PostgreSQL 18.1
Documentation

The PostgreSQL Global Development Group

PostgreSQL 18.1 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2025 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL Database Management System (also known as Postgres, formerly known as Postgres95)
Portions Copyright © 1996-2025, PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a
written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs
appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

o =Y it L o] Y xxii
1. What IS POStGTESQLT? ...t e e et e et e et e et e st e st e etnaesanesenesenaeanassnesenasnnnns xxii
2. A Brief History of PostgreSQLco.iiiiiiii et e e e e e et e et e e e e et e eaaeraaeaas xxii

2.1. The Berkeley POSTGRES PIOJECT ...ccvuniiiiiiiiiieiie e e e et te et e e e et e et e e e e saeeann e xxiii
W o011 0) 4 =TT 1 TN xxiii
P T =0 1S3 0 1 4 = o 1 O) PPNt XxXiv
G T 00} 1 74=) a1 T0) s 1= S PP XXiv
4. Further INFOrmationcoouniiiiii e e e et e et e e et e et e et e e s e s e et e eanaasnnaees XXiv
5. Bug Reporting GUIAELNESuiiiiiiiiieiiieii et e e et e et e et e e e et e et e e e e ea e et eaaeseneenns XXiv
5.1. TAentifying BUGS ..icuniiiiiiiiiiie et e et e et e et e e e e et e st e et e et e et e et ean e aaaaanaas XXV
oIV AV o P) A o T 2 U)o 1o) o P XXV
5.3. Where t0 REPOTE BUGS ..uiiuiiiiiiieiiie ittt e e e e et e et e et e et e et e e e e et e saneeanaeaenesennns xXxVii

| IV 7 o - Y PN 1

I LY o o o S =Y =T 2
O TR 6 0 T3 =1 - o) o T 2
1.2. Architectural FUnNdamentalscooiiiiiiiiiiiii e e e e e et e e e e aaaa s 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
J7/00 IR 1 o/ Yo N Fod o) 6
W 00 1 1o1<] o] %SO 6
2.3. Creating @ NEW Tablecoouiiiiiiiiiiee et e et et e et e e e et e et e e s e st e st e eanaeannns 6
2.4. Populating a Table With ROWSciiuiiiiiiiiiie et e e e et e e e e e e e e e e e e eens 7
S T O 10 1=Y v o o = T K= 1 o) £ YN 8
2.6. JOINS BEtWEEN TaAbIES ..cuuiiiiiiiiiiiei et et e e e e et e e e et e et e et e s e et e et aaeeaanaees 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 11
PR & T U o Y b= 1 - SN 12
B S B B =Y 1= L) =S PUN 13

T Vo A= N ol Te I =Y 1 1 b =Y N 14
G TR U 1 7 o/ Yo L6 Fod () o PPN 14
G I Vi (=)2 S ST 14
G TR TR 10} 4 =) o 1 s B =) £ TP 14
G TR T I o= Y 0 Y= Lol o) o - T PPN 15
3.5. WINAOW FUNCEIONS .uuiiiiiiiii ettt e e e e et e e e et e et e e e e st e seneaaneaannaeenneen 16
G T G T 1 0 T=Y 1 = o Lo - S 19
G TR O} T 310) o NS PN 20

L TSR T I I o U 1 - Vo £SO 21

T 1 0) I 4 01 - - QPPN 22
V2 00 I =) o= 1 B o o o SN 22
VA NV TSI b 4 0} =TT 0) o - 30
G T OF-Y 15 Vo B Vs Lod [0 F= SN 42

LT B = = W B = i a1 T) o Nt 45
R I - 1) (T 2 = 13 (o 45
I B 1Y = U VA= T LY 46
5.3. Tdentity COIUIMIIIS ...ttt e et e et e e e et e et e e e e et eeaneean e annesrnaesneannesnnasens 47
5.4. Generated COIUIMINSciiuuiiiiiiiiie e eie e et e et e e te e et e et e et et e et esanaaanesnnasanaetnssrnesnnesens 48
T T 00) 1] v = 11 01 S PPN 49
5.6. SYSEEIM COIUITIIIS ...ciuniiiiiiieiieiie ettt e et e e et e e te e et e st e eta et esnnasenaeanasansseessnssrnnssnnesen 58
T\ (oo b7 b Vo B =Y o) (=SS 59
TR & TR o 7 1 (=T [T 61
5.9. ROW SECUTILY POLICIES .uuiiniiiiiiiiiii ettt e e e et e e et e e te e st e et e saaeeaaaeanneeenneen 66
R TR o] s 1Y 1= =SS 71
o R § 01 1Y oy =) o S 75
5.12. Table PartitiOningcocuiiiiiiie e e et e e e et e et e e e et e et e e e e aanaaannas 79
T G TR o) ' o N B L - PP 91
5.14. Other Database ODJECES ...ccvuiiii i e et e e e et e e a e eaneeanns 91
ST ST D= oT=ha o [=3 0 o A S = Yod L« 1 o o E N 91

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 93

iii

PostgreSQL 18.1 Documentation

6.1, INSETTING DAt cuuivniiiiiiiiiii ettt et e et st e it e e e eae et et eeneeaaaneanaaaannns 93
ST U o Yo k= 1k Vo B D T) - 94
ST T B TCY =] o Yo D - 1 - Nt 94
6.4. Returning Data from Modified ROWSc.iiiniiiiiiiiiii et e e 95
0 1§ 1<) o 1Y SN 97
A R O)= T 1=) PP 97
A/ - Vo) (ST b q o} =TS (o) o - 97
78S TR 1= = To A I 3 111
7.4. Combining Queries (UNION, INTERSECT, EXCEPT) vituueteuereueerneeeueeesneesneesnneennsesneenneesnassnnnes 112
7.5. SOTTING ROWS (ORDER BY) tutttuieiuiiiinetineiineetneetieeuneetnsetneetuneeunsesnsemnessuessnnsemnsemnsesnesnnsesnsennns 113
7.6. LIMIT QIA OFFSET ttuuueeettttuueeeettuuueeetttuueeretsuaeeeeesuaneereenaeaeteesnneteennaeereemnneereemmneeeeennnns 114
7.7 VALUES LISES ittt ittt ettt e e et e e e et e e e e e et e e e e s et et et aanaaneansannenneansanneens 114
7.8. WITH Queries (Common Table EXPreSSIONS)ciiiiieiiiiiiiiiiiieiieie e e e e e e e ae e 115
LT B - = T 7 o 1= T SRS UPRPRUR 123
8.1, INUIMETIC TYPES .iitniiiiiiiiiiii ettt ettt et et e e te et e et e et e et e et e et etaeatunsatnsarnsasnnasnnsennsesnsennns 124
L TN\ o] o Loy =Ny A 7 o 1= T SO PRRN 129
L TG B O o - = o =) i 1= - PR OPRRNt 130
8.4. BINATY Data THPES .uiiuiiiiiiiiiiiiiiiiie ettt e e e e et eete e et e et s et e e s eean s et eaaneaaanes 132
8.5, DAte/TIME TYPES ..cenieiiieiiiii ettt et ettt e et e e et e e et e e et e e etneeeaneeeanaees 134
I T = To o] L=T N B 7 o 1= SRRt 143
8.7. ENUMETALEA THPES .uiiniiiiiiiiiiiit ettt ettt e e e e et e e te et e et e et eeaneatneatnsasnesansennsasnnees 144
8.8. GEOMETTIC TYPES .uituniiiniiiieiiietiie et ete et et et eete et e et e et e et eaansetasasnsausaensesnseenesennearnsannnes 145
8.9. NEtWOTK AQATESS THPES .uivuiiiiiiiiiiiiie ettt e e e et et e ete et e et eetn s et s aaneeanseaaeesnesarneannnns 148
8.10. Bit SETING Ty PES itiutiiiiiiiiiiii ittt et et et e et e et et e et e et eat e et satnsasnsaaasannsaaneennns 150
8.11. TEXE SEATCR T PES ittt ettt et e e e et e et e et e et e e et s et saansanaeeaenaasneannnas 151
R I O U D B 4 o1 SRR 153
o TG T €1 I) o 1 T PO PRT RPNt 154
o T 1T 0) AV I 7 o 1= ST 155
T T AN = | £ OO 164
8.16. COMPOSIEE TYPES tivuierniiiiiiitii et eie ettt e eteete et e et e etae et et sernsatneaunsatnsarnsatneesnneennsesnss 172
8.17. RANGE THPES tuuiiuniiiitiiiiieeie ettt et e et et et eete et e et s et s et eaan s et satnataasatnsatnsarneasnneenneesnss 178
8.18. DOMAIN THPES teuniitniiiiiiiieiiieeiit et et et e eteetie et e et e et eetaeeunsetnsaaneetunsernsetneetnnesunsernsesnsernnns 183
8.19. ODbjecCt IAeNTIfIEr THPES ..iivuiiiiiiiiiiiii e et e te et e et e et e et e et eeaneaaneeaneeannns 183
T I o Te =Y s W T o 1 N 186
oI I 271 o Lo Tl 7 o 1= T SR 186
S X VE o Toa o) a FoR= NaTe MO o1=) =1 o) -SSP 188
1S IR oo i Tot= Y B @ oY) i<} o) SRRt 188
9.2. Comparison Functions and OPeratorsccc..eeiiiiiiiiiiieiiieeiie e iee e eeeae e e e e saaas 188
9.3. Mathematical Functions and Operatorscc..ceiieiiiiiiiiiiiieeie e ee e e e 192
9.4. String Functions and OPETatorsc..ciiieiiiiiiiieiii et e e et e e e e e e eaaeeaans 200
9.5. Binary String Functions and OPeratorsccccueiiiiiiiiiiiiiii et e e e e e 210
9.6. Bit String Functions and OPeratorsccouueiiiiiiiiiiiie et ee e e e et e e e eaanaes 214
9.7. Pattern MatChingcc.oiiiiii e et e et e e et e it e e aas 215
9.8. Data Type Formatting FUNCEIONScouiiiiiiii e e e 234
9.9. Date/Time Functions and OPeratorscccueiiiiiiiiiiiieeiie e e e e e et e e e e e 241
9.10. Enum SuppoOrt FUNCEIONS ..couiiiiiiiiiii et e e e e et et e e e e e e eneeaneans 256
9.11. Geometric Functions and OPeratorscccuiiiiiiiiiiiiieieeeeeee e e e e e e e e e e e eens 257
9.12. Network Address Functions and Operatorsccceiuieiiieiiiiiiiieiiieeiie e ee e e e eaas 263
9.13. Text Search Functions and OPeTatorscc..ceeiuiiiiiiiiiiiiieeiie e e e e e e e aanas 266
.14, UUID FUNCEIONIS t.uttuniiiniiiiiiiieeiee et eete et et e et e et s et et e et e et eatneatnsetasetnseaneannsesnaesneeanns 271
.15, XML FUINCEIONS .uttuiiiiiiiieiiieii ettt ettt et eete et e et e et e et ettneate e et et eaaneesnseeneeaneaannsannns 272
9.16. JSON Functions and OPeTratorsSceiuueeiiieiiieiieeiieeieeeieeetie et e et e et e et e st essesaneeanaasnnnas 285
9.17. Sequence Manipulation FUNCLIONSoiiiiiiiiiiii e e aan s 314
9.18. Conditional EXPIreSSIONS ..ccuuiiiuiiiiiiiiiiiie et e e e et e e e teete e e e et e st e e s e s e et esanaaaans 315
9.19. Array Functions and OPeTatorsc.eiiiiiiiiiiiieiie et et e e et e e ae e e e et esaeeaes 318
9.20. Range/Multirange Functions and Operatorscc.coevieiiiiiiiieiiieeiie e e e e ea e 321
9.21. Aggregate FUNCLIONSciiiiiiiii et e et e e e it e e e et et e e e eaeeaneanaannas 326

iv

PostgreSQL 18.1 Documentation

10.

11.

12.

13.

14.

15.

9.22. WINAOW FUNCEIONS . ceuiiiiiiiiiie it st e et e et et e e et e et e e s e san e st e eaneeanasenasnnnns 333
9.23. Merge SUppPOTt FUNCEIONS ...ivuiiiiiiiiiii et e e et et e e e e et e e e eaeanaanns 335
9.24. SUDQUETY EXPIESSIONS . cvuiiiiiiiiiiiiiieeie et et e et e e te et et e ete et e st e st e st e esneannesenassneeenesens 335
9.25. RoW and Array COMPATISOIS ...uiiuuiiruiiiieeineetieetneeteeeeterteestneesnessnessneernsernaessessaerseesnnesens 338
9.26. Set Returning FUNCTIONScuiiiiiiii et et e e et et e ee et e e e e e eanas 340
9.27. System Information Functions and Operatorscccccueeiiiiiiiiiiieiiie e e e e 344
9.28. System Administration FUNCLIONSccuniiiiiiiiii e e e e 363
1072 S T s o [0 £ il 1 0B o] (o) o - SN 381
9.30. Event Trigger FUNCEIONS ...c.iiniiiiii ettt e et et e e e e e e e et e e e e eans 382
9.31. Statistics Information FUNCLIONScoovniiiiiiiiiiic e e e e e 385
TYPE COMVETSION .uevuiiniiiiieitie ittt et ettt et e te et et ettt eansanetu et eanstassneanssnesnassnsenssnsasnrenesnesnnsens 386
I R 0 112 = L PP 386
IO @ 013 =1 Mo) o PP 387
R TR 1 2 T v 0) o 1= PP 390
O VY LD TR o) i< L £ RN 394
10.5. UNTON, CASE, and Related COnStIUCEScoivviiiiiiiiiii e e e aas 394
10.6. SELECT OULPUL COIUIMINS ..ouiiiiiiiiiiii ettt e e e e e et e e e e et e s e eaeans 396
IIMAEXES ettt e et ettt et e e e et et et e b et et e et et et et e e eaanes 397
TR R B /o Yo 6 Lo T) APPSR OPR PP PRRTPRt 397
[e =5 G 7 o 1= T S PP PR ST PTPRN 398
11.3. MUltiCOlUIMN INAEXES ..ovuiiiiiiiiiiiiii ettt et et e et s et e et e et s etaeeaaeaaansarnnas 400
11.4. INdeXES ANA ORDER BY .iittuurituueetuueettuneettneeeeunseesunsertunsestunsersnnsersnssessneesmsermnssesnnsersinsees 401
11.5. Combining Multiple INAEXESccouiiiuiiiiiiie i e et e e et e e a e e e e e eeans 402
L T U ok o O TR Y0 (o) (Y 402
11.7. IndeXeS ON EXPIESSIONS ..ceuuiiiniiiieiiieiiieeiieeeiie et et e st e eteete e et estaeetnasanesenessnessnaesnassnnasnnnns 403
11.8. Parti@l INAEXES ...c.uuviiiiiiiiiieiiiie ettt ettt et e e et s e et s e ett e e etanseaaanseatanseasnnsaasnnsaasnneesnnneees 403
11.9. Index-Only Scans and Covering INAEXESc..ciiiiiiiiiiiiiieiieeie e et e e e e e aeeaenas 406
11.10. Operator Classes and Operator Familiesc.ccoevuiiiiiiiiiiiiii e 408
11.11. Indexes and COllatiONSccuuviiiiieiiiiiiiei ettt e e et e eeieeeea e e et s eesanseannnss 409
11.12. Examining INAEX USAQE ...ccuuiiiniiiiiiiiiiiiieiiiee et e e e ie et e e e et e et e et estesaneeaneeenaesnnassnnns 410
FULL TEXE SEATCR ..uiiiiiiiiii et et e et s e et et et e e eea s e eat s e et s e aaanseaennseasansans 412
D200 I a1 oo 1o 1 Toa v (o) s S PP 412
12.2. Tables @nd INAEXES ..uiiirieiiiieiiiiie ettt e e tte e e ets e e ea s e et s eeaaseatanseananaenens 415
12.3. Controlling TeXt SEATCRciuiiii e e e e et e e eaeeaanas 417
12.4. AddItional FEALUTES ...cccuuiiiiiiiiiiiieii ettt et ettt e et e e et s e et s e et e e aaneeaeaeeanans 424
12,5, PATSETS ..ottt ettt et e et e et e e e et e et s et e ea e et e et et e et e et s et e et e ebn e aaneaannes 428
12.6. DICTIOTIATIES .uetunieiniiineiiieeiie et tie et et et e et e et e et e et e et etteeatasetasetanetnneesneeensaenneennsasnsesnnenns 430
12.7. Configuration EXAIMPLEcoouiiiiiiiiiiiieiiie e e e e e e et eeae e st e st e eaae e s e st aeaanas 438
12.8. Testing and Debugging Text SEarcChcccouiiiiiiiiiiii e 439
12.9. Preferred Index Types for TexXt Searchcccouiiiiiiiiiiii e 443
L O o TTo | U o] o Yo o APt 444
12,17, LIMIEAETIONS ..euiiiiiiiiiiiie ettt ettt e et e et e et e et e eaa e eaneeat e et e et et aens 446
(0701010 b /=Y o Loy A) 1 1 o/] EESS IS 448
R 00 I a1 oo 1o 10 Toa v (o) s S PP 448
13.2. Transaction ISOLATIONceiiiiiiiiiiiiiii et e et s et s e et e e aaaseaaanaees 448
(RGO TN 55 ¢ o] § (o3 | A o Yo -« 1o Vo [Nt 454
13.4. Data Consistency Checks at the Application Levelccoooiiiiiiiiiiiiiiiiieeeeee e, 459
13.5. Serialization Failure Handlingcooiuiiiiiiiiiiie et e e e e e e e e eaaaas 460
1300, CAVEALS eeuiitiiiie ittt et ettt et e et e et et et e et et eth et b et et e ab e eha et e taaeaaaeen 461
13.7. LoCKINg and INAEXESccvniiiiiiiiiieeiie ettt et e e e et e et e e et e et e saae e st e st eeaneeanaesenasenneen 461
oo (o) aaT= N a Lol T) o1 462
14.1. USINQG EXPLATN .ituttuttnttutenretnttnetneeueetrenseuattsenstnettsensenstsstnstnsssesensensasertasensenmenssensenmesarnnns 462
14.2. Statistics Used Dy the PLannercccuiiiiiiiiii e e e e e e e e ea e eanaas 476
14.3. Controlling the Planner with Explicit JOIN ClauSescc.ceeeiueiiiiiiiiiiiiiiiiciieeceieeeeeee 480
14.4. Populating @ Dat@abaseccouiiiiiiiiiiii et ea e 482
14.5. NON-DUTable SETTINGS ..oiuuiiiiiiiiiiiiiie ettt e e et e e e s e s eaaeaeaeeaans 484
Paralle]l QUETY ..ouiiiiiiiiii e e et et e e e et e et e et e et e et e et e e e a it et et e e aaeaaans 485

PostgreSQL 18.1 Documentation

15.1. How Parallel QUETY WOTKSccuuiiiiiiiiiiiiie et et et ete et et e e et e e te e e e st e et e eanaeaenasannns 485
15.2. When Can Parallel Query Be USEd?cc.oiiuiiiiiiieiiieeie e et e e e e e ea e e aeeeen 486
NG T o = 1 (=Y B o - o 1= PR 486
15.4. Parallel Safetycouuiiiiiiiiiii e e e et e e it et a e e aaaaan 488
ITI. Server AdmINISTIationciii it e et e et e et e et e et e et e st e st eesnaaennasenneen 490
16. Installation from BiNATIESccu.iiiiiiiiiie e e et e et e et e e e e s e et e e e eseeeaneeannaes 491
17. Installation from SOUTCE COAEccuniiiiiiiii e e e et e e e et e e e e st e eaaeeaanenes 492
17.1. REQUITEIMEIIES ..euiiuiiiiiiiiiieiie ettt et ettt et et e et et et e et eeaaanetae st eanetaesnsanssnssnaasnsnnesnesnneens 492
17.2. GettiNg the SOUICE ...cvniiiiiiiei et e e e et e e e et e et e e e e et e st e aaneaanneeenees 494
17.3. Building and Installation with Autoconf and MakKkecccceiiiiiiiiiiiiniii e 494
17.4. Building and Installation With MeESOMcccuuiiiiiiiiiiii e e 505
17.5. Post-INStallation SELUD ...ccuniiiiiii et e et e e e e e e e e aaaaas 516
(A OISV o] oJo) i w=To B d K= 0) o 00 Tt 517
17.7. Platform-SpecCific NOLESiieiiiieiiee e e e et e s e et e e a e e e aaneas 517
18. Server Setup and OPETAtioNcciiuiiiiiiii i e e e e et e e e et e eae e s e st e saneesaenns 523
18.1. The PostgreSQL USEr ACCOUNL ...ccuuiiiniiiiii et e ettt et et e et e et e e e e et e eaeeaae e s eannasannas 523
18.2. Creating a Database ClUSLETciiiiiii e e e e e e eaaaeas 523
18.3. Starting the Database SETIVETcouuiiiiiiiie e e e e e e eaa e 525
18.4. Managing Kernel RESOUTCESccuuiiiiiiiiiiiiieiii ettt et e e et e et e e et e st e eaeeaae e s esens 528
18.5. Shutting DOWN the SETVETcinniiiiii e e e e e e e e et e e ae e e e aanaas 535
18.6. Upgrading a PostgreSQL ClUSLET ...ccuuiiiiiiiiiiieie et e e e e e e e e e e eaaaas 536
18.7. Preventing Server SPOOFINGcoiiiiiiiiiiiiiie et e et e e e e et e e e e e eaaa s 538
RS TS T 28 Lol oy 74 0w 10} A B @] o)) s 1~ SN 538
18.9. Secure TCP/IP Connections wWith SSL ..o e 540
18.10. Secure TCP/IP Connections with GSSAPI ENcryptionccoceveeiiiiiiiiiiiiiiieeieeieeenne, 543
18.11. Secure TCP/IP Connections with SSH Tunnelsc.ccoeiiiiiiiiiiiiiiin e, 544
18.12. Registering Event Log 0N WINAOWSccuiiiiniiiiiiieiieci et e e e s e e aeeaanas 544
19. Server Configurationcoouiiiiiiiiiii et e et e e et e e ae e st e st e st e eaneennasenees 546
19.1. SettiNg ParamElerS ..ouuiiiiiiiiiiie et et e et e te et et e te et e it e e e e eeneaneaneaanaans 546

(RS I 1 1T I Yok= 1 (o) s 1= Nt 549
19.3. Connections and Authenticationccooiiiiiiii i e 550
19.4. ResSoUIrCe CONSUIMPEIOTL tuuivuiiiiiiiiiitie ittt ie et e e te et et et eae et sanesneesnseneanaenneensanesnnseneens 557
S RS T4 L AN 1Y o B o Vo Nt 565
S I T A U= o) T ok=1 L) o P 575

RS A @10 1Y oy v o F 1 a1 o o PR 582
19.8. Error Reporting and LOGQingccc.oeiieiiiiiiie et e et e et e et e ere e e e et e ean e e s eannas 589
19.9. RUN-TIME STATISTICS 1uvniiiiiiiie ettt e et e e e e e e e ee et e e e enaanaanaens 602
e I O V4= Toa b b a1 2 Vo [P 604
19.11. Client Connection Defaultscocuiiiiiiiiiiii e e e e e 609
RS IR D2 o o LY. - N = Vo 1= 00 =Y o NN 619
19.13. Version and Platform Compatibilitycocouiiiiiiiiiiiii e 620
RS TR0 7 5 oo 3 ol = o 1 o o 622
IR B T o Y S A) o] o) o - S PN 623
19.16. CuStOmMIZEA OPLIONIS ..vvniiiiiiiieie e e e et e et e et e e e e et e san e et eannssnnesenaennnns 625
19.17. DEVEIOPET OPEIONIS ..ivuniiiiiieiiie ettt e e e et e et e et e et e et e et e et eeanesanaesnnesenesannernnesen 625
RS IR R T o o) it O) o] T) o TSNt 630
20. Client AUthentiCationciiuiii e e e e e e et e e e et e et e et e s e eaneeanns 632
20.1. The pg_hba.Cont FIle .ottt ens 632

A O U E=T=) ol A K= 0 L=\ K=) o 1 640
20.3. Authentication MethOdscouuiiiiii et 641
20.4. Trust AULhentiCationcouiiiiiii et 642
20.5. Password AuthentiCationccouiiiiiiiiiiiiii ettt 642
20.6. GSSAPI AUthentiCationoeeuu i ettt e 643
20.7. SSPI AULhentiCAtION ..c.uuiiiiiiii ettt et e eaa e 645
20.8. Ident AUthentiCationcooouuiiiiiiiiii ettt e e 645
20.9. Peer AUthentiCationcoooui i ettt 646
20.10. LDAP AUthentiCationcooiuiiiiiiii ettt et ee e 646
20.11. RADIUS AUthentiCationccouuiiiiiiiii e e 649

vi

PostgreSQL 18.1 Documentation

21.

22.

23.

24.

25.

26.

27.

28.

29.

20.12. Certificate AUThentiCationc.oviiiiiiiiiiii e ee e 650
20.13. PAM AUthentiCatiOnccouuiiiiiiiiiiiei et et e et e et e et e eeb e e eeaa e 650
20.14. BSD AUthentiCAtIONceeuuiiiiiiiie et e e et e e et e e e e eeieees 651
20.15. OAuth Authorization/Authenticationc.ccooiiiiiiiiiiiiiiii e 651
20.16. Authentication PTroDIEIMSccouuiiiiiiiii ettt 653
Database ROLESceuiiiiiii ettt ettt e et e et e et e et e eetaeeas 654
21.1. DAtabase ROIESciiuiiiiiiiiiii et ettt et e it e e e e eeas 654
21.2. ROLE ABETIDULES ..oiiiiiiiiee ittt e e et e et e e et e e et e e ea e e eebn e e et e 655
P NG TR 2 (oY (I (=Y 0 o 1= =] o 1 o PP 656
21.4. DIOPPING ROLES ..couiiiiiiiieii et e e e et e e et e e e e et e st e et e s e et e eanaaanaannns 658
21.5. Predefined ROLESccouuiiiiiiiiie ettt et e eeaa e 658
21.6. FUNCEION SECUTILY ..iuiiiniiiiiiiiieii ettt e et et et e ee et e e e et eaaeaneeneeanaaneannees 660
Managing Dat@bhaSEScuuiiiuiiiiiiiiieii e e e et e et et a et et aaaaaans 661
22,0, OVEIVIEW .oiiitiiiiie ittt et et e et e et e et e et et e et e et e et eeaaeetaseanseannetrataneannaenaeananesnnannnns 661
22.2. Creating @ Databaseccuuiiiiiiiiii e e e e e et e e aan s 661
22.3. Template Databasesccuiiiiiiiiiie et e e e e e e aa e e 662
22.4. Database Configurationc.coiiiiiiiiii e et eaa s 663
22.5. Destroying @ Databasecieuiiiiiiiiii e e e e aaas 664
W T =1 o] (=T o ¥ Vol Y 664
| o To1=Y i b2 1 (o) s KOOI 666
P26 0 B o Vo 1 LSRR 10} o) 10) o PSR Nt 666
2C T2 OFo Y 1 F- 1 Lo} a IRV 1 o] o Yo i AU 670
23.3. Character Set SUPPOTTuiiiiiii et e e et e e e et e et e e s e saeeaneeraeaes 679
Routine Database Maintenance TaSKSceiiuuiiiiiiiiiiieieiiie ettt e e e e e e 689
24.1. ROUTINE VACUUINIIIG ttuivuiiniiiiiiiiie ittt et et et et et et et sete et sensenetnsansanessnsensensrnesensensennsenns 689
24.2. Routine ReINAEXING ...oiuniiiiiiiiiiiiie et e et e et e et e et e e e et e eaneeanasennns 698
24.3. Log File MaiNtENANCEcivuniiiniiiieiie et e et e et e et e et e et e et e et e eae e et esaneeanaesnnaeens 698
BacKup and RESLOTEiiiniiiiiiieie et et et e e e et e et et e et e e e e et e st e et e rneeanean 700
25.1. SQL DUIND tttutitiiiitiiie ettt ettt et e et e et s e et s e eta s e et s eetaa s ettan e eetaneeataeeannsaetanseanaans 700
25.2. File System Level BACKUDcovuiiiiiiieieee ettt e e e e e e et e e e e aan s 702
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccccevviiiiiiiiiiiiniie e, 703
High Availability, Load Balancing, and Replicationc.cccoiiviiiiiiiiiniiiiie e 714
26.1. Comparison of Different SOIULIONSccoiiiiiiiiii e e 714
26.2. Log-Shipping Standby SEIVETSc..oiiiiiiiii et e et et e e e et e eaaeannas 717
26.3. FAIlOVET ..iiiiiiiiiiei ettt ettt e et e e et e et e et et b e et e et e eara e 725
P SR T o) =Y a Lo 1 o7t 726
Monitoring Database ACHIVILYcc.eiiiiiiiiii e e e e e 733
27.1. Standard UnNix TOOLSiiiiiiiiiiiiiie e ettt e et e e e e s e et e e et e eana e 733
27.2. The Cumulative Statistics SYStEIMcciiiiiiiiiiiii e 734
ARG T VA T=2 7 1 Vo B 0 Yo < S 775
27.4. ProgresS REPOTTIIIQ t.uiuiiiiiieiieii ettt e et et e et et s et e et et e an et eenaansenaaansansannns 775
PAVARS TR D)2 0 TV o § (o I o= Lol 1 1o AP 783
27.6. MONItoring DiSK USAQE t.uuiiuuiiiieiiiieiii it et e et et et et e et eete e et e et e et e eaessanesanaernaasnnaeen 791
Reliability and the Write-Ahead LOgcouiiiiii i e et e e e e eanns 794
28.1. REHADIILY couuniiiiiiiie ettt ettt e et e et e et e et e e e e aa e aa e 794
28.2. DAta ChECKSUINIS ...ceuiiiiiiiiii et et e e e et e e et e e et e e et e eeaanes 795
28.3. Write-Ahead Logging (WAL) ...ccuniiiiiii ettt et et e e e et e e e e st e st e eaaeeenesanaannnas 796
28.4. Asynchronous COMIMILiiiiiiiiiiiii e e e e et e et e e e e et e saneeaneeaeeennesanaennnns 796
28.5. WAL Configurationcccueiiiiiiiiiii et e et e e e e et e et e et e et e eaa e e e esenaenns 798
28.6. WAL INEEITIALS ...ttt ettt et et e et e et e e et e e et s e et s e etaeeaaaneeeann e 801
| oY i Tot=1 B 2 0Y o) § o 1 (o) o KRNt 803
2SI O = 1) T oF= 1 o) o E PSPPI 803
A TP S U1 o 1<l a1 o] w10) o NS RNt 804
29.3. Logical Replication FailOVETcciuiiiiiiiiiiiiii et e e e e e et e e s e eaaeeeas 809
20,4, ROW FIIEETS ..utiiiiiiiiiie ettt ettt e et e et e et e e et e e e et s e et s e et s eaeanes 811
20.5. COIUIMNI LISES tuuiiiiiiiiiiieiie ettt ettt e et e et e et e et e e e et s e et s eetaseeaanseeaaneeaens 817
29.6. Generated Column RepliCationc.ccuoiiiiiiiiiiiiiii e e e e e 819
2SI 070 o il (o] 1~ OO UPRUPPRRRRt 821

vii

PostgreSQL 18.1 Documentation

PAS IR S T 2 U=T1 o Lol v o) o - TN 823
A NS AN o] o} 1 =T o 11 o = YRR 824
A IR O TR o) a o) i 1 o[RS 825
A R =Yoo RPN 825
29.12. Configuration SetiNgScccuiiiiiiiiiii e et e e e e aans 826
P2 N G T U o Yo 1 or= Yo P 827
P2 N I T O 1 (o - 1= 1) o SRR 832
30. Just-in-Time Compilation (JIT) ..u.ceuiiiiiiiiii et e e e et e e e e e e e et e et e e s eeeneeanaernnns 833
30.1. What Is JIT compilation?oiiiniiiiiiiiiie e e e e e et e e e et e et e eaa e e e eeens 833
0.2, WRED £0 JIT? oottt et e e e e et e e et e e et e e et s e et e e et s e asaeeanaeeenans 833

GO JRC T 00 o ik (o 1 0B) o) o SRR 834
GO 5 =Y o 13 1 o 1 5 835
1. RegTESSION TESES .iiuiiiiiiiiieiie ittt et et et e te et et e te et eaa et et eanesneanasneeneanasnnaenaens 836
31.1. RUNNING The TeSES couniiiiiiiii e e et e e e et e et e et e et e e e e st e saneeraaesnnaeen 836

G O =T v A =1 L F = T) o RN 839
31.3. Variant CompariSOn FileSccuiiiiiiiiiiiieiiie et e e e te e e et e et e e e e e eaaans 841
R Y S LT SO PTPRRPRt 842
31.5. Test Coverage ExXaminationcooviiiiiiiiiiiiiiiiiin e et et e e e eae e e e e e eanas 843

LAY O =Y o o LY o k=Y o J RPN 845
ICYI N1 o] oo Bt O I 1) o= 1 oy 2 846
32.1. Database Connection Control FUNCLIONScoiiiiiiiiiiiiiiiie e 846
32.2. Connection Status FUNCTIONSccuuiiiiiiiiiii e e e e e s 865
32.3. Command Execution FUNCLIONSoiiiniiiiiiiii e e e e e e eane e 871
32.4. Asynchronous Command PrOCESSINGccuuiiuuiiiieiiieiiieiie it et et e et e eteeaeeeeeeaeraneeaneeens 885
G ST 1 o 1= o LAY o T 1 889
32.6. Retrieving Query Results in ChUnKSccoiiiiiiiiii e 893
32.7. Canceling QUETIES IN PrOQgTESS ..ciuuiiiiiiiiiieeiieeii e e eee et et e et e ete et e st e st e ereaeaeaeeenasannees 894
32.8. The Fast-Path INtEIfacCecoovuiiiiiiieie e e e e e e e et e e e e 898
32.9. Asynchronous NOtIfiCationcoiviiiiiiii e e e 899
32.10. Functions Associated with the COPY Commandccceuuiiiiiiiiiiiiiiiiiiiieee e, 900
32.11. CONtrol FUNCEIONS .. couuiiiiiiiiiie ettt e e et e et e e et e eebeeeenae e 903
32.12. Miscellaneous FUNCLIONSiiiiiiiiiiiii ettt e e e 905
32.13. NOTICE PrOCESSINIQ ..euuiiniiiiiiiiii ittt ettt et e e et et s e et et e et ean e e eanaeaneansanenneens 908
32.14. EVENT SYSTEIN L.ttt ettt et e et e e et et e ee et e e et e et e e e eans 909
32.15. Environment Variables ... 915
32.16. The PasSWOTd File ..ottt e e e e e 917
32.17. The Connection ServiCe File ...t 917
32.18. LDAP Lookup of Connection Parameterscouciiniiiiiiiiiiiieeeeceee e e tee e e 918
32.19. SSL SUDDOTE .ttt ettt et e et et et e e eeas 918
32.20. OAULN SUPPOTE e e e et et e e et et e s e et et e s e et eaeanaannns 922
32.21. Behavior in Threaded Programsccicuiiiiiieiiieiii et eeiie et e e ete e e e e e et e enneeaneeanees 925
32.22. Building libpg PTOQTamScuuiiiiiiiiiiii ettt e et e et e et e e e et e e aaeeeaaerneeaneens 926
ICYARA T 55 € 10 o) (ST o0 o Yo 1 =V 4 - J PP 927
6 O -1 oo [T 0) o [T o] ST 937
G 76 T8 IO B2 1w 4 o o 11 (o1 1 1o) o RN PP PRUPPPROPRY 937
33.2. Implementation FEATUTESccoiiniiii et e e eaaas 937
33.3. Client INTETTACES ...couniiiiei ettt et et e e e e 937
33.4. Server-Side FUNCTIONS ...ccuuiiiiiiii ettt e e e e et e 941
TG T TN £5:<= 100} o] (T 26 oo 1 1= 11 s KNP 942
34. ECPG — Embedded SQL QN € ..ottt ettt e e et et e e e e eeaas 948
7 N U I s =S 00)1 1o <) o] AP 948
34.2. Managing Database CONNECLIONScciuiiiiiiiiiiii i e e e e eanes 948
34.3. Running SQL COMIMANAS ...ccuuiiuniiiieiiieeiieeiieeeieeie et et eeineeteeetteeeteetneetneeensereneenneesnesrnnaes 951
34.4. Using HOSt Variablesoiuiiiiiiiiiiiiie ettt e et e e e e e e e e e e e e eans 954
34.5. DyNamiC SQL ..o ettt et et et eeb e eaa e 967

G T o Yo 10 74 o =T BN o) -) 7PN 968
34.7. USING DESCIIPLOT ATEAS ..oeuiiniiiiniiiieiie ittt ettt et e et e e s ee et et e et et eaneaneeaneaneananns 980
G2 < TR 5w o) alll & 1o 1 2 o J PPNt 992

viii

PostgreSQL 18.1 Documentation

35.

34.9. PreproCeSSOT DITECTIVES ...uiiuiiiiiiiii it e et et e e e e e e e eae et e e e e aanaens 998
34.10. Processing Embedded SQL Programsccvuueiiueiiiieiieeieeieeieesiesieeseesnesnneesnaennnns 1000
34.11. Library FUNCLIONS ...cuuiiiiiiiiie et e e et e et e et e e e et e et e e s e et e eaneeaneannasennns 1001
G I IR oo (R O) o [T =S 1001
CYZ 01 S T O TE SN o)] § (of 1 (o) s =00 1003
34.14. Embedded SQL COMIMATIAS t.ouitnininietiininietie ittt ettt et et eneaeeetenensaetenenraeenenenses 1006
34.15. Informix Compatibility MOdeccovniiiiiiiii e e 1028
34.16. Oracle Compatibility MOAEccouiiiniiiiiie et e e a e e e eaneea 1041
I 11 7Y o o = 1 1041
The Information SChemacoouiiiiiii e e e e e e e e e e aa e aens 1044
G T I N s L= o 1= 0o - 1044
1S T B L= 1 = B 74 o =T T PP PRRPR 1044
35.3. information_schema_ Catalog_NAME .iiveirieiueenenireeerenenerernrnenererarneserererenensseraenesesesasnens 1045
35.4. administrable_role_aUthOTiZations .ivieviieiieireirireeeenirernerereenertereerererernerteraererneens 1045
I R Tt o) N I N oY R oo} K=Y PRt 1045
G 1o TS TE= T o o o 1O ot = Y= S PPN 1046
S T el o E oY oL o = = 1=} o= ST TP 1048
35.8. check _constraint _rOUtiNe _USAGE tiviiiiriiiireineiereenerneteenerereenererernererernernesesresaeresnesnns 1049
R 1o S el s Y=Ye) Sl ole) e TR ok ol B o} of = SUT U TP 1049
1o T N TN B R R o Ko o = SRR 1049
35.11. collation_character_set_appliCability .iiviiviiiiiiiiieiiiiiiiiiieiieiieerernererereerernennes 1050
35,12, COLUMN_COLUMN_ USATE tttttuernrrernernerernernesarnernssesnesnesessesnesassesnesessesnesessesnesassesesnesesnesnenns 1050
35,13, COLUMN . QOMAIN . USAGE tuitittinininitteeienetetetenesererenereaerrnesesereneneserenesesesarnesesesasnesesesnsnns 1051
1o T ST R Rt T i oWl o) oY ok Mo Y= R U U 1051
1o T B NIRRTt oW o b o A R =Y =Y U O PPT 1051
35,10, COLUMN A USATE titnttriniineternerneteeneteteenetetesnetstasnesnstassesnstassesnssessesnssassesnssnssesnesnssesnns 1052
3. 7. COLUIMIIS tuitiniinitein et ettt ettt eea e et et eraeaera s easaeaneasaeraeasneraernenernesnesernernerernennenernernes 1053
35.18. CONStraint_ COLUMN_USEGE tuituiriirirnernirernernerernernererneresersernesersernesasseserneseserseseresneseses 1056
TSI RS BNGTC) oYl b =B ok ol =1 o KT L == T 1= PSRN 1056
G124 IS o8 o= T o V4 o T= T o AV R = Yo 1= Y= S OOt 1057
1S IV e 15 (B R s M o Te Y s W= ok ar- B oL o< RO 1057
I I NG 1) EER N oW Yo ol b F=T=Ye 1= SO TP UOTURNt 1058
G 1 TN AC TG 1o 1 =T B o R TP 1058
T I SR =S 1=} oL ol w14 o 1= = ST 1060
1 I T =Y oY NN =Ye M o N = Y- ST TP 1062
C1S A IR T al=k e so Mo L-R o= o=} o] =% allife) o) ol e o F= SO R 1062
KIS T AV e} a=% Ko olie 1= Rul= Tl Uo oY o) o 1= 3 ot - RN U 1063
CIS A S TR e =5 Ko s o MI=1=$ aava=$ ol o) o ok Ko} o Y= NUUNUN N O OO PPN 1063
TS INAS I oS =R e s o M= 1= b onvd =S ot R USRS 1063
oG 10 I e = Re ol of=1 SN R=Yil o) o hul e} o X RN P 1064
TS IRCH R oS ot oR e oo Mk o= 1 < 1 K== U 1064
35,32, KE Y COLUMN_ USATE titntrernernerernernerernernesesneresesnesssesnesnssessesnesessesnesessesnesassesseseesesnesnenesnes 1065
G F TR 1 T o B ar=t 1Y =S af = SRR 1065
35,34, T ferential COM ST LA INE S ittt ittt et e ettt e e et 1067
35,30, L0l COLUMN_ GTANES tuitnttertiunerernerneternernerernernesernernerasserneraesessesaesersessesersersesersersesnenernes 1068
GO IRC T ST Y R NSNIE e YR ulh B oY= Yo 5ol Y oL it USSP 1068
GO TNC WA YR RS =Y o B R T 5 o= ¥ o L ot - RPN 1069
I IRCT S T B oY S Ll =0 o} o - R U URN 1069
CTOIRC TS I R oY D E-ToYe 1= Mo £ =¥ o} o - HUOT O 1070
35.40. rOULINE_COLUMN_TUSATE tttturrurrrnrrnernenernereresnesnssesnesssessesssessssnesassesnssassessssessessesassesnnes 1071
G 1S I N R Yo R B s Y=Y o Fiake v T =Y 1= Y= RSN 1071
35,42, rOUL INE T OUL LN USATE ttitiiniiniteinernetertetneteenerneteerernereeterneraeresnereresnereseeneresaerernernenns 1072
35,43, rOUL INE _ SEQUENCE_USATE ttuttnrreruernrrrnernerenerneresesnesastesnesastesnesassesnesassessesessessesaesesnesnns 1072
G J T Y T Y DRk B o Y=Y o= M = D E=T= e 1= RO PR 1073
T I S T Yo D ol I o 1= Y= U OO 1074
K F oI T Yoy o= = o= N PP 1078

ix

PostgreSQL 18.1 Documentation

1 T - T=Ye 1 LY=)o Yo L= T RO 1078
T 3 ST o B ==} o b by =1 - R U O P OO UTPRRNt 1079
35.49. sgl_implementation_dNFO wiiiiiiiiieiiiieieieiieiee et et et et et et et ete e et etereaeteteaaaaaneaaarans 1080
G T T e 1O =T g N < T B o o - RO 1080
I oY =T BT 2 I oI U 1080
G ISV =0 o B K= oTo) oF=] o of= K o} ot - HOU U U OO 1081
G T TS TS TR =0 o ST oF o v I =Y 1= Y= RPNt 1081
T IR T o <1 K= TN 1082
T TR 1o TR o o=V o =3 e} = 1Y ST O SO URPINt 1083
35.56. triggered _UpPdate_COLUMNS .iiiiiiiiereteenerereenerneraenernereeseresastesnesassesesassesessesesnesnssesnees 1083
T TS WA o o K fo 1= of = OO PTRN 1084
T I e T TRl Ll o b o A B =T 1=V U 1085
I ST M=oY T o3 i v B K=Y 1= Y- RO USUOUURINt 1086
G TSI ST O IR SE=T=S oo [=% o o Y=Yo N w74 o 1= Y= RSN 1086
TSN O Y BRRTE-T=S ol (=) o R Yo o] o) ol Ko s £ NN N 1088
I N YRS E=T- ol o0 o) < 1 oo - SO U TP 1088
35,03, VieW _COLUMN_USATE ttutretnernerrnernerernernesernesnetessesnesssesnesssesnssnssesnesassesnesssessesnesesseseesnees 1089
O TS RV i oY YL Ll o LM R T= Yo 1= S USRI 1089
T N T TR v K=Y =0 o B = LT Y=Y = R OO USPUOTURINt 1090
oI o] ST o PRSPPI 1090
AYARST=) a74=) alll o o To 1=V a1 011 4 Lo F PP 1092
36. EXtending SQLcoouiiiiiiiiii et e et e et et e et e et e et et e et raa et aaaaaranas 1093
36.1. How ExXtensibility WOTKSccuoiiiiiiiiii e e e e e a e e e eaes 1093
36.2. The PostgreSQL TYPE SYSLEIMuiiiniiiiiiieiie et et e e et e e e e et e e e e et e sresaaeaes 1093
36.3. User-Defined FUNCLIONSviiiiiiiiiiiiiiin ettt e e et s e et s e et s e et e eaan s 1096
36.4. User-Defined ProCEAUTESoiiniiiiiiiieii e e e et e et e e e et e e ae e e e et aaaanas 1097
36.5. Query Language (SQL) FUNCLIONScouiiiiiiiiiiii ettt e e e e e 1097
36.6. Function OVETIoadingcccuuiiiiiiiiiiie e et e e e et e e et e et e e ae e et e et e et eaens 1111
36.7. Function Volatility CategoTiesceiiuiiiiiiiiiiiiieeiie et e e e e e ae e e e s eans 1112
36.8. Procedural Language FUNCLIONSoiiiniiiiiiiieiiic et e e e e e a e e e 1114
36.9. Internal FUNCEIONSuiiiiiiiiiiieii ettt e e e et e e eai e e et s e et s eetaneeasasaasnns 1114
36.10. C-Language FUNCEIONSciiiiiiiiiiiiie et e et e e et e e e e e et e e e eaeereaneanaaenes 1114
36.11. Function Optimization INformationccooiiiiiiiiiiii i 1137
36.12. User-Defined AgQregates ..ot e e et e et e e e e et e e ae e e e s e aans 1138
36.13. USEr-DefiNed TYPES ovuiiiiiiiiiiieeiie et et e et e et e et e et e e et e e e e et e st e st eaneeanasrneeanns 1145
36.14. User-Defined OPeratorsc..ciiiiiiiiiiiee et e e eae et e e e st e e a e e aaaeaanaeanns 1149
36.15. Operator Optimization INformationccceiiiiiiiiiiiii e 1149
36.16. Interfacing Extensions t0 INAEXESc..oiiuiiiiiiiiiiiiie e 1153
36.17. Packaging Related Objects into an EXtensioncccccoeeviiiiiiiiiiiiiiieiie e, 1165
36.18. Extension Building INfrastruCturec..oiiiiiiiiiiiii e e e 1173
G b o o [0 1) = T TP 1178
37.1. Overview of Trigger BEhavioroiiiiiiiiiiiii e e eaa s 1178
37.2. Visibility of Data CRangescccuiiiiiiiieiieii e et e e eete e e e st e e aeeaaneaes 1181
37.3. Writing Trigger FUNCEIONS iN Cooiiiiiiiiiiiiie et e et e e e e e et e v e e ees 1181
37.4. A Complete Trigger EXAamPIecouuiiiiiiiiiiiiiiiiie e et e e e et e e e e e e eaas 1184
ICT S TR A Y o A I o [0 [i~ TN 1188
38.1. Overview of Event Trigger Behaviorccc.oiiiiiiiiiiiiii e 1188
38.2. Writing Event Trigger FUnNctions in Ccooiiiiiiiiiiiiii et e e eaas 1189
38.3. A Complete Event Trigger EXampleceiiiiiiiiiiieiiie e e e ea e aans 1190
38.4. A Table Rewrite Event Trigger EXampleccccuoiiiieiiiiiiiieiiieiie e e 1191
38.5. A Database Login Event Trigger EXamplec.cooiiiiiiiiiiiiiiiiii e 1192
39. The RUIE SYSLEIM ..uiiiiiiiiiiiei e et e et e e e et e et e et e st e et e b eeanessneeanannns 1194
39.1. The QUETY TIE ..euiiiiiiiiiieeie et e et e et e et e et e et e et e e e e et e st e st e st aanaenneeanns 1194
39.2. Views and the Rule SYSEEIMccoiiiiiiii e e e 1195
39.3. MaterialiZed VIBWSc.uiiiiiiiiiiiieii ettt e et e e et s e et s e et s e et s eanneeennns 1202
39.4. Rules on INSERT, UPDATE, @Nd DELETE ..iiuutitueetuneerneetneeenneseneesneesneesnnesenessnsesnesseeessaeesnnes 1204
39.5. Rules and PriVIIEgeEscouiiiiiiiiiie et e et e e e et e e e et e et e e e e e e aaa s 1214

PostgreSQL 18.1 Documentation

40.

41.

42.

43.

44.

45.

39.6. Rules and Command STAtUsScooeuuiiiiiiiiiiiiieiiie ettt et e et e e eei e eeaa e 1216
39.7. RULES VETSUS TTIGUETS .uuiirniiiieiiieiiieeiie et et e ete et e e et e et et e st e st easneannesenesanasanesnneenns 1216
Procedural LaNQUAagESsc.uueiuuiiiniiiieeiiee e eie et et e et e et e et e et e staeeaasetnestnaasaassnnessnassnaeanaesnnes 1219
40.1. Installing Procedural LanguUagescccuueiiuiiineiieiieeiieeeieeeieeteeseeeetneetnesenasseessessnaeees 1219
PL/pgSQL — SQL Procedural LanQUagecccuueeiuiieineiieeieeiiee e et et e eee et eeaeeenneeaneeanneenns 1221
AT.1. OVEIVIEW .iiiiiieiieii ettt ettt et e e et e et e et s eta e et e et etueeneeasasetasetnsatnnaasneeaneanneenasenanns 1221
41.2. Structure of PL/DPGSQL ...t e e e et e et e et e et e et e et e e an e raaaan e 1222
22 NG T B T=Tod b = 1 () o 1< T OO PP PRSPPIt 1223
R b 4 0} ST 1T 10) 4 £ PPN 1229
41.5. BASIC STAt@IMEIIES ..ouuiiiiiiiiiii ettt e e et et e e e e e e ana s 1230
41.6. CONLTOL SETUCLUTES ...uiiiiiiiiiieieiiie ettt ettt et e e et s e et e e et e e et e e anaeeeaans 1237
1.7, CUTSOTS .eetutiuetueit et e et e et e et etu e et s et seta s eaasetuastaneaneaneeanasetasesnseeneenneenneeenneenneenns 1251
41.8. Transaction ManNageIMENTcc.iiiiiiiiiiiiie et et et e te et e e e e e et eaneaneeneennaenaens 1256
2 S T o) == o Lo B\ (TS Vo £ 1257
72 I O ' o o £ il 1 01 s Lol o) o - S PRSP 1259
41.11. PL/pgSQL under the HOOAoeiiiiiiiiieiieee et e e e e e e a e e e e e een 1267
41.12. Tips for Developing in PL/PGSQLouniiiiiiiiieee et e e e e et e e ae e e eees 1270
41.13. Porting from Oracle PL/SQLcouiiiiiii et e e e e et e e e e eens 1273
PL/Tcl — Tcl Procedural LanQUagec..eeeuneiuniiiieiieeiieeiieeete et e e e et eete et esanesanesanassnnesnnaesnnns 1282
2.1, OVETVIEW ..ttt ettt ettt ettt et e et e et s etu e et e et etuetueearasetasetnsatnnaesnseaneanseensernnns 1282
42.2. PL/Tcl Functions and ATQUINENESccuuiiiiiiiiiieeie e e e et e e e e et eeaee e et esaneeaeeeaaneeens 1282
42.3. Data Values In PLITCL ...couuiiiiiiii ettt et s e et e e et e e aea s 1284
42.4. Global Data in PL/TCL ...iiuiiiiie et ettt et e e e e eaa e eeeaees 1284
42.5. Database Access from PL/TCLcc..iiiiiiiiiiiiii ettt e eaees 1284
42.6. Trigger FUunctions in PL/TCLiiiniiiii et e e e e e e aens 1286
42.7. Event Trigger Functions in PL/TCLcoouuiiiiiiiiie et e e 1288
42.8. Error Handling in PL/TClcouiiiiii et et et e e e e e e e e e e e e e enns 1289
42.9. Explicit Subtransactions in PL/TClcccoiiiiiiiii e e e e 1289
42.10. Transaction Managementccviuiiiiiiiiiir et e e e e e e e eeeaeaeaneees 1290
42.11. PL/Tcl Configurationccueiiieiiiiiiieeie et et e e et e e e et e e ae e e e saeeaeeeaneannns 1291
42.12. TCl ProCedUIre INAINESoiiiuuiiiiiieiii ettt et e et e et e e tte e et e e et s e et s e ettseaanneeeannaes 1291
PL/Perl — Perl Procedural LanQUageccceuuiiiniiiiiiieeiieeeie et et e et e et eeve e et e eaeeaeesaesenasannas 1292
43.1. PL/Per]l Functions and ATQUIMENTESccevuiiiiiiiiiiiieeiie e et et e et e e e e e e e ea e ea e e e eeens 1292
43.2. Data Values in PL/PETL ..ottt e e et e e e e e 1296
43.3. BUilt-In FUNCEIONS ..iiiiiiiiiiieii ettt e et e e et e e eae e e easeeebeees 1296
43.4. Global Values in PL/PETLc..oiiiiiiiiiiieiiie ettt et e e e e e e e 1301
43.5. Trusted and Untrusted PL/PeTLcoouuiiiiiiiiiii ettt 1302
G T T = IV == ol B s o T o =3 = 1303
43.7. PL/Per] EVENt TTIGQETS ..uuiiuiiiiieiieiiieeiie et et e et e ete et e et e eae e s s st e st e sansannsssnasanaeanaesnnnes 1304
43.8. PL/Per]l Under the HOOQooiiiiiiiiii ettt e e e e eeeas 1305
PL/Python — Python Procedural LangUagec.ceeuueeiuiiinieiieieeieeiieeeieeieeeeeeeeaneesneeennees 1307
2 7 O o V0 g v o o o B 4 Vo v o) o TN 1307
44.2. DAtA VAIUES ..ottt ettt ettt ettt e e e e e eai e aaas 1308
/O TS =Y oo o J B - - TN 1313
44.4. AnNonymous Code BIOCKSccuuiiiiiiiiiiiie et e et e e e e e e et e e a e e e eaa e 1313
44.5. TTIgQET FUNCEIONS ..uiiiiiiiiiiiii ettt et e et e ee et et s e e et et eaneeaneanaanaaanns 1313
44.6. DAtADaSE ACCESS ..uuiiiuniiiiieeii ettt ettt et e et e et e et e et e et e et e ta e aa e eaa e 1314
44.7. EXplicit SUDETANSACEIONS ...vveiiiiiiiieii e e e e e e e e e e e e s e et e eaanas 1317
44.8. Transaction ManageIMENTc.oiiiiiiiiiiiiie et e et e ee et ea e e e et eaneeneeneannaenaens 1318
72 e T O U Lo) =SS 1318
44.10. Python 2 vs. PYEhON 3 ..ot e e e e e e et e e e e e e e eans 1319
44.11. Environment Variablesooouiiiiiiiiiii e 1319
Server Programming INTETTacCecouuiiiiiiiiii e 1321
45.1. Interface FUNCEIONS ...c.uuiiiiiiiiii ettt et e e e et et e e eteeeaaa e eeaens 1321
45.2. Interface SUPPOTt FUNCLIONScouiiiiiiii e e e e e e 1360
ZSTRCTLY (=Y 0 aTo) VN =N a o Yo <3 40 1<) o | AP 1369
45.4. Transaction ManageIMENTcc.iiiiieiiiiiiiie e et et e e te et et e e e et eaneanaeneeanaeneens 1379
45.5. Visibility of Data Changesciuuiiiiiiiiiiiieee e e et e e et e e a e e re e e e eanaeanns 1382

xi

PostgreSQL 18.1 Documentation

S T b ¢V 0]) [N 1382
46. BackgroUnd WOTKET PTOCESSESccuuiiiniiiiiiieiiieeiieeie et et e eteete e st e et e et eeaeeennesanasaneennasnnnes 1386
22 /A o Yo s o= B D 1= ToTo Yo i hia Vo S 1389

47.1. Logical Decoding EXamMPIEScccuiiiuiiiiiiiiiiiiiee et e et e e e et e et e e et e e e e s e sanaeaanas 1389

47.2. Logical Decoding CONCEPES ...uuiiuiiiiiiiiieiii e e e e et e et e s e et e et e e e e seneeannaes 1392

47.3. Streaming Replication Protocol Interfaceccccoiiiiiiiiiiiiie e, 1395

47.4. Logical Decoding SQL INterfacecccuoeiiuiiiiiiiii e e e e s 1395

47.5. System Catalogs Related to Logical Decodingccooevviiiiiiiiiiiieiiie e, 1395

47.6. Logical Decoding Output PIUGINSccoiiniiiiiiiii e e 1395

47.7. Logical Decoding OutpuUL WIILET'Scvvniiieiii e e 1402

47.8. Synchronous Replication Support for Logical Decodingcccceeveiiiiiiiieiieeinnennnnnnn. 1402

47.9. Streaming of Large Transactions for Logical Decodingccccccoeevviiiiiiiiiieineinneennnne. 1402

47.10. Two-phase Commit Support for Logical Decodingccoeeveeiviiiiiiiiieeiniieeeieeiene, 1403
48. Replication Progress TTaCKITIgeiiueiieiiiiiiie et e e ee et e e ete et e et e et e eaeeeraasenessneeanesnnnns 1405
49. ATCRIVE MOAUIESeiiiiiii ettt et e e et s e et e e et e e et e e et e eanaaees 1406

49.1. Initialization FUNCTIONSciuuiiiiiiiiiii ettt et e et e et e eaieeeeen 1406

49.2. Archive Module CallDACKSc.uiiiiiiiiiiiiiii et e e e e 1406
50. OAuth Validator MOAULEScoouiiiiiiiiiiiie et e e et e e eee e e e e eeaans 1408

50.1. Safely Designing a Validator Moduleccoouiiiiiiiiiii e eaes 1408

50.2. Initialization FUNCLIONSiiiiiiiiii et e et et e e 1410

50.3. OAuth Validator CallbackKsc..eiiiiiiiiiiiiiiii et e ea s 1411

AV R U)o s o] SO OPOTR PPN 1413
| ST) I O} a0 00 T< 1 s Lo =IO 1414

FN 20)24 OO POPPRUPPRN 1415

ALTER AGGREGATE ...ttt et ettt e et e e et s e et e e et e e aea e eaaaseeaaans 1416

ALTER COLLATTON .eitttiit ittt ettt ettt ettt et e e et s e et s e et s et e e e ean s eetan s eetaeaesaaaenneeenns 1418

ALTER CONVERSION ...ttt ettt ettt e et e et e ette e e et e e et s e et s eetaaseeanneeasnnaeenns 1420

ALTER DATABASE ..ottt ettt e et e et e et e e et e e et e e ta e e eaaa s eetanseatansaannnnas 1421

ALTER DEFAULT PRIVILEGES ...ttt et ettt et e et s e e ebe e e ebeeeenae s 1423

ALTER DOMALIN ...ttt ettt ettt e et e et e e et s e et e e et e etta e e aeanseeaanseetaneeasnnaaasans 1426

ALTER EVENT TRIGGERcouiiiiiiiiiiieiie ettt ettt et st e e et e et e e ean e eabaeeeen 1429

ALTER EXTENSION ..ottt ettt et e et e et te e et s e et e etb e e eeaa e e aaan s eeaan s eataneeesnneeesnsaennns 1430

ALTER FOREIGN DATA WRAPPER ...ttt ettt ettt et e e et e e e e eeaas 1433

ALTER FOREIGN TABLE ..ottt ettt ettt e et e et s e et s e et e e eaa e e ebasaeabaaees 1435

ALTER FUNCTION ...ttt ettt ettt ettt et e e et e e et s e et s e et e e tta e eeanneeetaneeetnneaasnnnas 1440

ALTER GROUP ..ottt e et et e e et e e et e e et e e et e e et e eeb e eenaseeenn e 1443

ALTER INDEX ottt ittt ettt ettt e et e e the ettt e e et e e et s e et s eataneeaanseeeaaaeesaaeasaaeees 1445

ALTER LANGUAGE ...ttt ettt ettt e et e e et e e et s e et e e eaa e e eaneeebaeeesaeeees 1448

ALTER LARGE OBJECT ...ttt ettt et et e et e et e s e et s e et s e et e aabaeeeaanseeenans 1449

ALTER MATERIALIZED VIEW ..ottt ettt e et e e et e e et s e et e e et e e ea s e et s eetaeeenanas 1450

ALTER OPERATOR ...ttt ettt ettt e et s e et e e et e e tta e e eaa s e et e eetaeeasanas 1452

ALTER OPERATOR CLASS ..ottt ettt et e et et e e et s e et s e et s e et e eeaaeeenanaees 1454

ALTER OPERATOR FAMILY ..ouiiiiiiiiittiie ettt ettt e e et e et s e et e e ete e e aaaeeeaaseeebseeanaeaeees 1455

ALTER POLICY ittt et e et e e e e et e et e e et e e et s e et s e et e e eaaseeannaeenans 1458

ALTER PROCEDURE ...ttt ettt et e et e et e et s e et e e et s e eaa s e et e eetaeaasanas 1459

ALTER PUBLICATION ...itiiiiiittii ettt ettt ettt e e e e e tie e et e ettt e e et s e et s eetueseaeaeetsnaaenaaeenaeeees 1462

ALTER ROLE ..ottt et e et e e et e e et e ettt e e tea e e et s e et s e et eeasnseeeaaseersaaaes 1465

ALTER ROUTINE ..ottt ettt et e et ettt s e et e e et e e e eaa e e et e eabaneeasaeeeennnas 1469

ALTER RULE ..ottt ettt et e et s e et e e et e e eea e e et s e et e eata e eebaeeenaaennns 1470

ALTER SCHEMA Lottt ettt ettt e e et e e et s e et e ettt e e eaaa s e et s eatasaesnneaenneeenns 1471

ALTER SEQUENCE ..ottt et e e e e et e e et e e et s e et s e et s e et eeanaeenans 1472

ALTER SERVER ..ottt ettt ettt ettt e e et e e et s e et e e et e e aaa s e eebseeananeeees 1475

ALTER STATISTICS ..ottt ettt e et s e et e e et e e et e e ebs e e et e eabaeeeannns 1476

ALTER SUBSCRIPTION ...oitiiiiiiiiiieiie ettt ettt e et e et e et s e et s e et e eaanseetaaseettaseeanaeeees 1477

ALTER SYSTEM ..ttt ettt e et e et e e et e e tb e e e et s e etaa s eettseetnaseeanneeeannaes 1480

ALTER TABLE ..ottt ettt e et e e et e e et e e et s e et e e et e e ana e etaaseetbaseaenaeaeens 1482

ALTER TABLESPACE ..ottt ettt et e et e e tae e e ta e e et s e eta s e ettseeenneeeennaes 1499

ALTER TEXT SEARCH CONFIGURATION ..ottt ettt e et e et e etieeeeieeeees 1500

xii

PostgreSQL 18.1 Documentation

ALTER TEXT SEARCH DICTIONARY ..ottt ettt 1502
ALTER TEXT SEARCH PARSER ...ttt ee e 1504
ALTER TEXT SEARCH TEMPLATE ...ttt et 1505
ALTER TRIGGER ...ttt ettt et e e e e e e e e e reaeeeans 1506
ALTER TYPE .ottt et e e e e e ea e e ea e e ena e 1508
ALTER USER ...ttt ettt et e ettt e e e e et e s e e e e e ean e eane e nens 1512
ALTER USER MAPPING ..ottt ettt et et e e e e e e eaneeee 1513
ALTER VIEW Lottt ettt ettt e e e s e et e e et e et e e ean e eraaeennaeeenes 1514
ANALYZE .ottt ettt ettt et et e e et e e e naas 1516
BEGIN oottt ettt et ettt et e e e e e e ea e ean e naas 1519
(0 I PR P PRSPPI 1521
CHECKPOINT ..ottt ettt ettt s e et e e et e e ta e e eaa e e eaa e eenaeennaeranaeeenanees 1522
(03 10 1 TSP PPRR PP 1523
CLUSTER ..ottt ettt et e et e et e et et e et e s e eana e eenae e eenaeennaneen 1524
COMMENT ..ttt ettt e et e e e e et et tae et e e et e s eenne e eenneeennnenes 1527
COMMIT ..ttt ettt ettt e et e et e e et e e eae e e eaa e et eeanaeeanaenens 1531
COMMIT PREPARED ..ottt ettt ettt e e e e e e e e e eenaes 1532
(010~ PO UPPTRPPPIN 1533
CREATE ACCESS METHOD ...couiiiiiiiiii ettt et et e e e e e e e e e eena e 1543
CREATE AGGREGATE ...ttt et ettt e e e s e et e ea e raa e 1544
CREATE CAST ittt et ettt e et e et e et e et e e e e e ean e eane e nens 1551
CREATE COLLATION ...eiiiiiitiiie ettt ettt et e et e et e e e e e e tan e e ean e eenneeeenaens 1555
CREATE CONVERSION ..ottt et et et e e e e e e e ennees 1558
CREATE DATABASE ...ttt ettt e e et e e et e et e e e ra e e raaeennaeees 1560
CREATE DOMALIN ...ttt ettt et ettt e et e et e e et e e et e e taa e e ean e eraaeeenaeeeees 1565
CREATE EVENT TRIGGERciiiiiiiiiiiiii ettt e eneee 1568
CREATE EXTENSION ...ttt ettt et et e et e et et e e een e e e e s eenn e eennens 1570
CREATE FOREIGN DATA WRAPPER ...ttt 1572
CREATE FOREIGN TABLE ..ottt ettt et et ettt et e e s e e e e e eeneeeens 1574
CREATE FUNCTTION ..ottt ettt ettt e e e s e et e e e ae e e eea e e eaaeeeanes 1579
CREATE GROUP ...ttt et e et et e et e et e e et e eeneerena s 1587
CREATE INDEX ...ttt et et e et et e ettt e e e e et e s e et e e ean e e raae e eranneennnes 1588
CREATE LANGUAGE ...ttt ettt ettt et s e et et e e e e eanes 1596
CREATE MATERIALIZED VIEW L..oiiiiiiiii ittt ettt sttt e e e e e e ees 1598
CREATE OPERATOR ...ttt et ettt e e e e e et e e e e e eea e e eaneeenaes 1600
CREATE OPERATOR CLASS .ottt ettt et e e e e e een e nens 1603
CREATE OPERATOR FAMILY ...outiiiiiiii ettt e e e 1606
CREATE POLICY ..ttt ettt et ettt et e e et st et e e eee e et e e eaa e eena e eenaeennannen 1607
CREATE PROCEDURE ..ottt ettt et e e e et e e e eeneeee 1612
CREATE PUBLICATTION ...ttt ettt ettt e e e et s e e e e eeaa e eeaaeeena e 1616
CREATE ROLE ...ttt et ettt e e e et et e et e et e s e eaa e e eaa e e raneeenns 1620
CREATE RULE ..ottt ettt et e e e e et e e e e e e e e e eaa s eena e eennees 1625
CREATE SCHEMA ..ottt et ettt e e e e e e ean e eenees 1628
CREATE SEQUENCE ..ottt ettt ettt et e e e et e e e e eenaees 1630
CREATE SERVER ...ttt ettt et e e e e e e et e e e e eena e 1634
CREATE STATISTICS ..ottt ettt ettt e et e et e e e e e e e e e e eenaeeenes 1636
CREATE SUBSCRIPTION ..ottt ettt ettt e e e e e e et e e en e e eaae e eeaneeenaes 1640
CREATE TABLE ...ttt ettt et e e e e et e et e e e e e eaa e eenaes 1645
CREATE TABLE AS ottt ettt et e et e et e e et e een e rana e eeana e 1667
CREATE TABLESPAGQCE ...ttt ettt et ettt e et e e s e e e e eeneeeens 1670
CREATE TEXT SEARCH CONFIGURATIONcoiiiiiiiiiiiiiiiiieiiee ettt eeeen 1672
CREATE TEXT SEARCH DICTIONARY ...ttt ettt eeas 1673
CREATE TEXT SEARCH PARSER ...ttt 1675
CREATE TEXT SEARCH TEMPLATE ..ottt ettt 1677
CREATE TRANSFORM ...ttt ettt ettt e e e e e et e eenaeeee 1678
CREATE TRIGGERouiiiiiiii ettt et ettt e e e e ean s eenn e eennees 1680
CREATE TYPE .ottt ettt ettt e e et e et e e eaa e e eaa e eenaeeeees 1687
CREATE USER ..ottt ettt ettt et e e e et e et e e e e e rana e eeanaees 1696

xiii

PostgreSQL 18.1 Documentation

CREATE USER MAPPINGouttiiiiiiiiiei ettt ettt e e e et e e e e ea e eens 1697
CREATE VIEW ittt et ettt e et e et e e e e e e ea e e ean e eeanes 1698
DEALLOGCATE ...ttt ettt et ettt et e et e et e et e et e enn e rana e ranaeeennaees 1703
DECLARE ...t ettt ettt ettt et e e e e e eeaane 1704
DELETE ..ottt ettt ettt ettt e et et e et e et e et e e e e e e et e e en e e eaa e 1707
DISCARD .ttt ettt ettt e ettt et et et et ta e eaa e eeaas 1710
DO ettt et ettt et e et e een e rens 1711
DROP ACCESS METHOD ...oiiiiiiiiiii ettt et e et e e e e e e eeeas 1712
DROP AGGREGATE ..ottt ettt ettt ettt e et et e et e e raa e e raa e eenaeeeees 1713
DROP CA ST ettt ettt et e et e et e et e et e e et et ean e ran e e ran e eenaeees 1715
DROP COLLATION ...ttt ettt ettt e e e e et e et e et et e s e eaa s eeaneeeaneeeeanneennns 1716
DROP CONVERSION ...ttt ettt ettt e e et e e et e e e e e ran e rana e 1717
DROP DATABASE ...ttt ettt et e et e e e et e et e e e e ennas 1718
DROP DOMALIN ..ottt ettt ettt et e e e et e et et e e et e s eeaa s eenae e eenaeennnnees 1719
DROP EVENT TRIGGER ..ottt ettt e e e e e e ees 1720
DROP EXTENSION ...ttt ettt et e et ettt e e e tea et e s e et e e eaa e e raaeeraneeeraneees 1721
DROP FOREIGN DATA WRAPPER ...ttt 1722
DROP FOREIGN TABLE ...ttt ettt e e e et e et e et e e e e e raa e e ean e eeaneeees 1723
DROP FUNCTION ..ottt ettt et s e et e et e et e e eaa e eeaa e e eaaeennanes 1724
DROP GROUP ...ttt ettt et e e e e et e et e et e e ea e e e eeenens 1726
DROP INDEX ...ttt ettt ettt ettt e et e et e eta e e tr e ean e tana e ranaeeenaneennaeeens 1727
DROP LANGUAGE ...ttt ettt ettt e e e et e et e et e eeaa e eeaa e eenanae 1728
DROP MATERIALIZED VIEW ..ottt et ettt e e e e e ea e 1729
DROP OPERATOR ...ttt ettt e e et e et e et e et e e et e eenaeeeenan s 1730
DROP OPERATOR CLASS .ottt et ettt e et e et e ren e e ean e eenne e 1731
DROP OPERATOR FAMILY ...oouiiiiiiiiiiiii ettt ettt ettt e e e e et e eenaeeen 1732
DROP OWNED ...ttt ettt et ettt et e et e e et e enn e ran e rana e 1733
DROP POLICY ..ttt ettt ettt ettt et e et e et et e e et e s e eaaa s eeaa e e ean e eaneenanneennans 1734
DROP PROCEDUREoiiiiiiiiii ettt et ettt e e e et e e ene e e eneeeenan e 1735
DROP PUBLICATTION ...uiiiiiiiii ittt ettt et et e e et e et e et e e e e e e e eenaeeens 1737
DROP ROLE ...ttt ettt et ettt e et e et s e et e eaa s e raa e e raneennaeees 1738
DROP ROUTINE ...ttt ettt e e et e e e e ea e eena e eenaes 1739
DROP RULE ...ttt ettt et et e ettt e e et ea e et e e e et e e eaa s e eaaeeraneennaeees 1740
DROP SCHEMA .ottt ettt et e ettt e et e e et e e ean e e enne e e eaneeenens 1741
DROP SEQUENGCE ..ottt et ettt et e e et e e et e et ane e e een e e ean e eeaaeeees 1742
DROP SERVER ...ttt ettt et e e e s et e et e et e et e e e e enneeeens 1743
DROP STATISTICS ..ottt ettt ettt et e e e e et e et e e e e et e s eenae e eenaeennnanes 1744
DROP SUBSCRIPTION ...ouiiiiiiiiiiiiiie ettt ettt ettt e e e e et e eene e e tan e e ran e eenaeennaeeeens 1745
DROP TABLE ..ottt ettt ettt e e et e e et et e et e e e e e e e eens 1746
DROP TABLESPACE ...ttt ettt ettt e e e et e e e e e e eana e 1747
DROP TEXT SEARCH CONFIGURATIONouitiiiiiiiiiiiiieeei ettt et e eee e e 1748
DROP TEXT SEARCH DICTIONARY ...ttt ettt e e e eene e eees 1749
DROP TEXT SEARCH PARSER ...ttt ettt 1750
DROP TEXT SEARCH TEMPLATE ..ottt 1751
DROP TRANSFORM ...ttt ettt e et e e e e e e e een e e ena e eena s 1752
DROP TRIGGER ..ottt ettt et e e et e e et e e e e e e ran e erana e 1753
DROP TYPE ..ottt et e e ettt e e e e et e e e e e e et e e ene e e e 1754
DROP USER ... ittt ettt et et e ettt et eten et et e e e e e raa e eeas 1755
DROP USER MAPPINGoouiiiiiiiiiiiieiie ettt ettt et e e et e et e et e e e e ennaeees 1756
DROP VIEW L.ttt ettt ettt e et e et e et e et e e e e ran e e eann e eenaeeeees 1757
BN D ettt ettt ettt e et e e e e e e a e enaans 1758
EXECUTE ...ttt ettt e e e et e et e et et e e e ean s eean e eeaneeerananan 1759
EXPLAIN L.ttt et ettt et e et s e et e et e e et e e e taa e e tan e et n e e nn e an e eana e 1760
FETCH .ottt ettt e et e e e e e et e e e eaae e e ran e eraaeennaeees 1766
GRAIN T e ettt e ettt e et e e et e e et e et e taa e e tan e e et e en e rn e eena s 1770
IMPORT FOREIGN SCHEMA ...ttt ettt et e e et e et e eena e 1776
N S ERT ettt ettt ettt e e et e e e e et e et e ettt en et en e e e e e e e eaaaes 1778
| S 0 A PP PPPTRTRTRR 1785

Xiv

PostgreSQL 18.1 Documentation

|10 7N B PP PP UUPPION 1787
| IO L O TP PP PPRRPRt 1788
IMERGE ..ottt ettt ettt e e et e et e et a et e e th e et e eaa e eaa s 1791
IMOVE ettt et e et e e et e et e e et e et e et e aa e e et e et e et e eab e aanaaas 1798
INOTTIEY ettt ettt ettt ettt e e et e e et e e et s e e et s e eta e e aaa e e et seata e eataeeanneeannsaannnaaes 1800
PREPARE ..ttt ettt et ettt e et e et e et e et e e aa e e ta e etaans 1802
PREPARE TRANSACTION .ttt ettt ettt ettt e et e et e e et e et e e et e e et e eena s eeaanseeenans 1805
REASSIGN OWINED ..ottt ettt ettt et e e et s e et s e et e e et e e et e e et e eebaseesaeaeanseeenns 1807
REFRESH MATERIALIZED VIEW ..ottt ettt e et e et e et e e et e e e e eabaeeeees 1808
REIINDEX .ottt ettt ettt et et e et e e e ta s e et s e e th e e eth s e eaan s e etan s eaaunseatnnseeannsassnnaannanaees 1810
RELEASE SAVEPOINT ..ottt ettt ettt e et e e et s e et e e et e e aaa e e et e eataeeebaeeasanns 1815
| S A OO 1817
REVIOKE ..ottt ettt ettt e et s e et e e et e e et e e et e e et e e et e eeaa s e eaaaseaasaseaennsenens 1818
ROLLBAGCK ..ttt ettt ettt ettt e et e et e e et e e et e e et e e et e eeta e eaaa s eeaaaseetanseasnneeaenneeeens 1822
ROLLBACK PREPARED ...ttt ettt e et e e et s e et e e et e e aaa s e eaan s eeeaans 1823
ROLLBACK TO SAVEPOINT ..ottt ettt et et e et s e et s e et e e et e e eaaseeetseennanaees 1824
SAVEPOINT .ttt ettt ettt e e et s e et s e et s e eta e e eaaa s eetan s eatun s eataneeesnseeasnaennaaaes 1826
SECURITY LABEL ..ottt ettt et e et e et s e et e e etaa s e e et s eettseeabaseeanneaeannaes 1828
SE L E T ittt ettt e et e et et et et e et e et e et e e et e eba e et e et e earanas 1831
SELECT INTIO ittt ettt et e et e ettt e e et s e et s e et s e et e e tean e eetaneeabaneeesanaeananas 1851
IS A PP PP PPN 1853
SET CONSTRAINTS .ttt ettt et e et e ettt e e et e e et e e et s e et e eaba e etaa s eetaaseetaaseaannaeens 1856
SET ROLE ..ottt et ettt e et e e et s e et e e et e e et e e et e e et e e et e eabaeeeannseetnnseeeanns 1857
SET SESSION AUTHORIZATION ...ouuiiiiiiiiiieeiiee et ettt ettt e et e et e eetaeeeta s eetaeeenaans 1859
SET TRANSACTTION .ottt ettt ettt e et e e et e e et e e et e e et s e aaa s e et seetaneeasaneaanaeeenns 1861
] = (O 1O PP PRSPPI 1864
START TRANSACTION ...ttt ettt et ettt ettt e e et s e et e e et e e et e e etta s eeaaaseaaunseaanneeens 1866
TRUNGCATE ...ttt et e et e et e e et s e e et e e et e e eaaa s e eaan s eetan s eataneaesaeeasaaennns 1867
UNLISTEN oottt ettt e et e et e e et e e e et e et taa s e eaaa s eetaa s eatanseetnnaeannsaeesaseansanaees 1869
UPDATE .ottt ettt et e et e e et s e et e e et e e et e e e taa s e e et s e ett e e aaa e e et e eebaeeahaae 1870
VACTUUDM ittt ettt e et e e et e e et s e et s e et s e eaa e e et e etba e etbaseeasaeeannsaennnaes 1875
B I B 2 PO OPPRPPPTPRE 1880
II. PostgreSQL Client APPLCAtIONSccvuiiiiiiiiiiee e et e e et e e e e et e e reeaeeeaan e 1882
CIUSEETAD .. et et e et e et e e et e e et e e eae e e et e eebaeeees 1883
o3 4 == 1 7= Te | o T RPN 1886
CTEALEUSEYT ..oeuiiiiii ittt ettt ettt e et e et e et e ta e et e ean e aue e et e et etaneauaeesasesnsaenseanaeeansreneenneenes 1889
o By 0o I o J 1893
6 By 010 1= 1896
1704 o Yo E PRSP 1898
o To JE=V a0 [od s 1Yo - QOO OTRTPPPRN 1900
PG DASEDACKUD ettt e e e et e e 1905
97010 1=1 s Vo] o U 1914
PG COMDBINEDACKUD «.etuiiiiiiii ettt e et e et e e et e e e e s e et s e et e eeaanes 1937
oTo Je10) 1 Vi (o E RO PTPR PP 1940
o Yo Je L0 ha'] o J OO PPPRRPPRRRPN 1943
o Yo Je Lbha] o ¥ 1 | KOOSR PRUTPRRRt 1958
1910 B E] A= T- Vo | PO TOPPR PSPPIt 1966
DG TECERIVEWAL ...ttt ettt e et e et e e et e et e e e e s e et s e et e eebaeaenanas 1968
o Yo B A=ToaTa oTe 1 (o}- 1 U ORI 1972
DU TESTOTE ..ottt ettt ettt ettt e et et e et et e et e et s e tn e tuetaasean e eaneeanasetasetnseennaenneeenns 1976
PG VETIETDACKUD ..oetiiiiiiiiii ettt et e et et e e et e e et s e et e e ean e e aaneaes 1986
1910 1 S 1989
130010 155 (6 | o PPN 2033
VACTUINAD ..ottt e e et e e et e et e e et s e et s e et e e eaa e e eaa e eanaaaes 2036
ITI. PostgreSQL Server APPliCAtiONSciuiiiiiiiiie e e e e e et e et e e e eeanaees 2041
1011 e | o TP PPPRRPRt 2042
PG ATCRIVECLEATITD ...eiiiniiiie ittt et e e et e et e et e e et s e et s e et s eaanneeaens 2048
PG ChECKSUINS ..coiiiiiiiiii ettt et e et e et e e et e e et e e et e e eaa e e et e earanes 2050

XV

PostgreSQL 18.1 Documentation

o Yo i et0) a1 o) Ko b= 1 - PSPPI 2052
PG CTEALESUDSCIIDET ..cuuiiiiiiii ettt e e et e et e e et e e eaaeeeeas 2053
91 2 1 RO PPPRUOTPTRR 2058
PO TESEEWAL ..ottt et ettt e e e et e e et e et e eth et e e et e eaaa s 2063
1910 B A=) o Lo PP UPPR PRI 2067
PG EESE FSYTIC ettt ettt e e et et e et e e et e e e eaa e 2071
o Jo ST Al 0014 o o S PP UP TR PPTPPRRPRURt 2072
o Yo JRVY o Yo 1 ar=To [T TP OPPRUOPPRRRE 2075
PG WALAUINID L.ttt ettt et et e et e et e e et s e e ta s e ett e e aann e e et e eabaseeebaneeesaaaennaes 2085
DO WALSUINITNIATY ..eituuiiiiiiiiieeeii ettt ettt e e et e e et e e et e etta e etba e aetan s eetua s eatanseesnnsesansaeesnnaensanaees 2088
| ST 0 1 ol TR 2089
BV 0 O 1 Y o o =Y =SS 2095
51. Overview of PostgreSQL INterNalscccuuiiiiiiiiie e e e e e et e e e e e e eaaaas 2096
51.1. The Path Of @ QUETY ..couiieiiie e e e e e e et e et e e ae e e e eaans 2096
51.2. How Connections Are Establishedcccooiiiiiiiiiiiiii e 2096
G T N (oI o) 1= i = Yo [RN 2097
51.4. The PostgreSQL RUlIE SYSEEIM ...iiuniiiniiiiiiiie e e et e e e e r e e e e e eaans 2098
51.5. Planner/OPtimiZET . .cuu i e e et e e e et et e e e a e a e eaa e 2098
o I G TR 25~ (Yo} U1 o) PP 2099
W I £ 1Y 1 N O 1 = 1 Lo o £ 2101
Y R 0 k7= 74 1o PPN 2101
SV oTe fi-Yo o b o=l 1=y ot = SUUT PSR 2103
YR T o te - I U OO 2104
YA Yo BN 1) < IOt 2105
SRS T oY Y 11 o} ate L AU PP 2106
Y ST Yo = N ol o o L= S O TR 2106
Y R <Y =L o o o < ol = SO OOt 2106
Y < T Yo R ol o e E PR 2108
YRS I Yo = RE ol T 111 111 oY= ok SN 2109
Y N O T T =1 O U OO UPTOTURINt 2110
Y B oY B N =N =T SO 2111
SV B oTe i ot e M = X ol I) o R PSP 2113
1SV RO TR oY i olo) o b=k ol ar= K I o | TP 2114
Y T Yo Bl eTo) o h72=F or =k e s WU U 2116
Y B T < Te fle R =0 o Y= =TSN 2117
SV ST oYe fie | T ool N =M=} o i I oL AR 2118
SV VAR Yo e (=5 - B K - Vol U U U OP 2118
Y < T eTe fe 1Y oY=t o PPN 2119
IS RS IR oTe i 1=Y-Tok ok K o Jul K} s RN USROS 2121
Y (o Te = L O UTORTTNt 2121
SV WA oY R=N72=F ok ol ob o Ko fo 1= o NUU TP UORURNt 2122
Y R T =P S o= s Y-l e} s NPT 2122
SY/VAC T oTo fi el =3 Ko solie IR =Tk 14 o=} o} o 1= 3 NN 2123
SN T oY i e o=k e b MR =T o= O U U O UPPUT 2123
YAV A T oTe H e Ral =k e s o T oE-1 o =S PPR 2124
Y A T <Y i o Lo 1= 3 O TP 2124
SV <Y B B oY o= 3 o K o= R U OO TP 2126
SR ST oY B B o B ol o3 o 2= ST 2126
SV VA R oTe B =0 Yot U= 1= RPNt 2127
SY/RCT O oY R IR e 1=Te) o s 1= Yot cHUT U U 2127
SY/RCH B oTo SR =R e =Yo) o [=Yox il 1= Yo=Y =1 of - EUUUU U PR 2128
YR VR oTe B ot oY= o X- Vol = SRRt 2128
Y RC 1S T oY fl) o Lol K= Y= - SRR 2129
ST T o Yo fil) o 1= 3 o= Lol ST U U U OTUTON 2129
SY/RC 1o T oTe flc) o b =015 N A TN 2130
SY ARG T e Hl T B o=t 1= Y o =3 ol Y 2 H P PP 2131

XVi

PostgreSQL 18.1 Documentation

53.

52.37.
52.38.
52.39.
52.40.
52.41.
52.42.
52.43.
52.44.
52.45.
52.46.
52.47.
52.48.
52.49.
52.50.
52.51.
52.52.
52.53.
52.54.
52.55.
52.56.
52.57.
52.58.
52.59.
52.60.
52.61.
52.62.
52.63.
52.64.
52.65.

jele il oX-Bakul i ik oY o LYo I of=1 o 1 K U P PP PRSPPIt
Jele i oL I N e A PPN
S N @
jsTe I <151 o T I o= wlh @) o P
PY_PUD LI CAL 10N NAME SPACE titiiittirttratteneteanteenteesneesnteesssssnseesssssnssesssssnsssssssssssnsssssasns
el 0T NI NeT- N v Kol o Nk af =N KN
o N o= B'a L 1 S PN
jele i =y NI Nel-} vl Nel s il o} ak Ko i I o HN TR PP PP PP PPN
o1 T A N i N
1 TS 1Y@ = =
ol HE-TYe 1B ool PPt
<1 = o Te LT €T o ¥
1o M= oo LT Tehiak o il A o) o LN
ST = 0 F= T S 1=V 0
jele MR - ol = ol N o PP PPN
jele MR - Rulk =1 o N o = D4 A N
el N o= Rul =Y ol Mo < b- 4 wi @ k= 1wl N
jsIeMR=101 oT-Tol akl o} i o) o NN PN
jelefINIoT oF-Tehah i o) vl Nl o Mk ol Y PPN
ST T =T o T T
L1 T U o= o = T i e 1
jole ol ok e [< 15 ol PPN
1o T =T o) o i e N
oo St = T o1 o il K D 1=)
oo =T e B ol S PP PPN
S X N = T © = X <
LS N = T = (120 = N

jele MREETSSall (1 F=) o) ol o Lo AN PP PPN

STSTEIN VIBWWS L.iitiiiiiiiiiiiiii ettt et e e e te et e et e et e et e e et e et et etuneetnsasnsasansennsasnsasneennnssnnnes

53.1.
53.2.
53.3.
53.4.
53.5.
53.6.
53.7.
53.8.
53.9.

53.10.
53.11.
53.12.
53.13.
53.14.
53.15.
53.16.
53.17.
53.18.
53.19.
53.20.
53.21.
53.22.
53.23.
53.24.
53.25.
53.26.

OVEBIVIEW .ituiiiiiiitiie ettt et et e et e e te et e et s et e et e ttn e et ataneatnsatnsasnsasnnsaensesnsasnnesnnsennns
LS = B X =
Sl M= A= SN o R I b Y o @ o <
Pg_available eXtenSion _VET SIOMS tiiiiiiiiiiiiiirtiiiteieeeieeerneeeneeesnteeneeesnsrensessnssensssnneennes
jsle il oYYl L=V o Yo M (11S] 11Tl VA @l @) o LUl uif= T
|51 0@ o s e X N
joe M el b aF =T ol k= R TP
jole ik B R UIETCN o ol B o e £ S PP PP PPPPPPPPP
S ol 5
o1 J o @ = N e A o
jole ik Ko (=Y ok il ih M RSN (1 2% o) o5 M o Lo 1= SN O PP PO PPPP
o1 T IS o U LoD L= TN
1 I T @ =
PO A T VL WS tuttitttineeeneeeaneeaneeenseesneeeneeesneeenesennesensessssesnsesnsessnsesnsessssesnsesnssssnsssnssenneesnees
jole i oo N I N ok Y PP
PO _pPrepared _Stalement s it ittt ittt sttt rraaseenas
jole il ol aloY oToBial Yo HiD- 4= Y o1 =R PP
jele il o) b1 N Nel-N ol Ne) o Ml -1 o 1 K oY R PP PP PPN
PO_replication _Origin_ ST altlS iiiiiiiiiiiiiiiiiiiiiiiitiiierieriiteeantsenseesnssenssesnssonssessssonsss
PO _rePlication _SL1oOT S tiiiiiiiiiiiiiiiiiiiiii e
<1 a0 N = PN
S B
LS T = T
DO SEUUETICES tuttuutnntanetnteneeaneaneantaneeteaneanaaaeantaaeeeeansansantentsaneaneensentententeeneeneeneenseneennenns
jole TN vkl o e £ PP PP
S 1 = =K@ L 3

xvii

PostgreSQL 18.1 Documentation

54.

55.

56.

57.
58.

59.

60.

61.

62.
63.

IS T AV o =1 o4 111=) (A= B B e Yor=N ol Ko} o k= NN OOt 2175
53.28. pg_shmem_alloCatiONS_NUMA t.viueireenireerernernrnernernerernereserneresernerseserserterersersereenernerernes 2176
SIS I A S oY H =1 o= o= PP 2176
ST TG 0 T e B =3 o= R o= T = b PR 2178
SICTRCH B e M o= o= T = D = 5. o b of - RPN 2179
IR VA oY f o= < 1 =Y R U O TP URURPRRt 2180
SICIRCIC TN oTe Rl B =¥ To) o ToTIIY o) o F =37 HU PR 2181
SIS T e Bl B 1= A} o LT F= 11 1= T O 2181
S IR 1o T oY H L F=1=F U OO UPTORURINt 2182
YRGS TN oTe BT T=T=Salll | =1 o) 1 oL 1= RN PSRNt 2182
I T W <Y T K=} 2= TP PTTRN 2183
IR T oY B 2= R ol =3 72=0 o L if = U 2183
Frontend/Backend ProtOCOLioiuiiiiiii et e et e e e a e e e aan e 2184
4. 1. OVETVIEW euiiiiiiiiiiitii ettt eie et et et eete et e at e et e et etaeaunsaunsasnseaneettnsatnsasnsasnnesnnsennsesnsennns 2184
54.2. MESSAGE FLOW ..iiniiiiiiiiiiie et e et e et et e et s et e e e e eb e ea e e e e e aans 2186
54.3. SASL AUThEnTICAtION t.uuiiiiiiiiiii it e et e et e e re e e e et e eaasananas 2199
54.4. Streaming Replication ProtoColc.coiiiiiiiiiiiiiiiiii e 2201
54.5. Logical Streaming Replication ProtocColcccoviiiiiiiiiiiiiiiiii e 2210
54.6. MeSSAFE DAta TYPES tuuiiiniiiiiiiiiiiit ettt e et e et s et e et et e e a b e aeaaan e 2212
54.7. MeSSAFE FOTINALS ..ivuiiiiiiiiiiiii it ettt e et et e et s et e e et e s ean s aansaaneaeaneaans 2212
54.8. Error and Notice Message Fieldsooiiviiiiiiiiiiiiiiiiiin e 2228
54.9. Logical Replication Message FOImatsccccvviiiiiiiiiiiiiiiineiie e e e e eans 2229
54.10. Summary of Changes since Protocol 2.0coooviiiiiiiiiiiiiiiiiin e eeas 2238
PostgreSQL Coding CONVENTIONIS ...iuuiiiiiiiiireieeiie ettt e eiieetieeeieete et eeineetnsetnseanneennsesneesnns 2239
o1 T8 IR 20) o 0 -1 o o R OPRPP 2239
55.2. Reporting Errors Within the SeTverccciiiiiiiiiiiiii e 2239
55.3. Error Message Style GUIAEc..ciiuiiiiiiiiiiii ettt e e e a s e e e e s eaa e eeans 2242
55.4. Miscellaneous Coding CONVENTIONSc.uviiuiiiiiiiiiieiiiriie et et ei e ere et e e e ereenieeans 2246
Native Language SUPPOTTiiiiiiiiiiii ettt e e e e te et e et s eae e et e et sasnsasnneanneennes 2248
56.1. FOr the Translatorcooiiiiiiiiii ettt et e e te et e e e e e e e e eaanas 2248
56.2. FOT the PrOgramIMerc.cviiiiiiiiiiiii ettt e e e et e e ae e e e et e eaaseaineeteasnsasnsannnns 2250
Writing a Procedural Language Handlercoooiiiiiiiiiiiiiii e 2253
Writing a Foreign Data WIaDPerocuviiiiiiii ettt e et e e ae e e e et e ea e aaaeaans 2255
58.1. Foreign Data Wrapper FUNCEIONSoiiiiiiiiiiiiiiii ettt e e 2255
58.2. Foreign Data Wrapper Callback Routinesccooviviiiiiiiiiiiiiiiiiin e, 2255
58.3. Foreign Data Wrapper Helper FUNCEIONScccoviiiiiiiiiiiiiiiircinc e 2270
58.4. Foreign Data Wrapper Query Planningc.ccoeviiiiiiiiiiiniiiiieie e 2271
58.5. Row Locking in Foreign Data WTIapPETSccuuviiuiiiiiiiiiiiiniiieeie et et eeieeineerineeensenneennns 2273
Writing a Table Sampling Method ..o 2275
59.1. Sampling Method Support FUNCHIONScoiviiiiiiiiiiii e 2275
Writing a Custom ScCan PTOVIAETciouiiiiiiiiiiiiiie et e e e e e eaeeaas 2278
60.1. Creating Custom Scan Paths ..o e 2278
60.2. Creating Custom ScCan PLansccoiviiiiiiiiiiie i e s ee et eea e e e eanes 2279
60.3. EXeCUtINg CUSTOM SCANS ..euuiiiiiiiiiiiiiiiie ittt et e et e et e e te et e ete et et eatneatnserneesaneeansees 2280
GenetiC QUETY OPTIMUZET ..ivuuiiiiiiiiiie et e et et et s et e etae e et e etae et eaaneatnearnsannnns 2283
61.1. Query Handling as a Complex Optimization Problemcc.ccoooiiiviiiniiniiiiiiniinins 2283
61.2. GenetiC AIGOTILIINS ...iuuiiiiiiiii et e e e et e et e et s et s eaaeeaaeeaineannans 2283
61.3. Genetic Query Optimization (GEQO) in PostgreSQLc.cccoiiiiiiiiiiiiiiiniiirieeie e 2284
61.4. FUIrther REAMING ..oivuiiiiiiiiiiiiiiie ettt et e et e et e e e e e e ea s eeie e et e et eennnas 2286
Table Access Method Interface Definitionc.cocviiiiiiiiiiiiiiiii e 2287
Index Access Method Interface Definitioncccccooviiiiiiiiiiiiiiiii e, 2289
63.1. Basic API Structure for INAEXEScciiuiiiiiiiiiiiiieiiee ettt e e e ae e e eaanes 2289
63.2. Index Access Method FUNCEIONSocviiiiiiiiiiiiii e e e e 2292
63.3. INAEX SCANIUIIG 1ituuiiiiiiiiiii ettt et e et et e et e et e et s et seansanaeannearnsarnsannnns 2298
63.4. Index Locking CoOnSideTratiOnscviiuviiiniiiiiiiriie ettt et et e ere et eeineainsernsananes 2299
63.5. Index Uniqueness ChECKScuiiiiiiiiiiie et e e e e e s e e e e ans 2300
63.6. Index Cost Estimation FUNCEIONSccciiiiiiiiiiiiiii e e 2301

xviii

PostgreSQL 18.1 Documentation

64. Write Ahead Logging for EXtENSIONSc.iiiiiiiiiiiiiiii e e et e e e et e e e e e e aen e 2304
64.1. GeneriC WAL RECOTAS ...c.uuiiiiiiiiiieiiii ettt et et e et e et e e et e e et e e et s e et e e et eeanaas 2304
64.2. Custom WAL ReSOUTCE MANAGETS ..cuuiiuiiiiiiiniiieiieiiiieeieeieteeieetetnseneetasensenernasansenaennns 2305

65. Built-in Index AcCesS MeEThOASc...oiiiiiiiiiiii e e 2307
65.1. B-TTEE INAEXES ..uieitiiiiiiieii ettt ettt e et e et e et e e et e e et s e et s eeann s eatanseeennes 2307
5.2, GIST INAEXES oeuuiiiiteiii ettt ettt ettt e et e e et e e et e e et e e eea s e et e eetaneeasaneeanaeeenns 2313
5.3, SP-GIST INAEXES ..uuiituniiiiiitiiiie ettt e et et e et e e et e e et e e e et s e etiseettseaannseeennseesanaaes 2329
5.4, GIN INAEXES ouuniiiiiiiiieeii ettt ettt ettt e e et e e et e e taa e e et s e etb e e attseeanaeeeannsaennnaes 2340
65.5. BRIN IINAEXES .etuniiiiiiiiieeiiie ettt ettt e et e et e et e e et e e eaa s e etaa s eetaseatnneeeanneaenns 2346
65.6. HASh INAEXES ..oiiiiiiiieiii et et e et e e et e e et e et e e eet e e eana e 2358

66. Database PhySiCal StOTAQEccuuiiiuiiiiiiii et e e e et e et e et e e e e et e st e eaaeeannaees 2361
66.1. Database File LayOulcccoiiiiiiiiiii et e e e e et e e re e e e et e et e e e e aena s 2361
0.2, TOA ST .ottt ettt e et e e et e e et e et e et e et e et et e e et e et eaaanas 2363
06.3. FIEE SPACE MAPD tiuiiniiiiiiiiii ettt e e e e et e e e e et e e e et et et e et e e aans 2366
66.4. VISIDILIEY MAD tiituiiiiiiiiii ettt e et et e e et e et e et e e aa e eaaas 2366
66.5. The Initialization FOTKcouiiiiiiii ettt e e e e e e eee 2366
66.6. Database Page LayOulc.coiiiiiiiiiii et et e e e et a e aaas 2366
66.7. Heap-Only TupleS (HOT) ..ottt e et e et e e e et e e a e e s e ean e eaneeaneeens 2369

67. TranSaCtiON PrOCESSITIG ...uiiuiiiiiiiiiie ettt et et s ee et et e e e et et ean et et eenseneeanaanns 2371
67.1. Transactions and IAentifierscooiiiiiiiiiiiii e e 2371
67.2. Transactions and LOCKINQGcoviiiiiiiiiiie e e e e e e e e a e e e e e eanns 2371
67.3. SUDITANSACTIONS ..eeuiiiiiiiiiiie et e et e et e e e e e et e e et e eanae s 2371
67.4. TWO-Phase TranSaCTIONSvieiiuiiiiieiiiiiee ettt et et e et e et e e ea e eeaa e 2372

68. System Catalog Declarations and Initial Contentsccccceeiiiiiiiiiiiiiin e 2373
68.1. System Catalog Declaration RULESccuoiiiiiiiiiiii e eaas 2373
68.2. System Catalog Initial Datac.cceiiuiiiiiiiiie e e e e e 2374
68.3. BKI File FOTITNAT ...ttt et e e e et e e et e e e et s e eeiseeebeeees 2378
68.4. BKI COMINANIAS ..uiitiniiiiieeiiie et ettt e ette e et e e et e e et e e et e e aaaa s eetanseetuneeatansaesnaeennaeananaees 2379
68.5. Structure of the Bootstrap BKI Filecccouiiiiiiiiii e 2379
S BT =] S b=V 0} o) [2380

69. How the Planner Uses StatiStiCScviiiuiiiiiiiiiiiiiiiie et e e 2381
69.1. Row Estimation EXampPLesc.oiiuiiiiiiiiiiiiiie e et e e e et e e et e e e e e e saneeaaaas 2381
69.2. Multivariate StatisticsS EXamPLESccuuiiiniiiiiiiiiiii e 2385
69.3. Planner Statistics and SECUTILYcoivuiiiiiiiiii e e e e 2388

70. Backup Manifest FOTMALoouniiiiiiiiii et e e e e et e et e e e e et e et e eaaeerenaees 2390
70.1. Backup Manifest TOp-leVel ODJECEc..iinniiiiiii e e 2390
70.2. Backup Manifest File ODJECE ...ccvniiiiiiii e e e 2390
70.3. Backup Manifest WAL Range ODJECE ...c.uuiiuniiiiiiiiiie e 2391

AV 0 N o) 1= oL b (=Y SN 2392

PAN o153 o =S T) I N o (o) ol 0o Yo =Y Nt 2393

B. Date/Time SUPPOTTE «.ouniiiiii et et e e e e et e et et e e e et et e tae e aaneaneeneannaeneens 2402
B.1. Date/Time Input INterpretationooiiiiiiiiii i e e e 2402
B.2. Handling of Invalid or Ambiguous Timestampscccccueiiiiiiiiiiiiieii e e 2403
B.3. Date/Time KEY WOTASccuiiiuiiiiiieiiie et e et e e et e e ae et e et e et e et eannesenesanaaannasennns 2403
B.4. Date/Time Configuration Filesccc.ciiiiiiiiiiiiii e e e ae e 2404
B.5. POSIX Time Zone SPecCifiCationsc..oiiiiiiiiiiiiiii e e e e e e e 2406
B.6. HiStOTY Of UTIES ciiuniiiiiiiii i e e e et e et e e e et e et e e e e aeeaanaeannaes 2407
S TR L TN E= o D - 1 =Y 2408

(OO) I =) A 0] oo £ 2410

D. SQOL CONLOTINATICE .euinininininieei ettt ettt ettt ettt e ea et e eneastetnensastetnensassesensneseteensnennnns 2436
D.1. SUPPOTLEd FEALUIESeiniiiiiiiei ettt e et e e e te e e et e et e et e e s e aanaeaneeanns 2437
D.2. Unsupported FEATUTES ...c.uuiiiniiiiiiieii ettt et e e e e e et e e et e e e e s e eeesaaeennnns 2449
D.3. XML Limits and Conformance to SQL/XML ...ttt erenenes 2457

E. ReELEASE INOTES ..ttt ettt ettt e et e e et e e et e e et e ettt e e et e e et e eebaeeenanns 2460
E.L. RELEASE 18.1 ittt et e et e et e et e et ettt e e et s e et e eaanes 2460
E.2. RELICASE 18 .ottt et e et e et s e et e et e et e e e et e et e eaae s 2464
|G T = o (o) a2 U oY F T SOOI 2485

F. Additional Supplied Modules and EXtENSIONScc.ceiiuiiiiiiiiiiiiieeiie e e e e e e 2486

Xix

PostgreSQL 18.1 Documentation

F.1. amcheck — tools to verify table and index consiSteNCYccccveevveiiiiiiiiiiiiieiieeeeei, 2488
F.2. auth delay — pause on authentication failureccoooiiiiiiiiiiiiiiii i, 2493
F.3. auto _explain — log execution plans of SIOW QUETIESccceuiiiiiiiiiiiiiiiiiieiiiee e 2494
F.4. basebackup to shell — example "shell" pg basebackup modulecc...coceiiiiiiiiiie. 2497
FE.5. basic archive — an example WAL archive moduleccceviiiiiiiiiiiiiiniiiineeeeene, 2498
F.6. bloom — bloom filter index access methodccceeiiiiiiiiiiiiiiiiiii e 2499
F.7. btree gin — GIN operator classes with B-tree behaviorccccooeiiiiiiiiiiiiniinnn 2503
F.8. btree gist — GiST operator classes with B-tree behaviorc....ccooviiiiiiiiiiiiinnnn. 2504
F.9. citext — a case-insensitive character string typecooeveiiiiiiiiiiii e, 2506
F.10. cube — a multi-dimensional cube data typecccoeviiiiiiiiiiiie e 2509
F.11. dblink — connect to other PostgreSQL databasescccceveeiiiiiiiiiiiiiieiieeee e, 2514
F.12. dict int — example full-text search dictionary for integerscccooeeeiiiiiiiiniiiiinninnnnnns 2542
F.13. dict xsyn — example synonym full-text search dictionaryccc.cccceeviiiiiiiiiinninnnnen. 2543
F.14. earthdistance — calculate great-circle diStancescccccoeiiiiiiiiiiiiiiiii i, 2545
F.15. file fdw — access data files in the server's file SyStemccceviiiiiriiiiiniiiiniiiiinieeis 2547
F.16. fuzzystrmatch — determine string similarities and distancec.cccooeviiiiiiininnnnnnnn. 2550
F.17. hstore — hstore key/value datatypeccovviiiiiiiiiiii e 2554
F.18. intagg — integer aggregator and enNUMETatorcceevueiiieiineriieeiieeeieeeieere e e eeeneeanns 2561
F.19. intarray — manipulate arrays of inte€gerscccouviiiiiiiiiiiie e 2563
F.20. isn — data types for international standard numbers (ISBN, EAN, UPC, etc.) 2566
F.21. lo — manage large ODJECESu.iiiiii i e e 2570
F.22. ltree — hierarchical tree-like data tyPeccccoeiieiiiiiiiiie e 2572
F.23. pageinspect — low-level inspection of database pagescccccceevvveiiiiiiiiiiiiieiineieeeenn, 2579
F.24. passwordcheck — verify password strengthccoooiiiiiiii i, 2588
F.25. pg buffercache — inspect PostgreSQL buffer cache statecccoeeeviiiiiiiiiiiiniinnnnen. 2589
F.26. pgcrypto — cryptographic funcCtionscccceeiiiiiiiiiiiii e 2594
F.27. pg freespacemap — examine the free Space mapccceeviiuiiiiiiiiiiiiieiiieneee e, 2603
F.28. pg logicalinspect — logical decoding components inspectioncccocceevveiineeennnnenn. 2605
F.29. pg overexplain — allow EXPLAIN to dump even more detailscccceeevvviieieiennnnnns 2607
F.30. pg prewarm — preload relation data into buffer cachesc....ccoooiiiiiiiiiniinnn 2609
F.31. pgrowlocks — show a table's row locking informationccc.cceeiiiiiiiiiiiniiin e, 2611
F.32. pg stat statements — track statistics of SQL planning and execution 2613
F.33. pgstattuple — obtain tuple-level statiStiCscevviiiiiiiiiiiiiii e, 2622
F.34. pg surgery — perform low-level surgery on relation datac....cceeviiiiiiiiiniiiinnnnnnn. 2626
F.35. pg trgm — support for similarity of text using trigram matchingcccceceeieiienne 2628
F.36. pg visibility — visibility map information and utilitiesc....ccoeeviiiiiiiiiniiiiiniinnn e, 2633
F.37. pg walinspect — low-level WAL InSPecCtioncccoeeiuuiiiiiiiiiiiiniiiiieiiiie e 2635
F.38. postgres fdw — access data stored in external PostgreSQL serverscccceeeeuuneeen. 2638
F.39. seg — a datatype for line segments or floating point intervalscc.ceeevniiiniinnnnnnn. 2649
F.40. sepgsql — SELinux-, label-based mandatory access control (MAC) security module ... 2652
F.41. spi — Server Programming Interface features/examplescccccceeviiiiiiiiiiiieineinneennnnn. 2660
F.42. sslinfo — obtain client SSL informationccceeeiiiiiiiiiiiiiiii e 2662
F.43. tablefunc — functions that return tables (crosstab and others)cccovviviiiiivinininnn. 2664
F.44. tcn — a trigger function to notify listeners of changes to table content 2673
F.45. test decoding — SQL-based test/example module for WAL logical decoding 2674
F.46. tsm system rows — the sySTEM_ROwWS sampling method for TABLESAMPLEcc......... 2675
F.47. tsm_system time — the sYSTEM TIME sampling method for TABLESAMPLEccc.uuuneeeee 2676
F.48. unaccent — a text search dictionary which removes diacriticsccccveeviiinninnn..n. 2677
F.49. uuid-0SSp — @ UUID gENETALOT ...ccuuiiiniiiiii et e et e e e et e e e e e e et e e e e e s eeens 2679
F.50. xml2 — XPath querying and XSLT functionalityccccoeevieiiiiiiiiiiiiiie e, 2681
G. Additional SUPPLied PrOGTamScuuiiiiiiieiiieeiie et e et et et e e e e ae et e st e st eetaaesaeestnassneeanaesnaesnnnns 2685
L R O 1Y o LN o o] k=1 T) o <SP 2685
G.2. Server APPLCAtIONS ...iiuniiiiiie e e e e et e et e e e et e et e e e et e et e aaaaanes 2692
| R 5 =Y = | o 0 =T SRRt 2693
H.1. Client INTETTACES ...ccovuiiiiiiiiiiie ettt e e et e e e e eeb e e e eeaaa e 2693
H.2. Administration TOOLSccceeiiiiiiiiiiiiie ettt e et e eeeaeaan s 2693
H.3. Procedural LanQUAagESc.oeeuueeiueiieeieeieetieeieetieetteestestnestneestnestnessneesnaeseeessnessnessnnssens 2693
H.4. EXEEIISIONIS oeuniiiiiiiiiiei ittt ettt e et e et e et e e eae e e et e e eaa e eana s eeana e eeanans 2693

XX

PostgreSQL 18.1 Documentation

I. The Source Code ReEPOSILOTY ..ccuuiiiiiiiiiiiiiiiie et ettt e et e e et e et e et e et e eaaaeseestnesanaeannasnnnes 2694
[.1. Getting the Source via Giloiiiiiiiiiiiie e e e e et e e e e e eees 2694

N B e o1 bhiaaTc) a1 =1 1) s PSPPI 2695
S B 1o Yol = Lo Yo) - (R 2695
IO Ko 1o] B Rt 2695
J.3. Building the Documentation with MakKeccccooiiiiiiiiiiii e 2697
J.4. Building the Documentation with MeSONcc.coiviiiiiiiiiiic e 2698
J.5. Documentation AULhOTINGcivuniiiiiii e e e e e e a e e e e e een 2698
OIS 5 2 (ST 0 o 2698

K. POSEGTES QL LIIMIES ..iuuiiniiiiiiiiiiie et e et e e et et e te et et e e e et eaneanesaanneenesneannsaneens 2701
| AN o] a0) 1172 40 - T PR UPPPRRE 2702
AV B] L0 T3 7- ¥ oy 2N 2707
A TR O0) 1o ol 1V o) 010) o O 2721
N.1. When Color 1S USEA ...euiiuiiiiiiiiii et ettt e e et e et e e e et e et e e e e st e st eeaneeraeaenaeen 2721
N.2. Configuring the COIOTScceuiiiiiiiiiie e e e e e e e et e et e e aeeeeneeaneeanns 2721

0. Obsolete or Renamed FEAtUTESccouiiiiiiiiiieiie et e et e et e e e e et e e e e s e aaaeaanas 2722
0.1. recovery.conf file merged into postgresgl.Conf .uiiiiiiiieiiieei e 2722
0.2. Default Roles Renamed to Predefined ROLESc..coiimiiiiiiiiiiiiiiiii e 2722
0.3. pg_xlogdump renamed 0 PG WaLldUMD .oiuieiiririiniiiiieineiiieenerereetererernereraenerereerereraenesns 2722
0.4. pg_resetxlog renamed 0 PG_reSetWAL cvviiiiiiieiieieeeiieeieeereereeeereereerererneereenernns 2722
0O.5. pg_receivexlog renamed t0 pPg_reCeivVeWal wovviiiii it e e eeanes 2722

L0 0) H 0T 1= o s 7/ 2723
B0 Lo O PP OPPT PR 2725

xXxXi

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

e PartIis an informal introduction for new users.

* Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

e Part III describes the installation and administration of the server. Everyone who runs a Post-
greSQL server, be it for private use or for others, should read this part.

» Part IV describes the programming interfaces for PostgreSQL client programs.

* Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

e Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES, Ver-
sion 4.2, developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

data types

functions

operators

aggregate functions
index methods
procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With decades of development behind
it, PostgreSQL is now the most advanced open-source database available anywhere.

Another take on the history presented here can be found in Dr. Joe Hellerstein's paper “Looking Back
at Postgres” hell18.

xxii

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid track-
ing database, a medical information database, and several geographic information systems. POSTGRES
has also been used as an educational tool at several universities. Finally, Illustra Information Technolo-
gies (later merged into Informix, which is now owned by IBM) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project described in ston92.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

¢ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface li-
brary libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see be-
low), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

* The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

* A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

xxiii

https://www.ibm.com/analytics/informix
https://www.ibm.com/

Preface

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Postgres is still considered an official project name, both because of tradition and because people find
it easier to pronounce Postgres than PostgreSQL.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in each PostgreSQL release since then can be found at https:/
www.postgresql.org/docs/release/.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (.. .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki contains the project's FAQ (Frequently Asked Questions) list, TODO list, and
detailed information about many more topics.

Web Site
The PostgreSQL web site carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

XXiv

https://www.postgresql.org/docs/release/
https://www.postgresql.org/docs/release/
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more
important things on the agenda. If you need help immediately, consider obtaining a commercial support
contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

e A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

e A program produces the wrong output for any given input.
* A program refuses to accept valid input (as defined in the documentation).

* A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

¢ PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has
a fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

* The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preced-
ing CREATE TABLE and INSERT statements, if the output should depend on the data in the tables. We
do not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg dump to dump out the table declarations and data needed

XXV

Preface

to set the scene, then add the problem query. You are encouraged to minimize the size of your ex-
ample, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the of-
fending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error mes-
sage, show it, even if you do not understand it. If the program terminates with an operating sys-
tem error, say which. If nothing at all happens, say so. Even if the result of your test case is a pro-
gram crash or otherwise obvious it might not happen on our platform. The easiest thing is to copy
the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log error verbosity to verbose so that all details are
logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the in-
formation available. Please also look at the log output of the database server. If you do not
keep your server's log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the ex-
act semantics behind your commands. Especially refrain from merely saying that “This is not what
SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do
we all know how all the other relational databases out there behave. (If your problem is a program
crash, you can obviously omit this item.)

Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.

If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the command SELECT version(); to find out the version of
the server you are connected to. Most executable programs also support a -—version option; at
least postgres --version and psql --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 18.1 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support for
sites using older releases of PostgreSQL; if you require more than we can provide, consider acquir-
ing a commercial support contract.

Platform information. This includes the kernel name and version, C library, processor, memory in-
formation, and so on. In most cases it is sufficient to report the vendor and version, but do not as-

XXVi

Preface

5

sume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have
time to find and share your work-around. Also, once again, do not waste your time guessing why the bug
exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don't say “the server crashed” when you mean a
single backend process went down, nor vice versa. Also, client programs such as the interactive frontend
“psql” are completely separate from the backend. Please try to be specific about whether the problem
is on the client or server side.

3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@lists.postgresgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresql.org> mailing list.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsgl-bugs. Security issues can be reported privately to <securi-
ty@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgl-sql@lists.postgresgl.org>
or <pgsqgl-general@lists.postgresql.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers' mailing list <pgsgl-hackers@lists.post—
gresqgl.org>. This list is for discussing the development of PostgreSQL, and it would be nice if we could
keep the bug reports separate. We might choose to take up a discussion about your bug report on pgsql-
hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresql.org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to <pgsgl-hackers@list-
s.postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xXxVii

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/account/submitbug/
https://lists.postgresql.org/

Part |. Tutorial

Welcome to the PostgreSQL Tutorial. The tutorial is intended to give an introduction to PostgreSQL,
relational database concepts, and the SQL language. We assume some general knowledge about how to
use computers and no particular Unix or programming experience is required. This tutorial is intended
to provide hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a comprehensive treatment of the topics it covers.

After you have successfully completed this tutorial you will want to read the Part II section to gain a
better understanding of the SQL language, or Part IV for information about developing applications with
PostgreSQL. Those who provision and manage their own PostgreSQL installation should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experi-
mentation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL
can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

* A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server pro-
gram is called postgres.

¢ The user's client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed by
users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the supervisor server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Getting Started

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database from the command line, in this example named mydb, you use the following
command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation in-
structions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such
file or directory
Is the server running locally and accepting connections on that socket?

This means that the server was not started, or it is not listening where createdb expects to contact it.
Again, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: FATAL:
role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the -U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: error: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. PostgreSQL allows you to create any number of data-
bases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

! Asan explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a database, you can choose
what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a PostgreSQL user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the PostgreSQL interactive terminal program, called psql, which allows you to interactive-
ly enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC sup-
port to create and manipulate a database. These possibilities are not covered in this tutorial.

¢ Writing a custom application, using one of the several available language bindings. These possibili-
ties are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psgl mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (18.1)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Post-
greSQL instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of cre-
atedb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psqgl is the prompt, and it indicates that psqgl is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 18.1 on x86_64-pc-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2, 64-
bit
(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

Getting Started

mydb=> SELECT 2 + 2;
?column?

(1 row)

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including melt93 and date97. You should be aware that some PostgreSQL language
features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory src/
tutorial/. (Binary distributions of PostgreSQL might not provide those files.) To use those files, first
change to that directory and run make:

$ ed .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql's -s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for table. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number
of other ways of organizing databases. Files and directories on Unix-like operating systems form an ex-
ample of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)i

You can enter this into psgl with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

The SQL Language

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case-insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N), var—
char (N), date, time, timestamp, and interval, as well as other types of general utility and a rich set of
geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)"');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.q., if the precip-
itation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward',6 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM '/home/user/weather.txt';

The SQL Language

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. The data inserted above into the weather
table could also be inserted from a file containing (values are separated by a tab character):

San Francisco 46 50 0.25 1994-11-27
San Francisco 43 57 0.0 1994-11-29
Hayward 37 54 \N 1994-11-29

You can read more about the copy command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here * is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date
——————————————— B o T s s
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ S
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the As clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a wHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather

WHERE city = 'San Francisco' AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
——————————————— Rt ettt S
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather

! While sErECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— -t
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. Queries that access multiple tables (or multiple instances of the same table) at one time are
called join queries. They combine rows from one table with rows from a second table, with an expression
specifying which rows are to be paired. For example, to return all the weather records together with
the location of the associated city, the database needs to compare the city column of each row of the
weather table with the name column of all rows in the cities table, and select the pairs of rows where
these values match.? This would be accomplished by the following query:

SELECT * FROM weather JOIN cities ON city = name;

city | temp_lo | temp_hi | prcp | date \ name | location
——————————————— e T e Rt s s

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

Observe two things about the result set:

¢ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

* There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

2 In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DISTINCT causes the rows to be ordered.

3 This is only a conceptual model. The join is usually performed in a more efficient manner than actually comparing each possible pair of rows, but this is invisible
to the user.

The SQL Language

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather JOIN cities ON city = name;

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather JOIN cities ON weather.city = cities.name;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this form:

SELECT *
FROM weather, cities
WHERE city = name;

This syntax pre-dates the J01N/ON syntax, which was introduced in SQL-92. The tables are simply listed in
the FroM clause, and the comparison expression is added to the WHERE clause. The results from this older
implicit syntax and the newer explicit JOIN/ON syntax are identical. But for a reader of the query, the
explicit syntax makes its meaning easier to understand: The join condition is introduced by its own key
word whereas previously the condition was mixed into the WHERE clause together with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;
city | temp_lo | temp_hi | prcp | date \ name | location
——————————————— e
Hayward \ 37 | 54 | | 1994-11-29 |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a selfjoin. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT wl.city, wl.temp_lo AS low, wl.temp_hi AS high,
w2.city, w2.temp_lo AS low, w2.temp_hi AS high
FROM weather wl JOIN weather w2
ON wl.temp_lo < w2.temp_lo AND wl.temp_hi > w2.temp_hi;

city | low | high | city | low | high
——————————————— e e e e
San Francisco | 43 | 57 | San Francisco | 46 | 50

Hayward \ 37 | 54 | San Francisco | 46 | 50

10

The SQL Language

(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w JOIN cities ¢ ON w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to com-
pute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weather WHERE temp_lo = max (temp_lo); —— WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate sep-
arately from what is happening in the outer query.

Aggregates are also very useful in combination with GRouP BY clauses. For example, we can get the
number of readings and the maximum low temperature observed in each city with:

SELECT city, count(*), max(temp_lo)
FROM weather
GROUP BY city;

city | count | max
,,,,,,,,,,,,,,, e
Hayward \ 1] 37
San Francisco | 2 | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, count (*), max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

11

The SQL Language

city | count | max
_________ +_______+_____
Hayward | 1 37
(1 row)

which gives us the same results for only the cities that have all temp_1o0 values below 40. Finally, if we
only care about cities whose names begin with “s”, we might do:

SELECT city, count(*), max(temp_lo)
FROM weather
WHERE city LIKE 'S%' -
GROUP BY city;

city | count | max
,,,,,,,,,,,,,,, S I
San Francisco | 2 | 46
(1 row)

The L1KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

Another way to select the rows that go into an aggregate computation is to use FILTER, which is a per-
aggregate option:

SELECT city, count(*) FILTER (WHERE temp_lo < 45), max (temp_lo)
FROM weather
GROUP BY city;

city | count | max
_______________ S I
Hayward \ 1 | 37
San Francisco | 1 | 46
(2 rows)

FILTER is much like WHERE, except that it removes rows only from the input of the particular aggregate
function that it is attached to. Here, the count aggregate counts only rows with temp_1lo below 45; but
the max aggregate is still applied to all rows, so it still finds the reading of 46.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature read-
ings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28";

Look at the new state of the data:

SELECT * FROM weather;

12

The SQL Language

city | temp_lo | temp_hi | prcp | date
——————————————— o
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Rt e T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form
DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and pre-
vent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT name, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
name varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities (name),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:

14

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly en-
couraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00

WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00

WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database sys-
tem, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter.
For example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit
to his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk)
before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and coMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

15

Advanced Features

WHERE name = 'Alice';
—-— etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of commIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) com-
MIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a
transaction block.

Note

Some client libraries issue BEGIN and coMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLL-
BACK TO. All the transaction's database changes between defining the savepoint and rolling back to it
are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's ac-
count, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance
WHERE name = 'Bob';

-— oops ... forget that and use Wally's account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally';

COMMIT;

balance + 100.00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

16

Advanced Features

However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg

——————————— e e
develop \ 11 | 5200 | 5020.0000000000000000
develop \ 7 4200 | 5020.0000000000000000
develop \ 9 | 4500 | 5020.0000000000000000
develop \ 8 | 6000 | 5020.0000000000000000
develop \ 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales \ 3 | 4800 | 4866.6666666666666667
sales \ 1 | 5000 | 4866.6666666666666667
sales \ 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a normal function or non-window aggregate.
The oVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY clause within ovER divides the rows into groups, or partitions, that share the
same values of the PARTITION BY expression(s). For each row, the window function is computed across
the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
row_number () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | row_number
——————————— -t
develop \ 8 | 6000 | 1
develop \ 10 | 5200 | 2
develop \ 11 | 5200 | 3
develop \ 9 | 4500 | 4
develop \ 7 4200 | 5
personnel | 2| 3900 | 1
personnel | 5 | 3500 | 2
sales \ 1| 5000 | 1
sales \ 4 | 4800 | 2
sales \ 3 4800 | 3
(10 rows)

As shown here, the row_number window function assigns sequential numbers to the rows within each
partition, in the order defined by the ORDER BY clause (with tied rows numbered in an unspecified order).
row_number needs no explicit parameter, because its behavior is entirely determined by the OVER clause.

17

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FrROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways using different oveRr clauses, but they all act
on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists
of all rows from the start of the partition up through the current row, plus any following rows that are
equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. ! Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;
salary | sum
,,,,,,,, I
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ I
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically ex-
ecute after the processing of those clauses. Also, window functions execute after non-window aggregate

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

18

Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
row_number () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having row_number less than 3 (that is, the
first two rows for each department).

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a wINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
elevation int, -— (in ft)
state char (2)
)i

CREATE TABLE non_capitals (
name text,
population real,
elevation 1int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (

19

Advanced Features

name text,
population real,
elevation int —— (in ft)

)i

CREATE TABLE capitals (
state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native PostgreSQL type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison \ 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ o
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.11 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

20

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then how to create tables, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. Lastly, we address several
aspects of importance for tuning a database.

The information is arranged so that a novice user can follow it from start to end and gain a full under-
standing of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
is presented in narrative form with topical units. Readers looking for a complete description of a particular
command are encouraged to review the Part VI.

Readers should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part I first. SQL commands are typically entered
using the PostgreSQL interactive terminal psql, but other programs that have similar functionality can
be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chap-
ters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-

minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one com-
mand can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in src/
include/pg_config_manual.h.

Key words and unquoted identifiers are case-insensitive. Therefore:

22

SQL Syntax

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F00, foo, and "foo" are considered the same by PostgreSQL, but "Foo"
and "roo" are different from these three and each other. (The folding of unquoted names to lower case
in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be folded
to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If you want
to write portable applications you are advised to always quote a particular name or never quote it.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this creates
an ambiguity with the operator «. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as

Us&"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UEscaprclause
after the string, for example:

Uu&"d!0061t!+000061" UESCAPE '"!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

4.1.2. Constants

23

SQL Syntax

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'

'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the stan-
dard.)

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E' foo'. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\E form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o = 0-7) octal byte value

\xh, \xhh (h = 0-9, A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x = 0-9, A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadec-
imal escapes, compose valid characters in the server character set encoding. A useful alternative is to
use Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then the
server will check that the character conversion is possible.

Caution

If the configuration parameter standard conforming strings is off, then PostgreSQL recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the

24

SQL Syntax

default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to off, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters escape string warn-
ing and backslash quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us'foo'. (Note that this creates an ambiguity with the operator «. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data' could be written as

Us'd\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&'\0441\043B\043E\043D"'

If a different escape character than backslash is desired, it can be specified using the UEscaptclause
after the string, for example:

U&'d!0061t!4+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard conforming strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes, since each of those must be doubled. To
allow more readable queries in such situations, PostgreSQL provides another way, called “dollar quot-
ing”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($), an optional
“tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that makes
up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

$$Dianne's horses

25

SQL Syntax

$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

S$function$
BEGIN
RETURN ($1 ~ gS[\t\r\n\v\\]sqg);
END;
S$function$

Here, the sequence gs [\t\r\n\v\\]g represents a dollar-quoted literal string [\t\r\n\v\\1, which
will be recognized when the function body is executed by PostgreSQL. But since the sequence does not
match the outer dollar quoting delimiter $functions, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagString contentStag is correct, but
$TAGSString content$tag$ is not

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when represent-
ing string constants inside other constants, as is often needed in procedural function definitions. With
single-quote syntax, each backslash in the above example would have to be written as four backslashes,
which would be reduced to two backslashes in parsing the original string constant, and then to one when
the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X' 1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string con-
stants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:
digits
digits.[digits] [e[+-]1digits]

[digits].digits[e[+-1digits]
digitse[+-]1digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant, except for underscores,
which can be used for visual grouping as described below. Note that any leading plus or minus sign is
not actually considered part of the constant; it is an operator applied to the constant.

26

SQL Syntax

These are some examples of valid numeric constants:

42

3.5

4,

.001

5e2
1.925e-3

Additionally, non-decimal integer constants are accepted in these forms:

Oxhexdigits
Oooctdigits
Obbindigits

where hexdigits is one or more hexadecimal digits (0-9, A-F), octdigits is one or more octal digits
(0-7), and bindigits is one or more binary digits (0 or 1). Hexadecimal digits and the radix prefixes
can be in upper or lower case. Note that only integers can have non-decimal forms, not numbers with
fractional parts.

These are some examples of valid non-decimal integer constants:

0b100101
0B10011001
00273
00755
0x42f
OXFFFF

For visual grouping, underscores can be inserted between digits. These have no further effect on the
value of the constant. For example:

1 500 000 000
0b10001000 00000000
0o 1 755

0xFFFF FFFF

1.618 034

Underscores are not allowed at the start or end of a numeric constant or a group of digits (that is,
immediately before or after the decimal point or the exponent marker), and more than one underscore
in a row is not allowed.

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL '1.23' -- string style
1.23::REAL —— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type

27

SQL Syntax

CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, casT (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

'string' syntax is that it does not work for array types; use :: or CasT () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax with : :
is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:
+-*/<>=~1@#% "~ & | ?
There are a few restrictions on operator names, however:

* ——and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~1@#% "~ &|?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent oper-
ators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named @, you
cannot write x*@y; you must write x* @Y to ensure that PostgreSQL reads it as two operator names
not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an oper-
ator. Details on the usage can be found at the location where the respective syntax element is described.
This section only exists to advise the existence and summarize the purposes of these characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a func-
tion definition or a prepared statement. In other contexts the dollar sign can be part of an identifier
or a dollar-quoted string constant.

* Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

28

SQL Syntax

4.

»

* Commas (,) are used in some syntactical constructs to separate the elements of a list.

* The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, ex-
cept within a string constant or quoted identifier.

* The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

* The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* The period (.) is used in numeric constants, and to separate schema, table, and column names.

1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.qg.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/
where the comment begins with /* and extends to the matching occurrence of */. These block comments

nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

1.6. Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rules imply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[] left array element selection
+ - right unary plus, unary minus
COLLATE left collation selection
AT left AT TIME ZONE, AT LOCAL
~ left exponentiation
*x /g left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined opera-
tors
BETWEEN IN LIKE ILIKE SIMILAR range containment, set membership,
string matching
<> =<=>=<> comparison operators

29

SQL Syntax

Operator/Element Associativity Description

IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS
DISTINCT FROMN, etc.

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other oper-
ator”. This is true no matter which specific operator appears inside OPERATOR () .

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; Is tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

e A constant or literal value

¢ A column reference

¢ A positional parameter reference, in the body of a function definition or prepared statement
e A subscripted expression

* A field selection expression

* An operator invocation

* A function call

* An aggregate expression

* A window function call

* A type cast

30

SQL Syntax

¢ A collation expression
¢ A scalar subquery

* An array constructor
* A row constructor

¢ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References
A column can be referenced in the form:

correlation.columnname

correlationisthe name of a table (possibly qualified with a schema name), or an alias for a table defined
by means of a FroM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. Some client libraries
also support specifying data values separately from the SQL command string, in which case parameters
are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
will be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]

31

SQL Syntax

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An im-
portant special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:
(compositecol) . *

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are two possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name (|lexpression [, expression ... 1])

For example, the following computes the square root of 2:

sqgrt (2)
The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

32

SQL Syntax

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in PostgreSQL because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 [order_by clause]) [FILTER
(WHERE filter_clause)]
aggregate_name (ALL expression [, ... 1 [order_by_clause]) [FILTER
(WHERE filter_clause)]
aggregate_name (DISTINCT expression [, ... 1 [order_by _clause]) [FILTER
(WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_ clause)]
aggregate_name ([expression [, ... 1 1) WITHIN GROUP (order_by_clause) [FILTER

(WHERE filter_clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since aLL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (£1) yields the number of input
rows in which f1 is non-null, since count ignores nulls; and count (distinct f1) yields the number of
distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order_by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

WITH vals (v) AS (VALUES (1), (3), (4),(3),(2))
SELECT array_agg (v ORDER BY v DESC) FROM vals;
array_agg

{4,3,3,2,1}
Since jsonb only keeps the last matching key, ordering of its keys can be significant:

WITH vals (k, v) AS (VALUES ('keyO','1'), ('keyl','3"), ('keyl','2"))

33

SQL Syntax

SELECT jsonb_object_agg(k, v ORDER BY v) FROM vals;
jsonb_object_agg

{"keyoll: "1", "keyl": "3"}

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ',') FROM table; —— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DISTINCT is specified with an order by clause, ORDER BY expressions can only reference columns
in the DISTINCT list. For example:

WITH vals (v) AS (VALUES (1), (3), (4), (3),(2))
SELECT array_agg (DISTINCT v ORDER BY v DESC) FROM vals;
array_agg

{4,3,2,1}

Placing orDER BY within the aggregate's regular argument list, as described so far, is used when order-
ing the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is
required, usually because the aggregate's computation is only sensible in terms of a specific ordering
of its input rows. Typical examples of ordered-set aggregates include rank and percentile calculations.
For an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order_by_clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order by clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-wITHIN GROUP
order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument expres-
sions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from the aggre-
gated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct arguments
are evaluated only once per aggregate call, not once per input row. This means that they can contain
variables only if those variables are grouped by GROUP BY; this restriction is the same as if the direct
arguments were not inside an aggregate expression at all. Direct arguments are typically used for things
like percentile fractions, which only make sense as a single value per aggregation calculation. The direct
argument list can be empty; in this case, write just () not (*). (PostgreSQL will actually accept either
spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);

34

SQL Syntax

unfiltered | filtered
____________ +__________

10 | 4
(1 row)

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.24), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|lexpression [, expression ...]1]1) [FILTER (WHERE filter_clause) |
OVER window_name

function_name (|lexpression [, expression ...]1]1) [FILTER (WHERE filter_clause) |
OVER (window_definition)

function_name (*) [FILTER (WHERE filter clause)] OVER window_name
function_name (*) [FILTER (WHERE filter clause)] OVER (window_definition)

where window_definition has the syntax

[existing_window_name]

[PARTITION BY expression [, ...] 1

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
[r .1 1]

[frame_clause]
The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame start and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW

offset FOLLOWING
UNBOUNDED FOLLOWING

and frame exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

35

SQL Syntax

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's winDow clause. Al-
ternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the wINDOW clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname ...); the latter implies copy-
ing and modifying the window definition, and will be rejected if the referenced window specification
includes a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS Or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end
is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row's
first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row), while
a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends
on the frame mode:

* In rowS mode, the offset must yield a non-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GROUPS mode, the offset again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columns it is an interval. For
example, if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1
day' PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both rRows and GrROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT
ROW. This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW

36

SQL Syntax

excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UN-
BOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, this means all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_ start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUND-
ED PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_start and
frame_end options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND
offset PRECEDING is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is
allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.67. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTITION BY x ORDER BY vy). The asterisk (*) is customarily not used for
window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used
within the function argument list.

Window function calls are permitted only in the sSELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, dou-
ble precision cannot be used this way, but the equivalent float8 can. Also, the names interval,

37

SQL Syntax

time, and timestamp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

4

The cOLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-
ators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, ¢ FROM tbl WHERE ... ORDER BY a COLLATE "C";
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';
But this is an error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.24 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

38

SQL Syntax

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,41];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,[3,41];

{{1,2},1{3,4}}
(1 row)
Since multidimensional arrays must be rectangular, inner constructors at the same level must produce

sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automat-
ically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]1]1, ARRAY[[5,6],17,811);
SELECT ARRAY[fl, f2, '{{9,10},{11,12}}"'::int[]] FROM arr;

array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

39

SQL Syntax

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word arRrAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1*2] FROM generate_series(1,5) AS a(i));

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARrAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word row, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5, 'this is a test');

The key word row is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see Sec-
tion 8.16.5). For example, if table t has columns f1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW (t.f1l, t.f2, 42) FROM t;

Note

Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . *, for instance ROW (£, 42).

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl int, f2 float, £f3 text);

40

SQL Syntax

CREATE FUNCTION getfl (mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

—— No cast needed since only one getfl () exists
SELECT getfl (ROW(1,2.5,'this is a test'));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, f2 text, f3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

—— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5, 'this is a test'));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1,2.5, 'this is a test')::mytable);
getfl

SELECT getfl (CAST(ROW (11, 'this is a test',2.5) AS myrowtype));
getfl

11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to test rows using
the standard comparison operators as described in Section 9.2, to compare one row against another as
described in Section 9.25, and to use them in connection with subqueries, as discussed in Section 9.24.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(anD/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

41

SQL Syntax

But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A caskE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing v > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 36.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the EL.SE arm would never be entered at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function de-
finition:
CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)

RETURNS text
AS

42

SQL Syntax

$S

SELECT CASE
WHEN $3 THEN UPPER(S1 || " ' || $2)
ELSE LOWER(S$1 || " ' || $2)
END;

$S

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper ('Hello', 'World', true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello', 'World');
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper (a => 'Hello', b => 'World'");
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD

(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
concat_lower_or_upper

HELLO WORLD

(1 row)

43

SQL Syntax

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
concat_lower_or_upper

HELLO WORLD

(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello', 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD

(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

44

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers, nu-
meric for possibly fractional numbers, text for character strings, date for dates, time for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i

(The numeric type can store fractional components, as would be typical of monetary amounts.)

45

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for

the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.7 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of CUR-
RENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is generating
a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval ('products_product_no_seq'),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (

46

Data Definition

product_no SERIAL,

)i
The SERIAL shorthand is discussed further in Section 8.1.4.

5.3. Identity Columns

An identity column is a special column that is generated automatically from an implicit sequence. It can
be used to generate key values.

To create an identity column, use the GENERATED ... AS IDENTITY clause in CREATE TABLE, for example:

CREATE TABLE people (
id bigint GENERATED ALWAYS AS IDENTITY,

-7

)i
or alternatively

CREATE TABLE people (
id bigint GENERATED BY DEFAULT AS IDENTITY,

-7

)
See CREATE TABLE for more details.
If an INSERT command is executed on the table with the identity column and no value is explicitly spec-

ified for the identity column, then a value generated by the implicit sequence is inserted. For example,
with the above definitions and assuming additional appropriate columns, writing

INSERT INTO people (name, address) VALUES ('A', 'foo');
INSERT INTO people (name, address) VALUES ('B', 'bar');

would generate values for the id column starting at 1 and result in the following table data:

id | name | address
____+ ______ + _________
1 | A | foo
2 | B | bar

Alternatively, the keyword DEFAULT can be specified in place of a value to explicitly request the se-
quence-generated value, like

INSERT INTO people (id, name, address) VALUES (DEFAULT, 'C', 'baz');

Similarly, the keyword DEFAULT can be used in UPDATE commands.
Thus, in many ways, an identity column behaves like a column with a default value.

The clauses ALWAYS and BY DEFAULT in the column definition determine how explicitly user-specified
values are handled in INSERT and UPDATE commands. In an INSERT command, if ALWAYS is selected, a
user-specified value is only accepted if the INSERT statement specifies OVERRIDING SYSTEM VALUE. If BY
DEFAULT is selected, then the user-specified value takes precedence. Thus, using BY DEFAULT results in a
behavior more similar to default values, where the default value can be overridden by an explicit value,
whereas ALWAYS provides some more protection against accidentally inserting an explicit value.

The data type of an identity column must be one of the data types supported by sequences. (See CREATE
SEQUENCE.) The properties of the associated sequence may be specified when creating an identity
column (see CREATE TABLE) or changed afterwards (see ALTER TABLE).

An identity column is automatically marked as NOT NULL. An identity column, however, does not guar-
antee uniqueness. (A sequence normally returns unique values, but a sequence could be reset, or values

47

Data Definition

could be inserted manually into the identity column, as discussed above.) Uniqueness would need to be
enforced using a PRIMARY KEY Or UNIQUE constraint.

In table inheritance hierarchies, identity columns and their properties in a child table are independent of
those in its parent tables. A child table does not inherit identity columns or their properties automatically
from the parent. During INSERT or UPDATE, a column is treated as an identity column if that column is
an identity column in the table named in the statement, and the corresponding identity properties are
applied.

Partitions inherit identity columns from the partitioned table. They cannot have their own identity
columns. The properties of a given identity column are consistent across all the partitions in the parti-
tion hierarchy.

5.4. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage as if it were
a normal column. A virtual generated column occupies no storage and is computed when it is read. Thus,
a virtual generated column is similar to a view and a stored generated column is similar to a materialized
view (except that it is always updated automatically).

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for example:

CREATE TABLE people (
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm / 2.54)
)i
A generated column is by default of the virtual kind. Use the keywords VIRTUAL or STORED to make the
choice explicit. See CREATE TABLE for more details.

A generated column cannot be written to directly. In INSERT or UPDATE commands, a value cannot be
specified for a generated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default
is evaluated once when the row is first inserted if no other value was provided; a generated column
is updated whenever the row changes and cannot be overridden. A column default may not refer to
other columns of the table; a generation expression would normally do so. A column default can use
volatile functions, for example random () or functions referring to the current time; this is not allowed
for generated columns.

Several restrictions apply to the definition of generated columns and tables involving generated columns:

* The generation expression can only use immutable functions and cannot use subqueries or refer-
ence anything other than the current row in any way.

* A generation expression cannot reference another generated column.
* A generation expression cannot reference a system column, except tableoid.

* A virtual generated column cannot have a user-defined type, and the generation expression of a vir-
tual generated column must not reference user-defined functions or types, that is, it can only use
built-in functions or types. This applies also indirectly, such as for functions or types that underlie
operators or casts. (This restriction does not exist for stored generated columns.)

* A generated column cannot have a column default or an identity definition.
* A generated column cannot be part of a partition key.

* Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

48

Data Definition

¢ For inheritance and partitioning:

» If a parent column is a generated column, its child column must also be a generated column of
the same kind (stored or virtual); however, the child column can have a different generation ex-
pression.

For stored generated columns, the generation expression that is actually applied during in-

sert or update of a row is the one associated with the table that the row is physically in. (This

is unlike the behavior for column defaults: for those, the default value associated with the table
named in the query applies.) For virtual generated columns, the generation expression of the ta-
ble named in the query applies when a table is read.

» If a parent column is not a generated column, its child column must not be generated either.

* For inherited tables, if you write a child column definition without any GENERATED clause in CRE-
ATE TABLE ... INHERITS, then its GENERATED clause will automatically be copied from the par-
ent. ALTER TABLE ... INHERIT will insist that parent and child columns already match as to
generation status, but it will not require their generation expressions to match.

* Similarly for partitioned tables, if you write a child column definition without any GENERATED
clause in CREATE TABLE ... PARTITION OF, then its GENERATED clause will automatically be
copied from the parent. ALTER TABLE ... ATTACH PARTITION will insist that parent and child
columns already match as to generation status, but it will not require their generation expres-
sions to match.

* In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns. If they do not all have the same generation expression,
then the desired expression for the child must be specified explicitly.

Additional considerations apply to the use of generated columns.

* Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

For virtual generated columns, this is only fully secure if the generation expression uses only
leakproof functions (see CREATE FUNCTION), but this is not enforced by the system.

» Privileges of functions used in generation expressions are checked when the expression is actual-
ly executed, on write or read respectively, as if the generation expression had been called directly
from the query using the generated column. The user of a generated column must have permissions
to call all functions used by the generation expression. Functions in the generation expression are
executed with the privileges of the user executing the query or the function owner, depending on
whether the functions are defined as SECURITY INVOKER Or SECURITY DEFINER.

* Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

* Generated columns are allowed to be replicated during logical replication according to the CREATE
PUBLICATION parameter publish_generated_columns or by including them in the column list of
the CREATE PUBLICATION command. This is currently only supported for stored generated columns.
See Section 29.6 for details.

5.5. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

49

Data Definition

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would vi-
olate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.5.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word conNSTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could
also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,

50

Data Definition

)i

CHECK (discounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (

)i

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

)i

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and restore to fail. The restore could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a continu-
ously-maintained consistency guarantee, a custom trigger can be used to implement that. (This
approach avoids the dump/restore problem because pg dump does not reinstall triggers until after
restoring data, so that the check will not be enforced during a dump/restore.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow

51

Data Definition

that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and restore to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.5.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i
An explicit constraint name can also be specified, for example:

CREATE TABLE products (
product_no integer NOT NULL,
name text CONSTRAINT products_name_not_null NOT NULL,
price numeric

)i

A not-null constraint is usually written as a column constraint. The syntax for writing it as a table con-
straint is

CREATE TABLE products (
product_no integer,
name text,
price numeric,

NOT NULL product_no,
NOT NULL name
)

But this syntax is not standard and mainly intended for use by pg dump.

A not-null constraint is functionally equivalent to creating a check constraint CHECK (column_name IS
NOT NULL), but in PostgreSQL creating an explicit not-null constraint is more efficient.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.
However, a column can have at most one explicit not-null constraint.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,

52

Data Definition

price numeric NULL
)i

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

5.5.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric
)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i
This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values
of all of the columns included in the constraint are equal. By default, two null values are not considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to store
duplicate rows that contain a null value in at least one of the constrained columns. This behavior can be
changed by adding the clause NULLS NOT DISTINCT, like

53

Data Definition

CREATE TABLE products (
product_no integer UNIQUE NULLS NOT DISTINCT,
name text,
price numeric

)i
or

CREATE TABLE products (

product_no integer,

name text,

price numeric,

UNIQUE NULLS NOT DISTINCT (product_no)
)i

The default behavior can be specified explicitly using NULLS DISTINCT. The default null treatment in
unique constraints is implementation-defined according to the SQL standard, and other implementations
have a different behavior. So be careful when developing applications that are intended to be portable.

5.5.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique constraints, which
combined with not-null constraints are functionally almost the same thing, but only one can be identified
as the primary key.) Relational database theory dictates that every table must have a primary key. This
rule is not enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.5.5. Foreign Keys

54

Data Definition

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (

product_no integer PRIMARY KEY,

name text,

price numeric
)i
Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write

CREATE TABLE tree (
node_id integer PRIMARY KEY,
parent_id integer REFERENCES tree,
name text,

55

Data Definition

)i

A top-level node would have NULL parent_id, while non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product
* Delete the orders as well
¢ Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,

56

Data Definition

PRIMARY KEY (product_no, order_id)
)i

The default oN DELETE action is ON DELETE NO ACTION; this does not need to be specified. This means
that the deletion in the referenced table is allowed to proceed. But the foreign-key constraint is still
required to be satisfied, so this operation will usually result in an error. But checking of foreign-key
constraints can also be deferred to later in the transaction (not covered in this chapter). In that case, the
NO ACTION setting would allow other commands to “fix” the situation before the constraint is checked,
for example by inserting another suitable row into the referenced table or by deleting the now-dangling
rows from the referencing table.

RESTRICT is a stricter setting than NO ACTION. It prevents deletion of a referenced row. RESTRICT does
not allow the check to be deferred until later in the transaction.

CASCADE specifies that when a referenced row is deleted, row(s) referencing it should be automatically
deleted as well.

There are two other options: SET NULL and SET DEFAULT. These cause the referencing column(s) in the
referencing row(s) to be set to nulls or their default values, respectively, when the referenced row is
deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key constraint, the operation
will fail.

The appropriate choice of oN DELETE action depends on what kinds of objects the related tables rep-
resent. When the referencing table represents something that is a component of what is represented
by the referenced table and cannot exist independently, then cascape could be appropriate. If the two
tables represent independent objects, then RESTRICT or NO ACTION is more appropriate; an application
that actually wants to delete both objects would then have to be explicit about this and run two delete
commands. In the above example, order items are part of an order, and it is convenient if they are delet-
ed automatically if an order is deleted. But products and orders are different things, and so making a
deletion of a product automatically cause the deletion of some order items could be considered problem-
atic. The actions SET NULL or SET DEFAULT can be appropriate if a foreign-key relationship represents
optional information. For example, if the products table contained a reference to a product manager,
and the product manager entry gets deleted, then setting the product's product manager to null or a
default might be useful.

The actions SET NULL and SET DEFAULT can take a column list to specify which columns to set. Normally,
all columns of the foreign-key constraint are set; setting only a subset is useful in some special cases.
Consider the following example:

CREATE TABLE tenants (
tenant_id integer PRIMARY KEY
)i

CREATE TABLE users (
tenant_id integer REFERENCES tenants ON DELETE CASCADE,
user_id integer NOT NULL,
PRIMARY KEY (tenant_id, user_id)

)

CREATE TABLE posts (

tenant_id integer REFERENCES tenants ON DELETE CASCADE,

post_id integer NOT NULL,

author_id integer,

PRIMARY KEY (tenant_id, post_id),

FOREIGN KEY (tenant_id, author_id) REFERENCES users ON DELETE SET NULL (author_id)
)

Without the specification of the column, the foreign key would also set the column tenant_id to null,
but that column is still required as part of the primary key.

57

Data Definition

Analogous to oN DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same, except that column lists cannot be specified for SET NULL
and SET DEFAULT. In this case, CASCADE means that the updated values of the referenced column(s)
should be copied into the referencing row(s). There is also a noticeable difference between ON UPDATE
NO ACTION (the default) and oN UPDATE RESTRICT. The former will allow the update to proceed and
the foreign-key constraint will be checked against the state after the update. The latter will prevent the
update to run even if the state after the update would still satisfy the constraint. This prevents updating
a referenced row to a value that is distinct but compares as equal (for example, a character string with
a different case variant, if a character string type with a case-insensitive collation is used).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint, or are
columns from a non-partial unique index. This means that the referenced columns always have an index
to allow efficient lookups on whether a referencing row has a match. Since a DELETE of a row from the
referenced table or an UPDATE of a referenced column will require a scan of the referencing table for
rows matching the old value, it is often a good idea to index the referencing columns too. Because this
is not always needed, and there are many choices available on how to index, the declaration of a foreign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.5.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.6. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from partitioned tables (see Section 5.12) or inheritance hierarchies (see Section 5.11), since without
it, it's difficult to tell which individual table a row came from. The tableoid can be joined against
the oid column of pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

58

Data Definition

cmin
The command identifier (starting at zero) within the inserting transaction.

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by vacuum
FULL. Therefore ctid is useless as a long-term row identifier. A primary key should be used to identify
logical rows.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 24
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.7. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

* Remove constraints

* Change default values

¢ Change column data types
¢ Rename columns

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.7.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

59

Data Definition

Tip
Adding a column with a constant default value does not require each row of the table to be updated
when the ALTER TABLE statement is executed. Instead, the default value will be returned the next

time the row is accessed, and applied when the table is rewritten, making the ALTER TABLE very
fast even on large tables.

If the default value is volatile (e.g., clock_timestamp ()) each row will need to be updated with
the value calculated at the time ALTER TABLE is executed. To avoid a potentially lengthy update
operation, particularly if you intend to fill the column with mostly nondefault values anyway, it
may be preferable to add the column with no default, insert the correct values using UPDATE, and
then add any desired default as described below.

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the app will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.7.2. Removing a Column
To remove a column, use a command like:
ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by
adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.15 for a description of the general mechanism behind this.

5.7.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which is normally not written as a table constraint, this special syntax is
available:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

This command silently does nothing if the column already has a not-null constraint.

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.
5.7.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

60

Data Definition

As with dropping a column, you need to add cascaADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

Simplified syntax is available to drop a not-null constraint:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;
This mirrors the sET NOT NULL syntax for adding a not-null constraint. This command will silently do
nothing if the column does not have a not-null constraint. (Recall that a column can have at most one
not-null constraint, so it is never ambiguous which constraint this command acts on.)
5.7.5. Changing a Column's Default Value
To set a new default for a column, use a command like:
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.

5.7.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a UsING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising re-
sults. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.7.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.7.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.8. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIG—
GER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET, ALTER SYSTEM, and MAINTATIN. The privileges
applicable to a particular object vary depending on the object's type (table, function, etc.). More detail

61

Data Definition

about the meanings of these privileges appears below. The following sections and chapters will also
show you how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 21.3.)

An object can be assigned to a new owner with an ATLTER command of the appropriate kind for the object,
for example

ALTER TABLE table _name OWNER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the
object (or inherit the privileges of the owning role) and able to SET ROLE to the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing A1L in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name pUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 21.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of a table, view, materialized view, or other
table-like object. Also allows use of copy TO. This privilege is also needed to reference existing column
values in UPDATE, DELETE, or MERGE. For sequences, this privilege also allows use of the currval
function. For large objects, this privilege allows the object to be read.

INSERT

Allows INSERT of a new row into a table, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the INSERT command (other columns will therefore
receive default values). Also allows use of Copy FROM.

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR UPDATE
and SELECT ... FOR SHARE also require this privilege on at least one column, in addition to the
SELECT privilege. For sequences, this privilege allows use of the nextval and setval functions. For
large objects, this privilege allows writing or truncating the object.

62

Data Definition

DELETE

Allows DELETE of a row from a table, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows to
delete.)

TRUNCATE

Allows TRUNCATE on a table.

REFERENCES

Allows creation of a foreign key constraint referencing a table, or specific column(s) of a table.

TRIGGER

Allows creation of a trigger on a table, view, etc.

CREATE

For databases, allows new schemas and publications to be created within the database, and allows
trusted extensions to be installed within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.

CONNECT
Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY

Allows temporary tables to be created while using the database.

EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on top
of the function. This is the only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, allows use of the language for the creation of functions in that language.
This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects' own priv-
ilege requirements are also met). Essentially this allows the grantee to “look up” objects within the
schema. Without this permission, it is still possible to see the object names, e.g., by querying system
catalogs. Also, after revoking this permission, existing sessions might have statements that have
previously performed this lookup, so this is not a completely secure way to prevent object access.

For sequences, allows use of the currval and nextval functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control all “usage” of the type, such as values of
the type appearing in queries. It only prevents objects from being created that depend on the type.
The main purpose of this privilege is controlling which users can create dependencies on a type,
which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

63

Data Definition

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

SET

Allows a server configuration parameter to be set to a new value within the current session. (While
this privilege can be granted on any parameter, it is meaningless except for parameters that would
normally require superuser privilege to set.)

ALTER SYSTEM

Allows a server configuration parameter to be configured to a new value using the ALTER SYSTEM
command.

MAINTAIN

Allows VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX, LOCK TABLE, and database
object statistics manipulation functions (see Table 9.105) on a relation.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on some types of objects to puBLIC by default when the objects are cre-
ated. No privileges are granted to PUBLIC by default on tables, table columns, sequences, foreign data
wrappers, foreign servers, large objects, schemas, tablespaces, or configuration parameters. For other
types of objects, the default privileges granted to PUBLIC are as follows: CONNECT and TEMPORARY (create
temporary tables) privileges for databases; EXECUTE privilege for functions and procedures; and USAGE
privilege for languages and data types (including domains). The object owner can, of course, REVOKE both
default and expressly granted privileges. (For maximum security, issue the REVOKE in the same transac-
tion that creates the object; then there is no window in which another user can use the object.) Also,
these default privilege settings can be overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL values. You
will see these letters in the output of the psql commands listed below, or when looking at ACL columns
of system catalogs.

Table 5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and table-like
objects), table column

INSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES x TABLE, table column

TRIGGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTION, PROCEDURE

USAGE U DOMAIN, FOREIGN DATA WRAPPER, FOREIGN SERVER,
LANGUAGE, SCHEMA, SEQUENCE, TYPE

SET s PARAMETER

ALTER SYSTEM A PARAMETER

MAINTAIN m TABLE

64

Data Definition

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psql command that can be used to examine privilege settings for each object

type.

Table 5.2. Summary of Access Privileges

Object Type All Privileges Default pUBLIC psdl Command
Privileges

DATABASE CTc Tc \1

DOMAIN U U \dD+

FUNCTION Or PROCEDURE X X \df+

FOREIGN DATA WRAPPER U none \dew+

FOREIGN SERVER U none \des+

LANGUAGE U U \dL+

LARGE OBJECT rw none \d1l+

PARAMETER sA none \dconfig+

SCHEMA ucC none \dn+

SEQUENCE rwU none \dp

TABLE (and table-like objects) arwdDxtm none \dp

Table column arwx none \dp

TABLESPACE C none \db+

TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as a list of aclitem entries,
each having the format:

grantee=privilege—-abbreviation[*].../grantor

Each aclitem lists all the permissions of one grantee that have been granted by a particular grantor.
Specific privileges are represented by one-letter abbreviations from Table 5.1, with * appended if the
privilege was granted with grant option. For example, calvin=r*w/hobbes specifies that the role calvin
has the privilege SELECT (r) with grant option (*) as well as the non-grantable privilege UPDATE (w), both
granted by the role hobbes. If calvin also has some privileges on the same object granted by a different
grantor, those would appear as a separate aclitem entry. An empty grantee field in an aclitem stands
for pUBLIC.

As an example, suppose that user miriam creates table mytable and does:

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (coll), UPDATE (coll) ON mytable TO miriam_rw;

Then psql's \dp command would show:

=> \dp mytable
Access privileges

Schema | Name | Type | Access privileges \ Column privileges | Policies
———————— —————————————
public | mytable | table | miriam=arwdDxtm/miriam+| coll: + |
\ \ | =r/miriam + | miriam_rw=rw/miriam |
\ \ | admin=arw/miriam |
(1 row)

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all

65

Data Definition

privileges for the owner, and can include some privileges for puBLIC depending on the object type, as
explained above. The first GRANT or REVOKE on an object will instantiate the default privileges (producing,
for example, miriam=arwdDxt /miriam) and then modify them per the specified request. Similarly, entries
are shown in “Column privileges” only for columns with nondefault privileges. (Note: for this purpose,
“default privileges” always means the built-in default privileges for the object's type. An object whose
privileges have been affected by an ALTER DEFAULT PRIVILEGES command will always be shown with
an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

The “Access privileges” column shows (none) when the object's privileges entry is non-null but empty.
This means that no privileges are granted at all, even to the object's owner — a rare situation. (The
owner still has implicit grant options in this case, and so could re-grant her own privileges; but she has
none at the moment.)

5.9. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or func-
tions coming from the user's query. (The only exceptions to this rule are 1eakproof functions, which are
guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the row-
security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when access-
ing a table. Table owners normally bypass row security as well, though a table owner can choose to be
subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using either or (for permissive policies,
which are the default) or using aAND (for restrictive policies). The OrR behavior is similar to the rule that

66

Data Definition

a given role has the privileges of all roles that they are a member of. Permissive vs. restrictive policies
are discussed further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the con-
straint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, Or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name pUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a sELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

—— Simple passwd-file based example
CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL

)i

CREATE ROLE admin; -- Administrator

67

Data Definition

CREATE ROLE bob; —— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES

('admin', 'xxx"',0,0, '"Admin', '111-222-3333"',null, '/root', '/bin/dash"');
INSERT INTO passwd VALUES

('bob', 'xxx',1,1, 'Bob', '123-456-7890"',null, ' /home/bob', ' /bin/zsh'");
INSERT INTO passwd VALUES

('alice', "xxx',2,1,"'Alice','098-765-4321"',null, '/home/alice', '/bin/zsh'");

—-— Be sure to enable row-level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies

—— Administrator can see all rows and add any rows

CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—— Normal users can view all rows

CREATE POLICY all_view ON passwd FOR SELECT USING (true);

—-— Normal users can update their own records, but

—— limit which shells a normal user is allowed to set

CREATE POLICY user_mod ON passwd FOR UPDATE

USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND

shell IN ('/bin/bash', '/bin/sh','/bin/dash', '/bin/zsh','/bin/tcsh')
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—-— admin can view all rows and fields
postgres=> set role admin;

SET
postgres=> table passwd;

user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir

shell

——————————— e s st e s S et it B
+ ___________

admin | xxx \ 0 | 0 | Admin | 111-222-3333 | | /root

| /bin/dash

bob | xxx \ 1 | 1 | Bob | 123-456-7890 | | /home/bob

| /bin/zsh

alice | xxx \ 2 1 | Alice | 098-765-4321 | | /home/alice
| /bin/zsh

(3 rows)

—— Test what Alice is able to do

68

Data Definition

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for table passwd

postgres=> select user_name, real_name, home_phone,extra_info,home_dir, shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir \ shell
——————————— Rttt e tt E e it
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for table passwd
—— Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE O
postgres=> update passwd set shell = '/bin/xx';

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for table passwd

postgres=> insert into passwd (user_name) values ('xxx');

ERROR: permission denied for table passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple poli-
cies are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add a restrictive policy to require the administra-
tor to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
current_user

=> select inet_client_addr();
inet_client_addr

127.0.0.1

(1 row)

=> TABLE passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
shell

69

Data Definition

(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE O

Referential integrity checks, such as unique or primary key constraints and foreign key references, al-
ways bypass row security to ensure that data integrity is maintained. Care must be taken when devel-
oping schemas and row level policies to avoid “covert channel” leaks of information through such ref-
erential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to of£. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow informa-
tion leakage if care is not taken. As an example, consider the following table design:

—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL) ;

INSERT INTO groups VALUES

(1, "low'"),
(2, 'medium'),
(5, 'high'");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

—— definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO users VALUES
('alice', 5),
("bob', 2),
('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO information VALUES
('barely secret', 1),
('"slightly secret', 2),
('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

—-— a row should be visible to/updatable by users whose security group_id is

70

Data Definition

—-— greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT

USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE

USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';

UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTSs in row security policies. However, that requires granting upDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the ref-
erenced table could pose a performance problem, especially if updates of it are frequent. Another solu-
tion, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock on
the referenced table when updating it, so that no concurrent transactions could be examining old row
values. Or one could just wait for all concurrent transactions to end after committing an update of the
referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.10. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. Within one schema, two

71

Data Definition

objects of the same type cannot have the same name. Furthermore, tables, sequences, indexes, views,
materialized views, and foreign tables share the same namespace, so that, for example, an index and a
table must have different names if they are in the same schema. The same object name can be used in
different schemas without conflict; for example, both schemal and myschema can contain tables named
mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in any of the
schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
* To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.10.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it's empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.15 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.10.6 for how this can be useful.

72

Data Definition

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.10.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.10.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to search_path effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects
in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

73

Data Definition

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.27 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.10.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. By default, everyone has that privilege on the
schema public. To allow users to make use of the objects in a schema, additional privileges might need
to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. In databases upgraded from PostgreSQL 14 or earlier, everyone has
that privilege on the schema public. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.10.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.10.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a
secure schema usage pattern, users wishing to securely query that database would take protective action

74

Data Definition

at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing schemas that are writable by non-superusers from search_path.
There are a few usage patterns easily supported by the default configuration:

* Constrain ordinary users to user-private schemas. To implement this pattern, first ensure that no
schemas have public CREATE privileges. Then, for every user needing to create non-temporary ob-
jects, create a schema with the same name as that user, for example CREATE SCHEMA alice AU-
THORIZATION alice. (Recall that the default search path starts with suser, which resolves to the
user name. Therefore, if each user has a separate schema, they access their own schemas by de-
fault.) This pattern is a secure schema usage pattern unless an untrusted user is the database own-
er or has been granted ADMIN OPTION on a relevant role, in which case no secure schema usage
pattern exists.

In PostgreSQL 15 and later, the default configuration supports this usage pattern. In prior ver-
sions, or when using a database that has been upgraded from a prior version, you will need to re-
move the public CREATE privilege from the public schema (issue REVOKE CREATE ON SCHEMA pub-
lic FROM PUBLIC). Then consider auditing the public schema for objects named like objects in
schema pg_catalog.

* Remove the public schema from the default search path, by modifying postgresqgl.conf or by is-
suing ALTER ROLE ALL SET search_path = "$user". Then, grant privileges to create in the public
schema. Only qualified names will choose public schema objects. While qualified table references
are fine, calls to functions in the public schema will be unsafe or unreliable. If you create functions
or extensions in the public schema, use the first pattern instead. Otherwise, like the first pattern,
this is secure unless an untrusted user is the database owner or has been granted ADMIN OPTION on
a relevant role.

¢ Keep the default search path, and grant privileges to create in the public schema. All users access
the public schema implicitly. This simulates the situation where schemas are not available at all,
giving a smooth transition from the non-schema-aware world. However, this is never a secure pat-
tern. It is acceptable only when the database has a single user or a few mutually-trusting users. In
databases upgraded from PostgreSQL 14 or earlier, this is the default.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.10.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consid-
er qualified names to really consist of user_name.table_name. This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.11. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

75

Data Definition

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int -— 1in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison \ 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ e
Las Vegas | 2174
Mariposa | 1953

Here the onLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the oNLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are in-
cluded:

SELECT name, elevation
FROM cities*
WHERE elevation > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still sup-
ported for compatibility with older releases where the default could be changed.

76

Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ SO
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison \ 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities ¢, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname \ name | elevation
__________ +___________+___________
cities | Las Vegas | 2174

cities | Mariposa | 1953

capitals | Madison \ 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the

77

Data Definition

new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.12).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the cAscapE
option (see Section 5.15).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as well,
when they are accessed through cities. This preserves the appearance that the data is (also) in the
parent table. But the capitals table could not be updated directly without an additional grant. In a
similar way, the parent table's row security policies (see Section 5.9) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.13) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.11.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most vari-
ants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child
tables and support the oNLY notation to exclude them. The majority of commands that do database main-
tenance and tuning (e.g., REINDEX) only work on individual, physical tables and do not support recursing
over inheritance hierarchies. However, both vAcuuM and ANALYZE commands default to including child
tables and the oNLY notation is supported to allow them to be excluded. The respective behavior of each
individual command is documented in its reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

* If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals table
from having rows with names duplicating rows in cities. And those duplicate rows would by de-
fault show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

* Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

* Specifying that another table's column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

78

Data Definition

Some functionality not implemented for inheritance hierarchies is implemented for declarative parti-
tioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful
for your application.

5.12. Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement parti-
tioning as part of your database design.

5.12.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. Par-
titioning effectively substitutes for the upper tree levels of indexes, making it more likely that the
heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by using a sequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

* Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern
is accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTITION, is far faster than a bulk operation. These commands also
entirely avoid the vAcuuM overhead caused by a bulk DELETE.

¢ Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if one
partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10 belongs
to the second partition not the first.

List Partitioning

The table is partitioned by explicitly listing which key value(s) appear in each partition.

Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
as inheritance and UNION ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.12.2. Declarative Partitioning

PostgreSQL allows you to declare that a table is divided into partitions. The table that is divided is
referred to as a partitioned table. The declaration includes the partitioning method as described above,
plus a list of columns or expressions to be used as the partition key.

79

Data Definition

The partitioned table itself is a “virtual” table having no storage of its own. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table
will be routed to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of a row will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own index-
es, constraints and default values, distinct from those of other partitions. See CREATE TABLE for more
details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from
a partitioned table turning it into a standalone table; this can simplify and speed up many maintenance
processes. See ALTER TABLE to learn more about the ATTACH PARTITION and DETACH PARTITION Sub-
commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.12.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data. In this situation we can use partitioning to help us
meet all of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Create the measurement table as a partitioned table by specifying the PARTITION BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition

key.

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

) PARTITION BY RANGE (logdate);

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at a time. So the commands might look like:

80

Data Definition

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01");

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
FOR VALUES FROM ('2006-03-01') TO ('2006-04-01");

CREATE TABLE measurement_y2007ml1l PARTITION OF measurement
FOR VALUES FROM ('2007-11-01') TO ('2007-12-01");

CREATE TABLE measurement_y2007ml12 PARTITION OF measurement
FOR VALUES FROM ('2007-12-01') TO ('2008-01-01")
TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
FOR VALUES FROM ('2008-01-01') TO ('2008-02-01")
WITH (parallel_workers = 4)
TABLESPACE fasttablespace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTITION BY clause in the commands
used to create individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01")
PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement that is
mapped to measurement_y2006m02 (or data that is directly inserted into measurement_y2006m02,
which is allowed provided its partition constraint is satisfied) will be further redirected to one of its
partitions based on the peaktemp column. The partition key specified may overlap with the parent's
partition key, although care should be taken when specifying the bounds of a sub-partition such that
the set of data it accepts constitutes a subset of what the partition's own bounds allow; the system
does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It is not necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual data is in child indexes on the individual partition tables.

CREATE INDEX ON measurement (logdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in post-
gresql.conf. If it is, queries will not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.12.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise

81

Data Definition

painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSIVE lock on the parent
table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right. This has two forms:

ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02 CONCURRENTLY;

These allow further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports. The first
form of the command requires an ACCESS EXCLUSIVE lock on the parent table. Adding the CONCURRENTLY
qualifier as in the second form allows the detach operation to require only SHARE UPDATE EXCLUSIVE
lock on the parent table, but see ALTER TABLE ... DETACH PARTITION for details on the restrictions.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 PARTITION OF measurement
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01")
TABLESPACE fasttablespace;

As an alternative to creating a new partition, it is sometimes more convenient to create a new table
separate from the partition structure and attach it as a partition later. This allows new data to be loaded,
checked, and transformed prior to it appearing in the partitioned table. Moreover, the ATTACH PARTITION
operation requires only a SHARE UPDATE EXCLUSIVE lock on the partitioned table rather than the AcCESS
EXCLUSIVE lock required by CREATE TABLE ... PARTITION OF, so it is more friendly to concurrent
operations on the partitioned table; see ALTER TABLE ... ATTACH PARTITION for additional details. The
CREATE TABLE ... LIKE option can be helpful to avoid tediously repeating the parent table's definition;
for example:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008mO02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"');

\copy measurement_y2008m02 from 'measurement_y2008m02"'
—-— possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01");

Note that when running the ATTACH PARTITION command, the table will be scanned to validate the par-
tition constraint while holding an ACCESS EXCLUSIVE lock on that partition. As shown above, it is rec-
ommended to avoid this scan by creating a CHECK constraint matching the expected partition constraint
on the table prior to attaching it. Once the ATTACH PARTITION is complete, it is recommended to drop
the now-redundant CHECK constraint. If the table being attached is itself a partitioned table, then each
of its sub-partitions will be recursively locked and scanned until either a suitable CHECK constraint is
encountered or the leaf partitions are reached.

Similarly, if the partitioned table has a DEFAULT partition, it is recommended to create a CHECK constraint
which excludes the to-be-attached partition's constraint. If this is not done, the DEFAULT partition will

82

Data Definition

be scanned to verify that it contains no records which should be located in the partition being attached.
This operation will be performed whilst holding an ACCESS EXCLUSIVE lock on the DEFAULT partition. If
the DEFAULT partition is itself a partitioned table, then each of its partitions will be recursively checked
in the same way as the table being attached, as mentioned above.

As mentioned earlier, it is possible to create indexes on partitioned tables so that they are applied auto-
matically to the entire hierarchy. This can be very convenient as not only will all existing partitions be
indexed, but any future partitions will be as well. However, one limitation when creating new indexes
on partitioned tables is that it is not possible to use the CONCURRENTLY qualifier, which could lead to long
lock times. To avoid this, you can use CREATE INDEX ON ONLY the partitioned table, which creates the
new index marked as invalid, preventing automatic application to existing partitions. Instead, indexes
can then be created individually on each partition using CONCURRENTLY and attached to the partitioned
index on the parent using ALTER INDEX ... ATTACH PARTITION. Once indexes for all the partitions are
attached to the parent index, the parent index will be marked valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX CONCURRENTLY measurement_usls_200602_idx
ON measurement_y2006m02 (unitsales);

ALTER INDEX measurement_usls_idx
ATTACH PARTITION measurement_usls_200602_idx;

This technique can be used with UNIQUE and PRIMARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;

5.12.2.3. Limitations
The following limitations apply to partitioned tables:

* To create a unique or primary key constraint on a partitioned table, the partition keys must not in-
clude any expressions or function calls and the constraint's columns must include all of the parti-
tion key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicates in different partitions.

* Similarly an exclusion constraint must include all the partition key columns. Furthermore the con-
straint must compare those columns for equality (not e.g. s&). Again, this limitation stems from not
being able to enforce cross-partition restrictions. The constraint may include additional columns
that aren't part of the partition key, and it may compare those with any operators you like.

* BEFORE ROW triggers on INSERT cannot change which partition is the final destination for a new row.

* Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is tem-
porary. When using temporary relations, all members of the partition tree have to be from the same
session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables or
their partitions, as discussed below. Notably, a partition cannot have any parents other than the parti-
tioned table it is a partition of, nor can a table inherit from both a partitioned table and a regular table.
That means partitioned tables and their partitions never share an inheritance hierarchy with regular
tables.

83

Data Definition

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, tableoid and all the normal rules of inheritance apply as described in Section 5.11, with a
few exceptions:

Partitions cannot have columns that are not present in the parent. It is not possible to specify
columns when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... AT-
TACH PARTITION only if their columns exactly match the parent.

Both cHECK and NOT NULL constraints of a partitioned table are always inherited by all its parti-
tions; it is not allowed to create NO INHERIT constraints of those types. You cannot drop a con-
straint of those types if the same constraint is present in the parent table.

Using oNLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using oNLY will result in an error for any constraints other
than UNIQUE and PRIMARY KEY. Instead, constraints on the partitions themselves can be added and
(if they are not present in the parent table) dropped.

As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.12.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some cir-
cumstances where a more flexible approach may be useful. Partitioning can be implemented using table
inheritance, which allows for several features not supported by declarative partitioning, such as:

For declarative partitioning, partitions must have exactly the same set of columns as the parti-
tioned table, whereas with table inheritance, child tables may have extra columns not present in
the parent.

Table inheritance allows for multiple inheritance.

Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint ex-
clusion is unable to prune child tables effectively, query performance might be poor.)

5.12.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “root” table, from which all of the “child” tables will inherit. This table will contain no

data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For
our example, the root table is the measurement table as originally defined:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

. Create several “child” tables that each inherit from the root table. Normally, these tables will not add

any columns to the set inherited from the root. Just as with declarative partitioning, these tables are
in every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007ml1l1 () INHERITS (measurement);
CREATE TABLE measurement_y2007ml12 () INHERITS (measurement);

84

Data Definition

CREATE TABLE measurement_y2008m01 () INHERITS (measurement);
. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (
CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01"')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
) INHERITS (measurement);
. For each child table, create an index on the key column(s), as well as any other indexes you might
want.

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml12 (logdate);

CREATE INDEX measurement_y2008m0l1_logdate ON measurement_y2008m0l1 (logdate);

. We want our application to be able to say INSERT INTO measurement ... and have the data be redi-
rected into the appropriate child table. We can arrange that by attaching a suitable trigger function to
the root table. If data will be added only to the latest child, we can use a very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
RETURN NULL;

END;

$S

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

85

Data Definition

BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always inserts into the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $3
BEGIN
IF (NEW.logdate >= DATE '2006-02-01"' AND
NEW.logdate < DATE '2006-03-01"') THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.*);
ELSIF (NEW.logdate >= DATE '2006-03-01"' AND
NEW.logdate < DATE '2006-04-01"') THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE '2008-01-01"' AND
NEW.logdate < DATE '2008-02-01"') THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger ()
function!';
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsqgl;

The trigger definition is the same as before. Note that each 1r test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of a trigger, on the root table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01'" AND logdate < DATE '2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2008-01-01"'" AND logdate < DATE '2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.*);

86

Data Definition

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use copy to insert data, you'll need to copy into
the correct child table rather than directly into the root. copy does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the root table instead.

6. Ensure that the constraint exclusion configuration parameter is not disabled in postgresqgl.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.12.3.2. Maintenance for Inheritance Partitioning
To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its
own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01")
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');
\copy measurement_y2008m02 from 'measurement_y2008m02"'
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.12.3.3. Caveats
The following caveats apply to partitioning implemented using inheritance:

* There is no automatic way to verify that all of the cHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

* Indexes and foreign key constraints apply to single tables and not to their inheritance children,
hence they have some caveats to be aware of.

* The schemes shown here assume that the values of a row's key column(s) never change, or at least
do not change enough to require it to move to another partition. An UPDATE that attempts to do that
will fail because of the CHECK constraints. If you need to handle such cases, you can put suitable up-
date triggers on the child tables, but it makes management of the structure much more complicat-
ed.

87

Data Definition

* Manual vacuuM and ANALYZE commands will automatically process all inheritance child tables. If
this is undesirable, you can use the oNLY keyword. A command like:

ANALYZE ONLY measurement;
will only process the root table.

* INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child rela-
tions.

* Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.12.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively parti-
tioned tables. As an example:

SET enable_partition_pruning = on; —-— the default
SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01"';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that
the partition need not be scanned because it could not contain any rows meeting the query's WHERE
clause. When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they
have not. A typical unoptimized plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01"';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 width=8)
-> Append (cost=0.00..181.05 rows=3085 width=0)
-> Seq Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)
-> Seq Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seq Scan on measurement_y2007ml1l (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seq Scan on measurement_y2007ml12 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01";
QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 width=8)
-> Seqg Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether

88

Data Definition

an index needs to be created for a given partition depends on whether you expect that queries that scan
the partition will generally scan a large part of the partition or just a small part. An index will be helpful
in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of
a nested loop join. Partition pruning during execution can be performed at any of the following times:

¢ During initialization of the query plan. Partition pruning can be performed here for parameter val-
ues which are known during the initialization phase of execution. Partitions which are pruned dur-
ing this stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to deter-
mine the number of partitions which were removed during this phase by observing the “Subplans
Removed” property in the ExPLAIN output. The query planner obtains locks for all partitions which
are part of the plan. However, when the executor uses a cached plan, locks are only obtained on
the partitions which remain after partition pruning done during the initialization phase of execu-
tion, i.e., the ones shown in the ExPLAIN output and not the ones referred to by the “Subplans Re-
moved” property.

* During actual execution of the query plan. Partition pruning may also be performed here to re-
move partitions using values which are only known during actual query execution. This includes
values from subqueries and values from execution-time parameters such as those from parame-
terized nested loop joins. Since the value of these parameters may change many times during the
execution of the query, partition pruning is performed whenever one of the execution parameters
being used by partition pruning changes. Determining if partitions were pruned during this phase
requires careful inspection of the 1oops property in the EXPLAIN ANALYZE output. Subplans cor-
responding to different partitions may have different values for it depending on how many times
each of them was pruned during execution. Some may be shown as (never executed) if they were
pruned every time.

Partition pruning can be disabled using the enable partition pruning setting.

5.12.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purpos-
es, including with declarative partitioning.

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusion is only applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declara-
tively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be able
to elide additional partitions from the query plan.

The default (and recommended) setting of constraint exclusion is neither on nor of £, but an intermedi-
ate setting called partition, which causes the technique to be applied only to queries that are likely
to be working on inheritance partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

* Constraint exclusion is only applied during query planning, unlike partition pruning, which can also
be applied during query execution.

* Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as CUr-

89

Data Definition

RENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the func-
tion's value might fall into at run time.

* Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the parti-
tion key.

* All constraints on all children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheri-
tance based partitioning will work well with up to perhaps a hundred child tables; don't try to use
many thousands of children.

5.12.6. Best Practices for Declarative Partitioning

The choice of how to partition a table should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRIMARY KEY Or a UNIQUE constraint. Removal of
unwanted data is also a factor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such a way that
all data to be removed at once is located in a single partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implications if in several years you instead find yourself with a
large number of small customers. In this case, it may be better to choose to partition by HAsH and choose
a reasonable number of partitions rather than trying to partition by .1sT and hoping that the number of
customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option is to use range partitioning with multiple columns in the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The query
planner is generally able to handle partition hierarchies with up to a few thousand partitions fairly well,
provided that typical queries allow the query planner to prune all but a small number of partitions. Plan-
ning times become longer and memory consumption becomes higher when more partitions remain after
the planner performs partition pruning. Another reason to be concerned about having a large number of
partitions is that the server's memory consumption may grow significantly over time, especially if many
sessions touch large numbers of partitions. That's because each partition requires its metadata to be
loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload, it
is important to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

90

Data Definition

5.13. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 58.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.14. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions, procedures, and operators
¢ Data types and domains

* Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.15. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we consid-
ered in Section 5.5.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

91

Data Definition

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run prop without cAscaDE and read the DETAIL output.)

Almost all DROP commands in PostgreSQL support specifying cascabpe. Of course, the nature of the pos-
sible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT Or CASCADE varies across systems.

If a brOP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that cASCADE is needed to succeed.

For a user-defined function or procedure whose body is defined as a string literal, PostgreSQL tracks
dependencies associated with the function's externally-visible properties, such as its argument and result
types, but not dependencies that could only be known by examining the function body. As an example,
consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
'SELECT note FROM my_colors WHERE color = $1'
LANGUAGE SOQL;

(See Section 36.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the func-
tion, because its argument type would no longer be defined. But PostgreSQL will not consider get_col-
or_note to depend on the my_colors table, and so will not drop the function if the table is dropped.
While there are disadvantages to this approach, there are also benefits. The function is still valid in some
sense if the table is missing, though executing it would cause an error; creating a new table of the same
name would allow the function to work again.

On the other hand, for an SQL-language function or procedure whose body is written in SQL-standard
style, the body is parsed at function definition time and all dependencies recognized by the parser are
stored. Thus, if we write the function above as

CREATE FUNCTION get_color_note (rainbow) RETURNS text
BEGIN ATOMIC

SELECT note FROM my_colors WHERE color = $1;
END;

then the function's dependency on the my_colors table will be known and enforced by DRrOP.

92

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is inserted one row at a time. You can also insert more than one row in a single
command, but it is not possible to insert something that is not a complete row. Even if you know only
some column values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric
)i
An example command to insert a row would be:
INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today';

93

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as

flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word upDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the wHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WwHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the seT clause. For example:

UPDATE mytable SET a = 5, b =3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

94

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The INSERT,
UPDATE, DELETE, and MERGE commands all have an optional RETURNING clause that supports this. Use
of RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see Sec-
tion 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNING *, which selects all columns of the target table in order.

In an 1NSERT, the default data available to RETURNING is the row as it was inserted. This is not so useful
in trivial inserts, since it would just repeat the data provided by the client. But it can be very handy
when relying on computed default values. For example, when using a serial column to provide unique
identifiers, RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an uPDATE, the default data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the default data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = 'today'
RETURNING *;

In a MERGE, the default data available to RETURNING is the content of the source row plus the content of
the inserted, updated, or deleted target row. Since it is quite common for the source and target to have
many of the same columns, specifying RETURNING * can lead to a lot of duplicated columns, so it is often
more useful to qualify it so as to return just the source or target row. For example:

MERGE INTO products p USING new_products n ON p.product_no = n.product_no
WHEN NOT MATCHED THEN INSERT VALUES (n.product_no, n.name, n.price)
WHEN MATCHED THEN UPDATE SET name = n.name, price = n.price
RETURNING p.*;

In each of these commands, it is also possible to explicitly return the old and new content of the modified
row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99

95

Data Manipulation

RETURNING name, old.price AS old_price, new.price AS new_price,
new.price - old.price AS price_change;

In this example, writing new.price is the same as just writing price, but it makes the meaning clearer.

This syntax for returning old and new values is available in INSERT, UPDATE, DELETE, and MERGE com-
mands, but typically old values will be NULL for an INSERT, and new values will be NULL for a DELETE.
However, there are situations where it can still be useful for those commands. For example, in an INSERT
with an on coNFLICT DO UPDATE clause, the old values will be non-NULL for conflicting rows. Similarly,
if a DELETE is turned into an UPDATE by a rewrite rule, the new values may be non-NULL.

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

96

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM tablel;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;
(assuming that b and ¢ are of a numerical data type). See Section 7.3 for more details.
FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions can

be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FrROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FroM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The rroM Clause

The FrOM clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_ reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FrROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).

97

Queries

The result of the FroM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word oNLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing oNLY before the table name, you can write * after the table name to explicitly spec-
ify that descendant tables are included. There is no real reason to use this syntax any more, because
searching descendant tables is now always the default behavior. However, it is supported for compati-
bility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

T1 join_type T2 [join_condition]
Joins of all types can be chained together, or nested: either or both 77 and 72 can be joined tables.
Parentheses can be used around JoIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.
Join Types
Cross join

T1 CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FrROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because JoIN
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 71 in the first case but not the second.

Qualified joins
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column 1list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the oN or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

98

Queries

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the ON expression
evaluates to true.

The UsING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 77 and 72 with USING (a, b) produces the join condition oN T7.a = 72.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While Join on produces all columns
from 71 followed by all columns from 72, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with UsING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like CROSS JOIN.

Note

USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:

num | name
,,,,, o
1] a
2 | b
31 ¢
and t2
num | value
_____ +_______
1] xxx
3 | yyy

99

Queries

5 | zzz
then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num value

XXX
Yyy
ZZZ
XXX
Yyy
ZZZ
XXX

Yyy
ZZZ

=> SELECT * FROM tl1 INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S
11 a \ 1 | xxx
3] c \ 31 yyy
(2 rows)

=> SELECT * FROM tl1 INNER JOIN t2 USING (num);
num | name | value

_____ +______+_______
11 a | xxx
3 1 c | yyy
(2 rows)

=> SELECT * FROM tl1 NATURAL INNER JOIN t2;

num | name | value
_____ +______+_______
11 a | xxx
3 c | yyy
(2 rows)

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S

11 a \ 1 | xxx

2 1 Db \ \

3] c \ 31 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ +______+_______

11 a | xxx

2 1 b \

31 ¢ | yyy
(3 rows)

=> SELECT * FROM tl1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value

100

Queries

31 ¢ \ 3 | yyy
5 ZZ2Z

(3 rows)

=> SELECT * FROM tl1 FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
1] a \ 1] xxx
2 1 b \ \
31 c¢ \ 31 yyy
\ \ 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx'j;

num | name | num | value
_____ oy
1] a \ 1 | xxx
2 b \
3 | c \ \
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = 'xxx';
num | name | num | value
————— R
1 a 1 XXX
(1 row)

This is because a restriction placed in the on clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters
a lot with outer joins.
7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.
To create a table alias, write
FROM table reference AS alias
or
FROM table reference alias
The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly long name a ON s.id =
a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; —— wWrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

101

Queries

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table reference [AS] alias (columnl [, column2 [, ...]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JoIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses. They may be assigned a table
alias name, and optionally column alias names (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
AS names (first, last)

Again, a table alias is optional. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

According to the SQL standard, a table alias name must be supplied for a subquery. PostgreSQL allows
AS and the alias to be omitted, but writing one is good practice in SQL code that might be ported to
another system.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FrRoM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the rRows FrROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... 1)1]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias

[, --. 1)1]

102

Queries

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an As clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table _alias [(column_alias
[, .. 1)1]

If no table_aliasis specified, the function name is used as the table name; in the case of a ROWS FROM ()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $S
SELECT * FROM foo WHERE fooid = $1;
S LANGUAGE SQL;

SELECT * FROM getfoo(l) AS t1;

SELECT * FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record with no ouT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias list that
could otherwise be attached to the rFroM item; the names in the column definitions serve as column
aliases. When using the ROWS FROM () syntax, a column_definition list can be attached to each member
function separately; or if there is only one member function and no WITH ORDINALITY clause, a colum-
n_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *
FROM dblink ('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
AS tl (proname name, prosrc text)

103

Queries

WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
(
json_to_recordset ('[{"a":40, "b":"foo"},{"a":"100", "b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, 4, S)

ORDER BY p;
p I a | s
_____ +_____ —_—
40 | foo | 1
100 | bar | 2
\ | 3

It joins two functions into a single FrROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FroM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FroOM item.)

Table functions appearing in FROM can also be preceded by the key word 1LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at the top level in the FrROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JoIn that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FrRoOM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vi1, v2

FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vli,
LATERAL vertices (p2.poly) v2

104

Queries

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;
This query could also be written

SELECT pl.id, p2.id, vi1, v2

FROM polygons pl CROSS JOIN LATERAL vertices (pl.poly) vi,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id '= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause
The syntax of the WHERE clause is
WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.

After the processing of the FrROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FrROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the Jo1IN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FroM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FroM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5
SELECT ... FROM fdt WHERE cl IN (1, 2, 3)
SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

105

Queries

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FroOM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt .c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GrROUP RY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GRour BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_1list
FROM ...
[WHERE ...]
GROUP BY grouping_column_reference [, grouping column_reference]...

The crour BY clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;

x |y
___+___
a | 3
c | 2
b | 5
a | 1
(4 rows)

(3 rows)

In the second query, we could not have written SELECT * FROM testl GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
X | sum

106

Queries

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GrROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GroUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GrouP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
e
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c';

X | sum
e
a | 4
b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost

107

Queries

HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of group-
ing sets. The data selected by the FrRoM and WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ +______+_______
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
(size), ());

brand | size | sum
_______ +______+_____
Foo \ | 30
Bar | | 20
| L | 15
| M | 35
\ | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GrRouP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for group-
ing sets in which those columns do not appear. To distinguish which grouping a particular output row
resulted from, see Table 9.66.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (

(el, e2, e3, ...),
(el, e2),
(el),

108

Queries

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, ¢)

is equivalent to

GROUPING SETS (

(a, b, c),
(a, b)
(a, c)y
(a)y
(b, c),
(b)
()
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (¢, d))
is equivalent to

GROUPING SETS (
(a, b, ¢, d),
(a, b)
(c, d)
()

14

)

and

ROLLUP (a, (b, c), d)
is equivalent to

GROUPING SETS (
(a, b, ¢, d),
(a, b, c),
(a)
()

14

)

The cuBk and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GrRoUP BY clause, then the final list of grouping sets
is the Cartesian product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY GROUPING SETS (
(a, b, ¢, d), (a, b, ¢c, e),
(a, b, d), (a, b, e),

109

Queries

(a, c, 4d), (a, c, e),
(a, 4d), (a, e)
)

When specifying multiple grouping items together, the final set of grouping sets might contain dupli-
cates. For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)
is equivalent to

GROUP BY GROUPING SETS (

(a, b, <),
(a, b),
(a, b),
(a, c),
(a),

(a),

(a, c),
(a),

()

)

If these duplicates are undesirable, they can be removed using the DISTINCT clause directly on the GROUP
BY. Therefore:

GROUP BY DISTINCT ROLLUP (a, b), ROLLUP (a, c)
is equivalent to

GROUP BY GROUPING SETS (

(a, b, c),
a, b),

)

This is not the same as using SELECT DISTINCT because the output rows may still contain duplicates.
If any of the ungrouped columns contains NULL, it will be indistinguishable from the NULL used when
that same column is grouped.

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the Group
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having equivalent PARTITION BY
and ORDER BY clauses in their window definitions are guaranteed to see the same ordering of the input
rows, even if the ORDER BY does not uniquely determine the ordering. However, no guarantees are made
about the evaluation of functions having different PARTITION BY or ORDER BY specifications. (In such

110

Queries

cases a sort step is typically required between the passes of window function evaluations, and the sort
is not guaranteed to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not recom-
mended to rely on this, however. Use an explicit top-level oORDER BY clause if you want to be sure the
results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermedi-
ate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table_name. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference

any columns in the table expression of the FrROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...
If no output column name is specified using as, the system assigns a default column name. For simple

column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The as key word is usually optional, but in some cases where the desired column name matches a Post-
greSQL key word, you must write As or double-quote the column name in order to avoid ambiguity.
(Appendix C shows which key words require As to be used as a column label.) For example, FROM is one
such key word, so this does not work:

SELECT a from, b + ¢ AS sum FROM ...
but either of these do:

SELECT a AS from, b + ¢ AS sum FROM ...

111

Queries

SELECT a "from", b + ¢ AS sum FROM ...

For greatest safety against possible future key word additions, it is recommended that you always either
write As or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FrROM clause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select
list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_1list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the p1sTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNION, INTERSECT, EXCEPT)

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] queryZ2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] queryZ2

where query! and query2 are queries that can use any of the features discussed up to this point.

UNION effectively appends the result of query2 to the result of query? (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of queryz and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

112

Queries

Set operations can be combined, for example
queryl UNION queryZ?2 EXCEPT query3
which is equivalent to

(queryl UNION queryZ2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNTON
and EXCEPT associate left-to-right, but INTERSECT binds more tightly than those two operators. Thus

queryl UNION queryZ INTERSECT query3
means
queryl UNION (queryZ2 INTERSECT query3)

You can also surround an individual query with parentheses. This is important if the query needs to
use any of the clauses discussed in following sections, such as L.iM1T. Without parentheses, you'll get a
syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of its inputs. For example,

SELECT a FROM b UNION SELECT x FROM y LIMIT 10
is accepted, but it means

(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10
not

SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The orDER BY clause specifies the sort order:

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expressionZ [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal ac-
cording to the earlier values. Each expression can be followed by an optional Asc or DEsc keyword to
set the sort direction to ascending or descending. Asc order is the default. Ascending order puts smaller
values first, where “smaller” is defined in terms of the < operator. Similarly, descending order is deter-
mined with the > operator. !

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for pEsc order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

! Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for Asc and pEsc. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

113

Queries

SELECT a + b AS sum, c¢ FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + cC; —— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use As to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNTON, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_ expression
[ORDER BY ...]
[LIMIT { count | ALL }]
[OFFSET start 1]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the L.IMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. oOFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and L.IMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using 1.1MIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for L.T1MIT and OFFSET. Thus,
using different L.IMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with orRDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an OrrsSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must

114

Queries

have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, 'three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columnl, 'one' AS column2
UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names columni, column2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently,
so it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num, letter);
num | letter
_____ e
1 | one
2 | two
3 | three
(3 rows)

Syntactically, vALUES followed by expression lists is treated as equivalent to:
SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WITH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, DELETE, Or MERGE; and the wITH clause itself is attached to a primary statement that can also be
a SELECT, INSERT, UPDATE, DELETE, OT MERGE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales

115

Queries

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The wITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used in
top_regions and the output of top_regions is used in the primary SELECT query. This example could
have been written without wiTH, but we'd have needed two levels of nested sub-seLECTs. It's a bit easier
to follow this way:.

7.8.2. Recursive Queries

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For un1oN (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. Solong as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the re-
cursive self-reference. For unI0N (but not uNION ALL), discard duplicate rows and rows that du-
plicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

While RECURSIVE allows queries to be specified recursively, internally such queries are evaluated
iteratively.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part, p.quantity * pr.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

116

Queries

)

SELECT sub_part, SUM(quantity) as total_guantity
FROM included_parts

GROUP BY sub_part

7.8.2.1. Search Order

When computing a tree traversal using a recursive query, you might want to order the results in either
depth-first or breadth-first order. This can be done by computing an ordering column alongside the other
data columns and using that to sort the results at the end. Note that this does not actually control in
which order the query evaluation visits the rows; that is as always in SQL implementation-dependent.
This approach merely provides a convenient way to order the results afterwards.

To create a depth-first order, we compute for each result row an array of rows that we have visited so
far. For example, consider the following query that searches a table tree using a 1ink field:

WITH RECURSIVE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNION ALL
SELECT t.id, t.link, t.data
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

WITH RECURSIVE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t

UNION ALL

SELECT t.id, t.link, t.data, path || t.id
FROM tree t, search_tree st
WHERE t.id = st.link

)

SELECT * FROM search_tree ORDER BY path;

In the general case where more than one field needs to be used to identify a row, use an array of rows.
For example, if we needed to track fields £1 and f2:

WITH RECURSIVE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[ROW(t.fl, t.£f2)]
FROM tree t

UNION ALL
SELECT t.id, t.link, t.data, path || ROW(t.£f1l, t.£f2)
FROM tree t, search_tree st
WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;

Tip
Omit the row () syntax in the common case where only one field needs to be tracked. This allows
a simple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

WITH RECURSIVE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O

117

Queries

FROM tree t
UNION ALL
SELECT t.id, t.link, t.data, depth + 1
FROM tree t, search_tree st
WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY depth;

To get a stable sort, add data columns as secondary sorting columns.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order. How-

ever, this is an implementation detail and it is perhaps unsound to rely on it. The order of the rows
within each level is certainly undefined, so some explicit ordering might be desired in any case.

There is built-in syntax to compute a depth- or breadth-first sort column. For example:

WITH RECURSIVE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t

UNION ALL

SELECT t.id, t.link, t.data
FROM tree t, search_tree st
WHERE t.id = st.link

) SEARCH DEPTH FIRST BY id SET ordercol

SELECT * FROM search_tree ORDER BY ordercol;

WITH RECURSIVE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNION ALL
SELECT t.id, t.link, t.data
FROM tree t, search_tree st
WHERE t.id = st.link
) SEARCH BREADTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

This syntax is internally expanded to something similar to the above hand-written forms. The SEARCH
clause specifies whether depth- or breadth first search is wanted, the list of columns to track for sorting,
and a column name that will contain the result data that can be used for sorting. That column will
implicitly be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider again the following
query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg

118

Queries

WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing unIoN ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns

is_cycle and path to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
SELECT g.id, g.link, g.data, O,

false,
ARRAY [g.id]
FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
g.id = ANY (path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
SELECT g.id, g.link, g.data, O,
false,
ARRAY[ROW(g.fl, g.f2)]
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
ROW(g.fl, g.f2) = ANY(path),
path || ROW(g.fl, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Tip
Omit the rOW () syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

There is built-in syntax to simplify cycle detection. The above query can also be written like this:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

) CYCLE id SET is_cycle USING path

SELECT * FROM search_graph;

119

Queries

and it will be internally rewritten to the above form. The cYCLE clause specifies first the list of columns
to track for cycle detection, then a column name that will show whether a cycle has been detected, and
finally the name of another column that will track the path. The cycle and path columns will implicitly
be added to the output rows of the CTE.

Tip
The cycle path column is computed in the same way as the depth-first ordering column show in
the previous section. A query can have both a SEARCH and a CYCLE clause, but a depth-first search
specification and a cycle detection specification would create redundant computations, so it's more
efficient to just use the cyCcLE clause and order by the path column. If breadth-first ordering is
wanted, then specifying both sEArRCH and cYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the L.IMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the wITH query's output anyway.

7.8.3. Common Table Expression Materialization

A useful property of WITH queries is that they are normally evaluated only once per execution of the par-
ent query, even if they are referred to more than once by the parent query or sibling wiT# queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of functions
with side-effects. However, the other side of this coin is that the optimizer is not able to push restric-
tions from the parent query down into a multiply-referenced wITH query, since that might affect all uses
of the wiTH query's output when it should affect only one. The multiply-referenced wiTH query will be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

However, if a WITH query is non-recursive and side-effect-free (that is, it is a SELECT containing no volatile
functions) then it can be folded into the parent query, allowing joint optimization of the two query levels.
By default, this happens if the parent query references the WITH query just once, but not if it references
the wITH query more than once. You can override that decision by specifying MATERIALIZED to force
separate calculation of the WITH query, or by specifying NOT MATERIALIZED to force it to be merged into
the parent query. The latter choice risks duplicate computation of the wiTH query, but it can still give a
net savings if each usage of the WITH query needs only a small part of the wiTH query's full output.

A simple example of these rules is

WITH w AS (
SELECT * FROM big_table

)
SELECT * FROM w WHERE key = 123;

This w1TH query will be folded, producing the same execution plan as

SELECT * FROM big_table WHERE key = 123;

120

Queries

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in

WITH w AS (
SELECT * FROM big_table
)
SELECT * FROM w AS wl JOIN w AS w2 ON wl.key = w2.ref
WHERE w2.key = 123;

the wiTH query will be materialized, producing a temporary copy of big_table that is then joined with
itself — without benefit of any index. This query will be executed much more efficiently if written as

WITH w AS NOT MATERIALIZED (
SELECT * FROM big_table
)
SELECT * FROM w AS wl JOIN w AS w2 ON wl.key = w2.ref
WHERE w2.key = 123;

so that the parent query's restrictions can be applied directly to scans of big_table.

An example where NOT MATERIALIZED could be undesirable is

WITH w AS (
SELECT key, very_expensive_function(val) as f FROM some_table

)
SELECT * FROM w AS wl JOIN w AS w2 ON wl.f = w2.f;

Here, materialization of the WITH query ensures that very_expensive_function is evaluated only once
per table row, not twice.

The examples above only show wiTH being used with SeLECT, but it can be attached in the same way
to INSERT, UPDATE, DELETE, or MERGE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

7.8.4. Data-Modifying Statements in wIiTH

You can use data-modifying statements (INSERT, UPDATE, DELETE, or MERGE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= '2010-10-01"' AND
"date" < '2010-11-01"
RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_1log.

A fine point of the above example is that the wiTH clause is attached to the INSERT, not the sub-SELECT
within the 1NSERT. This is necessary because data-modifying statements are only allowed in wITH clauses
that are attached to the top-level statement. However, normal wITH visibility rules apply, so it is possible
to refer to the wITH statement's output from the sub-SELECT.

Data-modifying statements in wITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying state-
ment, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in w1 TH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to in
the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example is:

121

Queries

WITH t AS (

DELETE FROM foo
)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive wiTH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. There-
fore, when using data-modifying statements in wiTH, the order in which the specified updates actually
happen is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so
they cannot “see” one another's effects on the target tables. This alleviates the effects of the unpre-
dictability of the actual order of row updates, and means that RETURNING data is the only way to commu-
nicate changes between different wITH sub-statements and the main query. An example of this is that in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)

SELECT * FROM products;

the outer seLECT would return the original prices before the action of the UpPDATE, while in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)
SELECT * FROM t;

the outer seLECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. There-
fore you should generally avoid trying to modify a single row twice in a single statement. In particular
avoid writing wITH sub-statements that could affect the same rows changed by the main statement or a
sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in wITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

122

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serials8 autoincrementing eight-byte integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] |variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n)] varchar [(n)] |variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float, float$8 double precision floating-point number
(8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields 1 [(p)] time span

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control) address

macaddr8 MAC (Media Access Control) address (
EUI-64 format)

money currency amount

numeric [(p, s)] decimal [(p, exact numeric of selectable precision

s) 1

path geometric path on a plane

pg_1lsn PostgreSQL Log Sequence Number

pPg_snapshot user-level transaction ID snapshot

point geometric point on a plane

polygon closed geometric path on a plane

real float4 single precision floating-point number (
4 bytes)

123

Data Types

Name Aliases Description
smallint int2 signed two-byte integer
smallserial serial? autoincrementing two-byte integer
serial seriald autoincrementing four-byte integer
text variable-length character string
time [(p)] [without time time of day (no time zone)
zone]
time [(p)] with time =zone timetz time of day, including time zone
timestamp [(p)] [without time date and time (no time zone)
zone |
timestamp [(p)] with time zone |timestamptz date and time, including time zone
tsquery text search query
tsvector text search document
txid_snapshot user-level transaction ID snapshot (dep-
recated; see pg_snapshot)

uuid universally unique identifier
xml XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bigint, bit, bit varying, boolean,
char, character varying, character, varchar, date, double precision, integer, interval,
numeric, decimal, real, smallint, time (with or without time zone), timestamp (with or without
time zone), xml.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size|Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for integer -2147483648 to
+2147483647
bigint 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807
decimal variable user-specified precision, ex- |up to 131072 digits before
act the decimal point; up to
16383 digits after the deci-
mal point
numeric variable user-specified precision, ex- |up to 131072 digits before
act the decimal point; up to

124

Data Types

8

Name Storage Size |Description Range
16383 digits after the deci-
mal point
real 4 bytes variable-precision, inexact |6 decimal digits precision
double precision 8 bytes variable-precision, inexact |15 decimal digits precision
smallserial 2 bytes small autoincrementing in- |1 to 32767
teger
serial 4 bytes autoincrementing integer 1to 2147483647
bigserial 8 bytes large autoincrementing in- |1 to 9223372036854775807
teger

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. Calculations with numer-
ic values yield exact results where possible, e.g., addition, subtraction, multiplication. However, calcu-
lations on numeric values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, while the scale may be positive or negative (see below). Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates an “unconstrained numeric” column in which numeric values of
any length can be stored, up to the implementation limits. A column of this kind will not coerce input
values to any particular scale, whereas numeric columns with a declared scale will coerce input values
to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find
this a bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

125

Data Types

Note

The maximum precision that can be explicitly specified in a numeric type declaration is 1000. An
unconstrained numeric column is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the
decimal point exceeds the declared precision minus the declared scale, an error is raised. For example,
a column declared as

NUMERIC (3, 1)
will round values to 1 decimal place and can store values between -99.9 and 99.9, inclusive.
Beginning in PostgreSQL 15, it is allowed to declare a numeric column with a negative scale. Then values

will be rounded to the left of the decimal point. The precision still represents the maximum number of
non-rounded digits. Thus, a column declared as

NUMERIC (2, -3)

will round values to the nearest thousand and can store values between -99000 and 99000, inclusive.
It is also allowed to declare a scale larger than the declared precision. Such a column can only hold
fractional values, and it requires the number of zero digits just to the right of the decimal point to be at
least the declared scale minus the declared precision. For example, a column declared as

NUMERIC (3, 5)

will round values to 5 decimal places and can store values between -0.00999 and 0.00999, inclusive.

Note

PostgreSQL permits the scale in a numeric type declaration to be any value in the range -1000
to 1000. However, the SQL standard requires the scale to be in the range 0 to precision. Using
scales outside that range may not be portable to other database systems.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type has several special values:

Infinity
-Infinity
NaN

noou

These are adapted from the IEEE 754 standard, and represent “infinity”, “negative infinity”, and “not-a-
number”, respectively. When writing these values as constants in an SQL command, you must put quotes
around them, for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized
in a case-insensitive manner. The infinity values can alternatively be spelled inf and -inf.

The infinity values behave as per mathematical expectations. For example, Infinity plus any finite
value equals Infinity, as does Infinity plus Infinity; but Infinity minus Infinity yields NaN (not
a number), because it has no well-defined interpretation. Note that an infinity can only be stored in an
unconstrained numeric column, because it notionally exceeds any finite precision limit.

The NaN (not a number) value is used to represent undefined calculational results. In general, any oper-
ation with a NaN input yields another NaN. The only exception is when the operation's other inputs are
such that the same output would be obtained if the NaN were to be replaced by any finite or infinite

126

Data Types

8

numeric value; then, that output value is used for NaN too. (An example of this principle is that NaN raised
to the zero power yields one.)

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:

SELECT x,

round (x::numeric) AS num_round,

round (x::double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
,,,,,, IO
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0
0.5 | 1 | 0
1.5 | 2 | 2
2.5 | 3 | 2
3.5 | 4 | 4

(8 rows)

1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. On all current-
ly supported platforms, these types are implementations of IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor, op-
erating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

» If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implemen-
tation carefully.

* Comparing two floating-point values for equality might not always work as expected.

On all currently supported platforms, the real type has a range of around 1E-37 to 1E+37 with a preci-
sion of at least 6 decimal digits. The double precision type has a range of around 1E-307 to 1E+308
with a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two

127

Data Types

representable values, in order to avoid a widespread bug where input routines do not properly respect
the round-to-nearest-even rule.) This value will use at most 17 significant decimal digits for float8
values, and at most 9 digits for f1oat4 values.

Note

This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of PostgreSQL, and to allow the output pre-
cision to be reduced, the extra float digits parameter can be used to select rounded decimal output
instead. Setting a value of 0 restores the previous default of rounding the value to 6 (for flocat4) or 15
(for f1oats) significant decimal digits. Setting a negative value reduces the number of digits further;
for example -2 would round output to 4 or 13 digits respectively.

Any value of extra float digits greater than 0 selects the shortest-precise format.

Note

Applications that wanted precise values have historically had to set extra float digits to 3 to obtain
them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

» o«

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. When writing these values as constants in an SQL command, you must put quotes around them,
for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized in a case-
insensitive manner. The infinity values can alternatively be spelled inf and -inf.

Note

IEEE 754 specifies that naN should not compare equal to any other floating-point value (includ-
ing NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Post-
greSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double pre-
cision. Values of p outside the allowed range draw an error. f1oat with no precision specified is taken
to mean double precision.

8.1.4. Serial Types

Note

This section describes a PostgreSQL-specific way to create an autoincrementing column. Another
way is to use the SQL-standard identity column feature, described at Section 5.3.

The data types smallserial, serial and bigserial are not true types, but merely a notational conve-
nience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported by
some other databases). In the current implementation, specifying:

128

Data Types

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (

colname integer NOT NULL DEFAULT nextval ('tablename_colname_seq"')
)
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;
Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because smallserial, serial and bigserial are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval () in Section 9.17 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial should
be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and float-
ing-point literals, as well as typical currency formatting, such as '$1,000.00'. Output is generally in
the latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size |Description Range

money 8 bytes currency amount -92233720368547758.08 to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real and
double precision data types can be done by casting to numeric first, for example:

129

Data Types

SELECT '12.34'::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could poten-
tially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a

money value is divided by another money value, the result is double precision (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit

character(n), char(n), bpchar(n) fixed-length, blank-padded

bpchar variable unlimited length, blank-trimmed
text variable unlimited length

Table 8.4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n is a pos-
itive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt to
store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) However, if one explicitly casts a value to character vary-
ing (n) or character (n), then an over-length value will be truncated to n characters without raising an
error. (This too is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of type character will be space-padded; values of type character varying will simply
store the shorter string.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the text
type is not in the SQL standard, several other SQL database management systems have it as well. text
is PostgreSQL's native string data type, in that most built-in functions operating on strings are declared
to take or return text not character varying. For many purposes, character varying acts as though
it were a domain over text.

The type name varchar is an alias for character varying, while bpchar (with length specifier) and
char are aliases for character. The varchar and char aliases are defined in the SQL standard; bpchar
is a PostgreSQL extension.

If specified, the length n must be greater than zero and cannot exceed 10,485,760. If character varying
(or varchar) is used without length specifier, the type accepts strings of any length. If bpchar lacks a
length specifier, it also accepts strings of any length, but trailing spaces are semantically insignificant.
If character (or char) lacks a specifier, it is equivalent to character(1).

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregard-
ed when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a

130

Data Types

\n'::CHAR (2) returns true, even though c locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when using
pattern matching, that is LIKE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the charac-
ter with code zero (sometimes called NUL) cannot be stored. For more information refer to Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use text
or character varying without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character (n) is usually the

slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for informa-
tion about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok');

SELECT a, char_length(a) FROM testl; --
a | char_length

______ +_____________

ok \ 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok');

INSERT INTO test2 VALUES ('good "y

INSERT INTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES ('too long'::varchar(5)); —-- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length
_______ S,
ok \ 2
good | 5
too 1 | 5

The char_length function is discussed in Section 9.4.

131

Data Types

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. These are not
intended for general-purpose use, only for use in the internal system catalogs. The name type is used
to store identifiers. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a future
release. The type "char" (note the quotes) is different from char (1) in that it only uses one byte of
storage, and therefore can store only a single ASCII character. It is used in the system catalogs as a
simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the config-
uration parameter bytea output; the default is hex. (Note that the hex format was introduced in Post-
greSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The input
format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:

SET bytea_output = 'hex';

SELECT '\xDEADBEEF': :bytea;
bytea

132

Data Types

\xdeadbeef

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented

by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet Description Escaped Input Example Hex Representa-
Value Representation tion

0 zero octet "\000"' "\000"'::bytea \x00

39 single quote "t or '\047" "1 ibytea \x27

92 backslash "\\'or '\134" "\\'::bytea \x5¢c

0 to 31 and 127 to |“non-printable” "\xxx' (octal val- |'\001"'::bytea \x01

255 octets ue)

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in an SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just
one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124"'::bytea;
bytea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet Description Escaped Output |[Example Output Result
Value Representation
92 backslash \\ "\134"'::bytea AN\

133

Data Types

Decimal Octet Description Escaped Output |[Example Output Result
Value Representation
0 to 31 and 127 to |“non-printable” \xxx (octal value) |'\001'::bytea \001
255 octets
32 to 126 “printable” octets |client character "\176"'::bytea ~
set representation

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp 8 bytes both date and [4713 BC 294276 AD 1 microsecond
[(p)] time (no time
[without zone)
time zone]
timestamp 8 bytes both date and |4713 BC 294276 AD 1 microsecond
[(p)] with time, with time
time zone zone
date 4 bytes date (no time of |4713 BC 5874897 AD 1 day

day)
time [(p) 1 |8 bytes time of day (no [00:00:00 24:00:00 1 microsecond
[without date)
time zone]
time [(p) 1 |12 bytes time of day (no [00:00:004+1559 |24:00:00-1559 |1 microsecond
with time date), with time
zone zone
interval [16 bytes time interval -178000000 178000000 1 microsecond
fields 1 [(years years
p)]

Note

The SQL standard requires that writing just t imestamp be equivalent to t imestamp without time
zone, and PostgreSQL honors that behavior. t imestamptz is accepted as an abbreviation for time-
stamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

134

Data Types

8

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields mustinclude SECOND, since the precision applies
only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp without
time zone, and timestamp with time zone should provide a complete range of date/time functionality
required by any application.

5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, pMY to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6. If no
precision is specified in a constant specification, it defaults to the precision of the literal value (but not
more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in bMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in bMY mode; Feb-
ruary 3, 2001 in yMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

135

Data Types

Example Description

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time zone.time
alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11
and Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone
offset is recorded in the time with time zone value and is output as stored; it is not adjusted to the
active time zone.

Table 8.11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect val-
ue

04:05 PM same as 16:05; input hour must be <=
12

04:05:06.789-8 ISO 8601, with time zone as UTC offset

04:05:06-08:00 ISO 8601, with time zone as UTC offset

04:05-08:00 ISO 8601, with time zone as UTC offset

040506-08 ISO 8601, with time zone as UTC offset

040506+0730 ISO 8601, with fractional-hour time
zone as UTC offset

040506+07:30:00 UTC offset specified to seconds (not al-
lowed in ISO 8601)

04:05:06 PST time zone specified by abbreviation

2003-04-12 04:05:06 America/New_York time zone specified by full name

Table 8.12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)

136

Data Types

Example Description

America/New_York Full time zone name

PST8PDT POSIX-style time zone specification

-8:00:00 UTC offset for PST

-8:00 UTC offset for PST (ISO 8601 extended format)
-800 UTC offset for PST (ISO 8601 basic format)

-8 UTC offset for PST (ISO 8601 basic format)
zulu Military abbreviation for UTC

z Short form of zulu (also in ISO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or Bc. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time zone literals
by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according to the
standard,

TIMESTAMP '2004-10-19 10:23:54"
is a timestamp without time zone, while
TIMESTAMP '2004-10-19 10:23:544+02"

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone. To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+402'

In a value that has been determined to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input string, and is not adjusted for time zone.

For timestamp with time zone values, an input string that includes an explicit time zone will be
converted to UTC (Universal Coordinated Time) using the appropriate offset for that time zone. If no
time zone is stated in the input string, then it is assumed to be in the time zone indicated by the system's
TimeZone parameter, and is converted to UTC using the offset for the timezone zone. In either case,
the value is stored internally as UTC, and the originally stated or assumed time zone is not retained.

When a timestamp with time =zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZzONE construct (see Section 9.9.4).

137

Data Types

Conversions between timestamp without time zone and timestamp with time zone normally assume
thatthe timestamp without time zone value should be taken or given as timezone local time. A different
time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13.
The values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in
SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+4+00 (Unix
system time zero)

infinity date, timestamp, interval later than all other time stamps

—-infinity date, timestamp, interval earlier than all other time
stamps

now date, time, timestamp current transaction's start time

today date, timestamp midnight (00:00) today

tomorrow date, timestamp midnight (00:00) tomorrow

yesterday date, timestamp midnight (00:00) yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the cor-
responding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_ TIMESTAMP, LOCALTIME, LOCALTIMESTAMP.
(See Section 9.9.5.) Note that these are SQL functions and are not recognized in data input strings.

Caution

While the input strings now, today, tomorrow, and yesterday are fine to use in interactive SQL
commands, they can have surprising behavior when the command is saved to be executed later, for
example in prepared statements, views, and function definitions. The string can be converted to a
specific time value that continues to be used long after it becomes stale. Use one of the SQL func-
tions instead in such contexts. For example, CURRENT_DATE + 1 is safer than 'tomorrow': :date.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL’ output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the date and time types is generally only
the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

IS0 ISO 8601, SQL standard [1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
Postgres original style Wed Dec 17 07:37:16 1997 PST

138

Data Types

Style Specification Description Example
German regional style 17.12.1997 07:37:16.00 PST
Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation
of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/month/year 17/12/1997 15:37:16.00 CET
SQL, MDY month/dayl/year 12/17/1997 07:37:16.00 PST
Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number of
hours, else as hh:mmif it is an integral number of minutes, else as hh:mm:ss. (The third case is not possible
with any modern time zone standard, but it can appear when working with timestamps that predate the
adoption of standardized time zones.) In the other date styles, the time zone is shown as an alphabetic
abbreviation if one is in common use in the current zone. Otherwise it appears as a signed numeric offset
in ISO 8601 basic format (hh or hhmm). The alphabetic abbreviations shown in these styles are taken from
the IANA time zone database entry currently selected by the TimeZone run-time parameter; they are
not affected by the timezone abbreviations setting.

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format date/
time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

* Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

* The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported

139

https://datatracker.ietf.org/doc/html/rfc3339

Data Types

by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

* A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 53.34). PostgreSQL uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

* A time zone abbreviation, for example PsT. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see Sec-
tion 53.33). You cannot set the configuration parameters TimeZone or log timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications, as described in Section B.5. This option is not normally preferable to using a named
time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Standard
Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

Note

The sign in POSIX-style time zone specifications has the opposite meaning of the sign in ISO-8601
datetime values. For example, the POSIX time zone for 2014-06-04 12:00+04 would be UTC-4.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MsSk has meant UTC+3 in some years and UTC
+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the
same as local civil time on that date.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from con-
figuration files stored under .../share/timezone/ and .../share/timezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresqgl.conf, or in any of the other
standard ways described in Chapter 19. There are also some special ways to set it:

* The SQL command SET TIME ZzONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

* The PGTZz environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:

[@] gquantity unit [quantity unit...] [direction]

140

Data Types

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute,
hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units;
direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are
implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for
interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10' isread the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of
years and months can be specified with a dash; for example '200-10"' is read the same as '200 years
10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalsStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a p, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

wIEY =R

Seconds

In the alternative format:
P [years—months-days] [T hours:minutes:seconds]

the string must begin with p, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL 'l day 2:03:04' HOUR TO MINUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that the
hour/minute/second part is considered positive in this example. If IntervalStyle issetto sql_standard
then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise
the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an
explicit sign to each field if any field is negative.

Internally, interval values are stored as three integral fields: months, days, and microseconds. These
fields are kept separate because the number of days in a month varies, while a day can have 23 or 25

141

Data Types

hours if a daylight savings time transition is involved. An interval input string that uses other units is
normalized into this format, and then reconstructed in a standardized way for output, for example:

SELECT '2 years 15 months 100 weeks 99 hours 123456789 milliseconds'::interval;
interval

3 years 3 mons 700 days 133:17:36.789

Here weeks, which are understood as “7 days”, have been kept separate, while the smaller and larger
time units were combined and normalized.

Input field values can have fractional parts, for example '1.5 weeks' or '01:02:03.45'. However,
because interval internally stores only integral fields, fractional values must be converted into smaller
units. Fractional parts of units greater than months are rounded to be an integer number of months,
e.g. '1.5 years' becomes '1 year 6 mons'. Fractional parts of weeks and days are computed to be an
integer number of days and microseconds, assuming 30 days per month and 24 hours per day, e.g., '1.75
months' becomes 1 mon 22 days 12:00:00. Only seconds will ever be shown as fractional on output.

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 |Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same mean-
ing as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

8.5.5. Interval Output

As previously explained, PostgreSQL stores interval values as months, days, and microseconds. For
output, the months field is converted to years and months by dividing by 12. The days field is shown as-
is. The microseconds field is converted to hours, minutes, seconds, and fractional seconds. Thus months,
minutes, and seconds will never be shown as exceeding the ranges 0-11, 0-59, and 0-59 respectively,
while the displayed years, days, and hours fields can be quite large. (The justify_days and justi-
fy_hours functions can be used if it is desirable to transpose large days or hours values into the next
higher field.)

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the postgres
format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to 150.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-150 output.

142

Data Types

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval

sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

postgres_verbose @ 1 year 2 mons ©@ 3 days 4 hours 5 mins |@ 1 year 2 mons -3 days

6 secs 4 hours 5 mins 6 secs

ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8.19. The boolean type can have several
states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

boolean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type boolean accepts these string representations for the “true” state:

true
yes
on

1

and these representations for the “false” state:

false
no
off

0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type boolean always emits either t or £, as shown in Example 8.2.

Example 8.2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, 'sic est');
INSERT INTO testl VALUES (FALSE, 'non est');
SELECT * FROM testl;

143

Data Types

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example 'yes': :boolean.

Note that the parser automatically understands that TRUE and FALSE are of type boolean, but this is not
so for NULL because that can have any type. So in some contexts you might have to cast NULL to boolean
explicitly, for example NULL: :boolean. Conversely, the cast can be omitted from a string-literal Boolean
value in contexts where the parser can deduce that the literal must be of type boolean.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiva-
lent to the enum types supported in a number of programming languages. An example of an enum type
might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:
CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy'):;

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (

name text,

current_mood mood

)i

INSERT INTO person VALUES ('Moe', 'happy');

SELECT * FROM person WHERE current_mood = 'happy';
name | current_mood

______ +______________

Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
name | current_mood

_______ +______________

Moe | happy

Curly | ok

(2 rows)

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;
name | current_mood

_______ +______________

Curly | ok

Moe | happy

(2 rows)

SELECT name
FROM person

144

Data Types

WHERE current_mood = (SELECT MIN(current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)

INSERT INTO holidays (num_weeks, happiness) VALUES (4, 'happy');
INSERT INTO holidays (num_weeks, happiness) VALUES (6, 'very happy');
INSERT INTO holidays (num_weeks, happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays (num_weeks, happiness) VALUES (2, 'sad');

ERROR: invalid input value for enum happiness: "sad"

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;

name | num_weeks
______ +___________
Moe \ 4
(1 row)

8.7.4. Implementation Details

Enum labels are case sensitive, so 'happy' is not the same as 'HAPPY'. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be
removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL.

Table 8.20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

145

Data Types

Name Storage Size Description Representation

line 24 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment [(x1,y1),(x2,y2)]

box 32 bytes Rectangular box (x1,y1),(x2,y2)

path 16+16n bytes Closed path (similar to polygon) ((x1,y1),...)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to closed path) ((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

In all these types, the individual coordinates are stored as double precision (float8) numbers.

Arich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, v)
X, Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines

Lines are represented by the linear equation ax + By + ¢ = 0, where A and B are not both zero. Values
of type line are input and output in the following form:

{4 B, C}

Alternatively, any of the following forms can be used for input:

[(x1, y1) , (x2, y2) 1
((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
1seq are specified using any of the following syntaxes:

[(xI, y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

146

Data Types

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(x1, y1), (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in
the list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , ..., (xn, yn)]
((x1, y1), ..., (xn, yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 ;e xn , yn)
x1 , yl ;e xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertices of the polygon). Polygons are very similar to
closed paths; the essential semantic difference is that a polygon is considered to include the area within
it, while a path is not.

An important implementation difference between polygons and paths is that the stored representation
of a polygon includes its smallest bounding box. This speeds up certain search operations, although
computing the bounding box adds overhead while constructing new polygons.

Values of type polygon are specified using any of the following syntaxes:

((xt, y1), ..., (xn, yn))
(x1 , y1) , ..., (xn , yn)
(x1 , yl ;e g xn , yn)
x1 , vyl ;e xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.
Polygons are output using the first syntax.

8.8.7. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x, vyv) , r>
((x, yv) , r)
(x, y) , r

147

Data Types

X 4, Y r T

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddr8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the number
of bits in the netmask. If the /y portion is omitted, the netmask is taken to be 32 for IPv4 or 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network's lowest address represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table 8.22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

148

Data Types

cidr Input cidr Output abbrev (cidr)
128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64

2001:4f8:3:ba::/64

2001:4£8:3:ba/64

2001:418:3:ba:2e0:81f-
f:fe22:d1f1/128

2001:4f8:3:ba:2e0:81f-
f:fe22:d1f1/128

2001:4£8:3:ba:2e0:81f-
f:fe22:d1f1/128

o ffff:1.2.3.0/120

::ffff:1.2.3.0/120

offff:1.2.3/120

ffff:1.2.3.0/128

ffff:1.2.3.0/128

ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for inet
but not for cidr.

Tip
If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03"
'08-00-2b-01-02-03"
'08002b:010203"
'08002b-010203"
'0800.2b01.0203"
'0800-2b01-0203"
'08002b010203"

These examples all specify the same address. Upper and lower case is accepted for the digits a through
£. Output is always in the first of the forms shown.

IEEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as used with bit-reversed, MSB-first notation,
so that 08-00-2b-01-02-03 = 10:00:D4:80:40:CO0. This convention is widely ignored nowadays, and it is
relevant only for obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for
bit reversal; all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddrs8

The macaddr8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given

149

Data Types

in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE,
respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after
the conversion from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally
speaking, any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated
consistently by oneof ':', '-' or '.", is accepted. The number of hex digits must be either 16 (8 bytes)

or 12 (6 bytes). Leading and trailing whitespace is ignored. The following are examples of input formats
that are accepted:

'08:00:2b:01:02:03:04:05"
'08-00-2b-01-02-03-04-05"
'08002b:0102030405"
'08002b-0102030405"
'0800.2b01.0203.0405"
'0800-2b01-0203-0405"
'08002b01:02030405"
'08002b0102030405"

These examples all specify the same address. Upper and lower case is accepted for the digits a through
£. Output is always in the first of the forms shown.

The last six input formats shown above are not part of any standard.

To convert a traditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr8_set7bit as shown:

SELECT macaddr8_set7bit ('08:00:2b:01:02:03");

macaddr8_set7bit

0a:00:2b:ff:fe:01:02:03
(1 row)

8.10. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying (n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be

rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note

If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for