Skip to content
#

pretrained-models

Here are 405 public repositories matching this topic...

transformers
NielsRogge
NielsRogge commented Jan 2, 2022

Related to #5142, AlbertTokenizer (which uses SentencePiece) doesn't decode special tokens (like [CLS], [MASK]) properly. This issue was discovered when adding the Nystromformer model (#14659), which uses this tokenizer.

To reproduce (Transformers v4.15 or below):

!pip install -q transformers sentencepiece

from transformers import AlbertTokenizer

tokenizer = AlbertTokenizer.from
Anth0nyWu
Anth0nyWu commented Nov 10, 2020

🐛 Bug

File "/home/ubuntu/vqa/GMN/mmf/mmf/datasets/builders/visual_genome/dataset.py", line 44, in init
scene_graph_file = self._get_absolute_path(scene_graph_file)
AttributeError: 'VisualGenomeDataset' object has no attribute '_get_absolute_path'

Command that i run in shell

CUDA_VISIBLE_DEVICES="0" mmf_run config=projects/gmn/configs/visual_genome/defaults.yaml model=gm

akari0216
akari0216 commented Sep 2, 2021

欢迎您反馈PaddleNLP使用问题,非常感谢您对PaddleNLP的贡献!
在留下您的问题时,辛苦您同步提供如下信息:

  • 版本、环境信息
    1)PaddleNLP和PaddlePaddle版本:请提供您的PaddleNLP和PaddlePaddle版本号,例如PaddleNLP 2.0.4,PaddlePaddle2.1.1
    2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本
  • 复现信息:如为报错,请给出复现环境、复现步骤
    paddle版本2.0.8 paddlenlp版本2.1.0
    建议,能否在paddlenlp文档中,整理列出各个模型的tokenizer是基于什么类别的based,如bert tokenizer是word piece的,xlnet tokenizer是sentence piece的,以及对应的输入输出样例

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]

  • Updated Feb 16, 2022
  • Python
pyannote-audio

Improve this page

Add a description, image, and links to the pretrained-models topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the pretrained-models topic, visit your repo's landing page and select "manage topics."

Learn more