Taking a closer look at :
mult1 = np.multiply(-0.5,np.transpose(pixelValueDifference))
mult2 = np.dot(covMatrixInverz,pixelValueDifference)
multMult = np.dot(mult1,mult2)
We see that the operation is basically :
A.T (d) C (d) A # where `(d)` is the dot-product
Those three steps could be easily expressed as one string notation in np.einsum
, like so -
np.einsum('k,lk,l->',pA,covMatrixInverz,-0.5*pA)
Performing this across both iterators i(=x)
and j(=y)
, we would have a fully vectorized expression -
np.einsum('ijk,lk,ijl->ij',pA,covMatrixInverz,-0.5*pA))
Alternatively, we could perform the first part of sume-reduction with np.tensordot
-
mult2_vectorized = np.tensordot(pA, covMatrixInverz, axes=([2],[1]))
output = np.einsum('ijk,ijk->ij',-0.5*pA, mult2_vectorized)
Benchmarking
Listing all approaches as functions -
# Original code posted by OP to return array
def org_app(meanVectorClass1, realImage, covMatrixInverz, norm):
probImage1 = []
probImage1Vector = []
x_img, y_img = realImage.shape[:2]
for x in xrange(x_img):
for y in xrange(y_img):
X = realImage[x,y]
pixelValueDifference = X - meanVectorClass1
mult1 = np.multiply(-0.5,np.transpose(pixelValueDifference))
mult2 = np.dot(covMatrixInverz,pixelValueDifference)
multMult = np.dot(mult1,mult2)
expo = np.exp(multMult)
probImage1Vector.append(np.multiply(norm,expo))
probImage1.append(probImage1Vector)
probImage1Vector = []
return np.asarray(probImage1).reshape(x_img,y_img)
def vectorized(meanVectorClass1, realImage, covMatrixInverz, norm):
pA = realImage - meanVectorClass1
mult2_vectorized = np.tensordot(pA, covMatrixInverz, axes=([2],[1]))
return np.exp(np.einsum('ijk,ijk->ij',-0.5*pA, mult2_vectorized))*norm
def vectorized2(meanVectorClass1, realImage, covMatrixInverz, norm):
pA = realImage - meanVectorClass1
return np.exp(np.einsum('ijk,lk,ijl->ij',pA,covMatrixInverz,-0.5*pA))*norm
Timings -
In [19]: # Setup inputs
...: meanVectorClass1 = np.array([23.96000000, 58.159999, 61.5399])
...:
...: covMatrixClass1 = np.array([[ 514.20040404, 461.68323232, 364.35515152],
...: [ 461.68323232, 519.63070707, 446.48848485],
...: [ 364.35515152, 446.48848485, 476.37212121]])
...: covMatrixInverz = np.linalg.inv(covMatrixClass1)
...:
...: norm = 0.234 # Random float number
...: realImage = np.random.rand(1000,2000,3)
...:
In [20]: out1 = org_app(meanVectorClass1, realImage, covMatrixInverz, norm )
...: out2 = vectorized(meanVectorClass1, realImage, covMatrixInverz, norm )
...: out3 = vectorized2(meanVectorClass1, realImage, covMatrixInverz, norm )
...: print np.allclose(out1, out2)
...: print np.allclose(out1, out3)
...:
True
True
In [21]: %timeit org_app(meanVectorClass1, realImage, covMatrixInverz, norm )
1 loops, best of 3: 27.8 s per loop
In [22]: %timeit vectorized(meanVectorClass1, realImage, covMatrixInverz, norm )
1 loops, best of 3: 182 ms per loop
In [23]: %timeit vectorized2(meanVectorClass1, realImage, covMatrixInverz, norm )
1 loops, best of 3: 275 ms per loop
Looks like the fully vectorized einsum + tensordot
hybrid solution is doing pretty good!
For further performance boost, one can also look into numexpr
module to speedup the exponential
computations on large arrays.