Tell me more ×
Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. It's 100% free, no registration required.

Consider the sequence $x_{n+1} = 2x_{n}-\frac{1}{x_n},n\geq0 $.

  1. For $x_{0} = 0,87$ we have

$$ \begin{aligned} X(1) &\approx 0,590574712643678 \\ X(2) &\approx -0,512116436915835\\ X(3) &\approx 0,928448055572567\\ X(4) &\approx 0,779829931731029\\ X(5) &\approx 0,277328986805082\\ X(6)&\approx -3,05116776974367\\ X(7)&\approx -5,77459217187698\\ X(8)&\approx -11,37601194123\\ X(9)&\approx-22,6641196146756\\ X(10)&\approx -45,2841166242379\\ X(11)&\approx -90,5461504504763\\ X(12)&\approx -181,081256809127\\ X(13)&\approx -362,156991235554\\ X(14)&\approx -724,311221237654\\ X(15)&\approx -1448,62106185332\\ X(16)&\approx -2897,24143339498\\ X(17)&\approx -5794,48252163406\\ X(18)&\approx -11588,9648706901\\ X(19)&\approx -23177,9296550913\\ X(20)&\approx -46355,8592670381\\ X(21)&\approx -92711,718512504\\\ X(22) &\approx -185423,437014222\\ X(23) &\approx -370846,874023051\\ X(24) &\approx -741693,748043405\\ X(25) &\approx -1483387,49608546 \end{aligned} \begin{aligned} X(26) &\approx -2966774,99217025\\ X(27) &\approx -5933549,98434016\\ X(28) &\approx -11867099,9686802\\ X(29) &\approx -23734199,9373602\\ X(30) &\approx -47468399,8747204\\ X(31) &\approx -94936799,7494408\\ X(32) &\approx -189873599,498882\\ X(33) &\approx -379747198,997763\\ X(34) &\approx -759494397,995526\\ X(35) &\approx -1518988795,99105\\ X(36) &\approx -3037977591,98211\\ X(37) &\approx -6075955183,96421\\ X(38) &\approx -12151910367,9284\\ X(39) &\approx -24303820735,8568\\ X(40) &\approx -48607641471,7137\\ X(41) &\approx -97215282943,4274\\ X(42) &\approx -194430565886,855\\ X(43) &\approx -388861131773,709\\ X(44) &\approx -777722263547,419\\ X(45) &\approx -1555444527094,84\\ X(46) &\approx -3110889054189,68\\ X(47) &\approx -6221778108379,35\\ X(48) &\approx -12443556216758,7\\ X(49) &\approx -24887112433517,4\\ X(50) &\approx -49774224867034,8 \end{aligned} $$

and for $x_{0} = 0,88$ we have

$$ \begin{aligned} X(1) &\approx 0,623636363636364\\ X(2) &\approx -0,356225815001326\\ X(3) &\approx 2,09475648880333\\ X(4) &\approx 3,71213052034011\\ X(5) &\approx 7,15487396107172\\ X(6) &\approx 14,1699830562016\\ X(7) &\approx 28,2693943978123\\ X(8) &\approx 56,503414850717\\ X(9) &\approx 112,989131656057\\ X(10) &\approx 225,969412903359\\ X(11) &\approx 451,934400429021\\ X(12) &\approx 903,866588147526\\ X(13) &\approx 1807,73206993709\\ X(14) &\approx 3615,46358669485\\ X(15) &\approx 7230,9268968\\ X(16) &\approx 14461,8536553051\\ X(17) &\approx 28923,7072414629\\ X(18) &\approx 57847,414448352\\ X(19) &\approx 115694,828879417\\ X(20) &\approx 231389,657750191\\ X(21) &\approx 462779,31549606\\ X(22) &\approx 925558,630989959\\ X(23) &\approx 1851117,26197884\\ X(24) &\approx 3702234,52395714\\ X(25) &\approx 7404469,047914 \end{aligned} \begin{aligned} X(26) &\approx 14808938,0958279\\ X(27) &\approx 29617876,1916557\\ X(28) &\approx 59235752,3833113\\ X(29) &\approx 118471504,766623\\ X(30) &\approx 236943009,533245\\ X(31) &\approx 473886019,06649\\ X(32) &\approx 947772038,13298\\ X(33) &\approx 1895544076,26596\\ X(34) &\approx 3791088152,53192\\ X(35) &\approx 7582176305,06384\\ X(36) &\approx 15164352610,1277\\ X(37) &\approx 30328705220,2554\\ X(38) &\approx 60657410440,5108\\ X(39) &\approx 121314820881,022\\ X(40) &\approx 242629641762,043\\ X(41) &\approx 485259283524,086\\ X(42) &\approx 970518567048,172\\ X(43) &\approx 1941037134096,34\\ X(44) &\approx 3882074268192,69\\ X(45) &\approx 7764148536385,38\\ X(46) &\approx 15528297072770,8\\ X(47) &\approx 31056594145541,5\\ X(48) &\approx 62113188291083\\ X(49) &\approx 124226376582166\\ X(50) &\approx 248452753164332 \end{aligned} $$

What explains this?

Also, is it possible to determine the number $q$ located between $0.87$ and $0.88$ in the radical change of behavior occurs this sequence?

share|improve this question
11  
what is there to explain ? – mercio May 4 at 13:40
6  
This is called chaos, or The Butterfly Effect. – Ma Ming May 4 at 13:42
5  
sensitive dependence on initial conditions. – Grumpy Parsnip May 4 at 13:45
6  
DO NOT close this question. I think this is a valid question. – user17762 May 4 at 14:37
4  
Speaking as someone who voted to close this question, I would vote to reopen it if the OP edited it to be explicit about what s/he considered bizarre, rather than making us all guess. – Micah May 4 at 14:51
show 6 more comments

3 Answers

The answers of mercio and Mark Bennet explain how to find the antecedents of $1$, $0$, and $-1$. This answer may help to visualize the structure of the set.

animated schematic

The horizontal axis represents $x_0$. The black horizontal line segments at height $1$ indicate intervals on which the limiting value of $x_n$ is $+\infty,$ while the black horizontal line segments at height $-1$ indicate intervals on which the limiting value of $x_n$ is $-\infty.$ The colored dots at heights $\pm1$ indicate values of $x_0$ for which the fixed points $\pm1$ are reached, while the colored dots on the horizontal axis represent values of $x_0$ for which the fixed point $\infty$ is reached (by first reaching $0$). Redder colors indicate fixed points that are reached in a small number of iterations; bluer colors indicate fixed points that are reached in a larger number of iterations. The image is animated. If the animation has stopped, it may be necessary to reload the page.

Some data:

$x_0$ reaching fixed points $(1,\infty,-1)$ after $1$ step: $$\left( \begin{array}{ccc} -0.5 & 0. & 0.5 \\ \end{array} \right)$$

$x_0$ reaching fixed points $(1,\infty,-1)$ after $2$ steps: $$\left( \begin{array}{ccc} -0.84307 & -0.707107 & -0.59307 \\ 0.59307 & 0.707107 & 0.84307 \\ \end{array} \right)$$

$x_0$ reaching fixed points $(1,\infty,-1)$ after $3$ steps: $$\left( \begin{array}{ccc} -0.948618 & -0.905646 & -0.870752 \\ -0.574217 & -0.552092 & -0.527083 \\ 0.527083 & 0.552092 & 0.574217 \\ 0.870752 & 0.905646 & 0.948618 \\ \end{array} \right)$$

$x_0$ reaching fixed points $(1,\infty,-1)$ after $4$ steps: $$\left( \begin{array}{ccc} -0.982971 & -0.968882 & -0.957545 \\ -0.865086 & -0.858475 & -0.851051 \\ -0.587509 & -0.582428 & -0.577977 \\ -0.522169 & -0.516059 & -0.508662 \\ 0.508662 & 0.516059 & 0.522169 \\ 0.577977 & 0.582428 & 0.587509 \\ 0.851051 & 0.858475 & 0.865086 \\ 0.957545 & 0.968882 & 0.982971 \\ \end{array} \right)$$

$x_0$ reaching fixed points $(1,\infty,-1)$ after $5$ steps: $$\left( \begin{array}{ccc} -0.994334 & -0.989663 & -0.985915 \\ -0.955713 & -0.953578 & -0.951185 \\ -0.869077 & -0.86755 & -0.866214 \\ -0.849598 & -0.847795 & -0.845616 \\ -0.591285 & -0.589765 & -0.588514 \\ -0.577225 & -0.576336 & -0.575323 \\ -0.52566 & -0.524341 & -0.52317 \\ -0.507143 & -0.505222 & -0.502849 \\ 0.502849 & 0.505222 & 0.507143 \\ 0.52317 & 0.524341 & 0.52566 \\ 0.575323 & 0.576336 & 0.577225 \\ 0.588514 & 0.589765 & 0.591285 \\ 0.845616 & 0.847795 & 0.849598 \\ 0.866214 & 0.86755 & 0.869077 \\ 0.951185 & 0.953578 & 0.955713 \\ 0.985915 & 0.989663 & 0.994334 \\ \end{array} \right)$$

Explanation: Taking the first row of the last table, $$\begin{pmatrix} -0.994334 & -0.989663 & -0.985915\end{pmatrix},$$ as an example,

  • $x_0=-0.994334$ implies $x_n=1$ for $n\ge5;$
  • $x_0=-0.989663$ implies $x_n=\infty$ for $n\ge5$ since $x_4=0;$
  • $x_0=-0.985915$ implies $x_n=-1$ for $n\ge5;$
  • for $x_0\in(-0.994334,-0.989663),$ we have $\displaystyle\lim_{n\to\infty}x_n=+\infty;$
  • for $x_0\in(-0.989663,-0.985915),$ we have $\displaystyle\lim_{n\to\infty}x_n=-\infty.$

The decimal numbers in this discussion should, of course, be replaced by the algebraic numbers they approximate.

share|improve this answer

The recurrence has fixed points at 1 and -1.

If $x_n \lt -1$ then the sequence becomes increasingly negative.

If $x_n \gt 1$ then the sequence becomes increasingly positive.

The sequence crashes if $x_n=0$

The behaviour outside the interval $(-1,1)$ is clear, so we don't need long strings of values to explain it.

The way to understand what is going on is to see that the interval $(-1,1)$ can be separated into subintervals in which the values exhibit the same behaviour. The behaviour changes when we pass through a critical point - and these are just the points at which the sequence eventually terminates at $0$ or $\pm1$.

So, for example, if $x_n \in (-0.5,0)$ we find that $x_{n+1} \gt 1$ and $x_n \in (0,0.5)$ gives $x_{n+1} \lt -1$. The behaviour changes as we pass through $0$.

We note that if $x_n=\pm0.5$ then $x_{n+1}=\mp1$, so these are critical points. Also if $x_n=\pm \frac {\sqrt 2} 2$ then $x_{n+1}=0$.

If $x=a$ is a critical point, we get the next one(s) - the point(s) which map onto $a$ - by solving $2x-\cfrac 1 x=a$, this is equivalent to $$2x^2-ax-1=0$$ with solutions $$\frac {a\pm\sqrt{a^2+8}}4$$

share|improve this answer
Thank you! I noticed the same thing myself. I have tried to describe the set of "bad" but I could not. – Mihai Dicu May 4 at 17:10

Extending the function $f : x \mapsto 2x- \frac 1x$ to the circle $\Bbb R \cup \{\infty\}$ by defining $f(0) = f(\infty) = \infty$, $f$ is a $2$-to-$1$ function with $3$ fixpoints, one attractive ($\infty$), and two repulsive ($1,-1$).

So, for most starting reals, the generated sequence will "converge" to $\infty$. Since $f$ is continuous, the set of reals that generate a sequence diverging to $+ \infty$ is an open subset, as well as the set of reals that generate a sequence diverging to $- \infty$.

those two open sets "come in contact" at the real numbers that generate a sequence eventually going to $0$ and then that stays on $\infty$. Here, you can plainly see that there is an $x \in (0.87 ; 0.88)$ such that $f^{6}(x) = 0$.

To find the precise value of that $x$, you need to compute the successive antecedents of $0$ by $f$ that lay in-between the two sequences.

$f^{-1}(y) = \frac{y \pm \sqrt {y^2+8}}4$, so the first one is $\frac {\sqrt 2}2$ (betwwen the two $X(5)$ values), then $\frac {\sqrt 2 + \sqrt {34}}8$ (between the two $X(4)$ values), and you can go on until you reach the incriminating $x \in (0.87;0.88)$.

Also, the set of all the antecedents of $0$ has accumulation points (starting with $1$ and $-1$, but they could be more), so it's very possible to find many incriminating values between the two initial values, by going back long enough in the antecedents tree.

share|improve this answer
Indeed, there are many incriminating values between $0.87$ and $0.88$. They all seem to be located between $0.8702$ and $0.8708$. (The point with $f^6(x) = 0$ is $x \approx 0.870427$.) – TMM May 4 at 17:36
@TMM : I think the closure of the antecedents of $0$ (or any $x \in [-1;1]$) is a Cantor set (independent of $x$). – mercio May 4 at 17:48
1  
@TMM : $x_2=-1$ for $x_0=(1+\sqrt{33})/8\approx0.84307,$ while $x_3=1$ for $x_0=\left(\sqrt{2(273-\sqrt{33})}+\sqrt{33}-1\right)/32\approx0.870752.$ The limiting value of $x_n$ changes from $+\infty$ to $-\infty$ infinitely often between these two values. The least critical value greater than $0.87$ is $x_0\approx0.870214,$ at which point $x_6=-1,$ so one can also say that the limiting value of $x_n$ changes from $+\infty$ to $-\infty$ infinitely often between $\approx0.870214$ and $\approx0.870752.$ – Will Orrick May 5 at 10:59

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.