Memory allocation in OpenCL devices (for example, a GPU) must be performed in the host thread using clCreateBuffer (or clCreateImage2D/3D if you wish to use texture memory). These functions allow you automatically copy host data (created with malloc for example) to the device, but I usually prefer to explicitly use clEnqueueWriteBuffer/clEnqueueMapBuffer (or clEnqueueWriteImage/clEnqueueMapImage if using texture memory), so that I can profile the data transfers. Here's an example:
#define DATA_SIZE 1000
typedef struct data {
cl_uint id;
cl_uint x;
cl_uint y;
} Data;
...
// Allocate data array in host
size_t dataSizeInBytes = DATA_SIZE * sizeof(Data);
DATA * dataArrayHost = (DATA *) malloc(dataSizeInBytes);
// Initialize data
...
// Create data array in device
cl_mem dataArrayDevice = clCreateBuffer(context, CL_MEM_READ_ONLY, dataSizeInBytes, NULL, &status );
// Copy data array to device
status = clEnqueueWriteBuffer(queue, dataArrayDevice, CL_TRUE, 0, dataSizeInBytes, &dataArrayHost, 0, NULL, NULL );
// Make sure to pass dataArrayDevice as kernel parameter
// Run kernel
...
What you need to consider is that you need to know the memory requirements of an OpenCL kernel before you execute it. As such memory allocation can be dynamic if performed before kernel execution (i.e. in host). Nothing stops you from calling the kernel several times, and in each of those times adjusting (allocating) the kernel memory requirements.
Having this into account, I advise you to rethink the way your approaching the problem. To begin, it is simpler (but not necessarily more efficient) to work with arrays of structures, than with structures of arrays (in which case, the arrays would have to have a fixed size anyway).
This is just to give you an idea of how OpenCL works. Take a look at Khronos OpenCL resource page, it has plenty of OpenCL tutorials and examples, and Khronos OpenCL page, which has the official OpenCL references, man pages and quick references cards.