoff

 {479465}

For matching of single names, returned text arrays can be matched directly using the && operator: any
overlap can be considered a match. A GIN index may be used for efficiency, see Section 65.4 and this
example:

CREATE TABLE s (nm text);
CREATE INDEX ix_s_dm ON s USING gin (daitch_mokotoff(nm)) WITH (fastupdate = off);

INSERT INTO s (nm) VALUES
 ('Schwartzenegger'),
 ('John'),
 ('James'),
 ('Steinman'),
 ('Steinmetz');

SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Swartzenegger');
SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Jane');
SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Jens');

For indexing and matching of any number of names in any order, Full Text Search features can be used.
See Chapter 12 and this example:

CREATE FUNCTION soundex_tsvector(v_name text) RETURNS tsvector
BEGIN ATOMIC
 SELECT to_tsvector('simple',
 string_agg(array_to_string(daitch_mokotoff(n), ' '), ' '))

2547

Additional Supplied Mod-
ules and Extensions

 FROM regexp_split_to_table(v_name, '\s+') AS n;
END;

CREATE FUNCTION soundex_tsquery(v_name text) RETURNS tsquery
BEGIN ATOMIC
 SELECT string_agg('(' || array_to_string(daitch_mokotoff(n), '|') || ')',
 '&')::tsquery
 FROM regexp_split_to_table(v_name, '\s+') AS n;
END;

CREATE TABLE s (nm text);
CREATE INDEX ix_s_txt ON s USING gin (soundex_tsvector(nm)) WITH (fastupdate = off);

INSERT INTO s (nm) VALUES
 ('John Doe'),
 ('Jane Roe'),
 ('Public John Q.'),
 ('George Best'),
 ('John Yamson');

SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('john');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('jane doe');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('john public');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('besst, giorgio');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('Jameson John');

If it is desired to avoid recalculation of soundex codes during index rechecks, an index on a separate
column can be used instead of an index on an expression. A stored generated column can be used for
this; see Section 5.4.

F.16.3. Levenshtein
This function calculates the Levenshtein distance between two strings:

levenshtein(source text, target text, ins_cost int, del_cost int, sub_cost int) returns
 int
levenshtein(source text, target text) returns int
levenshtein_less_equal(source text, target text, ins_cost int, del_cost int, sub_cost
 int, max_d int) returns int
levenshtein_less_equal(source text, target text, max_d int) returns int

Both source and target can be any non-null string, with a maximum of 255 characters. The cost para-
meters specify how much to charge for a character insertion, deletion, or substitution, respectively. You
can omit the cost parameters, as in the second version of the function; in that case they all default to 1.

levenshtein_less_equal is an accelerated version of the Levenshtein function for use when only small
distances are of interest. If the actual distance is less than or equal to max_d, then levenshtein_less_e-
qual returns the correct distance; otherwise it returns some value greater than max_d. If max_d is neg-
ative then the behavior is the same as levenshtein.

Examples:

test=# SELECT levenshtein('GUMBO', 'GAMBOL');
 levenshtein

 2
(1 row)

test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2, 1, 1);

2548

Additional Supplied Mod-
ules and Extensions

 levenshtein

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 2);
 levenshtein_less_equal

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 4);
 levenshtein_less_equal

 4
(1 row)

F.16.4. Metaphone
Metaphone, like Soundex, is based on the idea of constructing a representative code for an input string.
Two strings are then deemed similar if they have the same codes.

This function calculates the metaphone code of an input string:

metaphone(source text, max_output_length int) returns text

source has to be a non-null string with a maximum of 255 characters. max_output_length sets the
maximum length of the output metaphone code; if longer, the output is truncated to this length.

Example:

test=# SELECT metaphone('GUMBO', 4);
 metaphone

 KM
(1 row)

F.16.5. Double Metaphone
The Double Metaphone system computes two “sounds like” strings for a given input string — a “primary”
and an “alternate”. In most cases they are the same, but for non-English names especially they can be
a bit different, depending on pronunciation. These functions compute the primary and alternate codes:

dmetaphone(source text) returns text
dmetaphone_alt(source text) returns text

There is no length limit on the input strings.

Example:

test=# SELECT dmetaphone('gumbo');
 dmetaphone

 KMP
(1 row)

2549

Additional Supplied Mod-
ules and Extensions

F.17. hstore — hstore key/value datatype
This module implements the hstore data type for storing sets of key/value pairs within a single Post-
greSQL value. This can be useful in various scenarios, such as rows with many attributes that are rarely
examined, or semi-structured data. Keys and values are simply text strings.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.17.1. hstore External Representation
The text representation of an hstore, used for input and output, includes zero or more key => value
pairs separated by commas. Some examples:
k => v
foo => bar, baz => whatever
"1-a" => "anything at all"

The order of the pairs is not significant (and may not be reproduced on output). Whitespace between
pairs or around the => sign is ignored. Double-quote keys and values that include whitespace, commas,
=s or >s. To include a double quote or a backslash in a key or value, escape it with a backslash.

Each key in an hstore is unique. If you declare an hstore with duplicate keys, only one will be stored
in the hstore and there is no guarantee as to which will be kept:
SELECT 'a=>1,a=>2'::hstore;
 hstore

 "a"=>"1"

A value (but not a key) can be an SQL NULL. For example:
key => NULL

The NULL keyword is case-insensitive. Double-quote the NULL to treat it as the ordinary string “NULL”.

Note
Keep in mind that the hstore text format, when used for input, applies before any required quoting
or escaping. If you are passing an hstore literal via a parameter, then no additional processing
is needed. But if you're passing it as a quoted literal constant, then any single-quote characters
and (depending on the setting of the standard_conforming_strings configuration parameter)
backslash characters need to be escaped correctly. See Section 4.1.2.1 for more on the handling
of string constants.

On output, double quotes always surround keys and values, even when it's not strictly necessary.

F.17.2. hstore Operators and Functions
The operators provided by the hstore module are shown in Table F.6, the functions in Table F.7.

Table F.6. hstore Operators

Operator
Description
Example(s)

hstore -> text → text
Returns value associated with given key, or NULL if not present.
'a=>x, b=>y'::hstore -> 'a' → x

hstore -> text[] → text[]
Returns values associated with given keys, or NULL if not present.

2550

Additional Supplied Mod-
ules and Extensions

Operator
Description
Example(s)
'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a'] → {"z","x"}

hstore || hstore → hstore
Concatenates two hstores.
'a=>b, c=>d'::hstore || 'c=>x, d=>q'::hstore → "a"=>"b", "c"=>"x", "d"=>"q"

hstore ? text → boolean
Does hstore contain key?
'a=>1'::hstore ? 'a' → t

hstore ?& text[] → boolean
Does hstore contain all the specified keys?
'a=>1,b=>2'::hstore ?& ARRAY['a','b'] → t

hstore ?| text[] → boolean
Does hstore contain any of the specified keys?
'a=>1,b=>2'::hstore ?| ARRAY['b','c'] → t

hstore @> hstore → boolean
Does left operand contain right?
'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1' → t

hstore <@ hstore → boolean
Is left operand contained in right?
'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL' → f

hstore - text → hstore
Deletes key from left operand.
'a=>1, b=>2, c=>3'::hstore - 'b'::text → "a"=>"1", "c"=>"3"

hstore - text[] → hstore
Deletes keys from left operand.
'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b'] → "c"=>"3"

hstore - hstore → hstore
Deletes pairs from left operand that match pairs in the right operand.
'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore → "a"=>"1", "c"=>"3"

anyelement #= hstore → anyelement
Replaces fields in the left operand (which must be a composite type) with matching values
from hstore.
ROW(1,3) #= 'f1=>11'::hstore → (11,3)

%% hstore → text[]
Converts hstore to an array of alternating keys and values.
%% 'a=>foo, b=>bar'::hstore → {a,foo,b,bar}

%# hstore → text[]
Converts hstore to a two-dimensional key/value array.
%# 'a=>foo, b=>bar'::hstore → {{a,foo},{b,bar}}

2551

Additional Supplied Mod-
ules and Extensions

Table F.7. hstore Functions

Function
Description
Example(s)

hstore (record) → hstore
Constructs an hstore from a record or row.
hstore(ROW(1,2)) → "f1"=>"1", "f2"=>"2"

hstore (text[]) → hstore
Constructs an hstore from an array, which may be either a key/value array, or a two-dimen-
sional array.
hstore(ARRAY['a','1','b','2']) → "a"=>"1", "b"=>"2"
hstore(ARRAY[['c','3'],['d','4']]) → "c"=>"3", "d"=>"4"

hstore (text[], text[]) → hstore
Constructs an hstore from separate key and value arrays.
hstore(ARRAY['a','b'], ARRAY['1','2']) → "a"=>"1", "b"=>"2"

hstore (text, text) → hstore
Makes a single-item hstore.
hstore('a', 'b') → "a"=>"b"

akeys (hstore) → text[]
Extracts an hstore's keys as an array.
akeys('a=>1,b=>2') → {a,b}

skeys (hstore) → setof text
Extracts an hstore's keys as a set.
skeys('a=>1,b=>2') →

a
b

avals (hstore) → text[]
Extracts an hstore's values as an array.
avals('a=>1,b=>2') → {1,2}

svals (hstore) → setof text
Extracts an hstore's values as a set.
svals('a=>1,b=>2') →

1
2

hstore_to_array (hstore) → text[]
Extracts an hstore's keys and values as an array of alternating keys and values.
hstore_to_array('a=>1,b=>2') → {a,1,b,2}

hstore_to_matrix (hstore) → text[]
Extracts an hstore's keys and values as a two-dimensional array.
hstore_to_matrix('a=>1,b=>2') → {{a,1},{b,2}}

hstore_to_json (hstore) → json
Converts an hstore to a json value, converting all non-null values to JSON strings.
This function is used implicitly when an hstore value is cast to json.
hstore_to_json('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

f=>1.234, g=>2.345e+4') → {"a key": "1", "b": "t", "c": null, "d": "12345",
"e": "012345", "f": "1.234", "g": "2.345e+4"}

2552

Additional Supplied Mod-
ules and Extensions

Function
Description
Example(s)

hstore_to_jsonb (hstore) → jsonb
Converts an hstore to a jsonb value, converting all non-null values to JSON strings.
This function is used implicitly when an hstore value is cast to jsonb.
hstore_to_jsonb('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

f=>1.234, g=>2.345e+4') → {"a key": "1", "b": "t", "c": null, "d": "12345",
"e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_json_loose (hstore) → json
Converts an hstore to a json value, but attempts to distinguish numerical and Boolean values
so they are unquoted in the JSON.
hstore_to_json_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

 f=>1.234, g=>2.345e+4') → {"a key": 1, "b": true, "c": null, "d": 12345,
"e": "012345", "f": 1.234, "g": 2.345e+4}

hstore_to_jsonb_loose (hstore) → jsonb
Converts an hstore to a jsonb value, but attempts to distinguish numerical and Boolean val-
ues so they are unquoted in the JSON.
hstore_to_jsonb_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

 f=>1.234, g=>2.345e+4') → {"a key": 1, "b": true, "c": null, "d": 12345,
"e": "012345", "f": 1.234, "g": 2.345e+4}

slice (hstore, text[]) → hstore
Extracts a subset of an hstore containing only the specified keys.
slice('a=>1,b=>2,c=>3'::hstore, ARRAY['b','c','x']) → "b"=>"2", "c"=>"3"

each (hstore) → setof record (key text, value text)
Extracts an hstore's keys and values as a set of records.
select * from each('a=>1,b=>2') →

 key | value
-----+-------
 a | 1
 b | 2

exist (hstore, text) → boolean
Does hstore contain key?
exist('a=>1', 'a') → t

defined (hstore, text) → boolean
Does hstore contain a non-NULL value for key?
defined('a=>NULL', 'a') → f

delete (hstore, text) → hstore
Deletes pair with matching key.
delete('a=>1,b=>2', 'b') → "a"=>"1"

delete (hstore, text[]) → hstore
Deletes pairs with matching keys.
delete('a=>1,b=>2,c=>3', ARRAY['a','b']) → "c"=>"3"

delete (hstore, hstore) → hstore
Deletes pairs matching those in the second argument.
delete('a=>1,b=>2', 'a=>4,b=>2'::hstore) → "a"=>"1"

populate_record (anyelement, hstore) → anyelement

2553

Additional Supplied Mod-
ules and Extensions

Function
Description
Example(s)
Replaces fields in the left operand (which must be a composite type) with matching values
from hstore.
populate_record(ROW(1,2), 'f1=>42'::hstore) → (42,2)

In addition to these operators and functions, values of the hstore type can be subscripted, allowing
them to act like associative arrays. Only a single subscript of type text can be specified; it is interpreted
as a key and the corresponding value is fetched or stored. For example,

CREATE TABLE mytable (h hstore);
INSERT INTO mytable VALUES ('a=>b, c=>d');
SELECT h['a'] FROM mytable;
 h

 b
(1 row)

UPDATE mytable SET h['c'] = 'new';
SELECT h FROM mytable;
 h

 "a"=>"b", "c"=>"new"
(1 row)

A subscripted fetch returns NULL if the subscript is NULL or that key does not exist in the hstore. (Thus, a
subscripted fetch is not greatly different from the -> operator.) A subscripted update fails if the subscript
is NULL; otherwise, it replaces the value for that key, adding an entry to the hstore if the key does not
already exist.

F.17.3. Indexes
hstore has GiST and GIN index support for the @>, ?, ?& and ?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);

gist_hstore_ops GiST opclass approximates a set of key/value pairs as a bitmap signature. Its optional
integer parameter siglen determines the signature length in bytes. The default length is 16 bytes. Valid
values of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise
search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX hidx ON testhstore USING GIST (h gist_hstore_ops(siglen=32));

hstore also supports btree or hash indexes for the = operator. This allows hstore columns to be declared
UNIQUE, or to be used in GROUP BY, ORDER BY or DISTINCT expressions. The sort ordering for hstore
values is not particularly useful, but these indexes may be useful for equivalence lookups. Create indexes
for = comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);

CREATE INDEX hidx ON testhstore USING HASH (h);

F.17.4. Examples
Add a key, or update an existing key with a new value:

2554

Additional Supplied Mod-
ules and Extensions

UPDATE tab SET h['c'] = '3';

Another way to do the same thing is:

UPDATE tab SET h = h || hstore('c', '3');

If multiple keys are to be added or changed in one operation, the concatenation approach is more efficient
than subscripting:

UPDATE tab SET h = h || hstore(array['q', 'w'], array['11', '12']);

Delete a key:

UPDATE tab SET h = delete(h, 'k1');

Convert a record to an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT hstore(t) FROM test AS t;
 hstore

 "col1"=>"123", "col2"=>"foo", "col3"=>"bar"
(1 row)

Convert an hstore to a predefined record type:

CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
 '"col1"=>"456", "col2"=>"zzz"');
 col1 | col2 | col3
------+------+------
 456 | zzz |
(1 row)

Modify an existing record using the values from an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s;
 col1 | col2 | col3
------+------+------
 123 | foo | baz
(1 row)

F.17.5. Statistics
The hstore type, because of its intrinsic liberality, could contain a lot of different keys. Checking for
valid keys is the task of the application. The following examples demonstrate several techniques for
checking keys and obtaining statistics.

Simple example:

SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');

Using a table:

CREATE TABLE stat AS SELECT (each(h)).key, (each(h)).value FROM testhstore;

Online statistics:

SELECT key, count(*) FROM

2555

Additional Supplied Mod-
ules and Extensions

 (SELECT (each(h)).key FROM testhstore) AS stat
 GROUP BY key
 ORDER BY count DESC, key;
 key | count
-----------+-------
 line | 883
 query | 207
 pos | 203
 node | 202
 space | 197
 status | 195
 public | 194
 title | 190
 org | 189
...................

F.17.6. Compatibility
As of PostgreSQL 9.0, hstore uses a different internal representation than previous versions. This
presents no obstacle for dump/restore upgrades since the text representation (used in the dump) is un-
changed.

In the event of a binary upgrade, upward compatibility is maintained by having the new code recognize
old-format data. This will entail a slight performance penalty when processing data that has not yet been
modified by the new code. It is possible to force an upgrade of all values in a table column by doing an
UPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || '';

Another way to do it is:

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';

The ALTER TABLE method requires an ACCESS EXCLUSIVE lock on the table, but does not result in bloating
the table with old row versions.

F.17.7. Transforms
Additional extensions are available that implement transforms for the hstore type for the languages
PL/Perl and PL/Python. The extensions for PL/Perl are called hstore_plperl and hstore_plperlu, for
trusted and untrusted PL/Perl. If you install these transforms and specify them when creating a function,
hstore values are mapped to Perl hashes. The extension for PL/Python is called hstore_plpython3u. If
you use it, hstore values are mapped to Python dictionaries.

F.17.8. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia

Additional enhancements by Andrew Gierth <andrew@tao11.riddles.org.uk>, United Kingdom

2556

Additional Supplied Mod-
ules and Extensions

F.18. intagg — integer aggregator and enumerator
The intagg module provides an integer aggregator and an enumerator. intagg is now obsolete, because
there are built-in functions that provide a superset of its capabilities. However, the module is still pro-
vided as a compatibility wrapper around the built-in functions.

F.18.1. Functions
The aggregator is an aggregate function int_array_aggregate(integer) that produces an integer ar-
ray containing exactly the integers it is fed. This is a wrapper around array_agg, which does the same
thing for any array type.

The enumerator is a function int_array_enum(integer[]) that returns setof integer. It is essentially
the reverse operation of the aggregator: given an array of integers, expand it into a set of rows. This is
a wrapper around unnest, which does the same thing for any array type.

F.18.2. Sample Uses
Many database systems have the notion of a many to many table. Such a table usually sits between two
indexed tables, for example:

CREATE TABLE left_table (id INT PRIMARY KEY, ...);
CREATE TABLE right_table (id INT PRIMARY KEY, ...);
CREATE TABLE many_to_many(id_left INT REFERENCES left_table,
 id_right INT REFERENCES right_table);

It is typically used like this:

SELECT right_table.*
FROM right_table JOIN many_to_many ON (right_table.id = many_to_many.id_right)
WHERE many_to_many.id_left = item;

This will return all the items in the right hand table for an entry in the left hand table. This is a very
common construct in SQL.

Now, this methodology can be cumbersome with a very large number of entries in the many_to_many
table. Often, a join like this would result in an index scan and a fetch for each right hand entry in the
table for a particular left hand entry. If you have a very dynamic system, there is not much you can
do. However, if you have some data which is fairly static, you can create a summary table with the
aggregator.

CREATE TABLE summary AS
 SELECT id_left, int_array_aggregate(id_right) AS rights
 FROM many_to_many
 GROUP BY id_left;

This will create a table with one row per left item, and an array of right items. Now this is pretty useless
without some way of using the array; that's why there is an array enumerator. You can do

SELECT id_left, int_array_enum(rights) FROM summary WHERE id_left = item;

The above query using int_array_enum produces the same results as

SELECT id_left, id_right FROM many_to_many WHERE id_left = item;

The difference is that the query against the summary table has to get only one row from the table,
whereas the direct query against many_to_many must index scan and fetch a row for each entry.

On one system, an EXPLAIN showed a query with a cost of 8488 was reduced to a cost of 329. The original
query was a join involving the many_to_many table, which was replaced by:

SELECT id_right, count(id_right) FROM
 (SELECT id_left, int_array_enum(rights) AS id_right
 FROM summary

2557

Additional Supplied Mod-
ules and Extensions

 JOIN (SELECT id FROM left_table
 WHERE id = item) AS lefts
 ON (summary.id_left = lefts.id)
) AS list
 GROUP BY id_right
 ORDER BY count DESC;

2558

Additional Supplied Mod-
ules and Extensions

F.19. intarray — manipulate arrays of integers
The intarray module provides a number of useful functions and operators for manipulating null-free
arrays of integers. There is also support for indexed searches using some of the operators.

All of these operations will throw an error if a supplied array contains any NULL elements.

Many of these operations are only sensible for one-dimensional arrays. Although they will accept input
arrays of more dimensions, the data is treated as though it were a linear array in storage order.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.19.1. intarray Functions and Operators
The functions provided by the intarray module are shown in Table F.8, the operators in Table F.9.

Table F.8. intarray Functions

Function
Description
Example(s)

icount (integer[]) → integer
Returns the number of elements in the array.
icount('{1,2,3}'::integer[]) → 3

sort (integer[], dir text) → integer[]
Sorts the array in either ascending or descending order. dir must be asc or desc.
sort('{1,3,2}'::integer[], 'desc') → {3,2,1}

sort (integer[]) → integer[]
sort_asc (integer[]) → integer[]

Sorts in ascending order.
sort(array[11,77,44]) → {11,44,77}

sort_desc (integer[]) → integer[]
Sorts in descending order.
sort_desc(array[11,77,44]) → {77,44,11}

uniq (integer[]) → integer[]
Removes adjacent duplicates. Often used with sort to remove all duplicates.
uniq('{1,2,2,3,1,1}'::integer[]) → {1,2,3,1}
uniq(sort('{1,2,3,2,1}'::integer[])) → {1,2,3}

idx (integer[], item integer) → integer
Returns index of the first array element matching item, or 0 if no match.
idx(array[11,22,33,22,11], 22) → 2

subarray (integer[], start integer, len integer) → integer[]
Extracts the portion of the array starting at position start, with len elements.
subarray('{1,2,3,2,1}'::integer[], 2, 3) → {2,3,2}

subarray (integer[], start integer) → integer[]
Extracts the portion of the array starting at position start.
subarray('{1,2,3,2,1}'::integer[], 2) → {2,3,2,1}

intset (integer) → integer[]
Makes a single-element array.
intset(42) → {42}

2559

Additional Supplied Mod-
ules and Extensions

Table F.9. intarray Operators

Operator
Description

integer[] && integer[] → boolean
Do arrays overlap (have at least one element in common)?

integer[] @> integer[] → boolean
Does left array contain right array?

integer[] <@ integer[] → boolean
Is left array contained in right array?

integer[] → integer
Returns the number of elements in the array.

integer[] # integer → integer
Returns index of the first array element matching the right argument, or 0 if no match. (Same
as idx function.)

integer[] + integer → integer[]
Adds element to end of array.

integer[] + integer[] → integer[]
Concatenates the arrays.

integer[] - integer → integer[]
Removes entries matching the right argument from the array.

integer[] - integer[] → integer[]
Removes elements of the right array from the left array.

integer[] | integer → integer[]
Computes the union of the arguments.

integer[] | integer[] → integer[]
Computes the union of the arguments.

integer[] & integer[] → integer[]
Computes the intersection of the arguments.

integer[] @@ query_int → boolean
Does array satisfy query? (see below)

query_int ~~ integer[] → boolean
Does array satisfy query? (commutator of @@)

The operators &&, @> and <@ are equivalent to PostgreSQL's built-in operators of the same names, except
that they work only on integer arrays that do not contain nulls, while the built-in operators work for any
array type. This restriction makes them faster than the built-in operators in many cases.

The @@ and ~~ operators test whether an array satisfies a query, which is expressed as a value of a
specialized data type query_int. A query consists of integer values that are checked against the elements
of the array, possibly combined using the operators & (AND), | (OR), and ! (NOT). Parentheses can be
used as needed. For example, the query 1&(2|3) matches arrays that contain 1 and also contain either
2 or 3.

F.19.2. Index Support
intarray provides index support for the &&, @>, and @@ operators, as well as regular array equality.

Two parameterized GiST index operator classes are provided: gist__int_ops (used by default) is suit-
able for small- to medium-size data sets, while gist__intbig_ops uses a larger signature and is more

2560

Additional Supplied Mod-
ules and Extensions

suitable for indexing large data sets (i.e., columns containing a large number of distinct array values).
The implementation uses an RD-tree data structure with built-in lossy compression.

gist__int_ops approximates an integer set as an array of integer ranges. Its optional integer parameter
numranges determines the maximum number of ranges in one index key. The default value of numranges
is 100. Valid values are between 1 and 253. Using larger arrays as GiST index keys leads to a more precise
search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

gist__intbig_ops approximates an integer set as a bitmap signature. Its optional integer parameter
siglen determines the signature length in bytes. The default signature length is 16 bytes. Valid values
of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise search
(scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

There is also a non-default GIN operator class gin__int_ops, which supports these operators as well
as <@.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere.

F.19.3. Example
-- a message can be in one or more “sections”
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);

-- create specialized index with signature length of 32 bytes
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__intbig_ops
 (siglen = 32));

-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections && '{1,2}';

-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @> '{1,2}';

-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@ '1&2'::query_int;

F.19.4. Benchmark
The source directory contrib/intarray/bench contains a benchmark test suite, which can be run
against an installed PostgreSQL server. (It also requires DBD::Pg to be installed.) To run:

cd .../contrib/intarray/bench
createdb TEST
psql -c "CREATE EXTENSION intarray" TEST
./create_test.pl | psql TEST
./bench.pl

The bench.pl script has numerous options, which are displayed when it is run without any arguments.

F.19.5. Authors
All work was done by Teodor Sigaev (<teodor@sigaev.ru>) and Oleg Bartunov (<oleg@sai.msu.su>).
See http://www.sai.msu.su/~megera/postgres/gist/ for additional information. Andrey Oktyabrski did a
great work on adding new functions and operations.

2561

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Mod-
ules and Extensions

F.20. isn — data types for international standard num-
bers (ISBN, EAN, UPC, etc.)

The isn module provides data types for the following international product numbering standards:
EAN13, UPC, ISBN (books), ISMN (music), and ISSN (serials). Numbers are validated on input accord-
ing to a hard-coded list of prefixes; this list of prefixes is also used to hyphenate numbers on output.
Since new prefixes are assigned from time to time, the list of prefixes may be out of date. It is hoped
that a future version of this module will obtain the prefix list from one or more tables that can be easily
updated by users as needed; however, at present, the list can only be updated by modifying the source
code and recompiling. Alternatively, prefix validation and hyphenation support may be dropped from a
future version of this module.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.20.1. Data Types
Table F.10 shows the data types provided by the isn module.

Table F.10. isn Data Types

Data Type Description
EAN13 European Article Numbers, always displayed in the EAN13 display

format
ISBN13 International Standard Book Numbers to be displayed in the new

EAN13 display format
ISMN13 International Standard Music Numbers to be displayed in the new

EAN13 display format
ISSN13 International Standard Serial Numbers to be displayed in the new

EAN13 display format
ISBN International Standard Book Numbers to be displayed in the old

short display format
ISMN International Standard Music Numbers to be displayed in the old

short display format
ISSN International Standard Serial Numbers to be displayed in the old

short display format
UPC Universal Product Codes

Some notes:

1. ISBN13, ISMN13, ISSN13 numbers are all EAN13 numbers.
2. EAN13 numbers aren't always ISBN13, ISMN13 or ISSN13 (some are).
3. Some ISBN13 numbers can be displayed as ISBN.
4. Some ISMN13 numbers can be displayed as ISMN.
5. Some ISSN13 numbers can be displayed as ISSN.
6. UPC numbers are a subset of the EAN13 numbers (they are basically EAN13 without the first 0 digit).
7. All UPC, ISBN, ISMN and ISSN numbers can be represented as EAN13 numbers.
Internally, all these types use the same representation (a 64-bit integer), and all are interchangeable.
Multiple types are provided to control display formatting and to permit tighter validity checking of input
that is supposed to denote one particular type of number.

The ISBN, ISMN, and ISSN types will display the short version of the number (ISxN 10) whenever it's
possible, and will show ISxN 13 format for numbers that do not fit in the short version. The EAN13,
ISBN13, ISMN13 and ISSN13 types will always display the long version of the ISxN (EAN13).

2562

Additional Supplied Mod-
ules and Extensions

F.20.2. Casts
The isn module provides the following pairs of type casts:

• ISBN13 <=> EAN13
• ISMN13 <=> EAN13
• ISSN13 <=> EAN13
• ISBN <=> EAN13
• ISMN <=> EAN13
• ISSN <=> EAN13
• UPC <=> EAN13
• ISBN <=> ISBN13
• ISMN <=> ISMN13
• ISSN <=> ISSN13

When casting from EAN13 to another type, there is a run-time check that the value is within the domain
of the other type, and an error is thrown if not. The other casts are simply relabelings that will always
succeed.

F.20.3. Functions and Operators
The isn module provides the standard comparison operators, plus B-tree and hash indexing support for
all these data types. In addition, there are several specialized functions, shown in Table F.11. In this
table, isn means any one of the module's data types.

Table F.11. isn Functions

Function
Description

make_valid (isn) → isn
Clears the invalid-check-digit flag of the value.

is_valid (isn) → boolean
Checks for the presence of the invalid-check-digit flag.

isn_weak (boolean) → boolean
Sets the weak input mode, and returns the new setting. This function is retained for back-
ward compatibility. The recommended way to set weak mode is via the isn.weak configura-
tion parameter.

isn_weak () → boolean
Returns the current status of the weak mode. This function is retained for backward compati-
bility. The recommended way to check weak mode is via the isn.weak configuration parame-
ter.

F.20.4. Configuration Parameters
isn.weak (boolean)

isn.weak enables the weak input mode, which allows ISN input values to be accepted even when
their check digit is wrong. The default is false, which rejects invalid check digits.

Why would you want to use the weak mode? Well, it could be that you have a huge collection of ISBN
numbers, and that there are so many of them that for weird reasons some have the wrong check digit
(perhaps the numbers were scanned from a printed list and the OCR got the numbers wrong, perhaps
the numbers were manually captured... who knows). Anyway, the point is you might want to clean the

2563

Additional Supplied Mod-
ules and Extensions

mess up, but you still want to be able to have all the numbers in your database and maybe use an external
tool to locate the invalid numbers in the database so you can verify the information and validate it more
easily; so for example you'd want to select all the invalid numbers in the table.

When you insert invalid numbers in a table using the weak mode, the number will be inserted with the
corrected check digit, but it will be displayed with an exclamation mark (!) at the end, for example
0-11-000322-5!. This invalid marker can be checked with the is_valid function and cleared with the
make_valid function.

You can also force the insertion of marked-as-invalid numbers even when not in the weak mode, by
appending the ! character at the end of the number.

Another special feature is that during input, you can write ? in place of the check digit, and the correct
check digit will be inserted automatically.

F.20.5. Examples
--Using the types directly:
SELECT isbn('978-0-393-04002-9');
SELECT isbn13('0901690546');
SELECT issn('1436-4522');

--Casting types:
-- note that you can only cast from ean13 to another type when the
-- number would be valid in the realm of the target type;
-- thus, the following will NOT work: select isbn(ean13('0220356483481'));
-- but these will:
SELECT upc(ean13('0220356483481'));
SELECT ean13(upc('220356483481'));

--Create a table with a single column to hold ISBN numbers:
CREATE TABLE test (id isbn);
INSERT INTO test VALUES('9780393040029');

--Automatically calculate check digits (observe the '?'):
INSERT INTO test VALUES('220500896?');
INSERT INTO test VALUES('978055215372?');

SELECT issn('3251231?');
SELECT ismn('979047213542?');

--Using the weak mode:
SET isn.weak TO true;
INSERT INTO test VALUES('978-0-11-000533-4');
INSERT INTO test VALUES('9780141219307');
INSERT INTO test VALUES('2-205-00876-X');
SET isn.weak TO false;

SELECT id FROM test WHERE NOT is_valid(id);
UPDATE test SET id = make_valid(id) WHERE id = '2-205-00876-X!';

SELECT * FROM test;

SELECT isbn13(id) FROM test;

F.20.6. Bibliography
The information to implement this module was collected from several sites, including:
• https://www.isbn-international.org/

2564

https://www.isbn-international.org/

Additional Supplied Mod-
ules and Extensions

• https://www.issn.org/
• https://www.ismn-international.org/
• https://www.wikipedia.org/
The prefixes used for hyphenation were also compiled from:
• https://www.gs1.org/standards/id-keys
• https://en.wikipedia.org/wiki/List_of_ISBN_registration_groups
• https://www.isbn-international.org/content/isbn-users-manual/29
• https://en.wikipedia.org/wiki/International_Standard_Music_Number
• https://www.ismn-international.org/ranges/tools
Care was taken during the creation of the algorithms and they were meticulously verified against the
suggested algorithms in the official ISBN, ISMN, ISSN User Manuals.

F.20.7. Author
Germán Méndez Bravo (Kronuz), 2004–2006

This module was inspired by Garrett A. Wollman's isbn_issn code.

2565

https://www.issn.org/
https://www.ismn-international.org/
https://www.wikipedia.org/
https://www.gs1.org/standards/id-keys
https://en.wikipedia.org/wiki/List_of_ISBN_registration_groups
https://www.isbn-international.org/content/isbn-users-manual/29
https://en.wikipedia.org/wiki/International_Standard_Music_Number
https://www.ismn-international.org/ranges/tools

Additional Supplied Mod-
ules and Extensions

F.21. lo — manage large objects
The lo module provides support for managing Large Objects (also called LOs or BLOBs). This includes
a data type lo and a trigger lo_manage.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.21.1. Rationale
One of the problems with the JDBC driver (and this affects the ODBC driver also), is that the specification
assumes that references to BLOBs (Binary Large OBjects) are stored within a table, and if that entry is
changed, the associated BLOB is deleted from the database.

As PostgreSQL stands, this doesn't occur. Large objects are treated as objects in their own right; a table
entry can reference a large object by OID, but there can be multiple table entries referencing the same
large object OID, so the system doesn't delete the large object just because you change or remove one
such entry.

Now this is fine for PostgreSQL-specific applications, but standard code using JDBC or ODBC won't
delete the objects, resulting in orphan objects — objects that are not referenced by anything, and simply
occupy disk space.

The lo module allows fixing this by attaching a trigger to tables that contain LO reference columns.
The trigger essentially just does a lo_unlink whenever you delete or modify a value referencing a large
object. When you use this trigger, you are assuming that there is only one database reference to any
large object that is referenced in a trigger-controlled column!

The module also provides a data type lo, which is really just a domain over the oid type. This is useful
for differentiating database columns that hold large object references from those that are OIDs of other
things. You don't have to use the lo type to use the trigger, but it may be convenient to use it to keep
track of which columns in your database represent large objects that you are managing with the trigger.
It is also rumored that the ODBC driver gets confused if you don't use lo for BLOB columns.

F.21.2. How to Use It
Here's a simple example of usage:

CREATE TABLE image (title text, raster lo);

CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON image
 FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);

For each column that will contain unique references to large objects, create a BEFORE UPDATE OR DELETE
trigger, and give the column name as the sole trigger argument. You can also restrict the trigger to only
execute on updates to the column by using BEFORE UPDATE OF column_name. If you need multiple lo
columns in the same table, create a separate trigger for each one, remembering to give a different name
to each trigger on the same table.

F.21.3. Limitations
• Dropping a table will still orphan any objects it contains, as the trigger is not executed. You can

avoid this by preceding the DROP TABLE with DELETE FROM table.

TRUNCATE has the same hazard.

If you already have, or suspect you have, orphaned large objects, see the vacuumlo module to help
you clean them up. It's a good idea to run vacuumlo occasionally as a back-stop to the lo_manage
trigger.

• Some frontends may create their own tables, and will not create the associated trigger(s). Also,
users may not remember (or know) to create the triggers.

2566

Additional Supplied Mod-
ules and Extensions

F.21.4. Author
Peter Mount <peter@retep.org.uk>

2567

Additional Supplied Mod-
ules and Extensions

F.22. ltree — hierarchical tree-like data type
This module implements a data type ltree for representing labels of data stored in a hierarchical tree-
like structure. Extensive facilities for searching through label trees are provided.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.22.1. Definitions
A label is a sequence of alphanumeric characters, underscores, and hyphens. Valid alphanumeric char-
acter ranges are dependent on the database locale. For example, in C locale, the characters A-Za-z0-9_-
are allowed. Labels must be no more than 1000 characters long.

Examples: 42, Personal_Services

A label path is a sequence of zero or more labels separated by dots, for example L1.L2.L3, representing
a path from the root of a hierarchical tree to a particular node. The length of a label path cannot exceed
65535 labels.

Example: Top.Countries.Europe.Russia

The ltree module provides several data types:

• ltree stores a label path.
• lquery represents a regular-expression-like pattern for matching ltree values. A simple word

matches that label within a path. A star symbol (*) matches zero or more labels. These can be
joined with dots to form a pattern that must match the whole label path. For example:
foo Match the exact label path foo
.foo. Match any label path containing the label foo
*.foo Match any label path whose last label is foo

Both star symbols and simple words can be quantified to restrict how many labels they can match:
*{n} Match exactly n labels
*{n,} Match at least n labels
*{n,m} Match at least n but not more than m labels
*{,m} Match at most m labels — same as *{0,m}
foo{n,m} Match at least n but not more than m occurrences of foo
foo{,} Match any number of occurrences of foo, including zero

In the absence of any explicit quantifier, the default for a star symbol is to match any number of la-
bels (that is, {,}) while the default for a non-star item is to match exactly once (that is, {1}).

There are several modifiers that can be put at the end of a non-star lquery item to make it match
more than just the exact match:
@ Match case-insensitively, for example a@ matches A
* Match any label with this prefix, for example foo* matches foobar
% Match initial underscore-separated words

The behavior of % is a bit complicated. It tries to match words rather than the entire label. For
example foo_bar% matches foo_bar_baz but not foo_barbaz. If combined with *, prefix match-
ing applies to each word separately, for example foo_bar%* matches foo1_bar2_baz but not
foo1_br2_baz.

Also, you can write several possibly-modified non-star items separated with | (OR) to match any
of those items, and you can put ! (NOT) at the start of a non-star group to match any label that
doesn't match any of the alternatives. A quantifier, if any, goes at the end of the group; it means
some number of matches for the group as a whole (that is, some number of labels matching or not
matching any of the alternatives).

2568

Additional Supplied Mod-
ules and Extensions

Here's an annotated example of lquery:

Top.*{0,2}.sport*@.!football|tennis{1,}.Russ*|Spain
a. b. c. d. e.

This query will match any label path that:

a. begins with the label Top

b. and next has zero to two labels before

c. a label beginning with the case-insensitive prefix sport

d. then has one or more labels, none of which match football nor tennis

e. and then ends with a label beginning with Russ or exactly matching Spain.

• ltxtquery represents a full-text-search-like pattern for matching ltree values. An ltxtquery val-
ue contains words, possibly with the modifiers @, *, % at the end; the modifiers have the same mean-
ings as in lquery. Words can be combined with & (AND), | (OR), ! (NOT), and parentheses. The key
difference from lquery is that ltxtquery matches words without regard to their position in the la-
bel path.

Here's an example ltxtquery:

Europe & Russia*@ & !Transportation

This will match paths that contain the label Europe and any label beginning with Russia (case-in-
sensitive), but not paths containing the label Transportation. The location of these words within
the path is not important. Also, when % is used, the word can be matched to any underscore-sepa-
rated word within a label, regardless of position.

Note: ltxtquery allows whitespace between symbols, but ltree and lquery do not.

F.22.2. Operators and Functions
Type ltree has the usual comparison operators =, <>, <, >, <=, >=. Comparison sorts in the order of a
tree traversal, with the children of a node sorted by label text. In addition, the specialized operators
shown in Table F.12 are available.

Table F.12. ltree Operators

Operator
Description

ltree @> ltree → boolean
Is left argument an ancestor of right (or equal)?

ltree <@ ltree → boolean
Is left argument a descendant of right (or equal)?

ltree ~ lquery → boolean
lquery ~ ltree → boolean

Does ltree match lquery?

ltree ? lquery[] → boolean
lquery[] ? ltree → boolean

Does ltree match any lquery in array?

ltree @ ltxtquery → boolean
ltxtquery @ ltree → boolean

Does ltree match ltxtquery?

ltree || ltree → ltree

2569

Additional Supplied Mod-
ules and Extensions

Operator
Description
Concatenates ltree paths.

ltree || text → ltree
text || ltree → ltree

Converts text to ltree and concatenates.

ltree[] @> ltree → boolean
ltree <@ ltree[] → boolean

Does array contain an ancestor of ltree?

ltree[] <@ ltree → boolean
ltree @> ltree[] → boolean

Does array contain a descendant of ltree?

ltree[] ~ lquery → boolean
lquery ~ ltree[] → boolean

Does array contain any path matching lquery?

ltree[] ? lquery[] → boolean
lquery[] ? ltree[] → boolean

Does ltree array contain any path matching any lquery?

ltree[] @ ltxtquery → boolean
ltxtquery @ ltree[] → boolean

Does array contain any path matching ltxtquery?

ltree[] ?@> ltree → ltree
Returns first array entry that is an ancestor of ltree, or NULL if none.

ltree[] ?<@ ltree → ltree
Returns first array entry that is a descendant of ltree, or NULL if none.

ltree[] ?~ lquery → ltree
Returns first array entry that matches lquery, or NULL if none.

ltree[] ?@ ltxtquery → ltree
Returns first array entry that matches ltxtquery, or NULL if none.

The operators <@, @>, @ and ~ have analogues ^<@, ^@>, ^@, ^~, which are the same except they do not
use indexes. These are useful only for testing purposes.

The available functions are shown in Table F.13.

Table F.13. ltree Functions

Function
Description
Example(s)

subltree (ltree, start integer, end integer) → ltree
Returns subpath of ltree from position start to position end-1 (counting from 0).
subltree('Top.Child1.Child2', 1, 2) → Child1

subpath (ltree, offset integer, len integer) → ltree
Returns subpath of ltree starting at position offset, with length len. If offset is negative,
subpath starts that far from the end of the path. If len is negative, leaves that many labels off
the end of the path.
subpath('Top.Child1.Child2', 0, 2) → Top.Child1

2570

Additional Supplied Mod-
ules and Extensions

Function
Description
Example(s)

subpath (ltree, offset integer) → ltree
Returns subpath of ltree starting at position offset, extending to end of path. If offset is
negative, subpath starts that far from the end of the path.
subpath('Top.Child1.Child2', 1) → Child1.Child2

nlevel (ltree) → integer
Returns number of labels in path.
nlevel('Top.Child1.Child2') → 3

index (a ltree, b ltree) → integer
Returns position of first occurrence of b in a, or -1 if not found.
index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6') → 6

index (a ltree, b ltree, offset integer) → integer
Returns position of first occurrence of b in a, or -1 if not found. The search starts at position
offset; negative offset means start -offset labels from the end of the path.
index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6', -4) → 9

text2ltree (text) → ltree
Casts text to ltree.

ltree2text (ltree) → text
Casts ltree to text.

lca (ltree [, ltree [, ...]]) → ltree
Computes longest common ancestor of paths (up to 8 arguments are supported).
lca('1.2.3', '1.2.3.4.5.6') → 1.2

lca (ltree[]) → ltree
Computes longest common ancestor of paths in array.
lca(array['1.2.3'::ltree,'1.2.3.4']) → 1.2

F.22.3. Indexes
ltree supports several types of indexes that can speed up the indicated operators:

• B-tree index over ltree: <, <=, =, >=, >
• Hash index over ltree: =
• GiST index over ltree (gist_ltree_ops opclass): <, <=, =, >=, >, @>, <@, @, ~, ?

gist_ltree_ops GiST opclass approximates a set of path labels as a bitmap signature. Its optional
integer parameter siglen determines the signature length in bytes. The default signature length is
8 bytes. The length must be a positive multiple of int alignment (4 bytes on most machines)) up to
2024. Longer signatures lead to a more precise search (scanning a smaller fraction of the index and
fewer heap pages), at the cost of a larger index.

Example of creating such an index with the default signature length of 8 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (path);

Example of creating such an index with a signature length of 100 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (path gist_ltree_ops(siglen=100));

• GiST index over ltree[] (gist__ltree_ops opclass): ltree[] <@ ltree, ltree @> ltree[], @, ~,
?

2571

Additional Supplied Mod-
ules and Extensions

gist__ltree_ops GiST opclass works similarly to gist_ltree_ops and also takes signature length
as a parameter. The default value of siglen in gist__ltree_ops is 28 bytes.

Example of creating such an index with the default signature length of 28 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (array_path);

Example of creating such an index with a signature length of 100 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (array_path
 gist__ltree_ops(siglen=100));

Note: This index type is lossy.

F.22.4. Example
This example uses the following data (also available in file contrib/ltree/ltreetest.sql in the source
distribution):

CREATE TABLE test (path ltree);
INSERT INTO test VALUES ('Top');
INSERT INTO test VALUES ('Top.Science');
INSERT INTO test VALUES ('Top.Science.Astronomy');
INSERT INTO test VALUES ('Top.Science.Astronomy.Astrophysics');
INSERT INTO test VALUES ('Top.Science.Astronomy.Cosmology');
INSERT INTO test VALUES ('Top.Hobbies');
INSERT INTO test VALUES ('Top.Hobbies.Amateurs_Astronomy');
INSERT INTO test VALUES ('Top.Collections');
INSERT INTO test VALUES ('Top.Collections.Pictures');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Stars');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Galaxies');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Astronauts');
CREATE INDEX path_gist_idx ON test USING GIST (path);
CREATE INDEX path_idx ON test USING BTREE (path);
CREATE INDEX path_hash_idx ON test USING HASH (path);

Now, we have a table test populated with data describing the hierarchy shown below:

 Top
 / | \
 Science Hobbies Collections
 / | \
 Astronomy Amateurs_Astronomy Pictures
 / \ |
Astrophysics Cosmology Astronomy
 / | \
 Galaxies Stars Astronauts

We can do inheritance:

ltreetest=> SELECT path FROM test WHERE path <@ 'Top.Science';
 path

 Top.Science
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(4 rows)

Here are some examples of path matching:

2572

Additional Supplied Mod-
ules and Extensions

ltreetest=> SELECT path FROM test WHERE path ~ '*.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Collections.Pictures.Astronomy
 Top.Collections.Pictures.Astronomy.Stars
 Top.Collections.Pictures.Astronomy.Galaxies
 Top.Collections.Pictures.Astronomy.Astronauts
(7 rows)

ltreetest=> SELECT path FROM test WHERE path ~ '*.!pictures@.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

Here are some examples of full text search:

ltreetest=> SELECT path FROM test WHERE path @ 'Astro*% & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Hobbies.Amateurs_Astronomy
(4 rows)

ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

Path construction using functions:

ltreetest=> SELECT subpath(path,0,2)||'Space'||subpath(path,2) FROM test WHERE path <@
 'Top.Science.Astronomy';
 ?column?
--
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

We could simplify this by creating an SQL function that inserts a label at a specified position in a path:

CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree
 AS 'select subpath($1,0,$2) || $3 || subpath($1,$2);'
 LANGUAGE SQL IMMUTABLE;

ltreetest=> SELECT ins_label(path,2,'Space') FROM test WHERE path <@
 'Top.Science.Astronomy';
 ins_label
--

2573

Additional Supplied Mod-
ules and Extensions

 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

F.22.5. Transforms
The ltree_plpython3u extension implements transforms for the ltree type for PL/Python. If installed
and specified when creating a function, ltree values are mapped to Python lists. (The reverse is currently
not supported, however.)

F.22.6. Authors
All work was done by Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov (<oleg@sai.msu.su>).
See http://www.sai.msu.su/~megera/postgres/gist/ for additional information. Authors would like to
thank Eugeny Rodichev for helpful discussions. Comments and bug reports are welcome.

2574

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Mod-
ules and Extensions

F.23. pageinspect — low-level inspection of database
pages

The pageinspect module provides functions that allow you to inspect the contents of database pages at a
low level, which is useful for debugging purposes. All of these functions may be used only by superusers.

F.23.1. General Functions
get_raw_page(relname text, fork text, blkno bigint) returns bytea

get_raw_page reads the specified block of the named relation and returns a copy as a bytea value.
This allows a single time-consistent copy of the block to be obtained. fork should be 'main' for
the main data fork, 'fsm' for the free space map, 'vm' for the visibility map, or 'init' for the
initialization fork.

get_raw_page(relname text, blkno bigint) returns bytea

A shorthand version of get_raw_page, for reading from the main fork. Equivalent to
get_raw_page(relname, 'main', blkno)

page_header(page bytea) returns record

page_header shows fields that are common to all PostgreSQL heap and index pages.

A page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM page_header(get_raw_page('pg_class', 0));
 lsn | checksum | flags | lower | upper | special | pagesize | version |
 prune_xid
-----------+----------+--------+-------+-------+---------+----------+---------
+-----------
 0/24A1B50 | 0 | 1 | 232 | 368 | 8192 | 8192 | 4 |
 0

The returned columns correspond to the fields in the PageHeaderData struct. See src/in-
clude/storage/bufpage.h for details.

The checksum field is the checksum stored in the page, which might be incorrect if the page is some-
how corrupted. If data checksums are disabled for this instance, then the value stored is meaningless.

page_checksum(page bytea, blkno bigint) returns smallint

page_checksum computes the checksum for the page, as if it was located at the given block.

A page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT page_checksum(get_raw_page('pg_class', 0), 0);
 page_checksum

 13443

Note that the checksum depends on the block number, so matching block numbers should be passed
(except when doing esoteric debugging).

The checksum computed with this function can be compared with the checksum result field of the
function page_header. If data checksums are enabled for this instance, then the two values should
be equal.

fsm_page_contents(page bytea) returns text

fsm_page_contents shows the internal node structure of an FSM page. For example:

test=# SELECT fsm_page_contents(get_raw_page('pg_class', 'fsm', 0));

2575

Additional Supplied Mod-
ules and Extensions

The output is a multiline string, with one line per node in the binary tree within the page. Only those
nodes that are not zero are printed. The so-called "next" pointer, which points to the next slot to be
returned from the page, is also printed.

See src/backend/storage/freespace/README for more information on the structure of an FSM
page.

F.23.2. Heap Functions
heap_page_items(page bytea) returns setof record

heap_page_items shows all line pointers on a heap page. For those line pointers that are in use, tuple
headers as well as tuple raw data are also shown. All tuples are shown, whether or not the tuples
were visible to an MVCC snapshot at the time the raw page was copied.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_items(get_raw_page('pg_class', 0));

See src/include/storage/itemid.h and src/include/access/htup_details.h for explanations of
the fields returned.

The heap_tuple_infomask_flags function can be used to unpack the flag bits of t_infomask and
t_infomask2 for heap tuples.

tuple_data_split(rel_oid oid, t_data bytea, t_infomask integer, t_infomask2 integer,
t_bits text [, do_detoast bool]) returns bytea[]

tuple_data_split splits tuple data into attributes in the same way as backend internals.

test=# SELECT tuple_data_split('pg_class'::regclass, t_data, t_infomask,
 t_infomask2, t_bits) FROM heap_page_items(get_raw_page('pg_class', 0));

This function should be called with the same arguments as the return attributes of heap_page_items.

If do_detoast is true, attributes will be detoasted as needed. Default value is false.

heap_page_item_attrs(page bytea, rel_oid regclass [, do_detoast bool]) returns setof
record

heap_page_item_attrs is equivalent to heap_page_items except that it returns tuple raw data as an
array of attributes that can optionally be detoasted by do_detoast which is false by default.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_item_attrs(get_raw_page('pg_class', 0),
 'pg_class'::regclass);

heap_tuple_infomask_flags(t_infomask integer, t_infomask2 integer) returns record

heap_tuple_infomask_flags decodes the t_infomask and t_infomask2 returned by
heap_page_items into a human-readable set of arrays made of flag names, with one column for all
the flags and one column for combined flags. For example:

test=# SELECT t_ctid, raw_flags, combined_flags
 FROM heap_page_items(get_raw_page('pg_class', 0)),
 LATERAL heap_tuple_infomask_flags(t_infomask, t_infomask2)
 WHERE t_infomask IS NOT NULL OR t_infomask2 IS NOT NULL;

This function should be called with the same arguments as the return attributes of heap_page_items.

Combined flags are displayed for source-level macros that take into account the value of more than
one raw bit, such as HEAP_XMIN_FROZEN.

See src/include/access/htup_details.h for explanations of the flag names returned.

2576

Additional Supplied Mod-
ules and Extensions

F.23.3. B-Tree Functions
bt_metap(relname text) returns record

bt_metap returns information about a B-tree index's metapage. For example:

test=# SELECT * FROM bt_metap('pg_cast_oid_index');
-[RECORD 1]-------------+-------
magic | 340322
version | 4
root | 1
level | 0
fastroot | 1
fastlevel | 0
last_cleanup_num_delpages | 0
last_cleanup_num_tuples | 230
allequalimage | f

bt_page_stats(relname text, blkno bigint) returns record

bt_page_stats returns summary information about a data page of a B-tree index. For example:

test=# SELECT * FROM bt_page_stats('pg_cast_oid_index', 1);
-[RECORD 1]-+-----
blkno | 1
type | l
live_items | 224
dead_items | 0
avg_item_size | 16
page_size | 8192
free_size | 3668
btpo_prev | 0
btpo_next | 0
btpo_level | 0
btpo_flags | 3

bt_multi_page_stats(relname text, blkno bigint, blk_count bigint) returns setof record

bt_multi_page_stats returns the same information as bt_page_stats, but does so for each page of
the range of pages beginning at blkno and extending for blk_count pages. If blk_count is negative,
all pages from blkno to the end of the index are reported on. For example:

test=# SELECT * FROM bt_multi_page_stats('pg_proc_oid_index', 5, 2);
-[RECORD 1]-+-----
blkno | 5
type | l
live_items | 367
dead_items | 0
avg_item_size | 16
page_size | 8192
free_size | 808
btpo_prev | 4
btpo_next | 6
btpo_level | 0
btpo_flags | 1
-[RECORD 2]-+-----
blkno | 6
type | l
live_items | 367
dead_items | 0
avg_item_size | 16

2577

Additional Supplied Mod-
ules and Extensions

page_size | 8192
free_size | 808
btpo_prev | 5
btpo_next | 7
btpo_level | 0
btpo_flags | 1

bt_page_items(relname text, blkno bigint) returns setof record
bt_page_items returns detailed information about all of the items on a B-tree index page. For ex-
ample:
test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS
 some_tids
 FROM bt_page_items('tenk2_hundred', 5);
 itemoffset | ctid | itemlen | nulls | vars | data | dead |
 htid | some_tids
------------+-----------+---------+-------+------+-------------------------+------
+--------+---------------------
 1 | (16,1) | 16 | f | f | 30 00 00 00 00 00 00 00 | |
 |
 2 | (16,8292) | 616 | f | f | 24 00 00 00 00 00 00 00 | f |
 (1,6) | {"(1,6)","(10,22)"}
 3 | (16,8292) | 616 | f | f | 25 00 00 00 00 00 00 00 | f |
 (1,18) | {"(1,18)","(4,22)"}
 4 | (16,8292) | 616 | f | f | 26 00 00 00 00 00 00 00 | f |
 (4,18) | {"(4,18)","(6,17)"}
 5 | (16,8292) | 616 | f | f | 27 00 00 00 00 00 00 00 | f |
 (1,2) | {"(1,2)","(1,19)"}
 6 | (16,8292) | 616 | f | f | 28 00 00 00 00 00 00 00 | f |
 (2,24) | {"(2,24)","(4,11)"}
 7 | (16,8292) | 616 | f | f | 29 00 00 00 00 00 00 00 | f |
 (2,17) | {"(2,17)","(11,2)"}
 8 | (16,8292) | 616 | f | f | 2a 00 00 00 00 00 00 00 | f |
 (0,25) | {"(0,25)","(3,20)"}
 9 | (16,8292) | 616 | f | f | 2b 00 00 00 00 00 00 00 | f |
 (0,10) | {"(0,10)","(0,14)"}
 10 | (16,8292) | 616 | f | f | 2c 00 00 00 00 00 00 00 | f |
 (1,3) | {"(1,3)","(3,9)"}
 11 | (16,8292) | 616 | f | f | 2d 00 00 00 00 00 00 00 | f |
 (6,28) | {"(6,28)","(11,1)"}
 12 | (16,8292) | 616 | f | f | 2e 00 00 00 00 00 00 00 | f |
 (0,27) | {"(0,27)","(1,13)"}
 13 | (16,8292) | 616 | f | f | 2f 00 00 00 00 00 00 00 | f |
 (4,17) | {"(4,17)","(4,21)"}
(13 rows)

This is a B-tree leaf page. All tuples that point to the table happen to be posting list tuples (all of
which store a total of 100 6 byte TIDs). There is also a “high key” tuple at itemoffset number 1. ctid
is used to store encoded information about each tuple in this example, though leaf page tuples often
store a heap TID directly in the ctid field instead. tids is the list of TIDs stored as a posting list.

In an internal page (not shown), the block number part of ctid is a “downlink”, which is a block
number of another page in the index itself. The offset part (the second number) of ctid stores en-
coded information about the tuple, such as the number of columns present (suffix truncation may
have removed unneeded suffix columns). Truncated columns are treated as having the value “minus
infinity”.

htid shows a heap TID for the tuple, regardless of the underlying tuple representation. This value
may match ctid, or may be decoded from the alternative representations used by posting list tuples

2578

Additional Supplied Mod-
ules and Extensions

and tuples from internal pages. Tuples in internal pages usually have the implementation level heap
TID column truncated away, which is represented as a NULL htid value.

Note that the first item on any non-rightmost page (any page with a non-zero value in the btpo_next
field) is the page's “high key”, meaning its data serves as an upper bound on all items appearing on
the page, while its ctid field does not point to another block. Also, on internal pages, the first real
data item (the first item that is not a high key) reliably has every column truncated away, leaving no
actual value in its data field. Such an item does have a valid downlink in its ctid field, however.

For more details about the structure of B-tree indexes, see Section 65.1.4.1. For more details about
deduplication and posting lists, see Section 65.1.4.3.

bt_page_items(page bytea) returns setof record

It is also possible to pass a page to bt_page_items as a bytea value. A page image obtained with
get_raw_page should be passed as argument. So the last example could also be rewritten like this:

test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS
 some_tids
 FROM bt_page_items(get_raw_page('tenk2_hundred', 5));
 itemoffset | ctid | itemlen | nulls | vars | data | dead |
 htid | some_tids
------------+-----------+---------+-------+------+-------------------------+------
+--------+---------------------
 1 | (16,1) | 16 | f | f | 30 00 00 00 00 00 00 00 | |
 |
 2 | (16,8292) | 616 | f | f | 24 00 00 00 00 00 00 00 | f |
 (1,6) | {"(1,6)","(10,22)"}
 3 | (16,8292) | 616 | f | f | 25 00 00 00 00 00 00 00 | f |
 (1,18) | {"(1,18)","(4,22)"}
 4 | (16,8292) | 616 | f | f | 26 00 00 00 00 00 00 00 | f |
 (4,18) | {"(4,18)","(6,17)"}
 5 | (16,8292) | 616 | f | f | 27 00 00 00 00 00 00 00 | f |
 (1,2) | {"(1,2)","(1,19)"}
 6 | (16,8292) | 616 | f | f | 28 00 00 00 00 00 00 00 | f |
 (2,24) | {"(2,24)","(4,11)"}
 7 | (16,8292) | 616 | f | f | 29 00 00 00 00 00 00 00 | f |
 (2,17) | {"(2,17)","(11,2)"}
 8 | (16,8292) | 616 | f | f | 2a 00 00 00 00 00 00 00 | f |
 (0,25) | {"(0,25)","(3,20)"}
 9 | (16,8292) | 616 | f | f | 2b 00 00 00 00 00 00 00 | f |
 (0,10) | {"(0,10)","(0,14)"}
 10 | (16,8292) | 616 | f | f | 2c 00 00 00 00 00 00 00 | f |
 (1,3) | {"(1,3)","(3,9)"}
 11 | (16,8292) | 616 | f | f | 2d 00 00 00 00 00 00 00 | f |
 (6,28) | {"(6,28)","(11,1)"}
 12 | (16,8292) | 616 | f | f | 2e 00 00 00 00 00 00 00 | f |
 (0,27) | {"(0,27)","(1,13)"}
 13 | (16,8292) | 616 | f | f | 2f 00 00 00 00 00 00 00 | f |
 (4,17) | {"(4,17)","(4,21)"}
(13 rows)

All the other details are the same as explained in the previous item.

F.23.4. BRIN Functions
brin_page_type(page bytea) returns text

brin_page_type returns the page type of the given BRIN index page, or throws an error if the page
is not a valid BRIN page. For example:

2579

Additional Supplied Mod-
ules and Extensions

test=# SELECT brin_page_type(get_raw_page('brinidx', 0));
 brin_page_type

 meta

brin_metapage_info(page bytea) returns record

brin_metapage_info returns assorted information about a BRIN index metapage. For example:

test=# SELECT * FROM brin_metapage_info(get_raw_page('brinidx', 0));
 magic | version | pagesperrange | lastrevmappage
------------+---------+---------------+----------------
 0xA8109CFA | 1 | 4 | 2

brin_revmap_data(page bytea) returns setof tid

brin_revmap_data returns the list of tuple identifiers in a BRIN index range map page. For example:

test=# SELECT * FROM brin_revmap_data(get_raw_page('brinidx', 2)) LIMIT 5;
 pages

 (6,137)
 (6,138)
 (6,139)
 (6,140)
 (6,141)

brin_page_items(page bytea, index oid) returns setof record

brin_page_items returns the data stored in the BRIN data page. For example:

test=# SELECT * FROM brin_page_items(get_raw_page('brinidx', 5),
 'brinidx')
 ORDER BY blknum, attnum LIMIT 6;
 itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | empty | value
------------+--------+--------+----------+----------+-------------+-------
+--------------
 137 | 0 | 1 | t | f | f | f |
 137 | 0 | 2 | f | f | f | f | {1 ..
 88}
 138 | 4 | 1 | t | f | f | f |
 138 | 4 | 2 | f | f | f | f | {89 ..
 176}
 139 | 8 | 1 | t | f | f | f |
 139 | 8 | 2 | f | f | f | f | {177 ..
 264}

The returned columns correspond to the fields in the BrinMemTuple and BrinValues structs. See
src/include/access/brin_tuple.h for details.

F.23.5. GIN Functions
gin_metapage_info(page bytea) returns record

gin_metapage_info returns information about a GIN index metapage. For example:

test=# SELECT * FROM gin_metapage_info(get_raw_page('gin_index', 0));
-[RECORD 1]----+-----------
pending_head | 4294967295
pending_tail | 4294967295
tail_free_size | 0
n_pending_pages | 0
n_pending_tuples | 0

2580

Additional Supplied Mod-
ules and Extensions

n_total_pages | 7
n_entry_pages | 6
n_data_pages | 0
n_entries | 693
version | 2

gin_page_opaque_info(page bytea) returns record
gin_page_opaque_info returns information about a GIN index opaque area, like the page type. For
example:
test=# SELECT * FROM gin_page_opaque_info(get_raw_page('gin_index', 2));
 rightlink | maxoff | flags
-----------+--------+------------------------
 5 | 0 | {data,leaf,compressed}
(1 row)

gin_leafpage_items(page bytea) returns setof record
gin_leafpage_items returns information about the data stored in a compressed GIN leaf page. For
example:
test=# SELECT first_tid, nbytes, tids[0:5] AS some_tids
 FROM gin_leafpage_items(get_raw_page('gin_test_idx', 2));
 first_tid | nbytes | some_tids
-----------+--------+--
 (8,41) | 244 | {"(8,41)","(8,43)","(8,44)","(8,45)","(8,46)"}
 (10,45) | 248 | {"(10,45)","(10,46)","(10,47)","(10,48)","(10,49)"}
 (12,52) | 248 | {"(12,52)","(12,53)","(12,54)","(12,55)","(12,56)"}
 (14,59) | 320 | {"(14,59)","(14,60)","(14,61)","(14,62)","(14,63)"}
 (167,16) | 376 | {"(167,16)","(167,17)","(167,18)","(167,19)","(167,20)"}
 (170,30) | 376 | {"(170,30)","(170,31)","(170,32)","(170,33)","(170,34)"}
 (173,44) | 197 | {"(173,44)","(173,45)","(173,46)","(173,47)","(173,48)"}
(7 rows)

F.23.6. GiST Functions
gist_page_opaque_info(page bytea) returns record

gist_page_opaque_info returns information from a GiST index page's opaque area, such as the
NSN, rightlink and page type. For example:
test=# SELECT * FROM gist_page_opaque_info(get_raw_page('test_gist_idx', 2));
 lsn | nsn | rightlink | flags
-----+-----+-----------+--------
 0/1 | 0/0 | 1 | {leaf}
(1 row)

gist_page_items(page bytea, index_oid regclass) returns setof record
gist_page_items returns information about the data stored in a page of a GiST index. For example:
test=# SELECT * FROM gist_page_items(get_raw_page('test_gist_idx', 0),
 'test_gist_idx');
 itemoffset | ctid | itemlen | dead | keys
------------+-----------+---------+------+-------------------------------
 1 | (1,65535) | 40 | f | (p)=("(185,185),(1,1)")
 2 | (2,65535) | 40 | f | (p)=("(370,370),(186,186)")
 3 | (3,65535) | 40 | f | (p)=("(555,555),(371,371)")
 4 | (4,65535) | 40 | f | (p)=("(740,740),(556,556)")
 5 | (5,65535) | 40 | f | (p)=("(870,870),(741,741)")
 6 | (6,65535) | 40 | f | (p)=("(1000,1000),(871,871)")
(6 rows)

2581

Additional Supplied Mod-
ules and Extensions

gist_page_items_bytea(page bytea) returns setof record
Same as gist_page_items, but returns the key data as a raw bytea blob. Since it does not attempt
to decode the key, it does not need to know which index is involved. For example:
test=# SELECT * FROM gist_page_items_bytea(get_raw_page('test_gist_idx', 0));
 itemoffset | ctid | itemlen | dead |
 key_data
------------+-----------+---------+------+---

 1 | (1,65535) | 40 | f |
 \x00000100ffff28000000000000c064400000000000c06440000000000000f03f000000000000f03f
 2 | (2,65535) | 40 | f |
 \x00000200ffff28000000000000c074400000000000c074400000000000e064400000000000e06440
 3 | (3,65535) | 40 | f |
 \x00000300ffff28000000000000207f400000000000207f400000000000d074400000000000d07440
 4 | (4,65535) | 40 | f |
 \x00000400ffff28000000000000c084400000000000c084400000000000307f400000000000307f40
 5 | (5,65535) | 40 | f |
 \x00000500ffff28000000000000f089400000000000f089400000000000c884400000000000c88440
 6 | (6,65535) | 40 | f |
 \x00000600ffff28000000000000208f400000000000208f400000000000f889400000000000f88940
 7 | (7,65535) | 40 | f |
 \x00000700ffff28000000000000408f400000000000408f400000000000288f400000000000288f40
(7 rows)

F.23.7. Hash Functions
hash_page_type(page bytea) returns text

hash_page_type returns page type of the given HASH index page. For example:
test=# SELECT hash_page_type(get_raw_page('con_hash_index', 0));
 hash_page_type

 metapage

hash_page_stats(page bytea) returns setof record
hash_page_stats returns information about a bucket or overflow page of a HASH index. For example:
test=# SELECT * FROM hash_page_stats(get_raw_page('con_hash_index', 1));
-[RECORD 1]---+-----------
live_items | 407
dead_items | 0
page_size | 8192
free_size | 8
hasho_prevblkno | 4096
hasho_nextblkno | 8474
hasho_bucket | 0
hasho_flag | 66
hasho_page_id | 65408

hash_page_items(page bytea) returns setof record
hash_page_items returns information about the data stored in a bucket or overflow page of a HASH
index page. For example:
test=# SELECT * FROM hash_page_items(get_raw_page('con_hash_index', 1)) LIMIT 5;
 itemoffset | ctid | data
------------+-----------+------------
 1 | (899,77) | 1053474816
 2 | (897,29) | 1053474816

2582

Additional Supplied Mod-
ules and Extensions

 3 | (894,207) | 1053474816
 4 | (892,159) | 1053474816
 5 | (890,111) | 1053474816

hash_bitmap_info(index oid, blkno bigint) returns record

hash_bitmap_info shows the status of a bit in the bitmap page for a particular overflow page of
HASH index. For example:

test=# SELECT * FROM hash_bitmap_info('con_hash_index', 2052);
 bitmapblkno | bitmapbit | bitstatus
-------------+-----------+-----------
 65 | 3 | t

hash_metapage_info(page bytea) returns record

hash_metapage_info returns information stored in the meta page of a HASH index. For example:

test=# SELECT magic, version, ntuples, ffactor, bsize, bmsize, bmshift,
test-# maxbucket, highmask, lowmask, ovflpoint, firstfree, nmaps, procid,
test-# regexp_replace(spares::text, '(,0)*}', '}') as spares,
test-# regexp_replace(mapp::text, '(,0)*}', '}') as mapp
test-# FROM hash_metapage_info(get_raw_page('con_hash_index', 0));
-[RECORD 1]---

magic | 105121344
version | 4
ntuples | 500500
ffactor | 40
bsize | 8152
bmsize | 4096
bmshift | 15
maxbucket | 12512
highmask | 16383
lowmask | 8191
ovflpoint | 28
firstfree | 1204
nmaps | 1
procid | 450
spares | {0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,4,4,4,45,55,58,59,
508,567,628,704,1193,1202,1204}
mapp | {65}

2583

Additional Supplied Mod-
ules and Extensions

F.24. passwordcheck — verify password strength
The passwordcheck module checks users' passwords whenever they are set with CREATE ROLE or
ALTER ROLE. If a password is considered too weak, it will be rejected and the command will terminate
with an error.

To enable this module, add '$libdir/passwordcheck' to shared_preload_libraries in postgresql.conf,
then restart the server.

You can adapt this module to your needs by changing the source code. For example, you can use CrackLib
to check passwords — this only requires uncommenting two lines in the Makefile and rebuilding the
module. (We cannot include CrackLib by default for license reasons.) Without CrackLib, the module
enforces a few simple rules for password strength, which you can modify or extend as you see fit.

Caution
To prevent unencrypted passwords from being sent across the network, written to the server log or
otherwise stolen by a database administrator, PostgreSQL allows the user to supply pre-encrypted
passwords. Many client programs make use of this functionality and encrypt the password before
sending it to the server.

This limits the usefulness of the passwordcheck module, because in that case it can only try to
guess the password. For this reason, passwordcheck is not recommended if your security require-
ments are high. It is more secure to use an external authentication method such as GSSAPI (see
Chapter 20) than to rely on passwords within the database.

Alternatively, you could modify passwordcheck to reject pre-encrypted passwords, but forcing
users to set their passwords in clear text carries its own security risks.

F.24.1. Configuration Parameters
passwordcheck.min_password_length (integer)

The minimum acceptable password length in bytes. The default is 8. Only superusers can change
this setting.

Note
This parameter has no effect if a user supplies a pre-encrypted password.

In ordinary usage, this parameter is set in postgresql.conf, but superusers can alter it on-the-fly within
their own sessions. Typical usage might be:

postgresql.conf
passwordcheck.min_password_length = 12

2584

https://github.com/cracklib/cracklib

Additional Supplied Mod-
ules and Extensions

F.25. pg_buffercache — inspect PostgreSQL buffer cache
state

The pg_buffercache module provides a means for examining what's happening in the shared buffer
cache in real time. It also offers a low-level way to evict data from it, for testing purposes.

This module provides the pg_buffercache_pages() function (wrapped in the pg_buffercache view), the
pg_buffercache_numa_pages() function (wrapped in the pg_buffercache_numa view), the pg_buffer-
cache_summary() function, the pg_buffercache_usage_counts() function, the pg_buffercache_evic-
t() function, the pg_buffercache_evict_relation() function and the pg_buffercache_evict_all()
function.

The pg_buffercache_pages() function returns a set of records, each row describing the state of one
shared buffer entry. The pg_buffercache view wraps the function for convenient use.

The pg_buffercache_numa_pages() function provides NUMA node mappings for shared buffer entries.
This information is not part of pg_buffercache_pages() itself, as it is much slower to retrieve. The
pg_buffercache_numa view wraps the function for convenient use.

The pg_buffercache_summary() function returns a single row summarizing the state of the shared buffer
cache.

The pg_buffercache_usage_counts() function returns a set of records, each row describing the number
of buffers with a given usage count.

By default, use of the above functions is restricted to superusers and roles with privileges of the pg_mon-
itor role. Access may be granted to others using GRANT.

The pg_buffercache_evict() function allows a block to be evicted from the buffer pool given a buffer
identifier. Use of this function is restricted to superusers only.

The pg_buffercache_evict_relation() function allows all unpinned shared buffers in the relation to
be evicted from the buffer pool given a relation identifier. Use of this function is restricted to superusers
only.

The pg_buffercache_evict_all() function allows all unpinned shared buffers to be evicted in the buffer
pool. Use of this function is restricted to superusers only.

F.25.1. The pg_buffercache View
The definitions of the columns exposed by the view are shown in Table F.14.

Table F.14. pg_buffercache Columns

Column Type
Description

bufferid integer
ID, in the range 1..shared_buffers

relfilenode oid (references pg_class .relfilenode)
Filenode number of the relation

reltablespace oid (references pg_tablespace .oid)
Tablespace OID of the relation

reldatabase oid (references pg_database .oid)
Database OID of the relation

relforknumber smallint

2585

Additional Supplied Mod-
ules and Extensions

Column Type
Description
Fork number within the relation; see common/relpath.h

relblocknumber bigint
Page number within the relation

isdirty boolean
Is the page dirty?

usagecount smallint
Clock-sweep access count

pinning_backends integer
Number of backends pinning this buffer

There is one row for each buffer in the shared cache. Unused buffers are shown with all fields null except
bufferid. Shared system catalogs are shown as belonging to database zero.

Because the cache is shared by all the databases, there will normally be pages from relations not be-
longing to the current database. This means that there may not be matching join rows in pg_class for
some rows, or that there could even be incorrect joins. If you are trying to join against pg_class, it's a
good idea to restrict the join to rows having reldatabase equal to the current database's OID or zero.

Since buffer manager locks are not taken to copy the buffer state data that the view will display, accessing
pg_buffercache view has less impact on normal buffer activity but it doesn't provide a consistent set of
results across all buffers. However, we ensure that the information of each buffer is self-consistent.

F.25.2. The pg_buffercache_numa View
The definitions of the columns exposed by the view are shown in Table F.15.

Table F.15. pg_buffercache_numa Columns

Column Type
Description

bufferid integer
ID, in the range 1..shared_buffers

os_page_num bigint
number of OS memory page for this buffer

numa_node int
ID of NUMA node

As NUMA node ID inquiry for each page requires memory pages to be paged-in, the first execution of
this function can take a noticeable amount of time. In all the cases (first execution or not), retrieving
this information is costly and querying the view at a high frequency is not recommended.

Warning
When determining the NUMA node, the view touches all memory pages for the shared memory
segment. This will force allocation of the shared memory, if it wasn't allocated already, and the
memory may get allocated in a single NUMA node (depending on system configuration).

F.25.3. The pg_buffercache_summary() Function
The definitions of the columns exposed by the function are shown in Table F.16.

2586

Additional Supplied Mod-
ules and Extensions

Table F.16. pg_buffercache_summary() Output Columns

Column Type
Description

buffers_used int4
Number of used shared buffers

buffers_unused int4
Number of unused shared buffers

buffers_dirty int4
Number of dirty shared buffers

buffers_pinned int4
Number of pinned shared buffers

usagecount_avg float8
Average usage count of used shared buffers

The pg_buffercache_summary() function returns a single row summarizing the state of all shared
buffers. Similar and more detailed information is provided by the pg_buffercache view, but pg_buffer-
cache_summary() is significantly cheaper.

Like the pg_buffercache view, pg_buffercache_summary() does not acquire buffer manager locks.
Therefore concurrent activity can lead to minor inaccuracies in the result.

F.25.4. The pg_buffercache_usage_counts() Function
The definitions of the columns exposed by the function are shown in Table F.17.

Table F.17. pg_buffercache_usage_counts() Output Columns

Column Type
Description

usage_count int4
A possible buffer usage count

buffers int4
Number of buffers with the usage count

dirty int4
Number of dirty buffers with the usage count

pinned int4
Number of pinned buffers with the usage count

The pg_buffercache_usage_counts() function returns a set of rows summarizing the states of all
shared buffers, aggregated over the possible usage count values. Similar and more detailed information
is provided by the pg_buffercache view, but pg_buffercache_usage_counts() is significantly cheaper.

Like the pg_buffercache view, pg_buffercache_usage_counts() does not acquire buffer manager
locks. Therefore concurrent activity can lead to minor inaccuracies in the result.

F.25.5. The pg_buffercache_evict() Function
The pg_buffercache_evict() function takes a buffer identifier, as shown in the bufferid column of
the pg_buffercache view. It returns information about whether the buffer was evicted and flushed. The
buffer_evicted column is true on success, and false if the buffer wasn't valid, if it couldn't be evicted
because it was pinned, or if it became dirty again after an attempt to write it out. The buffer_flushed
column is true if the buffer was flushed. This does not necessarily mean that buffer was flushed by us,
it might be flushed by someone else. The result is immediately out of date upon return, as the buffer
might become valid again at any time due to concurrent activity. The function is intended for developer
testing only.

2587

Additional Supplied Mod-
ules and Extensions

F.25.6. The pg_buffercache_evict_relation() Function
The pg_buffercache_evict_relation() function is very similar to the pg_buffercache_evict() func-
tion. The difference is that the pg_buffercache_evict_relation() takes a relation identifier instead of
buffer identifier. It tries to evict all buffers for all forks in that relation. It returns the number of evicted
buffers, flushed buffers and the number of buffers that could not be evicted. Flushed buffers haven't
necessarily been flushed by us, they might have been flushed by someone else. The result is immediately
out of date upon return, as buffers might immediately be read back in due to concurrent activity. The
function is intended for developer testing only.

F.25.7. The pg_buffercache_evict_all() Function
The pg_buffercache_evict_all() function is very similar to the pg_buffercache_evict() function.
The difference is, the pg_buffercache_evict_all() function does not take an argument; instead it tries
to evict all buffers in the buffer pool. It returns the number of evicted buffers, flushed buffers and the
number of buffers that could not be evicted. Flushed buffers haven't necessarily been flushed by us, they
might have been flushed by someone else. The result is immediately out of date upon return, as buffers
might immediately be read back in due to concurrent activity. The function is intended for developer
testing only.

F.25.8. Sample Output
regression=# SELECT n.nspname, c.relname, count(*) AS buffers
 FROM pg_buffercache b JOIN pg_class c
 ON b.relfilenode = pg_relation_filenode(c.oid) AND
 b.reldatabase IN (0, (SELECT oid FROM pg_database
 WHERE datname = current_database()))
 JOIN pg_namespace n ON n.oid = c.relnamespace
 GROUP BY n.nspname, c.relname
 ORDER BY 3 DESC
 LIMIT 10;

 nspname | relname | buffers
------------+------------------------+---------
 public | delete_test_table | 593
 public | delete_test_table_pkey | 494
 pg_catalog | pg_attribute | 472
 public | quad_poly_tbl | 353
 public | tenk2 | 349
 public | tenk1 | 349
 public | gin_test_idx | 306
 pg_catalog | pg_largeobject | 206
 public | gin_test_tbl | 188
 public | spgist_text_tbl | 182
(10 rows)

regression=# SELECT * FROM pg_buffercache_summary();
 buffers_used | buffers_unused | buffers_dirty | buffers_pinned | usagecount_avg
--------------+----------------+---------------+----------------+----------------
 248 | 2096904 | 39 | 0 | 3.141129
(1 row)

regression=# SELECT * FROM pg_buffercache_usage_counts();
 usage_count | buffers | dirty | pinned
-------------+---------+-------+--------
 0 | 14650 | 0 | 0
 1 | 1436 | 671 | 0

2588

Additional Supplied Mod-
ules and Extensions

 2 | 102 | 88 | 0
 3 | 23 | 21 | 0
 4 | 9 | 7 | 0
 5 | 164 | 106 | 0
(6 rows)

F.25.9. Authors
Mark Kirkwood <markir@paradise.net.nz>

Design suggestions: Neil Conway <neilc@samurai.com>

Debugging advice: Tom Lane <tgl@sss.pgh.pa.us>

2589

Additional Supplied Mod-
ules and Extensions

F.26. pgcrypto — cryptographic functions
The pgcrypto module provides cryptographic functions for PostgreSQL.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

pgcrypto requires OpenSSL and won't be installed if OpenSSL support was not selected when Post-
greSQL was built.

F.26.1. General Hashing Functions
F.26.1.1. digest()

digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

Computes a binary hash of the given data. type is the algorithm to use. Standard algorithms are md5,
sha1, sha224, sha256, sha384 and sha512. Moreover, any digest algorithm OpenSSL supports is auto-
matically picked up.

If you want the digest as a hexadecimal string, use encode() on the result. For example:
CREATE OR REPLACE FUNCTION sha1(bytea) returns text AS $$
 SELECT encode(digest($1, 'sha1'), 'hex')
$$ LANGUAGE SQL STRICT IMMUTABLE;

F.26.1.2. hmac()
hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea

Calculates hashed MAC for data with key key. type is the same as in digest().

This is similar to digest() but the hash can only be recalculated knowing the key. This prevents the
scenario of someone altering data and also changing the hash to match.

If the key is larger than the hash block size it will first be hashed and the result will be used as key.

F.26.2. Password Hashing Functions
The functions crypt() and gen_salt() are specifically designed for hashing passwords. crypt() does
the hashing and gen_salt() prepares algorithm parameters for it.

The algorithms in crypt() differ from the usual MD5 or SHA-1 hashing algorithms in the following
respects:

1. They are slow. As the amount of data is so small, this is the only way to make brute-forcing passwords
hard.

2. They use a random value, called the salt, so that users having the same password will have different
encrypted passwords. This is also an additional defense against reversing the algorithm.

3. They include the algorithm type in the result, so passwords hashed with different algorithms can co-
exist.

4. Some of them are adaptive — that means when computers get faster, you can tune the algorithm to
be slower, without introducing incompatibility with existing passwords.

Table F.18 lists the algorithms supported by the crypt() function.

Table F.18. Supported Algorithms for crypt()

Algorithm Max Pass-
word Length

Adaptive? Salt Bits Output
Length

Description

bf 72 yes 128 60 Blowfish-based, variant 2a

2590

Additional Supplied Mod-
ules and Extensions

Algorithm Max Pass-
word Length

Adaptive? Salt Bits Output
Length

Description

md5 unlimited no 48 34 MD5-based crypt
xdes 8 yes 24 20 Extended DES
des 8 no 12 13 Original UNIX crypt
sha256crypt unlimited yes up to 32 80 Adapted from publicly avail-

able reference implemen-
tation Unix crypt using
SHA-256 and SHA-512

sha512crypt unlimited yes up to 32 123 Adapted from publicly avail-
able reference implemen-
tation Unix crypt using
SHA-256 and SHA-512

F.26.2.1. crypt()
crypt(password text, salt text) returns text

Calculates a crypt(3)-style hash of password. When storing a new password, you need to use gen_salt()
to generate a new salt value. To check a password, pass the stored hash value as salt, and test whether
the result matches the stored value.

Example of setting a new password:

UPDATE ... SET pswhash = crypt('new password', gen_salt('md5'));

Example of authentication:

SELECT (pswhash = crypt('entered password', pswhash)) AS pswmatch FROM ... ;

This returns true if the entered password is correct.

F.26.2.2. gen_salt()
gen_salt(type text [, iter_count integer]) returns text

Generates a new random salt string for use in crypt(). The salt string also tells crypt() which algorithm
to use.

The type parameter specifies the hashing algorithm. The accepted types are: des, xdes, md5, bf,
sha256crypt and sha512crypt. The last two, sha256crypt and sha512crypt are modern SHA-2 based
password hashes.

The iter_count parameter lets the user specify the iteration count, for algorithms that have one. The
higher the count, the more time it takes to hash the password and therefore the more time to break it.
Although with too high a count the time to calculate a hash may be several years — which is somewhat
impractical. If the iter_count parameter is omitted, the default iteration count is used. Allowed values
for iter_count depend on the algorithm and are shown in Table F.19.

Table F.19. Iteration Counts for crypt()

Algorithm Default Min Max
xdes 725 1 16777215
bf 6 4 31
sha256crypt,
sha512crypt

5000 1000 999999999

For xdes there is an additional limitation that the iteration count must be an odd number.

2591

https://www.akkadia.org/drepper/SHA-crypt.txt
https://www.akkadia.org/drepper/SHA-crypt.txt
https://www.akkadia.org/drepper/SHA-crypt.txt
https://www.akkadia.org/drepper/SHA-crypt.txt

Additional Supplied Mod-
ules and Extensions

To pick an appropriate iteration count, consider that the original DES crypt was designed to have the
speed of 4 hashes per second on the hardware of that time. Slower than 4 hashes per second would
probably dampen usability. Faster than 100 hashes per second is probably too fast.

Table F.20 gives an overview of the relative slowness of different hashing algorithms. The table shows
how much time it would take to try all combinations of characters in an 8-character password, assuming
that the password contains either only lower case letters, or upper- and lower-case letters and numbers.
In the crypt-bf entries, the number after a slash is the iter_count parameter of gen_salt.

The default iter_count for sha256crypt and sha512crypt of 5000 is considered too low for modern hard-
ware, but can be adjusted to generate stronger password hashes. Otherwise both hashes, sha256crypt
and sha512crypt are considered safe.

Table F.20. Hash Algorithm Speeds

Algorithm Hashes/sec For [a-z] For [A-Za-z0-9] Duration relative
to md5 hash

crypt-bf/8 1792 4 years 3927 years 100k
crypt-bf/7 3648 2 years 1929 years 50k
crypt-bf/6 7168 1 year 982 years 25k
crypt-bf/5 13504 188 days 521 years 12.5k
crypt-md5 171584 15 days 41 years 1k
crypt-des 23221568 157.5 minutes 108 days 7
sha1 37774272 90 minutes 68 days 4
md5 (hash) 150085504 22.5 minutes 17 days 1

Notes:

• The machine used is an Intel Mobile Core i3.

• crypt-des and crypt-md5 algorithm numbers are taken from John the Ripper v1.6.38 -test output.

• md5 hash numbers are from mdcrack 1.2.

• sha1 numbers are from lcrack-20031130-beta.

• crypt-bf numbers are taken using a simple program that loops over 1000 8-character passwords.
That way the speed with different numbers of iterations can be shown. For reference: john -test
shows 13506 loops/sec for crypt-bf/5. (The very small difference in results is in accordance with
the fact that the crypt-bf implementation in pgcrypto is the same one used in John the Ripper.)

Note that “try all combinations” is not a realistic exercise. Usually password cracking is done with the
help of dictionaries, which contain both regular words and various mutations of them. So, even somewhat
word-like passwords could be cracked much faster than the above numbers suggest, while a 6-character
non-word-like password may escape cracking. Or not.

F.26.3. PGP Encryption Functions
The functions here implement the encryption part of the OpenPGP (RFC 4880) standard. Supported are
both symmetric-key and public-key encryption.

An encrypted PGP message consists of 2 parts, or packets:

• Packet containing a session key — either symmetric-key or public-key encrypted.

• Packet containing data encrypted with the session key.

When encrypting with a symmetric key (i.e., a password):

2592

https://datatracker.ietf.org/doc/html/rfc4880

Additional Supplied Mod-
ules and Extensions

1. The given password is hashed using a String2Key (S2K) algorithm. This is rather similar to crypt()
algorithms — purposefully slow and with random salt — but it produces a full-length binary key.

2. If a separate session key is requested, a new random key will be generated. Otherwise the S2K key
will be used directly as the session key.

3. If the S2K key is to be used directly, then only S2K settings will be put into the session key packet.
Otherwise the session key will be encrypted with the S2K key and put into the session key packet.

When encrypting with a public key:

1. A new random session key is generated.

2. It is encrypted using the public key and put into the session key packet.

In either case the data to be encrypted is processed as follows:

1. Optional data-manipulation: compression, conversion to UTF-8, and/or conversion of line-endings.

2. The data is prefixed with a block of random bytes. This is equivalent to using a random IV.

3. A SHA-1 hash of the random prefix and data is appended.

4. All this is encrypted with the session key and placed in the data packet.

F.26.3.1. pgp_sym_encrypt()
pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns bytea

Encrypt data with a symmetric PGP key psw. The options parameter can contain option settings, as
described below.

F.26.3.2. pgp_sym_decrypt()
pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns bytea

Decrypt a symmetric-key-encrypted PGP message.

Decrypting bytea data with pgp_sym_decrypt is disallowed. This is to avoid outputting invalid character
data. Decrypting originally textual data with pgp_sym_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.26.3.3. pgp_pub_encrypt()
pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns bytea

Encrypt data with a public PGP key key. Giving this function a secret key will produce an error.

The options parameter can contain option settings, as described below.

F.26.3.4. pgp_pub_decrypt()
pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text]]) returns
 bytea

Decrypt a public-key-encrypted message. key must be the secret key corresponding to the public key
that was used to encrypt. If the secret key is password-protected, you must give the password in psw. If
there is no password, but you want to specify options, you need to give an empty password.

Decrypting bytea data with pgp_pub_decrypt is disallowed. This is to avoid outputting invalid character
data. Decrypting originally textual data with pgp_pub_decrypt_bytea is fine.

2593

Additional Supplied Mod-
ules and Extensions

The options parameter can contain option settings, as described below.

F.26.3.5. pgp_key_id()
pgp_key_id(bytea) returns text

pgp_key_id extracts the key ID of a PGP public or secret key. Or it gives the key ID that was used for
encrypting the data, if given an encrypted message.

It can return 2 special key IDs:

• SYMKEY

The message is encrypted with a symmetric key.

• ANYKEY

The message is public-key encrypted, but the key ID has been removed. That means you will need
to try all your secret keys on it to see which one decrypts it. pgcrypto itself does not produce such
messages.

Note that different keys may have the same ID. This is rare but a normal event. The client application
should then try to decrypt with each one, to see which fits — like handling ANYKEY.

F.26.3.6. armor(), dearmor()
armor(data bytea [, keys text[], values text[]]) returns text
dearmor(data text) returns bytea

These functions wrap/unwrap binary data into PGP ASCII-armor format, which is basically Base64 with
CRC and additional formatting.

If the keys and values arrays are specified, an armor header is added to the armored format for each
key/value pair. Both arrays must be single-dimensional, and they must be of the same length. The keys
and values cannot contain any non-ASCII characters.

F.26.3.7. pgp_armor_headers
pgp_armor_headers(data text, key out text, value out text) returns setof record

pgp_armor_headers() extracts the armor headers from data. The return value is a set of rows with
two columns, key and value. If the keys or values contain any non-ASCII characters, they are treated
as UTF-8.

F.26.3.8. Options for PGP Functions
Options are named to be similar to GnuPG. An option's value should be given after an equal sign; separate
options from each other with commas. For example:

pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')

All of the options except convert-crlf apply only to encrypt functions. Decrypt functions get the para-
meters from the PGP data.

The most interesting options are probably compress-algo and unicode-mode. The rest should have rea-
sonable defaults.

F.26.3.8.1. cipher-algo

Which cipher algorithm to use.

Values: bf, aes128, aes192, aes256, 3des, cast5
Default: aes128
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

2594

Additional Supplied Mod-
ules and Extensions

F.26.3.8.2. compress-algo
Which compression algorithm to use. Only available if PostgreSQL was built with zlib.

Values:
 0 - no compression
 1 - ZIP compression
 2 - ZLIB compression (= ZIP plus meta-data and block CRCs)
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.26.3.8.3. compress-level
How much to compress. Higher levels compress smaller but are slower. 0 disables compression.

Values: 0, 1-9
Default: 6
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.26.3.8.4. convert-crlf

Whether to convert \n into \r\n when encrypting and \r\n to \n when decrypting. RFC 4880 specifies
that text data should be stored using \r\n line-feeds. Use this to get fully RFC-compliant behavior.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt, pgp_sym_decrypt, pgp_pub_decrypt

F.26.3.8.5. disable-mdc
Do not protect data with SHA-1. The only good reason to use this option is to achieve compatibility
with ancient PGP products, predating the addition of SHA-1 protected packets to RFC 4880. Recent
gnupg.org and pgp.com software supports it fine.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.26.3.8.6. sess-key
Use separate session key. Public-key encryption always uses a separate session key; this option is for
symmetric-key encryption, which by default uses the S2K key directly.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt

F.26.3.8.7. s2k-mode
Which S2K algorithm to use.

Values:
 0 - Without salt. Dangerous!
 1 - With salt but with fixed iteration count.
 3 - Variable iteration count.
Default: 3
Applies to: pgp_sym_encrypt

F.26.3.8.8. s2k-count
The number of iterations of the S2K algorithm to use. It must be a value between 1024 and 65011712,
inclusive.

Default: A random value between 65536 and 253952
Applies to: pgp_sym_encrypt, only with s2k-mode=3

2595

Additional Supplied Mod-
ules and Extensions

F.26.3.8.9. s2k-digest-algo

Which digest algorithm to use in S2K calculation.

Values: md5, sha1
Default: sha1
Applies to: pgp_sym_encrypt

F.26.3.8.10. s2k-cipher-algo

Which cipher to use for encrypting separate session key.

Values: bf, aes, aes128, aes192, aes256
Default: use cipher-algo
Applies to: pgp_sym_encrypt

F.26.3.8.11. unicode-mode

Whether to convert textual data from database internal encoding to UTF-8 and back. If your database
already is UTF-8, no conversion will be done, but the message will be tagged as UTF-8. Without this
option it will not be.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.26.3.9. Generating PGP Keys with GnuPG
To generate a new key:

gpg --gen-key

The preferred key type is “DSA and Elgamal”.

For RSA encryption you must create either DSA or RSA sign-only key as master and then add an RSA
encryption subkey with gpg --edit-key.

To list keys:

gpg --list-secret-keys

To export a public key in ASCII-armor format:

gpg -a --export KEYID > public.key

To export a secret key in ASCII-armor format:

gpg -a --export-secret-keys KEYID > secret.key

You need to use dearmor() on these keys before giving them to the PGP functions. Or if you can handle
binary data, you can drop -a from the command.

For more details see man gpg, The GNU Privacy Handbook and other documentation on https://
www.gnupg.org/.

F.26.3.10. Limitations of PGP Code
• No support for signing. That also means that it is not checked whether the encryption subkey be-

longs to the master key.
• No support for encryption key as master key. As such practice is generally discouraged, this should

not be a problem.
• No support for several subkeys. This may seem like a problem, as this is common practice. On the

other hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as
the usage scenario is rather different.

2596

https://www.gnupg.org/gph/en/manual.html
https://www.gnupg.org/
https://www.gnupg.org/

Additional Supplied Mod-
ules and Extensions

F.26.4. Raw Encryption Functions
These functions only run a cipher over data; they don't have any advanced features of PGP encryption.
Therefore they have some major problems:

1. They use user key directly as cipher key.
2. They don't provide any integrity checking, to see if the encrypted data was modified.
3. They expect that users manage all encryption parameters themselves, even IV.
4. They don't handle text.
So, with the introduction of PGP encryption, usage of raw encryption functions is discouraged.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea

encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

Encrypt/decrypt data using the cipher method specified by type. The syntax of the type string is:

algorithm [- mode] [/pad: padding]

where algorithm is one of:
• bf — Blowfish
• aes — AES (Rijndael-128, -192 or -256)

and mode is one of:
• cbc — next block depends on previous (default)
• cfb — next block depends on previous encrypted block
• ecb — each block is encrypted separately (for testing only)

and padding is one of:
• pkcs — data may be any length (default)
• none — data must be multiple of cipher block size

So, for example, these are equivalent:

encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')

In encrypt_iv and decrypt_iv, the iv parameter is the initial value for the CBC and CFB mode; it is
ignored for ECB. It is clipped or padded with zeroes if not exactly block size. It defaults to all zeroes
in the functions without this parameter.

F.26.5. Random-Data Functions
gen_random_bytes(count integer) returns bytea

Returns count cryptographically strong random bytes. At most 1024 bytes can be extracted at a time.
This is to avoid draining the randomness generator pool.

gen_random_uuid() returns uuid

Returns a version 4 (random) UUID. (Obsolete, this function internally calls the core function of the
same name.)

F.26.6. OpenSSL Support Functions

2597

Additional Supplied Mod-
ules and Extensions

fips_mode() returns boolean

Returns true if OpenSSL is running with FIPS mode enabled, otherwise false.

F.26.7. Configuration Parameters
There is one configuration parameter that controls the behavior of pgcrypto.

pgcrypto.builtin_crypto_enabled (enum)

pgcrypto.builtin_crypto_enabled determines if the built in crypto functions gen_salt(), and
crypt() are available for use. Setting this to off disables these functions. on (the default) enables
these functions to work normally. fips disables these functions if OpenSSL is detected to operate
in FIPS mode.

In ordinary usage, this parameter is set in postgresql.conf, although superusers can alter it on-the-
fly within their own sessions.

F.26.8. Notes
F.26.8.1. Configuration

pgcrypto configures itself according to the findings of the main PostgreSQL configure script. The op-
tions that affect it are --with-zlib and --with-ssl=openssl.

When compiled with zlib, PGP encryption functions are able to compress data before encrypting.

pgcrypto requires OpenSSL. Otherwise, it will not be built or installed.

When compiled against OpenSSL 3.0.0 and later versions, the legacy provider must be activated in the
openssl.cnf configuration file in order to use older ciphers like DES or Blowfish.

F.26.8.2. NULL Handling
As is standard in SQL, all functions return NULL, if any of the arguments are NULL. This may create
security risks on careless usage.

F.26.8.3. Security Limitations
All pgcrypto functions run inside the database server. That means that all the data and passwords move
between pgcrypto and client applications in clear text. Thus you must:

1. Connect locally or use SSL connections.
2. Trust both system and database administrator.
If you cannot, then better do crypto inside client application.

The implementation does not resist side-channel attacks. For example, the time required for a pgcrypto
decryption function to complete varies among ciphertexts of a given size.

F.26.9. Author
Marko Kreen <markokr@gmail.com>

pgcrypto uses code from the following sources:

Algorithm Author Source origin
DES crypt David Burren and others FreeBSD libcrypt
MD5 crypt Poul-Henning Kamp FreeBSD libcrypt
Blowfish crypt Solar Designer www.openwall.com

2598

https://en.wikipedia.org/wiki/Side-channel_attack

Additional Supplied Mod-
ules and Extensions

F.27. pg_freespacemap — examine the free space map
The pg_freespacemap module provides a means for examining the free space map (FSM). It provides a
function called pg_freespace, or two overloaded functions, to be precise. The functions show the value
recorded in the free space map for a given page, or for all pages in the relation.

By default use is restricted to superusers and roles with privileges of the pg_stat_scan_tables role.
Access may be granted to others using GRANT.

F.27.1. Functions
pg_freespace(rel regclass IN, blkno bigint IN) returns int2

Returns the amount of free space on the page of the relation, specified by blkno, according to the
FSM.

pg_freespace(rel regclass IN, blkno OUT bigint, avail OUT int2)

Displays the amount of free space on each page of the relation, according to the FSM. A set of (blkno
bigint, avail int2) tuples is returned, one tuple for each page in the relation.

The values stored in the free space map are not exact. They're rounded to precision of 1/256th of BLCKSZ
(32 bytes with default BLCKSZ), and they're not kept fully up-to-date as tuples are inserted and updated.

For indexes, what is tracked is entirely-unused pages, rather than free space within pages. Therefore,
the values are not meaningful, just whether a page is in-use or empty.

F.27.2. Sample Output
postgres=# SELECT * FROM pg_freespace('foo');
 blkno | avail
-------+-------
 0 | 0
 1 | 0
 2 | 0
 3 | 32
 4 | 704
 5 | 704
 6 | 704
 7 | 1216
 8 | 704
 9 | 704
 10 | 704
 11 | 704
 12 | 704
 13 | 704
 14 | 704
 15 | 704
 16 | 704
 17 | 704
 18 | 704
 19 | 3648
(20 rows)

postgres=# SELECT * FROM pg_freespace('foo', 7);
 pg_freespace

 1216
(1 row)

2599

Additional Supplied Mod-
ules and Extensions

F.27.3. Author
Original version by Mark Kirkwood <markir@paradise.net.nz>. Rewritten in version 8.4 to suit new
FSM implementation by Heikki Linnakangas <heikki@enterprisedb.com>

2600

Additional Supplied Mod-
ules and Extensions

F.28. pg_logicalinspect — logical decoding components
inspection

The pg_logicalinspect module provides SQL functions that allow you to inspect the contents of logical
decoding components. It allows the inspection of serialized logical snapshots of a running PostgreSQL
database cluster, which is useful for debugging or educational purposes.

By default, use of these functions is restricted to superusers and members of the pg_read_server_files
role. Access may be granted by superusers to others using GRANT.

F.28.1. Functions
pg_get_logical_snapshot_meta(filename text) returns record

Gets logical snapshot metadata about a snapshot file that is located in the server's pg_logical/snap-
shots directory. The filename argument represents the snapshot file name. For example:
postgres=# SELECT * FROM pg_ls_logicalsnapdir();
-[RECORD 1]+-----------------------
name | 0-40796E18.snap
size | 152
modification | 2024-08-14 16:36:32+00

postgres=# SELECT * FROM pg_get_logical_snapshot_meta('0-40796E18.snap');
-[RECORD 1]--------
magic | 1369563137
checksum | 1028045905
version | 6

postgres=# SELECT ss.name, meta.* FROM pg_ls_logicalsnapdir() AS ss,
pg_get_logical_snapshot_meta(ss.name) AS meta;
-[RECORD 1]-------------
name | 0-40796E18.snap
magic | 1369563137
checksum | 1028045905
version | 6

If filename does not match a snapshot file, the function raises an error.

pg_get_logical_snapshot_info(filename text) returns record

Gets logical snapshot information about a snapshot file that is located in the server's pg_logi-
cal/snapshots directory. The filename argument represents the snapshot file name. For example:
postgres=# SELECT * FROM pg_ls_logicalsnapdir();
-[RECORD 1]+-----------------------
name | 0-40796E18.snap
size | 152
modification | 2024-08-14 16:36:32+00

postgres=# SELECT * FROM pg_get_logical_snapshot_info('0-40796E18.snap');
-[RECORD 1]------------+-----------
state | consistent
xmin | 751
xmax | 751
start_decoding_at | 0/40796AF8
two_phase_at | 0/40796AF8
initial_xmin_horizon | 0
building_full_snapshot | f
in_slot_creation | f

2601

Additional Supplied Mod-
ules and Extensions

last_serialized_snapshot | 0/0
next_phase_at | 0
committed_count | 0
committed_xip |
catchange_count | 2
catchange_xip | {751,752}

postgres=# SELECT ss.name, info.* FROM pg_ls_logicalsnapdir() AS ss,
pg_get_logical_snapshot_info(ss.name) AS info;
-[RECORD 1]------------+----------------
name | 0-40796E18.snap
state | consistent
xmin | 751
xmax | 751
start_decoding_at | 0/40796AF8
two_phase_at | 0/40796AF8
initial_xmin_horizon | 0
building_full_snapshot | f
in_slot_creation | f
last_serialized_snapshot | 0/0
next_phase_at | 0
committed_count | 0
committed_xip |
catchange_count | 2
catchange_xip | {751,752}

If filename does not match a snapshot file, the function raises an error.

F.28.2. Author
Bertrand Drouvot <bertranddrouvot.pg@gmail.com>

2602

Additional Supplied Mod-
ules and Extensions

F.29. pg_overexplain — allow EXPLAIN to dump even
more details

The pg_overexplain module extends EXPLAIN with new options that provide additional output. It is
mostly intended to assist with debugging of and development of the planner, rather than for general
use. Since this module displays internal details of planner data structures, it may be necessary to refer
to the source code to make sense of the output. Furthermore, the output is likely to change whenever
(and as often as) those data structures change.

To use it, simply load it into the server. You can load it into an individual session:

LOAD 'pg_overexplain';

You can also preload it into some or all sessions by including pg_overexplain in session_preload_li-
braries or shared_preload_libraries in postgresql.conf.

F.29.1. EXPLAIN (DEBUG)
The DEBUG option displays miscellaneous information from the plan tree that is not normally shown
because it is not expected to be of general interest. For each individual plan node, it will display the
following fields. See Plan in nodes/plannodes.h for additional documentation of these fields.

• Disabled Nodes. Normal EXPLAIN determines whether a node is disabled by checking whether the
node's count of disabled nodes is larger than the sum of the counts for the underlying nodes. This
option shows the raw counter value.

• Parallel Safe. Indicates whether it would be safe for a plan tree node to appear beneath a Gather
or Gather Merge node, regardless of whether it is actually below such a node.

• Plan Node ID. An internal ID number that should be unique for every node in the plan tree. It is
used to coordinate parallel query activity.

• extParam and allParam. Information about which numbered parameters affect this plan node or its
children. In text mode, these fields are only displayed if they are non-empty sets.

Once per query, the DEBUG option will display the following fields. See PlannedStmt in nodes/plann-
odes.h for additional detail.

• Command Type. For example, select or update.
• Flags. A comma-separated list of Boolean structure member names from the PlannedStmt that are

set to true. It covers the following structure members: hasReturning, hasModifyingCTE, canSet-
Tag, transientPlan, dependsOnRole, parallelModeNeeded.

• Subplans Needing Rewind. Integer IDs of subplans that may need to be rewound by the executor.
• Relation OIDs. OIDs of relations upon which this plan depends.
• Executor Parameter Types. Type OID for each executor parameter (e.g. when a nested loop is

chosen and a parameter is used to pass a value down to an inner index scan). Does not include pa-
rameters supplied to a prepared statement by the user.

• Parse Location. Location within the query string supplied to the planner where this query's text
can be found. May be Unknown in some contexts. Otherwise, may be NNN to end for some integer
NNN or NNN for MMM bytes for some integers NNN and MMM.

F.29.2. EXPLAIN (RANGE_TABLE)
The RANGE_TABLE option displays information from the plan tree specifically concerning the query's
range table. Range table entries correspond roughly to items appearing in the query's FROM clause, but
with numerous exceptions. For example, subqueries that are proved unnecessary may be deleted from
the range table entirely, while inheritance expansion adds range table entries for child tables that are
not named directly in the query.

2603

Additional Supplied Mod-
ules and Extensions

Range table entries are generally referenced within the query plan by a range table index, or RTI. Plan
nodes that reference one or more RTIs will be labelled accordingly, using one of the following fields:
Scan RTI, Nominal RTI, Exclude Relation RTI, Append RTIs.

In addition, the query as a whole may maintain lists of range table indexes that are needed for various
purposes. These lists will be displayed once per query, labelled as appropriate as Unprunable RTIs or
Result RTIs. In text mode, these fields are only displayed if they are non-empty sets.

Finally, but most importantly, the RANGE_TABLE option will display a dump of the query's entire range
table. Each range table entry is labelled with the appropriate range table index, the kind of range table
entry (e.g. relation, subquery, or join), followed by the contents of various range table entry fields
that are not normally part of EXPLAIN output. Some of these fields are only displayed for certain kinds
of range table entries. For example, Eref is displayed for all types of range table entries, but CTE Name
is displayed only for range table entries of type cte.

For more information about range table entries, see the definition of RangeTblEntry in nodes/plann-
odes.h.

F.29.3. Author
Robert Haas <rhaas@postgresql.org>

2604

Additional Supplied Mod-
ules and Extensions

F.30. pg_prewarm — preload relation data into buffer
caches

The pg_prewarm module provides a convenient way to load relation data into either the operating system
buffer cache or the PostgreSQL buffer cache. Prewarming can be performed manually using the pg_pre-
warm function, or can be performed automatically by including pg_prewarm in shared_preload_libraries.
In the latter case, the system will run a background worker which periodically records the contents of
shared buffers in a file called autoprewarm.blocks and will, using 2 background workers, reload those
same blocks after a restart.

F.30.1. Functions
pg_prewarm(regclass, mode text default 'buffer', fork text default 'main',
 first_block int8 default null,
 last_block int8 default null) RETURNS int8

The first argument is the relation to be prewarmed. The second argument is the prewarming method to
be used, as further discussed below; the third is the relation fork to be prewarmed, usually main. The
fourth argument is the first block number to prewarm (NULL is accepted as a synonym for zero). The
fifth argument is the last block number to prewarm (NULL means prewarm through the last block in the
relation). The return value is the number of blocks prewarmed.

There are three available prewarming methods. prefetch issues asynchronous prefetch requests to the
operating system, if this is supported, or throws an error otherwise. read reads the requested range
of blocks; unlike prefetch, this is synchronous and supported on all platforms and builds, but may be
slower. buffer reads the requested range of blocks into the database buffer cache.

Note that with any of these methods, attempting to prewarm more blocks than can be cached — by
the OS when using prefetch or read, or by PostgreSQL when using buffer — will likely result in low-
er-numbered blocks being evicted as higher numbered blocks are read in. Prewarmed data also enjoys
no special protection from cache evictions, so it is possible that other system activity may evict the newly
prewarmed blocks shortly after they are read; conversely, prewarming may also evict other data from
cache. For these reasons, prewarming is typically most useful at startup, when caches are largely empty.

autoprewarm_start_worker() RETURNS void

Launch the main autoprewarm worker. This will normally happen automatically, but is useful if automatic
prewarm was not configured at server startup time and you wish to start up the worker at a later time.

autoprewarm_dump_now() RETURNS int8

Update autoprewarm.blocks immediately. This may be useful if the autoprewarm worker is not running
but you anticipate running it after the next restart. The return value is the number of records written
to autoprewarm.blocks.

F.30.2. Configuration Parameters
pg_prewarm.autoprewarm (boolean)

Controls whether the server should run the autoprewarm worker. This is on by default. This para-
meter can only be set at server start.

pg_prewarm.autoprewarm_interval (integer)

This is the interval between updates to autoprewarm.blocks. The default is 300 seconds. If set to 0,
the file will not be dumped at regular intervals, but only when the server is shut down.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = 'pg_prewarm'

2605

Additional Supplied Mod-
ules and Extensions

pg_prewarm.autoprewarm = true
pg_prewarm.autoprewarm_interval = 300s

F.30.3. Author
Robert Haas <rhaas@postgresql.org>

2606

Additional Supplied Mod-
ules and Extensions

F.31. pgrowlocks — show a table's row locking informa-
tion

The pgrowlocks module provides a function to show row locking information for a specified table.

By default use is restricted to superusers, roles with privileges of the pg_stat_scan_tables role, and
users with SELECT permissions on the table.

F.31.1. Overview
pgrowlocks(text) returns setof record

The parameter is the name of a table. The result is a set of records, with one row for each locked row
within the table. The output columns are shown in Table F.21.

Table F.21. pgrowlocks Output Columns

Name Type Description
locked_row tid Tuple ID (TID) of locked row
locker xid Transaction ID of locker, or mul-

tixact ID if multitransaction; see
Section 67.1

multi boolean True if locker is a multitransac-
tion

xids xid[] Transaction IDs of lockers (more
than one if multitransaction)

modes text[] Lock mode of lockers (more than
one if multitransaction), an array
of For Key Share, For Share,
For No Key Update, No Key Up-
date, For Update, Update.

pids integer[] Process IDs of locking backends
(more than one if multitransac-
tion)

pgrowlocks takes AccessShareLock for the target table and reads each row one by one to collect the
row locking information. This is not very speedy for a large table. Note that:

1. If an ACCESS EXCLUSIVE lock is taken on the table, pgrowlocks will be blocked.
2. pgrowlocks is not guaranteed to produce a self-consistent snapshot. It is possible that a new row lock

is taken, or an old lock is freed, during its execution.
pgrowlocks does not show the contents of locked rows. If you want to take a look at the row contents
at the same time, you could do something like this:
SELECT * FROM accounts AS a, pgrowlocks('accounts') AS p
 WHERE p.locked_row = a.ctid;

Be aware however that such a query will be very inefficient.

F.31.2. Sample Output
=# SELECT * FROM pgrowlocks('t1');
 locked_row | locker | multi | xids | modes | pids
------------+--------+-------+-------+----------------+--------
 (0,1) | 609 | f | {609} | {"For Share"} | {3161}
 (0,2) | 609 | f | {609} | {"For Share"} | {3161}
 (0,3) | 607 | f | {607} | {"For Update"} | {3107}

2607

Additional Supplied Mod-
ules and Extensions

 (0,4) | 607 | f | {607} | {"For Update"} | {3107}
(4 rows)

F.31.3. Author
Tatsuo Ishii

2608

Additional Supplied Mod-
ules and Extensions

F.32. pg_stat_statements — track statistics of SQL plan-
ning and execution

The pg_stat_statements module provides a means for tracking planning and execution statistics of all
SQL statements executed by a server.

The module must be loaded by adding pg_stat_statements to shared_preload_libraries in post-
gresql.conf, because it requires additional shared memory. This means that a server restart is needed
to add or remove the module. In addition, query identifier calculation must be enabled in order for the
module to be active, which is done automatically if compute_query_id is set to auto or on, or any third-
party module that calculates query identifiers is loaded.

When pg_stat_statements is active, it tracks statistics across all databases of the server. To access
and manipulate these statistics, the module provides views pg_stat_statements and pg_stat_state-
ments_info, and the utility functions pg_stat_statements_reset and pg_stat_statements. These are
not available globally but can be enabled for a specific database with CREATE EXTENSION pg_stat_s-
tatements.

F.32.1. The pg_stat_statements View
The statistics gathered by the module are made available via a view named pg_stat_statements. This
view contains one row for each distinct combination of database ID, user ID, query ID and whether it's a
top-level statement or not (up to the maximum number of distinct statements that the module can track).
The columns of the view are shown in Table F.22.

Table F.22. pg_stat_statements Columns

Column Type
Description

userid oid (references pg_authid .oid)
OID of user who executed the statement

dbid oid (references pg_database .oid)
OID of database in which the statement was executed

toplevel bool
True if the query was executed as a top-level statement (always true if pg_stat_state-
ments.track is set to top)

queryid bigint
Hash code to identify identical normalized queries.

query text
Text of a representative statement

plans bigint
Number of times the statement was planned (if pg_stat_statements.track_planning is
enabled, otherwise zero)

total_plan_time double precision
Total time spent planning the statement, in milliseconds (if pg_stat_statements.track_
planning is enabled, otherwise zero)

min_plan_time double precision
Minimum time spent planning the statement, in milliseconds. This field will be zero if pg_
stat_statements.track_planning is disabled, or if the counter has been reset using the
pg_stat_statements_reset function with the minmax_only parameter set to true and
never been planned since.

max_plan_time double precision
Maximum time spent planning the statement, in milliseconds. This field will be zero if pg_
stat_statements.track_planning is disabled, or if the counter has been reset using the

2609

Additional Supplied Mod-
ules and Extensions

Column Type
Description
pg_stat_statements_reset function with the minmax_only parameter set to true and
never been planned since.

mean_plan_time double precision
Mean time spent planning the statement, in milliseconds (if pg_stat_statements.track_
planning is enabled, otherwise zero)

stddev_plan_time double precision
Population standard deviation of time spent planning the statement, in milliseconds (if pg_
stat_statements.track_planning is enabled, otherwise zero)

calls bigint
Number of times the statement was executed

total_exec_time double precision
Total time spent executing the statement, in milliseconds

min_exec_time double precision
Minimum time spent executing the statement, in milliseconds, this field will be zero until this
statement is executed first time after reset performed by the pg_stat_statements_reset
function with the minmax_only parameter set to true

max_exec_time double precision
Maximum time spent executing the statement, in milliseconds, this field will be zero until this
statement is executed first time after reset performed by the pg_stat_statements_reset
function with the minmax_only parameter set to true

mean_exec_time double precision
Mean time spent executing the statement, in milliseconds

stddev_exec_time double precision
Population standard deviation of time spent executing the statement, in milliseconds

rows bigint
Total number of rows retrieved or affected by the statement

shared_blks_hit bigint
Total number of shared block cache hits by the statement

shared_blks_read bigint
Total number of shared blocks read by the statement

shared_blks_dirtied bigint
Total number of shared blocks dirtied by the statement

shared_blks_written bigint
Total number of shared blocks written by the statement

local_blks_hit bigint
Total number of local block cache hits by the statement

local_blks_read bigint
Total number of local blocks read by the statement

local_blks_dirtied bigint
Total number of local blocks dirtied by the statement

local_blks_written bigint
Total number of local blocks written by the statement

temp_blks_read bigint
Total number of temp blocks read by the statement

temp_blks_written bigint
Total number of temp blocks written by the statement

shared_blk_read_time double precision

2610

Additional Supplied Mod-
ules and Extensions

Column Type
Description
Total time the statement spent reading shared blocks, in milliseconds (if track_io_timing is
enabled, otherwise zero)

shared_blk_write_time double precision
Total time the statement spent writing shared blocks, in milliseconds (if track_io_timing is en-
abled, otherwise zero)

local_blk_read_time double precision
Total time the statement spent reading local blocks, in milliseconds (if track_io_timing is en-
abled, otherwise zero)

local_blk_write_time double precision
Total time the statement spent writing local blocks, in milliseconds (if track_io_timing is en-
abled, otherwise zero)

temp_blk_read_time double precision
Total time the statement spent reading temporary file blocks, in milliseconds (if track_io_tim-
ing is enabled, otherwise zero)

temp_blk_write_time double precision
Total time the statement spent writing temporary file blocks, in milliseconds (if track_io_tim-
ing is enabled, otherwise zero)

wal_records bigint
Total number of WAL records generated by the statement

wal_fpi bigint
Total number of WAL full page images generated by the statement

wal_bytes numeric
Total amount of WAL generated by the statement in bytes

wal_buffers_full bigint
Number of times the WAL buffers became full

jit_functions bigint
Total number of functions JIT-compiled by the statement

jit_generation_time double precision
Total time spent by the statement on generating JIT code, in milliseconds

jit_inlining_count bigint
Number of times functions have been inlined

jit_inlining_time double precision
Total time spent by the statement on inlining functions, in milliseconds

jit_optimization_count bigint
Number of times the statement has been optimized

jit_optimization_time double precision
Total time spent by the statement on optimizing, in milliseconds

jit_emission_count bigint
Number of times code has been emitted

jit_emission_time double precision
Total time spent by the statement on emitting code, in milliseconds

jit_deform_count bigint
Total number of tuple deform functions JIT-compiled by the statement

jit_deform_time double precision
Total time spent by the statement on JIT-compiling tuple deform functions, in milliseconds

parallel_workers_to_launch bigint
Number of parallel workers planned to be launched

2611

Additional Supplied Mod-
ules and Extensions

Column Type
Description

parallel_workers_launched bigint
Number of parallel workers actually launched

stats_since timestamp with time zone
Time at which statistics gathering started for this statement

minmax_stats_since timestamp with time zone
Time at which min/max statistics gathering started for this statement (fields min_plan_
time , max_plan_time , min_exec_time and max_exec_time)

For security reasons, only superusers and roles with privileges of the pg_read_all_stats role are al-
lowed to see the SQL text and queryid of queries executed by other users. Other users can see the
statistics, however, if the view has been installed in their database.

Plannable queries (that is, SELECT, INSERT, UPDATE, DELETE, and MERGE) and utility commands are com-
bined into a single pg_stat_statements entry whenever they have identical query structures according
to an internal hash calculation. Typically, two queries will be considered the same for this purpose if
they are semantically equivalent except for the values of literal constants appearing in the query.

Note
The following details about constant replacement and queryid only apply when compute_query_id
is enabled. If you use an external module instead to compute queryid, you should refer to its
documentation for details.

When a constant's value has been ignored for purposes of matching the query to other queries, the
constant is replaced by a parameter symbol, such as $1, in the pg_stat_statements display. The rest
of the query text is that of the first query that had the particular queryid hash value associated with
the pg_stat_statements entry.

Queries on which normalization can be applied may be observed with constant values in pg_stat_state-
ments, especially when there is a high rate of entry deallocations. To reduce the likelihood of this hap-
pening, consider increasing pg_stat_statements.max. The pg_stat_statements_info view, discussed
below in Section F.32.2, provides statistics about entry deallocations.

In some cases, queries with visibly different texts might get merged into a single pg_stat_statements
entry; as explained above, this is expected to happen for semantically equivalent queries. In addition,
if the only difference between queries is the number of elements in a list of constants, the list will get
squashed down to a single element but shown with a commented-out list indicator:

=# SELECT pg_stat_statements_reset();
=# SELECT * FROM test WHERE a IN (1, 2, 3, 4, 5, 6, 7);
=# SELECT * FROM test WHERE a IN (1, 2, 3, 4, 5, 6, 7, 8);
=# SELECT query, calls FROM pg_stat_statements
 WHERE query LIKE 'SELECT%';
-[RECORD 1]------------------------------
query | SELECT * FROM test WHERE a IN ($1 /*, ... */)
calls | 2

In addition to these cases, there is a small chance of hash collisions causing unrelated queries to be
merged into one entry. (This cannot happen for queries belonging to different users or databases, how-
ever.)

Since the queryid hash value is computed on the post-parse-analysis representation of the queries, the
opposite is also possible: queries with identical texts might appear as separate entries, if they have
different meanings as a result of factors such as different search_path settings.

2612

Additional Supplied Mod-
ules and Extensions

Consumers of pg_stat_statements may wish to use queryid (perhaps in combination with dbid and
userid) as a more stable and reliable identifier for each entry than its query text. However, it is important
to understand that there are only limited guarantees around the stability of the queryid hash value.
Since the identifier is derived from the post-parse-analysis tree, its value is a function of, among other
things, the internal object identifiers appearing in this representation. This has some counterintuitive
implications. For example, pg_stat_statements will consider two apparently-identical queries to be
distinct, if they reference for example a function that was dropped and recreated between the executions
of the two queries. Conversely, if a table is dropped and recreated between the executions of queries, two
apparently-identical queries may be considered the same. However, if the alias for a table is different for
otherwise-similar queries, these queries will be considered distinct. The hashing process is also sensitive
to differences in machine architecture and other facets of the platform. Furthermore, it is not safe to
assume that queryid will be stable across major versions of PostgreSQL.

Two servers participating in replication based on physical WAL replay can be expected to have identical
queryid values for the same query. However, logical replication schemes do not promise to keep replicas
identical in all relevant details, so queryid will not be a useful identifier for accumulating costs across
a set of logical replicas. If in doubt, direct testing is recommended.

Generally, it can be assumed that queryid values are stable between minor version releases of Post-
greSQL, providing that instances are running on the same machine architecture and the catalog meta-
data details match. Compatibility will only be broken between minor versions as a last resort.

The parameter symbols used to replace constants in representative query texts start from the next num-
ber after the highest $n parameter in the original query text, or $1 if there was none. It's worth noting
that in some cases there may be hidden parameter symbols that affect this numbering. For example, PL/
pgSQL uses hidden parameter symbols to insert values of function local variables into queries, so that
a PL/pgSQL statement like SELECT i + 1 INTO j would have representative text like SELECT i + $2.

The representative query texts are kept in an external disk file, and do not consume shared memory.
Therefore, even very lengthy query texts can be stored successfully. However, if many long query texts
are accumulated, the external file might grow unmanageably large. As a recovery method if that hap-
pens, pg_stat_statements may choose to discard the query texts, whereupon all existing entries in the
pg_stat_statements view will show null query fields, though the statistics associated with each queryid
are preserved. If this happens, consider reducing pg_stat_statements.max to prevent recurrences.

plans and calls aren't always expected to match because planning and execution statistics are updated
at their respective end phase, and only for successful operations. For example, if a statement is success-
fully planned but fails during the execution phase, only its planning statistics will be updated. If planning
is skipped because a cached plan is used, only its execution statistics will be updated.

F.32.2. The pg_stat_statements_info View
The statistics of the pg_stat_statements module itself are tracked and made available via a view named
pg_stat_statements_info. This view contains only a single row. The columns of the view are shown
in Table F.23.

Table F.23. pg_stat_statements_info Columns

Column Type
Description

dealloc bigint
Total number of times pg_stat_statements entries about the least-executed statements
were deallocated because more distinct statements than pg_stat_statements.max were
observed

stats_reset timestamp with time zone
Time at which all statistics in the pg_stat_statements view were last reset.

2613

Additional Supplied Mod-
ules and Extensions

F.32.3. Functions
pg_stat_statements_reset(userid Oid, dbid Oid, queryid bigint, minmax_only boolean) re-
turns timestamp with time zone

pg_stat_statements_reset discards statistics gathered so far by pg_stat_statements correspond-
ing to the specified userid, dbid and queryid. If any of the parameters are not specified, the default
value 0(invalid) is used for each of them and the statistics that match with other parameters will
be reset. If no parameter is specified or all the specified parameters are 0(invalid), it will discard
all statistics. If all statistics in the pg_stat_statements view are discarded, it will also reset the
statistics in the pg_stat_statements_info view. When minmax_only is true only the values of min-
imum and maximum planning and execution time will be reset (i.e. min_plan_time, max_plan_time,
min_exec_time and max_exec_time fields). The default value for minmax_only parameter is false.
Time of last min/max reset performed is shown in minmax_stats_since field of the pg_stat_state-
ments view. This function returns the time of a reset. This time is saved to stats_reset field of
pg_stat_statements_info view or to minmax_stats_since field of the pg_stat_statements view if
the corresponding reset was actually performed. By default, this function can only be executed by
superusers. Access may be granted to others using GRANT.

pg_stat_statements(showtext boolean) returns setof record

The pg_stat_statements view is defined in terms of a function also named pg_stat_statements. It is
possible for clients to call the pg_stat_statements function directly, and by specifying showtext :=
false have query text be omitted (that is, the OUT argument that corresponds to the view's query
column will return nulls). This feature is intended to support external tools that might wish to avoid
the overhead of repeatedly retrieving query texts of indeterminate length. Such tools can instead
cache the first query text observed for each entry themselves, since that is all pg_stat_statements
itself does, and then retrieve query texts only as needed. Since the server stores query texts in a file,
this approach may reduce physical I/O for repeated examination of the pg_stat_statements data.

F.32.4. Configuration Parameters
pg_stat_statements.max (integer)

pg_stat_statements.max is the maximum number of statements tracked by the module (i.e., the
maximum number of rows in the pg_stat_statements view). If more distinct statements than that
are observed, information about the least-executed statements is discarded. The number of times
such information was discarded can be seen in the pg_stat_statements_info view. The default value
is 5000. This parameter can only be set at server start.

pg_stat_statements.track (enum)

pg_stat_statements.track controls which statements are counted by the module. Specify top to
track top-level statements (those issued directly by clients), all to also track nested statements
(such as statements invoked within functions), or none to disable statement statistics collection. The
default value is top. Only superusers can change this setting.

pg_stat_statements.track_utility (boolean)

pg_stat_statements.track_utility controls whether utility commands are tracked by the module.
Utility commands are all those other than SELECT, INSERT, UPDATE, DELETE, and MERGE. The default
value is on. Only superusers can change this setting.

pg_stat_statements.track_planning (boolean)

pg_stat_statements.track_planning controls whether planning operations and duration are
tracked by the module. Enabling this parameter may incur a noticeable performance penalty, espe-
cially when statements with identical query structure are executed by many concurrent connections
which compete to update a small number of pg_stat_statements entries. The default value is off.
Only superusers can change this setting.

2614

Additional Supplied Mod-
ules and Extensions

pg_stat_statements.save (boolean)
pg_stat_statements.save specifies whether to save statement statistics across server shutdowns.
If it is off then statistics are not saved at shutdown nor reloaded at server start. The default value
is on. This parameter can only be set in the postgresql.conf file or on the server command line.

The module requires additional shared memory proportional to pg_stat_statements.max. Note that this
memory is consumed whenever the module is loaded, even if pg_stat_statements.track is set to none.

These parameters must be set in postgresql.conf. Typical usage might be:
postgresql.conf
shared_preload_libraries = 'pg_stat_statements'

compute_query_id = on
pg_stat_statements.max = 10000
pg_stat_statements.track = all

F.32.5. Sample Output
bench=# SELECT pg_stat_statements_reset();

$ pgbench -i bench
$ pgbench -c10 -t300 bench

bench=# \x
bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--
query | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
calls | 3000
total_exec_time | 25565.855387
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 2]---+--
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls | 3000
total_exec_time | 20756.669379
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 3]---+--
query | copy pgbench_accounts from stdin
calls | 1
total_exec_time | 291.865911
rows | 100000
hit_percent | 100.0000000000000000
-[RECORD 4]---+--
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975
-[RECORD 5]---+--
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_exec_time | 160.588563
rows | 0
hit_percent | 100.0000000000000000

2615

Additional Supplied Mod-
ules and Extensions

bench=# SELECT pg_stat_statements_reset(0,0,s.queryid) FROM pg_stat_statements AS s
 WHERE s.query = 'UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE
 bid = $2';

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls | 3000
total_exec_time | 20756.669379
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 2]---+--
query | copy pgbench_accounts from stdin
calls | 1
total_exec_time | 291.865911
rows | 100000
hit_percent | 100.0000000000000000
-[RECORD 3]---+--
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975
-[RECORD 4]---+--
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_exec_time | 160.588563
rows | 0
hit_percent | 100.0000000000000000
-[RECORD 5]---+--
query | vacuum analyze pgbench_accounts
calls | 1
total_exec_time | 136.448116
rows | 0
hit_percent | 99.9201915403032721

bench=# SELECT pg_stat_statements_reset(0,0,0);

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--

query | SELECT pg_stat_statements_reset(0,0,0)
calls | 1
total_exec_time | 0.189497
rows | 1
hit_percent |
-[RECORD 2]---+--

query | SELECT query, calls, total_exec_time, rows, $1 * shared_blks_hit /
 +
 | nullif(shared_blks_hit + shared_blks_read, $2) AS
 hit_percent+

2616

Additional Supplied Mod-
ules and Extensions

 | FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT
 $3
calls | 0
total_exec_time | 0
rows | 0
hit_percent |

F.32.6. Authors
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>. Query normalization added by Peter Geoghegan
<peter@2ndquadrant.com>.

2617

Additional Supplied Mod-
ules and Extensions

F.33. pgstattuple — obtain tuple-level statistics
The pgstattuple module provides various functions to obtain tuple-level statistics.

Because these functions return detailed page-level information, access is restricted by default. By de-
fault, only the role pg_stat_scan_tables has EXECUTE privilege. Superusers of course bypass this re-
striction. After the extension has been installed, users may issue GRANT commands to change the privi-
leges on the functions to allow others to execute them. However, it might be preferable to add those
users to the pg_stat_scan_tables role instead.

F.33.1. Functions
pgstattuple(regclass) returns record

pgstattuple returns a relation's physical length, percentage of “dead” tuples, and other info. This
may help users to determine whether vacuum is necessary or not. The argument is the target rela-
tion's name (optionally schema-qualified) or OID. For example:

test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');
-[RECORD 1]------+-------
table_len | 458752
tuple_count | 1470
tuple_len | 438896
tuple_percent | 95.67
dead_tuple_count | 11
dead_tuple_len | 3157
dead_tuple_percent | 0.69
free_space | 8932
free_percent | 1.95

The output columns are described in Table F.24.

Table F.24. pgstattuple Output Columns

Column Type Description
table_len bigint Physical relation length in bytes
tuple_count bigint Number of live tuples
tuple_len bigint Total length of live tuples in

bytes
tuple_percent float8 Percentage of live tuples
dead_tuple_count bigint Number of dead tuples
dead_tuple_len bigint Total length of dead tuples in

bytes
dead_tuple_percent float8 Percentage of dead tuples
free_space bigint Total free space in bytes
free_percent float8 Percentage of free space

Note
The table_len will always be greater than the sum of the tuple_len, dead_tuple_len and
free_space. The difference is accounted for by fixed page overhead, the per-page table of
pointers to tuples, and padding to ensure that tuples are correctly aligned.

pgstattuple acquires only a read lock on the relation. So the results do not reflect an instantaneous
snapshot; concurrent updates will affect them.

2618

Additional Supplied Mod-
ules and Extensions

pgstattuple judges a tuple is “dead” if HeapTupleSatisfiesDirty returns false.

pgstattuple(text) returns record

This is the same as pgstattuple(regclass), except that the target relation is specified as TEXT.
This function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

pgstatindex(regclass) returns record

pgstatindex returns a record showing information about a B-tree index. For example:

test=> SELECT * FROM pgstatindex('pg_cast_oid_index');
-[RECORD 1]------+------
version | 2
tree_level | 0
index_size | 16384
root_block_no | 1
internal_pages | 0
leaf_pages | 1
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 54.27
leaf_fragmentation | 0

The output columns are:

Column Type Description
version integer B-tree version number
tree_level integer Tree level of the root page
index_size bigint Total index size in bytes
root_block_no bigint Location of root page (zero if

none)
internal_pages bigint Number of “internal” (up-

per-level) pages
leaf_pages bigint Number of leaf pages
empty_pages bigint Number of empty pages
deleted_pages bigint Number of deleted pages
avg_leaf_density float8 Average density of leaf pages
leaf_fragmentation float8 Leaf page fragmentation

The reported index_size will normally correspond to one more page than is accounted for by in-
ternal_pages + leaf_pages + empty_pages + deleted_pages, because it also includes the index's
metapage.

As with pgstattuple, the results are accumulated page-by-page, and should not be expected to
represent an instantaneous snapshot of the whole index.

pgstatindex(text) returns record

This is the same as pgstatindex(regclass), except that the target index is specified as TEXT. This
function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

pgstatginindex(regclass) returns record

pgstatginindex returns a record showing information about a GIN index. For example:

2619

Additional Supplied Mod-
ules and Extensions

test=> SELECT * FROM pgstatginindex('test_gin_index');
-[RECORD 1]--+--
version | 1
pending_pages | 0
pending_tuples | 0

The output columns are:

Column Type Description
version integer GIN version number
pending_pages integer Number of pages in the pend-

ing list
pending_tuples bigint Number of tuples in the pend-

ing list

pgstathashindex(regclass) returns record

pgstathashindex returns a record showing information about a HASH index. For example:

test=> select * from pgstathashindex('con_hash_index');
-[RECORD 1]--+-----------------
version | 4
bucket_pages | 33081
overflow_pages | 0
bitmap_pages | 1
unused_pages | 32455
live_items | 10204006
dead_items | 0
free_percent | 61.8005949100872

The output columns are:

Column Type Description
version integer HASH version number
bucket_pages bigint Number of bucket pages
overflow_pages bigint Number of overflow pages
bitmap_pages bigint Number of bitmap pages
unused_pages bigint Number of unused pages
live_items bigint Number of live tuples
dead_tuples bigint Number of dead tuples
free_percent float Percentage of free space

pg_relpages(regclass) returns bigint

pg_relpages returns the number of pages in the relation.

pg_relpages(text) returns bigint

This is the same as pg_relpages(regclass), except that the target relation is specified as TEXT.
This function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

pgstattuple_approx(regclass) returns record

pgstattuple_approx is a faster alternative to pgstattuple that returns approximate results. The
argument is the target relation's name or OID. For example:

2620

Additional Supplied Mod-
ules and Extensions

test=> SELECT * FROM pgstattuple_approx('pg_catalog.pg_proc'::regclass);
-[RECORD 1]--------+-------
table_len | 573440
scanned_percent | 2
approx_tuple_count | 2740
approx_tuple_len | 561210
approx_tuple_percent | 97.87
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
approx_free_space | 11996
approx_free_percent | 2.09

The output columns are described in Table F.25.

Whereas pgstattuple always performs a full-table scan and returns an exact count of live and dead
tuples (and their sizes) and free space, pgstattuple_approx tries to avoid the full-table scan and
returns exact dead tuple statistics along with an approximation of the number and size of live tuples
and free space.

It does this by skipping pages that have only visible tuples according to the visibility map (if a page
has the corresponding VM bit set, then it is assumed to contain no dead tuples). For such pages, it
derives the free space value from the free space map, and assumes that the rest of the space on the
page is taken up by live tuples.

For pages that cannot be skipped, it scans each tuple, recording its presence and size in the appro-
priate counters, and adding up the free space on the page. At the end, it estimates the total number
of live tuples based on the number of pages and tuples scanned (in the same way that VACUUM
estimates pg_class.reltuples).

Table F.25. pgstattuple_approx Output Columns

Column Type Description
table_len bigint Physical relation length in bytes

(exact)
scanned_percent float8 Percentage of table scanned
approx_tuple_count bigint Number of live tuples (estimat-

ed)
approx_tuple_len bigint Total length of live tuples in

bytes (estimated)
approx_tuple_percent float8 Percentage of live tuples
dead_tuple_count bigint Number of dead tuples (exact)
dead_tuple_len bigint Total length of dead tuples in

bytes (exact)
dead_tuple_percent float8 Percentage of dead tuples
approx_free_space bigint Total free space in bytes (esti-

mated)
approx_free_percent float8 Percentage of free space

In the above output, the free space figures may not match the pgstattuple output exactly, because
the free space map gives us an exact figure, but is not guaranteed to be accurate to the byte.

F.33.2. Authors
Tatsuo Ishii, Satoshi Nagayasu and Abhijit Menon-Sen

2621

Additional Supplied Mod-
ules and Extensions

F.34. pg_surgery — perform low-level surgery on relation
data

The pg_surgery module provides various functions to perform surgery on a damaged relation. These
functions are unsafe by design and using them may corrupt (or further corrupt) your database. For
example, these functions can easily be used to make a table inconsistent with its own indexes, to cause
UNIQUE or FOREIGN KEY constraint violations, or even to make tuples visible which, when read, will cause
a database server crash. They should be used with great caution and only as a last resort.

F.34.1. Functions
heap_force_kill(regclass, tid[]) returns void

heap_force_kill marks “used” line pointers as “dead” without examining the tuples. The intended
use of this function is to forcibly remove tuples that are not otherwise accessible. For example:

test=> select * from t1 where ctid = '(0, 1)';
ERROR: could not access status of transaction 4007513275
DETAIL: Could not open file "pg_xact/0EED": No such file or directory.

test=# select heap_force_kill('t1'::regclass, ARRAY['(0, 1)']::tid[]);
 heap_force_kill

(1 row)

test=# select * from t1 where ctid = '(0, 1)';
(0 rows)

heap_force_freeze(regclass, tid[]) returns void

heap_force_freeze marks tuples as frozen without examining the tuple data. The intended use of
this function is to make accessible tuples which are inaccessible due to corrupted visibility informa-
tion, or which prevent the table from being successfully vacuumed due to corrupted visibility infor-
mation. For example:

test=> vacuum t1;
ERROR: found xmin 507 from before relfrozenxid 515
CONTEXT: while scanning block 0 of relation "public.t1"

test=# select ctid from t1 where xmin = 507;
 ctid

 (0,3)
(1 row)

test=# select heap_force_freeze('t1'::regclass, ARRAY['(0, 3)']::tid[]);
 heap_force_freeze

(1 row)

test=# select ctid from t1 where xmin = 2;
 ctid

 (0,3)
(1 row)

2622

Additional Supplied Mod-
ules and Extensions

F.34.2. Authors
Ashutosh Sharma <ashu.coek88@gmail.com>

2623

Additional Supplied Mod-
ules and Extensions

F.35. pg_trgm — support for similarity of text using tri-
gram matching

The pg_trgm module provides functions and operators for determining the similarity of alphanumeric
text based on trigram matching, as well as index operator classes that support fast searching for similar
strings.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.35.1. Trigram (or Trigraph) Concepts
A trigram is a group of three consecutive characters taken from a string. We can measure the similarity
of two strings by counting the number of trigrams they share. This simple idea turns out to be very
effective for measuring the similarity of words in many natural languages.

Note
pg_trgm ignores non-word characters (non-alphanumerics) when extracting trigrams from a
string. Each word is considered to have two spaces prefixed and one space suffixed when deter-
mining the set of trigrams contained in the string. For example, the set of trigrams in the string
“cat” is “ c”, “ ca”, “cat”, and “at ”. The set of trigrams in the string “foo|bar” is “ f”, “ fo”,
“foo”, “oo ”, “ b”, “ ba”, “bar”, and “ar ”.

F.35.2. Functions and Operators
The functions provided by the pg_trgm module are shown in Table F.26, the operators in Table F.27.

Table F.26. pg_trgm Functions

Function
Description

similarity (text, text) → real
Returns a number that indicates how similar the two arguments are. The range of the result
is zero (indicating that the two strings are completely dissimilar) to one (indicating that the
two strings are identical).

show_trgm (text) → text[]
Returns an array of all the trigrams in the given string. (In practice this is seldom useful ex-
cept for debugging.)

word_similarity (text, text) → real
Returns a number that indicates the greatest similarity between the set of trigrams in the
first string and any continuous extent of an ordered set of trigrams in the second string. For
details, see the explanation below.

strict_word_similarity (text, text) → real
Same as word_similarity , but forces extent boundaries to match word boundaries. Since
we don't have cross-word trigrams, this function actually returns greatest similarity between
first string and any continuous extent of words of the second string.

show_limit () → real
Returns the current similarity threshold used by the % operator. This sets the minimum simi-
larity between two words for them to be considered similar enough to be misspellings of each
other, for example. (Deprecated; instead use SHOW pg_trgm.similarity_threshold .)

set_limit (real) → real

2624

Additional Supplied Mod-
ules and Extensions

Function
Description
Sets the current similarity threshold that is used by the % operator. The threshold must be be-
tween 0 and 1 (default is 0.3). Returns the same value passed in. (Deprecated; instead use
SET pg_trgm.similarity_threshold .)

Consider the following example:

SELECT word_similarity('word', 'two words');
 word_similarity

 0.8
(1 row)

In the first string, the set of trigrams is {" w"," wo","wor","ord","rd "}. In the second string, the
ordered set of trigrams is {" t"," tw","two","wo "," w"," wo","wor","ord","rds","ds "}. The
most similar extent of an ordered set of trigrams in the second string is {" w"," wo","wor","ord"},
and the similarity is 0.8.

This function returns a value that can be approximately understood as the greatest similarity between
the first string and any substring of the second string. However, this function does not add padding to
the boundaries of the extent. Thus, the number of additional characters present in the second string is
not considered, except for the mismatched word boundaries.

At the same time, strict_word_similarity selects an extent of words in the second string. In the
example above, strict_word_similarity would select the extent of a single word 'words', whose set
of trigrams is {" w"," wo","wor","ord","rds","ds "}.

SELECT strict_word_similarity('word', 'two words'), similarity('word', 'words');
 strict_word_similarity | similarity
------------------------+------------
 0.571429 | 0.571429
(1 row)

Thus, the strict_word_similarity function is useful for finding the similarity to whole words, while
word_similarity is more suitable for finding the similarity for parts of words.

Table F.27. pg_trgm Operators

Operator
Description

text % text → boolean
Returns true if its arguments have a similarity that is greater than the current similarity
threshold set by pg_trgm.similarity_threshold .

text <% text → boolean
Returns true if the similarity between the trigram set in the first argument and a continu-
ous extent of an ordered trigram set in the second argument is greater than the current word
similarity threshold set by pg_trgm.word_similarity_threshold parameter.

text %> text → boolean
Commutator of the <% operator.

text <<% text → boolean
Returns true if its second argument has a continuous extent of an ordered trigram set that
matches word boundaries, and its similarity to the trigram set of the first argument is greater
than the current strict word similarity threshold set by the pg_trgm.strict_word_simi-
larity_threshold parameter.

text %>> text → boolean

2625

Additional Supplied Mod-
ules and Extensions

Operator
Description
Commutator of the <<% operator.

text <-> text → real
Returns the “distance” between the arguments, that is one minus the similarity() value.

text <<-> text → real
Returns the “distance” between the arguments, that is one minus the word_similarity()
value.

text <->> text → real
Commutator of the <<-> operator.

text <<<-> text → real
Returns the “distance” between the arguments, that is one minus the strict_word_simi-
larity() value.

text <->>> text → real
Commutator of the <<<-> operator.

F.35.3. GUC Parameters
pg_trgm.similarity_threshold (real)

Sets the current similarity threshold that is used by the % operator. The threshold must be between
0 and 1 (default is 0.3).

pg_trgm.word_similarity_threshold (real)
Sets the current word similarity threshold that is used by the <% and %> operators. The threshold
must be between 0 and 1 (default is 0.6).

pg_trgm.strict_word_similarity_threshold (real)
Sets the current strict word similarity threshold that is used by the <<% and %>> operators. The
threshold must be between 0 and 1 (default is 0.5).

F.35.4. Index Support
The pg_trgm module provides GiST and GIN index operator classes that allow you to create an index
over a text column for the purpose of very fast similarity searches. These index types support the above-
described similarity operators, and additionally support trigram-based index searches for LIKE, ILIKE, ~,
~* and = queries. The similarity comparisons are case-insensitive in a default build of pg_trgm. Inequality
operators are not supported. Note that those indexes may not be as efficient as regular B-tree indexes
for equality operator.

Example:
CREATE TABLE test_trgm (t text);
CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops);

or
CREATE INDEX trgm_idx ON test_trgm USING GIN (t gin_trgm_ops);

gist_trgm_ops GiST opclass approximates a set of trigrams as a bitmap signature. Its optional integer
parameter siglen determines the signature length in bytes. The default length is 12 bytes. Valid values
of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise search
(scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops(siglen=32));

2626

Additional Supplied Mod-
ules and Extensions

At this point, you will have an index on the t column that you can use for similarity searching. A typical
query is

SELECT t, similarity(t, 'word') AS sml
 FROM test_trgm
 WHERE t % 'word'
 ORDER BY sml DESC, t;

This will return all values in the text column that are sufficiently similar to word, sorted from best match
to worst. The index will be used to make this a fast operation even over very large data sets.

A variant of the above query is

SELECT t, t <-> 'word' AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes. It will usually beat
the first formulation when only a small number of the closest matches is wanted.

Also you can use an index on the t column for word similarity or strict word similarity. Typical queries
are:

SELECT t, word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <% t
 ORDER BY sml DESC, t;

and

SELECT t, strict_word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <<% t
 ORDER BY sml DESC, t;

This will return all values in the text column for which there is a continuous extent in the corresponding
ordered trigram set that is sufficiently similar to the trigram set of word, sorted from best match to
worst. The index will be used to make this a fast operation even over very large data sets.

Possible variants of the above queries are:

SELECT t, 'word' <<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

and

SELECT t, 'word' <<<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes.

Beginning in PostgreSQL 9.1, these index types also support index searches for LIKE and ILIKE, for
example

SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';

The index search works by extracting trigrams from the search string and then looking these up in the
index. The more trigrams in the search string, the more effective the index search is. Unlike B-tree based
searches, the search string need not be left-anchored.

Beginning in PostgreSQL 9.3, these index types also support index searches for regular-expression
matches (~ and ~* operators), for example

SELECT * FROM test_trgm WHERE t ~ '(foo|bar)';

2627

Additional Supplied Mod-
ules and Extensions

The index search works by extracting trigrams from the regular expression and then looking these up
in the index. The more trigrams that can be extracted from the regular expression, the more effective
the index search is. Unlike B-tree based searches, the search string need not be left-anchored.

For both LIKE and regular-expression searches, keep in mind that a pattern with no extractable trigrams
will degenerate to a full-index scan.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere.

F.35.5. Text Search Integration
Trigram matching is a very useful tool when used in conjunction with a full text index. In particular it
can help to recognize misspelled input words that will not be matched directly by the full text search
mechanism.

The first step is to generate an auxiliary table containing all the unique words in the documents:

CREATE TABLE words AS SELECT word FROM
 ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM documents');

where documents is a table that has a text field bodytext that we wish to search. The reason for using the
simple configuration with the to_tsvector function, instead of using a language-specific configuration,
is that we want a list of the original (unstemmed) words.

Next, create a trigram index on the word column:

CREATE INDEX words_idx ON words USING GIN (word gin_trgm_ops);

Now, a SELECT query similar to the previous example can be used to suggest spellings for misspelled
words in user search terms. A useful extra test is to require that the selected words are also of similar
length to the misspelled word.

Note
Since the words table has been generated as a separate, static table, it will need to be periodically
regenerated so that it remains reasonably up-to-date with the document collection. Keeping it
exactly current is usually unnecessary.

F.35.6. References
GiST Development Site http://www.sai.msu.su/~megera/postgres/gist/

Tsearch2 Development Site http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

F.35.7. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Moscow, Postgres Professional, Russia

Documentation: Christopher Kings-Lynne

This module is sponsored by Delta-Soft Ltd., Moscow, Russia.

2628

http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

Additional Supplied Mod-
ules and Extensions

F.36. pg_visibility — visibility map information and utili-
ties

The pg_visibility module provides a means for examining the visibility map (VM) and page-level vis-
ibility information of a table. It also provides functions to check the integrity of a visibility map and to
force it to be rebuilt.

Three different bits are used to store information about page-level visibility. The all-visible bit in the
visibility map indicates that every tuple in the corresponding page of the relation is visible to every
current and future transaction. The all-frozen bit in the visibility map indicates that every tuple in the
page is frozen; that is, no future vacuum will need to modify the page until such time as a tuple is
inserted, updated, deleted, or locked on that page. The page header's PD_ALL_VISIBLE bit has the same
meaning as the all-visible bit in the visibility map, but is stored within the data page itself rather than in a
separate data structure. These two bits will normally agree, but the page's all-visible bit can sometimes
be set while the visibility map bit is clear after a crash recovery. The reported values can also disagree
because of a change that occurs after pg_visibility examines the visibility map and before it examines
the data page. Any event that causes data corruption can also cause these bits to disagree.

Functions that display information about PD_ALL_VISIBLE bits are much more costly than those that
only consult the visibility map, because they must read the relation's data blocks rather than only the
(much smaller) visibility map. Functions that check the relation's data blocks are similarly expensive.

F.36.1. Functions
pg_visibility_map(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen
OUT boolean) returns record

Returns the all-visible and all-frozen bits in the visibility map for the given block of the given relation.

pg_visibility(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen OUT
boolean, pd_all_visible OUT boolean) returns record

Returns the all-visible and all-frozen bits in the visibility map for the given block of the given relation,
plus the PD_ALL_VISIBLE bit of that block.

pg_visibility_map(relation regclass, blkno OUT bigint, all_visible OUT boolean, al-
l_frozen OUT boolean) returns setof record

Returns the all-visible and all-frozen bits in the visibility map for each block of the given relation.

pg_visibility(relation regclass, blkno OUT bigint, all_visible OUT boolean, all_frozen
OUT boolean, pd_all_visible OUT boolean) returns setof record

Returns the all-visible and all-frozen bits in the visibility map for each block of the given relation,
plus the PD_ALL_VISIBLE bit of each block.

pg_visibility_map_summary(relation regclass, all_visible OUT bigint, all_frozen OUT big-
int) returns record

Returns the number of all-visible pages and the number of all-frozen pages in the relation according
to the visibility map.

pg_check_frozen(relation regclass, t_ctid OUT tid) returns setof tid

Returns the TIDs of non-frozen tuples stored in pages marked all-frozen in the visibility map. If this
function returns a non-empty set of TIDs, the visibility map is corrupt.

pg_check_visible(relation regclass, t_ctid OUT tid) returns setof tid

Returns the TIDs of non-all-visible tuples stored in pages marked all-visible in the visibility map. If
this function returns a non-empty set of TIDs, the visibility map is corrupt.

2629

Additional Supplied Mod-
ules and Extensions

pg_truncate_visibility_map(relation regclass) returns void

Truncates the visibility map for the given relation. This function is useful if you believe that the
visibility map for the relation is corrupt and wish to force rebuilding it. The first VACUUM executed on
the given relation after this function is executed will scan every page in the relation and rebuild the
visibility map. (Until that is done, queries will treat the visibility map as containing all zeroes.)

By default, these functions are executable only by superusers and roles with privileges of the pg_stat_s-
can_tables role, with the exception of pg_truncate_visibility_map(relation regclass) which can
only be executed by superusers.

F.36.2. Author
Robert Haas <rhaas@postgresql.org>

2630

Additional Supplied Mod-
ules and Extensions

F.37. pg_walinspect — low-level WAL inspection
The pg_walinspect module provides SQL functions that allow you to inspect the contents of write-ahead
log of a running PostgreSQL database cluster at a low level, which is useful for debugging, analytical,
reporting or educational purposes. It is similar to pg_waldump, but accessible through SQL rather than
a separate utility.

All the functions of this module will provide the WAL information using the server's current timeline ID.

Note
The pg_walinspect functions are often called using an LSN argument that specifies the location
at which a known WAL record of interest begins. However, some functions, such as pg_logi-
cal_emit_message, return the LSN after the record that was just inserted.

Tip
All of the pg_walinspect functions that show information about records that fall within a certain
LSN range are permissive about accepting end_lsn arguments that are after the server's current
LSN. Using an end_lsn “from the future” will not raise an error.

It may be convenient to provide the value FFFFFFFF/FFFFFFFF (the maximum valid pg_lsn value) as
an end_lsn argument. This is equivalent to providing an end_lsn argument matching the server's
current LSN.

By default, use of these functions is restricted to superusers and members of the pg_read_server_files
role. Access may be granted by superusers to others using GRANT.

F.37.1. General Functions
pg_get_wal_record_info(in_lsn pg_lsn) returns record

Gets WAL record information about a record that is located at or after the in_lsn argument. For
example:
postgres=# SELECT * FROM pg_get_wal_record_info('0/E419E28');
-[RECORD 1]----+---
start_lsn | 0/E419E28
end_lsn | 0/E419E68
prev_lsn | 0/E419D78
xid | 0
resource_manager | Heap2
record_type | VACUUM
record_length | 58
main_data_length | 2
fpi_length | 0
description | nunused: 5, unused: [1, 2, 3, 4, 5]
block_ref | blkref #0: rel 1663/16385/1249 fork main blk 364

If in_lsn isn't at the start of a WAL record, information about the next valid WAL record is shown
instead. If there is no next valid WAL record, the function raises an error.

pg_get_wal_records_info(start_lsn pg_lsn, end_lsn pg_lsn) returns setof record

Gets information of all the valid WAL records between start_lsn and end_lsn. Returns one row per
WAL record. For example:
postgres=# SELECT * FROM pg_get_wal_records_info('0/1E913618', '0/1E913740') LIMIT
 1;

2631

Additional Supplied Mod-
ules and Extensions

-[RECORD 1]----+--
start_lsn | 0/1E913618
end_lsn | 0/1E913650
prev_lsn | 0/1E9135A0
xid | 0
resource_manager | Standby
record_type | RUNNING_XACTS
record_length | 50
main_data_length | 24
fpi_length | 0
description | nextXid 33775 latestCompletedXid 33774 oldestRunningXid 33775
block_ref |

The function raises an error if start_lsn is not available.

pg_get_wal_block_info(start_lsn pg_lsn, end_lsn pg_lsn, show_data boolean DEFAULT true)
returns setof record

Gets information about each block reference from all the valid WAL records between start_lsn and
end_lsn with one or more block references. Returns one row per block reference per WAL record.
For example:
postgres=# SELECT * FROM pg_get_wal_block_info('0/1230278', '0/12302B8');
-[RECORD 1]-----+-----------------------------------
start_lsn | 0/1230278
end_lsn | 0/12302B8
prev_lsn | 0/122FD40
block_id | 0
reltablespace | 1663
reldatabase | 1
relfilenode | 2658
relforknumber | 0
relblocknumber | 11
xid | 341
resource_manager | Btree
record_type | INSERT_LEAF
record_length | 64
main_data_length | 2
block_data_length | 16
block_fpi_length | 0
block_fpi_info |
description | off: 46
block_data | \x00002a00070010402630000070696400
block_fpi_data |

This example involves a WAL record that only contains one block reference, but many WAL records
contain several block references. Rows output by pg_get_wal_block_info are guaranteed to have
a unique combination of start_lsn and block_id values.

Much of the information shown here matches the output that pg_get_wal_records_info would show,
given the same arguments. However, pg_get_wal_block_info unnests the information from each
WAL record into an expanded form by outputting one row per block reference, so certain details are
tracked at the block reference level rather than at the whole-record level. This structure is useful
with queries that track how individual blocks changed over time. Note that records with no block
references (e.g., COMMIT WAL records) will have no rows returned, so pg_get_wal_block_info may
actually return fewer rows than pg_get_wal_records_info.

The reltablespace, reldatabase, and relfilenode parameters reference pg_tablespace.oid,
pg_database.oid, and pg_class.relfilenode respectively. The relforknumber field is the fork num-
ber within the relation for the block reference; see common/relpath.h for details.

2632

Additional Supplied Mod-
ules and Extensions

Tip
The pg_filenode_relation function (see Table 9.103) can help you to determine which rela-
tion was modified during original execution.

It is possible for clients to avoid the overhead of materializing block data. This may make function
execution significantly faster. When show_data is set to false, block_data and block_fpi_data
values are omitted (that is, the block_data and block_fpi_data OUT arguments are NULL for all
rows returned). Obviously, this optimization is only feasible with queries where block data isn't truly
required.

The function raises an error if start_lsn is not available.

pg_get_wal_stats(start_lsn pg_lsn, end_lsn pg_lsn, per_record boolean DEFAULT false)
returns setof record

Gets statistics of all the valid WAL records between start_lsn and end_lsn. By default, it re-
turns one row per resource_manager type. When per_record is set to true, it returns one row per
record_type. For example:

postgres=# SELECT * FROM pg_get_wal_stats('0/1E847D00', '0/1E84F500')
 WHERE count > 0 AND
 "resource_manager/record_type" = 'Transaction'
 LIMIT 1;
-[RECORD 1]----------------+-------------------
resource_manager/record_type | Transaction
count | 2
count_percentage | 8
record_size | 875
record_size_percentage | 41.23468426013195
fpi_size | 0
fpi_size_percentage | 0
combined_size | 875
combined_size_percentage | 2.8634072910530795

The function raises an error if start_lsn is not available.

F.37.2. Author
Bharath Rupireddy <bharath.rupireddyforpostgres@gmail.com>

2633

Additional Supplied Mod-
ules and Extensions

F.38. postgres_fdw — access data stored in external
PostgreSQL servers

The postgres_fdw module provides the foreign-data wrapper postgres_fdw, which can be used to access
data stored in external PostgreSQL servers.

The functionality provided by this module overlaps substantially with the functionality of the older dblink
module. But postgres_fdw provides more transparent and standards-compliant syntax for accessing
remote tables, and can give better performance in many cases.

To prepare for remote access using postgres_fdw:
1. Install the postgres_fdw extension using CREATE EXTENSION.
2. Create a foreign server object, using CREATE SERVER, to represent each remote database you want

to connect to. Specify connection information, except user and password, as options of the server
object.

3. Create a user mapping, using CREATE USER MAPPING, for each database user you want to allow to
access each foreign server. Specify the remote user name and password to use as user and password
options of the user mapping.

4. Create a foreign table, using CREATE FOREIGN TABLE or IMPORT FOREIGN SCHEMA, for each
remote table you want to access. The columns of the foreign table must match the referenced remote
table. You can, however, use table and/or column names different from the remote table's, if you
specify the correct remote names as options of the foreign table object.

Now you need only SELECT from a foreign table to access the data stored in its underlying remote table.
You can also modify the remote table using INSERT, UPDATE, DELETE, COPY, or TRUNCATE. (Of course, the
remote user you have specified in your user mapping must have privileges to do these things.)

Note that the ONLY option specified in SELECT, UPDATE, DELETE or TRUNCATE has no effect when accessing
or modifying the remote table.

Note that postgres_fdw currently lacks support for INSERT statements with an ON CONFLICT DO UPDATE
clause. However, the ON CONFLICT DO NOTHING clause is supported, provided a unique index inference
specification is omitted. Note also that postgres_fdw supports row movement invoked by UPDATE state-
ments executed on partitioned tables, but it currently does not handle the case where a remote partition
chosen to insert a moved row into is also an UPDATE target partition that will be updated elsewhere in
the same command.

It is generally recommended that the columns of a foreign table be declared with exactly the same da-
ta types, and collations if applicable, as the referenced columns of the remote table. Although post-
gres_fdw is currently rather forgiving about performing data type conversions at need, surprising se-
mantic anomalies may arise when types or collations do not match, due to the remote server interpreting
query conditions differently from the local server.

Note that a foreign table can be declared with fewer columns, or with a different column order, than its
underlying remote table has. Matching of columns to the remote table is by name, not position.

F.38.1. FDW Options of postgres_fdw
F.38.1.1. Connection Options

A foreign server using the postgres_fdw foreign data wrapper can have the same options that libpq
accepts in connection strings, as described in Section 32.1.2, except that these options are not allowed
or have special handling:
• user, password and sslpassword (specify these in a user mapping instead, or use a service file)
• client_encoding (this is automatically set from the local server encoding)
• application_name - this may appear in either or both a connection and postgres_fdw.applica-

tion_name. If both are present, postgres_fdw.application_name overrides the connection setting.

2634

Additional Supplied Mod-
ules and Extensions

Unlike libpq, postgres_fdw allows application_name to include “escape sequences”. See post-
gres_fdw.application_name for details.

• fallback_application_name (always set to postgres_fdw)
• sslkey and sslcert - these may appear in either or both a connection and a user mapping. If both

are present, the user mapping setting overrides the connection setting.

Only superusers may create or modify user mappings with the sslcert or sslkey settings.

Non-superusers may connect to foreign servers using password authentication or with GSSAPI delegat-
ed credentials, so specify the password option for user mappings belonging to non-superusers where
password authentication is required.

A superuser may override this check on a per-user-mapping basis by setting the user mapping option
password_required 'false', e.g.,
ALTER USER MAPPING FOR some_non_superuser SERVER loopback_nopw
OPTIONS (ADD password_required 'false');

To prevent unprivileged users from exploiting the authentication rights of the unix user the postgres
server is running as to escalate to superuser rights, only the superuser may set this option on a user
mapping.

Care is required to ensure that this does not allow the mapped user the ability to connect as superuser to
the mapped database per CVE-2007-3278 and CVE-2007-6601. Don't set password_required=false on
the public role. Keep in mind that the mapped user can potentially use any client certificates, .pgpass,
.pg_service.conf etc. in the unix home directory of the system user the postgres server runs as. (For
details on how home directories are found, see Section 32.16.) They can also use any trust relationship
granted by authentication modes like peer or ident authentication.

F.38.1.2. Object Name Options
These options can be used to control the names used in SQL statements sent to the remote PostgreSQL
server. These options are needed when a foreign table is created with names different from the under-
lying remote table's names.

schema_name (string)
This option, which can be specified for a foreign table, gives the schema name to use for the foreign
table on the remote server. If this option is omitted, the name of the foreign table's schema is used.

table_name (string)
This option, which can be specified for a foreign table, gives the table name to use for the foreign
table on the remote server. If this option is omitted, the foreign table's name is used.

column_name (string)
This option, which can be specified for a column of a foreign table, gives the column name to use for
the column on the remote server. If this option is omitted, the column's name is used.

F.38.1.3. Cost Estimation Options
postgres_fdw retrieves remote data by executing queries against remote servers, so ideally the esti-
mated cost of scanning a foreign table should be whatever it costs to be done on the remote server, plus
some overhead for communication. The most reliable way to get such an estimate is to ask the remote
server and then add something for overhead — but for simple queries, it may not be worth the cost of
an additional remote query to get a cost estimate. So postgres_fdw provides the following options to
control how cost estimation is done:

use_remote_estimate (boolean)
This option, which can be specified for a foreign table or a foreign server, controls whether post-
gres_fdw issues remote EXPLAIN commands to obtain cost estimates. A setting for a foreign table
overrides any setting for its server, but only for that table. The default is false.

2635

Additional Supplied Mod-
ules and Extensions

fdw_startup_cost (floating point)

This option, which can be specified for a foreign server, is a floating point value that is added to
the estimated startup cost of any foreign-table scan on that server. This represents the additional
overhead of establishing a connection, parsing and planning the query on the remote side, etc. The
default value is 100.

fdw_tuple_cost (floating point)

This option, which can be specified for a foreign server, is a floating point value that is used as extra
cost per-tuple for foreign-table scans on that server. This represents the additional overhead of data
transfer between servers. You might increase or decrease this number to reflect higher or lower
network delay to the remote server. The default value is 0.2.

When use_remote_estimate is true, postgres_fdw obtains row count and cost estimates from the re-
mote server and then adds fdw_startup_cost and fdw_tuple_cost to the cost estimates. When use_re-
mote_estimate is false, postgres_fdw performs local row count and cost estimation and then adds fd-
w_startup_cost and fdw_tuple_cost to the cost estimates. This local estimation is unlikely to be very
accurate unless local copies of the remote table's statistics are available. Running ANALYZE on the for-
eign table is the way to update the local statistics; this will perform a scan of the remote table and then
calculate and store statistics just as though the table were local. Keeping local statistics can be a useful
way to reduce per-query planning overhead for a remote table — but if the remote table is frequently
updated, the local statistics will soon be obsolete.

The following option controls how such an ANALYZE operation behaves:

analyze_sampling (string)

This option, which can be specified for a foreign table or a foreign server, determines if ANALYZE on
a foreign table samples the data on the remote side, or reads and transfers all data and performs the
sampling locally. The supported values are off, random, system, bernoulli and auto. off disables
remote sampling, so all data are transferred and sampled locally. random performs remote sampling
using the random() function to choose returned rows, while system and bernoulli rely on the built-in
TABLESAMPLE methods of those names. random works on all remote server versions, while TABLESAM-
PLE is supported only since 9.5. auto (the default) picks the recommended sampling method auto-
matically; currently it means either bernoulli or random depending on the remote server version.

F.38.1.4. Remote Execution Options
By default, only WHERE clauses using built-in operators and functions will be considered for execution on
the remote server. Clauses involving non-built-in functions are checked locally after rows are fetched.
If such functions are available on the remote server and can be relied on to produce the same results
as they do locally, performance can be improved by sending such WHERE clauses for remote execution.
This behavior can be controlled using the following option:

extensions (string)

This option is a comma-separated list of names of PostgreSQL extensions that are installed, in com-
patible versions, on both the local and remote servers. Functions and operators that are immutable
and belong to a listed extension will be considered shippable to the remote server. This option can
only be specified for foreign servers, not per-table.

When using the extensions option, it is the user's responsibility that the listed extensions exist
and behave identically on both the local and remote servers. Otherwise, remote queries may fail or
behave unexpectedly.

fetch_size (integer)

This option specifies the number of rows postgres_fdw should get in each fetch operation. It can be
specified for a foreign table or a foreign server. The option specified on a table overrides an option
specified for the server. The default is 100.

2636

Additional Supplied Mod-
ules and Extensions

batch_size (integer)
This option specifies the number of rows postgres_fdw should insert in each insert operation. It can
be specified for a foreign table or a foreign server. The option specified on a table overrides an option
specified for the server. The default is 1.

Note the actual number of rows postgres_fdw inserts at once depends on the number of columns
and the provided batch_size value. The batch is executed as a single query, and the libpq protocol
(which postgres_fdw uses to connect to a remote server) limits the number of parameters in a single
query to 65535. When the number of columns * batch_size exceeds the limit, the batch_size will
be adjusted to avoid an error.

This option also applies when copying into foreign tables. In that case the actual number of rows
postgres_fdw copies at once is determined in a similar way to the insert case, but it is limited to at
most 1000 due to implementation restrictions of the COPY command.

F.38.1.5. Asynchronous Execution Options
postgres_fdw supports asynchronous execution, which runs multiple parts of an Append node concur-
rently rather than serially to improve performance. This execution can be controlled using the following
option:

async_capable (boolean)
This option controls whether postgres_fdw allows foreign tables to be scanned concurrently for
asynchronous execution. It can be specified for a foreign table or a foreign server. A table-level option
overrides a server-level option. The default is false.

In order to ensure that the data being returned from a foreign server is consistent, postgres_fdw
will only open one connection for a given foreign server and will run all queries against that server
sequentially even if there are multiple foreign tables involved, unless those tables are subject to
different user mappings. In such a case, it may be more performant to disable this option to eliminate
the overhead associated with running queries asynchronously.

Asynchronous execution is applied even when an Append node contains subplan(s) executed synchro-
nously as well as subplan(s) executed asynchronously. In such a case, if the asynchronous subplans
are ones processed using postgres_fdw, tuples from the asynchronous subplans are not returned
until after at least one synchronous subplan returns all tuples, as that subplan is executed while the
asynchronous subplans are waiting for the results of asynchronous queries sent to foreign servers.
This behavior might change in a future release.

F.38.1.6. Transaction Management Options
As described in the Transaction Management section, in postgres_fdw transactions are managed by
creating corresponding remote transactions, and subtransactions are managed by creating correspond-
ing remote subtransactions. When multiple remote transactions are involved in the current local trans-
action, by default postgres_fdw commits or aborts those remote transactions serially when the local
transaction is committed or aborted. When multiple remote subtransactions are involved in the current
local subtransaction, by default postgres_fdw commits or aborts those remote subtransactions serially
when the local subtransaction is committed or aborted. Performance can be improved with the following
options:

parallel_commit (boolean)
This option controls whether postgres_fdw commits, in parallel, remote transactions opened on a
foreign server in a local transaction when the local transaction is committed. This setting also applies
to remote and local subtransactions. This option can only be specified for foreign servers, not per-
table. The default is false.

parallel_abort (boolean)
This option controls whether postgres_fdw aborts, in parallel, remote transactions opened on a
foreign server in a local transaction when the local transaction is aborted. This setting also applies

2637

Additional Supplied Mod-
ules and Extensions

to remote and local subtransactions. This option can only be specified for foreign servers, not per-
table. The default is false.

If multiple foreign servers with these options enabled are involved in a local transaction, multiple remote
transactions on those foreign servers are committed or aborted in parallel across those foreign servers
when the local transaction is committed or aborted.

When these options are enabled, a foreign server with many remote transactions may see a negative
performance impact when the local transaction is committed or aborted.

F.38.1.7. Updatability Options
By default all foreign tables using postgres_fdw are assumed to be updatable. This may be overridden
using the following option:

updatable (boolean)

This option controls whether postgres_fdw allows foreign tables to be modified using INSERT, UPDATE
and DELETE commands. It can be specified for a foreign table or a foreign server. A table-level option
overrides a server-level option. The default is true.

Of course, if the remote table is not in fact updatable, an error would occur anyway. Use of this option
primarily allows the error to be thrown locally without querying the remote server. Note however
that the information_schema views will report a postgres_fdw foreign table to be updatable (or not)
according to the setting of this option, without any check of the remote server.

F.38.1.8. Truncatability Options
By default all foreign tables using postgres_fdw are assumed to be truncatable. This may be overridden
using the following option:

truncatable (boolean)

This option controls whether postgres_fdw allows foreign tables to be truncated using the TRUNCATE
command. It can be specified for a foreign table or a foreign server. A table-level option overrides
a server-level option. The default is true.

Of course, if the remote table is not in fact truncatable, an error would occur anyway. Use of this
option primarily allows the error to be thrown locally without querying the remote server.

F.38.1.9. Importing Options
postgres_fdw is able to import foreign table definitions using IMPORT FOREIGN SCHEMA. This com-
mand creates foreign table definitions on the local server that match tables or views present on the
remote server. If the remote tables to be imported have columns of user-defined data types, the local
server must have compatible types of the same names.

Importing behavior can be customized with the following options (given in the IMPORT FOREIGN SCHEMA
command):

import_collate (boolean)

This option controls whether column COLLATE options are included in the definitions of foreign tables
imported from a foreign server. The default is true. You might need to turn this off if the remote
server has a different set of collation names than the local server does, which is likely to be the case
if it's running on a different operating system. If you do so, however, there is a very severe risk that
the imported table columns' collations will not match the underlying data, resulting in anomalous
query behavior.

Even when this parameter is set to true, importing columns whose collation is the remote server's
default can be risky. They will be imported with COLLATE "default", which will select the local
server's default collation, which could be different.

2638

Additional Supplied Mod-
ules and Extensions

import_default (boolean)
This option controls whether column DEFAULT expressions are included in the definitions of foreign
tables imported from a foreign server. The default is false. If you enable this option, be wary of
defaults that might get computed differently on the local server than they would be on the remote
server; nextval() is a common source of problems. The IMPORT will fail altogether if an imported
default expression uses a function or operator that does not exist locally.

import_generated (boolean)
This option controls whether column GENERATED expressions are included in the definitions of foreign
tables imported from a foreign server. The default is true. The IMPORT will fail altogether if an im-
ported generated expression uses a function or operator that does not exist locally.

import_not_null (boolean)
This option controls whether column NOT NULL constraints are included in the definitions of foreign
tables imported from a foreign server. The default is true.

Note that constraints other than NOT NULL will never be imported from the remote tables. Although
PostgreSQL does support check constraints on foreign tables, there is no provision for importing them
automatically, because of the risk that a constraint expression could evaluate differently on the local
and remote servers. Any such inconsistency in the behavior of a check constraint could lead to hard-to-
detect errors in query optimization. So if you wish to import check constraints, you must do so manually,
and you should verify the semantics of each one carefully. For more detail about the treatment of check
constraints on foreign tables, see CREATE FOREIGN TABLE.

Tables or foreign tables which are partitions of some other table are imported only when they are ex-
plicitly specified in LIMIT TO clause. Otherwise they are automatically excluded from IMPORT FOREIGN
SCHEMA. Since all data can be accessed through the partitioned table which is the root of the parti-
tioning hierarchy, importing only partitioned tables should allow access to all the data without creating
extra objects.

F.38.1.10. Connection Management Options
By default, all connections that postgres_fdw establishes to foreign servers are kept open in the local
session for re-use.

keep_connections (boolean)
This option controls whether postgres_fdw keeps the connections to the foreign server open so that
subsequent queries can re-use them. It can only be specified for a foreign server. The default is on.
If set to off, all connections to this foreign server will be discarded at the end of each transaction.

use_scram_passthrough (boolean)
This option controls whether postgres_fdw will use the SCRAM pass-through authentication to con-
nect to the foreign server. With SCRAM pass-through authentication, postgres_fdw uses SCRAM-
hashed secrets instead of plain-text user passwords to connect to the remote server. This avoids
storing plain-text user passwords in PostgreSQL system catalogs.

To use SCRAM pass-through authentication:
• The remote server must request the scram-sha-256 authentication method; otherwise, the con-

nection will fail.
• The remote server can be of any PostgreSQL version that supports SCRAM. Support for

use_scram_passthrough is only required on the client side (FDW side).
• The user mapping password is not used.
• The server running postgres_fdw and the remote server must have identical SCRAM secrets

(encrypted passwords) for the user being used on postgres_fdw to authenticate on the foreign
server (same salt and iterations, not merely the same password).

2639

Additional Supplied Mod-
ules and Extensions

As a corollary, if FDW connections to multiple hosts are to be made, for example for partitioned
foreign tables/sharding, then all hosts must have identical SCRAM secrets for the users in-
volved.

• The current session on the PostgreSQL instance that makes the outgoing FDW connections also
must also use SCRAM authentication for its incoming client connection. (Hence “pass-through”:
SCRAM must be used going in and out.) This is a technical requirement of the SCRAM protocol.

F.38.2. Functions
postgres_fdw_get_connections(IN check_conn boolean DEFAULT false, OUT server_name text,
OUT user_name text, OUT valid boolean, OUT used_in_xact boolean, OUT closed boolean, OUT
remote_backend_pid int4) returns setof record

This function returns information about all open connections postgres_fdw has established from the
local session to foreign servers. If there are no open connections, no records are returned.

If check_conn is set to true, the function checks the status of each connection and shows the result in
the closed column. This feature is currently available only on systems that support the non-standard
POLLRDHUP extension to the poll system call, including Linux. This is useful to check if all connections
used within a transaction are still open. If any connections are closed, the transaction cannot be
committed successfully, so it is better to roll back as soon as a closed connection is detected, rather
than continuing to the end. Users can roll back the transaction immediately if the function reports
connections where both used_in_xact and closed are true.

Example usage of the function:

postgres=# SELECT * FROM postgres_fdw_get_connections(true);
 server_name | user_name | valid | used_in_xact | closed | remote_backend_pid
-------------+-----------+-------+--------------+-----------------------------
 loopback1 | postgres | t | t | f | 1353340
 loopback2 | public | t | t | f | 1353120
 loopback3 | | f | t | f | 1353156

The output columns are described in Table F.28.

Table F.28. postgres_fdw_get_connections Output Columns

Column Type Description
server_name text The foreign server name of

this connection. If the server is
dropped but the connection re-
mains open (i.e., marked as in-
valid), this will be NULL.

user_name text Name of the local user mapped
to the foreign server of this con-
nection, or public if a public
mapping is used. If the user
mapping is dropped but the
connection remains open (i.e.,
marked as invalid), this will be
NULL.

valid boolean False if this connection is in-
valid, meaning it is used in the
current transaction, but its for-
eign server or user mapping
has been changed or dropped.
The invalid connection will be
closed at the end of the trans-

2640

Additional Supplied Mod-
ules and Extensions

Column Type Description
action. True is returned other-
wise.

used_in_xact boolean True if this connection is used
in the current transaction.

closed boolean True if this connection is
closed, false otherwise. NULL is
returned if check_conn is set
to false or if the connection
status check is not available on
this platform.

remote_backend_pid int4 Process ID of the remote back-
end, on the foreign server, han-
dling the connection. If the re-
mote backend is terminated and
the connection is closed (with
closed set to true), this still
shows the process ID of the ter-
minated backend.

postgres_fdw_disconnect(server_name text) returns boolean

This function discards the open connections that are established by postgres_fdw from the local
session to the foreign server with the given name. Note that there can be multiple connections to
the given server using different user mappings. If the connections are used in the current local
transaction, they are not disconnected and warning messages are reported. This function returns
true if it disconnects at least one connection, otherwise false. If no foreign server with the given
name is found, an error is reported. Example usage of the function:

postgres=# SELECT postgres_fdw_disconnect('loopback1');
 postgres_fdw_disconnect

 t

postgres_fdw_disconnect_all() returns boolean

This function discards all the open connections that are established by postgres_fdw from the local
session to foreign servers. If the connections are used in the current local transaction, they are not
disconnected and warning messages are reported. This function returns true if it disconnects at
least one connection, otherwise false. Example usage of the function:

postgres=# SELECT postgres_fdw_disconnect_all();
 postgres_fdw_disconnect_all

 t

F.38.3. Connection Management
postgres_fdw establishes a connection to a foreign server during the first query that uses a foreign
table associated with the foreign server. By default this connection is kept and re-used for subsequent
queries in the same session. This behavior can be controlled using keep_connections option for a foreign
server. If multiple user identities (user mappings) are used to access the foreign server, a connection
is established for each user mapping.

When changing the definition of or removing a foreign server or a user mapping, the associated connec-
tions are closed. But note that if any connections are in use in the current local transaction, they are
kept until the end of the transaction. Closed connections will be re-established when they are necessary
by future queries using a foreign table.

2641

Additional Supplied Mod-
ules and Extensions

Once a connection to a foreign server has been established, it's by default kept until the local or cor-
responding remote session exits. To disconnect a connection explicitly, keep_connections option for
a foreign server may be disabled, or postgres_fdw_disconnect and postgres_fdw_disconnect_all
functions may be used. For example, these are useful to close connections that are no longer necessary,
thereby releasing connections on the foreign server.

F.38.4. Transaction Management
During a query that references any remote tables on a foreign server, postgres_fdw opens a transaction
on the remote server if one is not already open corresponding to the current local transaction. The
remote transaction is committed or aborted when the local transaction commits or aborts. Savepoints
are similarly managed by creating corresponding remote savepoints.

The remote transaction uses SERIALIZABLE isolation level when the local transaction has SERIALIZABLE
isolation level; otherwise it uses REPEATABLE READ isolation level. This choice ensures that if a query
performs multiple table scans on the remote server, it will get snapshot-consistent results for all the
scans. A consequence is that successive queries within a single transaction will see the same data from
the remote server, even if concurrent updates are occurring on the remote server due to other activities.
That behavior would be expected anyway if the local transaction uses SERIALIZABLE or REPEATABLE READ
isolation level, but it might be surprising for a READ COMMITTED local transaction. A future PostgreSQL
release might modify these rules.

Note that it is currently not supported by postgres_fdw to prepare the remote transaction for two-phase
commit.

F.38.5. Remote Query Optimization
postgres_fdw attempts to optimize remote queries to reduce the amount of data transferred from for-
eign servers. This is done by sending query WHERE clauses to the remote server for execution, and by not
retrieving table columns that are not needed for the current query. To reduce the risk of misexecution
of queries, WHERE clauses are not sent to the remote server unless they use only data types, operators,
and functions that are built-in or belong to an extension that's listed in the foreign server's extensions
option. Operators and functions in such clauses must be IMMUTABLE as well. For an UPDATE or DELETE
query, postgres_fdw attempts to optimize the query execution by sending the whole query to the remote
server if there are no query WHERE clauses that cannot be sent to the remote server, no local joins for
the query, no row-level local BEFORE or AFTER triggers or stored generated columns on the target table,
and no CHECK OPTION constraints from parent views. In UPDATE, expressions to assign to target columns
must use only built-in data types, IMMUTABLE operators, or IMMUTABLE functions, to reduce the risk of
misexecution of the query.

When postgres_fdw encounters a join between foreign tables on the same foreign server, it sends the
entire join to the foreign server, unless for some reason it believes that it will be more efficient to fetch
rows from each table individually, or unless the table references involved are subject to different user
mappings. While sending the JOIN clauses, it takes the same precautions as mentioned above for the
WHERE clauses.

The query that is actually sent to the remote server for execution can be examined using EXPLAIN VER-
BOSE.

F.38.6. Remote Query Execution Environment
In the remote sessions opened by postgres_fdw, the search_path parameter is set to just pg_catalog,
so that only built-in objects are visible without schema qualification. This is not an issue for queries
generated by postgres_fdw itself, because it always supplies such qualification. However, this can pose
a hazard for functions that are executed on the remote server via triggers or rules on remote tables.
For example, if a remote table is actually a view, any functions used in that view will be executed with
the restricted search path. It is recommended to schema-qualify all names in such functions, or else
attach SET search_path options (see CREATE FUNCTION) to such functions to establish their expected
search path environment.

2642

Additional Supplied Mod-
ules and Extensions

postgres_fdw likewise establishes remote session settings for various parameters:
• TimeZone is set to UTC
• DateStyle is set to ISO
• IntervalStyle is set to postgres
• extra_float_digits is set to 3 for remote servers 9.0 and newer and is set to 2 for older versions
These are less likely to be problematic than search_path, but can be handled with function SET options
if the need arises.

It is not recommended that you override this behavior by changing the session-level settings of these
parameters; that is likely to cause postgres_fdw to malfunction.

F.38.7. Cross-Version Compatibility
postgres_fdw can be used with remote servers dating back to PostgreSQL 8.3. Read-only capability is
available back to 8.1.

A limitation however is that postgres_fdw generally assumes that immutable built-in functions and
operators are safe to send to the remote server for execution, if they appear in a WHERE clause for a
foreign table. Thus, a built-in function that was added since the remote server's release might be sent to
it for execution, resulting in “function does not exist” or a similar error. This type of failure can be worked
around by rewriting the query, for example by embedding the foreign table reference in a sub-SELECT
with OFFSET 0 as an optimization fence, and placing the problematic function or operator outside the
sub-SELECT.

Another limitation is that when executing INSERT statements with an ON CONFLICT DO NOTHING clause
on a foreign table, the remote server must be running PostgreSQL 9.5 or later, as earlier versions do
not support this feature.

F.38.8. Wait Events
postgres_fdw can report the following wait events under the wait event type Extension:

PostgresFdwCleanupResult

Waiting for transaction abort on remote server.

PostgresFdwConnect

Waiting to establish a connection to a remote server.

PostgresFdwGetResult

Waiting to receive the results of a query from a remote server.

F.38.9. Configuration Parameters
postgres_fdw.application_name (string)

Specifies a value for application_name configuration parameter used when postgres_fdw establishes
a connection to a foreign server. This overrides application_name option of the server object. Note
that change of this parameter doesn't affect any existing connections until they are re-established.

postgres_fdw.application_name can be any string of any length and contain even non-ASCII char-
acters. However when it's passed to and used as application_name in a foreign server, note that it
will be truncated to less than NAMEDATALEN characters. Anything other than printable ASCII charac-
ters are replaced with C-style hexadecimal escapes. See application_name for details.

% characters begin “escape sequences” that are replaced with status information as outlined below.
Unrecognized escapes are ignored. Other characters are copied straight to the application name.
Note that it's not allowed to specify a plus/minus sign or a numeric literal after the % and before the
option, for alignment and padding.

2643

Additional Supplied Mod-
ules and Extensions

Escape Effect
%a Application name on local server
%c Session ID on local server (see log_line_prefix

for details)
%C Cluster name on local server (see cluster_name

for details)
%u User name on local server
%d Database name on local server
%p Process ID of backend on local server
%% Literal %

For example, suppose user local_user establishes a connection from database local_db to for-
eign_db as user foreign_user, the setting 'db=%d, user=%u' is replaced with 'db=local_db,
user=local_user'.

F.38.10. Examples
Here is an example of creating a foreign table with postgres_fdw. First install the extension:

CREATE EXTENSION postgres_fdw;

Then create a foreign server using CREATE SERVER. In this example we wish to connect to a PostgreSQL
server on host 192.83.123.89 listening on port 5432. The database to which the connection is made is
named foreign_db on the remote server:

CREATE SERVER foreign_server
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host '192.83.123.89', port '5432', dbname 'foreign_db');

A user mapping, defined with CREATE USER MAPPING, is needed as well to identify the role that will
be used on the remote server:

CREATE USER MAPPING FOR local_user
 SERVER foreign_server
 OPTIONS (user 'foreign_user', password 'password');

Now it is possible to create a foreign table with CREATE FOREIGN TABLE. In this example we wish
to access the table named some_schema.some_table on the remote server. The local name for it will
be foreign_table:

CREATE FOREIGN TABLE foreign_table (
 id integer NOT NULL,
 data text
)
 SERVER foreign_server
 OPTIONS (schema_name 'some_schema', table_name 'some_table');

It's essential that the data types and other properties of the columns declared in CREATE FOREIGN TA-
BLE match the actual remote table. Column names must match as well, unless you attach column_name
options to the individual columns to show how they are named in the remote table. In many cases, use
of IMPORT FOREIGN SCHEMA is preferable to constructing foreign table definitions manually.

F.38.11. Author
Shigeru Hanada <shigeru.hanada@gmail.com>

2644

Additional Supplied Mod-
ules and Extensions

F.39. seg — a datatype for line segments or floating
point intervals

This module implements a data type seg for representing line segments, or floating point intervals.
seg can represent uncertainty in the interval endpoints, making it especially useful for representing
laboratory measurements.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.39.1. Rationale
The geometry of measurements is usually more complex than that of a point in a numeric continuum.
A measurement is usually a segment of that continuum with somewhat fuzzy limits. The measurements
come out as intervals because of uncertainty and randomness, as well as because the value being mea-
sured may naturally be an interval indicating some condition, such as the temperature range of stability
of a protein.

Using just common sense, it appears more convenient to store such data as intervals, rather than pairs
of numbers. In practice, it even turns out more efficient in most applications.

Further along the line of common sense, the fuzziness of the limits suggests that the use of traditional
numeric data types leads to a certain loss of information. Consider this: your instrument reads 6.50, and
you input this reading into the database. What do you get when you fetch it? Watch:
test=> select 6.50 :: float8 as "pH";
 pH

6.5
(1 row)

In the world of measurements, 6.50 is not the same as 6.5. It may sometimes be critically different. The
experimenters usually write down (and publish) the digits they trust. 6.50 is actually a fuzzy interval
contained within a bigger and even fuzzier interval, 6.5, with their center points being (probably) the
only common feature they share. We definitely do not want such different data items to appear the same.

Conclusion? It is nice to have a special data type that can record the limits of an interval with arbitrarily
variable precision. Variable in the sense that each data element records its own precision.

Check this out:
test=> select '6.25 .. 6.50'::seg as "pH";
 pH

6.25 .. 6.50
(1 row)

F.39.2. Syntax
The external representation of an interval is formed using one or two floating-point numbers joined by the
range operator (.. or ...). Alternatively, it can be specified as a center point plus or minus a deviation.
Optional certainty indicators (<, > or ~) can be stored as well. (Certainty indicators are ignored by all
the built-in operators, however.) Table F.29 gives an overview of allowed representations; Table F.30
shows some examples.

In Table F.29, x, y, and delta denote floating-point numbers. x and y, but not delta, can be preceded
by a certainty indicator.

Table F.29. seg External Representations

x Single value (zero-length interval)

2645

Additional Supplied Mod-
ules and Extensions

x .. y Interval from x to y
x (+-) delta Interval from x - delta to x + delta
x .. Open interval with lower bound x
.. x Open interval with upper bound x

Table F.30. Examples of Valid seg Input

5.0 Creates a zero-length segment (a point, if you will)
~5.0 Creates a zero-length segment and records ~ in the data. ~ is ig-

nored by seg operations, but is preserved as a comment.
<5.0 Creates a point at 5.0. < is ignored but is preserved as a comment.
>5.0 Creates a point at 5.0. > is ignored but is preserved as a comment.
5(+-)0.3 Creates an interval 4.7 .. 5.3. Note that the (+-) notation isn't

preserved.
50 .. Everything that is greater than or equal to 50
.. 0 Everything that is less than or equal to 0
1.5e-2 .. 2E-2 Creates an interval 0.015 .. 0.02
1 ... 2 The same as 1...2, or 1 .. 2, or 1..2 (spaces around the range

operator are ignored)

Because the ... operator is widely used in data sources, it is allowed as an alternative spelling of the
.. operator. Unfortunately, this creates a parsing ambiguity: it is not clear whether the upper bound
in 0...23 is meant to be 23 or 0.23. This is resolved by requiring at least one digit before the decimal
point in all numbers in seg input.

As a sanity check, seg rejects intervals with the lower bound greater than the upper, for example 5 .. 2.

F.39.3. Precision
seg values are stored internally as pairs of 32-bit floating point numbers. This means that numbers with
more than 7 significant digits will be truncated.

Numbers with 7 or fewer significant digits retain their original precision. That is, if your query returns
0.00, you will be sure that the trailing zeroes are not the artifacts of formatting: they reflect the preci-
sion of the original data. The number of leading zeroes does not affect precision: the value 0.0067 is
considered to have just 2 significant digits.

F.39.4. Usage
The seg module includes a GiST index operator class for seg values. The operators supported by the
GiST operator class are shown in Table F.31.

Table F.31. Seg GiST Operators

Operator
Description

seg << seg → boolean
Is the first seg entirely to the left of the second? [a, b] << [c, d] is true if b < c.

seg >> seg → boolean
Is the first seg entirely to the right of the second? [a, b] >> [c, d] is true if a > d.

seg &< seg → boolean
Does the first seg not extend to the right of the second? [a, b] &< [c, d] is true if b <= d.

2646

Additional Supplied Mod-
ules and Extensions

Operator
Description

seg &> seg → boolean
Does the first seg not extend to the left of the second? [a, b] &> [c, d] is true if a >= c.

seg = seg → boolean
Are the two segs equal?

seg && seg → boolean
Do the two segs overlap?

seg @> seg → boolean
Does the first seg contain the second?

seg <@ seg → boolean
Is the first seg contained in the second?

In addition to the above operators, the usual comparison operators shown in Table 9.1 are available for
type seg. These operators first compare (a) to (c), and if these are equal, compare (b) to (d). That results
in reasonably good sorting in most cases, which is useful if you want to use ORDER BY with this type.

F.39.5. Notes
For examples of usage, see the regression test sql/seg.sql.

The mechanism that converts (+-) to regular ranges isn't completely accurate in determining the num-
ber of significant digits for the boundaries. For example, it adds an extra digit to the lower boundary if
the resulting interval includes a power of ten:

postgres=> select '10(+-)1'::seg as seg;
 seg

9.0 .. 11 -- should be: 9 .. 11

The performance of an R-tree index can largely depend on the initial order of input values. It may be
very helpful to sort the input table on the seg column; see the script sort-segments.pl for an example.

F.39.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (https://dsf.berkeley.edu/jmh/) for elucidating the gist
of the GiST (http://gist.cs.berkeley.edu/). I am also grateful to all Postgres developers, present and past,
for enabling myself to create my own world and live undisturbed in it. And I would like to acknowledge
my gratitude to Argonne Lab and to the U.S. Department of Energy for the years of faithful support of
my database research.

2647

https://dsf.berkeley.edu/jmh/
http://gist.cs.berkeley.edu/

Additional Supplied Mod-
ules and Extensions

F.40. sepgsql — SELinux-, label-based mandatory access
control (MAC) security module

sepgsql is a loadable module that supports label-based mandatory access control (MAC) based on SELin-
ux security policy.

Warning
The current implementation has significant limitations, and does not enforce mandatory access
control for all actions. See Section F.40.7.

F.40.1. Overview
This module integrates with SELinux to provide an additional layer of security checking above and be-
yond what is normally provided by PostgreSQL. From the perspective of SELinux, this module allows
PostgreSQL to function as a user-space object manager. Each table or function access initiated by a
DML query will be checked against the system security policy. This check is in addition to the usual SQL
permissions checking performed by PostgreSQL.

SELinux access control decisions are made using security labels, which are represented by strings such
as system_u:object_r:sepgsql_table_t:s0. Each access control decision involves two labels: the label
of the subject attempting to perform the action, and the label of the object on which the operation is to
be performed. Since these labels can be applied to any sort of object, access control decisions for objects
stored within the database can be (and, with this module, are) subjected to the same general criteria
used for objects of any other type, such as files. This design is intended to allow a centralized security
policy to protect information assets independent of the particulars of how those assets are stored.

The SECURITY LABEL statement allows assignment of a security label to a database object.

F.40.2. Installation
sepgsql can only be used on Linux 2.6.28 or higher with SELinux enabled. It is not available on any other
platform. You will also need libselinux 2.1.10 or higher and selinux-policy 3.9.13 or higher (although
some distributions may backport the necessary rules into older policy versions).

The sestatus command allows you to check the status of SELinux. A typical display is:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

If SELinux is disabled or not installed, you must set that product up first before installing this module.

To build this module, specify --with-selinux (when using make and autoconf) or -Dselinux={ auto
| enabled | disabled } (when using meson). Be sure that the libselinux-devel RPM is installed
at build time.

To use this module, you must include sepgsql in the shared_preload_libraries parameter in post-
gresql.conf. The module will not function correctly if loaded in any other manner. Once the module is
loaded, you should execute sepgsql.sql in each database. This will install functions needed for security
label management, and assign initial security labels.

Here is an example showing how to initialize a fresh database cluster with sepgsql functions and security
labels installed. Adjust the paths shown as appropriate for your installation:

2648

Additional Supplied Mod-
ules and Extensions

$ export PGDATA=/path/to/data/directory
$ initdb
$ vi $PGDATA/postgresql.conf
 change
 #shared_preload_libraries = '' # (change requires restart)
 to
 shared_preload_libraries = 'sepgsql' # (change requires restart)
$ for DBNAME in template0 template1 postgres; do
 postgres --single -F -c exit_on_error=true $DBNAME \
 </usr/local/pgsql/share/contrib/sepgsql.sql >/dev/null
 done

Please note that you may see some or all of the following notifications depending on the particular
versions you have of libselinux and selinux-policy:
/etc/selinux/targeted/contexts/sepgsql_contexts: line 33 has invalid object type
 db_blobs
/etc/selinux/targeted/contexts/sepgsql_contexts: line 36 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 37 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 38 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 39 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 40 has invalid object type
 db_language

These messages are harmless and should be ignored.

If the installation process completes without error, you can now start the server normally.

F.40.3. Regression Tests
The sepgsql test suite is run if PG_TEST_EXTRA contains sepgsql (see Section 31.1.3). This method is
suitable during development of PostgreSQL. Alternatively, there is a way to run the tests to checks
whether a database instance has been set up properly for sepgsql.

Due to the nature of SELinux, running the regression tests for sepgsql requires several extra configu-
ration steps, some of which must be done as root.

The manual tests must be run in the contrib/sepgsql directory of a configured PostgreSQL build tree.
Although they require a build tree, the tests are designed to be executed against an installed server,
that is they are comparable to make installcheck not make check.

First, set up sepgsql in a working database according to the instructions in Section F.40.2. Note that the
current operating system user must be able to connect to the database as superuser without password
authentication.

Second, build and install the policy package for the regression test. The sepgsql-regtest policy is a
special purpose policy package which provides a set of rules to be allowed during the regression tests.
It should be built from the policy source file sepgsql-regtest.te, which is done using make with a
Makefile supplied by SELinux. You will need to locate the appropriate Makefile on your system; the path
shown below is only an example. (This Makefile is usually supplied by the selinux-policy-devel or
selinux-policy RPM.) Once built, install this policy package using the semodule command, which loads
supplied policy packages into the kernel. If the package is correctly installed, semodule -l should list
sepgsql-regtest as an available policy package:

$ cd .../contrib/sepgsql
$ make -f /usr/share/selinux/devel/Makefile
$ sudo semodule -u sepgsql-regtest.pp

2649

Additional Supplied Mod-
ules and Extensions

$ sudo semodule -l | grep sepgsql
sepgsql-regtest 1.07

Third, turn on sepgsql_regression_test_mode. For security reasons, the rules in sepgsql-regtest
are not enabled by default; the sepgsql_regression_test_mode parameter enables the rules needed to
launch the regression tests. It can be turned on using the setsebool command:

$ sudo setsebool sepgsql_regression_test_mode on
$ getsebool sepgsql_regression_test_mode
sepgsql_regression_test_mode --> on

Fourth, verify your shell is operating in the unconfined_t domain:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

See Section F.40.8 for details on adjusting your working domain, if necessary.

Finally, run the regression test script:

$./test_sepgsql

This script will attempt to verify that you have done all the configuration steps correctly, and then it will
run the regression tests for the sepgsql module.

After completing the tests, it's recommended you disable the sepgsql_regression_test_mode parame-
ter:

$ sudo setsebool sepgsql_regression_test_mode off

You might prefer to remove the sepgsql-regtest policy entirely:

$ sudo semodule -r sepgsql-regtest

F.40.4. GUC Parameters
sepgsql.permissive (boolean)

This parameter enables sepgsql to function in permissive mode, regardless of the system setting. The
default is off. This parameter can only be set in the postgresql.conf file or on the server command
line.

When this parameter is on, sepgsql functions in permissive mode, even if SELinux in general is
working in enforcing mode. This parameter is primarily useful for testing purposes.

sepgsql.debug_audit (boolean)

This parameter enables the printing of audit messages regardless of the system policy settings. The
default is off, which means that messages will be printed according to the system settings.

The security policy of SELinux also has rules to control whether or not particular accesses are logged.
By default, access violations are logged, but allowed accesses are not.

This parameter forces all possible logging to be turned on, regardless of the system policy.

F.40.5. Features
F.40.5.1. Controlled Object Classes

The security model of SELinux describes all the access control rules as relationships between a subject
entity (typically, a client of the database) and an object entity (such as a database object), each of which
is identified by a security label. If access to an unlabeled object is attempted, the object is treated as
if it were assigned the label unlabeled_t.

2650

Additional Supplied Mod-
ules and Extensions

Currently, sepgsql allows security labels to be assigned to schemas, tables, columns, sequences, views,
and functions. When sepgsql is in use, security labels are automatically assigned to supported database
objects at creation time. This label is called a default security label, and is decided according to the
system security policy, which takes as input the creator's label, the label assigned to the new object's
parent object and optionally name of the constructed object.

A new database object basically inherits the security label of the parent object, except when the security
policy has special rules known as type-transition rules, in which case a different label may be applied.
For schemas, the parent object is the current database; for tables, sequences, views, and functions, it is
the containing schema; for columns, it is the containing table.

F.40.5.2. DML Permissions
For tables, db_table:select, db_table:insert, db_table:update or db_table:delete are checked for
all the referenced target tables depending on the kind of statement; in addition, db_table:select is
also checked for all the tables that contain columns referenced in the WHERE or RETURNING clause, as a
data source for UPDATE, and so on.

Column-level permissions will also be checked for each referenced column. db_column:select is
checked on not only the columns being read using SELECT, but those being referenced in other DML
statements; db_column:update or db_column:insert will also be checked for columns being modified
by UPDATE or INSERT.

For example, consider:

UPDATE t1 SET x = 2, y = func1(y) WHERE z = 100;

Here, db_column:update will be checked for t1.x, since it is being updated, db_column:{select up-
date} will be checked for t1.y, since it is both updated and referenced, and db_column:select will be
checked for t1.z, since it is only referenced. db_table:{select update} will also be checked at the
table level.

For sequences, db_sequence:get_value is checked when we reference a sequence object using SELECT;
however, note that we do not currently check permissions on execution of corresponding functions such
as lastval().

For views, db_view:expand will be checked, then any other required permissions will be checked on the
objects being expanded from the view, individually.

For functions, db_procedure:{execute} will be checked when user tries to execute a function as a part
of query, or using fast-path invocation. If this function is a trusted procedure, it also checks db_proce-
dure:{entrypoint} permission to check whether it can perform as entry point of trusted procedure.

In order to access any schema object, db_schema:search permission is required on the containing
schema. When an object is referenced without schema qualification, schemas on which this permission
is not present will not be searched (just as if the user did not have USAGE privilege on the schema). If
an explicit schema qualification is present, an error will occur if the user does not have the requisite
permission on the named schema.

The client must be allowed to access all referenced tables and columns, even if they originated from
views which were then expanded, so that we apply consistent access control rules independent of the
manner in which the table contents are referenced.

The default database privilege system allows database superusers to modify system catalogs using DML
commands, and reference or modify toast tables. These operations are prohibited when sepgsql is en-
abled.

F.40.5.3. DDL Permissions
SELinux defines several permissions to control common operations for each object type; such as creation,
alter, drop and relabel of security label. In addition, several object types have special permissions to

2651

Additional Supplied Mod-
ules and Extensions

control their characteristic operations; such as addition or deletion of name entries within a particular
schema.

Creating a new database object requires create permission. SELinux will grant or deny this permission
based on the client's security label and the proposed security label for the new object. In some cases,
additional privileges are required:

• CREATE DATABASE additionally requires getattr permission for the source or template database.
• Creating a schema object additionally requires add_name permission on the parent schema.
• Creating a table additionally requires permission to create each individual table column, just as if

each table column were a separate top-level object.
• Creating a function marked as LEAKPROOF additionally requires install permission. (This permis-

sion is also checked when LEAKPROOF is set for an existing function.)
When DROP command is executed, drop will be checked on the object being removed. Permissions will be
also checked for objects dropped indirectly via CASCADE. Deletion of objects contained within a particular
schema (tables, views, sequences and procedures) additionally requires remove_name on the schema.

When ALTER command is executed, setattr will be checked on the object being modified for each object
types, except for subsidiary objects such as the indexes or triggers of a table, where permissions are
instead checked on the parent object. In some cases, additional permissions are required:

• Moving an object to a new schema additionally requires remove_name permission on the old schema
and add_name permission on the new one.

• Setting the LEAKPROOF attribute on a function requires install permission.
• Using SECURITY LABEL on an object additionally requires relabelfrom permission for the object in

conjunction with its old security label and relabelto permission for the object in conjunction with
its new security label. (In cases where multiple label providers are installed and the user tries to
set a security label, but it is not managed by SELinux, only setattr should be checked here. This is
currently not done due to implementation restrictions.)

F.40.5.4. Trusted Procedures
Trusted procedures are similar to security definer functions or setuid commands. SELinux provides a
feature to allow trusted code to run using a security label different from that of the client, generally for
the purpose of providing highly controlled access to sensitive data (e.g., rows might be omitted, or the
precision of stored values might be reduced). Whether or not a function acts as a trusted procedure is
controlled by its security label and the operating system security policy. For example:

postgres=# CREATE TABLE customer (
 cid int primary key,
 cname text,
 credit text
);
CREATE TABLE
postgres=# SECURITY LABEL ON COLUMN customer.credit
 IS 'system_u:object_r:sepgsql_secret_table_t:s0';
SECURITY LABEL
postgres=# CREATE FUNCTION show_credit(int) RETURNS text
 AS 'SELECT regexp_replace(credit, ''-[0-9]+$'', ''-xxxx'', ''g'')
 FROM customer WHERE cid = $1'
 LANGUAGE sql;
CREATE FUNCTION
postgres=# SECURITY LABEL ON FUNCTION show_credit(int)
 IS 'system_u:object_r:sepgsql_trusted_proc_exec_t:s0';
SECURITY LABEL

The above operations should be performed by an administrative user.

2652

Additional Supplied Mod-
ules and Extensions

postgres=# SELECT * FROM customer;
ERROR: SELinux: security policy violation
postgres=# SELECT cid, cname, show_credit(cid) FROM customer;
 cid | cname | show_credit
-----+--------+---------------------
 1 | taro | 1111-2222-3333-xxxx
 2 | hanako | 5555-6666-7777-xxxx
(2 rows)

In this case, a regular user cannot reference customer.credit directly, but a trusted procedure
show_credit allows the user to print the credit card numbers of customers with some of the digits
masked out.

F.40.5.5. Dynamic Domain Transitions
It is possible to use SELinux's dynamic domain transition feature to switch the security label of the client
process, the client domain, to a new context, if that is allowed by the security policy. The client domain
needs the setcurrent permission and also dyntransition from the old to the new domain.

Dynamic domain transitions should be considered carefully, because they allow users to switch their
label, and therefore their privileges, at their option, rather than (as in the case of a trusted procedure)
as mandated by the system. Thus, the dyntransition permission is only considered safe when used to
switch to a domain with a smaller set of privileges than the original one. For example:

regression=# select sepgsql_getcon();
 sepgsql_getcon

 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-
s0:c1.c4');
 sepgsql_setcon

 t
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-
s0:c1.c1023');
ERROR: SELinux: security policy violation

In this example above we were allowed to switch from the larger MCS range c1.c1023 to the smaller
range c1.c4, but switching back was denied.

A combination of dynamic domain transition and trusted procedure enables an interesting use case
that fits the typical process life-cycle of connection pooling software. Even if your connection pooling
software is not allowed to run most of SQL commands, you can allow it to switch the security label
of the client using the sepgsql_setcon() function from within a trusted procedure; that should take
some credential to authorize the request to switch the client label. After that, this session will have the
privileges of the target user, rather than the connection pooler. The connection pooler can later revert
the security label change by again using sepgsql_setcon() with NULL argument, again invoked from
within a trusted procedure with appropriate permissions checks. The point here is that only the trusted
procedure actually has permission to change the effective security label, and only does so when given
proper credentials. Of course, for secure operation, the credential store (table, procedure definition, or
whatever) must be protected from unauthorized access.

F.40.5.6. Miscellaneous
We reject the LOAD command across the board, because any module loaded could easily circumvent
security policy enforcement.

2653

Additional Supplied Mod-
ules and Extensions

F.40.6. Sepgsql Functions
Table F.32 shows the available functions.

Table F.32. Sepgsql Functions

Function
Description

sepgsql_getcon () → text
Returns the client domain, the current security label of the client.

sepgsql_setcon (text) → boolean
Switches the client domain of the current session to the new domain, if allowed by the securi-
ty policy. It also accepts NULL input as a request to transition to the client's original domain.

sepgsql_mcstrans_in (text) → text
Translates the given qualified MLS/MCS range into raw format if the mcstrans daemon is
running.

sepgsql_mcstrans_out (text) → text
Translates the given raw MLS/MCS range into qualified format if the mcstrans daemon is
running.

sepgsql_restorecon (text) → boolean
Sets up initial security labels for all objects within the current database. The argument may
be NULL, or the name of a specfile to be used as alternative of the system default.

F.40.7. Limitations
Data Definition Language (DDL) Permissions

Due to implementation restrictions, some DDL operations do not check permissions.

Data Control Language (DCL) Permissions
Due to implementation restrictions, DCL operations do not check permissions.

Row-level access control

PostgreSQL supports row-level access, but sepgsql does not.

Covert channels

sepgsql does not try to hide the existence of a certain object, even if the user is not allowed to
reference it. For example, we can infer the existence of an invisible object as a result of primary key
conflicts, foreign key violations, and so on, even if we cannot obtain the contents of the object. The
existence of a top secret table cannot be hidden; we only hope to conceal its contents.

F.40.8. External Resources
SE-PostgreSQL Introduction

This wiki page provides a brief overview, security design, architecture, administration and upcoming
features.

SELinux User's and Administrator's Guide
This document provides a wide spectrum of knowledge to administer SELinux on your systems. It
focuses primarily on Red Hat operating systems, but is not limited to them.

Fedora SELinux FAQ
This document answers frequently asked questions about SELinux. It focuses primarily on Fedora,
but is not limited to Fedora.

2654

https://wiki.postgresql.org/wiki/SEPostgreSQL_Introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/index
https://fedoraproject.org/wiki/SELinux_FAQ

Additional Supplied Mod-
ules and Extensions

F.40.9. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

2655

Additional Supplied Mod-
ules and Extensions

F.41. spi — Server Programming Interface features/ex-
amples

The spi module provides several workable examples of using the Server Programming Interface (SPI)
and triggers. While these functions are of some value in their own right, they are even more useful as
examples to modify for your own purposes. The functions are general enough to be used with any table,
but you have to specify table and field names (as described below) while creating a trigger.

Each of the groups of functions described below is provided as a separately-installable extension.

F.41.1. refint — Functions for Implementing Referential Integrity
check_primary_key() and check_foreign_key() are used to check foreign key constraints. (This func-
tionality is long since superseded by the built-in foreign key mechanism, of course, but the module is
still useful as an example.)

check_primary_key() checks the referencing table. To use, create an AFTER INSERT OR UPDATE trigger
using this function on a table referencing another table. Specify as the trigger arguments: the referenc-
ing table's column name(s) which form the foreign key, the referenced table name, and the column names
in the referenced table which form the primary/unique key. To handle multiple foreign keys, create a
trigger for each reference.

check_foreign_key() checks the referenced table. To use, create an AFTER DELETE OR UPDATE trigger
using this function on a table referenced by other table(s). Specify as the trigger arguments: the number
of referencing tables for which the function has to perform checking, the action if a referencing key is
found (cascade — to delete the referencing row, restrict — to abort transaction if referencing keys
exist, setnull — to set referencing key fields to null), the triggered table's column names which form
the primary/unique key, then the referencing table name and column names (repeated for as many ref-
erencing tables as were specified by first argument). Note that the primary/unique key columns should
be marked NOT NULL and should have a unique index.

Note that if these triggers are executed from another BEFORE trigger, they can fail unexpectedly. For
example, if a user inserts row1 and then the BEFORE trigger inserts row2 and calls a trigger with the
check_foreign_key(), the check_foreign_key() function will not see row1 and will fail.

There are examples in refint.example.

F.41.2. autoinc — Functions for Autoincrementing Fields
autoinc() is a trigger that stores the next value of a sequence into an integer field. This has some
overlap with the built-in “serial column” feature, but it is not the same. The trigger will replace the field's
value only if that value is initially zero or null (after the action of the SQL statement that inserted or
updated the row). Also, if the sequence's next value is zero, nextval() will be called a second time in
order to obtain a non-zero value.

To use, create a BEFORE INSERT (or optionally BEFORE INSERT OR UPDATE) trigger using this function.
Specify two trigger arguments: the name of the integer column to be modified, and the name of the
sequence object that will supply values. (Actually, you can specify any number of pairs of such names,
if you'd like to update more than one autoincrementing column.)

There is an example in autoinc.example.

F.41.3. insert_username — Functions for Tracking Who Changed a
Table

insert_username() is a trigger that stores the current user's name into a text field. This can be useful
for tracking who last modified a particular row within a table.

To use, create a BEFORE INSERT and/or UPDATE trigger using this function. Specify a single trigger argu-
ment: the name of the text column to be modified.

2656

Additional Supplied Mod-
ules and Extensions

There is an example in insert_username.example.

F.41.4. moddatetime — Functions for Tracking Last Modification
Time

moddatetime() is a trigger that stores the current time into a timestamp field. This can be useful for
tracking the last modification time of a particular row within a table.

To use, create a BEFORE UPDATE trigger using this function. Specify a single trigger argument: the name
of the column to be modified. The column must be of type timestamp or timestamp with time zone.

There is an example in moddatetime.example.

2657

Additional Supplied Mod-
ules and Extensions

F.42. sslinfo — obtain client SSL information
The sslinfo module provides information about the SSL certificate that the current client provided
when connecting to PostgreSQL. The module is useless (most functions will return NULL) if the current
connection does not use SSL.

Some of the information available through this module can also be obtained using the built-in system
view pg_stat_ssl.

This extension won't build at all unless the installation was configured with --with-ssl=openssl.

F.42.1. Functions Provided
ssl_is_used() returns boolean

Returns true if current connection to server uses SSL, and false otherwise.

ssl_version() returns text
Returns the name of the protocol used for the SSL connection (e.g., TLSv1.0, TLSv1.1, TLSv1.2 or
TLSv1.3).

ssl_cipher() returns text
Returns the name of the cipher used for the SSL connection (e.g., DHE-RSA-AES256-SHA).

ssl_client_cert_present() returns boolean
Returns true if current client has presented a valid SSL client certificate to the server, and false
otherwise. (The server might or might not be configured to require a client certificate.)

ssl_client_serial() returns numeric
Returns serial number of current client certificate. The combination of certificate serial number and
certificate issuer is guaranteed to uniquely identify a certificate (but not its owner — the owner ought
to regularly change their keys, and get new certificates from the issuer).

So, if you run your own CA and allow only certificates from this CA to be accepted by the server, the
serial number is the most reliable (albeit not very mnemonic) means to identify a user.

ssl_client_dn() returns text
Returns the full subject of the current client certificate, converting character data into the current
database encoding. It is assumed that if you use non-ASCII characters in the certificate names, your
database is able to represent these characters, too. If your database uses the SQL_ASCII encoding,
non-ASCII characters in the name will be represented as UTF-8 sequences.

The result looks like /CN=Somebody /C=Some country/O=Some organization.

ssl_issuer_dn() returns text
Returns the full issuer name of the current client certificate, converting character data into the
current database encoding. Encoding conversions are handled the same as for ssl_client_dn.

The combination of the return value of this function with the certificate serial number uniquely
identifies the certificate.

This function is really useful only if you have more than one trusted CA certificate in your server's
certificate authority file, or if this CA has issued some intermediate certificate authority certificates.

ssl_client_dn_field(fieldname text) returns text
This function returns the value of the specified field in the certificate subject, or NULL if the field is
not present. Field names are string constants that are converted into ASN1 object identifiers using
the OpenSSL object database. The following values are acceptable:

2658

Additional Supplied Mod-
ules and Extensions

commonName (alias CN)
surname (alias SN)
name
givenName (alias GN)
countryName (alias C)
localityName (alias L)
stateOrProvinceName (alias ST)
organizationName (alias O)
organizationalUnitName (alias OU)
title
description
initials
postalCode
streetAddress
generationQualifier
description
dnQualifier
x500UniqueIdentifier
pseudonym
role
emailAddress

All of these fields are optional, except commonName. It depends entirely on your CA's policy which of
them would be included and which wouldn't. The meaning of these fields, however, is strictly defined
by the X.500 and X.509 standards, so you cannot just assign arbitrary meaning to them.

ssl_issuer_field(fieldname text) returns text

Same as ssl_client_dn_field, but for the certificate issuer rather than the certificate subject.

ssl_extension_info() returns setof record
Provide information about extensions of client certificate: extension name, extension value, and if
it is a critical extension.

F.42.2. Author
Victor Wagner <vitus@cryptocom.ru>, Cryptocom LTD

Dmitry Voronin <carriingfate92@yandex.ru>

E-Mail of Cryptocom OpenSSL development group: <openssl@cryptocom.ru>

2659

Additional Supplied Mod-
ules and Extensions

F.43. tablefunc — functions that return tables (crosstab
and others)

The tablefunc module includes various functions that return tables (that is, multiple rows). These func-
tions are useful both in their own right and as examples of how to write C functions that return multiple
rows.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.43.1. Functions Provided
Table F.33 summarizes the functions provided by the tablefunc module.

Table F.33. tablefunc Functions

Function
Description

normal_rand (numvals integer, mean float8, stddev float8) → setof float8
Produces a set of normally distributed random values.

crosstab (sql text) → setof record
Produces a “pivot table” containing row names plus N value columns, where N is determined
by the row type specified in the calling query.

crosstabN (sql text) → setof table_crosstab_ N

Produces a “pivot table” containing row names plus N value columns. crosstab2, crosstab3,
 and crosstab4 are predefined, but you can create additional crosstabN functions as de-
scribed below.

crosstab (source_sql text, category_sql text) → setof record
Produces a “pivot table” with the value columns specified by a second query.

crosstab (sql text, N integer) → setof record
Obsolete version of crosstab(text) . The parameter N is now ignored, since the number of
value columns is always determined by the calling query.

connectby (relname text, keyid_fld text, parent_keyid_fld text [, orderby_fld text],
 start_with text, max_depth integer [, branch_delim text]) → setof record
Produces a representation of a hierarchical tree structure.

F.43.1.1. normal_rand
normal_rand(int numvals, float8 mean, float8 stddev) returns setof float8

normal_rand produces a set of normally distributed random values (Gaussian distribution).

numvals is the number of values to be returned from the function. mean is the mean of the normal
distribution of values and stddev is the standard deviation of the normal distribution of values.

For example, this call requests 1000 values with a mean of 5 and a standard deviation of 3:

test=# SELECT * FROM normal_rand(1000, 5, 3);
 normal_rand

 1.56556322244898
 9.10040991424657
 5.36957140345079
 -0.369151492880995
 0.283600703686639

2660

Additional Supplied Mod-
ules and Extensions

 .
 .
 .
 4.82992125404908
 9.71308014517282
 2.49639286969028
(1000 rows)

F.43.1.2. crosstab(text)
crosstab(text sql)
crosstab(text sql, int N)

The crosstab function is used to produce “pivot” displays, wherein data is listed across the page rather
than down. For example, we might have data like

row1 val11
row1 val12
row1 val13
...
row2 val21
row2 val22
row2 val23
...

which we wish to display like

row1 val11 val12 val13 ...
row2 val21 val22 val23 ...
...

The crosstab function takes a text parameter that is an SQL query producing raw data formatted in the
first way, and produces a table formatted in the second way.

The sql parameter is an SQL statement that produces the source set of data. This statement must return
one row_name column, one category column, and one value column. N is an obsolete parameter, ignored
if supplied (formerly this had to match the number of output value columns, but now that is determined
by the calling query).

For example, the provided query might produce a set something like:

 row_name cat value
----------+-------+-------
 row1 cat1 val1
 row1 cat2 val2
 row1 cat3 val3
 row1 cat4 val4
 row2 cat1 val5
 row2 cat2 val6
 row2 cat3 val7
 row2 cat4 val8

The crosstab function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab('...') AS ct(row_name text, category_1 text, category_2 text);

This example produces a set something like:

 <== value columns ==>
 row_name category_1 category_2
----------+------------+------------
 row1 val1 val2

2661

Additional Supplied Mod-
ules and Extensions

 row2 val5 val6

The FROM clause must define the output as one row_name column (of the same data type as the first result
column of the SQL query) followed by N value columns (all of the same data type as the third result
column of the SQL query). You can set up as many output value columns as you wish. The names of the
output columns are up to you.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. It fills the output value columns, left to right, with the value fields from these rows.
If there are fewer rows in a group than there are output value columns, the extra output columns are
filled with nulls; if there are more rows, the extra input rows are skipped.

In practice the SQL query should always specify ORDER BY 1,2 to ensure that the input rows are properly
ordered, that is, values with the same row_name are brought together and correctly ordered within the
row. Notice that crosstab itself does not pay any attention to the second column of the query result; it's
just there to be ordered by, to control the order in which the third-column values appear across the page.

Here is a complete example:

CREATE TABLE ct(id SERIAL, rowid TEXT, attribute TEXT, value TEXT);
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att1','val1');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att2','val2');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att3','val3');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att4','val4');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att1','val5');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att2','val6');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att3','val7');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att4','val8');

SELECT *
FROM crosstab(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2')
AS ct(row_name text, category_1 text, category_2 text, category_3 text);

 row_name | category_1 | category_2 | category_3
----------+------------+------------+------------
 test1 | val2 | val3 |
 test2 | val6 | val7 |
(2 rows)

You can avoid always having to write out a FROM clause to define the output columns, by setting up a
custom crosstab function that has the desired output row type wired into its definition. This is described
in the next section. Another possibility is to embed the required FROM clause in a view definition.

Note
See also the \crosstabview command in psql, which provides functionality similar to crosstab().

F.43.1.3. crosstabN(text)
crosstabN(text sql)

The crosstabN functions are examples of how to set up custom wrappers for the general crosstab func-
tion, so that you need not write out column names and types in the calling SELECT query. The tablefunc
module includes crosstab2, crosstab3, and crosstab4, whose output row types are defined as

2662

Additional Supplied Mod-
ules and Extensions

CREATE TYPE tablefunc_crosstab_N AS (
 row_name TEXT,
 category_1 TEXT,
 category_2 TEXT,
 .
 .
 .
 category_N TEXT
);

Thus, these functions can be used directly when the input query produces row_name and value columns
of type text, and you want 2, 3, or 4 output values columns. In all other ways they behave exactly as
described above for the general crosstab function.

For instance, the example given in the previous section would also work as
SELECT *
FROM crosstab3(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2');

These functions are provided mostly for illustration purposes. You can create your own return types and
functions based on the underlying crosstab() function. There are two ways to do it:
• Create a composite type describing the desired output columns, similar to the examples in con-

trib/tablefunc/tablefunc--1.0.sql. Then define a unique function name accepting one text
parameter and returning setof your_type_name, but linking to the same underlying crosstab C
function. For example, if your source data produces row names that are text, and values that are
float8, and you want 5 value columns:
CREATE TYPE my_crosstab_float8_5_cols AS (
 my_row_name text,
 my_category_1 float8,
 my_category_2 float8,
 my_category_3 float8,
 my_category_4 float8,
 my_category_5 float8
);

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
 RETURNS setof my_crosstab_float8_5_cols
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

• Use OUT parameters to define the return type implicitly. The same example could also be done this
way:
CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(
 IN text,
 OUT my_row_name text,
 OUT my_category_1 float8,
 OUT my_category_2 float8,
 OUT my_category_3 float8,
 OUT my_category_4 float8,
 OUT my_category_5 float8)
 RETURNS setof record
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

F.43.1.4. crosstab(text, text)
crosstab(text source_sql, text category_sql)

2663

Additional Supplied Mod-
ules and Extensions

The main limitation of the single-parameter form of crosstab is that it treats all values in a group alike,
inserting each value into the first available column. If you want the value columns to correspond to
specific categories of data, and some groups might not have data for some of the categories, that doesn't
work well. The two-parameter form of crosstab handles this case by providing an explicit list of the
categories corresponding to the output columns.

source_sql is an SQL statement that produces the source set of data. This statement must return one
row_name column, one category column, and one value column. It may also have one or more “extra”
columns. The row_name column must be first. The category and value columns must be the last two
columns, in that order. Any columns between row_name and category are treated as “extra”. The “extra”
columns are expected to be the same for all rows with the same row_name value.

For example, source_sql might produce a set something like:

SELECT row_name, extra_col, cat, value FROM foo ORDER BY 1;

 row_name extra_col cat value
----------+------------+-----+---------
 row1 extra1 cat1 val1
 row1 extra1 cat2 val2
 row1 extra1 cat4 val4
 row2 extra2 cat1 val5
 row2 extra2 cat2 val6
 row2 extra2 cat3 val7
 row2 extra2 cat4 val8

category_sql is an SQL statement that produces the set of categories. This statement must return only
one column. It must produce at least one row, or an error will be generated. Also, it must not produce
duplicate values, or an error will be generated. category_sql might be something like:

SELECT DISTINCT cat FROM foo ORDER BY 1;
 cat

 cat1
 cat2
 cat3
 cat4

The crosstab function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab('...', '...')
 AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);

This will produce a result something like:

 <== value columns ==>
row_name extra cat1 cat2 cat3 cat4
---------+-------+------+------+------+------
 row1 extra1 val1 val2 val4
 row2 extra2 val5 val6 val7 val8

The FROM clause must define the proper number of output columns of the proper data types. If there are
N columns in the source_sql query's result, the first N-2 of them must match up with the first N-2 output
columns. The remaining output columns must have the type of the last column of the source_sql query's
result, and there must be exactly as many of them as there are rows in the category_sql query's result.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. The output row_name column, plus any “extra” columns, are copied from the first row
of the group. The output value columns are filled with the value fields from rows having matching

2664

Additional Supplied Mod-
ules and Extensions

category values. If a row's category does not match any output of the category_sql query, its value
is ignored. Output columns whose matching category is not present in any input row of the group are
filled with nulls.

In practice the source_sql query should always specify ORDER BY 1 to ensure that values with the same
row_name are brought together. However, ordering of the categories within a group is not important.
Also, it is essential to be sure that the order of the category_sql query's output matches the specified
output column order.

Here are two complete examples:

create table sales(year int, month int, qty int);
insert into sales values(2007, 1, 1000);
insert into sales values(2007, 2, 1500);
insert into sales values(2007, 7, 500);
insert into sales values(2007, 11, 1500);
insert into sales values(2007, 12, 2000);
insert into sales values(2008, 1, 1000);

select * from crosstab(
 'select year, month, qty from sales order by 1',
 'select m from generate_series(1,12) m'
) as (
 year int,
 "Jan" int,
 "Feb" int,
 "Mar" int,
 "Apr" int,
 "May" int,
 "Jun" int,
 "Jul" int,
 "Aug" int,
 "Sep" int,
 "Oct" int,
 "Nov" int,
 "Dec" int
);
 year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
------+------+------+-----+-----+-----+-----+-----+-----+-----+-----+------+------
 2007 | 1000 | 1500 | | | | | 500 | | | | 1500 | 2000
 2008 | 1000 | | | | | | | | | | |
(2 rows)

CREATE TABLE cth(rowid text, rowdt timestamp, attribute text, val text);
INSERT INTO cth VALUES('test1','01 March 2003','temperature','42');
INSERT INTO cth VALUES('test1','01 March 2003','test_result','PASS');
INSERT INTO cth VALUES('test1','01 March 2003','volts','2.6987');
INSERT INTO cth VALUES('test2','02 March 2003','temperature','53');
INSERT INTO cth VALUES('test2','02 March 2003','test_result','FAIL');
INSERT INTO cth VALUES('test2','02 March 2003','test_startdate','01 March 2003');
INSERT INTO cth VALUES('test2','02 March 2003','volts','3.1234');

SELECT * FROM crosstab
(
 'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
 'SELECT DISTINCT attribute FROM cth ORDER BY 1'
)
AS
(

2665

Additional Supplied Mod-
ules and Extensions

 rowid text,
 rowdt timestamp,
 temperature int4,
 test_result text,
 test_startdate timestamp,
 volts float8
);
 rowid | rowdt | temperature | test_result | test_startdate
 | volts
-------+--------------------------+-------------+-------------
+--------------------------+--------
 test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS |
 | 2.6987
 test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat Mar 01 00:00:00
 2003 | 3.1234
(2 rows)

You can create predefined functions to avoid having to write out the result column names and types in
each query. See the examples in the previous section. The underlying C function for this form of crosstab
is named crosstab_hash.

F.43.1.5. connectby
connectby(text relname, text keyid_fld, text parent_keyid_fld
 [, text orderby_fld], text start_with, int max_depth
 [, text branch_delim])

The connectby function produces a display of hierarchical data that is stored in a table. The table must
have a key field that uniquely identifies rows, and a parent-key field that references the parent (if any)
of each row. connectby can display the sub-tree descending from any row.

Table F.34 explains the parameters.

Table F.34. connectby Parameters

Parameter Description
relname Name of the source relation
keyid_fld Name of the key field
parent_keyid_fld Name of the parent-key field
orderby_fld Name of the field to order siblings by (optional)
start_with Key value of the row to start at
max_depth Maximum depth to descend to, or zero for unlimit-

ed depth
branch_delim String to separate keys with in branch output (op-

tional)

The key and parent-key fields can be any data type, but they must be the same type. Note that the
start_with value must be entered as a text string, regardless of the type of the key field.

The connectby function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0,
 '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);

The first two output columns are used for the current row's key and its parent row's key; they must
match the type of the table's key field. The third output column is the depth in the tree and must be

2666

Additional Supplied Mod-
ules and Extensions

of type integer. If a branch_delim parameter was given, the next output column is the branch display
and must be of type text. Finally, if an orderby_fld parameter was given, the last output column is a
serial number, and must be of type integer.

The “branch” output column shows the path of keys taken to reach the current row. The keys are sepa-
rated by the specified branch_delim string. If no branch display is wanted, omit both the branch_delim
parameter and the branch column in the output column list.

If the ordering of siblings of the same parent is important, include the orderby_fld parameter to specify
which field to order siblings by. This field can be of any sortable data type. The output column list must
include a final integer serial-number column, if and only if orderby_fld is specified.

The parameters representing table and field names are copied as-is into the SQL queries that connectby
generates internally. Therefore, include double quotes if the names are mixed-case or contain special
characters. You may also need to schema-qualify the table name.

In large tables, performance will be poor unless there is an index on the parent-key field.

It is important that the branch_delim string not appear in any key values, else connectby may incorrectly
report an infinite-recursion error. Note that if branch_delim is not provided, a default value of ~ is used
for recursion detection purposes.

Here is an example:

CREATE TABLE connectby_tree(keyid text, parent_keyid text, pos int);

INSERT INTO connectby_tree VALUES('row1',NULL, 0);
INSERT INTO connectby_tree VALUES('row2','row1', 0);
INSERT INTO connectby_tree VALUES('row3','row1', 0);
INSERT INTO connectby_tree VALUES('row4','row2', 1);
INSERT INTO connectby_tree VALUES('row5','row2', 0);
INSERT INTO connectby_tree VALUES('row6','row4', 0);
INSERT INTO connectby_tree VALUES('row7','row3', 0);
INSERT INTO connectby_tree VALUES('row8','row6', 0);
INSERT INTO connectby_tree VALUES('row9','row5', 0);

-- with branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text);
 keyid | parent_keyid | level | branch
-------+--------------+-------+---------------------
 row2 | | 0 | row2
 row4 | row2 | 1 | row2~row4
 row6 | row4 | 2 | row2~row4~row6
 row8 | row6 | 3 | row2~row4~row6~row8
 row5 | row2 | 1 | row2~row5
 row9 | row5 | 2 | row2~row5~row9
(6 rows)

-- without branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int);
 keyid | parent_keyid | level
-------+--------------+-------
 row2 | | 0
 row4 | row2 | 1
 row6 | row4 | 2
 row8 | row6 | 3
 row5 | row2 | 1

2667

Additional Supplied Mod-
ules and Extensions

 row9 | row5 | 2
(6 rows)

-- with branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0,
 '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);
 keyid | parent_keyid | level | branch | pos
-------+--------------+-------+---------------------+-----
 row2 | | 0 | row2 | 1
 row5 | row2 | 1 | row2~row5 | 2
 row9 | row5 | 2 | row2~row5~row9 | 3
 row4 | row2 | 1 | row2~row4 | 4
 row6 | row4 | 2 | row2~row4~row6 | 5
 row8 | row6 | 3 | row2~row4~row6~row8 | 6
(6 rows)

-- without branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int, pos int);
 keyid | parent_keyid | level | pos
-------+--------------+-------+-----
 row2 | | 0 | 1
 row5 | row2 | 1 | 2
 row9 | row5 | 2 | 3
 row4 | row2 | 1 | 4
 row6 | row4 | 2 | 5
 row8 | row6 | 3 | 6
(6 rows)

F.43.2. Author
Joe Conway

2668

Additional Supplied Mod-
ules and Extensions

F.44. tcn — a trigger function to notify listeners of
changes to table content

The tcn module provides a trigger function that notifies listeners of changes to any table on which it is
attached. It must be used as an AFTER trigger FOR EACH ROW.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

Only one parameter may be supplied to the function in a CREATE TRIGGER statement, and that is optional.
If supplied it will be used for the channel name for the notifications. If omitted tcn will be used for the
channel name.

The payload of the notifications consists of the table name, a letter to indicate which type of operation
was performed, and column name/value pairs for primary key columns. Each part is separated from the
next by a comma. For ease of parsing using regular expressions, table and column names are always
wrapped in double quotes, and data values are always wrapped in single quotes. Embedded quotes are
doubled.

A brief example of using the extension follows.

test=# create table tcndata
test-# (
test(# a int not null,
test(# b date not null,
test(# c text,
test(# primary key (a, b)
test(#);
CREATE TABLE
test=# create trigger tcndata_tcn_trigger
test-# after insert or update or delete on tcndata
test-# for each row execute function triggered_change_notification();
CREATE TRIGGER
test=# listen tcn;
LISTEN
test=# insert into tcndata values (1, date '2012-12-22', 'one'),
test-# (1, date '2012-12-23', 'another'),
test-# (2, date '2012-12-23', 'two');
INSERT 0 3
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-22'"
 received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-23'"
 received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='2',"b"='2012-12-23'"
 received from server process with PID 22770.
test=# update tcndata set c = 'uno' where a = 1;
UPDATE 2
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-22'"
 received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-23'"
 received from server process with PID 22770.
test=# delete from tcndata where a = 1 and b = date '2012-12-22';
DELETE 1
Asynchronous notification "tcn" with payload ""tcndata",D,"a"='1',"b"='2012-12-22'"
 received from server process with PID 22770.

2669

Additional Supplied Mod-
ules and Extensions

F.45. test_decoding — SQL-based test/example module
for WAL logical decoding

test_decoding is an example of a logical decoding output plugin. It doesn't do anything especially useful,
but can serve as a starting point for developing your own output plugin.

test_decoding receives WAL through the logical decoding mechanism and decodes it into text repre-
sentations of the operations performed.

Typical output from this plugin, used over the SQL logical decoding interface, might be:

postgres=# SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'include-
xids', '0');
 lsn | xid | data
-----------+-----+--
 0/16D30F8 | 691 | BEGIN
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:2 data[text]:'arg'
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:3 data[text]:'demo'
 0/16D32A0 | 691 | COMMIT
 0/16D32D8 | 692 | BEGIN
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:2
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:3
 0/16D3398 | 692 | COMMIT
(8 rows)

We can also get the changes of the in-progress transaction, and the typical output might be:

postgres[33712]=#* SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL,
 'stream-changes', '1');
 lsn | xid | data
-----------+-----+--
 0/16B21F8 | 503 | opening a streamed block for transaction TXN 503
 0/16B21F8 | 503 | streaming change for TXN 503
 0/16B2300 | 503 | streaming change for TXN 503
 0/16B2408 | 503 | streaming change for TXN 503
 0/16BEBA0 | 503 | closing a streamed block for transaction TXN 503
 0/16B21F8 | 503 | opening a streamed block for transaction TXN 503
 0/16BECA8 | 503 | streaming change for TXN 503
 0/16BEDB0 | 503 | streaming change for TXN 503
 0/16BEEB8 | 503 | streaming change for TXN 503
 0/16BEBA0 | 503 | closing a streamed block for transaction TXN 503
(10 rows)

2670

Additional Supplied Mod-
ules and Extensions

F.46. tsm_system_rows — the SYSTEM_ROWS sampling
method for TABLESAMPLE

The tsm_system_rows module provides the table sampling method SYSTEM_ROWS, which can be used in
the TABLESAMPLE clause of a SELECT command.

This table sampling method accepts a single integer argument that is the maximum number of rows to
read. The resulting sample will always contain exactly that many rows, unless the table does not contain
enough rows, in which case the whole table is selected.

Like the built-in SYSTEM sampling method, SYSTEM_ROWS performs block-level sampling, so that the sam-
ple is not completely random but may be subject to clustering effects, especially if only a small number
of rows are requested.

SYSTEM_ROWS does not support the REPEATABLE clause.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.46.1. Examples
Here is an example of selecting a sample of a table with SYSTEM_ROWS. First install the extension:

CREATE EXTENSION tsm_system_rows;

Then you can use it in a SELECT command, for instance:

SELECT * FROM my_table TABLESAMPLE SYSTEM_ROWS(100);

This command will return a sample of 100 rows from the table my_table (unless the table does not have
100 visible rows, in which case all its rows are returned).

2671

Additional Supplied Mod-
ules and Extensions

F.47. tsm_system_time — the SYSTEM_TIME sampling
method for TABLESAMPLE

The tsm_system_time module provides the table sampling method SYSTEM_TIME, which can be used in
the TABLESAMPLE clause of a SELECT command.

This table sampling method accepts a single floating-point argument that is the maximum number of
milliseconds to spend reading the table. This gives you direct control over how long the query takes, at
the price that the size of the sample becomes hard to predict. The resulting sample will contain as many
rows as could be read in the specified time, unless the whole table has been read first.

Like the built-in SYSTEM sampling method, SYSTEM_TIME performs block-level sampling, so that the sam-
ple is not completely random but may be subject to clustering effects, especially if only a small number
of rows are selected.

SYSTEM_TIME does not support the REPEATABLE clause.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.47.1. Examples
Here is an example of selecting a sample of a table with SYSTEM_TIME. First install the extension:

CREATE EXTENSION tsm_system_time;

Then you can use it in a SELECT command, for instance:

SELECT * FROM my_table TABLESAMPLE SYSTEM_TIME(1000);

This command will return as large a sample of my_table as it can read in 1 second (1000 milliseconds).
Of course, if the whole table can be read in under 1 second, all its rows will be returned.

2672

Additional Supplied Mod-
ules and Extensions

F.48. unaccent — a text search dictionary which removes
diacritics

unaccent is a text search dictionary that removes accents (diacritic signs) from lexemes. It's a filtering
dictionary, which means its output is always passed to the next dictionary (if any), unlike the normal
behavior of dictionaries. This allows accent-insensitive processing for full text search.

The current implementation of unaccent cannot be used as a normalizing dictionary for the thesaurus
dictionary.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.48.1. Configuration
An unaccent dictionary accepts the following options:

• RULES is the base name of the file containing the list of translation rules. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the PostgreSQL installation's shared-data di-
rectory). Its name must end in .rules (which is not to be included in the RULES parameter).

The rules file has the following format:

• Each line represents one translation rule, consisting of a character with accent followed by a char-
acter without accent. The first is translated into the second. For example,

À A
Á A
Â A
Ã A
Ä A
Å A
Æ AE

The two characters must be separated by whitespace, and any leading or trailing whitespace on a
line is ignored.

• Alternatively, if only one character is given on a line, instances of that character are deleted; this is
useful in languages where accents are represented by separate characters.

• Actually, each “character” can be any string not containing whitespace, so unaccent dictionaries
could be used for other sorts of substring substitutions besides diacritic removal.

• Some characters, like numeric symbols, may require whitespaces in their translation rule. It is pos-
sible to use double quotes around the translated characters in this case. A double quote needs to be
escaped with a second double quote when including one in the translated character. For example:

¼ " 1/4"
½ " 1/2"
¾ " 3/4"
“ """"
” """"

• As with other PostgreSQL text search configuration files, the rules file must be stored in UTF-8 en-
coding. The data is automatically translated into the current database's encoding when loaded. Any
lines containing untranslatable characters are silently ignored, so that rules files can contain rules
that are not applicable in the current encoding.

A more complete example, which is directly useful for most European languages, can be found in un-
accent.rules, which is installed in $SHAREDIR/tsearch_data/ when the unaccent module is installed.
This rules file translates characters with accents to the same characters without accents, and it also
expands ligatures into the equivalent series of simple characters (for example, Æ to AE).

2673

Additional Supplied Mod-
ules and Extensions

F.48.2. Usage
Installing the unaccent extension creates a text search template unaccent and a dictionary unaccent
based on it. The unaccent dictionary has the default parameter setting RULES='unaccent', which makes
it immediately usable with the standard unaccent.rules file. If you wish, you can alter the parameter,
for example

mydb=# ALTER TEXT SEARCH DICTIONARY unaccent (RULES='my_rules');

or create new dictionaries based on the template.

To test the dictionary, you can try:

mydb=# select ts_lexize('unaccent','Hôtel');
 ts_lexize

 {Hotel}
(1 row)

Here is an example showing how to insert the unaccent dictionary into a text search configuration:

mydb=# CREATE TEXT SEARCH CONFIGURATION fr (COPY = french);
mydb=# ALTER TEXT SEARCH CONFIGURATION fr
 ALTER MAPPING FOR hword, hword_part, word
 WITH unaccent, french_stem;
mydb=# select to_tsvector('fr','Hôtels de la Mer');
 to_tsvector

 'hotel':1 'mer':4
(1 row)

mydb=# select to_tsvector('fr','Hôtel de la Mer') @@ to_tsquery('fr','Hotels');
 ?column?

 t
(1 row)

mydb=# select ts_headline('fr','Hôtel de la Mer',to_tsquery('fr','Hotels'));
 ts_headline

 Hôtel de la Mer
(1 row)

F.48.3. Functions
The unaccent() function removes accents (diacritic signs) from a given string. Basically, it's a wrapper
around unaccent-type dictionaries, but it can be used outside normal text search contexts.

unaccent([dictionary regdictionary,] string text) returns text

If the dictionary argument is omitted, the text search dictionary named unaccent and appearing in the
same schema as the unaccent() function itself is used.

For example:

SELECT unaccent('unaccent', 'Hôtel');
SELECT unaccent('Hôtel');

2674

Additional Supplied Mod-
ules and Extensions

F.49. uuid-ossp — a UUID generator
The uuid-ossp module provides functions to generate universally unique identifiers (UUIDs) using one
of several standard algorithms. There are also functions to produce certain special UUID constants. This
module is only necessary for special requirements beyond what is available in core PostgreSQL. See
Section 9.14 for built-in ways to generate UUIDs.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.49.1. uuid-ossp Functions
Table F.35 shows the functions available to generate UUIDs. The relevant standards ITU-T Rec. X.667,
ISO/IEC 9834-8:2005, and RFC 4122 specify four algorithms for generating UUIDs, identified by the
version numbers 1, 3, 4, and 5. (There is no version 2 algorithm.) Each of these algorithms could be
suitable for a different set of applications.

Table F.35. Functions for UUID Generation

Function
Description

uuid_generate_v1 () → uuid
Generates a version 1 UUID. This involves the MAC address of the computer and a time
stamp. Note that UUIDs of this kind reveal the identity of the computer that created the iden-
tifier and the time at which it did so, which might make it unsuitable for certain security-sen-
sitive applications.

uuid_generate_v1mc () → uuid
Generates a version 1 UUID, but uses a random multicast MAC address instead of the real
MAC address of the computer.

uuid_generate_v3 (namespace uuid, name text) → uuid
Generates a version 3 UUID in the given namespace using the specified input name. The
namespace should be one of the special constants produced by the uuid_ns_*() functions
shown in Table F.36. (It could be any UUID in theory.) The name is an identifier in the select-
ed namespace.
For example:

SELECT uuid_generate_v3(uuid_ns_url(), 'http://www.postgresql.org');

The name parameter will be MD5-hashed, so the cleartext cannot be derived from the gener-
ated UUID. The generation of UUIDs by this method has no random or environment-depen-
dent element and is therefore reproducible.

uuid_generate_v4 () → uuid
Generates a version 4 UUID, which is derived entirely from random numbers.

uuid_generate_v5 (namespace uuid, name text) → uuid
Generates a version 5 UUID, which works like a version 3 UUID except that SHA-1 is used as
a hashing method. Version 5 should be preferred over version 3 because SHA-1 is thought to
be more secure than MD5.

Table F.36. Functions Returning UUID Constants

Function
Description

uuid_nil () → uuid
Returns a “nil” UUID constant, which does not occur as a real UUID.

uuid_ns_dns () → uuid
Returns a constant designating the DNS namespace for UUIDs.

2675

https://datatracker.ietf.org/doc/html/rfc4122

Additional Supplied Mod-
ules and Extensions

Function
Description

uuid_ns_url () → uuid
Returns a constant designating the URL namespace for UUIDs.

uuid_ns_oid () → uuid
Returns a constant designating the ISO object identifier (OID) namespace for UUIDs. (This
pertains to ASN.1 OIDs, which are unrelated to the OIDs used in PostgreSQL.)

uuid_ns_x500 () → uuid
Returns a constant designating the X.500 distinguished name (DN) namespace for UUIDs.

F.49.2. Building uuid-ossp
Historically this module depended on the OSSP UUID library, which accounts for the module's name.
While the OSSP UUID library can still be found at http://www.ossp.org/pkg/lib/uuid/, it is not well main-
tained, and is becoming increasingly difficult to port to newer platforms. uuid-ossp can now be built
without the OSSP library on some platforms. On FreeBSD and some other BSD-derived platforms, suit-
able UUID creation functions are included in the core libc library. On Linux, macOS, and some other
platforms, suitable functions are provided in the libuuid library, which originally came from the e2f-
sprogs project (though on modern Linux it is considered part of util-linux-ng). When invoking con-
figure, specify --with-uuid=bsd to use the BSD functions, or --with-uuid=e2fs to use e2fsprogs'
libuuid, or --with-uuid=ossp to use the OSSP UUID library. More than one of these libraries might
be available on a particular machine, so configure does not automatically choose one.

F.49.3. Author
Peter Eisentraut <peter_e@gmx.net>

2676

http://www.ossp.org/pkg/lib/uuid/

Additional Supplied Mod-
ules and Extensions

F.50. xml2 — XPath querying and XSLT functionality
The xml2 module provides XPath querying and XSLT functionality.

F.50.1. Deprecation Notice
From PostgreSQL 8.3 on, there is XML-related functionality based on the SQL/XML standard in the core
server. That functionality covers XML syntax checking and XPath queries, which is what this module
does, and more, but the API is not at all compatible. It is planned that this module will be removed in a
future version of PostgreSQL in favor of the newer standard API, so you are encouraged to try converting
your applications. If you find that some of the functionality of this module is not available in an adequate
form with the newer API, please explain your issue to <pgsql-hackers@lists.postgresql.org> so that
the deficiency can be addressed.

F.50.2. Description of Functions
Table F.37 shows the functions provided by this module. These functions provide straightforward XML
parsing and XPath queries.

Table F.37. xml2 Functions

Function
Description

xml_valid (document text) → boolean
Parses the given document and returns true if the document is well-formed XML. (Note: this
is an alias for the standard PostgreSQL function xml_is_well_formed() . The name xml_
valid() is technically incorrect since validity and well-formedness have different meanings
in XML.)

xpath_string (document text, query text) → text
Evaluates the XPath query on the supplied document, and casts the result to text.

xpath_number (document text, query text) → real
Evaluates the XPath query on the supplied document, and casts the result to real.

xpath_bool (document text, query text) → boolean
Evaluates the XPath query on the supplied document, and casts the result to boolean.

xpath_nodeset (document text, query text, toptag text, itemtag text) → text
Evaluates the query on the document and wraps the result in XML tags. If the result is multi-
valued, the output will look like:

<toptag>
<itemtag>Value 1 which could be an XML fragment</itemtag>
<itemtag>Value 2....</itemtag>
</toptag>

If either toptag or itemtag is an empty string, the relevant tag is omitted.

xpath_nodeset (document text, query text, itemtag text) → text
Like xpath_nodeset(document, query, toptag, itemtag) but result omits toptag.

xpath_nodeset (document text, query text) → text
Like xpath_nodeset(document, query, toptag, itemtag) but result omits both tags.

xpath_list (document text, query text, separator text) → text
Evaluates the query on the document and returns multiple values separated by the specified
separator, for example Value 1,Value 2,Value 3 if separator is , .

xpath_list (document text, query text) → text
This is a wrapper for the above function that uses , as the separator.

2677

Additional Supplied Mod-
ules and Extensions

F.50.3. xpath_table
xpath_table(text key, text document, text relation, text xpaths, text criteria) returns
 setof record

xpath_table is a table function that evaluates a set of XPath queries on each of a set of documents
and returns the results as a table. The primary key field from the original document table is returned
as the first column of the result so that the result set can readily be used in joins. The parameters are
described in Table F.38.

Table F.38. xpath_table Parameters

Parameter Description
key the name of the “key” field — this is just a field to be used as the

first column of the output table, i.e., it identifies the record from
which each output row came (see note below about multiple val-
ues)

document the name of the field containing the XML document
relation the name of the table or view containing the documents
xpaths one or more XPath expressions, separated by |
criteria the contents of the WHERE clause. This cannot be omitted, so use

true or 1=1 if you want to process all the rows in the relation

These parameters (except the XPath strings) are just substituted into a plain SQL SELECT statement,
so you have some flexibility — the statement is

SELECT <key>, <document> FROM <relation> WHERE <criteria>

so those parameters can be anything valid in those particular locations. The result from this SELECT
needs to return exactly two columns (which it will unless you try to list multiple fields for key or docu-
ment). Beware that this simplistic approach requires that you validate any user-supplied values to avoid
SQL injection attacks.

The function has to be used in a FROM expression, with an AS clause to specify the output columns; for
example

SELECT * FROM
xpath_table('article_id',
 'article_xml',
 'articles',
 '/article/author|/article/pages|/article/title',
 'date_entered > ''2003-01-01'' ')
AS t(article_id integer, author text, page_count integer, title text);

The AS clause defines the names and types of the columns in the output table. The first is the “key” field
and the rest correspond to the XPath queries. If there are more XPath queries than result columns, the
extra queries will be ignored. If there are more result columns than XPath queries, the extra columns
will be NULL.

Notice that this example defines the page_count result column as an integer. The function deals inter-
nally with string representations, so when you say you want an integer in the output, it will take the
string representation of the XPath result and use PostgreSQL input functions to transform it into an
integer (or whatever type the AS clause requests). An error will result if it can't do this — for example
if the result is empty — so you may wish to just stick to text as the column type if you think your data
has any problems.

The calling SELECT statement doesn't necessarily have to be just SELECT * — it can reference the output
columns by name or join them to other tables. The function produces a virtual table with which you can
perform any operation you wish (e.g., aggregation, joining, sorting etc.). So we could also have:

2678

Additional Supplied Mod-
ules and Extensions

SELECT t.title, p.fullname, p.email
FROM xpath_table('article_id', 'article_xml', 'articles',
 '/article/title|/article/author/@id',
 'xpath_string(article_xml,''/article/@date'') > ''2003-03-20'' ')
 AS t(article_id integer, title text, author_id integer),
 tblPeopleInfo AS p
WHERE t.author_id = p.person_id;

as a more complicated example. Of course, you could wrap all of this in a view for convenience.

F.50.3.1. Multivalued Results
The xpath_table function assumes that the results of each XPath query might be multivalued, so the
number of rows returned by the function may not be the same as the number of input documents. The
first row returned contains the first result from each query, the second row the second result from each
query. If one of the queries has fewer values than the others, null values will be returned instead.

In some cases, a user will know that a given XPath query will return only a single result (perhaps a unique
document identifier) — if used alongside an XPath query returning multiple results, the single-valued
result will appear only on the first row of the result. The solution to this is to use the key field as part
of a join against a simpler XPath query. As an example:

CREATE TABLE test (
 id int PRIMARY KEY,
 xml text
);

INSERT INTO test VALUES (1, '<doc num="C1">
<line num="L1"><a>12<c>3</c></line>
<line num="L2"><a>1122<c>33</c></line>
</doc>');

INSERT INTO test VALUES (2, '<doc num="C2">
<line num="L1"><a>111222<c>333</c></line>
<line num="L2"><a>111222<c>333</c></line>
</doc>');

SELECT * FROM
 xpath_table('id','xml','test',
 '/doc/@num|/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, doc_num varchar(10), line_num varchar(10), val1 int, val2 int, val3 int)
WHERE id = 1 ORDER BY doc_num, line_num

 id | doc_num | line_num | val1 | val2 | val3
----+---------+----------+------+------+------
 1 | C1 | L1 | 1 | 2 | 3
 1 | | L2 | 11 | 22 | 33

To get doc_num on every line, the solution is to use two invocations of xpath_table and join the results:

SELECT t.*,i.doc_num FROM
 xpath_table('id', 'xml', 'test',
 '/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, line_num varchar(10), val1 int, val2 int, val3 int),
 xpath_table('id', 'xml', 'test', '/doc/@num', 'true')
 AS i(id int, doc_num varchar(10))
WHERE i.id=t.id AND i.id=1
ORDER BY doc_num, line_num;

2679

Additional Supplied Mod-
ules and Extensions

 id | line_num | val1 | val2 | val3 | doc_num
----+----------+------+------+------+---------
 1 | L1 | 1 | 2 | 3 | C1
 1 | L2 | 11 | 22 | 33 | C1
(2 rows)

F.50.4. XSLT Functions
The following functions are available if libxslt is installed:

F.50.4.1. xslt_process
xslt_process(text document, text stylesheet, text paramlist) returns text

This function applies the XSL stylesheet to the document and returns the transformed result. The
paramlist is a list of parameter assignments to be used in the transformation, specified in the form
a=1,b=2. Note that the parameter parsing is very simple-minded: parameter values cannot contain com-
mas!

There is also a two-parameter version of xslt_process which does not pass any parameters to the
transformation.

F.50.5. Author
John Gray <jgray@azuli.co.uk>

Development of this module was sponsored by Torchbox Ltd. (www.torchbox.com). It has the same BSD
license as PostgreSQL.

2680

Appendix G. Additional Supplied
Programs

This appendix and the previous one contain information regarding the modules that can be found in
the contrib directory of the PostgreSQL distribution. See Appendix F for more information about the
contrib section in general and server extensions and plug-ins found in contrib specifically.

This appendix covers utility programs found in contrib. Once installed, either from source or a pack-
aging system, they are found in the bin directory of the PostgreSQL installation and can be used like
any other program.

G.1. Client Applications
This section covers PostgreSQL client applications in contrib. They can be run from anywhere, inde-
pendent of where the database server resides. See also PostgreSQL Client Applications for information
about client applications that are part of the core PostgreSQL distribution.

2681

Additional Supplied Programs

oid2name
oid2name — resolve OIDs and file nodes in a PostgreSQL data directory

Synopsis
oid2name [option...]

Description
oid2name is a utility program that helps administrators to examine the file structure used by PostgreSQL.
To make use of it, you need to be familiar with the database file structure, which is described in Chap-
ter 66.

Note
The name “oid2name” is historical, and is actually rather misleading, since most of the time when
you use it, you will really be concerned with tables' filenode numbers (which are the file names
visible in the database directories). Be sure you understand the difference between table OIDs
and table filenodes!

oid2name connects to a target database and extracts OID, filenode, and/or table name information. You
can also have it show database OIDs or tablespace OIDs.

Options
oid2name accepts the following command-line arguments:
-f filenode
--filenode=filenode

show info for table with filenode filenode.

-i
--indexes

include indexes and sequences in the listing.

-o oid
--oid=oid

show info for table with OID oid.

-q
--quiet

omit headers (useful for scripting).

-s
--tablespaces

show tablespace OIDs.

-S
--system-objects

include system objects (those in information_schema, pg_toast and pg_catalog schemas).

-t tablename_pattern
--table=tablename_pattern

show info for table(s) matching tablename_pattern.

2682

Additional Supplied Programs

-V
--version

Print the oid2name version and exit.

-x
--extended

display more information about each object shown: tablespace name, schema name, and OID.

-?
--help

Show help about oid2name command line arguments, and exit.

oid2name also accepts the following command-line arguments for connection parameters:

-d database
--dbname=database

database to connect to.

-h host
--host=host

database server's host.

-H host

database server's host. Use of this parameter is deprecated as of PostgreSQL 12.

-p port
--port=port

database server's port.

-U username
--username=username

user name to connect as.

To display specific tables, select which tables to show by using -o, -f and/or -t. -o takes an OID, -f
takes a filenode, and -t takes a table name (actually, it's a LIKE pattern, so you can use things like foo
%). You can use as many of these options as you like, and the listing will include all objects matched by
any of the options. But note that these options can only show objects in the database given by -d.

If you don't give any of -o, -f or -t, but do give -d, it will list all tables in the database named by -d.
In this mode, the -S and -i options control what gets listed.

If you don't give -d either, it will show a listing of database OIDs. Alternatively you can give -s to get
a tablespace listing.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

2683

Additional Supplied Programs

Notes
oid2name requires a running database server with non-corrupt system catalogs. It is therefore of only
limited use for recovering from catastrophic database corruption situations.

Examples
$ # what's in this database server, anyway?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # OK, let's look into database alvherre
$ cd $PGDATA/base/17228

$ # get top 10 db objects in the default tablespace, ordered by size
$ ls -lS * | head -10
-rw------- 1 alvherre alvherre 136536064 sep 14 09:51 155173
-rw------- 1 alvherre alvherre 17965056 sep 14 09:51 1155291
-rw------- 1 alvherre alvherre 1204224 sep 14 09:51 16717
-rw------- 1 alvherre alvherre 581632 sep 6 17:51 1255
-rw------- 1 alvherre alvherre 237568 sep 14 09:50 16674
-rw------- 1 alvherre alvherre 212992 sep 14 09:51 1249
-rw------- 1 alvherre alvherre 204800 sep 14 09:51 16684
-rw------- 1 alvherre alvherre 196608 sep 14 09:50 16700
-rw------- 1 alvherre alvherre 163840 sep 14 09:50 16699
-rw------- 1 alvherre alvherre 122880 sep 6 17:51 16751

$ # What file is 155173?
$ oid2name -d alvherre -f 155173
From database "alvherre":
 Filenode Table Name

 155173 accounts

$ # you can ask for more than one object
$ oid2name -d alvherre -f 155173 -f 1155291
From database "alvherre":
 Filenode Table Name

 155173 accounts
 1155291 accounts_pkey

$ # you can mix the options, and get more details with -x
$ oid2name -d alvherre -t accounts -f 1155291 -x

2684

Additional Supplied Programs

From database "alvherre":
 Filenode Table Name Oid Schema Tablespace
--
 155173 accounts 155173 public pg_default
 1155291 accounts_pkey 1155291 public pg_default

$ # show disk space for every db object
$ du [0-9]* |
> while read SIZE FILENODE
> do
> echo "$SIZE `oid2name -q -d alvherre -i -f $FILENODE`"
> done
16 1155287 branches_pkey
16 1155289 tellers_pkey
17561 1155291 accounts_pkey
...

$ # same, but sort by size
$ du [0-9]* | sort -rn | while read SIZE FN
> do
> echo "$SIZE `oid2name -q -d alvherre -f $FN`"
> done
133466 155173 accounts
17561 1155291 accounts_pkey
1177 16717 pg_proc_proname_args_nsp_index
...

$ # If you want to see what's in tablespaces, use the pg_tblspc directory
$ cd $PGDATA/pg_tblspc
$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # what databases have objects in tablespace "fastdisk"?
$ ls -d 155151/*
155151/17228/ 155151/PG_VERSION

$ # Oh, what was database 17228 again?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ # Let's see what objects does this database have in the tablespace.
$ cd 155151/17228
$ ls -l
total 0
-rw------- 1 postgres postgres 0 sep 13 23:20 155156

2685

Additional Supplied Programs

$ # OK, this is a pretty small table ... but which one is it?
$ oid2name -d alvherre -f 155156
From database "alvherre":
 Filenode Table Name

 155156 foo

Author
B. Palmer <bpalmer@crimelabs.net>

2686

Additional Supplied Programs

vacuumlo
vacuumlo — remove orphaned large objects from a PostgreSQL database

Synopsis
vacuumlo [option...] dbname...

Description
vacuumlo is a simple utility program that will remove any “orphaned” large objects from a PostgreSQL
database. An orphaned large object (LO) is considered to be any LO whose OID does not appear in any
oid or lo data column of the database.

If you use this, you may also be interested in the lo_manage trigger in the lo module. lo_manage is useful
to try to avoid creating orphaned LOs in the first place.

All databases named on the command line are processed.

Options
vacuumlo accepts the following command-line arguments:

-l limit
--limit=limit

Remove no more than limit large objects per transaction (default 1000). Since the server ac-
quires a lock per LO removed, removing too many LOs in one transaction risks exceeding max_lock-
s_per_transaction. Set the limit to zero if you want all removals done in a single transaction.

-n
--dry-run

Don't remove anything, just show what would be done.

-v
--verbose

Write a lot of progress messages.

-V
--version

Print the vacuumlo version and exit.

-?
--help

Show help about vacuumlo command line arguments, and exit.

vacuumlo also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Database server's host.

-p port
--port=port

Database server's port.

2687

Additional Supplied Programs

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force vacuumlo to prompt for a password before connecting to a database.

This option is never essential, since vacuumlo will automatically prompt for a password if the server
demands password authentication. However, vacuumlo will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 32.15).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
vacuumlo works by the following method: First, vacuumlo builds a temporary table which contains all of
the OIDs of the large objects in the selected database. It then scans through all columns in the database
that are of type oid or lo, and removes matching entries from the temporary table. (Note: Only types
with these names are considered; in particular, domains over them are not considered.) The remaining
entries in the temporary table identify orphaned LOs. These are removed.

Author
Peter Mount <peter@retep.org.uk>

G.2. Server Applications
Some applications run on the PostgreSQL server itself. Currently, no such applications are included in
the contrib directory. See also PostgreSQL Server Applications for information about server applica-
tions that are part of the core PostgreSQL distribution.

2688

Appendix H. External Projects
PostgreSQL is a complex software project, and managing the project is difficult. We have found that
many enhancements to PostgreSQL can be more efficiently developed separately from the core project.

H.1. Client Interfaces
There are only two client interfaces included in the base PostgreSQL distribution:
• libpq is included because it is the primary C language interface, and because many other client in-

terfaces are built on top of it.
• ECPG is included because it depends on the server-side SQL grammar, and is therefore sensitive to

changes in PostgreSQL itself.
All other language interfaces are external projects and are distributed separately. A list of language
interfaces is maintained on the PostgreSQL wiki. Note that some of these packages are not released
under the same license as PostgreSQL. For more information on each language interface, including
licensing terms, refer to its website and documentation.

https://wiki.postgresql.org/wiki/List_of_drivers

H.2. Administration Tools
There are several administration tools available for PostgreSQL. The most popular is pgAdmin, and there
are several commercially available ones as well.

H.3. Procedural Languages
PostgreSQL includes several procedural languages with the base distribution: PL/pgSQL, PL/Tcl, PL/
Perl, and PL/Python.

In addition, there are a number of procedural languages that are developed and maintained outside the
core PostgreSQL distribution. A list of procedural languages is maintained on the PostgreSQL wiki. Note
that some of these projects are not released under the same license as PostgreSQL. For more information
on each procedural language, including licensing information, refer to its website and documentation.

https://wiki.postgresql.org/wiki/PL_Matrix

H.4. Extensions
PostgreSQL is designed to be easily extensible. For this reason, extensions loaded into the database can
function just like features that are built in. The contrib/ directory shipped with the source code contains
several extensions, which are described in Appendix F. Other extensions are developed independently,
like PostGIS. Even PostgreSQL replication solutions can be developed externally. For example, Slony-I
is a popular primary/standby replication solution that is developed independently from the core project.

2689

https://wiki.postgresql.org/wiki/List_of_drivers
https://wiki.postgresql.org/wiki/List_of_drivers
https://wiki.postgresql.org/wiki/List_of_drivers
https://www.pgadmin.org/
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://postgis.net/
https://www.slony.info

Appendix I. The Source Code
Repository

The PostgreSQL source code is stored and managed using the Git version control system. A public mirror
of the master repository is available; it is updated within a minute of any change to the master repository.

Our wiki, https://wiki.postgresql.org/wiki/Working_with_Git, has some discussion on working with Git.

I.1. Getting the Source via Git
With Git you will make a copy of the entire code repository on your local machine, so you will have access
to all history and branches offline. This is the fastest and most flexible way to develop or test patches.

Git

1. You will need an installed version of Git, which you can get from https://git-scm.com. Many systems
already have a recent version of Git installed by default, or available in their package distribution
system.

2. To begin using the Git repository, make a clone of the official mirror:

git clone https://git.postgresql.org/git/postgresql.git

This will copy the full repository to your local machine, so it may take a while to complete, especially
if you have a slow Internet connection. The files will be placed in a new subdirectory postgresql
of your current directory.

The Git mirror can also be reached via the Git protocol. Just change the URL prefix to git, as in:

git clone git://git.postgresql.org/git/postgresql.git

3. Whenever you want to get the latest updates in the system, cd into the repository, and run:

git fetch

Git can do a lot more things than just fetch the source. For more information, consult the Git man pages,
or see the website at https://git-scm.com.

2690

https://wiki.postgresql.org/wiki/Working_with_Git
https://git-scm.com
https://git-scm.com

Appendix J. Documentation
PostgreSQL has four primary documentation formats:
• Plain text, for pre-installation information
• HTML, for on-line browsing and reference
• PDF, for printing
• man pages, for quick reference.
Additionally, a number of plain-text README files can be found throughout the PostgreSQL source tree,
documenting various implementation issues.

HTML documentation and man pages are part of a standard distribution and are installed by default.
PDF format documentation is available separately for download.

J.1. DocBook
The documentation sources are written in DocBook, which is a markup language defined in XML. In
what follows, the terms DocBook and XML are both used, but technically they are not interchangeable.

DocBook allows an author to specify the structure and content of a technical document without worrying
about presentation details. A document style defines how that content is rendered into one of several final
forms. DocBook is maintained by the OASIS group. The official DocBook site has good introductory and
reference documentation and a complete O'Reilly book for your online reading pleasure. The FreeBSD
Documentation Project also uses DocBook and has some good information, including a number of style
guidelines that might be worth considering.

J.2. Tool Sets
The following tools are used to process the documentation. Some might be optional, as noted.
DocBook DTD

This is the definition of DocBook itself. We currently use version 4.5; you cannot use later or earlier
versions. You need the XML variant of the DocBook DTD, not the SGML variant.

DocBook XSL Stylesheets
These contain the processing instructions for converting the DocBook sources to other formats, such
as HTML.

The minimum required version is currently 1.77.0, but it is recommended to use the latest available
version for best results.

Libxml2 for xmllint
This library and the xmllint tool it contains are used for processing XML. Many developers will
already have Libxml2 installed, because it is also used when building the PostgreSQL code. Note,
however, that xmllint might need to be installed from a separate subpackage.

Libxslt for xsltproc
xsltproc is an XSLT processor, that is, a program to convert XML to other formats using XSLT
stylesheets.

FOP
This is a program for converting, among other things, XML to PDF. It is needed only if you want to
build the documentation in PDF format.

We have documented experience with several installation methods for the various tools that are needed
to process the documentation. These will be described below. There might be some other packaged

2691

https://www.oasis-open.org
https://www.oasis-open.org/docbook/
https://www.freebsd.org/docproj/
https://www.freebsd.org/docproj/
https://www.oasis-open.org/docbook/
https://github.com/docbook/wiki/wiki/DocBookXslStylesheets
http://xmlsoft.org/
http://xmlsoft.org/XSLT/
https://xmlgraphics.apache.org/fop/

Documentation

distributions for these tools. Please report package status to the documentation mailing list, and we will
include that information here.

J.2.1. Installation on Fedora, RHEL, and Derivatives
To install the required packages, use:

yum install docbook-dtds docbook-style-xsl libxslt fop

J.2.2. Installation on FreeBSD
To install the required packages with pkg, use:

pkg install docbook-xml docbook-xsl libxslt fop

When building the documentation from the doc directory you'll need to use gmake, because the makefile
provided is not suitable for FreeBSD's make.

J.2.3. Debian Packages
There is a full set of packages of the documentation tools available for Debian GNU/Linux. To install,
simply use:

apt-get install docbook-xml docbook-xsl libxml2-utils xsltproc fop

J.2.4. macOS
If you use MacPorts, the following will get you set up:

sudo port install docbook-xml docbook-xsl-nons libxslt fop

If you use Homebrew, use this:

brew install docbook docbook-xsl libxslt fop

The Homebrew-supplied programs require the following environment variable to be set. For Intel based
machines, use this:

export XML_CATALOG_FILES=/usr/local/etc/xml/catalog

On Apple Silicon based machines, use this:

export XML_CATALOG_FILES=/opt/homebrew/etc/xml/catalog

Without it, xsltproc will throw errors like this:

I/O error : Attempt to load network entity http://www.oasis-open.org/docbook/xml/4.5/
docbookx.dtd
postgres.sgml:21: warning: failed to load external entity "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd"
...

While it is possible to use the Apple-provided versions of xmllint and xsltproc instead of those from
MacPorts or Homebrew, you'll still need to install the DocBook DTD and stylesheets, and set up a catalog
file that points to them.

J.2.5. Detection by configure
Before you can build the documentation you need to run the configure script, as you would when
building the PostgreSQL programs themselves. Check the output near the end of the run; it should look
something like this:

checking for xmllint... xmllint
checking for xsltproc... xsltproc
checking for fop... fop

2692

Documentation

checking for dbtoepub... dbtoepub

If xmllint or xsltproc is not found, you will not be able to build any of the documentation. fop is only
needed to build the documentation in PDF format. dbtoepub is only needed to build the documentation
in EPUB format.

If necessary, you can tell configure where to find these programs, for example

./configure ... XMLLINT=/opt/local/bin/xmllint ...

If you prefer to build PostgreSQL using Meson, instead run meson setup as described in Section 17.4,
and then see Section J.4.

J.3. Building the Documentation with Make
Once you have everything set up, change to the directory doc/src/sgml and run one of the commands
described in the following subsections to build the documentation. (Remember to use GNU make.)

J.3.1. HTML
To build the HTML version of the documentation:

doc/src/sgml$ make html

This is also the default target. The output appears in the subdirectory html.

To produce HTML documentation with the stylesheet used on postgresql.org instead of the default simple
style use:

doc/src/sgml$ make STYLE=website html

If the STYLE=website option is used, the generated HTML files include references to stylesheets hosted
on postgresql.org and require network access to view.

J.3.2. Manpages
We use the DocBook XSL stylesheets to convert DocBook refentry pages to *roff output suitable for
man pages. To create the man pages, use the command:

doc/src/sgml$ make man

J.3.3. PDF
To produce a PDF rendition of the documentation using FOP, you can use one of the following commands,
depending on the preferred paper format:

• For A4 format:

doc/src/sgml$ make postgres-A4.pdf

• For U.S. letter format:

doc/src/sgml$ make postgres-US.pdf

Because the PostgreSQL documentation is fairly big, FOP will require a significant amount of memory.
Because of that, on some systems, the build will fail with a memory-related error message. This can
usually be fixed by configuring Java heap settings in the configuration file ~/.foprc, for example:

FOP binary distribution
FOP_OPTS='-Xmx1500m'
Debian
JAVA_ARGS='-Xmx1500m'
Red Hat
ADDITIONAL_FLAGS='-Xmx1500m'

2693

https://www.postgresql.org/docs/current/
https://www.postgresql.org/docs/current/

Documentation

There is a minimum amount of memory that is required, and to some extent more memory appears to
make things a bit faster. On systems with very little memory (less than 1 GB), the build will either be
very slow due to swapping or will not work at all.

In its default configuration FOP will emit an INFO message for each page. The log level can be changed
via ~/.foprc:
LOGCHOICE=-Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog
LOGLEVEL=-Dorg.apache.commons.logging.simplelog.defaultlog=WARN

Other XSL-FO processors can also be used manually, but the automated build process only supports FOP.

J.3.4. Syntax Check
Building the documentation can take very long. But there is a method to just check the correct syntax
of the documentation files, which only takes a few seconds:
doc/src/sgml$ make check

J.4. Building the Documentation with Meson
To build the documentation using Meson, change to the build directory before running one of these
commands, or add -C build to the command.

To build just the HTML version of the documentation:
build$ ninja html

For a list of other documentation targets see Section 17.4.4.3. The output appears in the subdirectory
build/doc/src/sgml.

J.5. Documentation Authoring
The documentation sources are most conveniently modified with an editor that has a mode for editing
XML, and even more so if it has some awareness of XML schema languages so that it can know about
DocBook syntax specifically.

Note that for historical reasons the documentation source files are named with an extension .sgml even
though they are now XML files. So you might need to adjust your editor configuration to set the correct
mode.

J.5.1. Emacs
nXML Mode, which ships with Emacs, is the most common mode for editing XML documents with Emacs.
It will allow you to use Emacs to insert tags and check markup consistency, and it supports DocBook out
of the box. Check the nXML manual for detailed documentation.

src/tools/editors/emacs.samples contains recommended settings for this mode.

J.6. Style Guide
J.6.1. Reference Pages

Reference pages should follow a standard layout. This allows users to find the desired information more
quickly, and it also encourages writers to document all relevant aspects of a command. Consistency is
not only desired among PostgreSQL reference pages, but also with reference pages provided by the
operating system and other packages. Hence the following guidelines have been developed. They are
for the most part consistent with similar guidelines established by various operating systems.

Reference pages that describe executable commands should contain the following sections, in this order.
Sections that do not apply can be omitted. Additional top-level sections should only be used in special
circumstances; often that information belongs in the “Usage” section.

2694

https://www.gnu.org/software/emacs/manual/html_mono/nxml-mode.html

Documentation

Name
This section is generated automatically. It contains the command name and a half-sentence summary
of its functionality.

Synopsis
This section contains the syntax diagram of the command. The synopsis should normally not list each
command-line option; that is done below. Instead, list the major components of the command line,
such as where input and output files go.

Description
Several paragraphs explaining what the command does.

Options
A list describing each command-line option. If there are a lot of options, subsections can be used.

Exit Status
If the program uses 0 for success and non-zero for failure, then you do not need to document it. If
there is a meaning behind the different non-zero exit codes, list them here.

Usage
Describe any sublanguage or run-time interface of the program. If the program is not interactive, this
section can usually be omitted. Otherwise, this section is a catch-all for describing run-time features.
Use subsections if appropriate.

Environment
List all environment variables that the program might use. Try to be complete; even seemingly trivial
variables like SHELL might be of interest to the user.

Files
List any files that the program might access implicitly. That is, do not list input and output files that
were specified on the command line, but list configuration files, etc.

Diagnostics
Explain any unusual output that the program might create. Refrain from listing every possible error
message. This is a lot of work and has little use in practice. But if, say, the error messages have a
standard format that the user can parse, this would be the place to explain it.

Notes
Anything that doesn't fit elsewhere, but in particular bugs, implementation flaws, security consider-
ations, compatibility issues.

Examples
Examples

History
If there were some major milestones in the history of the program, they might be listed here. Usually,
this section can be omitted.

Author
Author (only used in the contrib section)

See Also
Cross-references, listed in the following order: other PostgreSQL command reference pages, Post-
greSQL SQL command reference pages, citation of PostgreSQL manuals, other reference pages (e.g.,

2695

Documentation

operating system, other packages), other documentation. Items in the same group are listed alpha-
betically.

Reference pages describing SQL commands should contain the following sections: Name, Synopsis, De-
scription, Parameters, Outputs, Notes, Examples, Compatibility, History, See Also. The Parameters sec-
tion is like the Options section, but there is more freedom about which clauses of the command can be
listed. The Outputs section is only needed if the command returns something other than a default com-
mand-completion tag. The Compatibility section should explain to what extent this command conforms
to the SQL standard(s), or to which other database system it is compatible. The See Also section of SQL
commands should list SQL commands before cross-references to programs.

2696

Appendix K. PostgreSQL Limits
Table K.1 describes various hard limits of PostgreSQL. However, practical limits, such as performance
limitations or available disk space may apply before absolute hard limits are reached.

Table K.1. PostgreSQL Limitations

Item Upper Limit Comment
database size unlimited
number of databases 4,294,950,911
relations per database 1,431,650,303
relation size 32 TB with the default BLCKSZ of 8192

bytes
rows per table limited by the number of tuples

that can fit onto 4,294,967,295
pages

columns per table 1,600 further limited by tuple size fit-
ting on a single page; see note
below

columns in a result set 1,664
field size 1 GB
indexes per table unlimited constrained by maximum rela-

tions per database
columns per index 32 can be increased by recompiling

PostgreSQL
partition keys 32 can be increased by recompiling

PostgreSQL
identifier length 63 bytes can be increased by recompiling

PostgreSQL
function arguments 100 can be increased by recompiling

PostgreSQL
query parameters 65,535

The maximum number of columns for a table is further reduced as the tuple being stored must fit in
a single 8192-byte heap page. For example, excluding the tuple header, a tuple made up of 1,600 int
columns would consume 6400 bytes and could be stored in a heap page, but a tuple of 1,600 bigint
columns would consume 12800 bytes and would therefore not fit inside a heap page. Variable-length
fields of types such as text, varchar, and char can have their values stored out of line in the table's
TOAST table when the values are large enough to require it. Only an 18-byte pointer must remain inside
the tuple in the table's heap. For shorter length variable-length fields, either a 4-byte or 1-byte field
header is used and the value is stored inside the heap tuple.

Columns that have been dropped from the table also contribute to the maximum column limit. Moreover,
although the dropped column values for newly created tuples are internally marked as null in the tuple's
null bitmap, the null bitmap also occupies space.

Each table can store a theoretical maximum of 2^32 out-of-line values; see Section 66.2 for a detailed
discussion of out-of-line storage. This limit arises from the use of a 32-bit OID to identify each such
value. The practical limit is significantly less than the theoretical limit, because as the OID space fills up,
finding an OID that is still free can become expensive, in turn slowing down INSERT/UPDATE statements.
Typically, this is only an issue for tables containing many terabytes of data; partitioning is a possible
workaround.

2697

Appendix L. Acronyms
This is a list of acronyms commonly used in the PostgreSQL documentation and in discussions about
PostgreSQL.
AIO

Asynchronous I/O

ACL
Access Control List

AM
Access Method

ANSI
American National Standards Institute

API
Application Programming Interface

ASCII
American Standard Code for Information Interchange

BKI
Backend Interface

CA
Certificate Authority

CIDR
Classless Inter-Domain Routing

CPAN
Comprehensive Perl Archive Network

CRL
Certificate Revocation List

CSV
Comma Separated Values

CTE
Common Table Expression

CVE
Common Vulnerabilities and Exposures

DBA
Database Administrator

DBI
Database Interface (Perl)

2698

https://en.wikipedia.org/wiki/Access-control_list
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://www.cpan.org/
https://en.wikipedia.org/wiki/Certificate_revocation_list
https://en.wikipedia.org/wiki/Comma-separated_values
https://cve.mitre.org/
https://en.wikipedia.org/wiki/Database_administrator
https://dbi.perl.org/

Acronyms

DBMS
Database Management System

DDL
Data Definition Language, SQL commands such as CREATE TABLE, ALTER USER

DML
Data Manipulation Language, SQL commands such as INSERT, UPDATE, DELETE

DST
Daylight Saving Time

ECPG
Embedded C for PostgreSQL

ESQL
Embedded SQL

FAQ
Frequently Asked Questions

FSM
Free Space Map

GEQO
Genetic Query Optimizer

GIN
Generalized Inverted Index

GiST
Generalized Search Tree

Git
Git

GMT
Greenwich Mean Time

GSSAPI
Generic Security Services Application Programming Interface

GUC
Grand Unified Configuration, the PostgreSQL subsystem that handles server configuration

HBA
Host-Based Authentication

HOT
Heap-Only Tuples

IEC
International Electrotechnical Commission

2699

https://en.wikipedia.org/wiki/Database#Database_management_system
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_manipulation_language
https://en.wikipedia.org/wiki/Daylight_saving_time
https://en.wikipedia.org/wiki/Embedded_SQL
https://en.wikipedia.org/wiki/FAQ
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Greenwich_Mean_Time
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission

Acronyms

IEEE
Institute of Electrical and Electronics Engineers

IPC
Inter-Process Communication

I/O
Input/Output

ISO
International Organization for Standardization

ISSN
International Standard Serial Number

JDBC
Java Database Connectivity

JIT
Just-in-Time compilation

JSON
JavaScript Object Notation

LDAP
Lightweight Directory Access Protocol

LSN
Log Sequence Number

MCF
Most Common Frequency, that is the frequency associated with some Most Common Value

MCV
Most Common Value, one of the values appearing most often within a particular table column

MITM
Man-in-the-middle attack

MSVC
Microsoft Visual C

MVCC
Multi-Version Concurrency Control

NLS
National Language Support

ODBC
Open Database Connectivity

OID
Object Identifier

2700

https://standards.ieee.org/
https://en.wikipedia.org/wiki/Inter-process_communication
https://www.iso.org/home.html
https://en.wikipedia.org/wiki/ISSN
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://www.json.org
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Open_Database_Connectivity

Acronyms

OLAP
Online Analytical Processing

OLTP
Online Transaction Processing

ORDBMS
Object-Relational Database Management System

PAM
Pluggable Authentication Modules

PGSQL
PostgreSQL

PGXS
PostgreSQL Extension System

PID
Process Identifier

PITR
Point-In-Time Recovery (Continuous Archiving)

PL
Procedural Languages (server-side)

POSIX
Portable Operating System Interface

RDBMS
Relational Database Management System

RFC
Request For Comments

SGML
Standard Generalized Markup Language

SNI
Server Name Indication, RFC 6066

SPI
Server Programming Interface

SP-GiST
Space-Partitioned Generalized Search Tree

SQL
Structured Query Language

SRF
Set-Returning Function

2701

https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Object%E2%80%93relational_database
https://en.wikipedia.org/wiki/Pluggable_authentication_module
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Relational_database#RDBMS
https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Server_Name_Indication
https://datatracker.ietf.org/doc/html/rfc6066#section-3
https://en.wikipedia.org/wiki/SQL

Acronyms

SSH
Secure Shell

SSL
Secure Sockets Layer

SSPI
Security Support Provider Interface

SYSV
Unix System V

TCP/IP
Transmission Control Protocol (TCP) / Internet Protocol (IP)

TID
Tuple Identifier

TLS
Transport Layer Security

TOAST
The Oversized-Attribute Storage Technique

TPC
Transaction Processing Performance Council

URL
Uniform Resource Locator

UTC
Coordinated Universal Time

UTF
Unicode Transformation Format

UTF8
Eight-Bit Unicode Transformation Format

UUID
Universally Unique Identifier

WAL
Write-Ahead Log

XID
Transaction Identifier

XML
Extensible Markup Language

2702

https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Transport_Layer_Security#SSL_1.0,_2.0,_and_3.0
https://msdn.microsoft.com/en-us/library/aa380493%28VS.85%29.aspx
https://en.wikipedia.org/wiki/UNIX_System_V
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.tpc.org/
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://www.unicode.org/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/XML

Appendix M. Glossary
This is a list of terms and their meaning in the context of PostgreSQL and relational database systems
in general.

ACID Atomicity, Consistency, Isolation, and Durability. This set of properties of
database transactions is intended to guarantee validity in concurrent oper-
ation and even in event of errors, power failures, etc.

Aggregate function (rou-
tine)

A function that combines (aggregates) multiple input values, for example
by counting, averaging or adding, yielding a single output value.

For more information, see Section 9.21.

See Also Window function (routine).

Access Method Interfaces which PostgreSQL use in order to access data in tables and index-
es. This abstraction allows for adding support for new types of data storage.

For more information, see Chapter 62 and Chapter 63.

Analytic function See Window function (routine).

Analyze (operation) The act of collecting statistics from data in tables and other relations to help
the query planner to make decisions about how to execute queries.

(Don't confuse this term with the ANALYZE option to the EXPLAIN command.)

For more information, see ANALYZE.

Asynchronous I/O (AIO) Asynchronous I/O (AIO) describes performing I/O in a non-blocking way
(asynchronously), in contrast to synchronous I/O, which blocks for the en-
tire duration of the I/O.

With AIO, starting an I/O operation is separated from waiting for the result
of the operation, allowing multiple I/O operations to be initiated concurrent-
ly, as well as performing CPU heavy operations concurrently with I/O. The
price for that increased concurrency is increased complexity.

See Also Input/Output.

Atomic In reference to a datum: the fact that its value cannot be broken down into
smaller components.

In reference to a database transaction: see atomicity.

Atomicity The property of a transaction that either all its operations complete as a
single unit or none do. In addition, if a system failure occurs during the
execution of a transaction, no partial results are visible after recovery. This
is one of the ACID properties.

Attribute An element with a certain name and data type found within a tuple.

Autovacuum (process) A set of background processes that routinely perform vacuum and ana-
lyze operations. The auxiliary process that coordinates the work and is al-
ways present (unless autovacuum is disabled) is known as the autovacuum
launcher, and the processes that carry out the tasks are known as the au-
tovacuum workers.

For more information, see Section 24.1.6.

2703

Glossary

Auxiliary process A process within an instance that is in charge of some specific background
task for the instance. The auxiliary processes consist of the autovacuum
launcher (but not the autovacuum workers), the background writer, the
checkpointer, the logger, the startup process, the WAL archiver, the WAL
receiver (but not the WAL senders), the WAL summarizer, and the WAL
writer.

Backend (process) Process of an instance which acts on behalf of a client session and handles
its requests.

(Don't confuse this term with the similar terms Background Worker or Back-
ground Writer).

Background worker
(process)

Process within an instance, which runs system- or user-supplied code.
Serves as infrastructure for several features in PostgreSQL, such as logi-
cal replication and parallel queries. In addition, Extensions can add custom
background worker processes.

For more information, see Chapter 46.

Background writer
(process)

An auxiliary process that writes dirty data pages from shared memory to
the file system. It wakes up periodically, but works only for a short period in
order to distribute its expensive I/O activity over time to avoid generating
larger I/O peaks which could block other processes.

For more information, see Section 19.4.4.

Base Backup A binary copy of all database cluster files. It is generated by the tool
pg_basebackup. In combination with WAL files it can be used as the starting
point for recovery, log shipping, or streaming replication.

Bloat Space in data pages which does not contain current row versions, such as
unused (free) space or outdated row versions.

Bootstrap superuser The first user initialized in a database cluster.

This user owns all system catalog tables in each database. It is also the role
from which all granted permissions originate. Because of these things, this
role may not be dropped.

This role also behaves as a normal database superuser, and its superuser
status cannot be removed.

Buffer Access Strategy Some operations will access a large number of pages. A Buffer Access Strat-
egy helps to prevent these operations from evicting too many pages from
shared buffers.

A Buffer Access Strategy sets up references to a limited number of shared
buffers and reuses them circularly. When the operation requires a new page,
a victim buffer is chosen from the buffers in the strategy ring, which may
require flushing the page's dirty data and possibly also unflushed WAL to
permanent storage.

Buffer Access Strategies are used for various operations such as sequential
scans of large tables, VACUUM, COPY, CREATE TABLE AS SELECT, ALTER TABLE,
CREATE DATABASE, CREATE INDEX, and CLUSTER.

Cast A conversion of a datum from its current data type to another data type.

For more information, see CREATE CAST.

2704

Glossary

Catalog The SQL standard uses this term to indicate what is called a database in
PostgreSQL's terminology.

(Don't confuse this term with system catalog).

For more information, see Section 22.1.

Check constraint A type of constraint defined on a relation which restricts the values allowed
in one or more attributes. The check constraint can make reference to any
attribute of the same row in the relation, but cannot reference other rows
of the same relation or other relations.

For more information, see Section 5.5.

Checkpoint A point in the WAL sequence at which it is guaranteed that the heap and
index data files have been updated with all information from shared memory
modified before that checkpoint; a checkpoint record is written and flushed
to WAL to mark that point.

A checkpoint is also the act of carrying out all the actions that are necessary
to reach a checkpoint as defined above. This process is initiated when pre-
defined conditions are met, such as a specified amount of time has passed,
or a certain volume of records has been written; or it can be invoked by the
user with the command CHECKPOINT.

For more information, see Section 28.5.

Checkpointer (process) An auxiliary process that is responsible for executing checkpoints.

Class (archaic) See Relation.

Client (process) Any process, possibly remote, that establishes a session by connecting to
an instance to interact with a database.

Cluster owner The operating system user that owns the data directory and under which the
postgres process is run. It is required that this user exist prior to creating
a new database cluster.

On operating systems with a root user, said user is not allowed to be the
cluster owner.

Column An attribute found in a table or view.

Commit The act of finalizing a transaction within the database, which makes it visible
to other transactions and assures its durability.

For more information, see COMMIT.

Concurrency The concept that multiple independent operations happen within the data-
base at the same time. In PostgreSQL, concurrency is controlled by the mul-
tiversion concurrency control mechanism.

Connection An established line of communication between a client process and a back-
end process, usually over a network, supporting a session. This term is
sometimes used as a synonym for session.

For more information, see Section 19.3.

Consistency The property that the data in the database is always in compliance with in-
tegrity constraints. Transactions may be allowed to violate some of the con-
straints transiently before it commits, but if such violations are not resolved

2705

Glossary

by the time it commits, such a transaction is automatically rolled back. This
is one of the ACID properties.

Constraint A restriction on the values of data allowed within a table, or in attributes
of a domain.

For more information, see Section 5.5.

Cumulative Statistics
System

A system which, if enabled, accumulates statistical information about the
instance's activities.

For more information, see Section 27.2.

Data area See Data directory.

Database A named collection of local SQL objects.

For more information, see Section 22.1.

Database cluster A collection of databases and global SQL objects, and their common stat-
ic and dynamic metadata. Sometimes referred to as a cluster. A database
cluster is created using the initdb program.

In PostgreSQL, the term cluster is also sometimes used to refer to an in-
stance. (Don't confuse this term with the SQL command CLUSTER.)

See also cluster owner, the operating-system owner of a cluster, and boot-
strap superuser, the PostgreSQL owner of a cluster.

Database server See Instance.

Database superuser A role having superuser status (see Section 21.2).

Frequently referred to as superuser.

Data directory The base directory on the file system of a server that contains all data files
and subdirectories associated with a database cluster (with the exception
of tablespaces, and optionally WAL). The environment variable PGDATA is
commonly used to refer to the data directory.

A cluster's storage space comprises the data directory plus any additional
tablespaces.

For more information, see Section 66.1.

Data page The basic structure used to store relation data. All pages are of the same
size. Data pages are typically stored on disk, each in a specific file, and
can be read to shared buffers where they can be modified, becoming dirty.
They become clean when written to disk. New pages, which initially exist
in memory only, are also dirty until written.

Datum The internal representation of one value of an SQL data type.

Delete An SQL command which removes rows from a given table or relation.

For more information, see DELETE.

Domain A user-defined data type that is based on another underlying data type. It
acts the same as the underlying type except for possibly restricting the set
of allowed values.

For more information, see Section 8.18.

2706

Glossary

Durability The assurance that once a transaction has been committed, the changes re-
main even after a system failure or crash. This is one of the ACID properties.

Epoch See Transaction ID.

Extension A software add-on package that can be installed on an instance to get extra
features.

For more information, see Section 36.17.

File segment A physical file which stores data for a given relation. File segments are
limited in size by a configuration value (typically 1 gigabyte), so if a relation
exceeds that size, it is split into multiple segments.

For more information, see Section 66.1.

(Don't confuse this term with the similar term WAL segment).

Foreign data wrapper A means of representing data that is not contained in the local database so
that it appears as if were in local table(s). With a foreign data wrapper it is
possible to define a foreign server and foreign tables.

For more information, see CREATE FOREIGN DATA WRAPPER.

Foreign key A type of constraint defined on one or more columns in a table which re-
quires the value(s) in those columns to identify zero or one row in another
(or, infrequently, the same) table.

Foreign server A named collection of foreign tables which all use the same foreign data
wrapper and have other configuration values in common.

For more information, see CREATE SERVER.

Foreign table (relation) A relation which appears to have rows and columns similar to a regular
table, but will forward requests for data through its foreign data wrapper,
which will return result sets structured according to the definition of the
foreign table.

For more information, see CREATE FOREIGN TABLE.

Fork Each of the separate segmented file sets in which a relation is stored. The
main fork is where the actual data resides. There also exist two secondary
forks for metadata: the free space map and the visibility map. Unlogged
relations also have an init fork.

Free space map (fork) A storage structure that keeps metadata about each data page of a table's
main fork. The free space map entry for each page stores the amount of free
space that's available for future tuples, and is structured to be efficiently
searched for available space for a new tuple of a given size.

For more information, see Section 66.3.

Function (routine) A type of routine that receives zero or more arguments, returns zero or more
output values, and is constrained to run within one transaction. Functions
are invoked as part of a query, for example via SELECT. Certain functions
can return sets; those are called set-returning functions.

Functions can also be used for triggers to invoke.

For more information, see CREATE FUNCTION.

GMT See UTC.

2707

Glossary

Grant An SQL command that is used to allow a user or role to access specific
objects within the database.

For more information, see GRANT.

Heap Contains the values of row attributes (i.e., the data) for a relation. The heap
is realized within one or more file segments in the relation's main fork.

Host A computer that communicates with other computers over a network. This
is sometimes used as a synonym for server. It is also used to refer to a
computer where client processes run.

Index (relation) A relation that contains data derived from a table or materialized view. Its
internal structure supports fast retrieval of and access to the original data.

For more information, see CREATE INDEX.

Incremental backup A special base backup that for some files may contain only those pages that
were modified since a previous backup, as opposed to the full contents of
every file. Like base backups, it is generated by the tool pg_basebackup.

To restore incremental backups the tool pg_combinebackup is used, which
combines incremental backups with a base backup. Afterwards, recovery
can use WAL to bring the database cluster to a consistent state.

For more information, see Section 25.3.3.

Input/Output (I/O) Input/Output (I/O) describes the communication between a program and
peripheral devices. In the context of database systems, I/O commonly, but
not exclusively, refers to interaction with storage devices or the network.

See Also Asynchronous I/O.

Insert An SQL command used to add new data into a table.

For more information, see INSERT.

Instance A group of backend and auxiliary processes that communicate using a com-
mon shared memory area. One postmaster process manages the instance;
one instance manages exactly one database cluster with all its databases.
Many instances can run on the same server as long as their TCP ports do
not conflict.

The instance handles all key features of a DBMS: read and write access to
files and shared memory, assurance of the ACID properties, connections to
client processes, privilege verification, crash recovery, replication, etc.

Isolation The property that the effects of a transaction are not visible to concurrent
transactions before it commits. This is one of the ACID properties.

For more information, see Section 13.2.

Join An operation and SQL keyword used in queries for combining data from
multiple relations.

Key A means of identifying a row within a table or other relation by values con-
tained within one or more attributes in that relation.

Lock A mechanism that allows a process to limit or prevent simultaneous access
to a resource.

2708

Glossary

Log file Log files contain human-readable text lines about events. Examples include
login failures, long-running queries, etc.

For more information, see Section 24.3.

Logged A table is considered logged if changes to it are sent to the WAL. By default,
all regular tables are logged. A table can be specified as unlogged either at
creation time or via the ALTER TABLE command.

Logger (process) An auxiliary process which, if enabled, writes information about database
events into the current log file. When reaching certain time- or volume-de-
pendent criteria, a new log file is created. Also called syslogger.

For more information, see Section 19.8.

Logical replication clus-
ter

A set of publisher and subscriber instances with the publisher instance repli-
cating changes to the subscriber instance.

Log record Archaic term for a WAL record.

Log sequence number
(LSN)

Byte offset into the WAL, increasing monotonically with each new WAL
record.

For more information, see pg_lsn and Section 28.6.

LSN See Log sequence number.

Master (server) See Primary (server).

Materialized The property that some information has been pre-computed and stored for
later use, rather than computing it on-the-fly.

This term is used in materialized view, to mean that the data derived from
the view's query is stored on disk separately from the sources of that data.

This term is also used to refer to some multi-step queries to mean that the
data resulting from executing a given step is stored in memory (with the
possibility of spilling to disk), so that it can be read multiple times by another
step.

Materialized view (rela-
tion)

A relation that is defined by a SELECT statement (just like a view), but stores
data in the same way that a table does. It cannot be modified via INSERT,
UPDATE, DELETE, or MERGE operations.

For more information, see CREATE MATERIALIZED VIEW.

Merge An SQL command used to conditionally add, modify, or remove rows in a
given table, using data from a source relation.

For more information, see MERGE.

Multi-version concurren-
cy control (MVCC)

A mechanism designed to allow several transactions to be reading and writ-
ing the same rows without one process causing other processes to stall. In
PostgreSQL, MVCC is implemented by creating copies (versions) of tuples
as they are modified; after transactions that can see the old versions termi-
nate, those old versions need to be removed.

Null A concept of non-existence that is a central tenet of relational database
theory. It represents the absence of a definite value.

Optimizer See Query planner.

2709

Glossary

Parallel query The ability to handle parts of executing a query to take advantage of parallel
processes on servers with multiple CPUs.

Partition One of several disjoint (not overlapping) subsets of a larger set.

In reference to a partitioned table: One of the tables that each contain part
of the data of the partitioned table, which is said to be the parent. The par-
tition is itself a table, so it can also be queried directly; at the same time,
a partition can sometimes be a partitioned table, allowing hierarchies to be
created.

In reference to a window function in a query, a partition is a user-defined
criterion that identifies which neighboring rows of the query's result set can
be considered by the function.

Partitioned table (rela-
tion)

A relation that is in semantic terms the same as a table, but whose storage
is distributed across several partitions.

Postmaster (process) The very first process of an instance. It starts and manages the auxiliary
processes and creates backend processes on demand.

For more information, see Section 18.3.

Primary key A special case of a unique constraint defined on a table or other relation
that also guarantees that all of the attributes within the primary key do not
have null values. As the name implies, there can be only one primary key
per table, though it is possible to have multiple unique constraints that also
have no null-capable attributes.

Primary (server) When two or more databases are linked via replication, the server that is
considered the authoritative source of information is called the primary,
also known as a master.

Procedure (routine) A type of routine. Their distinctive qualities are that they do not return val-
ues, and that they are allowed to make transactional statements such as
COMMIT and ROLLBACK. They are invoked via the CALL command.

For more information, see CREATE PROCEDURE.

Query A request sent by a client to a backend, usually to return results or to modify
data on the database.

Query planner The part of PostgreSQL that is devoted to determining (planning) the most
efficient way to execute queries. Also known as query optimizer, optimizer,
or simply planner.

Record See Tuple.

Recycling See WAL file.

Referential integrity A means of restricting data in one relation by a foreign key so that it must
have matching data in another relation.

Relation The generic term for all objects in a database that have a name and a list
of attributes defined in a specific order. Tables, sequences, views, foreign
tables, materialized views, composite types, and indexes are all relations.

More generically, a relation is a set of tuples; for example, the result of a
query is also a relation.

In PostgreSQL, Class is an archaic synonym for relation.

2710

Glossary

Replica (server) A database that is paired with a primary database and is maintaining a copy
of some or all of the primary database's data. The foremost reasons for doing
this are to allow for greater access to that data, and to maintain availability
of the data in the event that the primary becomes unavailable.

Replication The act of reproducing data on one server onto another server called a repli-
ca. This can take the form of physical replication, where all file changes
from one server are copied verbatim, or logical replication where a defined
subset of data changes are conveyed using a higher-level representation.

Restartpoint A variant of a checkpoint performed on a replica.

For more information, see Section 28.5.

Result set A relation transmitted from a backend process to a client upon the comple-
tion of an SQL command, usually a SELECT but it can be an INSERT, UPDATE,
DELETE, or MERGE command if the RETURNING clause is specified.

The fact that a result set is a relation means that a query can be used in the
definition of another query, becoming a subquery.

Revoke A command to prevent access to a named set of database objects for a
named list of roles.

For more information, see REVOKE.

Role A collection of access privileges to the instance. Roles are themselves a priv-
ilege that can be granted to other roles. This is often done for convenience
or to ensure completeness when multiple users need the same privileges.

For more information, see CREATE ROLE.

Rollback A command to undo all of the operations performed since the beginning of
a transaction.

For more information, see ROLLBACK.

Routine A defined set of instructions stored in the database system that can be in-
voked for execution. A routine can be written in a variety of programming
languages. Routines can be functions (including set-returning functions and
trigger functions), aggregate functions, and procedures.

Many routines are already defined within PostgreSQL itself, but user-de-
fined ones can also be added.

Row See Tuple.

Savepoint A special mark in the sequence of steps in a transaction. Data modifications
after this point in time may be reverted to the time of the savepoint.

For more information, see SAVEPOINT.

Schema A schema is a namespace for SQL objects, which all reside in the same
database. Each SQL object must reside in exactly one schema.

All system-defined SQL objects reside in schema pg_catalog.

More generically, the term schema is used to mean all data descriptions
(table definitions, constraints, comments, etc.) for a given database or sub-
set thereof.

2711

Glossary

For more information, see Section 5.10.

Segment See File segment.

Select The SQL command used to request data from a database. Normally, SELECT
commands are not expected to modify the database in any way, but it is
possible that functions invoked within the query could have side effects that
do modify data.

For more information, see SELECT.

Sequence (relation) A type of relation that is used to generate values. Typically the generated
values are sequential non-repeating numbers. They are commonly used to
generate surrogate primary key values.

Server A computer on which PostgreSQL instances run. The term server denotes
real hardware, a container, or a virtual machine.

This term is sometimes used to refer to an instance or to a host.

Session A state that allows a client and a backend to interact, communicating over
a connection.

Shared memory RAM which is used by the processes common to an instance. It mirrors
parts of database files, provides a transient area for WAL records, and stores
additional common information. Note that shared memory belongs to the
complete instance, not to a single database.

The largest part of shared memory is known as shared buffers and is used
to mirror part of data files, organized into pages. When a page is modified,
it is called a dirty page until it is written back to the file system.

For more information, see Section 19.4.1.

SQL object Any object that can be created with a CREATE command. Most objects are
specific to one database, and are commonly known as local objects.

Most local objects reside in a specific schema in their containing database,
such as relations (all types), routines (all types), data types, etc. The names
of such objects of the same type in the same schema are enforced to be
unique.

There also exist local objects that do not reside in schemas; some examples
are extensions, data type casts, and foreign data wrappers. The names of
such objects of the same type are enforced to be unique within the database.

Other object types, such as roles, tablespaces, replication origins, subscrip-
tions for logical replication, and databases themselves are not local SQL
objects since they exist entirely outside of any specific database; they are
called global objects. The names of such objects are enforced to be unique
within the whole database cluster.

For more information, see Section 22.1.

SQL standard A series of documents that define the SQL language.

Standby (server) See Replica (server).

Startup process An auxiliary process that replays WAL during crash recovery and in a phys-
ical replica.

2712

Glossary

(The name is historical: the startup process was named before replication
was implemented; the name refers to its task as it relates to the server
startup following a crash.)

Superuser As used in this documentation, it is a synonym for database superuser.

System catalog A collection of tables which describe the structure of all SQL objects of
the instance. The system catalog resides in the schema pg_catalog. These
tables contain data in internal representation and are not typically consid-
ered useful for user examination; a number of user-friendlier views, also in
schema pg_catalog, offer more convenient access to some of that informa-
tion, while additional tables and views exist in schema information_schema
(see Chapter 35) that expose some of the same and additional information
as mandated by the SQL standard.

For more information, see Section 5.10.

Table A collection of tuples having a common data structure (the same number of
attributes, in the same order, having the same name and type per position).
A table is the most common form of relation in PostgreSQL.

For more information, see CREATE TABLE.

Tablespace A named location on the server file system. All SQL objects which require
storage beyond their definition in the system catalog must belong to a single
tablespace. Initially, a database cluster contains a single usable tablespace
which is used as the default for all SQL objects, called pg_default.

For more information, see Section 22.6.

Temporary table Tables that exist either for the lifetime of a session or a transaction, as spec-
ified at the time of creation. The data in them is not visible to other sessions,
and is not logged. Temporary tables are often used to store intermediate
data for a multi-step operation.

For more information, see CREATE TABLE.

TOAST A mechanism by which large attributes of table rows are split and stored in a
secondary table, called the TOAST table. Each relation with large attributes
has its own TOAST table.

For more information, see Section 66.2.

Transaction A combination of commands that must act as a single atomic command:
they all succeed or all fail as a single unit, and their effects are not visible
to other sessions until the transaction is complete, and possibly even later,
depending on the isolation level.

For more information, see Section 13.2.

Transaction ID The numerical, unique, sequentially-assigned identifier that each transac-
tion receives when it first causes a database modification. Frequently ab-
breviated as xid. When stored on disk, xids are only 32-bits wide, so only
approximately four billion write transaction IDs can be generated; to permit
the system to run for longer than that, epochs are used, also 32 bits wide.
When the counter reaches the maximum xid value, it starts over at 3 (val-
ues under that are reserved) and the epoch value is incremented by one. In
some contexts, the epoch and xid values are considered together as a single
64-bit value; see Section 67.1 for more details.

2713

Glossary

For more information, see Section 8.19.

Transactions per second
(TPS)

Average number of transactions that are executed per second, totaled
across all sessions active for a measured run. This is used as a measure of
the performance characteristics of an instance.

Trigger A function which can be defined to execute whenever a certain operation
(INSERT, UPDATE, DELETE, TRUNCATE) is applied to a relation. A trigger exe-
cutes within the same transaction as the statement which invoked it, and if
the function fails, then the invoking statement also fails.

For more information, see CREATE TRIGGER.

Tuple A collection of attributes in a fixed order. That order may be defined by
the table (or other relation) where the tuple is contained, in which case the
tuple is often called a row. It may also be defined by the structure of a result
set, in which case it is sometimes called a record.

Unique constraint A type of constraint defined on a relation which restricts the values allowed
in one or a combination of columns so that each value or combination of
values can only appear once in the relation — that is, no other row in the
relation contains values that are equal to those.

Because null values are not considered equal to each other, multiple rows
with null values are allowed to exist without violating the unique constraint.

Unlogged The property of certain relations that the changes to them are not reflected
in the WAL. This disables replication and crash recovery for these relations.

The primary use of unlogged tables is for storing transient work data that
must be shared across processes.

Temporary tables are always unlogged.

Update An SQL command used to modify rows that may already exist in a specified
table. It cannot create or remove rows.

For more information, see UPDATE.

User A role that has the login privilege (see Section 21.2).

User mapping The translation of login credentials in the local database to credentials in a
remote data system defined by a foreign data wrapper.

For more information, see CREATE USER MAPPING.

UTC Universal Coordinated Time, the primary global time reference, approxi-
mately the time prevailing at the zero meridian of longitude. Often but in-
accurately referred to as GMT (Greenwich Mean Time).

Vacuum The process of removing outdated tuple versions from tables or materialized
views, and other closely related processing required by PostgreSQL's im-
plementation of MVCC. This can be initiated through the use of the VACUUM
command, but can also be handled automatically via autovacuum processes.

For more information, see Section 24.1 .

View A relation that is defined by a SELECT statement, but has no storage of its
own. Any time a query references a view, the definition of the view is sub-

2714

Glossary

stituted into the query as if the user had typed it as a subquery instead of
the name of the view.

For more information, see CREATE VIEW.

Visibility map (fork) A storage structure that keeps metadata about each data page of a table's
main fork. The visibility map entry for each page stores two bits: the first
one (all-visible) indicates that all tuples in the page are visible to all
transactions. The second one (all-frozen) indicates that all tuples in the
page are marked frozen.

WAL See Write-ahead log.

WAL archiver (process) An auxiliary process which, if enabled, saves copies of WAL files for the
purpose of creating backups or keeping replicas current.

For more information, see Section 25.3.

WAL file Also known as WAL segment or WAL segment file. Each of the sequential-
ly-numbered files that provide storage space for WAL. The files are all of
the same predefined size and are written in sequential order, interspers-
ing changes as they occur in multiple simultaneous sessions. If the system
crashes, the files are read in order, and each of the changes is replayed to
restore the system to the state it was in before the crash.

Each WAL file can be released after a checkpoint writes all the changes in
it to the corresponding data files. Releasing the file can be done either by
deleting it, or by changing its name so that it will be used in the future,
which is called recycling.

For more information, see Section 28.6.

WAL record A low-level description of an individual data change. It contains sufficient
information for the data change to be re-executed (replayed) in case a sys-
tem failure causes the change to be lost. WAL records use a non-printable
binary format.

For more information, see Section 28.6.

WAL receiver (process) An auxiliary process that runs on a replica to receive WAL from the primary
server for replay by the startup process.

For more information, see Section 26.2.

WAL segment See WAL file.

WAL sender (process) A special backend process that streams WAL over a network. The receiving
end can be a WAL receiver in a replica, pg_receivewal, or any other client
program that speaks the replication protocol.

WAL summarizer
(process)

An auxiliary process that summarizes WAL data for incremental backups.

For more information, see Section 19.5.7.

WAL writer (process) An auxiliary process that writes WAL records from shared memory to WAL
files.

For more information, see Section 19.5.

Window function (rou-
tine)

A type of function used in a query that applies to a partition of the query's
result set; the function's result is based on values found in rows of the same
partition or frame.

2715

Glossary

All aggregate functions can be used as window functions, but window func-
tions can also be used to, for example, give ranks to each of the rows in the
partition. Also known as analytic functions.

For more information, see Section 3.5.

Write-ahead log The journal that keeps track of the changes in the database cluster as user-
and system-invoked operations take place. It comprises many individual
WAL records written sequentially to WAL files.

2716

Appendix N. Color Support
Most programs in the PostgreSQL package can produce colorized console output. This appendix de-
scribes how that is configured.

N.1. When Color is Used
To use colorized output, set the environment variable PG_COLORas follows:
1. If the value is always, then color is used.
2. If the value is auto and the standard error stream is associated with a terminal device, then color

is used.
3. Otherwise, color is not used.

N.2. Configuring the Colors
The actual colors to be used are configured using the environment variable PG_COLORS(note plural). The
value is a colon-separated list of key=value pairs. The keys specify what the color is to be used for. The
values are SGR (Select Graphic Rendition) specifications, which are interpreted by the terminal.

The following keys are currently in use:

error

used to highlight the text “error” in error messages

warning

used to highlight the text “warning” in warning messages

note

used to highlight the text “detail” and “hint” in such messages

locus

used to highlight location information (e.g., program name and file name) in messages

The default value is error=01;31:warning=01;35:note=01;36:locus=01 (01;31 = bold red, 01;35 =
bold magenta, 01;36 = bold cyan, 01 = bold default color).

Tip
This color specification format is also used by other software packages such as GCC, GNU core-
utils, and GNU grep.

2717

Appendix O. Obsolete or Renamed
Features

Functionality is sometimes removed from PostgreSQL, feature, setting and file names sometimes change,
or documentation moves to different places. This section directs users coming from old versions of the
documentation or from external links to the appropriate new location for the information they need.

O.1. recovery.conf file merged into postgresql.conf
PostgreSQL 11 and below used a configuration file named recovery.conf to manage replicas and stand-
bys. Support for this file was removed in PostgreSQL 12. See the release notes for PostgreSQL 12 for
details on this change.

On PostgreSQL 12 and above, archive recovery, streaming replication, and PITR are configured using
normal server configuration parameters. These are set in postgresql.conf or via ALTER SYSTEM like
any other parameter.

The server will not start if a recovery.conf exists.

PostgreSQL 15 and below had a setting promote_trigger_file, or trigger_file before 12. Use pg_ctl
promote or call pg_promote() to promote a standby instead.

The standby_mode setting has been removed. A standby.signal file in the data directory is used instead.
See Standby Server Operation for details.

O.2. Default Roles Renamed to Predefined Roles
PostgreSQL 13 and below used the term “Default Roles”. However, as these roles are not able to actually
be changed and are installed as part of the system at initialization time, the more appropriate term to
use is “Predefined Roles”. See Section 21.5 for current documentation regarding Predefined Roles, and
the release notes for PostgreSQL 14 for details on this change.

O.3. pg_xlogdump renamed to pg_waldump
PostgreSQL 9.6 and below provided a command named pg_xlogdump to read write-ahead-log (WAL) files.
This command was renamed to pg_waldump, see pg_waldump for documentation of pg_waldump and see
the release notes for PostgreSQL 10 for details on this change.

O.4. pg_resetxlog renamed to pg_resetwal
PostgreSQL 9.6 and below provided a command named pg_resetxlog to reset the write-ahead-log (WAL)
files. This command was renamed to pg_resetwal, see pg_resetwal for documentation of pg_resetwal
and see the release notes for PostgreSQL 10 for details on this change.

O.5. pg_receivexlog renamed to pg_receivewal
PostgreSQL 9.6 and below provided a command named pg_receivexlog to fetch write-ahead-log (WAL)
files. This command was renamed to pg_receivewal, see pg_receivewal for documentation of pg_re-
ceivewal and see the release notes for PostgreSQL 10 for details on this change.

2718

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are available
at the University of California, Berkeley, Computer Science Department web site.

SQL Reference Books
[bowman01] The Practical SQL Handbook. Using SQL Variants. Fourth Edition. Judith Bowman, Sandra

Emerson, and Marcy Darnovsky. ISBN 0-201-70309-2. Addison-Wesley Professional. 2001.

[date97] A Guide to the SQL Standard. A user's guide to the standard database language SQL. Fourth
Edition. C. J. Date and Hugh Darwen. ISBN 0-201-96426-0. Addison-Wesley. 1997.

[date04] An Introduction to Database Systems. Eighth Edition. C. J. Date. ISBN 0-321-19784-4. Addi-
son-Wesley. 2003.

[elma04] Fundamentals of Database Systems. Fourth Edition. Ramez Elmasri and Shamkant Navathe.
ISBN 0-321-12226-7. Addison-Wesley. 2003.

[melt93] Understanding the New SQL. A complete guide. Jim Melton and Alan R. Simon. ISBN
1-55860-245-3. Morgan Kaufmann. 1993.

[ull88] Principles of Database and Knowledge-Base Systems. Classical Database Systems. Jeffrey D. Ull-
man. Volume 1. Computer Science Press. 1988.

[sqltr-19075-6] SQL Technical Report. Part 6: SQL support for JavaScript Object Notation (JSON). First
Edition. 2017.

PostgreSQL-specific Documentation
[sim98] Enhancement of the ANSI SQL Implementation of PostgreSQL. Stefan Simkovics. Department of

Information Systems, Vienna University of Technology. Vienna, Austria. November 29, 1998.

[yu95] The Postgres95. User Manual. A. Yu and J. Chen. University of California. Berkeley, California.
Sept. 5, 1995.

[fong] The design and implementation of the POSTGRES query optimizer. Zelaine Fong. University of
California, Berkeley, Computer Science Department.

Proceedings and Articles
[berenson95] “A Critique of ANSI SQL Isolation Levels”. H. Berenson, P. Bernstein, J. Gray, J. Melton, E.

O'Neil, and P. O'Neil. ACM-SIGMOD Conference on Management of Data, June 1995.

[hell18] “Looking Back at Postgres”. J. Hellerstein. Making Databases Work. ISBN 978-1-947487-19-2.
Association for Computing Machinery and Morgan & Claypool. 2018.

[olson93] Partial indexing in POSTGRES: research project. Nels Olson. UCB Engin T7.49.1993 O676.
University of California. Berkeley, California. 1993.

[ong90] “A Unified Framework for Version Modeling Using Production Rules in a Database System”. L.
Ong and J. Goh. ERL Technical Memorandum M90/33. University of California. Berkeley, California.
April, 1990.

[ports12] “Serializable Snapshot Isolation in PostgreSQL”. D. Ports and K. Grittner. VLDB Conference,
August 2012.

2719

https://dsf.berkeley.edu/papers/
https://dsf.berkeley.edu/papers/UCB-MS-zfong.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://arxiv.org/pdf/1901.01973
https://search.library.berkeley.edu/permalink/01UCS_BER/iqob43/alma991082339239706532
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1466.html
https://arxiv.org/pdf/1208.4179

Bibliography

[rowe87] “The POSTGRES data model”. L. Rowe and M. Stonebraker. VLDB Conference, Sept. 1987.

[seshadri95] “Generalized Partial Indexes”. P. Seshadri and A. Swami. Eleventh International Conference
on Data Engineering, 6–10 March 1995. Cat. No.95CH35724. IEEE Computer Society Press. Los
Alamitos, California. 1995. 420–7.

[ston86] “The design of POSTGRES”. M. Stonebraker and L. Rowe. ACM-SIGMOD Conference on Man-
agement of Data, May 1986.

[ston87a] “The design of the POSTGRES. rules system”. M. Stonebraker, E. Hanson, and C. H. Hong.
IEEE Conference on Data Engineering, Feb. 1987.

[ston87b] “The design of the POSTGRES storage system”. M. Stonebraker. VLDB Conference, Sept. 1987.

[ston89] “A commentary on the POSTGRES rules system”. M. Stonebraker, M. Hearst, and S. Potamianos.
SIGMOD Record 18(3). Sept. 1989.

[ston89b] “The case for partial indexes”. M. Stonebraker. SIGMOD Record 18(4). Dec. 1989. 4–11.

[ston90a] “The implementation of POSTGRES”. M. Stonebraker, L. A. Rowe, and M. Hirohama. Transac-
tions on Knowledge and Data Engineering 2(1). IEEE. March 1990.

[ston90b] “On Rules, Procedures, Caching and Views in Database Systems”. M. Stonebraker, A. Jhingran,
J. Goh, and S. Potamianos. ACM-SIGMOD Conference on Management of Data, June 1990.

[ston92] “ An overview of the Sequoia 2000 project ”. M. Stonebraker. Digest of Papers COMPCON Spring
1992. 1992. 383–388.

2720

https://dsf.berkeley.edu/papers/ERL-M87-13.pdf
https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.5740
https://dsf.berkeley.edu/papers/ERL-M85-95.pdf
https://dsf.berkeley.edu/papers/ERL-M87-06.pdf
https://dsf.berkeley.edu/papers/ERL-M89-82.pdf
https://dsf.berkeley.edu/papers/ERL-M89-17.pdf
https://dsf.berkeley.edu/papers/ERL-M90-34.pdf
https://dsf.berkeley.edu/papers/ERL-M90-36.pdf
https://dsf.berkeley.edu/papers/S2K-91-05.pdf

Index
Symbols
$, 31
$libdir, 1114
$libdir/plugins, 617, 1787
*, 111
.pgpass, 917
.pg_service.conf, 917
::, 37
_PG_archive_module_init, 1406
_PG_init, 1114
_PG_oauth_validator_module_init, 1410
_PG_output_plugin_init, 1395

A
abbrev, 264
ABORT, 1415
abs, 194
ACL, 61
aclcontains, 348
acldefault, 349
aclexplode, 349
aclitem, 65
aclitemeq, 348
acos, 198
acosd, 198
acosh, 200
administration tools

externally maintained, 2689
advisory lock, 458
age, 243, 358
aggregate function, 11

built-in, 326
invocation, 33
moving aggregate, 1140
ordered set, 1143
partial aggregation, 1143
polymorphic, 1141
support functions for, 1144
user-defined, 1138
variadic, 1141

akeys, 2552
alias

for table name in query, 10
in the FROM clause, 101
in the select list, 111

ALL, 335, 338
GROUP BY ALL, 108
SELECT ALL, 112

allow_alter_system configuration parameter, 622
allow_in_place_tablespaces configuration parame-
ter, 625
allow_system_table_mods configuration parameter,
625
ALTER AGGREGATE, 1416

ALTER COLLATION, 1418
ALTER CONVERSION, 1420
ALTER DATABASE, 1421
ALTER DEFAULT PRIVILEGES, 1423
ALTER DOMAIN, 1426
ALTER EVENT TRIGGER, 1429
ALTER EXTENSION, 1430
ALTER FOREIGN DATA WRAPPER, 1433
ALTER FOREIGN TABLE, 1435
ALTER FUNCTION, 1440
ALTER GROUP, 1443
ALTER INDEX, 1445
ALTER LANGUAGE, 1448
ALTER LARGE OBJECT, 1449
ALTER MATERIALIZED VIEW, 1450
ALTER OPERATOR, 1452
ALTER OPERATOR CLASS, 1454
ALTER OPERATOR FAMILY, 1455
ALTER POLICY, 1458
ALTER PROCEDURE, 1459
ALTER PUBLICATION, 1462
ALTER ROLE, 656, 1465
ALTER ROUTINE, 1469
ALTER RULE, 1470
ALTER SCHEMA, 1471
ALTER SEQUENCE, 1472
ALTER SERVER, 1475
ALTER STATISTICS, 1476
ALTER SUBSCRIPTION, 1477
ALTER SYSTEM, 1480
ALTER TABLE, 1482
ALTER TABLESPACE, 1499
ALTER TEXT SEARCH CONFIGURATION, 1500
ALTER TEXT SEARCH DICTIONARY, 1502
ALTER TEXT SEARCH PARSER, 1504
ALTER TEXT SEARCH TEMPLATE, 1505
ALTER TRIGGER, 1506
ALTER TYPE, 1508
ALTER USER, 1512
ALTER USER MAPPING, 1513
ALTER VIEW, 1514
ALTER_REPLICATION_SLOT, 2203
amcheck, 2484
ANALYZE, 691, 1516
AND (operator), 188
anonymous code blocks, 1711
any, 186
ANY, 330, 335, 338
anyarray, 186
anycompatible, 186
anycompatiblearray, 186
anycompatiblemultirange, 186
anycompatiblenonarray, 186
anycompatiblerange, 186
anyelement, 186
anyenum, 186
anymultirange, 186
anynonarray, 186

2721

Index

anyrange, 186
any_value, 327
applicable role, 1045
application_name configuration parameter, 594
arbitrary precision numbers, 125
Archive Modules, 1406
archive_cleanup_command configuration parame-
ter, 573
archive_command configuration parameter, 571
archive_library configuration parameter, 571
archive_mode configuration parameter, 571
archive_timeout configuration parameter, 571
area, 260
armor, 2594
array, 164

accessing, 166
constant, 165
constructor, 39
declaration, 164
I/O, 171
modifying, 168
of user-defined type, 1147
searching, 171

ARRAY, 39
determination of result type, 394

array_agg, 327, 2557
array_append, 319
array_cat, 319
array_dims, 319
array_fill, 319
array_length, 319
array_lower, 319
array_ndims, 319
array_nulls configuration parameter, 620
array_position, 319
array_positions, 319
array_prepend, 320
array_remove, 320
array_replace, 320
array_reverse, 320
array_sample, 320
array_shuffle, 320
array_sort, 320
array_to_json, 289
array_to_string, 320
array_to_tsvector, 267
array_upper, 320
ascii, 203
asin, 198
asind, 198
asinh, 200
ASSERT

in PL/pgSQL, 1259
assertions

in PL/pgSQL, 1259
asynchronous commit, 796
Asynchronous I/O, 2703
AT LOCAL, 252

AT TIME ZONE, 252
atan, 198
atan2, 198
atan2d, 198
atand, 198
atanh, 200
authentication_timeout configuration parameter,
553
auth_delay, 2489
auth_delay.milliseconds configuration parameter,
2489
auto-increment (see serial)
autocommit

bulk-loading data, 482
psql, 2020

autosummarize storage parameter, 1592
autovacuum

general information, 696
autovacuum configuration parameter, 605
autovacuum_analyze_scale_factor

configuration parameter, 606
storage parameter, 1660

autovacuum_analyze_threshold
configuration parameter, 605
storage parameter, 1659

autovacuum_enabled storage parameter, 1659
autovacuum_freeze_max_age

configuration parameter, 606
storage parameter, 1660

autovacuum_freeze_min_age storage parameter,
1660
autovacuum_freeze_table_age storage parameter,
1660
autovacuum_max_workers configuration parame-
ter, 605
autovacuum_multixact_freeze_max_age

configuration parameter, 606
storage parameter, 1660

autovacuum_multixact_freeze_min_age storage pa-
rameter, 1660
autovacuum_multixact_freeze_table_age storage
parameter, 1660
autovacuum_naptime configuration parameter, 605
autovacuum_vacuum_cost_delay

configuration parameter, 606
storage parameter, 1660

autovacuum_vacuum_cost_limit
configuration parameter, 606
storage parameter, 1660

autovacuum_vacuum_insert_scale_factor
configuration parameter, 606
storage parameter, 1659

autovacuum_vacuum_insert_threshold
configuration parameter, 605
storage parameter, 1659

autovacuum_vacuum_max_threshold
configuration parameter, 606
storage parameter, 1659

2722

Index

autovacuum_vacuum_scale_factor
configuration parameter, 605
storage parameter, 1659

autovacuum_vacuum_threshold
configuration parameter, 605
storage parameter, 1659

autovacuum_worker_slots configuration parame-
ter, 605
autovacuum_work_mem configuration parameter,
559
auto_explain, 2490
auto_explain.log_analyze configuration parameter,
2490
auto_explain.log_buffers configuration parameter,
2490
auto_explain.log_format configuration parameter,
2491
auto_explain.log_level configuration parameter,
2491
auto_explain.log_min_duration configuration para-
meter, 2490
auto_explain.log_nested_statements configuration
parameter, 2491
auto_explain.log_parameter_max_length configura-
tion parameter, 2490
auto_explain.log_settings configuration parameter,
2491
auto_explain.log_timing configuration parameter,
2491
auto_explain.log_triggers configuration parameter,
2491
auto_explain.log_verbose configuration parameter,
2491
auto_explain.log_wal configuration parameter,
2490
auto_explain.sample_rate configuration parameter,
2491
avals, 2552
average, 327
avg, 327

B
B-Tree (see index)
backend_flush_after configuration parameter, 563
Background workers, 1386
backslash escapes, 24
backslash_quote configuration parameter, 620
backtrace_functions configuration parameter, 625
backup, 365, 700
Backup Manifest, 2390
base type, 1093
base64 format, 213
basebackup_to_shell, 2493
basebackup_to_shell.command configuration para-
meter, 2493
basebackup_to_shell.required_role configuration
parameter, 2493
BASE_BACKUP, 2207

basic_archive, 2494
basic_archive.archive_directory configuration para-
meter, 2494
batch mode

in libpq, 889
BEGIN, 1519
BETWEEN, 191
BETWEEN SYMMETRIC, 191
BGWORKER_BACKEND_
DATABASE_CONNECTION, 1386
BGWORKER_SHMEM_ACCESS, 1386
bgwriter_delay configuration parameter, 562
bgwriter_flush_after configuration parameter, 562
bgwriter_lru_maxpages configuration parameter,
562
bgwriter_lru_multiplier configuration parameter,
562
bigint, 27, 125
bigserial, 128
binary data, 132

functions, 210
binary string

concatenation, 210
converting to character string, 212
length, 211

bison, 492
bit string

constant, 26
data type, 150
length, 215

bit strings
functions, 214

bitmap scan, 402, 582
bit_and, 327
bit_count, 211, 214
bit_length, 201, 210, 215
bit_or, 327
bit_xor, 327
BLOB (see large object)
block_size configuration parameter, 623
bloom, 2495
bonjour configuration parameter, 552
bonjour_name configuration parameter, 552
Boolean

data type, 143
operators (see operators, logical)

bool_and, 327
bool_or, 327
booting

starting the server during, 526
bound_box, 261
box, 261
box (data type), 146
bpchar, 130
BRIN (see index)
brin_desummarize_range, 377
brin_metapage_info, 2580
brin_page_items, 2580

2723

Index

brin_page_type, 2579
brin_revmap_data, 2580
brin_summarize_new_values, 377
brin_summarize_range, 377
broadcast, 264
BSD Authentication, 651
btree_gin, 2499
btree_gist, 2500
btrim, 200, 210
bt_index_check, 2484
bt_index_parent_check, 2485
bt_metap, 2577
bt_multi_page_stats, 2577
bt_page_items, 2578, 2579
bt_page_stats, 2577
buffering storage parameter, 1591
bytea, 132
bytea_output configuration parameter, 614

C
C, 846, 948
C++, 1137
CALL, 1521
canceling SQL queries, 894
cardinality, 320
CASCADE

with DROP, 91
foreign key action, 56

Cascading Replication, 714
CASE, 315

determination of result type, 394
case sensitivity

of SQL commands, 22
casefold, 203
cast

I/O conversion, 1551
cbrt, 194
ceil, 194
ceiling, 194
center, 260
Certificate, 650
chained transactions, 1531, 1822

in PL/pgSQL, 1256
char, 130
character, 130
character set, 616, 624, 679
character string

concatenation, 200
constant, 24
converting to binary string, 212
data types, 130
length, 201
prefix test, 203

character varying, 130
character_length, 201
char_length, 201
check constraint, 50
CHECK OPTION, 1698

checkpoint, 798
CHECKPOINT, 1522
checkpoint_completion_target configuration para-
meter, 570
checkpoint_flush_after configuration parameter,
570
checkpoint_timeout configuration parameter, 570
checkpoint_warning configuration parameter, 570
checksums, 795
check_function_bodies configuration parameter,
611
chr, 203
cid, 183
cidr, 148
circle, 147, 262
citext, 2502
client authentication, 632

timeout during, 553
client_connection_check_interval configuration pa-
rameter, 553
client_encoding configuration parameter, 616
client_min_messages configuration parameter, 609
clock_timestamp, 243
CLOSE, 1523
cluster

of databases (see database cluster)
CLUSTER, 1524
clusterdb, 1883
clustering, 714
cluster_name configuration parameter, 602
cmax, 59
cmin, 59
COALESCE, 317
COLLATE, 38
collation, 670

in PL/pgSQL, 1228
in SQL functions, 1111

COLLATION FOR, 353
color, 2717
column, 6, 45

adding, 59
removing, 60
renaming, 61
system column, 58

column data type
changing, 61

column reference, 31
col_description, 357
comment

about database objects, 357
in SQL, 29

COMMENT, 1527
COMMIT, 1531
COMMIT PREPARED, 1532
commit_delay configuration parameter, 569
commit_siblings configuration parameter, 570
commit_timestamp_buffers configuration parame-
ter, 560

2724

Index

common table expression (see WITH)
comparison

composite type, 338
operators, 188
row constructor, 338
subquery result row, 335

compiling
libpq applications, 926

composite type, 172, 1093
comparison, 338
constant, 173
constructor, 40

computed field, 177
compute_query_id configuration parameter, 604
concat, 203
concat_ws, 203
concurrency, 448
conditional expression, 315
configuration

of recovery
general settings, 572
of a standby server, 572

of the server, 546
of the server

functions, 363
configure, 494
configure environment variables, 503
configure options, 496
config_file configuration parameter, 550
conjunction, 188
connectby, 2660, 2666
connection service file, 917
conninfo, 853
constant, 23
constraint, 49

adding, 60
check, 50
exclusion, 58
foreign key, 55
name, 50
NOT NULL, 52
primary key, 54
removing, 60
unique, 53

constraint exclusion, 89, 588
constraint_exclusion configuration parameter, 588
container type, 1093
CONTINUE

in PL/pgSQL, 1244
continuous archiving, 700

in standby, 725
control file, 1166
convert, 212
convert_from, 213
convert_to, 213
COPY, 7, 1533

with libpq, 900
corr, 330

correlation, 330
in the query planner, 477

cos, 199
cosd, 199
cosh, 199
cot, 199
cotd, 199
count, 327
covariance

population, 330
sample, 330

covar_pop, 330
covar_samp, 330
covering index, 406
cpu_index_tuple_cost configuration parameter, 585
cpu_operator_cost configuration parameter, 586
cpu_tuple_cost configuration parameter, 585
crc32, 211
crc32c, 211
CREATE ACCESS METHOD, 1543
CREATE AGGREGATE, 1544
CREATE CAST, 1551
CREATE COLLATION, 1555
CREATE CONVERSION, 1558
CREATE DATABASE, 661, 1560
CREATE DOMAIN, 1565
CREATE EVENT TRIGGER, 1568
CREATE EXTENSION, 1570
CREATE FOREIGN DATA WRAPPER, 1572
CREATE FOREIGN TABLE, 1574
CREATE FUNCTION, 1579
CREATE GROUP, 1587
CREATE INDEX, 1588
CREATE LANGUAGE, 1596
CREATE MATERIALIZED VIEW, 1598
CREATE OPERATOR, 1600
CREATE OPERATOR CLASS, 1603
CREATE OPERATOR FAMILY, 1606
CREATE POLICY, 1607
CREATE PROCEDURE, 1612
CREATE PUBLICATION, 1616
CREATE ROLE, 654, 1620
CREATE RULE, 1625
CREATE SCHEMA, 1628
CREATE SEQUENCE, 1630
CREATE SERVER, 1634
CREATE STATISTICS, 1636
CREATE SUBSCRIPTION, 1640
CREATE TABLE, 6, 1645
CREATE TABLE AS, 1667
CREATE TABLESPACE, 664, 1670
CREATE TEXT SEARCH CONFIGURATION, 1672
CREATE TEXT SEARCH DICTIONARY, 1673
CREATE TEXT SEARCH PARSER, 1675
CREATE TEXT SEARCH TEMPLATE, 1677
CREATE TRANSFORM, 1678
CREATE TRIGGER, 1680
CREATE TYPE, 1687

2725

Index

CREATE USER, 1696
CREATE USER MAPPING, 1697
CREATE VIEW, 1698
createdb, 2, 662, 1886
createrole_self_grant

configuration parameter, 614
createrole_self_grant configuration parameter

use in securing functions, 1585
createuser, 654, 1889
CREATE_REPLICATION_SLOT, 2202
cross compilation, 501, 511
cross join, 98
crosstab, 2661, 2662, 2663
crypt, 2591
cstring, 186
CSV (Comma-Separated Values) format

in psql, 2012
ctid, 59
CTID, 1200
CUBE, 108
cube (extension), 2505
cume_dist, 334

hypothetical, 332
current_catalog, 344
current_database, 344
current_date, 243
current_logfiles

and the log_destination configuration parameter,
589
and the pg_current_logfile function, 345

current_query, 344
current_role, 344
current_schema, 344
current_schemas, 344
current_setting, 364
current_time, 243
current_timestamp, 243
current_user, 344
currval, 314
cursor

CLOSE, 1523
DECLARE, 1704
FETCH, 1766
in PL/pgSQL, 1251
MOVE, 1798
showing the query plan, 1760

cursor_tuple_fraction configuration parameter, 588
custom scan provider

handler for, 2278
Cygwin

installation on, 518

D
daitch_mokotoff, 2547
data area (see database cluster)
data partitioning, 714
data type, 123

base, 1093

category, 387
composite, 1093
constant, 27
container, 1093
conversion, 386
domain, 183
enumerated (enum), 144
internal organization, 1115
numeric, 124
polymorphic, 1094
type cast, 37
user-defined, 1145

database, 661
creating, 2
privilege to create, 655

database activity
monitoring, 733

database cluster, 6, 523
data_checksums configuration parameter, 623
data_directory configuration parameter, 549
data_directory_mode configuration parameter, 623
data_sync_retry configuration parameter, 622
date, 134, 135

constants, 138
current, 254
output format, 138

(see also formatting)
DateStyle configuration parameter, 615
date_add, 244
date_bin, 252
date_part, 244, 247
date_subtract, 244
date_trunc, 244, 251
dblink, 2510, 2515
dblink_build_sql_delete, 2535
dblink_build_sql_insert, 2533
dblink_build_sql_update, 2536
dblink_cancel_query, 2531
dblink_close, 2523
dblink_connect, 2511
dblink_connect_u, 2513
dblink_disconnect, 2514
dblink_error_message, 2525
dblink_exec, 2518
dblink_fetch, 2521
dblink_get_connections, 2524
dblink_get_notify, 2528
dblink_get_pkey, 2532
dblink_get_result, 2529
dblink_is_busy, 2527
dblink_open, 2520
dblink_send_query, 2526
deadlock, 457

timeout during, 619
deadlock_timeout configuration parameter, 619
DEALLOCATE, 1703
dearmor, 2594
debug_assertions configuration parameter, 623

2726

Index

debug_copy_parse_plan_trees configuration para-
meter, 625
debug_deadlocks configuration parameter, 628
debug_discard_caches configuration parameter,
626
debug_io_direct configuration parameter, 626
debug_logical_replication_streaming configuration
parameter, 630
debug_parallel_query configuration parameter, 626
debug_pretty_print configuration parameter, 595
debug_print_parse configuration parameter, 594
debug_print_plan configuration parameter, 594
debug_print_rewritten configuration parameter,
594
debug_raw_expression_coverage_test configura-
tion parameter, 626
debug_write_read_parse_plan_trees configuration
parameter, 626
decimal (see numeric)
DECLARE, 1704
decode, 213
decode_bytea

in PL/Perl, 1300
decrypt, 2597
decrypt_iv, 2597
deduplicate_items storage parameter, 1591
default value, 46

changing, 61
default-roles, 2718
default_statistics_target configuration parameter,
587
default_tablespace configuration parameter, 610
default_table_access_method configuration para-
meter, 610
default_text_search_config configuration parame-
ter, 616
default_toast_compression configuration parame-
ter, 611
default_transaction_deferrable configuration para-
meter, 612
default_transaction_isolation configuration para-
meter, 611
default_transaction_read_only configuration para-
meter, 611
deferrable transaction, 612

setting, 1861
setting default, 612

defined, 2553
degrees, 194
delay, 255
DELETE, 13, 94, 1707

RETURNING, 95
delete, 2553
deleting, 94
dense_rank, 334

hypothetical, 332
diagonal, 260
diameter, 260

dict_int, 2538
dict_xsyn, 2539
difference, 2546
digest, 2590
dirty read, 448
DISCARD, 1710
disjunction, 188
disk drive, 801
disk space, 690
disk usage, 791
DISTINCT, 9

GROUP BY DISTINCT, 108
SELECT DISTINCT, 112

div, 194
dmetaphone, 2549
dmetaphone_alt, 2549
DO, 1711
document

text search, 413
dollar quoting, 25
domain, 183
double precision, 127
DROP ACCESS METHOD, 1712
DROP AGGREGATE, 1713
DROP CAST, 1715
DROP COLLATION, 1716
DROP CONVERSION, 1717
DROP DATABASE, 664, 1718
DROP DOMAIN, 1719
DROP EVENT TRIGGER, 1720
DROP EXTENSION, 1721
DROP FOREIGN DATA WRAPPER, 1722
DROP FOREIGN TABLE, 1723
DROP FUNCTION, 1724
DROP GROUP, 1726
DROP INDEX, 1727
DROP LANGUAGE, 1728
DROP MATERIALIZED VIEW, 1729
DROP OPERATOR, 1730
DROP OPERATOR CLASS, 1731
DROP OPERATOR FAMILY, 1732
DROP OWNED, 1733
DROP POLICY, 1734
DROP PROCEDURE, 1735
DROP PUBLICATION, 1737
DROP ROLE, 654, 1738
DROP ROUTINE, 1739
DROP RULE, 1740
DROP SCHEMA, 1741
DROP SEQUENCE, 1742
DROP SERVER, 1743
DROP STATISTICS, 1744
DROP SUBSCRIPTION, 1745
DROP TABLE, 7, 1746
DROP TABLESPACE, 1747
DROP TEXT SEARCH CONFIGURATION, 1748
DROP TEXT SEARCH DICTIONARY, 1749
DROP TEXT SEARCH PARSER, 1750

2727

Index

DROP TEXT SEARCH TEMPLATE, 1751
DROP TRANSFORM, 1752
DROP TRIGGER, 1753
DROP TYPE, 1754
DROP USER, 1755
DROP USER MAPPING, 1756
DROP VIEW, 1757
dropdb, 664, 1893
dropuser, 654, 1896
DROP_REPLICATION_SLOT, 2207
DTD, 154
DTrace, 503, 514, 783
duplicate, 9
duplicates, 112
dynamic loading, 618, 1114
dynamic_library_path, 1115
dynamic_library_path configuration parameter, 618
dynamic_shared_memory_type configuration para-
meter, 561

E
each, 2553
earth, 2541
earthdistance, 2541
earth_box, 2542
earth_distance, 2542
ECPG, 948
ecpg, 1898
effective_cache_size configuration parameter, 586
effective_io_concurrency configuration parameter,
563
elog, 2239

in PL/Perl, 1300
in PL/Python, 1319
in PL/Tcl, 1286

embedded SQL
in C, 948

enabled role, 1062
enable_async_append configuration parameter, 582
enable_bitmapscan configuration parameter, 582
enable_distinct_reordering configuration parame-
ter, 582
enable_gathermerge configuration parameter, 583
enable_group_by_reordering configuration parame-
ter, 583
enable_hashagg configuration parameter, 583
enable_hashjoin configuration parameter, 583
enable_incremental_sort configuration parameter,
583
enable_indexonlyscan configuration parameter,
583
enable_indexscan configuration parameter, 583
enable_material configuration parameter, 583
enable_memoize configuration parameter, 583
enable_mergejoin configuration parameter, 583
enable_nestloop configuration parameter, 583
enable_parallel_append configuration parameter,
583

enable_parallel_hash configuration parameter, 583
enable_partitionwise_aggregate configuration pa-
rameter, 584
enable_partitionwise_join configuration parameter,
584
enable_partition_pruning configuration parameter,
584
enable_presorted_aggregate configuration parame-
ter, 584
enable_self_join_elimination configuration parame-
ter, 584
enable_seqscan configuration parameter, 584
enable_sort configuration parameter, 584
enable_tidscan configuration parameter, 584
encode, 213
encode_array_constructor

in PL/Perl, 1301
encode_array_literal

in PL/Perl, 1300
encode_bytea

in PL/Perl, 1300
encode_typed_literal

in PL/Perl, 1300
encrypt, 2597
encryption, 538

for specific columns, 2590
encrypt_iv, 2597
END, 1758
enumerated types, 144
enum_first, 256
enum_last, 256
enum_range, 256
environment variable, 915
ephemeral named relation

registering with SPI, 1358, 1360
unregistering from SPI, 1359

ereport, 2239
erf, 194
erfc, 195
error codes

libpq, 877
list of, 2393

error message
in PGcancelConn, 896
in PGconn, 868

escape format, 213
escape string syntax, 24
escape_string_warning configuration parameter,
621
escaping strings

in libpq, 882
event log

event log, 544
event trigger, 1188

in C, 1189
in PL/Tcl, 1288

event_source configuration parameter, 592
event_trigger, 186

2728

Index

event_triggers
configuration parameter, 614

every, 328
EXCEPT, 112
exceptions

in PL/pgSQL, 1247
in PL/Tcl, 1289

exclusion constraint, 58
EXECUTE, 1759
exist, 2553
EXISTS, 335
EXIT

in PL/pgSQL, 1243
exit_on_error configuration parameter, 622
exp, 195
EXPLAIN, 462, 1760
expression

order of evaluation, 41
syntax, 30

extending SQL, 1093
extension, 1165

externally maintained, 2689
extension_control_path configuration parameter,
618
external_pid_file configuration parameter, 550
extract, 244, 247
extra_float_digits configuration parameter, 615

F
factorial, 195
failover, 714
false, 143
family, 265
fast path, 898
fastupdate storage parameter, 1591
fdw_handler, 186
FETCH, 1766
field

computed, 177
field selection, 32
file system mount points, 524
file_copy_method configuration parameter, 561
file_fdw, 2543
fillfactor storage parameter, 1591, 1658
FILTER, 33
fips_mode, 2597
first_value, 334
flex, 492
float4 (see real)
float8 (see double precision)
floating point, 127
floating-point

display, 615
floor, 195
foreign data, 91
foreign data wrapper

handler for, 2255
foreign key, 14, 54

self-referential, 55
foreign table, 91
format, 203, 208

use in PL/pgSQL, 1234
formatting, 234
format_type, 350
Free Space Map, 2366
FreeBSD

IPC configuration, 530
shared library, 1123
start script, 526

from_collapse_limit configuration parameter, 588
FSM (see Free Space Map)
fsm_page_contents, 2575
fsync configuration parameter, 566
full text search, 412

data types, 151
functions and operators, 151

full_page_writes configuration parameter, 568
function, 188

default values for arguments, 1104
in the FROM clause, 102
internal, 1114
invocation, 32
mixed notation, 44
named argument, 1098
named notation, 43
output parameter, 1102
polymorphic, 1094
positional notation, 43
RETURNS TABLE, 1109
statistics, 385
type resolution in an invocation, 390
user-defined, 1096

in C, 1114
in SQL, 1097

variadic, 1104
with SETOF, 1106

functional dependency, 107
fuzzystrmatch, 2546

G
gamma, 195
gcd, 195
gc_to_sec, 2541
generated column, 48, 1577, 1653

in triggers, 1180
generate_series, 340
generate_subscripts, 342
genetic query optimization, 587
gen_random_bytes, 2597
gen_random_uuid, 271, 2597
gen_salt, 2591
GEQO (see genetic query optimization)
geqo configuration parameter, 587
geqo_effort configuration parameter, 587
geqo_generations configuration parameter, 587
geqo_pool_size configuration parameter, 587

2729

Index

geqo_seed configuration parameter, 587
geqo_selection_bias configuration parameter, 587
geqo_threshold configuration parameter, 587
get_bit, 211, 215
get_byte, 211
get_current_ts_config, 267
get_raw_page, 2575
GIN (see index)
gin_clean_pending_list, 377
gin_fuzzy_search_limit configuration parameter,
619
gin_index_check, 2485
gin_leafpage_items, 2581
gin_metapage_info, 2580
gin_page_opaque_info, 2581
gin_pending_list_limit

configuration parameter, 614
storage parameter, 1592

GiST (see index)
gist_page_items, 2581
gist_page_items_bytea, 2582
gist_page_opaque_info, 2581
global data

in PL/Python, 1313
in PL/Tcl, 1284

GRANT, 61, 1770
GREATEST, 317

determination of result type, 394
Gregorian calendar, 2407
GROUP BY, 11, 106
grouping, 106
GROUPING, 333
GROUPING SETS, 108
gssapi, 543
GSSAPI, 643

with libpq, 859
gss_accept_delegation configuration parameter,
554
GUID, 153

H
hash (see index)
hash_bitmap_info, 2583
hash_mem_multiplier configuration parameter, 559
hash_metapage_info, 2583
hash_page_items, 2582
hash_page_stats, 2582
hash_page_type, 2582
has_any_column_privilege, 347
has_column_privilege, 347
has_database_privilege, 347
has_foreign_data_wrapper_privilege, 347
has_function_privilege, 347
has_language_privilege, 347
has_largeobject_privilege, 347
has_parameter_privilege, 347
has_schema_privilege, 347
has_sequence_privilege, 348

has_server_privilege, 348
has_tablespace_privilege, 348
has_table_privilege, 348
has_type_privilege, 348
HAVING, 11, 107
hba_file configuration parameter, 550
heap_page_items, 2576
heap_page_item_attrs, 2576
heap_tuple_infomask_flags, 2576
height, 260
hex format, 213
hierarchical database, 6
high availability, 714
history

of PostgreSQL, xxii
hmac, 2590
host, 265
host name, 855
hostmask, 265
hot standby, 714
hot_standby configuration parameter, 579
hot_standby_feedback configuration parameter,
580
hstore, 2550, 2552
hstore_to_array, 2552
hstore_to_json, 2552
hstore_to_jsonb, 2553
hstore_to_jsonb_loose, 2553
hstore_to_json_loose, 2553
hstore_to_matrix, 2552
huge_pages configuration parameter, 557
huge_pages_status configuration parameter, 623
huge_page_size configuration parameter, 558
hypothetical-set aggregate

built-in, 332

I
icount, 2559
ICU, 500, 509, 668, 672, 1555, 1562
icu_unicode_version, 363
icu_validation_level configuration parameter, 616
ident, 645
identifier

length, 22
syntax of, 22

IDENTIFY_SYSTEM, 2202
identity column, 47
ident_file configuration parameter, 550
idle_in_transaction_session_timeout configuration
parameter, 613
idle_replication_slot_timeout configuration parame-
ter, 576
idle_session_timeout configuration parameter, 613
idx, 2559
IFNULL, 317
ignore_checksum_failure configuration parameter,
628
ignore_invalid_pages configuration parameter, 629

2730

Index

ignore_system_indexes configuration parameter,
627
IMMUTABLE, 1112
IMPORT FOREIGN SCHEMA, 1776
IN, 335, 338
INCLUDE

in index definitions, 407
include

in configuration file, 548
include_dir

in configuration file, 548
include_if_exists

in configuration file, 548
index, 397, 2571

and ORDER BY, 401
B-Tree, 398, 2307
BRIN, 399, 2346
building concurrently, 1592
combining multiple indexes, 402
covering, 406
examining usage, 410
on expressions, 403
for user-defined data type, 1153
GIN, 399, 2340

text search, 443
GiST, 398, 2313

text search, 443
hash, 398
Hash, 2358
index-only scans, 406
locks, 461
multicolumn, 400
partial, 403
rebuilding concurrently, 1812
SP-GiST, 399, 2329
unique, 402

Index Access Method, 2289
index scan, 583
index-only scan, 406
indexam

Index Access Method, 2289
index_am_handler, 186
inet (data type), 148
inet_client_addr, 344
inet_client_port, 344
inet_merge, 265
inet_same_family, 265
inet_server_addr, 344
inet_server_port, 344
infinity

floating point, 128
numeric (data type), 126

information schema, 1044
inheritance, 19, 75
initcap, 203
initdb, 523, 2042
Initialization Fork, 2366
initplan, 469

input function, 1145
INSERT, 7, 93, 1778

RETURNING, 95
inserting, 93
installation, 492

binaries, 491
instr function, 1280
int2 (see smallint)
int4 (see integer)
int8 (see bigint)
intagg, 2557
intarray, 2559
integer, 27, 125
integer_datetimes configuration parameter, 623
interfaces

externally maintained, 2689
internal, 186
INTERSECT, 112
interval, 134, 140

output format, 142
(see also formatting)

IntervalStyle configuration parameter, 615
intset, 2559
int_array_aggregate, 2557
int_array_enum, 2557
inverse distribution, 331
in_hot_standby configuration parameter, 623
in_range support functions, 2308
io_combine_limit configuration parameter, 563
io_max_combine_limit configuration parameter,
563
io_max_concurrency configuration parameter, 564
io_method configuration parameter, 564
io_workers configuration parameter, 564
IS DISTINCT FROM, 191, 338
IS DOCUMENT, 276
IS FALSE, 192
IS JSON, 290
IS NOT DISTINCT FROM, 191, 338
IS NOT DOCUMENT, 277
IS NOT FALSE, 192
IS NOT NULL, 191
IS NOT TRUE, 192
IS NOT UNKNOWN, 192
IS NULL, 191, 621
IS TRUE, 192
IS UNKNOWN, 192
isclosed, 260
isempty, 325, 326
isfinite, 244
isn, 2562
isn.weak configuration parameter, 2563
ISNULL, 191
isn_weak, 2563
isopen, 260
is_array_ref

in PL/Perl, 1301
is_valid, 2563

2731

Index

J
JIT, 833
jit configuration parameter, 588
jit_above_cost configuration parameter, 586
jit_debugging_support configuration parameter,
629
jit_dump_bitcode configuration parameter, 629
jit_expressions configuration parameter, 629
jit_inline_above_cost configuration parameter, 586
jit_optimize_above_cost configuration parameter,
586
jit_profiling_support configuration parameter, 629
jit_provider configuration parameter, 618
jit_tuple_deforming configuration parameter, 629
join, 9, 98

controlling the order, 480
cross, 98
left, 99
natural, 99
outer, 10, 98
right, 99
self, 10

join_collapse_limit configuration parameter, 588
JSON, 155

functions and operators, 285
json constructor, 290
JSONB, 155
jsonb

containment, 158
existence, 158
indexes on, 159

jsonb_agg, 328
jsonb_agg_strict, 328
jsonb_array_elements, 291
jsonb_array_elements_text, 291
jsonb_array_length, 291
jsonb_build_array, 289
jsonb_build_object, 289
jsonb_each, 292
jsonb_each_text, 292
jsonb_extract_path, 292
jsonb_extract_path_text, 292
jsonb_insert, 295
jsonb_object, 289
jsonb_object_agg, 328
jsonb_object_agg_strict, 328
jsonb_object_agg_unique, 328
jsonb_object_agg_unique_strict, 328
jsonb_object_keys, 292
jsonb_path_exists, 295
jsonb_path_exists_tz, 296
jsonb_path_match, 296
jsonb_path_match_tz, 296
jsonb_path_query, 296
jsonb_path_query_array, 296
jsonb_path_query_array_tz, 296
jsonb_path_query_first, 296

jsonb_path_query_first_tz, 296
jsonb_path_query_tz, 296
jsonb_populate_record, 292
jsonb_populate_recordset, 294
jsonb_populate_record_valid, 293
jsonb_pretty, 297
jsonb_set, 294
jsonb_set_lax, 295
jsonb_strip_nulls, 295
jsonb_to_record, 294
jsonb_to_recordset, 294
jsonb_to_tsvector, 269
jsonb_typeof, 297
jsonpath, 163
json_agg, 328
json_agg_strict, 328
json_array, 289
json_arrayagg, 328
json_array_elements, 291
json_array_elements_text, 291
json_array_length, 291
json_build_array, 289
json_build_object, 289
json_each, 292
json_each_text, 292
json_exists, 307
json_extract_path, 292
json_extract_path_text, 292
json_object, 289, 289
json_objectagg, 328
json_object_agg, 328
json_object_agg_strict, 328
json_object_agg_unique, 328
json_object_agg_unique_strict, 328
json_object_keys, 292
json_populate_record, 292
json_populate_recordset, 294
json_query, 307
json_scalar, 290
json_strip_nulls, 295
json_table, 309
json_to_record, 294
json_to_recordset, 294
json_to_tsvector, 269
json_typeof, 297
json_value, 308
Julian date, 2408
Just-In-Time compilation (see JIT)
justify_days, 245
justify_hours, 245
justify_interval, 245

K
key word

list of, 2410
syntax of, 22

krb_caseins_users configuration parameter, 554
krb_server_keyfile configuration parameter, 554

2732

Index

L
label (see alias)
lag, 334
language_handler, 186
large object, 937
lastval, 315
last_value, 334
LATERAL

in the FROM clause, 104
latitude, 2542
lca, 2571
lcm, 195
lc_messages configuration parameter, 616
lc_monetary configuration parameter, 616
lc_numeric configuration parameter, 616
lc_time configuration parameter, 616
LDAP, 499, 509, 646
LDAP connection parameter lookup, 918
ldconfig, 516
lead, 334
LEAST, 318

determination of result type, 394
left, 203
left join, 99
length, 204, 211, 215, 261, 267

of a binary string (see binary strings, length)
of a character string (see character string,
length)

length(tsvector), 424
levenshtein, 2548
levenshtein_less_equal, 2548
lex, 492
lgamma, 195
libedit, 492

in psql, 2026
libperl, 493
libpq, 846

chunked mode, 893
pipeline mode, 889
single-row mode, 893

libpq-fe.h, 846, 865
libpq-int.h, 865
libpython, 493
library initialization function, 1114
LIKE, 216

and locales, 667
LIKE_REGEX, 232

in SQL/JSON, 306
LIMIT, 114
line, 146, 262
line segment, 146
linear regression, 330
Linux

IPC configuration, 531
shared library, 1123
start script, 526

LISTEN, 1785

listen_addresses configuration parameter, 550
llvm-config, 498, 509
ll_to_earth, 2541
ln, 195
lo, 2566
LOAD, 1787
load balancing, 714
locale, 524, 666
localtime, 245
localtimestamp, 245
local_preload_libraries configuration parameter,
617
lock, 454

advisory, 458
monitoring, 775

LOCK, 454, 1788
lock_timeout configuration parameter, 613
log, 195
log shipping, 714
log10, 195
Logging

current_logfiles file and the pg_current_logfile
function, 345
pg_current_logfile function, 345

logging_collector configuration parameter, 590
Logical Decoding, 1389, 1392
logical_decoding_work_mem configuration parame-
ter, 559
login privilege, 655
log_autovacuum_min_duration

configuration parameter, 595
storage parameter, 1660

log_btree_build_stats configuration parameter, 628
log_checkpoints configuration parameter, 595
log_connections configuration parameter, 595
log_destination configuration parameter, 589
log_directory configuration parameter, 590
log_disconnections configuration parameter, 596
log_duration configuration parameter, 596
log_error_verbosity configuration parameter, 596
log_executor_stats configuration parameter, 604
log_filename configuration parameter, 590
log_file_mode configuration parameter, 591
log_hostname configuration parameter, 596
log_line_prefix configuration parameter, 596
log_lock_failures configuration parameter, 598
log_lock_waits configuration parameter, 598
log_min_duration_sample configuration parameter,
593
log_min_duration_statement configuration parame-
ter, 592
log_min_error_statement configuration parameter,
592
log_min_messages configuration parameter, 592
log_parameter_max_length configuration parame-
ter, 599
log_parameter_max_length_on_error configuration
parameter, 599

2733

Index

log_parser_stats configuration parameter, 604
log_planner_stats configuration parameter, 604
log_recovery_conflict_waits configuration parame-
ter, 599
log_replication_commands configuration parame-
ter, 599
log_rotation_age configuration parameter, 591
log_rotation_size configuration parameter, 591
log_startup_progress_interval configuration para-
meter, 593
log_statement configuration parameter, 599
log_statement_sample_rate configuration parame-
ter, 593
log_statement_stats configuration parameter, 604
log_temp_files configuration parameter, 600
log_timezone configuration parameter, 600
log_transaction_sample_rate configuration parame-
ter, 593
log_truncate_on_rotation configuration parameter,
591
longitude, 2542
looks_like_number

in PL/Perl, 1301
loop

in PL/pgSQL, 1243
lower, 201, 325, 326

and locales, 667
lower_inc, 325, 326
lower_inf, 325, 326
lo_close, 940
lo_compat_privileges configuration parameter, 621
lo_creat, 938, 941
lo_create, 938
lo_export, 938, 941
lo_from_bytea, 941
lo_get, 941
lo_import, 938, 941
lo_import_with_oid, 938
lo_lseek, 939
lo_lseek64, 939
lo_open, 938
lo_put, 941
lo_read, 939
lo_tell, 940
lo_tell64, 940
lo_truncate, 940
lo_truncate64, 940
lo_unlink, 940, 941
lo_write, 939
lpad, 201
lseg, 146, 262
LSN, 801
ltree, 2568
ltree2text, 2571
ltrim, 201, 210

M
MAC address (see macaddr)

MAC address (EUI-64 format) (see macaddr)
macaddr (data type), 149
macaddr8 (data type), 149
macaddr8_set7bit, 266
macOS

installation on, 518
IPC configuration, 531
shared library, 1123

magic block, 1114
maintenance, 689
maintenance_io_concurrency configuration para-
meter, 563
maintenance_work_mem configuration parameter,
559
make, 492
makeaclitem, 349
make_date, 245
make_interval, 245
make_time, 245
make_timestamp, 245
make_timestamptz, 246
make_valid, 2563
MANPATH, 517
masklen, 265
materialized view

implementation through rules, 1202
materialized views, 2165
max, 329
max_active_replication_origins configuration para-
meter, 581
max_connections configuration parameter, 551
max_files_per_process configuration parameter,
562
max_function_args configuration parameter, 624
max_identifier_length configuration parameter,
624
max_index_keys configuration parameter, 624
max_locks_per_transaction configuration parame-
ter, 619
max_logical_replication_workers configuration pa-
rameter, 582
max_notify_queue_pages configuration parameter,
561
max_parallel_apply_workers_per_subscription con-
figuration parameter, 582
max_parallel_maintenance_workers configuration
parameter, 565
max_parallel_workers configuration parameter,
565
max_parallel_workers_per_gather configuration pa-
rameter, 564
max_pred_locks_per_page configuration parame-
ter, 620
max_pred_locks_per_relation configuration para-
meter, 620
max_pred_locks_per_transaction configuration pa-
rameter, 620

2734

Index

max_prepared_transactions configuration parame-
ter, 558
max_replication_slots configuration parameter, 576
max_slot_wal_keep_size configuration parameter,
576
max_stack_depth configuration parameter, 560
max_standby_archive_delay configuration parame-
ter, 579
max_standby_streaming_delay configuration para-
meter, 579
max_sync_workers_per_subscription configuration
parameter, 582
max_wal_senders configuration parameter, 576
max_wal_size configuration parameter, 570
max_worker_processes configuration parameter,
564
md5, 204, 211
MD5, 642
md5_password_warnings configuration parameter,
554
median, 34

(see also percentile)
memory context

in SPI, 1369
memory overcommit, 533
MERGE, 1791

RETURNING, 95, 335
merge_action, 335
Meson, 492
metaphone, 2549
min, 329
MinGW

installation on, 519
min_dynamic_shared_memory configuration para-
meter, 561
min_parallel_index_scan_size configuration para-
meter, 586
min_parallel_table_scan_size configuration parame-
ter, 586
min_scale, 196
min_wal_size configuration parameter, 570
mod, 196
mode

statistical, 331
monitoring

database activity, 733
MOVE, 1798
moving-aggregate mode, 1140
multirange (function), 326
multirange type, 178
Multiversion Concurrency Control, 448
MultiXactId, 695
multixact_member_buffers configuration parame-
ter, 560
multixact_offset_buffers configuration parameter,
560
MVCC, 448
mxid_age, 358

N
name

qualified, 72
syntax of, 22
unqualified, 73

NaN (see not a number)
natural join, 99
negation, 188
NetBSD

IPC configuration, 530
shared library, 1123
start script, 527

netmask, 265
network, 265

data types, 148
nextval, 314
NFS, 525
nlevel, 2571
non-durable, 484
nonblocking connection, 848, 850, 885
nonrepeatable read, 448
normalize, 201
normalized, 201
normal_rand, 2660
NOT (operator), 188
not a number

floating point, 128
numeric (data type), 126

NOT IN, 335, 338
not-null constraint, 52
notation

functions, 42
notice processing

in libpq, 908
notice processor, 909
notice receiver, 909
NOTIFY, 1800

in libpq, 899
notify_buffers configuration parameter, 560
NOTNULL, 191
now, 246
npoints, 261
nth_value, 334
ntile, 334
null value

with check constraints, 51
comparing, 191
default value, 46
in DISTINCT, 112
in libpq, 881
in PL/Perl, 1293
in PL/Python, 1309
with unique constraints, 53

NULLIF, 317
number

constant, 26
numeric, 27

2735

Index

numeric (data type), 125
numnode, 267, 425
num_nonnulls, 192
num_nulls, 192
num_os_semaphores configuration parameter, 624
NVL, 317

O
OAuth Authorization/Authentication, 651
OAuth Validators, 1408
oauth_validator_libraries configuration parameter,
554
object identifier

data type, 183
object-oriented database, 6
obj_description, 357
OCCURRENCES_REGEX, 232
octet_length, 201, 201, 210, 215
OFFSET, 114
oid, 183
OID

in libpq, 882
oid2name, 2682
ON CONFLICT, 1778
ONLY, 98
OOM, 533
OpenBSD

IPC configuration, 530
shared library, 1123
start script, 526

OpenSSL, 498, 509
(see also SSL)

operator, 188
invocation, 32
logical, 188
precedence, 29
syntax, 28
type resolution in an invocation, 387
user-defined, 1149

operator class, 408, 1153
operator family, 408, 1160
optimization information

for functions, 1137
for operators, 1149

OR (operator), 188
Oracle

porting from PL/SQL to PL/pgSQL, 1273
ORDER BY, 8, 113

and locales, 667
ordered-set aggregate, 33

built-in, 331
ordering operator, 1163
ordinality, 343
outer join, 98
output function, 1145
OVER clause, 35
overcommit, 533
OVERLAPS, 246

overlay, 201, 210, 215
overloading

functions, 1111
operators, 1149

owner, 61

P
pageinspect, 2575
pages_per_range storage parameter, 1592
page_checksum, 2575
page_header, 2575
palloc, 1122
PAM, 499, 509, 650
parallel query, 485
parallel_leader_participation configuration para-
meter, 565
parallel_setup_cost configuration parameter, 586
parallel_tuple_cost configuration parameter, 586
parallel_workers storage parameter, 1659
parameter

syntax, 31
parenthesis, 31
parse_ident, 204
partition pruning, 88
partitioned table, 79
partitioning, 79
password, 655

authentication, 642
of the superuser, 524

password file, 917
passwordcheck, 2584
passwordcheck.min_password_length configura-
tion parameter, 2584
password_encryption configuration parameter, 553
path, 262

for schemas, 609
PATH, 517
path (data type), 147
pattern matching, 215
patterns

in psql and pg_dump, 2018
pclose, 261
peer, 646
percentile

continuous, 332
discrete, 332

percent_rank, 334
hypothetical, 332

performance, 462
perl, 492
Perl, 1292
permission (see privilege)
pfree, 1122
PGAPPNAME, 916
pgbench, 1914
PGcancel, 897
PGcancelConn, 894
PGCHANNELBINDING, 915

2736

Index

PGCLIENTENCODING, 916
PGconn, 846
PGCONNECT_TIMEOUT, 916
pgcrypto, 2590
pgcrypto.builtin_crypto_enabled configuration pa-
rameter, 2598
PGDATA, 523
PGDATABASE, 915
PGDATESTYLE, 916
PGEventProc, 911
PGGEQO, 916
PGGSSDELEGATION, 916
PGGSSENCMODE, 916
PGGSSLIB, 916
PGHOST, 915
PGHOSTADDR, 915
PGKRBSRVNAME, 916
PGLOADBALANCEHOSTS, 916
PGLOCALEDIR, 917
PGMAXPROTOCOLVERSION, 916
PGMINPROTOCOLVERSION, 916
PGOPTIONS, 916
PGPASSFILE, 915
PGPASSWORD, 915
PGPORT, 915
pgp_armor_headers, 2594
pgp_key_id, 2594
pgp_pub_decrypt, 2593
pgp_pub_decrypt_bytea, 2593
pgp_pub_encrypt, 2593
pgp_pub_encrypt_bytea, 2593
pgp_sym_decrypt, 2593
pgp_sym_decrypt_bytea, 2593
pgp_sym_encrypt, 2593
pgp_sym_encrypt_bytea, 2593
PGREQUIREAUTH, 915
PGREQUIREPEER, 916
PGREQUIRESSL, 916
PGresult, 874
pgrowlocks, 2607, 2607
PGSERVICE, 916
PGSERVICEFILE, 916
PGSSLCERT, 916
PGSSLCERTMODE, 916
PGSSLCOMPRESSION, 916
PGSSLCRL, 916
PGSSLCRLDIR, 916
PGSSLKEY, 916
PGSSLMAXPROTOCOLVERSION, 916
PGSSLMINPROTOCOLVERSION, 916
PGSSLMODE, 916
PGSSLNEGOTIATION, 915
PGSSLROOTCERT, 916
PGSSLSNI, 916
pgstatginindex, 2619
pgstathashindex, 2620
pgstatindex, 2619
pgstattuple, 2618, 2618

pgstattuple_approx, 2620
PGSYSCONFDIR, 917
PGTARGETSESSIONATTRS, 916
PGTZ, 916
PGUSER, 915
pgxs, 1173
pg_advisory_lock, 380
pg_advisory_lock_shared, 380
pg_advisory_unlock, 380
pg_advisory_unlock_all, 380
pg_advisory_unlock_shared, 380
pg_advisory_xact_lock, 381
pg_advisory_xact_lock_shared, 381
pg_aggregate, 2103
pg_aios, 2155
pg_am, 2104
pg_amcheck, 1900
pg_amop, 2105
pg_amproc, 2106
pg_archivecleanup, 2048
pg_attrdef, 2106
pg_attribute, 2106
pg_authid, 2108
pg_auth_members, 2109
pg_available_extensions, 2156
pg_available_extension_versions, 2157
pg_available_wal_summaries, 363
pg_backend_memory_contexts, 2157
pg_backend_pid, 344
pg_backup_start, 366
pg_backup_stop, 366
pg_basebackup, 1905
pg_basetype, 350
pg_blocking_pids, 345
pg_buffercache, 2585
pg_buffercache_evict, 2585
pg_buffercache_evict_all, 2585
pg_buffercache_evict_relation, 2585
pg_buffercache_numa, 2585
pg_buffercache_pages, 2585
pg_buffercache_summary, 2585
pg_buffercache_usage_counts, 2585
pg_cancel_backend, 364
pg_cast, 2110
pg_char_to_encoding, 350
pg_checksums, 2050
pg_class, 2111
pg_clear_attribute_stats, 376
pg_clear_relation_stats, 376
pg_client_encoding, 204
pg_collation, 2113
pg_collation_actual_version, 374
pg_collation_is_visible, 349
PG_COLOR, 2717
PG_COLORS, 2717
pg_column_compression, 373
pg_column_size, 373
pg_column_toast_chunk_id, 373

2737

Index

pg_combinebackup, 1937
pg_config, 1940, 2158

with ecpg, 1000
with libpq, 926
with user-defined C functions, 1122

pg_conf_load_time, 345
pg_constraint, 2114
pg_controldata, 2052
pg_control_checkpoint, 361
pg_control_init, 361
pg_control_recovery, 361
pg_control_system, 361
pg_conversion, 2116
pg_conversion_is_visible, 349
pg_copy_logical_replication_slot, 371
pg_copy_physical_replication_slot, 370
pg_createsubscriber, 2053
pg_create_logical_replication_slot, 370
pg_create_physical_replication_slot, 370
pg_create_restore_point, 366
pg_ctl, 524, 526, 2058
pg_current_logfile, 345
pg_current_snapshot, 359
pg_current_wal_flush_lsn, 366
pg_current_wal_insert_lsn, 366
pg_current_wal_lsn, 366
pg_current_xact_id, 358
pg_current_xact_id_if_assigned, 358
pg_cursors, 2159
pg_database, 663, 2117
pg_database_collation_actual_version, 375
pg_database_size, 373
pg_db_role_setting, 2118
pg_ddl_command, 186
pg_default_acl, 2118
pg_depend, 2119
pg_describe_object, 356
pg_description, 2121
pg_drop_replication_slot, 370
pg_dump, 1943
pg_dumpall, 1958

use during upgrade, 537
pg_encoding_to_char, 351
pg_enum, 2121
pg_event_trigger, 2122
pg_event_trigger_ddl_commands, 382
pg_event_trigger_dropped_objects, 383
pg_event_trigger_table_rewrite_oid, 384
pg_event_trigger_table_rewrite_reason, 384
pg_export_snapshot, 369
pg_extension, 2122
pg_extension_config_dump, 1169
pg_filenode_relation, 374
pg_file_settings, 2159
pg_foreign_data_wrapper, 2123
pg_foreign_server, 2123
pg_foreign_table, 2124
pg_freespace, 2599

pg_freespacemap, 2599
pg_function_is_visible, 349
pg_get_acl, 356
pg_get_catalog_foreign_keys, 351
pg_get_constraintdef, 351
pg_get_expr, 351
pg_get_functiondef, 351
pg_get_function_arguments, 351
pg_get_function_identity_arguments, 351
pg_get_function_result, 351
pg_get_indexdef, 351
pg_get_keywords, 351
pg_get_loaded_modules, 345
pg_get_multixact_members, 359
pg_get_object_address, 356
pg_get_partkeydef, 352
pg_get_ruledef, 352
pg_get_serial_sequence, 352
pg_get_statisticsobjdef, 352
pg_get_triggerdef, 352
pg_get_userbyid, 352
pg_get_viewdef, 352
pg_get_wal_replay_pause_state, 368
pg_get_wal_resource_managers, 368
pg_get_wal_summarizer_state, 363
pg_group, 2160
pg_has_role, 348
pg_hba.conf, 632
pg_hba_file_rules, 2161
pg_ident.conf, 640
pg_identify_object, 356
pg_identify_object_as_address, 356
pg_ident_file_mappings, 2161
pg_import_system_collations, 375
pg_index, 2124
pg_indexam_has_property, 353
pg_indexes, 2162
pg_indexes_size, 373
pg_index_column_has_property, 352
pg_index_has_property, 353
pg_inherits, 2126
pg_init_privs, 2126
pg_input_error_info, 358
pg_input_is_valid, 358
pg_isready, 1966
pg_is_in_recovery, 368
pg_is_other_temp_schema, 345
pg_is_wal_replay_paused, 368
pg_jit_available, 345
pg_language, 2127
pg_largeobject, 2127
pg_largeobject_metadata, 2128
pg_last_committed_xact, 361
pg_last_wal_receive_lsn, 368
pg_last_wal_replay_lsn, 368
pg_last_xact_replay_timestamp, 368
pg_listening_channels, 345
pg_locks, 2162

2738

Index

pg_logicalinspect, 2601
pg_logical_emit_message, 372
pg_logical_slot_get_binary_changes, 371
pg_logical_slot_get_changes, 371
pg_logical_slot_peek_binary_changes, 371
pg_logical_slot_peek_changes, 371
pg_log_backend_memory_contexts, 364
pg_log_standby_snapshot, 370
pg_lsn, 186
pg_ls_archive_statusdir, 379
pg_ls_dir, 378
pg_ls_logdir, 378
pg_ls_logicalmapdir, 378
pg_ls_logicalsnapdir, 379
pg_ls_replslotdir, 379
pg_ls_summariesdir, 379
pg_ls_tmpdir, 379
pg_ls_waldir, 378
pg_matviews, 2165
pg_mcv_list_items, 385
PG_MODULE_MAGIC, 1114
pg_my_temp_schema, 345
pg_namespace, 2128
pg_notification_queue_usage, 346
pg_notify, 1801
pg_numa_available, 345
pg_opclass, 2129
pg_opclass_is_visible, 350
pg_operator, 2129
pg_operator_is_visible, 350
pg_opfamily, 2130
pg_opfamily_is_visible, 350
pg_options_to_table, 353
pg_overexplain, 2603
pg_parameter_acl, 2131
pg_partitioned_table, 2131
pg_partition_ancestors, 377
pg_partition_root, 377
pg_partition_tree, 377
pg_policies, 2165
pg_policy, 2132
pg_postmaster_start_time, 346
pg_prepared_statements, 2166
pg_prepared_xacts, 2167
pg_prewarm, 2605
pg_prewarm.autoprewarm configuration parame-
ter, 2605
pg_prewarm.autoprewarm_interval configuration
parameter, 2605
pg_proc, 2132
pg_promote, 368
pg_publication, 2135
pg_publication_namespace, 2135
pg_publication_rel, 2136
pg_publication_tables, 2167
pg_range, 2136
pg_read_binary_file, 379
pg_read_file, 379

pg_receivewal, 1968
pg_receivexlog, 2718 (see pg_receivewal)
pg_recvlogical, 1972
pg_relation_filenode, 374
pg_relation_filepath, 374
pg_relation_size, 373
pg_reload_conf, 364
pg_relpages, 2620
pg_replication_origin, 2136
pg_replication_origin_advance, 372
pg_replication_origin_create, 371
pg_replication_origin_drop, 371
pg_replication_origin_oid, 371
pg_replication_origin_progress, 372
pg_replication_origin_session_is_setup, 372
pg_replication_origin_session_progress, 372
pg_replication_origin_session_reset, 372
pg_replication_origin_session_setup, 372
pg_replication_origin_status, 2168
pg_replication_origin_xact_reset, 372
pg_replication_origin_xact_setup, 372
pg_replication_slots, 2168
pg_replication_slot_advance, 371
pg_resetwal, 2063
pg_resetxlog, 2718 (see pg_resetwal)
pg_restore, 1976
pg_restore_attribute_stats, 376
pg_restore_relation_stats, 375
pg_rewind, 2067
pg_rewrite, 2137
pg_roles, 2170
pg_rotate_logfile, 364
pg_rules, 2171
pg_safe_snapshot_blocking_pids, 346
pg_seclabel, 2137
pg_seclabels, 2171
pg_sequence, 2138
pg_sequences, 2172
pg_service.conf, 917
pg_settings, 2172
pg_settings_get_flags, 353
pg_shadow, 2175
pg_shdepend, 2138
pg_shdescription, 2139
pg_shmem_allocations, 2175
pg_shmem_allocations_numa, 2176
pg_shseclabel, 2140
pg_size_bytes, 373
pg_size_pretty, 374
pg_sleep, 255
pg_sleep_for, 255
pg_sleep_until, 255
pg_snapshot_xip, 359
pg_snapshot_xmax, 359
pg_snapshot_xmin, 359
pg_split_walfile_name, 367
pg_statio_all_indexes, 738, 770
pg_statio_all_sequences, 738, 770

2739

Index

pg_statio_all_tables, 737, 769
pg_statio_sys_indexes, 738
pg_statio_sys_sequences, 738
pg_statio_sys_tables, 738
pg_statio_user_indexes, 738
pg_statio_user_sequences, 738
pg_statio_user_tables, 738
pg_statistic, 476, 2140
pg_statistics_obj_is_visible, 350
pg_statistic_ext, 477, 2141
pg_statistic_ext_data, 477, 2141
pg_stats, 476, 2176
pg_stats_ext, 2178
pg_stats_ext_exprs, 2179
pg_stat_activity, 735, 738
pg_stat_all_indexes, 737, 768
pg_stat_all_tables, 737, 766
pg_stat_archiver, 736, 759
pg_stat_bgwriter, 736, 762
pg_stat_checkpointer, 736, 763
pg_stat_clear_snapshot, 772
pg_stat_database, 736, 764
pg_stat_database_conflicts, 736, 766
pg_stat_file, 380
pg_stat_get_activity, 772
pg_stat_get_backend_activity, 774
pg_stat_get_backend_activity_start, 774
pg_stat_get_backend_client_addr, 774
pg_stat_get_backend_client_port, 774
pg_stat_get_backend_dbid, 774
pg_stat_get_backend_idset, 774
pg_stat_get_backend_io, 772
pg_stat_get_backend_pid, 774
pg_stat_get_backend_start, 774
pg_stat_get_backend_subxact, 774
pg_stat_get_backend_userid, 774
pg_stat_get_backend_wait_event, 775
pg_stat_get_backend_wait_event_type, 775
pg_stat_get_backend_wal, 772
pg_stat_get_backend_xact_start, 775
pg_stat_get_snapshot_timestamp, 772
pg_stat_get_xact_blocks_fetched, 772
pg_stat_get_xact_blocks_hit, 772
pg_stat_gssapi, 736, 759
pg_stat_io, 737, 760
pg_stat_progress_analyze, 736, 775
pg_stat_progress_basebackup, 736, 782
pg_stat_progress_cluster, 736, 776
pg_stat_progress_copy, 736, 777
pg_stat_progress_create_index, 736, 778
pg_stat_progress_vacuum, 736, 780
pg_stat_recovery_prefetch, 736, 756
pg_stat_replication, 735, 752
pg_stat_replication_slots, 737, 754
pg_stat_reset, 772
pg_stat_reset_backend_stats, 773
pg_stat_reset_replication_slot, 773
pg_stat_reset_shared, 773

pg_stat_reset_single_function_counters, 773
pg_stat_reset_single_table_counters, 773
pg_stat_reset_slru, 773
pg_stat_reset_subscription_stats, 773
pg_stat_slru, 737, 771
pg_stat_ssl, 736, 758
pg_stat_statements, 2609

function, 2614
pg_stat_statements.max configuration parameter,
2614
pg_stat_statements.save configuration parameter,
2615
pg_stat_statements.track configuration parameter,
2614
pg_stat_statements.track_planning configuration
parameter, 2614
pg_stat_statements.track_utility configuration pa-
rameter, 2614
pg_stat_statements_info, 2613
pg_stat_statements_reset, 2614
pg_stat_subscription, 736, 757
pg_stat_subscription_stats, 737, 757
pg_stat_sys_indexes, 737
pg_stat_sys_tables, 737
pg_stat_user_functions, 737, 770
pg_stat_user_indexes, 737
pg_stat_user_tables, 737
pg_stat_wal, 737, 763
pg_stat_wal_receiver, 736, 755
pg_stat_xact_all_tables, 737
pg_stat_xact_sys_tables, 737
pg_stat_xact_user_functions, 737
pg_stat_xact_user_tables, 737
pg_subscription, 2143
pg_subscription_rel, 2144
pg_surgery, 2622
pg_switch_wal, 367
pg_sync_replication_slots, 372
pg_tables, 2180
pg_tablespace, 2144
pg_tablespace_databases, 353
pg_tablespace_location, 353
pg_tablespace_size, 374
pg_table_is_visible, 350
pg_table_size, 374
pg_temp, 610

securing functions, 1585
pg_terminate_backend, 365
pg_test_fsync, 2071
pg_test_timing, 2072
pg_timezone_abbrevs, 2181
pg_timezone_names, 2181
pg_total_relation_size, 374
pg_transform, 2145
pg_trgm, 2624
pg_trgm.similarity_threshold configuration para-
meter, 2626

2740

Index

pg_trgm.strict_word_similarity_threshold configu-
ration parameter, 2626
pg_trgm.word_similarity_threshold configuration
parameter, 2626
pg_trigger, 2145
pg_trigger_depth, 346
pg_try_advisory_lock, 381
pg_try_advisory_lock_shared, 381
pg_try_advisory_xact_lock, 381
pg_try_advisory_xact_lock_shared, 381
pg_ts_config, 2147
pg_ts_config_is_visible, 350
pg_ts_config_map, 2147
pg_ts_dict, 2148
pg_ts_dict_is_visible, 350
pg_ts_parser, 2148
pg_ts_parser_is_visible, 350
pg_ts_template, 2149
pg_ts_template_is_visible, 350
pg_type, 2149
pg_typeof, 353
pg_type_is_visible, 350
pg_upgrade, 2075
pg_user, 2182
pg_user_mapping, 2152
pg_user_mappings, 2182
pg_verifybackup, 1986
pg_views, 2183
pg_visibility, 2629
pg_visible_in_snapshot, 359
pg_wait_events, 2183
pg_waldump, 2085
pg_walfile_name, 367
pg_walfile_name_offset, 367
pg_walinspect, 2631
pg_walsummary, 2088
pg_wal_lsn_diff, 367
pg_wal_replay_pause, 369
pg_wal_replay_resume, 369
pg_wal_summary_contents, 363
pg_xact_commit_timestamp, 360
pg_xact_commit_timestamp_origin, 360
pg_xact_status, 359
pg_xlogdump, 2718 (see pg_waldump)
phantom read, 448
phraseto_tsquery, 267, 419
pi, 196
PIC, 1123
PID

determining PID of server process
in libpq, 869

pipelining
in libpq, 889
protocol specification, 2194

PITR, 700
PITR standby, 714
pkg-config, 492

with ecpg, 1000

with libpq, 926
PL/Perl, 1292
PL/PerlU, 1302
PL/pgSQL, 1221
PL/Python, 1307
PL/SQL (Oracle)

porting to PL/pgSQL, 1273
PL/Tcl, 1282
plainto_tsquery, 267, 419
plan_cache_mode configuration parameter, 589
plperl.on_init configuration parameter, 1305
plperl.on_plperlu_init configuration parameter,
1305
plperl.on_plperl_init configuration parameter, 1305
plperl.use_strict configuration parameter, 1305
plpgsql.check_asserts configuration parameter,
1259
plpgsql.variable_conflict configuration parameter,
1268
pltcl.start_proc configuration parameter, 1291
pltclu.start_proc configuration parameter, 1291
point, 146, 262
point-in-time recovery, 700
policy, 66
polygon, 147, 262
polymorphic function, 1094
polymorphic type, 1094
popcount (see bit_count)
popen, 261
populate_record, 2553
port, 856
port configuration parameter, 550
portal

DECLARE, 1704
in PL/pgSQL, 1252

position, 201, 210, 215
POSITION_REGEX, 232
POSTGRES, xxiii
postgres, 2, 525, 662, 2089
postgres user, 523
Postgres95, xxiii
postgresql.auto.conf, 547
postgresql.conf, 546
postgres_fdw, 2634
postgres_fdw.application_name configuration para-
meter, 2643
post_auth_delay configuration parameter, 627
power, 196
PQAUTHDATA_OAUTH_BEARER_TOKEN, 924
PQAUTHDATA_PROMPT_OAUTH_DEVICE, 923
PQbackendPID, 869
PQbinaryTuples, 880

with COPY, 900
PQcancel, 897
PQcancelBlocking, 894
PQcancelCreate, 894
PQcancelErrorMessage, 896
PQcancelFinish, 897

2741

Index

PQcancelPoll, 895
PQcancelReset, 897
PQcancelSocket, 896
PQcancelStart, 895
PQcancelStatus, 896
PQchangePassword, 906
PQclear, 878
PQclientEncoding, 903
PQclosePortal, 874
PQclosePrepared, 874
PQcmdStatus, 882
PQcmdTuples, 882
PQconndefaults, 850
PQconnectdb, 847
PQconnectdbParams, 846
PQconnectionNeedsPassword, 869
PQconnectionUsedGSSAPI, 869
PQconnectionUsedPassword, 869
PQconnectPoll, 848
PQconnectStart, 848
PQconnectStartParams, 848
PQconninfo, 851
PQconninfoFree, 905
PQconninfoParse, 851
PQconsumeInput, 888
PQcopyResult, 907
PQdb, 865
PQdescribePortal, 874
PQdescribePrepared, 874
PQencryptPassword, 906
PQencryptPasswordConn, 905
PQendcopy, 903
PQenterPipelineMode, 891
PQerrorMessage, 868
PQescapeBytea, 884
PQescapeByteaConn, 884
PQescapeIdentifier, 883
PQescapeLiteral, 882
PQescapeString, 884
PQescapeStringConn, 883
PQexec, 871
PQexecParams, 871
PQexecPrepared, 873
PQexitPipelineMode, 892
PQfformat, 880

with COPY, 900
PQfinish, 851
PQfireResultCreateEvents, 907
PQflush, 889
PQfmod, 880
PQfn, 898
PQfname, 879
PQfnumber, 879
PQfreeCancel, 897
PQfreemem, 905
PQfsize, 880
PQftable, 879
PQftablecol, 879

PQftype, 880
PQfullProtocolVersion, 868
PQgetAuthDataHook, 923
PQgetCancel, 897
PQgetCopyData, 901
PQgetCurrentTimeUSec, 908
PQgetisnull, 881
PQgetlength, 881
PQgetline, 902
PQgetlineAsync, 902
PQgetResult, 887
PQgetssl, 871
PQgetSSLKeyPassHook_OpenSSL, 853
PQgetvalue, 880
PQhost, 866
PQhostaddr, 866
PQinitOpenSSL, 922
PQinitSSL, 922
PQinstanceData, 912
PQisBusy, 888
PQisnonblocking, 888
PQisthreadsafe, 925
PQlibVersion, 908

(see also PQserverVersion)
PQmakeEmptyPGresult, 906
PQnfields, 879

with COPY, 900
PQnotifies, 899
PQnparams, 881
PQntuples, 879
PQoidStatus, 882
PQoidValue, 882
PQoptions, 867
PQparameterStatus, 867
PQparamtype, 881
PQpass, 866
PQping, 852
PQpingParams, 852
PQpipelineStatus, 891
PQpipelineSync, 892
PQport, 866
PQprepare, 873
PQprint, 881
PQprotocolVersion, 868
PQputCopyData, 900
PQputCopyEnd, 901
PQputline, 902
PQputnbytes, 903
PQregisterEventProc, 912
PQrequestCancel, 898
PQreset, 851
PQresetPoll, 851
PQresetStart, 851
PQresStatus, 876
PQresultAlloc, 907
PQresultErrorField, 876
PQresultErrorMessage, 876
PQresultInstanceData, 912

2742

Index

PQresultMemorySize, 908
PQresultSetInstanceData, 912
PQresultStatus, 875
PQresultVerboseErrorMessage, 876
PQsendClosePortal, 887
PQsendClosePrepared, 887
PQsendDescribePortal, 886
PQsendDescribePrepared, 886
PQsendFlushRequest, 892
PQsendPipelineSync, 892
PQsendPrepare, 886
PQsendQuery, 885
PQsendQueryParams, 886
PQsendQueryPrepared, 886
PQserverVersion, 868
PQsetAuthDataHook, 923
PQsetChunkedRowsMode, 893
PQsetClientEncoding, 904
PQsetdb, 847
PQsetdbLogin, 847
PQsetErrorContextVisibility, 904
PQsetErrorVerbosity, 904
PQsetInstanceData, 912
PQsetnonblocking, 888
PQsetNoticeProcessor, 909
PQsetNoticeReceiver, 909
PQsetResultAttrs, 907
PQsetSingleRowMode, 893
PQsetSSLKeyPassHook_OpenSSL, 852
PQsetTraceFlags, 905
PQsetvalue, 907
PQsocket, 868
PQsocketPoll, 850
PQsslAttribute, 869
PQsslAttributeNames, 870
PQsslInUse, 869
PQsslStruct, 870
PQstatus, 867
PQtrace, 904
PQtransactionStatus, 867
PQtty, 866
PQunescapeBytea, 885
PQuntrace, 905
PQuser, 865
predicate locking, 452
PREPARE, 1802
PREPARE TRANSACTION, 1805
prepared statements

creating, 1802
executing, 1759
removing, 1703
showing the query plan, 1760

preparing a query
in PL/pgSQL, 1269
in PL/Python, 1315
in PL/Tcl, 1285

pre_auth_delay configuration parameter, 627
primary key, 54

primary_conninfo configuration parameter, 578
primary_slot_name configuration parameter, 579
privilege, 61

default, 64
querying, 346
with rules, 1214
for schemas, 74
with views, 1214

procedural language, 1219
externally maintained, 2689
handler for, 2253

procedure
user-defined, 1097

procedures
output parameter, 1103

protocol
frontend-backend, 2184

ps
to monitor activity, 733

psql, 4, 1989
Python, 1307

Q
qualified name, 72
query, 8, 97
query cancellation, 894
query plan, 462
query tree, 1194
querytree, 268, 425
quotation marks

and identifiers, 23
escaping, 24

quote_all_identifiers configuration parameter, 621
quote_ident, 204

in PL/Perl, 1300
use in PL/pgSQL, 1234

quote_literal, 204
in PL/Perl, 1300
use in PL/pgSQL, 1234

quote_nullable, 204
in PL/Perl, 1300
use in PL/pgSQL, 1234

R
radians, 196
radius, 261
RADIUS, 649
RAISE

in PL/pgSQL, 1257
random, 197, 197
random_normal, 197
random_page_cost configuration parameter, 585
range table, 1194
range type, 178

exclude, 182
indexes on, 182

range_agg, 329
range_intersect_agg, 329

2743

Index

range_merge, 325, 326
rank, 334

hypothetical, 332
read committed, 449
read-only transaction, 612

setting, 1861
setting default, 611

readline, 492
Readline

in psql, 2026
READ_REPLICATION_SLOT, 2204
real, 127
REASSIGN OWNED, 1807
record, 186
recovery.conf, 2718, 2718
recovery.signal, 572
recovery_end_command configuration parameter,
573
recovery_init_sync_method configuration parame-
ter, 623
recovery_min_apply_delay configuration parame-
ter, 581
recovery_prefetch configuration parameter, 572
recovery_target configuration parameter, 573
recovery_target_action configuration parameter,
574
recovery_target_inclusive configuration parameter,
574
recovery_target_lsn configuration parameter, 574
recovery_target_name configuration parameter,
573
recovery_target_time configuration parameter, 574
recovery_target_timeline configuration parameter,
574
recovery_target_xid configuration parameter, 574
rectangle, 147
RECURSIVE

in common table expressions, 116
in views, 1698

recursive_worktable_factor configuration parame-
ter, 589
referential integrity, 14, 55
REFRESH MATERIALIZED VIEW, 1808
regclass, 183
regcollation, 183
regconfig, 183
regdictionary, 183
regexp_count, 204, 219
regexp_instr, 205, 219
regexp_like, 205, 219
regexp_match, 205, 219
regexp_matches, 205, 219
regexp_replace, 205, 219
regexp_split_to_array, 205, 219
regexp_split_to_table, 205, 219
regexp_substr, 205, 219
regnamespace, 183
regoper, 183

regoperator, 183
regproc, 183
regprocedure, 183
regression intercept, 330
regression slope, 331
regression test, 495, 507
regression tests, 836
regrole, 183
regr_avgx, 330
regr_avgy, 330
regr_count, 330
regr_intercept, 330
regr_r2, 330
regr_slope, 331
regr_sxx, 331
regr_sxy, 331
regr_syy, 331
regtype, 183
regular expression, 217, 219

(see also pattern matching)
regular expressions

and locales, 667
reindex, 698
REINDEX, 1810
reindexdb, 2033
relation, 6
relational database, 6
RELEASE SAVEPOINT, 1815
remove_temp_files_after_crash configuration para-
meter, 629
repeat, 206
repeatable read, 451
replace, 206
replication, 714
Replication Origins, 1405
Replication Progress Tracking, 1405
replication slot

logical replication, 1392
streaming replication, 720

reporting errors
in PL/pgSQL, 1257

reserved_connections configuration parameter,
551
RESET, 1817
restartpoint, 799
restart_after_crash configuration parameter, 622
restore_command configuration parameter, 572
RESTRICT

with DROP, 91
foreign key action, 56

restrict_nonsystem_relation_kind
configuration parameter, 614

retryable error, 460
RETURN NEXT

in PL/pgSQL, 1238
RETURN QUERY

in PL/pgSQL, 1238
RETURNING, 95

2744

Index

RETURNING INTO
in PL/pgSQL, 1232

reverse, 206, 211
REVOKE, 61, 1818
right, 206
right join, 99
role, 654, 658

applicable, 1045
enabled, 1062
membership in, 656
privilege to bypass, 656
privilege to create, 655
privilege to inherit, 656
privilege to initiate replication, 655
privilege to limit connection, 656

ROLLBACK, 1822
rollback

psql, 2022
ROLLBACK PREPARED, 1823
ROLLBACK TO SAVEPOINT, 1824
ROLLUP, 108
round, 196
routine, 1097
routine maintenance, 689
row, 6, 45
ROW, 40
row estimation

multivariate, 2385
planner, 2381

row type, 172
constructor, 40

row-level security, 66
row-wise comparison, 338
row_number, 333
row_security configuration parameter, 610
row_security_active, 348
row_to_json, 289
rpad, 202
rtrim, 202, 210
rule, 1194

and materialized views, 1202
and views, 1195
for DELETE, 1204
for INSERT, 1204
for SELECT, 1196
compared with triggers, 1216
for UPDATE, 1204

S
SAVEPOINT, 1826
savepoints

defining, 1826
releasing, 1815
rolling back, 1824

scalar (see expression)
scale, 196
schema, 71, 661

creating, 72

current, 73, 344
public, 73
removing, 72

SCRAM, 642
scram_iterations configuration parameter, 553
search path, 73

current, 344
object visibility, 349

search_path configuration parameter, 73, 609
use in securing functions, 1585

SECURITY LABEL, 1828
sec_to_gc, 2541
seg, 2645
segment_size configuration parameter, 624
SELECT, 8, 97, 1831

determination of result type, 396
select list, 111

SELECT INTO, 1851
in PL/pgSQL, 1232

semaphores, 528
send_abort_for_crash configuration parameter, 630
send_abort_for_kill configuration parameter, 630
sepgsql, 2648
sepgsql.debug_audit configuration parameter,
2650
sepgsql.permissive configuration parameter, 2650
sequence, 314

and serial type, 128
sequential scan, 584
seq_page_cost configuration parameter, 585
serial, 128
serial2, 128
serial4, 128
serial8, 128
serializable, 452
Serializable Snapshot Isolation, 448
serializable_buffers configuration parameter, 560
serialization anomaly, 448, 452
serialization failure, 460
server log, 589

log file maintenance, 698
Server Name Indication, 862
server spoofing, 538
server_encoding configuration parameter, 624
server_version configuration parameter, 624
server_version_num configuration parameter, 624
session_preload_libraries configuration parameter,
617
session_replication_role configuration parameter,
612
session_user, 346
SET, 363, 1853
SET CONSTRAINTS, 1856
set difference, 112
set intersection, 112
set operation, 112
set returning functions

functions, 340

2745

Index

SET ROLE, 1857
SET SESSION AUTHORIZATION, 1859
SET TRANSACTION, 1861
set union, 112
SET XML OPTION, 614
setseed, 198
setval, 314
setweight, 268, 424

setweight for specific lexeme(s), 268
set_bit, 212, 215
set_byte, 212
set_config, 364
set_limit, 2624
set_masklen, 265
sha224, 212
sha256, 212
sha384, 212
sha512, 212
shared library, 516, 1122
shared memory, 528
shared_buffers configuration parameter, 557
shared_memory_size configuration parameter, 624
shared_memory_size_in_huge_pages configuration
parameter, 624
shared_memory_type configuration parameter, 561
shared_preload_libraries, 1133, 1134
shared_preload_libraries configuration parameter,
617
shobj_description, 357
SHOW, 363, 1864, 2202
show_limit, 2624
show_trgm, 2624
shutdown, 535
SIGHUP, 547, 632, 640
SIGINT, 535
sign, 196
signal

backend processes, 364
significant digits, 615
SIGQUIT, 535
SIGTERM, 535
SIMILAR TO, 217
similarity, 2624
sin, 199
sind, 199
single-user mode, 2092
sinh, 199
skeys, 2552
sleep, 255
slice, 2553
sliced bread (see TOAST)
slope, 261
SLRU, 771
smallint, 125
smallserial, 128
Solaris

installation on, 519
shared library, 1123

start script, 527
SOME, 330, 335, 338
sort, 2559
sorting, 113
sort_asc, 2559
sort_desc, 2559
soundex, 2546
SP-GiST (see index)
SPI, 1321

examples, 2656
spi_commit

in PL/Perl, 1299
SPI_commit, 1380
SPI_commit_and_chain, 1380
SPI_connect, 1322
SPI_connect_ext, 1322
SPI_copytuple, 1373
spi_cursor_close

in PL/Perl, 1297
SPI_cursor_close, 1355
SPI_cursor_fetch, 1351
SPI_cursor_find, 1350
SPI_cursor_move, 1352
SPI_cursor_open, 1345
SPI_cursor_open_with_args, 1346
SPI_cursor_open_with_paramlist, 1348
SPI_cursor_parse_open, 1349
SPI_exec, 1327
SPI_execp, 1344
SPI_execute, 1324
SPI_execute_extended, 1328
SPI_execute_plan, 1340
SPI_execute_plan_extended, 1341
SPI_execute_plan_with_paramlist, 1343
SPI_execute_with_args, 1330
spi_exec_prepared

in PL/Perl, 1298
spi_exec_query

in PL/Perl, 1296
spi_fetchrow

in PL/Perl, 1297
SPI_finish, 1323
SPI_fname, 1361
SPI_fnumber, 1362
spi_freeplan

in PL/Perl, 1298
SPI_freeplan, 1379
SPI_freetuple, 1377
SPI_freetuptable, 1378
SPI_getargcount, 1337
SPI_getargtypeid, 1338
SPI_getbinval, 1364
SPI_getnspname, 1368
SPI_getrelname, 1367
SPI_gettype, 1365
SPI_gettypeid, 1366
SPI_getvalue, 1363
SPI_is_cursor_plan, 1339

2746

Index

SPI_keepplan, 1356
SPI_modifytuple, 1375
SPI_palloc, 1370
SPI_pfree, 1372
spi_prepare

in PL/Perl, 1298
SPI_prepare, 1332
SPI_prepare_cursor, 1334
SPI_prepare_extended, 1335
SPI_prepare_params, 1336
spi_query

in PL/Perl, 1297
spi_query_prepared

in PL/Perl, 1298
SPI_register_relation, 1358
SPI_register_trigger_data, 1360
SPI_repalloc, 1371
SPI_result_code_string, 1369
SPI_returntuple, 1374
spi_rollback

in PL/Perl, 1299
SPI_rollback, 1381
SPI_rollback_and_chain, 1381
SPI_saveplan, 1357
SPI_scroll_cursor_fetch, 1353
SPI_scroll_cursor_move, 1354
SPI_start_transaction, 1382
SPI_unregister_relation, 1359
split_part, 206
SQL/CLI, 2436
SQL/Foundation, 2436
SQL/Framework, 2436
SQL/JRT, 2436
SQL/JSON

functions and expressions, 285
SQL/JSON path language, 297
SQL/MDA, 2436
SQL/MED, 2436
SQL/OLB, 2436
SQL/PGQ, 2436
SQL/PSM, 2436
SQL/Schemata, 2436
SQL/XML, 2436

limits and conformance, 2457
sqrt, 196
ssh, 544
SSI, 448
SSL

in libpq, 871
with libpq, 859
TLS, 540, 918

ssl configuration parameter, 554
sslinfo, 2658
ssl_ca_file configuration parameter, 554
ssl_cert_file configuration parameter, 554
ssl_cipher, 2658
ssl_ciphers configuration parameter, 555
ssl_client_cert_present, 2658

ssl_client_dn, 2658
ssl_client_dn_field, 2658
ssl_client_serial, 2658
ssl_crl_dir configuration parameter, 555
ssl_crl_file configuration parameter, 555
ssl_dh_params_file configuration parameter, 556
ssl_extension_info, 2659
ssl_groups configuration parameter, 556
ssl_issuer_dn, 2658
ssl_issuer_field, 2659
ssl_is_used, 2658
ssl_key_file configuration parameter, 555
ssl_library configuration parameter, 624
ssl_max_protocol_version configuration parameter,
556
ssl_min_protocol_version configuration parameter,
556
ssl_passphrase_command configuration parameter,
556
ssl_passphrase_command_supports_reload configu-
ration parameter, 557
ssl_prefer_server_ciphers configuration parameter,
556
ssl_tls13_ciphers configuration parameter, 555
ssl_version, 2658
SSPI, 645
STABLE, 1112
standard deviation, 331

population, 331
sample, 331

standard_conforming_strings configuration para-
meter, 621
standby server, 714
standby.signal, 572, 718, 718

for hot standby, 729
pg_basebackup --write-recovery-conf, 1906

standby_mode (see standby.signal)
START TRANSACTION, 1866
starts_with, 206
START_REPLICATION, 2204
statement_timeout configuration parameter, 612
statement_timestamp, 246
statistics, 330, 734

of the planner, 476, 477, 691
stats_fetch_consistency configuration parameter,
604
stddev, 331
stddev_pop, 331
stddev_samp, 331
STONITH, 714
storage parameters, 1658
Streaming Replication, 714
strict_word_similarity, 2624
string (see character string)
strings

backslash quotes, 620
escape warning, 621
standard conforming, 621

2747

Index

string_agg, 329
string_to_array, 206
string_to_table, 206
strip, 268, 424
strpos, 206
subarray, 2559
subltree, 2570
subpath, 2570
subplan, 468

hashed, 468
subquery, 11, 38, 102, 335
subscript, 31
substr, 207, 212
substring, 202, 210, 215, 217, 219
SUBSTRING_REGEX, 232
subtransactions

in PL/Tcl, 1289
subtransaction_buffers configuration parameter,
560
sum, 329
summarize_wal configuration parameter, 575
superuser, 4, 655
superuser_reserved_connections configuration pa-
rameter, 551
support functions

in_range, 2308
suppress_redundant_updates_trigger, 381
svals, 2552
synchronized_standby_slots configuration parame-
ter, 577
synchronize_seqscans configuration parameter,
621
synchronous commit, 796
Synchronous Replication, 714
synchronous_commit configuration parameter, 566
synchronous_standby_names configuration para-
meter, 577
sync_replication_slots configuration parameter,
581
syntax

SQL, 22
syslog_facility configuration parameter, 591
syslog_ident configuration parameter, 592
syslog_sequence_numbers configuration parame-
ter, 592
syslog_split_messages configuration parameter,
592
system catalog

schema, 74
systemd, 499, 510, 526

RemoveIPC, 532
system_user, 346

T
table, 6, 45

creating, 45
inheritance, 75
modifying, 59

partitioning, 79
removing, 46
renaming, 61

Table Access Method, 2287
TABLE command, 1831
table expression, 97
table function, 102

XMLTABLE, 279
table sampling method, 2275
tableam

Table Access Method, 2287
tablefunc, 2660
tableoid, 58
TABLESAMPLE method, 2275
tablespace, 664

default, 610
temporary, 611

table_am_handler, 186
tan, 199
tand, 199
tanh, 199
target list, 1195
Tcl, 1282
tcn, 2669
tcp_keepalives_count configuration parameter, 553
tcp_keepalives_idle configuration parameter, 552
tcp_keepalives_interval configuration parameter,
552
tcp_user_timeout configuration parameter, 553
template0, 662, 662
template1, 662, 662
temp_buffers configuration parameter, 558
temp_file_limit configuration parameter, 561
temp_tablespaces configuration parameter, 611
test, 836
test_decoding, 2670
text, 130, 265
text search, 412

data types, 151
functions and operators, 151
indexes, 443

text2ltree, 2571
threads

with libpq, 925
tid, 183
time, 134, 136

constants, 138
current, 254
output format, 138

(see also formatting)
time span, 134
time with time zone, 134, 136
time without time zone, 134, 136
time zone, 139, 615

conversion, 252
input abbreviations, 2404
POSIX-style specification, 2406

time zone data, 501, 511

2748

Index

time zone names, 615
timelines, 700
TIMELINE_HISTORY, 2202
timeofday, 246
timeout

client authentication, 553
deadlock, 619

timestamp, 134, 137
timestamp with time zone, 134, 137
timestamp without time zone, 134, 137
timestamptz, 134
TimeZone configuration parameter, 615
timezone_abbreviations configuration parameter,
615
TOAST, 2363

and user-defined types, 1147
per-column storage settings, 1486, 1648
per-type storage settings, 1509
versus large objects, 937

toast_tuple_target storage parameter, 1658
token, 22
to_ascii, 207
to_bin, 207
to_char, 234

and locales, 667
to_date, 234
to_hex, 207
to_json, 288
to_jsonb, 288
to_number, 234
to_oct, 207
to_regclass, 353
to_regcollation, 353
to_regnamespace, 354
to_regoper, 354
to_regoperator, 354
to_regproc, 354
to_regprocedure, 354
to_regrole, 354
to_regtype, 354
to_regtypemod, 354
to_timestamp, 234, 246
to_tsquery, 268, 418
to_tsvector, 268, 417
trace_locks configuration parameter, 627
trace_lock_oidmin configuration parameter, 628
trace_lock_table configuration parameter, 628
trace_lwlocks configuration parameter, 627
trace_notify configuration parameter, 627
trace_sort configuration parameter, 627
trace_userlocks configuration parameter, 628
track_activities configuration parameter, 602
track_activity_query_size configuration parameter,
603
track_commit_timestamp configuration parameter,
577
track_cost_delay_timing configuration parameter,
603

track_counts configuration parameter, 603
track_functions configuration parameter, 603
track_io_timing configuration parameter, 603
track_wal_io_timing configuration parameter, 603
transaction, 15
transaction ID

wraparound, 692
transaction isolation, 448
transaction isolation level, 449, 612

read committed, 449
repeatable read, 451
serializable, 452
setting, 1861
setting default, 611

transaction log (see WAL)
transaction_buffers configuration parameter, 560
transaction_deferrable configuration parameter,
612
transaction_isolation configuration parameter, 612
transaction_read_only configuration parameter,
612
transaction_timeout configuration parameter, 613
transaction_timestamp, 246
transform_null_equals configuration parameter,
621
transition tables, 1680

(see also ephemeral named relation)
implementation in PLs, 1360
referencing from C trigger, 1181

translate, 207
TRANSLATE_REGEX, 232
transparent huge pages, 558
trigger, 186, 1178

arguments for trigger functions, 1181
constraint trigger, 1681
for updating a derived tsvector column, 427
in C, 1181
in PL/pgSQL, 1259
in PL/Python, 1313
in PL/Tcl, 1286
compared with rules, 1216

triggered_change_notification, 2669
trim, 202, 211
trim_array, 321
trim_scale, 197
true, 143
trunc, 197, 266
TRUNCATE, 1867
trusted

PL/Perl, 1302
tsm_handler, 186
tsm_system_rows, 2671
tsm_system_time, 2672
tsquery (data type), 152
tsquery_phrase, 270, 425
tsvector (data type), 151
tsvector concatenation, 424
tsvector_to_array, 270

2749

Index

tsvector_update_trigger, 381
tsvector_update_trigger_column, 382
ts_debug, 271, 439
ts_delete, 269
ts_filter, 269
ts_headline, 269, 422
ts_lexize, 271, 442
ts_parse, 271, 441
ts_rank, 270, 421
ts_rank_cd, 270, 421
ts_rewrite, 270, 425
ts_stat, 271, 428
ts_token_type, 271, 442
tuple_data_split, 2576
txid_current, 360
txid_current_if_assigned, 360
txid_current_snapshot, 360
txid_snapshot_xip, 360
txid_snapshot_xmax, 360
txid_snapshot_xmin, 360
txid_status, 360
txid_visible_in_snapshot, 360
type (see data type)
type cast, 27, 37
typedef

in ECPG, 961

U
UESCAPE, 23, 25
unaccent, 2673, 2674
Unicode escape

in identifiers, 23
in string constants, 25

Unicode normalization, 201, 201
unicode_assigned, 202
unicode_version, 362
UNION, 112

determination of result type, 394
uniq, 2559
unique constraint, 53
unistr, 207
Unix domain socket, 855
unix_socket_directories configuration parameter,
551
unix_socket_group configuration parameter, 551
unix_socket_permissions configuration parameter,
552
unknown, 186
UNLISTEN, 1869
unnest, 321

for multirange, 326
for tsvector, 270

unqualified name, 73
updatable views, 1700
UPDATE, 12, 94, 1870

RETURNING, 95
update_process_title configuration parameter, 602
updating, 94

upgrading, 536
UPLOAD_MANIFEST, 2207
upper, 202, 325, 326

and locales, 667
upper_inc, 325, 326
upper_inf, 325, 326
UPSERT, 1778
URI, 853
user, 346, 654

current, 344
user mapping, 91
User name maps, 640
user_catalog_table storage parameter, 1660
UUID, 153, 499, 510

generating, 271
uuid-ossp, 2675
uuidv4, 271
uuidv7, 271
uuid_extract_timestamp, 271
uuid_extract_version, 271
uuid_generate_v1, 2675
uuid_generate_v1mc, 2675
uuid_generate_v3, 2675

V
vacuum, 689

configuration parameters, 604
VACUUM, 1875
vacuumdb, 2036
vacuumlo, 2687
vacuum_buffer_usage_limit configuration parame-
ter, 559
vacuum_cost_delay configuration parameter, 607
vacuum_cost_limit configuration parameter, 607
vacuum_cost_page_dirty configuration parameter,
607
vacuum_cost_page_hit configuration parameter,
607
vacuum_cost_page_miss configuration parameter,
607
vacuum_failsafe_age configuration parameter, 608
vacuum_freeze_min_age configuration parameter,
608
vacuum_freeze_table_age configuration parameter,
608
vacuum_index_cleanup storage parameter, 1659
vacuum_max_eager_freeze_failure_rate

configuration parameter, 609
storage parameter, 1660

vacuum_multixact_failsafe_age configuration para-
meter, 609
vacuum_multixact_freeze_min_age configuration
parameter, 609
vacuum_multixact_freeze_table_age configuration
parameter, 608
vacuum_truncate

configuration parameter, 608
storage parameter, 1659

2750

Index

value expression, 30
VALUES, 114, 1880

determination of result type, 394
varchar, 130
variadic function, 1104
variance, 331

population, 331
sample, 331

var_pop, 331
var_samp, 331
version, 4, 362

compatibility, 536
view, 14

implementation through rules, 1195
materialized, 1202
updating, 1208

Visibility Map, 2366
Visual Studio

installation on, 520
VM (see Visibility Map)
void, 186
VOLATILE, 1112
volatility

functions, 1112
VPATH, 494, 1176

W
WAL, 794
wal_block_size configuration parameter, 624
wal_buffers configuration parameter, 569
wal_compression configuration parameter, 568
wal_consistency_checking configuration parame-
ter, 628
wal_debug configuration parameter, 628
wal_decode_buffer_size configuration parameter,
572
wal_init_zero configuration parameter, 568
wal_keep_size configuration parameter, 576
wal_level configuration parameter, 565
wal_log_hints configuration parameter, 568
wal_receiver_create_temp_slot configuration para-
meter, 580
wal_receiver_status_interval configuration parame-
ter, 580
wal_receiver_timeout configuration parameter, 580
wal_recycle configuration parameter, 568
wal_retrieve_retry_interval configuration parame-
ter, 580
wal_segment_size configuration parameter, 625
wal_sender_timeout configuration parameter, 577
wal_skip_threshold configuration parameter, 569
wal_summary_keep_time configuration parameter,
575
wal_sync_method configuration parameter, 567
wal_writer_delay configuration parameter, 569
wal_writer_flush_after configuration parameter,
569
warm standby, 714

websearch_to_tsquery, 268
WHERE, 105
where to log, 589
WHILE

in PL/pgSQL, 1244
width, 261
width_bucket, 197
window function, 16

built-in, 333
invocation, 35
order of execution, 110

WITH
in SELECT, 115, 1831

WITH CHECK OPTION, 1698
WITHIN GROUP, 33
witness server, 714
word_similarity, 2624
work_mem configuration parameter, 558
wraparound

of multixact IDs, 695
of transaction IDs, 692

X
xid, 183
xid8, 183
xmax, 59
xmin, 58
XML, 154
XML export, 282
XML Functions, 272
XML option, 154, 614
xml2, 2677
xmlagg, 276, 329
xmlbinary configuration parameter, 614
xmlcomment, 273
xmlconcat, 273
xmlelement, 274
XMLEXISTS, 277
xmlforest, 275
xmloption configuration parameter, 614
xmlparse, 154
xmlpi, 275
xmlroot, 276
xmlserialize, 154
xmltable, 279
xmltext, 273
xml_is_well_formed, 277
xml_is_well_formed_content, 277
xml_is_well_formed_document, 277
XPath, 278
xpath_exists, 279
xpath_table, 2678
XQuery regular expressions, 232
xslt_process, 2680

Y
yacc, 492

2751

Index

Z
zero_damaged_pages configuration parameter, 629
zlib, 492, 500, 511

2752

	PostgreSQL 18.0 Documentation
	Table of Contents
	Preface
	1. What Is PostgreSQL?
	2. A Brief History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. Conventions
	4. Further Information
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to Report
	5.3. Where to Report Bugs

	Part I. Tutorial
	Chapter 1. Getting Started
	1.1. Installation
	1.2. Architectural Fundamentals
	1.3. Creating a Database
	1.4. Accessing a Database

	Chapter 2. The SQL Language
	2.1. Introduction
	2.2. Concepts
	2.3. Creating a New Table
	2.4. Populating a Table With Rows
	2.5. Querying a Table
	2.6. Joins Between Tables
	2.7. Aggregate Functions
	2.8. Updates
	2.9. Deletions

	Chapter 3. Advanced Features
	3.1. Introduction
	3.2. Views
	3.3. Foreign Keys
	3.4. Transactions
	3.5. Window Functions
	3.6. Inheritance
	3.7. Conclusion

	Part II. The SQL Language
	Chapter 4. SQL Syntax
	4.1. Lexical Structure
	4.1.1. Identifiers and Key Words
	4.1.2. Constants
	4.1.2.1. String Constants
	4.1.2.2. String Constants with C-Style Escapes
	4.1.2.3. String Constants with Unicode Escapes
	4.1.2.4. Dollar-Quoted String Constants
	4.1.2.5. Bit-String Constants
	4.1.2.6. Numeric Constants
	4.1.2.7. Constants of Other Types

	4.1.3. Operators
	4.1.4. Special Characters
	4.1.5. Comments
	4.1.6. Operator Precedence

	4.2. Value Expressions
	4.2.1. Column References
	4.2.2. Positional Parameters
	4.2.3. Subscripts
	4.2.4. Field Selection
	4.2.5. Operator Invocations
	4.2.6. Function Calls
	4.2.7. Aggregate Expressions
	4.2.8. Window Function Calls
	4.2.9. Type Casts
	4.2.10. Collation Expressions
	4.2.11. Scalar Subqueries
	4.2.12. Array Constructors
	4.2.13. Row Constructors
	4.2.14. Expression Evaluation Rules

	4.3. Calling Functions
	4.3.1. Using Positional Notation
	4.3.2. Using Named Notation
	4.3.3. Using Mixed Notation

	Chapter 5. Data Definition
	5.1. Table Basics
	5.2. Default Values
	5.3. Identity Columns
	5.4. Generated Columns
	5.5. Constraints
	5.5.1. Check Constraints
	5.5.2. Not-Null Constraints
	5.5.3. Unique Constraints
	5.5.4. Primary Keys
	5.5.5. Foreign Keys
	5.5.6. Exclusion Constraints

	5.6. System Columns
	5.7. Modifying Tables
	5.7.1. Adding a Column
	5.7.2. Removing a Column
	5.7.3. Adding a Constraint
	5.7.4. Removing a Constraint
	5.7.5. Changing a Column's Default Value
	5.7.6. Changing a Column's Data Type
	5.7.7. Renaming a Column
	5.7.8. Renaming a Table

	5.8. Privileges
	5.9. Row Security Policies
	5.10. Schemas
	5.10.1. Creating a Schema
	5.10.2. The Public Schema
	5.10.3. The Schema Search Path
	5.10.4. Schemas and Privileges
	5.10.5. The System Catalog Schema
	5.10.6. Usage Patterns
	5.10.7. Portability

	5.11. Inheritance
	5.11.1. Caveats

	5.12. Table Partitioning
	5.12.1. Overview
	5.12.2. Declarative Partitioning
	5.12.2.1. Example
	5.12.2.2. Partition Maintenance
	5.12.2.3. Limitations

	5.12.3. Partitioning Using Inheritance
	5.12.3.1. Example
	5.12.3.2. Maintenance for Inheritance Partitioning
	5.12.3.3. Caveats

	5.12.4. Partition Pruning
	5.12.5. Partitioning and Constraint Exclusion
	5.12.6. Best Practices for Declarative Partitioning

	5.13. Foreign Data
	5.14. Other Database Objects
	5.15. Dependency Tracking

	Chapter 6. Data Manipulation
	6.1. Inserting Data
	6.2. Updating Data
	6.3. Deleting Data
	6.4. Returning Data from Modified Rows

	Chapter 7. Queries
	7.1. Overview
	7.2. Table Expressions
	7.2.1. The FROM Clause
	7.2.1.1. Joined Tables
	7.2.1.2. Table and Column Aliases
	7.2.1.3. Subqueries
	7.2.1.4. Table Functions
	7.2.1.5. LATERAL Subqueries

	7.2.2. The WHERE Clause
	7.2.3. The GROUP BY and HAVING Clauses
	7.2.4. GROUPING SETS, CUBE, and ROLLUP
	7.2.5. Window Function Processing

	7.3. Select Lists
	7.3.1. Select-List Items
	7.3.2. Column Labels
	7.3.3. DISTINCT

	7.4. Combining Queries (UNION, INTERSECT, EXCEPT)
	7.5. Sorting Rows (ORDER BY)
	7.6. LIMIT and OFFSET
	7.7. VALUES Lists
	7.8. WITH Queries (Common Table Expressions)
	7.8.1. SELECT in WITH
	7.8.2. Recursive Queries
	7.8.2.1. Search Order
	7.8.2.2. Cycle Detection

	7.8.3. Common Table Expression Materialization
	7.8.4. Data-Modifying Statements in WITH

	Chapter 8. Data Types
	8.1. Numeric Types
	8.1.1. Integer Types
	8.1.2. Arbitrary Precision Numbers
	8.1.3. Floating-Point Types
	8.1.4. Serial Types

	8.2. Monetary Types
	8.3. Character Types
	8.4. Binary Data Types
	8.4.1. bytea Hex Format
	8.4.2. bytea Escape Format

	8.5. Date/Time Types
	8.5.1. Date/Time Input
	8.5.1.1. Dates
	8.5.1.2. Times
	8.5.1.3. Time Stamps
	8.5.1.4. Special Values

	8.5.2. Date/Time Output
	8.5.3. Time Zones
	8.5.4. Interval Input
	8.5.5. Interval Output

	8.6. Boolean Type
	8.7. Enumerated Types
	8.7.1. Declaration of Enumerated Types
	8.7.2. Ordering
	8.7.3. Type Safety
	8.7.4. Implementation Details

	8.8. Geometric Types
	8.8.1. Points
	8.8.2. Lines
	8.8.3. Line Segments
	8.8.4. Boxes
	8.8.5. Paths
	8.8.6. Polygons
	8.8.7. Circles

	8.9. Network Address Types
	8.9.1. inet
	8.9.2. cidr
	8.9.3. inet vs. cidr
	8.9.4. macaddr
	8.9.5. macaddr8

	8.10. Bit String Types
	8.11. Text Search Types
	8.11.1. tsvector
	8.11.2. tsquery

	8.12. UUID Type
	8.13. XML Type
	8.13.1. Creating XML Values
	8.13.2. Encoding Handling
	8.13.3. Accessing XML Values

	8.14. JSON Types
	8.14.1. JSON Input and Output Syntax
	8.14.2. Designing JSON Documents
	8.14.3. jsonb Containment and Existence
	8.14.4. jsonb Indexing
	8.14.5. jsonb Subscripting
	8.14.6. Transforms
	8.14.7. jsonpath Type

	8.15. Arrays
	8.15.1. Declaration of Array Types
	8.15.2. Array Value Input
	8.15.3. Accessing Arrays
	8.15.4. Modifying Arrays
	8.15.5. Searching in Arrays
	8.15.6. Array Input and Output Syntax

	8.16. Composite Types
	8.16.1. Declaration of Composite Types
	8.16.2. Constructing Composite Values
	8.16.3. Accessing Composite Types
	8.16.4. Modifying Composite Types
	8.16.5. Using Composite Types in Queries
	8.16.6. Composite Type Input and Output Syntax

	8.17. Range Types
	8.17.1. Built-in Range and Multirange Types
	8.17.2. Examples
	8.17.3. Inclusive and Exclusive Bounds
	8.17.4. Infinite (Unbounded) Ranges
	8.17.5. Range Input/Output
	8.17.6. Constructing Ranges and Multiranges
	8.17.7. Discrete Range Types
	8.17.8. Defining New Range Types
	8.17.9. Indexing
	8.17.10. Constraints on Ranges

	8.18. Domain Types
	8.19. Object Identifier Types
	8.20. pg_lsn Type
	8.21. Pseudo-Types

	Chapter 9. Functions and Operators
	9.1. Logical Operators
	9.2. Comparison Functions and Operators
	9.3. Mathematical Functions and Operators
	9.4. String Functions and Operators
	9.4.1. format

	9.5. Binary String Functions and Operators
	9.6. Bit String Functions and Operators
	9.7. Pattern Matching
	9.7.1. LIKE
	9.7.2. SIMILAR TO Regular Expressions
	9.7.3. POSIX Regular Expressions
	9.7.3.1. Regular Expression Details
	9.7.3.2. Bracket Expressions
	9.7.3.3. Regular Expression Escapes
	9.7.3.4. Regular Expression Metasyntax
	9.7.3.5. Regular Expression Matching Rules
	9.7.3.6. Limits and Compatibility
	9.7.3.7. Basic Regular Expressions
	9.7.3.8. Differences from SQL Standard and XQuery

	9.8. Data Type Formatting Functions
	9.9. Date/Time Functions and Operators
	9.9.1. EXTRACT, date_part
	9.9.2. date_trunc
	9.9.3. date_bin
	9.9.4. AT TIME ZONE and AT LOCAL
	9.9.5. Current Date/Time
	9.9.6. Delaying Execution

	9.10. Enum Support Functions
	9.11. Geometric Functions and Operators
	9.12. Network Address Functions and Operators
	9.13. Text Search Functions and Operators
	9.14. UUID Functions
	9.15. XML Functions
	9.15.1. Producing XML Content
	9.15.1.1. xmltext
	9.15.1.2. xmlcomment
	9.15.1.3. xmlconcat
	9.15.1.4. xmlelement
	9.15.1.5. xmlforest
	9.15.1.6. xmlpi
	9.15.1.7. xmlroot
	9.15.1.8. xmlagg

	9.15.2. XML Predicates
	9.15.2.1. IS DOCUMENT
	9.15.2.2. IS NOT DOCUMENT
	9.15.2.3. XMLEXISTS
	9.15.2.4. xml_is_well_formed

	9.15.3. Processing XML
	9.15.3.1. xpath
	9.15.3.2. xpath_exists
	9.15.3.3. xmltable

	9.15.4. Mapping Tables to XML

	9.16. JSON Functions and Operators
	9.16.1. Processing and Creating JSON Data
	9.16.2. The SQL/JSON Path Language
	9.16.2.1. Deviations from the SQL Standard
	9.16.2.1.1. Boolean Predicate Check Expressions
	9.16.2.1.2. Regular Expression Interpretation

	9.16.2.2. Strict and Lax Modes
	9.16.2.3. SQL/JSON Path Operators and Methods
	9.16.2.4. SQL/JSON Regular Expressions

	9.16.3. SQL/JSON Query Functions
	9.16.4. JSON_TABLE

	9.17. Sequence Manipulation Functions
	9.18. Conditional Expressions
	9.18.1. CASE
	9.18.2. COALESCE
	9.18.3. NULLIF
	9.18.4. GREATEST and LEAST

	9.19. Array Functions and Operators
	9.20. Range/Multirange Functions and Operators
	9.21. Aggregate Functions
	9.22. Window Functions
	9.23. Merge Support Functions
	9.24. Subquery Expressions
	9.24.1. EXISTS
	9.24.2. IN
	9.24.3. NOT IN
	9.24.4. ANY/SOME
	9.24.5. ALL
	9.24.6. Single-Row Comparison

	9.25. Row and Array Comparisons
	9.25.1. IN
	9.25.2. NOT IN
	9.25.3. ANY/SOME (array)
	9.25.4. ALL (array)
	9.25.5. Row Constructor Comparison
	9.25.6. Composite Type Comparison

	9.26. Set Returning Functions
	9.27. System Information Functions and Operators
	9.27.1. Session Information Functions
	9.27.2. Access Privilege Inquiry Functions
	9.27.3. Schema Visibility Inquiry Functions
	9.27.4. System Catalog Information Functions
	9.27.5. Object Information and Addressing Functions
	9.27.6. Comment Information Functions
	9.27.7. Data Validity Checking Functions
	9.27.8. Transaction ID and Snapshot Information Functions
	9.27.9. Committed Transaction Information Functions
	9.27.10. Control Data Functions
	9.27.11. Version Information Functions
	9.27.12. WAL Summarization Information Functions

	9.28. System Administration Functions
	9.28.1. Configuration Settings Functions
	9.28.2. Server Signaling Functions
	9.28.3. Backup Control Functions
	9.28.4. Recovery Control Functions
	9.28.5. Snapshot Synchronization Functions
	9.28.6. Replication Management Functions
	9.28.7. Database Object Management Functions
	9.28.8. Index Maintenance Functions
	9.28.9. Generic File Access Functions
	9.28.10. Advisory Lock Functions

	9.29. Trigger Functions
	9.30. Event Trigger Functions
	9.30.1. Capturing Changes at Command End
	9.30.2. Processing Objects Dropped by a DDL Command
	9.30.3. Handling a Table Rewrite Event

	9.31. Statistics Information Functions
	9.31.1. Inspecting MCV Lists

	Chapter 10. Type Conversion
	10.1. Overview
	10.2. Operators
	10.3. Functions
	10.4. Value Storage
	10.5. UNION, CASE, and Related Constructs
	10.6. SELECT Output Columns

	Chapter 11. Indexes
	11.1. Introduction
	11.2. Index Types
	11.2.1. B-Tree
	11.2.2. Hash
	11.2.3. GiST
	11.2.4. SP-GiST
	11.2.5. GIN
	11.2.6. BRIN

	11.3. Multicolumn Indexes
	11.4. Indexes and ORDER BY
	11.5. Combining Multiple Indexes
	11.6. Unique Indexes
	11.7. Indexes on Expressions
	11.8. Partial Indexes
	11.9. Index-Only Scans and Covering Indexes
	11.10. Operator Classes and Operator Families
	11.11. Indexes and Collations
	11.12. Examining Index Usage

	Chapter 12. Full Text Search
	12.1. Introduction
	12.1.1. What Is a Document?
	12.1.2. Basic Text Matching
	12.1.3. Configurations

	12.2. Tables and Indexes
	12.2.1. Searching a Table
	12.2.2. Creating Indexes

	12.3. Controlling Text Search
	12.3.1. Parsing Documents
	12.3.2. Parsing Queries
	12.3.3. Ranking Search Results
	12.3.4. Highlighting Results

	12.4. Additional Features
	12.4.1. Manipulating Documents
	12.4.2. Manipulating Queries
	12.4.2.1. Query Rewriting

	12.4.3. Triggers for Automatic Updates
	12.4.4. Gathering Document Statistics

	12.5. Parsers
	12.6. Dictionaries
	12.6.1. Stop Words
	12.6.2. Simple Dictionary
	12.6.3. Synonym Dictionary
	12.6.4. Thesaurus Dictionary
	12.6.4.1. Thesaurus Configuration
	12.6.4.2. Thesaurus Example

	12.6.5. Ispell Dictionary
	12.6.6. Snowball Dictionary

	12.7. Configuration Example
	12.8. Testing and Debugging Text Search
	12.8.1. Configuration Testing
	12.8.2. Parser Testing
	12.8.3. Dictionary Testing

	12.9. Preferred Index Types for Text Search
	12.10. psql Support
	12.11. Limitations

	Chapter 13. Concurrency Control
	13.1. Introduction
	13.2. Transaction Isolation
	13.2.1. Read Committed Isolation Level
	13.2.2. Repeatable Read Isolation Level
	13.2.3. Serializable Isolation Level

	13.3. Explicit Locking
	13.3.1. Table-Level Locks
	13.3.2. Row-Level Locks
	13.3.3. Page-Level Locks
	13.3.4. Deadlocks
	13.3.5. Advisory Locks

	13.4. Data Consistency Checks at the Application Level
	13.4.1. Enforcing Consistency with Serializable Transactions
	13.4.2. Enforcing Consistency with Explicit Blocking Locks

	13.5. Serialization Failure Handling
	13.6. Caveats
	13.7. Locking and Indexes

	Chapter 14. Performance Tips
	14.1. Using EXPLAIN
	14.1.1. EXPLAIN Basics
	14.1.2. EXPLAIN ANALYZE
	14.1.3. Caveats

	14.2. Statistics Used by the Planner
	14.2.1. Single-Column Statistics
	14.2.2. Extended Statistics
	14.2.2.1. Functional Dependencies
	14.2.2.1.1. Limitations of Functional Dependencies

	14.2.2.2. Multivariate N-Distinct Counts
	14.2.2.3. Multivariate MCV Lists

	14.3. Controlling the Planner with Explicit JOIN Clauses
	14.4. Populating a Database
	14.4.1. Disable Autocommit
	14.4.2. Use COPY
	14.4.3. Remove Indexes
	14.4.4. Remove Foreign Key Constraints
	14.4.5. Increase maintenance_work_mem
	14.4.6. Increase max_wal_size
	14.4.7. Disable WAL Archival and Streaming Replication
	14.4.8. Run ANALYZE Afterwards
	14.4.9. Some Notes about pg_dump

	14.5. Non-Durable Settings

	Chapter 15. Parallel Query
	15.1. How Parallel Query Works
	15.2. When Can Parallel Query Be Used?
	15.3. Parallel Plans
	15.3.1. Parallel Scans
	15.3.2. Parallel Joins
	15.3.3. Parallel Aggregation
	15.3.4. Parallel Append
	15.3.5. Parallel Plan Tips

	15.4. Parallel Safety
	15.4.1. Parallel Labeling for Functions and Aggregates

	Part III. Server Administration
	Chapter 16. Installation from Binaries
	Chapter 17. Installation from Source Code
	17.1. Requirements
	17.2. Getting the Source
	17.3. Building and Installation with Autoconf and Make
	17.3.1. Short Version
	17.3.2. Installation Procedure
	17.3.3. configure Options
	17.3.3.1. Installation Locations
	17.3.3.2. PostgreSQL Features
	17.3.3.3. Anti-Features
	17.3.3.4. Build Process Details
	17.3.3.5. Miscellaneous
	17.3.3.6. Developer Options

	17.3.4. configure Environment Variables

	17.4. Building and Installation with Meson
	17.4.1. Short Version
	17.4.2. Installation Procedure
	17.4.3. meson setup Options
	17.4.3.1. Installation Locations
	17.4.3.2. PostgreSQL Features
	17.4.3.3. Anti-Features
	17.4.3.4. Build Process Details
	17.4.3.5. Documentation
	17.4.3.6. Miscellaneous
	17.4.3.7. Developer Options

	17.4.4. meson Build Targets
	17.4.4.1. Code Targets
	17.4.4.2. Developer Targets
	17.4.4.3. Documentation Targets
	17.4.4.4. Installation Targets
	17.4.4.5. Other Targets

	17.5. Post-Installation Setup
	17.5.1. Shared Libraries
	17.5.2. Environment Variables

	17.6. Supported Platforms
	17.7. Platform-Specific Notes
	17.7.1. Cygwin
	17.7.2. macOS
	17.7.3. MinGW
	17.7.3.1. Collecting Crash Dumps

	17.7.4. Solaris
	17.7.4.1. Required Tools
	17.7.4.2. configure Complains About a Failed Test Program
	17.7.4.3. Compiling for Optimal Performance
	17.7.4.4. Using DTrace for Tracing PostgreSQL

	17.7.5. Visual Studio
	17.7.5.1. Requirements
	17.7.5.2. Special Considerations for 64-Bit Windows
	17.7.5.3. Collecting Crash Dumps

	Chapter 18. Server Setup and Operation
	18.1. The PostgreSQL User Account
	18.2. Creating a Database Cluster
	18.2.1. Use of Secondary File Systems
	18.2.2. File Systems
	18.2.2.1. NFS

	18.3. Starting the Database Server
	18.3.1. Server Start-up Failures
	18.3.2. Client Connection Problems

	18.4. Managing Kernel Resources
	18.4.1. Shared Memory and Semaphores
	18.4.2. systemd RemoveIPC
	18.4.3. Resource Limits
	18.4.4. Linux Memory Overcommit
	18.4.5. Linux Huge Pages

	18.5. Shutting Down the Server
	18.6. Upgrading a PostgreSQL Cluster
	18.6.1. Upgrading Data via pg_dumpall
	18.6.2. Upgrading Data via pg_upgrade
	18.6.3. Upgrading Data via Replication

	18.7. Preventing Server Spoofing
	18.8. Encryption Options
	18.9. Secure TCP/IP Connections with SSL
	18.9.1. Basic Setup
	18.9.2. OpenSSL Configuration
	18.9.3. Using Client Certificates
	18.9.4. SSL Server File Usage
	18.9.5. Creating Certificates

	18.10. Secure TCP/IP Connections with GSSAPI Encryption
	18.10.1. Basic Setup

	18.11. Secure TCP/IP Connections with SSH Tunnels
	18.12. Registering Event Log on Windows

	Chapter 19. Server Configuration
	19.1. Setting Parameters
	19.1.1. Parameter Names and Values
	19.1.2. Parameter Interaction via the Configuration File
	19.1.3. Parameter Interaction via SQL
	19.1.4. Parameter Interaction via the Shell
	19.1.5. Managing Configuration File Contents

	19.2. File Locations
	19.3. Connections and Authentication
	19.3.1. Connection Settings
	19.3.2. TCP Settings
	19.3.3. Authentication
	19.3.4. SSL

	19.4. Resource Consumption
	19.4.1. Memory
	19.4.2. Disk
	19.4.3. Kernel Resource Usage
	19.4.4. Background Writer
	19.4.5. I/O
	19.4.6. Worker Processes

	19.5. Write Ahead Log
	19.5.1. Settings
	19.5.2. Checkpoints
	19.5.3. Archiving
	19.5.4. Recovery
	19.5.5. Archive Recovery
	19.5.6. Recovery Target
	19.5.7. WAL Summarization

	19.6. Replication
	19.6.1. Sending Servers
	19.6.2. Primary Server
	19.6.3. Standby Servers
	19.6.4. Subscribers

	19.7. Query Planning
	19.7.1. Planner Method Configuration
	19.7.2. Planner Cost Constants
	19.7.3. Genetic Query Optimizer
	19.7.4. Other Planner Options

	19.8. Error Reporting and Logging
	19.8.1. Where to Log
	19.8.2. When to Log
	19.8.3. What to Log
	19.8.4. Using CSV-Format Log Output
	19.8.5. Using JSON-Format Log Output
	19.8.6. Process Title

	19.9. Run-time Statistics
	19.9.1. Cumulative Query and Index Statistics
	19.9.2. Statistics Monitoring

	19.10. Vacuuming
	19.10.1. Automatic Vacuuming
	19.10.2. Cost-based Vacuum Delay
	19.10.3. Default Behavior
	19.10.4. Freezing

	19.11. Client Connection Defaults
	19.11.1. Statement Behavior
	19.11.2. Locale and Formatting
	19.11.3. Shared Library Preloading
	19.11.4. Other Defaults

	19.12. Lock Management
	19.13. Version and Platform Compatibility
	19.13.1. Previous PostgreSQL Versions
	19.13.2. Platform and Client Compatibility

	19.14. Error Handling
	19.15. Preset Options
	19.16. Customized Options
	19.17. Developer Options
	19.18. Short Options

	Chapter 20. Client Authentication
	20.1. The pg_hba.conf File
	20.2. User Name Maps
	20.3. Authentication Methods
	20.4. Trust Authentication
	20.5. Password Authentication
	20.6. GSSAPI Authentication
	20.7. SSPI Authentication
	20.8. Ident Authentication
	20.9. Peer Authentication
	20.10. LDAP Authentication
	20.11. RADIUS Authentication
	20.12. Certificate Authentication
	20.13. PAM Authentication
	20.14. BSD Authentication
	20.15. OAuth Authorization/Authentication
	20.16. Authentication Problems

	Chapter 21. Database Roles
	21.1. Database Roles
	21.2. Role Attributes
	21.3. Role Membership
	21.4. Dropping Roles
	21.5. Predefined Roles
	21.6. Function Security

	Chapter 22. Managing Databases
	22.1. Overview
	22.2. Creating a Database
	22.3. Template Databases
	22.4. Database Configuration
	22.5. Destroying a Database
	22.6. Tablespaces

	Chapter 23. Localization
	23.1. Locale Support
	23.1.1. Overview
	23.1.2. Behavior
	23.1.3. Selecting Locales
	23.1.4. Locale Providers
	23.1.5. ICU Locales
	23.1.5.1. ICU Locale Names
	23.1.5.2. Locale Canonicalization and Validation
	23.1.5.3. Language Tag

	23.1.6. Problems

	23.2. Collation Support
	23.2.1. Concepts
	23.2.2. Managing Collations
	23.2.2.1. Standard Collations
	23.2.2.2. Predefined Collations
	23.2.2.2.1. libc Collations
	23.2.2.2.2. ICU Collations

	23.2.2.3. Creating New Collation Objects
	23.2.2.3.1. libc Collations
	23.2.2.3.2. ICU Collations
	23.2.2.3.3. Copying Collations

	23.2.2.4. Nondeterministic Collations

	23.2.3. ICU Custom Collations
	23.2.3.1. ICU Comparison Levels
	23.2.3.1.1. Collation Level Examples

	23.2.3.2. Collation Settings for an ICU Locale
	23.2.3.3. Collation Settings Examples
	23.2.3.4. ICU Tailoring Rules
	23.2.3.5. External References for ICU

	23.3. Character Set Support
	23.3.1. Supported Character Sets
	23.3.2. Setting the Character Set
	23.3.3. Automatic Character Set Conversion Between Server and Client
	23.3.4. Available Character Set Conversions
	23.3.5. Further Reading

	Chapter 24. Routine Database Maintenance Tasks
	24.1. Routine Vacuuming
	24.1.1. Vacuuming Basics
	24.1.2. Recovering Disk Space
	24.1.3. Updating Planner Statistics
	24.1.4. Updating the Visibility Map
	24.1.5. Preventing Transaction ID Wraparound Failures
	24.1.5.1. Multixacts and Wraparound

	24.1.6. The Autovacuum Daemon

	24.2. Routine Reindexing
	24.3. Log File Maintenance

	Chapter 25. Backup and Restore
	25.1. SQL Dump
	25.1.1. Restoring the Dump
	25.1.2. Using pg_dumpall
	25.1.3. Handling Large Databases

	25.2. File System Level Backup
	25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
	25.3.1. Setting Up WAL Archiving
	25.3.2. Making a Base Backup
	25.3.3. Making an Incremental Backup
	25.3.4. Making a Base Backup Using the Low Level API
	25.3.4.1. Backing Up the Data Directory

	25.3.5. Recovering Using a Continuous Archive Backup
	25.3.6. Timelines
	25.3.7. Tips and Examples
	25.3.7.1. Standalone Hot Backups
	25.3.7.2. Compressed Archive Logs
	25.3.7.3. archive_command Scripts

	25.3.8. Caveats

	Chapter 26. High Availability, Load Balancing, and Replication
	26.1. Comparison of Different Solutions
	26.2. Log-Shipping Standby Servers
	26.2.1. Planning
	26.2.2. Standby Server Operation
	26.2.3. Preparing the Primary for Standby Servers
	26.2.4. Setting Up a Standby Server
	26.2.5. Streaming Replication
	26.2.5.1. Authentication
	26.2.5.2. Monitoring

	26.2.6. Replication Slots
	26.2.6.1. Querying and Manipulating Replication Slots
	26.2.6.2. Configuration Example

	26.2.7. Cascading Replication
	26.2.8. Synchronous Replication
	26.2.8.1. Basic Configuration
	26.2.8.2. Multiple Synchronous Standbys
	26.2.8.3. Planning for Performance
	26.2.8.4. Planning for High Availability

	26.2.9. Continuous Archiving in Standby

	26.3. Failover
	26.4. Hot Standby
	26.4.1. User's Overview
	26.4.2. Handling Query Conflicts
	26.4.3. Administrator's Overview
	26.4.4. Hot Standby Parameter Reference
	26.4.5. Caveats

	Chapter 27. Monitoring Database Activity
	27.1. Standard Unix Tools
	27.2. The Cumulative Statistics System
	27.2.1. Statistics Collection Configuration
	27.2.2. Viewing Statistics
	27.2.3. pg_stat_activity
	27.2.4. pg_stat_replication
	27.2.5. pg_stat_replication_slots
	27.2.6. pg_stat_wal_receiver
	27.2.7. pg_stat_recovery_prefetch
	27.2.8. pg_stat_subscription
	27.2.9. pg_stat_subscription_stats
	27.2.10. pg_stat_ssl
	27.2.11. pg_stat_gssapi
	27.2.12. pg_stat_archiver
	27.2.13. pg_stat_io
	27.2.14. pg_stat_bgwriter
	27.2.15. pg_stat_checkpointer
	27.2.16. pg_stat_wal
	27.2.17. pg_stat_database
	27.2.18. pg_stat_database_conflicts
	27.2.19. pg_stat_all_tables
	27.2.20. pg_stat_all_indexes
	27.2.21. pg_statio_all_tables
	27.2.22. pg_statio_all_indexes
	27.2.23. pg_statio_all_sequences
	27.2.24. pg_stat_user_functions
	27.2.25. pg_stat_slru
	27.2.26. Statistics Functions

	27.3. Viewing Locks
	27.4. Progress Reporting
	27.4.1. ANALYZE Progress Reporting
	27.4.2. CLUSTER Progress Reporting
	27.4.3. COPY Progress Reporting
	27.4.4. CREATE INDEX Progress Reporting
	27.4.5. VACUUM Progress Reporting
	27.4.6. Base Backup Progress Reporting

	27.5. Dynamic Tracing
	27.5.1. Compiling for Dynamic Tracing
	27.5.2. Built-in Probes
	27.5.3. Using Probes
	27.5.4. Defining New Probes

	27.6. Monitoring Disk Usage
	27.6.1. Determining Disk Usage
	27.6.2. Disk Full Failure

	Chapter 28. Reliability and the Write-Ahead Log
	28.1. Reliability
	28.2. Data Checksums
	28.2.1. Off-line Enabling of Checksums

	28.3. Write-Ahead Logging (WAL)
	28.4. Asynchronous Commit
	28.5. WAL Configuration
	28.6. WAL Internals

	Chapter 29. Logical Replication
	29.1. Publication
	29.1.1. Replica Identity

	29.2. Subscription
	29.2.1. Replication Slot Management
	29.2.2. Examples: Set Up Logical Replication
	29.2.3. Examples: Deferred Replication Slot Creation

	29.3. Logical Replication Failover
	29.4. Row Filters
	29.4.1. Row Filter Rules
	29.4.2. Expression Restrictions
	29.4.3. UPDATE Transformations
	29.4.4. Partitioned Tables
	29.4.5. Initial Data Synchronization
	29.4.6. Combining Multiple Row Filters
	29.4.7. Examples

	29.5. Column Lists
	29.5.1. Examples

	29.6. Generated Column Replication
	29.7. Conflicts
	29.8. Restrictions
	29.9. Architecture
	29.9.1. Initial Snapshot

	29.10. Monitoring
	29.11. Security
	29.12. Configuration Settings
	29.12.1. Publishers
	29.12.2. Subscribers

	29.13. Upgrade
	29.13.1. Prepare for Publisher Upgrades
	29.13.2. Prepare for Subscriber Upgrades
	29.13.3. Upgrading Logical Replication Clusters
	29.13.3.1. Steps to Upgrade a Two-node Logical Replication Cluster
	29.13.3.2. Steps to Upgrade a Cascaded Logical Replication Cluster
	29.13.3.3. Steps to Upgrade a Two-node Circular Logical Replication Cluster

	29.14. Quick Setup

	Chapter 30. Just-in-Time Compilation (JIT)
	30.1. What Is JIT compilation?
	30.1.1. JIT Accelerated Operations
	30.1.2. Inlining
	30.1.3. Optimization

	30.2. When to JIT?
	30.3. Configuration
	30.4. Extensibility
	30.4.1. Inlining Support for Extensions
	30.4.2. Pluggable JIT Providers
	30.4.2.1. JIT Provider Interface

	Chapter 31. Regression Tests
	31.1. Running the Tests
	31.1.1. Running the Tests Against a Temporary Installation
	31.1.2. Running the Tests Against an Existing Installation
	31.1.3. Additional Test Suites
	31.1.4. Locale and Encoding
	31.1.5. Custom Server Settings
	31.1.6. Extra Tests

	31.2. Test Evaluation
	31.2.1. Error Message Differences
	31.2.2. Locale Differences
	31.2.3. Date and Time Differences
	31.2.4. Floating-Point Differences
	31.2.5. Row Ordering Differences
	31.2.6. Insufficient Stack Depth
	31.2.7. The “random” Test
	31.2.8. Configuration Parameters

	31.3. Variant Comparison Files
	31.4. TAP Tests
	31.4.1. Environment Variables

	31.5. Test Coverage Examination
	31.5.1. Coverage with Autoconf and Make
	31.5.2. Coverage with Meson

	Part IV. Client Interfaces
	Chapter 32. libpq — C Library
	32.1. Database Connection Control Functions
	32.1.1. Connection Strings
	32.1.1.1. Keyword/Value Connection Strings
	32.1.1.2. Connection URIs
	32.1.1.3. Specifying Multiple Hosts

	32.1.2. Parameter Key Words

	32.2. Connection Status Functions
	32.3. Command Execution Functions
	32.3.1. Main Functions
	32.3.2. Retrieving Query Result Information
	32.3.3. Retrieving Other Result Information
	32.3.4. Escaping Strings for Inclusion in SQL Commands

	32.4. Asynchronous Command Processing
	32.5. Pipeline Mode
	32.5.1. Using Pipeline Mode
	32.5.1.1. Issuing Queries
	32.5.1.2. Processing Results
	32.5.1.3. Error Handling
	32.5.1.4. Interleaving Result Processing and Query Dispatch

	32.5.2. Functions Associated with Pipeline Mode
	32.5.3. When to Use Pipeline Mode

	32.6. Retrieving Query Results in Chunks
	32.7. Canceling Queries in Progress
	32.7.1. Functions for Sending Cancel Requests
	32.7.2. Obsolete Functions for Sending Cancel Requests

	32.8. The Fast-Path Interface
	32.9. Asynchronous Notification
	32.10. Functions Associated with the COPY Command
	32.10.1. Functions for Sending COPY Data
	32.10.2. Functions for Receiving COPY Data
	32.10.3. Obsolete Functions for COPY

	32.11. Control Functions
	32.12. Miscellaneous Functions
	32.13. Notice Processing
	32.14. Event System
	32.14.1. Event Types
	32.14.2. Event Callback Procedure
	32.14.3. Event Support Functions
	32.14.4. Event Example

	32.15. Environment Variables
	32.16. The Password File
	32.17. The Connection Service File
	32.18. LDAP Lookup of Connection Parameters
	32.19. SSL Support
	32.19.1. Client Verification of Server Certificates
	32.19.2. Client Certificates
	32.19.3. Protection Provided in Different Modes
	32.19.4. SSL Client File Usage
	32.19.5. SSL Library Initialization

	32.20. OAuth Support
	32.20.1. Authdata Hooks
	32.20.1.1. Hook Types

	32.20.2. Debugging and Developer Settings

	32.21. Behavior in Threaded Programs
	32.22. Building libpq Programs
	32.23. Example Programs

	Chapter 33. Large Objects
	33.1. Introduction
	33.2. Implementation Features
	33.3. Client Interfaces
	33.3.1. Creating a Large Object
	33.3.2. Importing a Large Object
	33.3.3. Exporting a Large Object
	33.3.4. Opening an Existing Large Object
	33.3.5. Writing Data to a Large Object
	33.3.6. Reading Data from a Large Object
	33.3.7. Seeking in a Large Object
	33.3.8. Obtaining the Seek Position of a Large Object
	33.3.9. Truncating a Large Object
	33.3.10. Closing a Large Object Descriptor
	33.3.11. Removing a Large Object

	33.4. Server-Side Functions
	33.5. Example Program

	Chapter 34. ECPG — Embedded SQL in C
	34.1. The Concept
	34.2. Managing Database Connections
	34.2.1. Connecting to the Database Server
	34.2.2. Choosing a Connection
	34.2.3. Closing a Connection

	34.3. Running SQL Commands
	34.3.1. Executing SQL Statements
	34.3.2. Using Cursors
	34.3.3. Managing Transactions
	34.3.4. Prepared Statements

	34.4. Using Host Variables
	34.4.1. Overview
	34.4.2. Declare Sections
	34.4.3. Retrieving Query Results
	34.4.4. Type Mapping
	34.4.4.1. Handling Character Strings
	34.4.4.2. Accessing Special Data Types
	34.4.4.2.1. timestamp, date
	34.4.4.2.2. interval
	34.4.4.2.3. numeric, decimal
	34.4.4.2.4. bytea

	34.4.4.3. Host Variables with Nonprimitive Types
	34.4.4.3.1. Arrays
	34.4.4.3.2. Structures
	34.4.4.3.3. Typedefs
	34.4.4.3.4. Pointers

	34.4.5. Handling Nonprimitive SQL Data Types
	34.4.5.1. Arrays
	34.4.5.2. Composite Types
	34.4.5.3. User-Defined Base Types

	34.4.6. Indicators

	34.5. Dynamic SQL
	34.5.1. Executing Statements without a Result Set
	34.5.2. Executing a Statement with Input Parameters
	34.5.3. Executing a Statement with a Result Set

	34.6. pgtypes Library
	34.6.1. Character Strings
	34.6.2. The numeric Type
	34.6.3. The date Type
	34.6.4. The timestamp Type
	34.6.5. The interval Type
	34.6.6. The decimal Type
	34.6.7. errno Values of pgtypeslib
	34.6.8. Special Constants of pgtypeslib

	34.7. Using Descriptor Areas
	34.7.1. Named SQL Descriptor Areas
	34.7.2. SQLDA Descriptor Areas
	34.7.2.1. SQLDA Data Structure
	34.7.2.1.1. sqlda_t Structure
	34.7.2.1.2. sqlvar_t Structure
	34.7.2.1.3. struct sqlname Structure

	34.7.2.2. Retrieving a Result Set Using an SQLDA
	34.7.2.3. Passing Query Parameters Using an SQLDA
	34.7.2.4. A Sample Application Using SQLDA

	34.8. Error Handling
	34.8.1. Setting Callbacks
	34.8.2. sqlca
	34.8.3. SQLSTATE vs. SQLCODE

	34.9. Preprocessor Directives
	34.9.1. Including Files
	34.9.2. The define and undef Directives
	34.9.3. ifdef, ifndef, elif, else, and endif Directives

	34.10. Processing Embedded SQL Programs
	34.11. Library Functions
	34.12. Large Objects
	34.13. C++ Applications
	34.13.1. Scope for Host Variables
	34.13.2. C++ Application Development with External C Module

	34.14. Embedded SQL Commands
	ALLOCATE DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CONNECT
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DEALLOCATE DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DECLARE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DECLARE STATEMENT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DESCRIBE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DISCONNECT
	Description
	Parameters
	Examples
	Compatibility
	See Also

	EXECUTE IMMEDIATE
	Description
	Parameters
	Notes
	Examples
	Compatibility

	GET DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	OPEN
	Description
	Parameters
	Examples
	Compatibility
	See Also

	PREPARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET AUTOCOMMIT
	Description
	Compatibility

	SET CONNECTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	TYPE
	Description
	Parameters
	Examples
	Compatibility

	VAR
	Description
	Parameters
	Examples
	Compatibility

	WHENEVER
	Description
	Parameters
	Examples
	Compatibility

	34.15. Informix Compatibility Mode
	34.15.1. Additional Types
	34.15.2. Additional/Missing Embedded SQL Statements
	34.15.3. Informix-compatible SQLDA Descriptor Areas
	34.15.4. Additional Functions
	34.15.5. Additional Constants

	34.16. Oracle Compatibility Mode
	34.17. Internals

	Chapter 35. The Information Schema
	35.1. The Schema
	35.2. Data Types
	35.3. information_schema_catalog_name
	35.4. administrable_role_​authorizations
	35.5. applicable_roles
	35.6. attributes
	35.7. character_sets
	35.8. check_constraint_routine_usage
	35.9. check_constraints
	35.10. collations
	35.11. collation_character_set_​applicability
	35.12. column_column_usage
	35.13. column_domain_usage
	35.14. column_options
	35.15. column_privileges
	35.16. column_udt_usage
	35.17. columns
	35.18. constraint_column_usage
	35.19. constraint_table_usage
	35.20. data_type_privileges
	35.21. domain_constraints
	35.22. domain_udt_usage
	35.23. domains
	35.24. element_types
	35.25. enabled_roles
	35.26. foreign_data_wrapper_options
	35.27. foreign_data_wrappers
	35.28. foreign_server_options
	35.29. foreign_servers
	35.30. foreign_table_options
	35.31. foreign_tables
	35.32. key_column_usage
	35.33. parameters
	35.34. referential_constraints
	35.35. role_column_grants
	35.36. role_routine_grants
	35.37. role_table_grants
	35.38. role_udt_grants
	35.39. role_usage_grants
	35.40. routine_column_usage
	35.41. routine_privileges
	35.42. routine_routine_usage
	35.43. routine_sequence_usage
	35.44. routine_table_usage
	35.45. routines
	35.46. schemata
	35.47. sequences
	35.48. sql_features
	35.49. sql_implementation_info
	35.50. sql_parts
	35.51. sql_sizing
	35.52. table_constraints
	35.53. table_privileges
	35.54. tables
	35.55. transforms
	35.56. triggered_update_columns
	35.57. triggers
	35.58. udt_privileges
	35.59. usage_privileges
	35.60. user_defined_types
	35.61. user_mapping_options
	35.62. user_mappings
	35.63. view_column_usage
	35.64. view_routine_usage
	35.65. view_table_usage
	35.66. views

	Part V. Server Programming
	Chapter 36. Extending SQL
	36.1. How Extensibility Works
	36.2. The PostgreSQL Type System
	36.2.1. Base Types
	36.2.2. Container Types
	36.2.3. Domains
	36.2.4. Pseudo-Types
	36.2.5. Polymorphic Types

	36.3. User-Defined Functions
	36.4. User-Defined Procedures
	36.5. Query Language (SQL) Functions
	36.5.1. Arguments for SQL Functions
	36.5.2. SQL Functions on Base Types
	36.5.3. SQL Functions on Composite Types
	36.5.4. SQL Functions with Output Parameters
	36.5.5. SQL Procedures with Output Parameters
	36.5.6. SQL Functions with Variable Numbers of Arguments
	36.5.7. SQL Functions with Default Values for Arguments
	36.5.8. SQL Functions as Table Sources
	36.5.9. SQL Functions Returning Sets
	36.5.10. SQL Functions Returning TABLE
	36.5.11. Polymorphic SQL Functions
	36.5.12. SQL Functions with Collations

	36.6. Function Overloading
	36.7. Function Volatility Categories
	36.8. Procedural Language Functions
	36.9. Internal Functions
	36.10. C-Language Functions
	36.10.1. Dynamic Loading
	36.10.2. Base Types in C-Language Functions
	36.10.3. Version 1 Calling Conventions
	36.10.4. Writing Code
	36.10.5. Compiling and Linking Dynamically-Loaded Functions
	36.10.6. Server API and ABI Stability Guidance
	36.10.6.1. General
	36.10.6.2. API Compatibility
	36.10.6.2.1. Major Versions
	36.10.6.2.2. Minor Versions

	36.10.6.3. ABI Compatibility
	36.10.6.3.1. Major Versions
	36.10.6.3.2. Minor Versions

	36.10.7. Composite-Type Arguments
	36.10.8. Returning Rows (Composite Types)
	36.10.9. Returning Sets
	36.10.10. Polymorphic Arguments and Return Types
	36.10.11. Shared Memory
	36.10.11.1. Requesting Shared Memory at Startup
	36.10.11.2. Requesting Shared Memory After Startup

	36.10.12. LWLocks
	36.10.12.1. Requesting LWLocks at Startup
	36.10.12.2. Requesting LWLocks After Startup

	36.10.13. Custom Wait Events
	36.10.14. Injection Points
	36.10.15. Custom Cumulative Statistics
	36.10.16. Using C++ for Extensibility

	36.11. Function Optimization Information
	36.12. User-Defined Aggregates
	36.12.1. Moving-Aggregate Mode
	36.12.2. Polymorphic and Variadic Aggregates
	36.12.3. Ordered-Set Aggregates
	36.12.4. Partial Aggregation
	36.12.5. Support Functions for Aggregates

	36.13. User-Defined Types
	36.13.1. TOAST Considerations

	36.14. User-Defined Operators
	36.15. Operator Optimization Information
	36.15.1. COMMUTATOR
	36.15.2. NEGATOR
	36.15.3. RESTRICT
	36.15.4. JOIN
	36.15.5. HASHES
	36.15.6. MERGES

	36.16. Interfacing Extensions to Indexes
	36.16.1. Index Methods and Operator Classes
	36.16.2. Index Method Strategies
	36.16.3. Index Method Support Routines
	36.16.4. An Example
	36.16.5. Operator Classes and Operator Families
	36.16.6. System Dependencies on Operator Classes
	36.16.7. Ordering Operators
	36.16.8. Special Features of Operator Classes

	36.17. Packaging Related Objects into an Extension
	36.17.1. Extension Files
	36.17.2. Extension Relocatability
	36.17.3. Extension Configuration Tables
	36.17.4. Extension Updates
	36.17.5. Installing Extensions Using Update Scripts
	36.17.6. Security Considerations for Extensions
	36.17.6.1. Security Considerations for Extension Functions
	36.17.6.2. Security Considerations for Extension Scripts

	36.17.7. Extension Example

	36.18. Extension Building Infrastructure

	Chapter 37. Triggers
	37.1. Overview of Trigger Behavior
	37.2. Visibility of Data Changes
	37.3. Writing Trigger Functions in C
	37.4. A Complete Trigger Example

	Chapter 38. Event Triggers
	38.1. Overview of Event Trigger Behavior
	38.1.1. login
	38.1.2. ddl_command_start
	38.1.3. ddl_command_end
	38.1.4. sql_drop
	38.1.5. table_rewrite
	38.1.6. Event Triggers in Aborted Transactions
	38.1.7. Creating Event Triggers

	38.2. Writing Event Trigger Functions in C
	38.3. A Complete Event Trigger Example
	38.4. A Table Rewrite Event Trigger Example
	38.5. A Database Login Event Trigger Example

	Chapter 39. The Rule System
	39.1. The Query Tree
	39.2. Views and the Rule System
	39.2.1. How SELECT Rules Work
	39.2.2. View Rules in Non-SELECT Statements
	39.2.3. The Power of Views in PostgreSQL
	39.2.4. Updating a View

	39.3. Materialized Views
	39.4. Rules on INSERT, UPDATE, and DELETE
	39.4.1. How Update Rules Work
	39.4.1.1. A First Rule Step by Step

	39.4.2. Cooperation with Views

	39.5. Rules and Privileges
	39.6. Rules and Command Status
	39.7. Rules Versus Triggers

	Chapter 40. Procedural Languages
	40.1. Installing Procedural Languages

	Chapter 41. PL/pgSQL — SQL Procedural Language
	41.1. Overview
	41.1.1. Advantages of Using PL/pgSQL
	41.1.2. Supported Argument and Result Data Types

	41.2. Structure of PL/pgSQL
	41.3. Declarations
	41.3.1. Declaring Function Parameters
	41.3.2. ALIAS
	41.3.3. Copying Types
	41.3.4. Row Types
	41.3.5. Record Types
	41.3.6. Collation of PL/pgSQL Variables

	41.4. Expressions
	41.5. Basic Statements
	41.5.1. Assignment
	41.5.2. Executing SQL Commands
	41.5.3. Executing a Command with a Single-Row Result
	41.5.4. Executing Dynamic Commands
	41.5.5. Obtaining the Result Status
	41.5.6. Doing Nothing At All

	41.6. Control Structures
	41.6.1. Returning from a Function
	41.6.1.1. RETURN
	41.6.1.2. RETURN NEXT and RETURN QUERY

	41.6.2. Returning from a Procedure
	41.6.3. Calling a Procedure
	41.6.4. Conditionals
	41.6.4.1. IF-THEN
	41.6.4.2. IF-THEN-ELSE
	41.6.4.3. IF-THEN-ELSIF
	41.6.4.4. Simple CASE
	41.6.4.5. Searched CASE

	41.6.5. Simple Loops
	41.6.5.1. LOOP
	41.6.5.2. EXIT
	41.6.5.3. CONTINUE
	41.6.5.4. WHILE
	41.6.5.5. FOR (Integer Variant)

	41.6.6. Looping through Query Results
	41.6.7. Looping through Arrays
	41.6.8. Trapping Errors
	41.6.8.1. Obtaining Information about an Error

	41.6.9. Obtaining Execution Location Information

	41.7. Cursors
	41.7.1. Declaring Cursor Variables
	41.7.2. Opening Cursors
	41.7.2.1. OPEN FOR query
	41.7.2.2. OPEN FOR EXECUTE
	41.7.2.3. Opening a Bound Cursor

	41.7.3. Using Cursors
	41.7.3.1. FETCH
	41.7.3.2. MOVE
	41.7.3.3. UPDATE/DELETE WHERE CURRENT OF
	41.7.3.4. CLOSE
	41.7.3.5. Returning Cursors

	41.7.4. Looping through a Cursor's Result

	41.8. Transaction Management
	41.9. Errors and Messages
	41.9.1. Reporting Errors and Messages
	41.9.2. Checking Assertions

	41.10. Trigger Functions
	41.10.1. Triggers on Data Changes
	41.10.2. Triggers on Events

	41.11. PL/pgSQL under the Hood
	41.11.1. Variable Substitution
	41.11.2. Plan Caching

	41.12. Tips for Developing in PL/pgSQL
	41.12.1. Handling of Quotation Marks
	41.12.2. Additional Compile-Time and Run-Time Checks

	41.13. Porting from Oracle PL/SQL
	41.13.1. Porting Examples
	41.13.2. Other Things to Watch For
	41.13.2.1. Implicit Rollback after Exceptions
	41.13.2.2. EXECUTE
	41.13.2.3. Optimizing PL/pgSQL Functions

	41.13.3. Appendix

	Chapter 42. PL/Tcl — Tcl Procedural Language
	42.1. Overview
	42.2. PL/Tcl Functions and Arguments
	42.3. Data Values in PL/Tcl
	42.4. Global Data in PL/Tcl
	42.5. Database Access from PL/Tcl
	42.6. Trigger Functions in PL/Tcl
	42.7. Event Trigger Functions in PL/Tcl
	42.8. Error Handling in PL/Tcl
	42.9. Explicit Subtransactions in PL/Tcl
	42.10. Transaction Management
	42.11. PL/Tcl Configuration
	42.12. Tcl Procedure Names

	Chapter 43. PL/Perl — Perl Procedural Language
	43.1. PL/Perl Functions and Arguments
	43.2. Data Values in PL/Perl
	43.3. Built-in Functions
	43.3.1. Database Access from PL/Perl
	43.3.2. Utility Functions in PL/Perl

	43.4. Global Values in PL/Perl
	43.5. Trusted and Untrusted PL/Perl
	43.6. PL/Perl Triggers
	43.7. PL/Perl Event Triggers
	43.8. PL/Perl Under the Hood
	43.8.1. Configuration
	43.8.2. Limitations and Missing Features

	Chapter 44. PL/Python — Python Procedural Language
	44.1. PL/Python Functions
	44.2. Data Values
	44.2.1. Data Type Mapping
	44.2.2. Null, None
	44.2.3. Arrays, Lists
	44.2.4. Composite Types
	44.2.5. Set-Returning Functions

	44.3. Sharing Data
	44.4. Anonymous Code Blocks
	44.5. Trigger Functions
	44.6. Database Access
	44.6.1. Database Access Functions
	44.6.2. Trapping Errors

	44.7. Explicit Subtransactions
	44.7.1. Subtransaction Context Managers

	44.8. Transaction Management
	44.9. Utility Functions
	44.10. Python 2 vs. Python 3
	44.11. Environment Variables

	Chapter 45. Server Programming Interface
	45.1. Interface Functions
	SPI_connect
	Description
	Return Value

	SPI_finish
	Description
	Return Value

	SPI_execute
	Description
	Arguments
	Return Value
	Notes

	SPI_exec
	Description
	Arguments
	Return Value

	SPI_execute_extended
	Description
	Arguments
	Return Value

	SPI_execute_with_args
	Description
	Arguments
	Return Value

	SPI_prepare
	Description
	Arguments
	Return Value
	Notes

	SPI_prepare_cursor
	Description
	Arguments
	Return Value
	Notes

	SPI_prepare_extended
	Description
	Arguments
	Return Value

	SPI_prepare_params
	Description
	Arguments
	Return Value

	SPI_getargcount
	Description
	Arguments
	Return Value

	SPI_getargtypeid
	Description
	Arguments
	Return Value

	SPI_is_cursor_plan
	Description
	Arguments
	Return Value

	SPI_execute_plan
	Description
	Arguments
	Return Value

	SPI_execute_plan_extended
	Description
	Arguments
	Return Value

	SPI_execute_plan_with_paramlist
	Description
	Arguments
	Return Value

	SPI_execp
	Description
	Arguments
	Return Value

	SPI_cursor_open
	Description
	Arguments
	Return Value

	SPI_cursor_open_with_args
	Description
	Arguments
	Return Value

	SPI_cursor_open_with_paramlist
	Description
	Arguments
	Return Value

	SPI_cursor_parse_open
	Description
	Arguments
	Return Value

	SPI_cursor_find
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_fetch
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_move
	Description
	Arguments
	Notes

	SPI_scroll_cursor_fetch
	Description
	Arguments
	Return Value
	Notes

	SPI_scroll_cursor_move
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_close
	Description
	Arguments

	SPI_keepplan
	Description
	Arguments
	Return Value
	Notes

	SPI_saveplan
	Description
	Arguments
	Return Value
	Notes

	SPI_register_relation
	Description
	Arguments
	Return Value

	SPI_unregister_relation
	Description
	Arguments
	Return Value

	SPI_register_trigger_data
	Description
	Arguments
	Return Value

	45.2. Interface Support Functions
	SPI_fname
	Description
	Arguments
	Return Value

	SPI_fnumber
	Description
	Arguments
	Return Value

	SPI_getvalue
	Description
	Arguments
	Return Value

	SPI_getbinval
	Description
	Arguments
	Return Value

	SPI_gettype
	Description
	Arguments
	Return Value

	SPI_gettypeid
	Description
	Arguments
	Return Value

	SPI_getrelname
	Description
	Arguments
	Return Value

	SPI_getnspname
	Description
	Arguments
	Return Value

	SPI_result_code_string
	Description
	Arguments
	Return Value

	45.3. Memory Management
	SPI_palloc
	Description
	Arguments
	Return Value

	SPI_repalloc
	Description
	Arguments
	Return Value

	SPI_pfree
	Description
	Arguments

	SPI_copytuple
	Description
	Arguments
	Return Value

	SPI_returntuple
	Description
	Arguments
	Return Value

	SPI_modifytuple
	Description
	Arguments
	Return Value

	SPI_freetuple
	Description
	Arguments

	SPI_freetuptable
	Description
	Arguments

	SPI_freeplan
	Description
	Arguments
	Return Value

	45.4. Transaction Management
	SPI_commit
	Description

	SPI_rollback
	Description

	SPI_start_transaction
	Description

	45.5. Visibility of Data Changes
	45.6. Examples

	Chapter 46. Background Worker Processes
	Chapter 47. Logical Decoding
	47.1. Logical Decoding Examples
	47.2. Logical Decoding Concepts
	47.2.1. Logical Decoding
	47.2.2. Replication Slots
	47.2.3. Replication Slot Synchronization
	47.2.4. Output Plugins
	47.2.5. Exported Snapshots

	47.3. Streaming Replication Protocol Interface
	47.4. Logical Decoding SQL Interface
	47.5. System Catalogs Related to Logical Decoding
	47.6. Logical Decoding Output Plugins
	47.6.1. Initialization Function
	47.6.2. Capabilities
	47.6.3. Output Modes
	47.6.4. Output Plugin Callbacks
	47.6.4.1. Startup Callback
	47.6.4.2. Shutdown Callback
	47.6.4.3. Transaction Begin Callback
	47.6.4.4. Transaction End Callback
	47.6.4.5. Change Callback
	47.6.4.6. Truncate Callback
	47.6.4.7. Origin Filter Callback
	47.6.4.8. Generic Message Callback
	47.6.4.9. Prepare Filter Callback
	47.6.4.10. Transaction Begin Prepare Callback
	47.6.4.11. Transaction Prepare Callback
	47.6.4.12. Transaction Commit Prepared Callback
	47.6.4.13. Transaction Rollback Prepared Callback
	47.6.4.14. Stream Start Callback
	47.6.4.15. Stream Stop Callback
	47.6.4.16. Stream Abort Callback
	47.6.4.17. Stream Prepare Callback
	47.6.4.18. Stream Commit Callback
	47.6.4.19. Stream Change Callback
	47.6.4.20. Stream Message Callback
	47.6.4.21. Stream Truncate Callback

	47.6.5. Functions for Producing Output

	47.7. Logical Decoding Output Writers
	47.8. Synchronous Replication Support for Logical Decoding
	47.8.1. Overview
	47.8.2. Caveats

	47.9. Streaming of Large Transactions for Logical Decoding
	47.10. Two-phase Commit Support for Logical Decoding

	Chapter 48. Replication Progress Tracking
	Chapter 49. Archive Modules
	49.1. Initialization Functions
	49.2. Archive Module Callbacks
	49.2.1. Startup Callback
	49.2.2. Check Callback
	49.2.3. Archive Callback
	49.2.4. Shutdown Callback

	Chapter 50. OAuth Validator Modules
	50.1. Safely Designing a Validator Module
	50.1.1. Validator Responsibilities
	50.1.2. General Coding Guidelines
	50.1.3. Authorizing Users (Usermap Delegation)

	50.2. Initialization Functions
	50.3. OAuth Validator Callbacks
	50.3.1. Startup Callback
	50.3.2. Validate Callback
	50.3.3. Shutdown Callback

	Part VI. Reference
	SQL Commands
	ABORT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER COLLATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER CONVERSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER DATABASE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER DEFAULT PRIVILEGES
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	ALTER DOMAIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER EVENT TRIGGER
	Description
	Parameters
	Compatibility
	See Also

	ALTER EXTENSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN DATA WRAPPER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER FUNCTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER GROUP
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER INDEX
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER LANGUAGE
	Description
	Parameters
	Compatibility
	See Also

	ALTER LARGE OBJECT
	Description
	Parameters
	Compatibility
	See Also

	ALTER MATERIALIZED VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER OPERATOR
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER OPERATOR CLASS
	Description
	Parameters
	Compatibility
	See Also

	ALTER OPERATOR FAMILY
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER POLICY
	Description
	Parameters
	Compatibility
	See Also

	ALTER PROCEDURE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER PUBLICATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER ROUTINE
	Description
	Examples
	Compatibility
	See Also

	ALTER RULE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER SCHEMA
	Description
	Parameters
	Compatibility
	See Also

	ALTER SEQUENCE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER SERVER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER STATISTICS
	Description
	Parameters
	Compatibility
	See Also

	ALTER SUBSCRIPTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER SYSTEM
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLESPACE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH PARSER
	Description
	Parameters
	Compatibility
	See Also

	ALTER TEXT SEARCH TEMPLATE
	Description
	Parameters
	Compatibility
	See Also

	ALTER TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TYPE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER USER
	Description
	Compatibility
	See Also

	ALTER USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER VIEW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ANALYZE
	Description
	Parameters
	Outputs
	Notes
	Compatibility
	See Also

	BEGIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CALL
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CHECKPOINT
	Description
	Compatibility

	CLOSE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CLUSTER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMENT
	Description
	Parameters
	Notes
	Examples
	Compatibility

	COMMIT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMIT PREPARED
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COPY
	Description
	Parameters
	Outputs
	Notes
	File Formats
	Text Format
	CSV Format
	Binary Format
	File Header
	Tuples
	File Trailer

	Examples
	Compatibility
	See Also

	CREATE ACCESS METHOD
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CAST
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE COLLATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CONVERSION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DATABASE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DOMAIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE EVENT TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE EXTENSION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN DATA WRAPPER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FUNCTION
	Description
	Parameters
	Overloading
	Notes
	Examples
	Writing SECURITY DEFINER Functions Safely
	Compatibility
	See Also

	CREATE GROUP
	Description
	Compatibility
	See Also

	CREATE INDEX
	Description
	Parameters
	Index Storage Parameters
	Building Indexes Concurrently

	Notes
	Examples
	Compatibility
	See Also

	CREATE LANGUAGE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE MATERIALIZED VIEW
	Description
	Parameters
	Compatibility
	See Also

	CREATE OPERATOR
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR CLASS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR FAMILY
	Description
	Parameters
	Compatibility
	See Also

	CREATE POLICY
	Description
	Parameters
	Per-Command Policies
	Application of Multiple Policies

	Notes
	Compatibility
	See Also

	CREATE PROCEDURE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE PUBLICATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE RULE
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE SCHEMA
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SEQUENCE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SERVER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE STATISTICS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SUBSCRIPTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLE
	Description
	Parameters
	Storage Parameters

	Notes
	Examples
	Compatibility
	Temporary Tables
	Non-Deferred Uniqueness Constraints
	Column Check Constraints
	EXCLUDE Constraint
	Foreign Key Constraints
	NULL “Constraint”
	Constraint Naming
	Inheritance
	Zero-Column Tables
	Multiple Identity Columns
	Generated Columns
	LIKE Clause
	WITH Clause
	Tablespaces
	Typed Tables
	PARTITION BY Clause
	PARTITION OF Clause

	See Also

	CREATE TABLE AS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLESPACE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH PARSER
	Description
	Parameters
	Compatibility
	See Also

	CREATE TEXT SEARCH TEMPLATE
	Description
	Parameters
	Compatibility
	See Also

	CREATE TRANSFORM
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TYPE
	Description
	Composite Types
	Enumerated Types
	Range Types
	Base Types
	Array Types

	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE USER
	Description
	Compatibility
	See Also

	CREATE USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE VIEW
	Description
	Parameters
	Notes
	Updatable Views

	Examples
	Compatibility
	See Also

	DEALLOCATE
	Description
	Parameters
	Compatibility
	See Also

	DECLARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DELETE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	DISCARD
	Description
	Parameters
	Notes
	Compatibility

	DO
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP ACCESS METHOD
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP CAST
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP COLLATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP CONVERSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP DATABASE
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP DOMAIN
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EVENT TRIGGER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EXTENSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN DATA WRAPPER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN TABLE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FUNCTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP GROUP
	Description
	Compatibility
	See Also

	DROP INDEX
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP LANGUAGE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP MATERIALIZED VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR CLASS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP OPERATOR FAMILY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OWNED
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP POLICY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP PROCEDURE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP PUBLICATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP ROUTINE
	Description
	Notes
	Examples
	Compatibility
	See Also

	DROP RULE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SCHEMA
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP SEQUENCE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SERVER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP STATISTICS
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SUBSCRIPTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TABLE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TABLESPACE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH PARSER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH TEMPLATE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRANSFORM
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRIGGER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TYPE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP USER
	Description
	Compatibility
	See Also

	DROP USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	END
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	EXECUTE
	Description
	Parameters
	Outputs
	Examples
	Compatibility
	See Also

	EXPLAIN
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	FETCH
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	GRANT
	Description
	GRANT on Database Objects
	GRANT on Roles

	Notes
	Examples
	Compatibility
	See Also

	IMPORT FOREIGN SCHEMA
	Description
	Parameters
	Examples
	Compatibility
	See Also

	INSERT
	Description
	Parameters
	Inserting
	ON CONFLICT Clause

	Outputs
	Notes
	Examples
	Compatibility

	LISTEN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	LOAD
	Description
	Compatibility
	See Also

	LOCK
	Description
	Parameters
	Notes
	Examples
	Compatibility

	MERGE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility

	MOVE
	Description
	Outputs
	Examples
	Compatibility
	See Also

	NOTIFY
	Description
	Parameters
	Notes
	pg_notify

	Examples
	Compatibility
	See Also

	PREPARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	PREPARE TRANSACTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REASSIGN OWNED
	Description
	Parameters
	Notes
	Compatibility
	See Also

	REFRESH MATERIALIZED VIEW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REINDEX
	Description
	Parameters
	Notes
	Rebuilding Indexes Concurrently

	Examples
	Compatibility
	See Also

	RELEASE SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	RESET
	Description
	Parameters
	Examples
	Compatibility
	See Also

	REVOKE
	Description
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK PREPARED
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK TO SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SECURITY LABEL
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SELECT
	Description
	Parameters
	WITH Clause
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	WINDOW Clause
	SELECT List
	DISTINCT Clause
	UNION Clause
	INTERSECT Clause
	EXCEPT Clause
	ORDER BY Clause
	LIMIT Clause
	The Locking Clause
	TABLE Command

	Examples
	Compatibility
	Omitted FROM Clauses
	Empty SELECT Lists
	Omitting the AS Key Word
	Omitting Sub-SELECT Aliases in FROM
	ONLY and Inheritance
	TABLESAMPLE Clause Restrictions
	Function Calls in FROM
	Namespace Available to GROUP BY and ORDER BY
	Functional Dependencies
	LIMIT and OFFSET
	FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE
	Data-Modifying Statements in WITH
	Nonstandard Clauses

	SELECT INTO
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET CONSTRAINTS
	Description
	Notes
	Compatibility

	SET ROLE
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET SESSION AUTHORIZATION
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET TRANSACTION
	Description
	Notes
	Examples
	Compatibility

	SHOW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	START TRANSACTION
	Description
	Parameters
	Compatibility
	See Also

	TRUNCATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UNLISTEN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UPDATE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility

	VACUUM
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	VALUES
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	PostgreSQL Client Applications
	clusterdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createuser
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropuser
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	ecpg
	Description
	Options
	Notes
	Examples

	pg_amcheck
	Description
	Options
	Environment
	Notes
	See Also

	pg_basebackup
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgbench
	Description
	Options
	Initialization Options
	Benchmarking Options
	Common Options

	Exit Status
	Environment
	Notes
	What Is the “Transaction” Actually Performed in pgbench?
	Custom Scripts
	Built-in Operators
	Built-In Functions
	Per-Transaction Logging
	Aggregated Logging
	Per-Statement Report
	Failures and Serialization/Deadlock Retries
	Table Access Methods
	Good Practices
	Security

	pg_combinebackup
	Description
	Options
	Limitations
	Environment
	See Also

	pg_config
	Description
	Options
	Notes
	Example

	pg_dump
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	pg_dumpall
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pg_isready
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples

	pg_receivewal
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples
	See Also

	pg_recvlogical
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples
	See Also

	pg_restore
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	pg_verifybackup
	Description
	Options
	Examples
	See Also

	psql
	Description
	Options
	Exit Status
	Usage
	Connecting to a Database
	Entering SQL Commands
	Meta-Commands
	Patterns

	Advanced Features
	Variables
	SQL Interpolation
	Prompting
	Command-Line Editing

	Environment
	Files
	Notes
	Notes for Windows Users
	Examples

	reindexdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	vacuumdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	PostgreSQL Server Applications
	initdb
	Description
	Options
	Environment
	Notes
	See Also

	pg_archivecleanup
	Description
	Options
	Environment
	Notes
	Examples

	pg_checksums
	Description
	Options
	Environment
	Notes

	pg_controldata
	Description
	Environment

	pg_createsubscriber
	Description
	Options
	Notes
	Prerequisites
	Warnings
	How It Works

	Examples
	See Also

	pg_ctl
	Description
	Options
	Options for Windows

	Environment
	Files
	Examples
	Starting the Server
	Stopping the Server
	Restarting the Server
	Showing the Server Status

	See Also

	pg_resetwal
	Description
	Options
	Environment
	Notes
	See Also

	pg_rewind
	Description
	Options
	Environment
	Notes
	How It Works

	pg_test_fsync
	Description
	Options
	Environment
	See Also

	pg_test_timing
	Description
	Options
	Usage
	Interpreting Results
	Measuring Executor Timing Overhead
	Changing Time Sources
	Clock Hardware and Timing Accuracy

	See Also

	pg_upgrade
	Description
	Options
	Usage
	Environment
	Notes
	See Also

	pg_waldump
	Description
	Options
	Environment
	Notes
	See Also

	pg_walsummary
	Description
	Options
	Environment
	See Also

	postgres
	Description
	Options
	General Purpose
	Semi-Internal Options
	Options for Single-User Mode

	Environment
	Diagnostics
	Notes
	Bugs
	Single-User Mode
	Examples
	See Also

	Part VII. Internals
	Chapter 51. Overview of PostgreSQL Internals
	51.1. The Path of a Query
	51.2. How Connections Are Established
	51.3. The Parser Stage
	51.3.1. Parser
	51.3.2. Transformation Process

	51.4. The PostgreSQL Rule System
	51.5. Planner/Optimizer
	51.5.1. Generating Possible Plans

	51.6. Executor

	Chapter 52. System Catalogs
	52.1. Overview
	52.2. pg_aggregate
	52.3. pg_am
	52.4. pg_amop
	52.5. pg_amproc
	52.6. pg_attrdef
	52.7. pg_attribute
	52.8. pg_authid
	52.9. pg_auth_members
	52.10. pg_cast
	52.11. pg_class
	52.12. pg_collation
	52.13. pg_constraint
	52.14. pg_conversion
	52.15. pg_database
	52.16. pg_db_role_setting
	52.17. pg_default_acl
	52.18. pg_depend
	52.19. pg_description
	52.20. pg_enum
	52.21. pg_event_trigger
	52.22. pg_extension
	52.23. pg_foreign_data_wrapper
	52.24. pg_foreign_server
	52.25. pg_foreign_table
	52.26. pg_index
	52.27. pg_inherits
	52.28. pg_init_privs
	52.29. pg_language
	52.30. pg_largeobject
	52.31. pg_largeobject_metadata
	52.32. pg_namespace
	52.33. pg_opclass
	52.34. pg_operator
	52.35. pg_opfamily
	52.36. pg_parameter_acl
	52.37. pg_partitioned_table
	52.38. pg_policy
	52.39. pg_proc
	52.40. pg_publication
	52.41. pg_publication_namespace
	52.42. pg_publication_rel
	52.43. pg_range
	52.44. pg_replication_origin
	52.45. pg_rewrite
	52.46. pg_seclabel
	52.47. pg_sequence
	52.48. pg_shdepend
	52.49. pg_shdescription
	52.50. pg_shseclabel
	52.51. pg_statistic
	52.52. pg_statistic_ext
	52.53. pg_statistic_ext_data
	52.54. pg_subscription
	52.55. pg_subscription_rel
	52.56. pg_tablespace
	52.57. pg_transform
	52.58. pg_trigger
	52.59. pg_ts_config
	52.60. pg_ts_config_map
	52.61. pg_ts_dict
	52.62. pg_ts_parser
	52.63. pg_ts_template
	52.64. pg_type
	52.65. pg_user_mapping

	Chapter 53. System Views
	53.1. Overview
	53.2. pg_aios
	53.3. pg_available_extensions
	53.4. pg_available_extension_versions
	53.5. pg_backend_memory_contexts
	53.6. pg_config
	53.7. pg_cursors
	53.8. pg_file_settings
	53.9. pg_group
	53.10. pg_hba_file_rules
	53.11. pg_ident_file_mappings
	53.12. pg_indexes
	53.13. pg_locks
	53.14. pg_matviews
	53.15. pg_policies
	53.16. pg_prepared_statements
	53.17. pg_prepared_xacts
	53.18. pg_publication_tables
	53.19. pg_replication_origin_status
	53.20. pg_replication_slots
	53.21. pg_roles
	53.22. pg_rules
	53.23. pg_seclabels
	53.24. pg_sequences
	53.25. pg_settings
	53.26. pg_shadow
	53.27. pg_shmem_allocations
	53.28. pg_shmem_allocations_numa
	53.29. pg_stats
	53.30. pg_stats_ext
	53.31. pg_stats_ext_exprs
	53.32. pg_tables
	53.33. pg_timezone_abbrevs
	53.34. pg_timezone_names
	53.35. pg_user
	53.36. pg_user_mappings
	53.37. pg_views
	53.38. pg_wait_events

	Chapter 54. Frontend/Backend Protocol
	54.1. Overview
	54.1.1. Messaging Overview
	54.1.2. Extended Query Overview
	54.1.3. Formats and Format Codes
	54.1.4. Protocol Versions

	54.2. Message Flow
	54.2.1. Start-up
	54.2.2. Simple Query
	54.2.2.1. Multiple Statements in a Simple Query

	54.2.3. Extended Query
	54.2.4. Pipelining
	54.2.5. Function Call
	54.2.6. COPY Operations
	54.2.7. Asynchronous Operations
	54.2.8. Canceling Requests in Progress
	54.2.9. Termination
	54.2.10. SSL Session Encryption
	54.2.11. GSSAPI Session Encryption

	54.3. SASL Authentication
	54.3.1. SCRAM-SHA-256 Authentication
	54.3.2. OAUTHBEARER Authentication

	54.4. Streaming Replication Protocol
	54.5. Logical Streaming Replication Protocol
	54.5.1. Logical Streaming Replication Parameters
	54.5.2. Logical Replication Protocol Messages
	54.5.3. Logical Replication Protocol Message Flow

	54.6. Message Data Types
	54.7. Message Formats
	54.8. Error and Notice Message Fields
	54.9. Logical Replication Message Formats
	54.10. Summary of Changes since Protocol 2.0

	Chapter 55. PostgreSQL Coding Conventions
	55.1. Formatting
	55.2. Reporting Errors Within the Server
	55.3. Error Message Style Guide
	55.4. Miscellaneous Coding Conventions

	Chapter 56. Native Language Support
	56.1. For the Translator
	56.1.1. Requirements
	56.1.2. Concepts
	56.1.3. Creating and Maintaining Message Catalogs
	56.1.4. Editing the PO Files

	56.2. For the Programmer
	56.2.1. Mechanics
	56.2.2. Message-Writing Guidelines

	Chapter 57. Writing a Procedural Language Handler
	Chapter 58. Writing a Foreign Data Wrapper
	58.1. Foreign Data Wrapper Functions
	58.2. Foreign Data Wrapper Callback Routines
	58.2.1. FDW Routines for Scanning Foreign Tables
	58.2.2. FDW Routines for Scanning Foreign Joins
	58.2.3. FDW Routines for Planning Post-Scan/Join Processing
	58.2.4. FDW Routines for Updating Foreign Tables
	58.2.5. FDW Routines for TRUNCATE
	58.2.6. FDW Routines for Row Locking
	58.2.7. FDW Routines for EXPLAIN
	58.2.8. FDW Routines for ANALYZE
	58.2.9. FDW Routines for IMPORT FOREIGN SCHEMA
	58.2.10. FDW Routines for Parallel Execution
	58.2.11. FDW Routines for Asynchronous Execution
	58.2.12. FDW Routines for Reparameterization of Paths

	58.3. Foreign Data Wrapper Helper Functions
	58.4. Foreign Data Wrapper Query Planning
	58.5. Row Locking in Foreign Data Wrappers

	Chapter 59. Writing a Table Sampling Method
	59.1. Sampling Method Support Functions

	Chapter 60. Writing a Custom Scan Provider
	60.1. Creating Custom Scan Paths
	60.1.1. Custom Scan Path Callbacks

	60.2. Creating Custom Scan Plans
	60.2.1. Custom Scan Plan Callbacks

	60.3. Executing Custom Scans
	60.3.1. Custom Scan Execution Callbacks

	Chapter 61. Genetic Query Optimizer
	61.1. Query Handling as a Complex Optimization Problem
	61.2. Genetic Algorithms
	61.3. Genetic Query Optimization (GEQO) in PostgreSQL
	61.3.1. Generating Possible Plans with GEQO
	61.3.2. Future Implementation Tasks for PostgreSQL GEQO

	61.4. Further Reading

	Chapter 62. Table Access Method Interface Definition
	Chapter 63. Index Access Method Interface Definition
	63.1. Basic API Structure for Indexes
	63.2. Index Access Method Functions
	63.3. Index Scanning
	63.4. Index Locking Considerations
	63.5. Index Uniqueness Checks
	63.6. Index Cost Estimation Functions

	Chapter 64. Write Ahead Logging for Extensions
	64.1. Generic WAL Records
	64.2. Custom WAL Resource Managers

	Chapter 65. Built-in Index Access Methods
	65.1. B-Tree Indexes
	65.1.1. Introduction
	65.1.2. Behavior of B-Tree Operator Classes
	65.1.3. B-Tree Support Functions
	65.1.4. Implementation
	65.1.4.1. B-Tree Structure
	65.1.4.2. Bottom-up Index Deletion
	65.1.4.3. Deduplication

	65.2. GiST Indexes
	65.2.1. Introduction
	65.2.2. Built-in Operator Classes
	65.2.3. Extensibility
	65.2.4. Implementation
	65.2.4.1. GiST Index Build Methods

	65.2.5. Examples

	65.3. SP-GiST Indexes
	65.3.1. Introduction
	65.3.2. Built-in Operator Classes
	65.3.3. Extensibility
	65.3.4. Implementation
	65.3.4.1. SP-GiST Limits
	65.3.4.2. SP-GiST Without Node Labels
	65.3.4.3. “All-the-Same” Inner Tuples

	65.3.5. Examples

	65.4. GIN Indexes
	65.4.1. Introduction
	65.4.2. Built-in Operator Classes
	65.4.3. Extensibility
	65.4.4. Implementation
	65.4.4.1. GIN Fast Update Technique
	65.4.4.2. Partial Match Algorithm

	65.4.5. GIN Tips and Tricks
	65.4.6. Limitations
	65.4.7. Examples

	65.5. BRIN Indexes
	65.5.1. Introduction
	65.5.1.1. Index Maintenance

	65.5.2. Built-in Operator Classes
	65.5.2.1. Operator Class Parameters

	65.5.3. Extensibility

	65.6. Hash Indexes
	65.6.1. Overview
	65.6.2. Implementation

	Chapter 66. Database Physical Storage
	66.1. Database File Layout
	66.2. TOAST
	66.2.1. Out-of-Line, On-Disk TOAST Storage
	66.2.2. Out-of-Line, In-Memory TOAST Storage

	66.3. Free Space Map
	66.4. Visibility Map
	66.5. The Initialization Fork
	66.6. Database Page Layout
	66.6.1. Table Row Layout

	66.7. Heap-Only Tuples (HOT)

	Chapter 67. Transaction Processing
	67.1. Transactions and Identifiers
	67.2. Transactions and Locking
	67.3. Subtransactions
	67.4. Two-Phase Transactions

	Chapter 68. System Catalog Declarations and Initial Contents
	68.1. System Catalog Declaration Rules
	68.2. System Catalog Initial Data
	68.2.1. Data File Format
	68.2.2. OID Assignment
	68.2.3. OID Reference Lookup
	68.2.4. Automatic Creation of Array Types
	68.2.5. Recipes for Editing Data Files

	68.3. BKI File Format
	68.4. BKI Commands
	68.5. Structure of the Bootstrap BKI File
	68.6. BKI Example

	Chapter 69. How the Planner Uses Statistics
	69.1. Row Estimation Examples
	69.2. Multivariate Statistics Examples
	69.2.1. Functional Dependencies
	69.2.2. Multivariate N-Distinct Counts
	69.2.3. MCV Lists

	69.3. Planner Statistics and Security

	Chapter 70. Backup Manifest Format
	70.1. Backup Manifest Top-level Object
	70.2. Backup Manifest File Object
	70.3. Backup Manifest WAL Range Object

	Part VIII. Appendixes
	Appendix A. PostgreSQL Error Codes
	Appendix B. Date/Time Support
	B.1. Date/Time Input Interpretation
	B.2. Handling of Invalid or Ambiguous Timestamps
	B.3. Date/Time Key Words
	B.4. Date/Time Configuration Files
	B.5. POSIX Time Zone Specifications
	B.6. History of Units
	B.7. Julian Dates

	Appendix C. SQL Key Words
	Appendix D. SQL Conformance
	D.1. Supported Features
	D.2. Unsupported Features
	D.3. XML Limits and Conformance to SQL/XML
	D.3.1. Queries Are Restricted to XPath 1.0
	D.3.1.1. Restriction of XQuery to XPath
	D.3.1.2. Restriction of XPath to 1.0
	D.3.1.3. Mappings between SQL and XML Data Types and Values

	D.3.2. Incidental Limits of the Implementation
	D.3.2.1. Only BY VALUE Passing Mechanism Is Supported
	D.3.2.2. Cannot Pass Named Parameters to Queries
	D.3.2.3. No XML(SEQUENCE) Type

	Appendix E. Release Notes
	E.1. Release 18
	E.1.1. Overview
	E.1.2. Migration to Version 18
	E.1.3. Changes
	E.1.3.1. Server
	E.1.3.1.1. Optimizer
	E.1.3.1.2. Indexes
	E.1.3.1.3. General Performance
	E.1.3.1.4. Monitoring
	E.1.3.1.5. Privileges
	E.1.3.1.6. Server Configuration
	E.1.3.1.7. Streaming Replication and Recovery
	E.1.3.1.8. Logical Replication

	E.1.3.2. Utility Commands
	E.1.3.2.1. Constraints
	
	

	E.1.3.3. Data Types
	E.1.3.4. Functions
	
	
	E.1.3.7. Server Applications
	E.1.3.7.1. pg_dump/pg_dumpall/pg_restore
	
	E.1.3.7.3. Logical Replication Applications

	E.1.3.8. Source Code
	E.1.3.9. Additional Modules
	
	

	E.1.4. Acknowledgments

	E.2. Prior Releases

	Appendix F. Additional Supplied Modules and Extensions
	F.1. amcheck — tools to verify table and index consistency
	F.1.1. Functions
	F.1.2. Optional heapallindexed Verification
	F.1.3. Using amcheck Effectively
	F.1.4. Repairing Corruption

	F.2. auth_delay — pause on authentication failure
	F.2.1. Configuration Parameters
	F.2.2. Author

	F.3. auto_explain — log execution plans of slow queries
	F.3.1. Configuration Parameters
	F.3.2. Example
	F.3.3. Author

	F.4. basebackup_to_shell — example "shell" pg_basebackup module
	F.4.1. Configuration Parameters
	F.4.2. Author

	F.5. basic_archive — an example WAL archive module
	F.5.1. Configuration Parameters
	F.5.2. Notes
	F.5.3. Author

	F.6. bloom — bloom filter index access method
	F.6.1. Parameters
	F.6.2. Examples
	F.6.3. Operator Class Interface
	F.6.4. Limitations
	F.6.5. Authors

	F.7. btree_gin — GIN operator classes with B-tree behavior
	F.7.1. Example Usage
	F.7.2. Authors

	F.8. btree_gist — GiST operator classes with B-tree behavior
	F.8.1. Example Usage
	F.8.2. Authors

	F.9. citext — a case-insensitive character string type
	F.9.1. Rationale
	F.9.2. How to Use It
	F.9.3. String Comparison Behavior
	F.9.4. Limitations
	F.9.5. Author

	F.10. cube — a multi-dimensional cube data type
	F.10.1. Syntax
	F.10.2. Precision
	F.10.3. Usage
	F.10.4. Defaults
	F.10.5. Notes
	F.10.6. Credits

	F.11. dblink — connect to other PostgreSQL databases
	dblink_connect
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_connect_u
	Description

	dblink_disconnect
	Description
	Arguments
	Return Value
	Examples

	dblink
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_exec
	Description
	Arguments
	Return Value
	Examples

	dblink_open
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_fetch
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_close
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_get_connections
	Description
	Return Value
	Examples

	dblink_error_message
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_send_query
	Description
	Arguments
	Return Value
	Examples

	dblink_is_busy
	Description
	Arguments
	Return Value
	Examples

	dblink_get_notify
	Description
	Arguments
	Return Value
	Examples

	dblink_get_result
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_cancel_query
	Description
	Arguments
	Return Value
	Examples

	dblink_get_pkey
	Description
	Arguments
	Return Value
	Examples

	dblink_build_sql_insert
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_build_sql_delete
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_build_sql_update
	Description
	Arguments
	Return Value
	Notes
	Examples

	F.12. dict_int — example full-text search dictionary for integers
	F.12.1. Configuration
	F.12.2. Usage

	F.13. dict_xsyn — example synonym full-text search dictionary
	F.13.1. Configuration
	F.13.2. Usage

	F.14. earthdistance — calculate great-circle distances
	F.14.1. Cube-Based Earth Distances
	F.14.2. Point-Based Earth Distances

	F.15. file_fdw — access data files in the server's file system
	F.16. fuzzystrmatch — determine string similarities and distance
	F.16.1. Soundex
	F.16.2. Daitch-Mokotoff Soundex
	F.16.3. Levenshtein
	F.16.4. Metaphone
	F.16.5. Double Metaphone

	F.17. hstore — hstore key/value datatype
	F.17.1. hstore External Representation
	F.17.2. hstore Operators and Functions
	F.17.3. Indexes
	F.17.4. Examples
	F.17.5. Statistics
	F.17.6. Compatibility
	F.17.7. Transforms
	F.17.8. Authors

	F.18. intagg — integer aggregator and enumerator
	F.18.1. Functions
	F.18.2. Sample Uses

	F.19. intarray — manipulate arrays of integers
	F.19.1. intarray Functions and Operators
	F.19.2. Index Support
	F.19.3. Example
	F.19.4. Benchmark
	F.19.5. Authors

	F.20. isn — data types for international standard numbers (ISBN, EAN, UPC, etc.)
	F.20.1. Data Types
	F.20.2. Casts
	F.20.3. Functions and Operators
	F.20.4. Configuration Parameters
	F.20.5. Examples
	F.20.6. Bibliography
	F.20.7. Author

	F.21. lo — manage large objects
	F.21.1. Rationale
	F.21.2. How to Use It
	F.21.3. Limitations
	F.21.4. Author

	F.22. ltree — hierarchical tree-like data type
	F.22.1. Definitions
	F.22.2. Operators and Functions
	F.22.3. Indexes
	F.22.4. Example
	F.22.5. Transforms
	F.22.6. Authors

	F.23. pageinspect — low-level inspection of database pages
	F.23.1. General Functions
	F.23.2. Heap Functions
	F.23.3. B-Tree Functions
	F.23.4. BRIN Functions
	F.23.5. GIN Functions
	F.23.6. GiST Functions
	F.23.7. Hash Functions

	F.24. passwordcheck — verify password strength
	F.24.1. Configuration Parameters

	F.25. pg_buffercache — inspect PostgreSQL buffer cache state
	F.25.1. The pg_buffercache View
	F.25.2. The pg_buffercache_numa View
	F.25.3. The pg_buffercache_summary() Function
	F.25.4. The pg_buffercache_usage_counts() Function
	F.25.5. The pg_buffercache_evict() Function
	F.25.6. The pg_buffercache_evict_relation() Function
	F.25.7. The pg_buffercache_evict_all() Function
	F.25.8. Sample Output
	F.25.9. Authors

	F.26. pgcrypto — cryptographic functions
	F.26.1. General Hashing Functions
	F.26.1.1. digest()
	F.26.1.2. hmac()

	F.26.2. Password Hashing Functions
	F.26.2.1. crypt()
	F.26.2.2. gen_salt()

	F.26.3. PGP Encryption Functions
	F.26.3.1. pgp_sym_encrypt()
	F.26.3.2. pgp_sym_decrypt()
	F.26.3.3. pgp_pub_encrypt()
	F.26.3.4. pgp_pub_decrypt()
	F.26.3.5. pgp_key_id()
	F.26.3.6. armor(), dearmor()
	F.26.3.7. pgp_armor_headers
	F.26.3.8. Options for PGP Functions
	F.26.3.8.1. cipher-algo
	F.26.3.8.2. compress-algo
	F.26.3.8.3. compress-level
	F.26.3.8.4. convert-crlf
	F.26.3.8.5. disable-mdc
	F.26.3.8.6. sess-key
	F.26.3.8.7. s2k-mode
	F.26.3.8.8. s2k-count
	F.26.3.8.9. s2k-digest-algo
	F.26.3.8.10. s2k-cipher-algo
	F.26.3.8.11. unicode-mode

	F.26.3.9. Generating PGP Keys with GnuPG
	F.26.3.10. Limitations of PGP Code

	F.26.4. Raw Encryption Functions
	F.26.5. Random-Data Functions
	F.26.6. OpenSSL Support Functions
	F.26.7. Configuration Parameters
	F.26.8. Notes
	F.26.8.1. Configuration
	F.26.8.2. NULL Handling
	F.26.8.3. Security Limitations

	F.26.9. Author

	F.27. pg_freespacemap — examine the free space map
	F.27.1. Functions
	F.27.2. Sample Output
	F.27.3. Author

	F.28. pg_logicalinspect — logical decoding components inspection
	F.28.1. Functions
	F.28.2. Author

	F.29. pg_overexplain — allow EXPLAIN to dump even more details
	F.29.1. EXPLAIN (DEBUG)
	F.29.2. EXPLAIN (RANGE_TABLE)
	F.29.3. Author

	F.30. pg_prewarm — preload relation data into buffer caches
	F.30.1. Functions
	F.30.2. Configuration Parameters
	F.30.3. Author

	F.31. pgrowlocks — show a table's row locking information
	F.31.1. Overview
	F.31.2. Sample Output
	F.31.3. Author

	F.32. pg_stat_statements — track statistics of SQL planning and execution
	F.32.1. The pg_stat_statements View
	F.32.2. The pg_stat_statements_info View
	F.32.3. Functions
	F.32.4. Configuration Parameters
	F.32.5. Sample Output
	F.32.6. Authors

	F.33. pgstattuple — obtain tuple-level statistics
	F.33.1. Functions
	F.33.2. Authors

	F.34. pg_surgery — perform low-level surgery on relation data
	F.34.1. Functions
	F.34.2. Authors

	F.35. pg_trgm — support for similarity of text using trigram matching
	F.35.1. Trigram (or Trigraph) Concepts
	F.35.2. Functions and Operators
	F.35.3. GUC Parameters
	F.35.4. Index Support
	F.35.5. Text Search Integration
	F.35.6. References
	F.35.7. Authors

	F.36. pg_visibility — visibility map information and utilities
	F.36.1. Functions
	F.36.2. Author

	F.37. pg_walinspect — low-level WAL inspection
	F.37.1. General Functions
	F.37.2. Author

	F.38. postgres_fdw — access data stored in external PostgreSQL servers
	F.38.1. FDW Options of postgres_fdw
	F.38.1.1. Connection Options
	F.38.1.2. Object Name Options
	F.38.1.3. Cost Estimation Options
	F.38.1.4. Remote Execution Options
	F.38.1.5. Asynchronous Execution Options
	F.38.1.6. Transaction Management Options
	F.38.1.7. Updatability Options
	F.38.1.8. Truncatability Options
	F.38.1.9. Importing Options
	F.38.1.10. Connection Management Options

	F.38.2. Functions
	F.38.3. Connection Management
	F.38.4. Transaction Management
	F.38.5. Remote Query Optimization
	F.38.6. Remote Query Execution Environment
	F.38.7. Cross-Version Compatibility
	F.38.8. Wait Events
	F.38.9. Configuration Parameters
	F.38.10. Examples
	F.38.11. Author

	F.39. seg — a datatype for line segments or floating point intervals
	F.39.1. Rationale
	F.39.2. Syntax
	F.39.3. Precision
	F.39.4. Usage
	F.39.5. Notes
	F.39.6. Credits

	F.40. sepgsql — SELinux-, label-based mandatory access control (MAC) security module
	F.40.1. Overview
	F.40.2. Installation
	F.40.3. Regression Tests
	F.40.4. GUC Parameters
	F.40.5. Features
	F.40.5.1. Controlled Object Classes
	F.40.5.2. DML Permissions
	F.40.5.3. DDL Permissions
	F.40.5.4. Trusted Procedures
	F.40.5.5. Dynamic Domain Transitions
	F.40.5.6. Miscellaneous

	F.40.6. Sepgsql Functions
	F.40.7. Limitations
	F.40.8. External Resources
	F.40.9. Author

	F.41. spi — Server Programming Interface features/examples
	F.41.1. refint — Functions for Implementing Referential Integrity
	F.41.2. autoinc — Functions for Autoincrementing Fields
	F.41.3. insert_username — Functions for Tracking Who Changed a Table
	F.41.4. moddatetime — Functions for Tracking Last Modification Time

	F.42. sslinfo — obtain client SSL information
	F.42.1. Functions Provided
	F.42.2. Author

	F.43. tablefunc — functions that return tables (crosstab and others)
	F.43.1. Functions Provided
	F.43.1.1. normal_rand
	F.43.1.2. crosstab(text)
	F.43.1.3. crosstabN(text)
	F.43.1.4. crosstab(text, text)
	F.43.1.5. connectby

	F.43.2. Author

	F.44. tcn — a trigger function to notify listeners of changes to table content
	F.45. test_decoding — SQL-based test/example module for WAL logical decoding
	F.46. tsm_system_rows — the SYSTEM_ROWS sampling method for TABLESAMPLE
	F.46.1. Examples

	F.47. tsm_system_time — the SYSTEM_TIME sampling method for TABLESAMPLE
	F.47.1. Examples

	F.48. unaccent — a text search dictionary which removes diacritics
	F.48.1. Configuration
	F.48.2. Usage
	F.48.3. Functions

	F.49. uuid-ossp — a UUID generator
	F.49.1. uuid-ossp Functions
	F.49.2. Building uuid-ossp
	F.49.3. Author

	F.50. xml2 — XPath querying and XSLT functionality
	F.50.1. Deprecation Notice
	F.50.2. Description of Functions
	F.50.3. xpath_table
	F.50.3.1. Multivalued Results

	F.50.4. XSLT Functions
	F.50.4.1. xslt_process

	F.50.5. Author

	Appendix G. Additional Supplied Programs
	G.1. Client Applications
	oid2name
	Description
	Options
	Environment
	Notes
	Examples
	Author

	vacuumlo
	Description
	Options
	Environment
	Notes
	Author

	G.2. Server Applications

	Appendix H. External Projects
	H.1. Client Interfaces
	H.2. Administration Tools
	H.3. Procedural Languages
	H.4. Extensions

	Appendix I. The Source Code Repository
	I.1. Getting the Source via Git

	Appendix J. Documentation
	J.1. DocBook
	J.2. Tool Sets
	J.2.1. Installation on Fedora, RHEL, and Derivatives
	J.2.2. Installation on FreeBSD
	J.2.3. Debian Packages
	J.2.4. macOS
	J.2.5. Detection by configure

	J.3. Building the Documentation with Make
	J.3.1. HTML
	J.3.2. Manpages
	J.3.3. PDF
	J.3.4. Syntax Check

	J.4. Building the Documentation with Meson
	J.5. Documentation Authoring
	J.5.1. Emacs

	J.6. Style Guide
	J.6.1. Reference Pages

	Appendix K. PostgreSQL Limits
	Appendix L. Acronyms
	Appendix M. Glossary
	Appendix N. Color Support
	N.1. When Color is Used
	N.2. Configuring the Colors

	Appendix O. Obsolete or Renamed Features
	O.1. recovery.conf file merged into postgresql.conf
	O.2. Default Roles Renamed to Predefined Roles
	O.3. pg_xlogdump renamed to pg_waldump
	O.4. pg_resetxlog renamed to pg_resetwal
	O.5. pg_receivexlog renamed to pg_receivewal

	Bibliography
	Index

